1 //===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements double-precision soft-float division
11 // with the IEEE-754 default rounding (to nearest, ties to even).
13 // For simplicity, this implementation currently flushes denormals to zero.
14 // It should be a fairly straightforward exercise to implement gradual
15 // underflow with correct rounding.
17 //===----------------------------------------------------------------------===//
19 #define DOUBLE_PRECISION
22 ARM_EABI_FNALIAS(ddiv
, divdf3
)
25 __divdf3(fp_t a
, fp_t b
) {
27 const unsigned int aExponent
= toRep(a
) >> significandBits
& maxExponent
;
28 const unsigned int bExponent
= toRep(b
) >> significandBits
& maxExponent
;
29 const rep_t quotientSign
= (toRep(a
) ^ toRep(b
)) & signBit
;
31 rep_t aSignificand
= toRep(a
) & significandMask
;
32 rep_t bSignificand
= toRep(b
) & significandMask
;
35 // Detect if a or b is zero, denormal, infinity, or NaN.
36 if (aExponent
-1U >= maxExponent
-1U || bExponent
-1U >= maxExponent
-1U) {
38 const rep_t aAbs
= toRep(a
) & absMask
;
39 const rep_t bAbs
= toRep(b
) & absMask
;
41 // NaN / anything = qNaN
42 if (aAbs
> infRep
) return fromRep(toRep(a
) | quietBit
);
43 // anything / NaN = qNaN
44 if (bAbs
> infRep
) return fromRep(toRep(b
) | quietBit
);
47 // infinity / infinity = NaN
48 if (bAbs
== infRep
) return fromRep(qnanRep
);
49 // infinity / anything else = +/- infinity
50 else return fromRep(aAbs
| quotientSign
);
53 // anything else / infinity = +/- 0
54 if (bAbs
== infRep
) return fromRep(quotientSign
);
58 if (!bAbs
) return fromRep(qnanRep
);
59 // zero / anything else = +/- zero
60 else return fromRep(quotientSign
);
62 // anything else / zero = +/- infinity
63 if (!bAbs
) return fromRep(infRep
| quotientSign
);
65 // one or both of a or b is denormal, the other (if applicable) is a
66 // normal number. Renormalize one or both of a and b, and set scale to
67 // include the necessary exponent adjustment.
68 if (aAbs
< implicitBit
) scale
+= normalize(&aSignificand
);
69 if (bAbs
< implicitBit
) scale
-= normalize(&bSignificand
);
72 // Or in the implicit significand bit. (If we fell through from the
73 // denormal path it was already set by normalize( ), but setting it twice
74 // won't hurt anything.)
75 aSignificand
|= implicitBit
;
76 bSignificand
|= implicitBit
;
77 int quotientExponent
= aExponent
- bExponent
+ scale
;
79 // Align the significand of b as a Q31 fixed-point number in the range
80 // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
81 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
82 // is accurate to about 3.5 binary digits.
83 const uint32_t q31b
= bSignificand
>> 21;
84 uint32_t recip32
= UINT32_C(0x7504f333) - q31b
;
86 // Now refine the reciprocal estimate using a Newton-Raphson iteration:
88 // x1 = x0 * (2 - x0 * b)
90 // This doubles the number of correct binary digits in the approximation
91 // with each iteration, so after three iterations, we have about 28 binary
92 // digits of accuracy.
93 uint32_t correction32
;
94 correction32
= -((uint64_t)recip32
* q31b
>> 32);
95 recip32
= (uint64_t)recip32
* correction32
>> 31;
96 correction32
= -((uint64_t)recip32
* q31b
>> 32);
97 recip32
= (uint64_t)recip32
* correction32
>> 31;
98 correction32
= -((uint64_t)recip32
* q31b
>> 32);
99 recip32
= (uint64_t)recip32
* correction32
>> 31;
101 // recip32 might have overflowed to exactly zero in the preceding
102 // computation if the high word of b is exactly 1.0. This would sabotage
103 // the full-width final stage of the computation that follows, so we adjust
104 // recip32 downward by one bit.
107 // We need to perform one more iteration to get us to 56 binary digits;
108 // The last iteration needs to happen with extra precision.
109 const uint32_t q63blo
= bSignificand
<< 11;
110 uint64_t correction
, reciprocal
;
111 correction
= -((uint64_t)recip32
*q31b
+ ((uint64_t)recip32
*q63blo
>> 32));
112 uint32_t cHi
= correction
>> 32;
113 uint32_t cLo
= correction
;
114 reciprocal
= (uint64_t)recip32
*cHi
+ ((uint64_t)recip32
*cLo
>> 32);
116 // We already adjusted the 32-bit estimate, now we need to adjust the final
117 // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
118 // than the infinitely precise exact reciprocal. Because the computation
119 // of the Newton-Raphson step is truncating at every step, this adjustment
120 // is small; most of the work is already done.
123 // The numerical reciprocal is accurate to within 2^-56, lies in the
124 // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
125 // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
126 // in Q53 with the following properties:
129 // 2. q is in the interval [0.5, 2.0)
130 // 3. the error in q is bounded away from 2^-53 (actually, we have a
131 // couple of bits to spare, but this is all we need).
133 // We need a 64 x 64 multiply high to compute q, which isn't a basic
134 // operation in C, so we need to be a little bit fussy.
135 rep_t quotient
, quotientLo
;
136 wideMultiply(aSignificand
<< 2, reciprocal
, "ient
, "ientLo
);
138 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
139 // In either case, we are going to compute a residual of the form
143 // We know from the construction of q that r satisfies:
147 // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
148 // already have the correct result. The exact halfway case cannot occur.
149 // We also take this time to right shift quotient if it falls in the [1,2)
150 // range and adjust the exponent accordingly.
152 if (quotient
< (implicitBit
<< 1)) {
153 residual
= (aSignificand
<< 53) - quotient
* bSignificand
;
157 residual
= (aSignificand
<< 52) - quotient
* bSignificand
;
160 const int writtenExponent
= quotientExponent
+ exponentBias
;
162 if (writtenExponent
>= maxExponent
) {
163 // If we have overflowed the exponent, return infinity.
164 return fromRep(infRep
| quotientSign
);
167 else if (writtenExponent
< 1) {
168 // Flush denormals to zero. In the future, it would be nice to add
169 // code to round them correctly.
170 return fromRep(quotientSign
);
174 const bool round
= (residual
<< 1) > bSignificand
;
175 // Clear the implicit bit
176 rep_t absResult
= quotient
& significandMask
;
177 // Insert the exponent
178 absResult
|= (rep_t
)writtenExponent
<< significandBits
;
181 // Insert the sign and return
182 const double result
= fromRep(absResult
| quotientSign
);