[ASan/Win tests] Bring back -GS- as SEH tests fail otherwise
[blocksruntime.git] / lib / builtins / comparetf2.c
bloba6436de89e76e14204118b743aaf0fd070b7f689
1 //===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // // This file implements the following soft-float comparison routines:
12 // __eqtf2 __getf2 __unordtf2
13 // __letf2 __gttf2
14 // __lttf2
15 // __netf2
17 // The semantics of the routines grouped in each column are identical, so there
18 // is a single implementation for each, and wrappers to provide the other names.
20 // The main routines behave as follows:
22 // __letf2(a,b) returns -1 if a < b
23 // 0 if a == b
24 // 1 if a > b
25 // 1 if either a or b is NaN
27 // __getf2(a,b) returns -1 if a < b
28 // 0 if a == b
29 // 1 if a > b
30 // -1 if either a or b is NaN
32 // __unordtf2(a,b) returns 0 if both a and b are numbers
33 // 1 if either a or b is NaN
35 // Note that __letf2( ) and __getf2( ) are identical except in their handling of
36 // NaN values.
38 //===----------------------------------------------------------------------===//
40 #define QUAD_PRECISION
41 #include "fp_lib.h"
43 #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
44 enum LE_RESULT {
45 LE_LESS = -1,
46 LE_EQUAL = 0,
47 LE_GREATER = 1,
48 LE_UNORDERED = 1
51 COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
53 const srep_t aInt = toRep(a);
54 const srep_t bInt = toRep(b);
55 const rep_t aAbs = aInt & absMask;
56 const rep_t bAbs = bInt & absMask;
58 // If either a or b is NaN, they are unordered.
59 if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
61 // If a and b are both zeros, they are equal.
62 if ((aAbs | bAbs) == 0) return LE_EQUAL;
64 // If at least one of a and b is positive, we get the same result comparing
65 // a and b as signed integers as we would with a floating-point compare.
66 if ((aInt & bInt) >= 0) {
67 if (aInt < bInt) return LE_LESS;
68 else if (aInt == bInt) return LE_EQUAL;
69 else return LE_GREATER;
71 else {
72 // Otherwise, both are negative, so we need to flip the sense of the
73 // comparison to get the correct result. (This assumes a twos- or ones-
74 // complement integer representation; if integers are represented in a
75 // sign-magnitude representation, then this flip is incorrect).
76 if (aInt > bInt) return LE_LESS;
77 else if (aInt == bInt) return LE_EQUAL;
78 else return LE_GREATER;
82 enum GE_RESULT {
83 GE_LESS = -1,
84 GE_EQUAL = 0,
85 GE_GREATER = 1,
86 GE_UNORDERED = -1 // Note: different from LE_UNORDERED
89 COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
91 const srep_t aInt = toRep(a);
92 const srep_t bInt = toRep(b);
93 const rep_t aAbs = aInt & absMask;
94 const rep_t bAbs = bInt & absMask;
96 if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
97 if ((aAbs | bAbs) == 0) return GE_EQUAL;
98 if ((aInt & bInt) >= 0) {
99 if (aInt < bInt) return GE_LESS;
100 else if (aInt == bInt) return GE_EQUAL;
101 else return GE_GREATER;
102 } else {
103 if (aInt > bInt) return GE_LESS;
104 else if (aInt == bInt) return GE_EQUAL;
105 else return GE_GREATER;
109 COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
110 const rep_t aAbs = toRep(a) & absMask;
111 const rep_t bAbs = toRep(b) & absMask;
112 return aAbs > infRep || bAbs > infRep;
115 // The following are alternative names for the preceding routines.
117 COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) {
118 return __letf2(a, b);
121 COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) {
122 return __letf2(a, b);
125 COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) {
126 return __letf2(a, b);
129 COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) {
130 return __getf2(a, b);
133 #endif