tsan: better diagnostics if thread finishes with ignores enabled
[blocksruntime.git] / lib / tsan / rtl / tsan_rtl_thread.cc
blobf8835eb555cc65562e653dd36489de1ba72a1dcf
1 //===-- tsan_rtl_thread.cc ------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_common/sanitizer_placement_new.h"
15 #include "tsan_rtl.h"
16 #include "tsan_mman.h"
17 #include "tsan_platform.h"
18 #include "tsan_report.h"
19 #include "tsan_sync.h"
21 namespace __tsan {
23 // ThreadContext implementation.
25 ThreadContext::ThreadContext(int tid)
26 : ThreadContextBase(tid)
27 , thr()
28 , sync()
29 , epoch0()
30 , epoch1() {
33 #ifndef TSAN_GO
34 ThreadContext::~ThreadContext() {
36 #endif
38 void ThreadContext::OnDead() {
39 sync.Reset();
42 void ThreadContext::OnJoined(void *arg) {
43 ThreadState *caller_thr = static_cast<ThreadState *>(arg);
44 AcquireImpl(caller_thr, 0, &sync);
45 sync.Reset();
48 struct OnCreatedArgs {
49 ThreadState *thr;
50 uptr pc;
53 void ThreadContext::OnCreated(void *arg) {
54 thr = 0;
55 if (tid == 0)
56 return;
57 OnCreatedArgs *args = static_cast<OnCreatedArgs *>(arg);
58 args->thr->fast_state.IncrementEpoch();
59 // Can't increment epoch w/o writing to the trace as well.
60 TraceAddEvent(args->thr, args->thr->fast_state, EventTypeMop, 0);
61 ReleaseImpl(args->thr, 0, &sync);
62 #ifdef TSAN_GO
63 creation_stack.ObtainCurrent(args->thr, args->pc);
64 #else
65 creation_stack_id = CurrentStackId(args->thr, args->pc);
66 #endif
67 if (reuse_count == 0)
68 StatInc(args->thr, StatThreadMaxTid);
71 void ThreadContext::OnReset() {
72 sync.Reset();
73 FlushUnneededShadowMemory(GetThreadTrace(tid), TraceSize() * sizeof(Event));
74 //!!! FlushUnneededShadowMemory(GetThreadTraceHeader(tid), sizeof(Trace));
77 struct OnStartedArgs {
78 ThreadState *thr;
79 uptr stk_addr;
80 uptr stk_size;
81 uptr tls_addr;
82 uptr tls_size;
85 void ThreadContext::OnStarted(void *arg) {
86 OnStartedArgs *args = static_cast<OnStartedArgs*>(arg);
87 thr = args->thr;
88 // RoundUp so that one trace part does not contain events
89 // from different threads.
90 epoch0 = RoundUp(epoch1 + 1, kTracePartSize);
91 epoch1 = (u64)-1;
92 new(thr) ThreadState(CTX(), tid, unique_id,
93 epoch0, args->stk_addr, args->stk_size, args->tls_addr, args->tls_size);
94 #ifndef TSAN_GO
95 thr->shadow_stack = &ThreadTrace(thr->tid)->shadow_stack[0];
96 thr->shadow_stack_pos = thr->shadow_stack;
97 thr->shadow_stack_end = thr->shadow_stack + kShadowStackSize;
98 #else
99 // Setup dynamic shadow stack.
100 const int kInitStackSize = 8;
101 thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
102 kInitStackSize * sizeof(uptr));
103 thr->shadow_stack_pos = thr->shadow_stack;
104 thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
105 #endif
106 #ifndef TSAN_GO
107 AllocatorThreadStart(thr);
108 #endif
109 thr->fast_synch_epoch = epoch0;
110 AcquireImpl(thr, 0, &sync);
111 thr->fast_state.SetHistorySize(flags()->history_size);
112 const uptr trace = (epoch0 / kTracePartSize) % TraceParts();
113 Trace *thr_trace = ThreadTrace(thr->tid);
114 thr_trace->headers[trace].epoch0 = epoch0;
115 StatInc(thr, StatSyncAcquire);
116 sync.Reset();
117 DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
118 "tls_addr=%zx tls_size=%zx\n",
119 tid, (uptr)epoch0, args->stk_addr, args->stk_size,
120 args->tls_addr, args->tls_size);
121 thr->is_alive = true;
124 void ThreadContext::OnFinished() {
125 if (!detached) {
126 thr->fast_state.IncrementEpoch();
127 // Can't increment epoch w/o writing to the trace as well.
128 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
129 ReleaseImpl(thr, 0, &sync);
131 epoch1 = thr->fast_state.epoch();
133 #ifndef TSAN_GO
134 AllocatorThreadFinish(thr);
135 #endif
136 thr->~ThreadState();
137 StatAggregate(CTX()->stat, thr->stat);
138 thr = 0;
141 #ifndef TSAN_GO
142 struct ThreadLeak {
143 ThreadContext *tctx;
144 int count;
147 static void MaybeReportThreadLeak(ThreadContextBase *tctx_base, void *arg) {
148 Vector<ThreadLeak> &leaks = *(Vector<ThreadLeak>*)arg;
149 ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
150 if (tctx->detached || tctx->status != ThreadStatusFinished)
151 return;
152 for (uptr i = 0; i < leaks.Size(); i++) {
153 if (leaks[i].tctx->creation_stack_id == tctx->creation_stack_id) {
154 leaks[i].count++;
155 return;
158 ThreadLeak leak = {tctx, 1};
159 leaks.PushBack(leak);
161 #endif
163 #ifndef TSAN_GO
164 static void ReportIgnoresEnabled(ThreadContext *tctx, IgnoreSet *set) {
165 if (tctx->tid == 0) {
166 Printf("ThreadSanitizer: main thread finished with ignores enabled\n");
167 } else {
168 Printf("ThreadSanitizer: thread T%d %s finished with ignores enabled,"
169 " created at:\n", tctx->tid, tctx->name);
170 PrintStack(SymbolizeStackId(tctx->creation_stack_id));
172 for (uptr i = 0; i < set->Size(); i++) {
173 Printf(" Ignore was enabled at:\n");
174 PrintStack(SymbolizeStackId(set->At(i)));
176 Die();
179 static void ThreadCheckIgnore(ThreadState *thr) {
180 if (thr->ignore_reads_and_writes)
181 ReportIgnoresEnabled(thr->tctx, &thr->mop_ignore_set);
182 if (thr->ignore_sync)
183 ReportIgnoresEnabled(thr->tctx, &thr->sync_ignore_set);
185 #else
186 static void ThreadCheckIgnore(ThreadState *thr) {}
187 #endif
189 void ThreadFinalize(ThreadState *thr) {
190 CHECK_GT(thr->in_rtl, 0);
191 ThreadCheckIgnore(thr);
192 #ifndef TSAN_GO
193 if (!flags()->report_thread_leaks)
194 return;
195 ThreadRegistryLock l(CTX()->thread_registry);
196 Vector<ThreadLeak> leaks(MBlockScopedBuf);
197 CTX()->thread_registry->RunCallbackForEachThreadLocked(
198 MaybeReportThreadLeak, &leaks);
199 for (uptr i = 0; i < leaks.Size(); i++) {
200 ScopedReport rep(ReportTypeThreadLeak);
201 rep.AddThread(leaks[i].tctx);
202 rep.SetCount(leaks[i].count);
203 OutputReport(CTX(), rep);
205 #endif
208 int ThreadCount(ThreadState *thr) {
209 CHECK_GT(thr->in_rtl, 0);
210 Context *ctx = CTX();
211 uptr result;
212 ctx->thread_registry->GetNumberOfThreads(0, 0, &result);
213 return (int)result;
216 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
217 CHECK_GT(thr->in_rtl, 0);
218 StatInc(thr, StatThreadCreate);
219 Context *ctx = CTX();
220 OnCreatedArgs args = { thr, pc };
221 int tid = ctx->thread_registry->CreateThread(uid, detached, thr->tid, &args);
222 DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
223 StatSet(thr, StatThreadMaxAlive, ctx->thread_registry->GetMaxAliveThreads());
224 return tid;
227 void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
228 Context *ctx = CTX();
229 CHECK_GT(thr->in_rtl, 0);
230 uptr stk_addr = 0;
231 uptr stk_size = 0;
232 uptr tls_addr = 0;
233 uptr tls_size = 0;
234 GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
236 if (tid) {
237 if (stk_addr && stk_size)
238 MemoryRangeImitateWrite(thr, /*pc=*/ 1, stk_addr, stk_size);
240 if (tls_addr && tls_size) {
241 // Check that the thr object is in tls;
242 const uptr thr_beg = (uptr)thr;
243 const uptr thr_end = (uptr)thr + sizeof(*thr);
244 CHECK_GE(thr_beg, tls_addr);
245 CHECK_LE(thr_beg, tls_addr + tls_size);
246 CHECK_GE(thr_end, tls_addr);
247 CHECK_LE(thr_end, tls_addr + tls_size);
248 // Since the thr object is huge, skip it.
249 MemoryRangeImitateWrite(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
250 MemoryRangeImitateWrite(thr, /*pc=*/ 2,
251 thr_end, tls_addr + tls_size - thr_end);
255 ThreadRegistry *tr = ctx->thread_registry;
256 OnStartedArgs args = { thr, stk_addr, stk_size, tls_addr, tls_size };
257 tr->StartThread(tid, os_id, &args);
259 tr->Lock();
260 thr->tctx = (ThreadContext*)tr->GetThreadLocked(tid);
261 tr->Unlock();
264 void ThreadFinish(ThreadState *thr) {
265 CHECK_GT(thr->in_rtl, 0);
266 ThreadCheckIgnore(thr);
267 StatInc(thr, StatThreadFinish);
268 if (thr->stk_addr && thr->stk_size)
269 DontNeedShadowFor(thr->stk_addr, thr->stk_size);
270 if (thr->tls_addr && thr->tls_size)
271 DontNeedShadowFor(thr->tls_addr, thr->tls_size);
272 thr->is_alive = false;
273 Context *ctx = CTX();
274 ctx->thread_registry->FinishThread(thr->tid);
277 static bool FindThreadByUid(ThreadContextBase *tctx, void *arg) {
278 uptr uid = (uptr)arg;
279 if (tctx->user_id == uid && tctx->status != ThreadStatusInvalid) {
280 tctx->user_id = 0;
281 return true;
283 return false;
286 int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
287 CHECK_GT(thr->in_rtl, 0);
288 Context *ctx = CTX();
289 int res = ctx->thread_registry->FindThread(FindThreadByUid, (void*)uid);
290 DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
291 return res;
294 void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
295 CHECK_GT(thr->in_rtl, 0);
296 CHECK_GT(tid, 0);
297 CHECK_LT(tid, kMaxTid);
298 DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
299 Context *ctx = CTX();
300 ctx->thread_registry->JoinThread(tid, thr);
303 void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
304 CHECK_GT(thr->in_rtl, 0);
305 CHECK_GT(tid, 0);
306 CHECK_LT(tid, kMaxTid);
307 Context *ctx = CTX();
308 ctx->thread_registry->DetachThread(tid);
311 void ThreadSetName(ThreadState *thr, const char *name) {
312 CHECK_GT(thr->in_rtl, 0);
313 CTX()->thread_registry->SetThreadName(thr->tid, name);
316 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
317 uptr size, bool is_write) {
318 if (size == 0)
319 return;
321 u64 *shadow_mem = (u64*)MemToShadow(addr);
322 DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
323 thr->tid, (void*)pc, (void*)addr,
324 (int)size, is_write);
326 #if TSAN_DEBUG
327 if (!IsAppMem(addr)) {
328 Printf("Access to non app mem %zx\n", addr);
329 DCHECK(IsAppMem(addr));
331 if (!IsAppMem(addr + size - 1)) {
332 Printf("Access to non app mem %zx\n", addr + size - 1);
333 DCHECK(IsAppMem(addr + size - 1));
335 if (!IsShadowMem((uptr)shadow_mem)) {
336 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
337 DCHECK(IsShadowMem((uptr)shadow_mem));
339 if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
340 Printf("Bad shadow addr %p (%zx)\n",
341 shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
342 DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
344 #endif
346 StatInc(thr, StatMopRange);
348 if (*shadow_mem == kShadowRodata) {
349 // Access to .rodata section, no races here.
350 // Measurements show that it can be 10-20% of all memory accesses.
351 StatInc(thr, StatMopRangeRodata);
352 return;
355 FastState fast_state = thr->fast_state;
356 if (fast_state.GetIgnoreBit())
357 return;
359 fast_state.IncrementEpoch();
360 thr->fast_state = fast_state;
361 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
363 bool unaligned = (addr % kShadowCell) != 0;
365 // Handle unaligned beginning, if any.
366 for (; addr % kShadowCell && size; addr++, size--) {
367 int const kAccessSizeLog = 0;
368 Shadow cur(fast_state);
369 cur.SetWrite(is_write);
370 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
371 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
372 shadow_mem, cur);
374 if (unaligned)
375 shadow_mem += kShadowCnt;
376 // Handle middle part, if any.
377 for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
378 int const kAccessSizeLog = 3;
379 Shadow cur(fast_state);
380 cur.SetWrite(is_write);
381 cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
382 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
383 shadow_mem, cur);
384 shadow_mem += kShadowCnt;
386 // Handle ending, if any.
387 for (; size; addr++, size--) {
388 int const kAccessSizeLog = 0;
389 Shadow cur(fast_state);
390 cur.SetWrite(is_write);
391 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
392 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
393 shadow_mem, cur);
397 } // namespace __tsan