1 # ##### BEGIN GPL LICENSE BLOCK #####
3 # This program is free software; you can redistribute it and/or
4 # modify it under the terms of the GNU General Public License
5 # as published by the Free Software Foundation; either version 2
6 # of the License, or (at your option) any later version.
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
13 # You should have received a copy of the GNU General Public License
14 # along with this program; if not, write to the Free Software Foundation,
15 # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 # ##### END GPL LICENSE BLOCK #####
22 from math
import pi
, cos
, sin
, sqrt
, ceil
23 from mathutils
import Vector
, Matrix
26 # -----------------------------------------------------------------------------
27 # Atom, stick and element data
30 # This is a list that contains some data of all possible elements. The structure
33 # 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54 means
35 # No., name, short name, color, radius (used), radius (covalent), radius (atomic),
37 # charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
38 # charge states for any atom are listed, if existing.
39 # The list is fixed and cannot be changed ... (see below)
42 ( 1, "Hydrogen", "H", ( 1.0, 1.0, 1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
43 ( 2, "Helium", "He", ( 0.85, 1.0, 1.0, 1.0), 0.93, 0.93, 0.49 ),
44 ( 3, "Lithium", "Li", ( 0.8, 0.50, 1.0, 1.0), 1.23, 1.23, 2.05 , 1 , 0.68 ),
45 ( 4, "Beryllium", "Be", ( 0.76, 1.0, 0.0, 1.0), 0.90, 0.90, 1.40 , 1 , 0.44 , 2 , 0.35 ),
46 ( 5, "Boron", "B", ( 1.0, 0.70, 0.70, 1.0), 0.82, 0.82, 1.17 , 1 , 0.35 , 3 , 0.23 ),
47 ( 6, "Carbon", "C", ( 0.56, 0.56, 0.56, 1.0), 0.77, 0.77, 0.91 , -4 , 2.60 , 4 , 0.16 ),
48 ( 7, "Nitrogen", "N", ( 0.18, 0.31, 0.97, 1.0), 0.75, 0.75, 0.75 , -3 , 1.71 , 1 , 0.25 , 3 , 0.16 , 5 , 0.13 ),
49 ( 8, "Oxygen", "O", ( 1.0, 0.05, 0.05, 1.0), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 , 1 , 0.22 , 6 , 0.09 ),
50 ( 9, "Fluorine", "F", ( 0.56, 0.87, 0.31, 1.0), 0.72, 0.72, 0.57 , -1 , 1.33 , 7 , 0.08 ),
51 (10, "Neon", "Ne", ( 0.70, 0.89, 0.96, 1.0), 0.71, 0.71, 0.51 , 1 , 1.12 ),
52 (11, "Sodium", "Na", ( 0.67, 0.36, 0.94, 1.0), 1.54, 1.54, 2.23 , 1 , 0.97 ),
53 (12, "Magnesium", "Mg", ( 0.54, 1.0, 0.0, 1.0), 1.36, 1.36, 1.72 , 1 , 0.82 , 2 , 0.66 ),
54 (13, "Aluminium", "Al", ( 0.74, 0.65, 0.65, 1.0), 1.18, 1.18, 1.82 , 3 , 0.51 ),
55 (14, "Silicon", "Si", ( 0.94, 0.78, 0.62, 1.0), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 , 1 , 0.65 , 4 , 0.42 ),
56 (15, "Phosphorus", "P", ( 1.0, 0.50, 0.0, 1.0), 1.06, 1.06, 1.23 , -3 , 2.12 , 3 , 0.44 , 5 , 0.35 ),
57 (16, "Sulfur", "S", ( 1.0, 1.0, 0.18, 1.0), 1.02, 1.02, 1.09 , -2 , 1.84 , 2 , 2.19 , 4 , 0.37 , 6 , 0.30 ),
58 (17, "Chlorine", "Cl", ( 0.12, 0.94, 0.12, 1.0), 0.99, 0.99, 0.97 , -1 , 1.81 , 5 , 0.34 , 7 , 0.27 ),
59 (18, "Argon", "Ar", ( 0.50, 0.81, 0.89, 1.0), 0.98, 0.98, 0.88 , 1 , 1.54 ),
60 (19, "Potassium", "K", ( 0.56, 0.25, 0.83, 1.0), 2.03, 2.03, 2.77 , 1 , 0.81 ),
61 (20, "Calcium", "Ca", ( 0.23, 1.0, 0.0, 1.0), 1.74, 1.74, 2.23 , 1 , 1.18 , 2 , 0.99 ),
62 (21, "Scandium", "Sc", ( 0.90, 0.90, 0.90, 1.0), 1.44, 1.44, 2.09 , 3 , 0.73 ),
63 (22, "Titanium", "Ti", ( 0.74, 0.76, 0.78, 1.0), 1.32, 1.32, 2.00 , 1 , 0.96 , 2 , 0.94 , 3 , 0.76 , 4 , 0.68 ),
64 (23, "Vanadium", "V", ( 0.65, 0.65, 0.67, 1.0), 1.22, 1.22, 1.92 , 2 , 0.88 , 3 , 0.74 , 4 , 0.63 , 5 , 0.59 ),
65 (24, "Chromium", "Cr", ( 0.54, 0.6, 0.78, 1.0), 1.18, 1.18, 1.85 , 1 , 0.81 , 2 , 0.89 , 3 , 0.63 , 6 , 0.52 ),
66 (25, "Manganese", "Mn", ( 0.61, 0.47, 0.78, 1.0), 1.17, 1.17, 1.79 , 2 , 0.80 , 3 , 0.66 , 4 , 0.60 , 7 , 0.46 ),
67 (26, "Iron", "Fe", ( 0.87, 0.4, 0.2, 1.0), 1.17, 1.17, 1.72 , 2 , 0.74 , 3 , 0.64 ),
68 (27, "Cobalt", "Co", ( 0.94, 0.56, 0.62, 1.0), 1.16, 1.16, 1.67 , 2 , 0.72 , 3 , 0.63 ),
69 (28, "Nickel", "Ni", ( 0.31, 0.81, 0.31, 1.0), 1.15, 1.15, 1.62 , 2 , 0.69 ),
70 (29, "Copper", "Cu", ( 0.78, 0.50, 0.2, 1.0), 1.17, 1.17, 1.57 , 1 , 0.96 , 2 , 0.72 ),
71 (30, "Zinc", "Zn", ( 0.49, 0.50, 0.69, 1.0), 1.25, 1.25, 1.53 , 1 , 0.88 , 2 , 0.74 ),
72 (31, "Gallium", "Ga", ( 0.76, 0.56, 0.56, 1.0), 1.26, 1.26, 1.81 , 1 , 0.81 , 3 , 0.62 ),
73 (32, "Germanium", "Ge", ( 0.4, 0.56, 0.56, 1.0), 1.22, 1.22, 1.52 , -4 , 2.72 , 2 , 0.73 , 4 , 0.53 ),
74 (33, "Arsenic", "As", ( 0.74, 0.50, 0.89, 1.0), 1.20, 1.20, 1.33 , -3 , 2.22 , 3 , 0.58 , 5 , 0.46 ),
75 (34, "Selenium", "Se", ( 1.0, 0.63, 0.0, 1.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 , 1 , 0.66 , 4 , 0.50 , 6 , 0.42 ),
76 (35, "Bromine", "Br", ( 0.65, 0.16, 0.16, 1.0), 1.14, 1.14, 1.12 , -1 , 1.96 , 5 , 0.47 , 7 , 0.39 ),
77 (36, "Krypton", "Kr", ( 0.36, 0.72, 0.81, 1.0), 1.31, 1.31, 1.24 ),
78 (37, "Rubidium", "Rb", ( 0.43, 0.18, 0.69, 1.0), 2.16, 2.16, 2.98 , 1 , 1.47 ),
79 (38, "Strontium", "Sr", ( 0.0, 1.0, 0.0, 1.0), 1.91, 1.91, 2.45 , 2 , 1.12 ),
80 (39, "Yttrium", "Y", ( 0.58, 1.0, 1.0, 1.0), 1.62, 1.62, 2.27 , 3 , 0.89 ),
81 (40, "Zirconium", "Zr", ( 0.58, 0.87, 0.87, 1.0), 1.45, 1.45, 2.16 , 1 , 1.09 , 4 , 0.79 ),
82 (41, "Niobium", "Nb", ( 0.45, 0.76, 0.78, 1.0), 1.34, 1.34, 2.08 , 1 , 1.00 , 4 , 0.74 , 5 , 0.69 ),
83 (42, "Molybdenum", "Mo", ( 0.32, 0.70, 0.70, 1.0), 1.30, 1.30, 2.01 , 1 , 0.93 , 4 , 0.70 , 6 , 0.62 ),
84 (43, "Technetium", "Tc", ( 0.23, 0.61, 0.61, 1.0), 1.27, 1.27, 1.95 , 7 , 0.97 ),
85 (44, "Ruthenium", "Ru", ( 0.14, 0.56, 0.56, 1.0), 1.25, 1.25, 1.89 , 4 , 0.67 ),
86 (45, "Rhodium", "Rh", ( 0.03, 0.49, 0.54, 1.0), 1.25, 1.25, 1.83 , 3 , 0.68 ),
87 (46, "Palladium", "Pd", ( 0.0, 0.41, 0.52, 1.0), 1.28, 1.28, 1.79 , 2 , 0.80 , 4 , 0.65 ),
88 (47, "Silver", "Ag", ( 0.75, 0.75, 0.75, 1.0), 1.34, 1.34, 1.75 , 1 , 1.26 , 2 , 0.89 ),
89 (48, "Cadmium", "Cd", ( 1.0, 0.85, 0.56, 1.0), 1.48, 1.48, 1.71 , 1 , 1.14 , 2 , 0.97 ),
90 (49, "Indium", "In", ( 0.65, 0.45, 0.45, 1.0), 1.44, 1.44, 2.00 , 3 , 0.81 ),
91 (50, "Tin", "Sn", ( 0.4, 0.50, 0.50, 1.0), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 , 2 , 0.93 , 4 , 0.71 ),
92 (51, "Antimony", "Sb", ( 0.61, 0.38, 0.70, 1.0), 1.40, 1.40, 1.53 , -3 , 2.45 , 3 , 0.76 , 5 , 0.62 ),
93 (52, "Tellurium", "Te", ( 0.83, 0.47, 0.0, 1.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 , 1 , 0.82 , 4 , 0.70 , 6 , 0.56 ),
94 (53, "Iodine", "I", ( 0.58, 0.0, 0.58, 1.0), 1.33, 1.33, 1.32 , -1 , 2.20 , 5 , 0.62 , 7 , 0.50 ),
95 (54, "Xenon", "Xe", ( 0.25, 0.61, 0.69, 1.0), 1.31, 1.31, 1.24 ),
96 (55, "Caesium", "Cs", ( 0.34, 0.09, 0.56, 1.0), 2.35, 2.35, 3.35 , 1 , 1.67 ),
97 (56, "Barium", "Ba", ( 0.0, 0.78, 0.0, 1.0), 1.98, 1.98, 2.78 , 1 , 1.53 , 2 , 1.34 ),
98 (57, "Lanthanum", "La", ( 0.43, 0.83, 1.0, 1.0), 1.69, 1.69, 2.74 , 1 , 1.39 , 3 , 1.06 ),
99 (58, "Cerium", "Ce", ( 1.0, 1.0, 0.78, 1.0), 1.65, 1.65, 2.70 , 1 , 1.27 , 3 , 1.03 , 4 , 0.92 ),
100 (59, "Praseodymium", "Pr", ( 0.85, 1.0, 0.78, 1.0), 1.65, 1.65, 2.67 , 3 , 1.01 , 4 , 0.90 ),
101 (60, "Neodymium", "Nd", ( 0.78, 1.0, 0.78, 1.0), 1.64, 1.64, 2.64 , 3 , 0.99 ),
102 (61, "Promethium", "Pm", ( 0.63, 1.0, 0.78, 1.0), 1.63, 1.63, 2.62 , 3 , 0.97 ),
103 (62, "Samarium", "Sm", ( 0.56, 1.0, 0.78, 1.0), 1.62, 1.62, 2.59 , 3 , 0.96 ),
104 (63, "Europium", "Eu", ( 0.38, 1.0, 0.78, 1.0), 1.85, 1.85, 2.56 , 2 , 1.09 , 3 , 0.95 ),
105 (64, "Gadolinium", "Gd", ( 0.27, 1.0, 0.78, 1.0), 1.61, 1.61, 2.54 , 3 , 0.93 ),
106 (65, "Terbium", "Tb", ( 0.18, 1.0, 0.78, 1.0), 1.59, 1.59, 2.51 , 3 , 0.92 , 4 , 0.84 ),
107 (66, "Dysprosium", "Dy", ( 0.12, 1.0, 0.78, 1.0), 1.59, 1.59, 2.49 , 3 , 0.90 ),
108 (67, "Holmium", "Ho", ( 0.0, 1.0, 0.61, 1.0), 1.58, 1.58, 2.47 , 3 , 0.89 ),
109 (68, "Erbium", "Er", ( 0.0, 0.90, 0.45, 1.0), 1.57, 1.57, 2.45 , 3 , 0.88 ),
110 (69, "Thulium", "Tm", ( 0.0, 0.83, 0.32, 1.0), 1.56, 1.56, 2.42 , 3 , 0.87 ),
111 (70, "Ytterbium", "Yb", ( 0.0, 0.74, 0.21, 1.0), 1.74, 1.74, 2.40 , 2 , 0.93 , 3 , 0.85 ),
112 (71, "Lutetium", "Lu", ( 0.0, 0.67, 0.14, 1.0), 1.56, 1.56, 2.25 , 3 , 0.85 ),
113 (72, "Hafnium", "Hf", ( 0.30, 0.76, 1.0, 1.0), 1.44, 1.44, 2.16 , 4 , 0.78 ),
114 (73, "Tantalum", "Ta", ( 0.30, 0.65, 1.0, 1.0), 1.34, 1.34, 2.09 , 5 , 0.68 ),
115 (74, "Tungsten", "W", ( 0.12, 0.58, 0.83, 1.0), 1.30, 1.30, 2.02 , 4 , 0.70 , 6 , 0.62 ),
116 (75, "Rhenium", "Re", ( 0.14, 0.49, 0.67, 1.0), 1.28, 1.28, 1.97 , 4 , 0.72 , 7 , 0.56 ),
117 (76, "Osmium", "Os", ( 0.14, 0.4, 0.58, 1.0), 1.26, 1.26, 1.92 , 4 , 0.88 , 6 , 0.69 ),
118 (77, "Iridium", "Ir", ( 0.09, 0.32, 0.52, 1.0), 1.27, 1.27, 1.87 , 4 , 0.68 ),
119 (78, "Platinum", "Pt", ( 0.81, 0.81, 0.87, 1.0), 1.30, 1.30, 1.83 , 2 , 0.80 , 4 , 0.65 ),
120 (79, "Gold", "Au", ( 1.0, 0.81, 0.13, 1.0), 1.34, 1.34, 1.79 , 1 , 1.37 , 3 , 0.85 ),
121 (80, "Mercury", "Hg", ( 0.72, 0.72, 0.81, 1.0), 1.49, 1.49, 1.76 , 1 , 1.27 , 2 , 1.10 ),
122 (81, "Thallium", "Tl", ( 0.65, 0.32, 0.30, 1.0), 1.48, 1.48, 2.08 , 1 , 1.47 , 3 , 0.95 ),
123 (82, "Lead", "Pb", ( 0.34, 0.34, 0.38, 1.0), 1.47, 1.47, 1.81 , 2 , 1.20 , 4 , 0.84 ),
124 (83, "Bismuth", "Bi", ( 0.61, 0.30, 0.70, 1.0), 1.46, 1.46, 1.63 , 1 , 0.98 , 3 , 0.96 , 5 , 0.74 ),
125 (84, "Polonium", "Po", ( 0.67, 0.36, 0.0, 1.0), 1.46, 1.46, 1.53 , 6 , 0.67 ),
126 (85, "Astatine", "At", ( 0.45, 0.30, 0.27, 1.0), 1.45, 1.45, 1.43 , -3 , 2.22 , 3 , 0.85 , 5 , 0.46 ),
127 (86, "Radon", "Rn", ( 0.25, 0.50, 0.58, 1.0), 1.00, 1.00, 1.34 ),
128 (87, "Francium", "Fr", ( 0.25, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 , 1 , 1.80 ),
129 (88, "Radium", "Ra", ( 0.0, 0.49, 0.0, 1.0), 1.00, 1.00, 1.00 , 2 , 1.43 ),
130 (89, "Actinium", "Ac", ( 0.43, 0.67, 0.98, 1.0), 1.00, 1.00, 1.00 , 3 , 1.18 ),
131 (90, "Thorium", "Th", ( 0.0, 0.72, 1.0, 1.0), 1.65, 1.65, 1.00 , 4 , 1.02 ),
132 (91, "Protactinium", "Pa", ( 0.0, 0.63, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.13 , 4 , 0.98 , 5 , 0.89 ),
133 (92, "Uranium", "U", ( 0.0, 0.56, 1.0, 1.0), 1.42, 1.42, 1.00 , 4 , 0.97 , 6 , 0.80 ),
134 (93, "Neptunium", "Np", ( 0.0, 0.50, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.10 , 4 , 0.95 , 7 , 0.71 ),
135 (94, "Plutonium", "Pu", ( 0.0, 0.41, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.08 , 4 , 0.93 ),
136 (95, "Americium", "Am", ( 0.32, 0.36, 0.94, 1.0), 1.00, 1.00, 1.00 , 3 , 1.07 , 4 , 0.92 ),
137 (96, "Curium", "Cm", ( 0.47, 0.36, 0.89, 1.0), 1.00, 1.00, 1.00 ),
138 (97, "Berkelium", "Bk", ( 0.54, 0.30, 0.89, 1.0), 1.00, 1.00, 1.00 ),
139 (98, "Californium", "Cf", ( 0.63, 0.21, 0.83, 1.0), 1.00, 1.00, 1.00 ),
140 (99, "Einsteinium", "Es", ( 0.70, 0.12, 0.83, 1.0), 1.00, 1.00, 1.00 ),
141 (100, "Fermium", "Fm", ( 0.70, 0.12, 0.72, 1.0), 1.00, 1.00, 1.00 ),
142 (101, "Mendelevium", "Md", ( 0.70, 0.05, 0.65, 1.0), 1.00, 1.00, 1.00 ),
143 (102, "Nobelium", "No", ( 0.74, 0.05, 0.52, 1.0), 1.00, 1.00, 1.00 ),
144 (103, "Lawrencium", "Lr", ( 0.78, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 ),
145 (104, "Vacancy", "Vac", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
146 (105, "Default", "Default", ( 1.0, 1.0, 1.0, 1.0), 1.00, 1.00, 1.00),
147 (106, "Stick", "Stick", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
150 # This list here contains all data of the elements and will be used during
151 # runtime. It is a list of classes.
152 # During executing Atomic Blender, the list will be initialized with the fixed
153 # data from above via the class structure below (ElementProp). We
154 # have then one fixed list (above), which will never be changed, and a list of
155 # classes with same data. The latter can be modified via loading a separate
159 # This is the class, which stores the properties for one element.
160 class ElementProp(object):
161 __slots__
= ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
162 def __init__(self
, number
, name
, short_name
, color
, radii
, radii_ionic
):
165 self
.short_name
= short_name
168 self
.radii_ionic
= radii_ionic
170 # This is the class, which stores the properties of one atom.
171 class AtomProp(object):
172 __slots__
= ('element', 'name', 'location', 'radius', 'color', 'material')
173 def __init__(self
, element
, name
, location
, radius
, color
, material
):
174 self
.element
= element
176 self
.location
= location
179 self
.material
= material
181 # This is the class, which stores the two atoms of one stick.
182 class StickProp(object):
183 __slots__
= ('atom1', 'atom2', 'number', 'dist')
184 def __init__(self
, atom1
, atom2
, number
, dist
):
190 # -----------------------------------------------------------------------------
191 # Some basic routines
194 # The function, which reads all necessary properties of the elements.
199 for item
in ELEMENTS_DEFAULT
:
201 # All three radii into a list
202 radii
= [item
[4],item
[5],item
[6]]
203 # The handling of the ionic radii will be done later. So far, it is an
207 li
= ElementProp(item
[0],item
[1],item
[2],item
[3],
212 # The function, which reads the x,y,z positions of all atoms in a PDB
215 # filepath_pdb: path to pdb file
216 # radiustype : '0' default
219 def read_pdb_file(filepath_pdb
, radiustype
):
221 # The list of all atoms as read from the PDB file.
224 # Open the pdb file ...
225 filepath_pdb_p
= open(filepath_pdb
, "r")
227 #Go to the line, in which "ATOM" or "HETATM" appears.
228 for line
in filepath_pdb_p
:
229 split_list
= line
.split(' ')
230 if "ATOM" in split_list
[0]:
232 if "HETATM" in split_list
[0]:
236 # This is in fact an endless 'while loop', ...
239 # ... the loop is broken here (EOF) ...
243 # If there is a "TER" we need to put empty entries into the lists
244 # in order to not destroy the order of atom numbers and same numbers
245 # used for sticks. "TER? What is that?" TER indicates the end of a
246 # list of ATOM/HETATM records for a chain.
253 location
= Vector((0,0,0))
254 # Append the TER into the list. Material remains empty so far.
255 all_atoms
.append(AtomProp(short_name
,
261 # If 'ATOM or 'HETATM' appears in the line then do ...
262 elif "ATOM" in line
or "HETATM" in line
:
264 # What follows is due to deviations which appear from PDB to
265 # PDB file. It is very special!
267 # PLEASE, DO NOT CHANGE! ............................... from here
268 if line
[12:13] == " " or line
[12:13].isdigit() == True:
269 short_name
= line
[13:14]
270 if line
[14:15].islower() == True:
271 short_name
= short_name
+ line
[14:15]
272 elif line
[12:13].isupper() == True:
273 short_name
= line
[12:13]
274 if line
[13:14].isalpha() == True:
275 short_name
= short_name
+ line
[13:14]
277 print("Atomic Blender: Strange error in PDB file.\n"
278 "Look for element names at positions 13-16 and 78-79.\n")
283 if line
[76:77] == " ":
284 short_name2
= line
[76:77]
286 short_name2
= line
[76:78]
288 if short_name2
.isalpha() == True:
290 for element
in ELEMENTS
:
291 if str.upper(short_name2
) == str.upper(element
.short_name
):
295 short_name
= short_name2
297 # ....................................................... to here.
299 # Go through all elements and find the element of the current atom.
301 for element
in ELEMENTS
:
302 if str.upper(short_name
) == str.upper(element
.short_name
):
303 # Give the atom its proper names, color and radius:
304 short_name
= str.upper(element
.short_name
)
306 # int(radiustype) => type of radius:
307 # pre-defined (0), atomic (1) or van der Waals (2)
308 radius
= float(element
.radii
[int(radiustype
)])
309 color
= element
.color
313 # Is it a vacancy or an 'unknown atom' ?
314 if FLAG_FOUND
== False:
315 # Give this atom also a name. If it is an 'X' then it is a
316 # vacancy. Otherwise ...
317 if "X" in short_name
:
320 radius
= float(ELEMENTS
[-3].radii
[int(radiustype
)])
321 color
= ELEMENTS
[-3].color
322 # ... take what is written in the PDB file. These are somewhat
323 # unknown atoms. This should never happen, the element list is
324 # almost complete. However, we do this due to security reasons.
326 short_name
= str.upper(short_name
)
327 name
= str.upper(short_name
)
328 radius
= float(ELEMENTS
[-2].radii
[int(radiustype
)])
329 color
= ELEMENTS
[-2].color
331 # x,y and z are at fixed positions in the PDB file.
332 x
= float(line
[30:38].rsplit()[0])
333 y
= float(line
[38:46].rsplit()[0])
334 z
= float(line
[46:55].rsplit()[0])
336 location
= Vector((x
,y
,z
))
340 # Append the atom to the list. Material remains empty so far.
341 all_atoms
.append(AtomProp(short_name
,
347 line
= filepath_pdb_p
.readline()
350 filepath_pdb_p
.close()
351 # From above it can be clearly seen that j is now the number of all atoms.
352 Number_of_total_atoms
= j
354 return (Number_of_total_atoms
, all_atoms
)
357 # The function, which reads the sticks in a PDB file.
358 def read_pdb_file_sticks(filepath_pdb
, use_sticks_bonds
, all_atoms
):
360 # The list of all sticks.
364 filepath_pdb_p
= open(filepath_pdb
, "r")
366 line
= filepath_pdb_p
.readline()
367 split_list
= line
.split(' ')
369 # Go to the first entry
370 if "CONECT" not in split_list
[0]:
371 for line
in filepath_pdb_p
:
372 split_list
= line
.split(' ')
373 if "CONECT" in split_list
[0]:
379 # This is in fact an endless while loop, ...
382 # ... which is broken here (EOF) ...
385 # ... or here, when no 'CONECT' appears anymore.
386 if "CONECT" not in line
:
389 # Note 2019-03-16: in a PDB file the identifier for sticks is called
390 # 'CONECT' and NOT 'CONNECT'! Please leave this as is, otherwise the
391 # sticks are NOT correctly loaded.
393 # The strings of the atom numbers do have a clear position in the file
394 # (From 7 to 12, from 13 to 18 and so on.) and one needs to consider
395 # this. One could also use the split function but then one gets into
396 # trouble if there are lots of atoms: For instance, it may happen that
398 # CONECT 11111 22244444
400 # In Fact it means that atom No. 11111 has a connection with atom
401 # No. 222 but also with atom No. 44444. The split function would give
402 # me only two numbers (11111 and 22244444), which is wrong.
404 # Cut spaces from the right and 'CONECT' at the beginning
409 loops
= int(length
/5)
413 for i
in range(loops
):
414 number
= line
[5*i
:5*(i
+1)].rsplit()
416 if number
[0].isdigit() == True:
417 atom_number
= int(number
[0])
418 atom_list
.append(atom_number
)
420 # The first atom is connected with all the others in the list.
423 # For all the other atoms in the list do:
424 for atom2
in atom_list
[1:]:
426 if use_sticks_bonds
== True:
427 number
= atom_list
[1:].count(atom2
)
429 if number
== 2 or number
== 3:
430 basis_list
= list(set(atom_list
[1:]))
432 if len(basis_list
) > 1:
433 basis1
= (all_atoms
[atom1
-1].location
434 - all_atoms
[basis_list
[0]-1].location
)
435 basis2
= (all_atoms
[atom1
-1].location
436 - all_atoms
[basis_list
[1]-1].location
)
437 plane_n
= basis1
.cross(basis2
)
439 dist_n
= (all_atoms
[atom1
-1].location
440 - all_atoms
[atom2
-1].location
)
441 dist_n
= dist_n
.cross(plane_n
)
442 dist_n
= dist_n
/ dist_n
.length
444 dist_n
= (all_atoms
[atom1
-1].location
445 - all_atoms
[atom2
-1].location
)
446 dist_n
= Vector((dist_n
[1],-dist_n
[0],0))
447 dist_n
= dist_n
/ dist_n
.length
458 # Note that in a PDB file, sticks of one atom pair can appear a
459 # couple of times. (Only god knows why ...)
460 # So, does a stick between the considered atoms already exist?
462 for k
in range(Number_of_sticks
):
463 if ((all_sticks
[k
].atom1
== atom1
and all_sticks
[k
].atom2
== atom2
) or
464 (all_sticks
[k
].atom2
== atom1
and all_sticks
[k
].atom1
== atom2
)):
466 # If yes, then FLAG on 'True'.
470 # If the stick is not yet registered (FLAG_BAR == False), then
472 if FLAG_BAR
== False:
473 all_sticks
.append(StickProp(atom1
,atom2
,number
,dist_n
))
474 Number_of_sticks
+= 1
477 line
= filepath_pdb_p
.readline()
480 filepath_pdb_p
.close()
485 # Function, which produces a cylinder. All is somewhat easy to understand.
486 def build_stick(radius
, length
, sectors
, element_name
):
488 dphi
= 2.0 * pi
/(float(sectors
)-1)
491 vertices_top
= [Vector((0,0,length
/ 2.0))]
492 vertices_bottom
= [Vector((0,0,-length
/ 2.0))]
494 for i
in range(sectors
-1):
495 x
= radius
* cos( dphi
* i
)
496 y
= radius
* sin( dphi
* i
)
498 vertex
= Vector((x
,y
,z
))
499 vertices_top
.append(vertex
)
501 vertex
= Vector((x
,y
,z
))
502 vertices_bottom
.append(vertex
)
503 vertices
= vertices_top
+ vertices_bottom
505 # Side facets (Cylinder)
507 for i
in range(sectors
-1):
509 faces1
.append( [i
+1, 1, 1+sectors
, i
+1+sectors
] )
511 faces1
.append( [i
+1, i
+2, i
+2+sectors
, i
+1+sectors
] )
515 for i
in range(sectors
-1):
517 face_top
= [0,sectors
-1,1]
518 face_bottom
= [sectors
,2*sectors
-1,sectors
+1]
521 face_bottom
= [sectors
]
523 face_top
.append(i
+j
+1)
524 face_bottom
.append(i
+j
+1+sectors
)
525 faces2
.append(face_top
)
526 faces2
.append(face_bottom
)
528 # Build the mesh, Cylinder
529 cylinder
= bpy
.data
.meshes
.new(element_name
+"_sticks_cylinder")
530 cylinder
.from_pydata(vertices
, [], faces1
)
532 new_cylinder
= bpy
.data
.objects
.new(element_name
+"_sticks_cylinder", cylinder
)
533 # Attention: the linking will be done a few moments later, after this
534 # is done definition.
536 # Build the mesh, Cups
537 cups
= bpy
.data
.meshes
.new(element_name
+"_sticks_cup")
538 cups
.from_pydata(vertices
, [], faces2
)
540 new_cups
= bpy
.data
.objects
.new(element_name
+"_sticks_cup", cups
)
541 # Attention: the linking will be done a few moments later, after this
542 # is done definition.
544 return (new_cylinder
, new_cups
)
548 def rotate_object(rot_mat
, obj
):
550 bpy
.ops
.object.select_all(action
='DESELECT')
553 # Decompose world_matrix's components, and from them assemble 4x4 matrices.
554 orig_loc
, orig_rot
, orig_scale
= obj
.matrix_world
.decompose()
556 orig_loc_mat
= Matrix
.Translation(orig_loc
)
557 orig_rot_mat
= orig_rot
.to_matrix().to_4x4()
558 orig_scale_mat
= (Matrix
.Scale(orig_scale
[0],4,(1,0,0)) @
559 Matrix
.Scale(orig_scale
[1],4,(0,1,0)) @
560 Matrix
.Scale(orig_scale
[2],4,(0,0,1)))
562 # Assemble the new matrix.
563 obj
.matrix_world
= orig_loc_mat
@ rot_mat
@ orig_rot_mat
@ orig_scale_mat
566 # Function, which puts a camera and light source into the 3D scene
567 def camera_light_source(use_camera
,
574 # If chosen a camera is put into the scene.
575 if use_camera
== True:
577 # Assume that the object is put into the global origin. Then, the
578 # camera is moved in x and z direction, not in y. The object has its
579 # size at distance sqrt(object_size) from the origin. So, move the
580 # camera by this distance times a factor of camera_factor in x and z.
581 # Then add x, y and z of the origin of the object.
582 object_camera_vec
= Vector((sqrt(object_size
) * camera_factor
,
584 sqrt(object_size
) * camera_factor
))
585 camera_xyz_vec
= object_center_vec
+ object_camera_vec
588 camera_data
= bpy
.data
.cameras
.new("A_camera")
589 camera_data
.lens
= 45
590 camera_data
.clip_end
= 500.0
591 camera
= bpy
.data
.objects
.new("A_camera", camera_data
)
592 camera
.location
= camera_xyz_vec
593 bpy
.context
.collection
.objects
.link(camera
)
595 # Here the camera is rotated such it looks towards the center of
596 # the object. The [0.0, 0.0, 1.0] vector along the z axis
597 z_axis_vec
= Vector((0.0, 0.0, 1.0))
598 # The angle between the last two vectors
599 angle
= object_camera_vec
.angle(z_axis_vec
, 0)
600 # The cross-product of z_axis_vec and object_camera_vec
601 axis_vec
= z_axis_vec
.cross(object_camera_vec
)
602 # Rotate 'axis_vec' by 'angle' and convert this to euler parameters.
603 # 4 is the size of the matrix.
604 camera
.rotation_euler
= Matrix
.Rotation(angle
, 4, axis_vec
).to_euler()
606 # Rotate the camera around its axis by 90° such that we have a nice
607 # camera position and view onto the object.
608 bpy
.ops
.object.select_all(action
='DESELECT')
609 camera
.select_set(True)
611 # Rotate the camera around its axis 'object_camera_vec' by 90° such
612 # that we have a nice camera view onto the object.
613 matrix_rotation
= Matrix
.Rotation(90/360*2*pi
, 4, object_camera_vec
)
614 rotate_object(matrix_rotation
, camera
)
616 # Here a lamp is put into the scene, if chosen.
617 if use_light
== True:
619 # This is the distance from the object measured in terms of %
620 # of the camera distance. It is set onto 50% (1/2) distance.
621 light_dl
= sqrt(object_size
) * 15 * 0.5
622 # This is a factor to which extend the lamp shall go to the right
623 # (from the camera point of view).
624 light_dy_right
= light_dl
* (3.0/4.0)
626 # Create x, y and z for the lamp.
627 object_light_vec
= Vector((light_dl
,light_dy_right
,light_dl
))
628 light_xyz_vec
= object_center_vec
+ object_light_vec
631 light_data
= bpy
.data
.lights
.new(name
="A_light", type="SUN")
632 light_data
.distance
= 500.0
633 light_data
.energy
= 3.0
634 lamp
= bpy
.data
.objects
.new("A_light", light_data
)
635 lamp
.location
= light_xyz_vec
636 bpy
.context
.collection
.objects
.link(lamp
)
638 # Some settings for the World: a bit ambient occlusion
639 bpy
.context
.scene
.world
.light_settings
.use_ambient_occlusion
= True
640 bpy
.context
.scene
.world
.light_settings
.ao_factor
= 0.1
641 # Some properties for cycles
642 lamp
.data
.use_nodes
= True
643 lmp_P_BSDF
= lamp
.data
.node_tree
.nodes
['Emission']
644 lmp_P_BSDF
.inputs
['Strength'].default_value
= 5
647 # Function, which draws the atoms of one type (balls). This is one
648 # dupliverts structure then.
649 # Return: the dupliverts structure
650 def draw_atoms_one_type(draw_all_atoms_type
,
656 collection_molecule
):
658 # Create the vertices composed of the coordinates of all atoms of one type
660 for atom
in draw_all_atoms_type
:
661 # In fact, the object is created in the World's origin.
662 # This is why 'object_center_vec' is subtracted. At the end
663 # the whole object is translated back to 'object_center_vec'.
664 atom_vertices
.append(atom
[2] - object_center_vec
)
666 # IMPORTANT: First, we create a collection of the element, which contains
667 # the atoms (balls + mesh) AND the sticks! The definition dealing with the
668 # sticks will put the sticks inside this collection later on.
669 coll_element_name
= atom
[0] # the element name
670 # Create the new collection and ...
671 coll_element
= bpy
.data
.collections
.new(coll_element_name
)
672 # ... link it to the collection, which contains all parts of the
674 collection_molecule
.children
.link(coll_element
)
676 # Now, create a collection for the atoms, which includes the representative
678 coll_atom_name
= atom
[0] + "_atom"
679 # Create the new collection and ...
680 coll_atom
= bpy
.data
.collections
.new(coll_atom_name
)
681 # ... link it to the collection, which contains all parts of the
682 # element (ball and mesh).
683 coll_element
.children
.link(coll_atom
)
686 atom_mesh
= bpy
.data
.meshes
.new("Mesh_"+atom
[0])
687 atom_mesh
.from_pydata(atom_vertices
, [], [])
689 new_atom_mesh
= bpy
.data
.objects
.new(atom
[0] + "_mesh", atom_mesh
)
691 # Link active object to the new collection
692 coll_atom
.objects
.link(new_atom_mesh
)
694 # Now, build a representative sphere (atom).
695 if atom
[0] == "Vacancy":
696 bpy
.ops
.mesh
.primitive_cube_add(
697 view_align
=False, enter_editmode
=False,
698 location
=(0.0, 0.0, 0.0),
699 rotation
=(0.0, 0.0, 0.0))
703 bpy
.ops
.surface
.primitive_nurbs_surface_sphere_add(
704 view_align
=False, enter_editmode
=False,
705 location
=(0,0,0), rotation
=(0.0, 0.0, 0.0))
707 elif Ball_type
== "1":
708 bpy
.ops
.mesh
.primitive_uv_sphere_add(
709 segments
=Ball_azimuth
, ring_count
=Ball_zenith
,
710 view_align
=False, enter_editmode
=False,
711 location
=(0,0,0), rotation
=(0, 0, 0))
713 elif Ball_type
== "2":
714 bpy
.ops
.object.metaball_add(type='BALL', view_align
=False,
715 enter_editmode
=False, location
=(0, 0, 0),
718 ball
= bpy
.context
.view_layer
.objects
.active
719 # Hide this ball because its appearance has no meaning. It is just the
720 # representative ball. The ball is visible at the vertices of the mesh.
721 # Rememmber, this is a dupliverts construct!
722 # However, hiding does not work with meta balls!
723 if Ball_type
== "0" or Ball_type
== "1":
725 # Scale up/down the ball radius.
726 ball
.scale
= (atom
[3]*Ball_radius_factor
,) * 3
728 if atom
[0] == "Vacancy":
729 ball
.name
= atom
[0] + "_cube"
731 ball
.name
= atom
[0] + "_ball"
733 ball
.active_material
= atom
[1]
734 ball
.parent
= new_atom_mesh
735 new_atom_mesh
.instance_type
= 'VERTS'
736 # The object is back translated to 'object_center_vec'.
737 new_atom_mesh
.location
= object_center_vec
739 # Note the collection where the ball was placed into.
740 coll_all
= ball
.users_collection
741 if len(coll_all
) > 0:
742 coll_past
= coll_all
[0]
744 coll_past
= bpy
.context
.scene
.collection
746 # Put the atom into the new collection 'atom' and ...
747 coll_atom
.objects
.link(ball
)
748 # ... unlink the atom from the other collection.
749 coll_past
.objects
.unlink(ball
)
751 return new_atom_mesh
, coll_element
754 # Function, which draws the sticks with help of the dupliverts technique.
755 # Return: list of dupliverts structures.
756 def draw_sticks_dupliverts(all_atoms
,
770 if use_sticks_color
== False:
771 stick_material
= bpy
.data
.materials
.new(ELEMENTS
[-1].name
)
772 stick_material
.diffuse_color
= ELEMENTS
[-1].color
774 # Sort the sticks and put them into a new list such that ...
775 sticks_all_lists
= []
776 if use_sticks_color
== True:
777 for atom_type
in atom_all_types_list
:
778 if atom_type
[0] == "TER":
781 for stick
in all_sticks
:
782 for repeat
in range(stick
.number
):
784 atom1
= copy(all_atoms
[stick
.atom1
-1].location
)-center
785 atom2
= copy(all_atoms
[stick
.atom2
-1].location
)-center
787 dist
= Stick_diameter
* Stick_dist
789 if stick
.number
== 2:
791 atom1
+= (stick
.dist
* dist
)
792 atom2
+= (stick
.dist
* dist
)
794 atom1
-= (stick
.dist
* dist
)
795 atom2
-= (stick
.dist
* dist
)
797 if stick
.number
== 3:
799 atom1
+= (stick
.dist
* dist
)
800 atom2
+= (stick
.dist
* dist
)
802 atom1
-= (stick
.dist
* dist
)
803 atom2
-= (stick
.dist
* dist
)
807 if atom_type
[0] == all_atoms
[stick
.atom1
-1].name
:
809 name
= "_" + all_atoms
[stick
.atom1
-1].name
810 material
= all_atoms
[stick
.atom1
-1].material
811 sticks_list
.append([name
, location
, dv
, material
])
812 if atom_type
[0] == all_atoms
[stick
.atom2
-1].name
:
813 location
= atom1
- n
* dl
* int(ceil(dv
.length
/ (2.0 * dl
)))
814 name
= "_" + all_atoms
[stick
.atom2
-1].name
815 material
= all_atoms
[stick
.atom2
-1].material
816 sticks_list
.append([name
, location
, dv
, material
])
818 if sticks_list
!= []:
819 sticks_all_lists
.append(sticks_list
)
822 for stick
in all_sticks
:
827 for repeat
in range(stick
.number
):
829 atom1
= copy(all_atoms
[stick
.atom1
-1].location
)-center
830 atom2
= copy(all_atoms
[stick
.atom2
-1].location
)-center
832 dist
= Stick_diameter
* Stick_dist
834 if stick
.number
== 2:
836 atom1
+= (stick
.dist
* dist
)
837 atom2
+= (stick
.dist
* dist
)
839 atom1
-= (stick
.dist
* dist
)
840 atom2
-= (stick
.dist
* dist
)
841 if stick
.number
== 3:
843 atom1
+= (stick
.dist
* dist
)
844 atom2
+= (stick
.dist
* dist
)
846 atom1
-= (stick
.dist
* dist
)
847 atom2
-= (stick
.dist
* dist
)
852 material
= stick_material
853 sticks_list
.append(["", location
, dv
, material
])
855 sticks_all_lists
.append(sticks_list
)
857 atom_object_list
= []
858 # ... the sticks in the list can be drawn:
859 for stick_list
in sticks_all_lists
:
864 # What follows is school mathematics! :-)
865 for stick
in stick_list
:
874 if use_sticks_color
== True:
875 loops
= int(ceil(dv
.length
/ (2.0 * dl
)))
877 loops
= int(ceil(dv
.length
/ dl
))
879 for j
in range(loops
):
881 g
= v1
- n
* dl
/ 2.0 - n
* dl
* j
882 p1
= g
+ n_b
* Stick_diameter
883 p2
= g
- n_b
* Stick_diameter
884 p3
= g
- n_b
.cross(n
) * Stick_diameter
885 p4
= g
+ n_b
.cross(n
) * Stick_diameter
891 faces
.append((i
*4+0,i
*4+2,i
*4+1,i
*4+3))
894 # Create a collection for the sticks, which includes the representative
895 # cylinders, cups and the mesh.
896 coll_name
= stick
[0][1:] + "_sticks"
897 # Create the collection and ...
898 coll
= bpy
.data
.collections
.new(coll_name
)
899 # ... link it to the collection, which contains all parts of the
900 # element. 'stick[0][1:]' contains the name of the element!
901 for coll_element_from_list
in list_coll_elements
:
902 if stick
[0][1:] in coll_element_from_list
.name
:
904 coll_element_from_list
.children
.link(coll
)
907 mesh
= bpy
.data
.meshes
.new("Sticks_"+stick
[0][1:])
908 mesh
.from_pydata(vertices
, [], faces
)
910 new_mesh
= bpy
.data
.objects
.new(stick
[0][1:]+"_sticks_mesh", mesh
)
911 # Link active object to the new collection
912 coll
.objects
.link(new_mesh
)
915 # Get the cylinder from the 'build_stick' function.
916 object_stick
= build_stick(Stick_diameter
,
920 # Link active object to the new collection
921 coll
.objects
.link(object_stick
[0])
922 coll
.objects
.link(object_stick
[1])
924 # Hide these objects because their appearance has no meaning. They are
925 # just the representative objects. The cylinder and cups are visible at
926 # the vertices of the mesh. Rememmber, this is a dupliverts construct!
927 object_stick
[0].hide_set(True)
928 object_stick
[1].hide_set(True)
930 stick_cylinder
= object_stick
[0]
931 stick_cylinder
.active_material
= stick
[3]
932 stick_cups
= object_stick
[1]
933 stick_cups
.active_material
= stick
[3]
935 # Smooth the cylinders.
936 if use_sticks_smooth
== True:
937 bpy
.ops
.object.select_all(action
='DESELECT')
938 stick_cylinder
.select_set(True)
939 stick_cups
.select_set(True)
940 bpy
.ops
.object.shade_smooth()
942 # Parenting the mesh to the cylinder.
943 stick_cylinder
.parent
= new_mesh
944 stick_cups
.parent
= new_mesh
945 new_mesh
.instance_type
= 'FACES'
946 new_mesh
.location
= center
947 atom_object_list
.append(new_mesh
)
949 # Return the list of dupliverts structures.
950 return atom_object_list
953 # Function, which draws the sticks with help of the skin and subdivision
955 def draw_sticks_skin(all_atoms
,
960 sticks_subdiv_render
,
963 # These counters are for the edges, in the shape [i,i+1].
966 # This is the list of vertices, containing the atom position
969 # This is the 'same' list, which contains not vector position of
970 # the atoms but their numbers. It is used to handle the edges.
971 stick_vertices_nr
= []
972 # This is the list of edges.
975 # Go through the list of all sticks. For each stick do:
976 for stick
in all_sticks
:
978 # Each stick has two atoms = two vertices.
981 [ 0,1 , 3,4 , 0,8 , 7,3]
982 [[0,1], [2,3], [4,5], [6,7]]
984 [ 0,1 , 3,4 , x,8 , 7,x] x:deleted
985 [[0,1], [2,3], [0,5], [6,2]]
988 # Check, if the vertex (atom) is already in the vertex list.
992 for stick2
in stick_vertices_nr
:
993 if stick2
== stick
.atom1
-1:
999 for stick2
in stick_vertices_nr
:
1000 if stick2
== stick
.atom2
-1:
1005 # If the vertex (atom) is not yet in the vertex list:
1006 # append the number of atom and the vertex to the two lists.
1007 # For the first atom:
1008 if FLAG_s1
== False:
1009 atom1
= copy(all_atoms
[stick
.atom1
-1].location
)
1010 stick_vertices
.append(atom1
)
1011 stick_vertices_nr
.append(stick
.atom1
-1)
1012 # For the second atom:
1013 if FLAG_s2
== False:
1014 atom2
= copy(all_atoms
[stick
.atom2
-1].location
)
1015 stick_vertices
.append(atom2
)
1016 stick_vertices_nr
.append(stick
.atom2
-1)
1020 # If both vertices (atoms) were not in the lists, then
1021 # the edge is simply [i,i+1]. These are two new vertices
1022 # (atoms), so increase i by 2.
1023 if FLAG_s1
== False and FLAG_s2
== False:
1024 stick_edges
.append([i
,i
+1])
1026 # Both vertices (atoms) were already in the list, so then
1027 # use the vertices (atoms), which already exist. They are
1028 # at positions s1 and s2.
1029 if FLAG_s1
== True and FLAG_s2
== True:
1030 stick_edges
.append([s1
,s2
])
1031 # The following two if cases describe the situation that
1032 # only one vertex (atom) was in the list. Since only ONE
1033 # new vertex was added, increase i by one.
1034 if FLAG_s1
== True and FLAG_s2
== False:
1035 stick_edges
.append([s1
,i
])
1037 if FLAG_s1
== False and FLAG_s2
== True:
1038 stick_edges
.append([i
,s2
])
1041 # Build the mesh of the sticks
1042 stick_mesh
= bpy
.data
.meshes
.new("Mesh_sticks")
1043 stick_mesh
.from_pydata(stick_vertices
, stick_edges
, [])
1045 new_stick_mesh
= bpy
.data
.objects
.new("Sticks", stick_mesh
)
1046 # Link the active mesh to the molecule collection
1047 coll_molecule
.objects
.link(new_stick_mesh
)
1049 # Apply the skin modifier.
1050 new_stick_mesh
.modifiers
.new(name
="Sticks_skin", type='SKIN')
1051 # Smooth the skin surface if this option has been chosen.
1052 new_stick_mesh
.modifiers
[0].use_smooth_shade
= use_sticks_smooth
1053 # Apply the Subdivision modifier.
1054 new_stick_mesh
.modifiers
.new(name
="Sticks_subsurf", type='SUBSURF')
1055 # Options: choose the levels
1056 new_stick_mesh
.modifiers
[1].levels
= sticks_subdiv_view
1057 new_stick_mesh
.modifiers
[1].render_levels
= sticks_subdiv_render
1059 stick_material
= bpy
.data
.materials
.new(ELEMENTS
[-1].name
)
1060 stick_material
.diffuse_color
= ELEMENTS
[-1].color
1061 new_stick_mesh
.active_material
= stick_material
1063 # This is for putting the radius of the sticks onto
1064 # the desired value 'Stick_diameter'
1065 bpy
.context
.view_layer
.objects
.active
= new_stick_mesh
1067 bpy
.ops
.object.mode_set(mode
='EDIT', toggle
=False)
1068 bm
= bmesh
.from_edit_mesh(new_stick_mesh
.data
)
1069 bpy
.ops
.mesh
.select_all(action
='DESELECT')
1071 # Select all vertices
1075 # This is somewhat a factor for the radius.
1077 # Apply operator 'skin_resize'.
1078 bpy
.ops
.transform
.skin_resize(
1080 Stick_diameter
* r_f
,
1081 Stick_diameter
* r_f
,
1082 Stick_diameter
* r_f
,
1084 constraint_axis
=(False, False, False),
1085 orient_type
='GLOBAL',
1087 use_proportional_edit
=False,
1089 snap_target
='CLOSEST',
1090 snap_point
=(0, 0, 0),
1092 snap_normal
=(0, 0, 0),
1093 release_confirm
=False,
1095 # Back to the OBJECT mode.
1096 bpy
.ops
.object.mode_set(mode
='OBJECT', toggle
=False)
1098 return new_stick_mesh
1101 # Draw the sticks the normal way: connect the atoms by simple cylinders.
1102 # Two options: 1. single cylinders parented to an empty
1103 # 2. one single mesh object
1104 def draw_sticks_normal(all_atoms
,
1110 use_sticks_one_object
,
1111 use_sticks_one_object_nr
,
1114 stick_material
= bpy
.data
.materials
.new(ELEMENTS
[-1].name
)
1115 stick_material
.diffuse_color
= ELEMENTS
[-1].color
1117 up_axis
= Vector([0.0, 0.0, 1.0])
1119 # For all sticks, do ...
1123 for stick
in all_sticks
:
1125 # The vectors of the two atoms
1126 atom1
= all_atoms
[stick
.atom1
-1].location
-center
1127 atom2
= all_atoms
[stick
.atom2
-1].location
-center
1129 location
= (atom1
+ atom2
) * 0.5
1130 # The difference of both vectors
1132 # Angle with respect to the z-axis
1133 angle
= v
.angle(up_axis
, 0)
1134 # Cross-product between v and the z-axis vector. It is the
1135 # vector of rotation.
1136 axis
= up_axis
.cross(v
)
1137 # Calculate Euler angles
1138 euler
= Matrix
.Rotation(angle
, 4, axis
).to_euler()
1140 stick
= bpy
.ops
.mesh
.primitive_cylinder_add(vertices
=Stick_sectors
,
1141 radius
=Stick_diameter
,
1143 end_fill_type
='NGON',
1145 enter_editmode
=False,
1148 # Put the stick into the scene ...
1149 stick
= bpy
.context
.view_layer
.objects
.active
1150 # ... and rotate the stick.
1151 stick
.rotation_euler
= euler
1153 stick
.name
= "Stick_Cylinder"
1156 # Smooth the cylinder.
1157 if use_sticks_smooth
== True:
1158 bpy
.ops
.object.select_all(action
='DESELECT')
1159 stick
.select_set(True)
1160 bpy
.ops
.object.shade_smooth()
1162 list_group_sub
.append(stick
)
1164 if use_sticks_one_object
== True:
1165 if counter
== use_sticks_one_object_nr
:
1166 bpy
.ops
.object.select_all(action
='DESELECT')
1167 for stick
in list_group_sub
:
1168 stick
.select_set(True)
1169 bpy
.ops
.object.join()
1170 list_group
.append(bpy
.context
.view_layer
.objects
.active
)
1171 bpy
.ops
.object.select_all(action
='DESELECT')
1176 stick
.active_material
= stick_material
1178 if use_sticks_one_object
== True:
1179 bpy
.ops
.object.select_all(action
='DESELECT')
1180 for stick
in list_group_sub
:
1181 stick
.select_set(True)
1182 bpy
.ops
.object.join()
1183 list_group
.append(bpy
.context
.view_layer
.objects
.active
)
1184 bpy
.ops
.object.select_all(action
='DESELECT')
1186 for group
in list_group
:
1187 group
.select_set(True)
1188 bpy
.ops
.object.join()
1189 bpy
.ops
.object.origin_set(type='ORIGIN_GEOMETRY',
1191 sticks
= bpy
.context
.view_layer
.objects
.active
1192 sticks
.active_material
= stick_material
1194 sticks
.location
+= center
1198 # Note the collection where the sticks were placed into.
1199 coll_all
= sticks
.users_collection
1200 if len(coll_all
) > 0:
1201 coll_past
= coll_all
[0]
1203 coll_past
= bpy
.context
.scene
.collection
1205 # Link the sticks with the collection of the molecule ...
1206 coll_molecule
.objects
.link(sticks
)
1207 # ... and unlink them from the collection it has been before.
1208 coll_past
.objects
.unlink(sticks
)
1212 # Here we use an empty ...
1213 bpy
.ops
.object.empty_add(type='ARROWS',
1217 sticks_empty
= bpy
.context
.view_layer
.objects
.active
1218 sticks_empty
.name
= "A_sticks_empty"
1219 # ... that is parent to all sticks. With this, we can better move
1220 # all sticks if necessary.
1221 for stick
in list_group_sub
:
1222 stick
.parent
= sticks_empty
1224 sticks_empty
.location
+= center
1228 # Create a collection that will contain all sticks + the empty and ...
1229 coll
= bpy
.data
.collections
.new("Sticks")
1230 # ... link it to the collection, which contains all parts of the
1232 coll_molecule
.children
.link(coll
)
1233 # Now, create a collection that only contains the sticks and ...
1234 coll_cylinder
= bpy
.data
.collections
.new("Sticks_cylinders")
1235 # ... link it to the collection, which contains the sticks and empty.
1236 coll
.children
.link(coll_cylinder
)
1238 # Note the collection where the empty was placed into, ...
1239 coll_all
= sticks_empty
.users_collection
1240 if len(coll_all
) > 0:
1241 coll_past
= coll_all
[0]
1243 coll_past
= bpy
.context
.scene
.collection
1244 # ... link the empty with the new collection ...
1245 coll
.objects
.link(sticks_empty
)
1246 # ... and unlink it from the old collection where it has been before.
1247 coll_past
.objects
.unlink(sticks_empty
)
1249 # Note the collection where the cylinders were placed into, ...
1250 coll_all
= list_group_sub
[0].users_collection
1251 if len(coll_all
) > 0:
1252 coll_past
= coll_all
[0]
1254 coll_past
= bpy
.context
.scene
.collection
1256 for stick
in list_group_sub
:
1257 # ... link each stick with the new collection ...
1258 coll_cylinder
.objects
.link(stick
)
1259 # ... and unlink it from the old collection.
1260 coll_past
.objects
.unlink(stick
)
1265 # -----------------------------------------------------------------------------
1268 def import_pdb(Ball_type
,
1273 Ball_distance_factor
,
1277 sticks_subdiv_render
,
1281 use_sticks_one_object
,
1282 use_sticks_one_object_nr
,
1283 Stick_unit
, Stick_dist
,
1292 atom_material_list
= []
1294 # A list of ALL objects which are loaded (needed for selecting the loaded
1296 atom_object_list
= []
1298 # ------------------------------------------------------------------------
1299 # INITIALIZE THE ELEMENT LIST
1303 # ------------------------------------------------------------------------
1304 # READING DATA OF ATOMS
1306 (Number_of_total_atoms
, all_atoms
) = read_pdb_file(filepath_pdb
, radiustype
)
1308 # ------------------------------------------------------------------------
1309 # MATERIAL PROPERTIES FOR ATOMS
1311 # The list that contains info about all types of atoms is created
1312 # here. It is used for building the material properties for
1313 # instance (see below).
1314 atom_all_types_list
= []
1316 for atom
in all_atoms
:
1318 for atom_type
in atom_all_types_list
:
1319 # If the atom name is already in the list, FLAG on 'True'.
1320 if atom_type
[0] == atom
.name
:
1323 # No name in the current list has been found? => New entry.
1324 if FLAG_FOUND
== False:
1325 # Stored are: Atom label (e.g. 'Na'), the corresponding atom
1326 # name (e.g. 'Sodium') and its color.
1327 atom_all_types_list
.append([atom
.name
, atom
.element
, atom
.color
])
1329 # The list of materials is built.
1330 # Note that all atoms of one type (e.g. all hydrogens) get only ONE
1331 # material! This is good because then, by activating one atom in the
1332 # Blender scene and changing the color of this atom, one changes the color
1333 # of ALL atoms of the same type at the same time.
1335 # Create first a new list of materials for each type of atom
1337 for atom_type
in atom_all_types_list
:
1338 material
= bpy
.data
.materials
.new(atom_type
[1])
1339 material
.name
= atom_type
[0]
1340 material
.diffuse_color
= atom_type
[2]
1341 atom_material_list
.append(material
)
1343 # Now, we go through all atoms and give them a material. For all atoms ...
1344 for atom
in all_atoms
:
1345 # ... and all materials ...
1346 for material
in atom_material_list
:
1347 # ... select the correct material for the current atom via
1348 # comparison of names ...
1349 if atom
.name
in material
.name
:
1350 # ... and give the atom its material properties.
1351 # However, before we check, if it is a vacancy, because then it
1352 # gets some additional preparation. The vacancy is represented
1353 # by a transparent cube.
1354 if atom
.name
== "Vacancy":
1355 material
.metallic
= 0.8
1356 material
.specular_intensity
= 0.5
1357 material
.roughness
= 0.3
1358 material
.blend_method
= 'ADD'
1359 material
.show_transparent_back
= False
1360 # Some properties for cycles
1361 material
.use_nodes
= True
1362 mat_P_BSDF
= material
.node_tree
.nodes
['Principled BSDF']
1363 mat_P_BSDF
.inputs
['Metallic'].default_value
= 0.1
1364 mat_P_BSDF
.inputs
['Roughness'].default_value
= 0.2
1365 mat_P_BSDF
.inputs
['Transmission'].default_value
= 0.97
1366 mat_P_BSDF
.inputs
['IOR'].default_value
= 0.8
1367 # The atom gets its properties.
1368 atom
.material
= material
1370 # ------------------------------------------------------------------------
1371 # READING DATA OF STICKS
1373 all_sticks
= read_pdb_file_sticks(filepath_pdb
,
1377 # So far, all atoms, sticks and materials have been registered.
1380 # ------------------------------------------------------------------------
1381 # TRANSLATION OF THE STRUCTURE TO THE ORIGIN
1383 # It may happen that the structure in a PDB file already has an offset
1384 # If chosen, the structure is first put into the center of the scene
1385 # (the offset is subtracted).
1387 if put_to_center
== True:
1388 sum_vec
= Vector((0.0,0.0,0.0))
1389 # Sum of all atom coordinates
1390 sum_vec
= sum([atom
.location
for atom
in all_atoms
], sum_vec
)
1391 # Then the average is taken
1392 sum_vec
= sum_vec
/ Number_of_total_atoms
1393 # After, for each atom the center of gravity is subtracted
1394 for atom
in all_atoms
:
1395 atom
.location
-= sum_vec
1397 # ------------------------------------------------------------------------
1400 # Take all atoms and adjust their radii and scale the distances.
1401 for atom
in all_atoms
:
1402 atom
.location
*= Ball_distance_factor
1404 # ------------------------------------------------------------------------
1405 # DETERMINATION OF SOME GEOMETRIC PROPERTIES
1407 # In the following, some geometric properties of the whole object are
1408 # determined: center, size, etc.
1409 sum_vec
= Vector((0.0,0.0,0.0))
1411 # First the center is determined. All coordinates are summed up ...
1412 sum_vec
= sum([atom
.location
for atom
in all_atoms
], sum_vec
)
1414 # ... and the average is taken. This gives the center of the object.
1415 object_center_vec
= sum_vec
/ Number_of_total_atoms
1417 # Now, we determine the size.The farthest atom from the object center is
1418 # taken as a measure. The size is used to place well the camera and light
1420 object_size_vec
= [atom
.location
- object_center_vec
for atom
in all_atoms
]
1421 object_size
= max(object_size_vec
).length
1423 # ------------------------------------------------------------------------
1426 # Lists of atoms of one type are created. Example:
1427 # draw_all_atoms = [ data_hydrogen,data_carbon,data_nitrogen ]
1428 # data_hydrogen = [["Hydrogen", Material_Hydrogen, Vector((x,y,z)), 109], ...]
1430 # Go through the list which contains all types of atoms. It is the list,
1431 # which has been created on the top during reading the PDB file.
1432 # Example: atom_all_types_list = ["hydrogen", "carbon", ...]
1434 for atom_type
in atom_all_types_list
:
1436 # Don't draw 'TER atoms'.
1437 if atom_type
[0] == "TER":
1440 # This is the draw list, which contains all atoms of one type (e.g.
1441 # all hydrogens) ...
1442 draw_all_atoms_type
= []
1444 # Go through all atoms ...
1445 for atom
in all_atoms
:
1446 # ... select the atoms of the considered type via comparison ...
1447 if atom
.name
== atom_type
[0]:
1448 # ... and append them to the list 'draw_all_atoms_type'.
1449 draw_all_atoms_type
.append([atom
.name
,
1454 # Now append the atom list to the list of all types of atoms
1455 draw_all_atoms
.append(draw_all_atoms_type
)
1457 # ------------------------------------------------------------------------
1460 # Before we start to draw the atoms and sticks, we first create a
1461 # collection for the molecule. All atoms (balls) and sticks (cylinders)
1462 # are put into this collection.
1463 coll_molecule_name
= os
.path
.basename(filepath_pdb
)
1464 scene
= bpy
.context
.scene
1465 coll_molecule
= bpy
.data
.collections
.new(coll_molecule_name
)
1466 scene
.collection
.children
.link(coll_molecule
)
1468 # ------------------------------------------------------------------------
1471 bpy
.ops
.object.select_all(action
='DESELECT')
1473 list_coll_elements
= []
1474 # For each list of atoms of ONE type (e.g. Hydrogen)
1475 for draw_all_atoms_type
in draw_all_atoms
:
1477 atom_mesh
, coll_element
= draw_atoms_one_type(draw_all_atoms_type
,
1484 atom_object_list
.append(atom_mesh
)
1485 list_coll_elements
.append(coll_element
)
1487 # ------------------------------------------------------------------------
1488 # DRAWING THE STICKS: cylinders in a dupliverts structure
1490 if use_sticks
== True and use_sticks_type
== '0' and all_sticks
!= []:
1492 sticks
= draw_sticks_dupliverts(all_atoms
,
1493 atom_all_types_list
,
1503 for stick
in sticks
:
1504 atom_object_list
.append(stick
)
1506 # ------------------------------------------------------------------------
1507 # DRAWING THE STICKS: skin and subdivision modifier
1509 if use_sticks
== True and use_sticks_type
== '1' and all_sticks
!= []:
1511 sticks
= draw_sticks_skin(all_atoms
,
1516 sticks_subdiv_render
,
1518 atom_object_list
.append(sticks
)
1520 # ------------------------------------------------------------------------
1521 # DRAWING THE STICKS: normal cylinders
1523 if use_sticks
== True and use_sticks_type
== '2' and all_sticks
!= []:
1525 sticks
= draw_sticks_normal(all_atoms
,
1531 use_sticks_one_object
,
1532 use_sticks_one_object_nr
,
1534 atom_object_list
.append(sticks
)
1536 # ------------------------------------------------------------------------
1537 # CAMERA and LIGHT SOURCES
1539 camera_light_source(use_camera
,
1544 # ------------------------------------------------------------------------
1545 # SELECT ALL LOADED OBJECTS
1546 bpy
.ops
.object.select_all(action
='DESELECT')
1548 for obj
in atom_object_list
:
1549 obj
.select_set(True)
1551 # activate the last selected object
1553 bpy
.context
.view_layer
.objects
.active
= obj