Cleanup: autopep8 for 3DS i/o
[blender-addons.git] / mesh_bsurfaces.py
blob3bb433e049f0cec24d696ab77bbb40fc9b73df31
1 # SPDX-License-Identifier: GPL-2.0-or-later
4 bl_info = {
5 "name": "Bsurfaces GPL Edition",
6 "author": "Eclectiel, Vladimir Spivak (cwolf3d)",
7 "version": (1, 8, 1),
8 "blender": (2, 80, 0),
9 "location": "View3D EditMode > Sidebar > Edit Tab",
10 "description": "Modeling and retopology tool",
11 "doc_url": "{BLENDER_MANUAL_URL}/addons/mesh/bsurfaces.html",
12 "category": "Mesh",
16 import bpy
17 import bmesh
18 from bpy_extras import object_utils
20 import operator
21 from mathutils import Matrix, Vector
22 from mathutils.geometry import (
23 intersect_line_line,
24 intersect_point_line,
26 from math import (
27 degrees,
28 pi,
29 sqrt,
31 from bpy.props import (
32 BoolProperty,
33 FloatProperty,
34 IntProperty,
35 StringProperty,
36 PointerProperty,
37 EnumProperty,
38 FloatVectorProperty,
40 from bpy.types import (
41 Operator,
42 Panel,
43 PropertyGroup,
44 AddonPreferences,
47 # ----------------------------
48 # GLOBAL
49 global_shade_smooth = False
50 global_mesh_object = ""
51 global_gpencil_object = ""
52 global_curve_object = ""
54 # ----------------------------
55 # Panels
56 class VIEW3D_PT_tools_SURFSK_mesh(Panel):
57 bl_space_type = 'VIEW_3D'
58 bl_region_type = 'UI'
59 bl_category = 'Edit'
60 bl_label = "Bsurfaces"
62 def draw(self, context):
63 layout = self.layout
64 bs = context.scene.bsurfaces
66 col = layout.column(align=True)
67 row = layout.row()
68 row.separator()
69 col.operator("mesh.surfsk_init", text="Initialize (Add BSurface mesh)")
70 col.operator("mesh.surfsk_add_modifiers", text="Add Mirror and others modifiers")
72 col.label(text="Mesh of BSurface:")
73 col.prop(bs, "SURFSK_mesh", text="")
74 if bs.SURFSK_mesh != None:
75 try: mesh_object = bs.SURFSK_mesh
76 except: pass
77 try: col.prop(mesh_object.data.materials[0], "diffuse_color")
78 except: pass
79 try:
80 shrinkwrap = next(mod for mod in mesh_object.modifiers
81 if mod.type == 'SHRINKWRAP')
82 col.prop(shrinkwrap, "offset")
83 except:
84 pass
85 try: col.prop(mesh_object, "show_in_front")
86 except: pass
87 try: col.prop(bs, "SURFSK_shade_smooth")
88 except: pass
89 try: col.prop(mesh_object, "show_wire")
90 except: pass
92 col.label(text="Guide strokes:")
93 col.row().prop(bs, "SURFSK_guide", expand=True)
94 if bs.SURFSK_guide == 'GPencil':
95 col.prop(bs, "SURFSK_gpencil", text="")
96 col.separator()
97 if bs.SURFSK_guide == 'Curve':
98 col.prop(bs, "SURFSK_curve", text="")
99 col.separator()
101 col.separator()
102 col.operator("mesh.surfsk_add_surface", text="Add Surface")
103 col.operator("mesh.surfsk_edit_surface", text="Edit Surface")
105 col.separator()
106 if bs.SURFSK_guide == 'GPencil':
107 col.operator("gpencil.surfsk_add_strokes", text="Add Strokes")
108 col.operator("gpencil.surfsk_edit_strokes", text="Edit Strokes")
109 col.separator()
110 col.operator("gpencil.surfsk_strokes_to_curves", text="Strokes to curves")
112 if bs.SURFSK_guide == 'Annotation':
113 col.operator("gpencil.surfsk_add_annotation", text="Add Annotation")
114 col.separator()
115 col.operator("gpencil.surfsk_annotations_to_curves", text="Annotation to curves")
117 if bs.SURFSK_guide == 'Curve':
118 col.operator("curve.surfsk_edit_curve", text="Edit curve")
120 col.separator()
121 col.label(text="Initial settings:")
122 col.prop(bs, "SURFSK_edges_U")
123 col.prop(bs, "SURFSK_edges_V")
124 col.prop(bs, "SURFSK_cyclic_cross")
125 col.prop(bs, "SURFSK_cyclic_follow")
126 col.prop(bs, "SURFSK_loops_on_strokes")
127 col.prop(bs, "SURFSK_automatic_join")
128 col.prop(bs, "SURFSK_keep_strokes")
130 class VIEW3D_PT_tools_SURFSK_curve(Panel):
131 bl_space_type = 'VIEW_3D'
132 bl_region_type = 'UI'
133 bl_context = "curve_edit"
134 bl_category = 'Edit'
135 bl_label = "Bsurfaces"
137 @classmethod
138 def poll(cls, context):
139 return context.active_object
141 def draw(self, context):
142 layout = self.layout
144 col = layout.column(align=True)
145 row = layout.row()
146 row.separator()
147 col.operator("curve.surfsk_first_points", text="Set First Points")
148 col.operator("curve.switch_direction", text="Switch Direction")
149 col.operator("curve.surfsk_reorder_splines", text="Reorder Splines")
152 # ----------------------------
153 # Returns the type of strokes used
154 def get_strokes_type(context):
155 strokes_type = "NO_STROKES"
156 strokes_num = 0
158 # Check if they are annotation
159 if context.scene.bsurfaces.SURFSK_guide == 'Annotation':
160 try:
161 strokes = bpy.context.annotation_data.layers.active.active_frame.strokes
163 strokes_num = len(strokes)
165 if strokes_num > 0:
166 strokes_type = "GP_ANNOTATION"
167 except:
168 strokes_type = "NO_STROKES"
170 # Check if they are grease pencil
171 if context.scene.bsurfaces.SURFSK_guide == 'GPencil':
172 try:
173 global global_gpencil_object
174 gpencil = bpy.data.objects[global_gpencil_object]
175 strokes = gpencil.data.layers.active.active_frame.strokes
177 strokes_num = len(strokes)
179 if strokes_num > 0:
180 strokes_type = "GP_STROKES"
181 except:
182 strokes_type = "NO_STROKES"
184 # Check if they are curves, if there aren't grease pencil strokes
185 if context.scene.bsurfaces.SURFSK_guide == 'Curve':
186 try:
187 global global_curve_object
188 ob = bpy.data.objects[global_curve_object]
189 if ob.type == "CURVE":
190 strokes_type = "EXTERNAL_CURVE"
191 strokes_num = len(ob.data.splines)
193 # Check if there is any non-bezier spline
194 for i in range(len(ob.data.splines)):
195 if ob.data.splines[i].type != "BEZIER":
196 strokes_type = "CURVE_WITH_NON_BEZIER_SPLINES"
197 break
199 else:
200 strokes_type = "EXTERNAL_NO_CURVE"
201 except:
202 strokes_type = "NO_STROKES"
204 # Check if they are mesh
205 try:
206 global global_mesh_object
207 self.main_object = bpy.data.objects[global_mesh_object]
208 total_vert_sel = len([v for v in self.main_object.data.vertices if v.select])
210 # Check if there is a single stroke without any selection in the object
211 if strokes_num == 1 and total_vert_sel == 0:
212 if strokes_type == "EXTERNAL_CURVE":
213 strokes_type = "SINGLE_CURVE_STROKE_NO_SELECTION"
214 elif strokes_type == "GP_STROKES":
215 strokes_type = "SINGLE_GP_STROKE_NO_SELECTION"
217 if strokes_num == 0 and total_vert_sel > 0:
218 strokes_type = "SELECTION_ALONE"
219 except:
220 pass
222 return strokes_type
224 # ----------------------------
225 # Surface generator operator
226 class MESH_OT_SURFSK_add_surface(Operator):
227 bl_idname = "mesh.surfsk_add_surface"
228 bl_label = "Bsurfaces add surface"
229 bl_description = "Generates surfaces from grease pencil strokes, bezier curves or loose edges"
230 bl_options = {'REGISTER', 'UNDO'}
232 is_crosshatch: BoolProperty(
233 default=False
235 is_fill_faces: BoolProperty(
236 default=False
238 selection_U_exists: BoolProperty(
239 default=False
241 selection_V_exists: BoolProperty(
242 default=False
244 selection_U2_exists: BoolProperty(
245 default=False
247 selection_V2_exists: BoolProperty(
248 default=False
250 selection_V_is_closed: BoolProperty(
251 default=False
253 selection_U_is_closed: BoolProperty(
254 default=False
256 selection_V2_is_closed: BoolProperty(
257 default=False
259 selection_U2_is_closed: BoolProperty(
260 default=False
263 edges_U: IntProperty(
264 name="Cross",
265 description="Number of face-loops crossing the strokes",
266 default=1,
267 min=1,
268 max=200
270 edges_V: IntProperty(
271 name="Follow",
272 description="Number of face-loops following the strokes",
273 default=1,
274 min=1,
275 max=200
277 cyclic_cross: BoolProperty(
278 name="Cyclic Cross",
279 description="Make cyclic the face-loops crossing the strokes",
280 default=False
282 cyclic_follow: BoolProperty(
283 name="Cyclic Follow",
284 description="Make cyclic the face-loops following the strokes",
285 default=False
287 loops_on_strokes: BoolProperty(
288 name="Loops on strokes",
289 description="Make the loops match the paths of the strokes",
290 default=False
292 automatic_join: BoolProperty(
293 name="Automatic join",
294 description="Join automatically vertices of either surfaces generated "
295 "by crosshatching, or from the borders of closed shapes",
296 default=False
298 join_stretch_factor: FloatProperty(
299 name="Stretch",
300 description="Amount of stretching or shrinking allowed for "
301 "edges when joining vertices automatically",
302 default=1,
303 min=0,
304 max=3,
305 subtype='FACTOR'
307 keep_strokes: BoolProperty(
308 name="Keep strokes",
309 description="Keeps the sketched strokes or curves after adding the surface",
310 default=False
312 strokes_type: StringProperty()
313 initial_global_undo_state: BoolProperty()
316 def draw(self, context):
317 layout = self.layout
318 col = layout.column(align=True)
319 row = layout.row()
321 if not self.is_fill_faces:
322 row.separator()
323 if not self.is_crosshatch:
324 if not self.selection_U_exists:
325 col.prop(self, "edges_U")
326 row.separator()
328 if not self.selection_V_exists:
329 col.prop(self, "edges_V")
330 row.separator()
332 row.separator()
334 if not self.selection_U_exists:
335 if not (
336 (self.selection_V_exists and not self.selection_V_is_closed) or
337 (self.selection_V2_exists and not self.selection_V2_is_closed)
339 col.prop(self, "cyclic_cross")
341 if not self.selection_V_exists:
342 if not (
343 (self.selection_U_exists and not self.selection_U_is_closed) or
344 (self.selection_U2_exists and not self.selection_U2_is_closed)
346 col.prop(self, "cyclic_follow")
348 col.prop(self, "loops_on_strokes")
350 col.prop(self, "automatic_join")
352 if self.automatic_join:
353 row.separator()
354 col.separator()
355 row.separator()
356 col.prop(self, "join_stretch_factor")
358 col.prop(self, "keep_strokes")
360 # Get an ordered list of a chain of vertices
361 def get_ordered_verts(self, ob, all_selected_edges_idx, all_selected_verts_idx,
362 first_vert_idx, middle_vertex_idx, closing_vert_idx):
363 # Order selected vertices.
364 verts_ordered = []
365 if closing_vert_idx is not None:
366 verts_ordered.append(ob.data.vertices[closing_vert_idx])
368 verts_ordered.append(ob.data.vertices[first_vert_idx])
369 prev_v = first_vert_idx
370 prev_ed = None
371 finish_while = False
372 while True:
373 edges_non_matched = 0
374 for i in all_selected_edges_idx:
375 if ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[0] == prev_v and \
376 ob.data.edges[i].vertices[1] in all_selected_verts_idx:
378 verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[1]])
379 prev_v = ob.data.edges[i].vertices[1]
380 prev_ed = ob.data.edges[i]
381 elif ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[1] == prev_v and \
382 ob.data.edges[i].vertices[0] in all_selected_verts_idx:
384 verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[0]])
385 prev_v = ob.data.edges[i].vertices[0]
386 prev_ed = ob.data.edges[i]
387 else:
388 edges_non_matched += 1
390 if edges_non_matched == len(all_selected_edges_idx):
391 finish_while = True
393 if finish_while:
394 break
396 if closing_vert_idx is not None:
397 verts_ordered.append(ob.data.vertices[closing_vert_idx])
399 if middle_vertex_idx is not None:
400 verts_ordered.append(ob.data.vertices[middle_vertex_idx])
401 verts_ordered.reverse()
403 return tuple(verts_ordered)
405 # Calculates length of a chain of points.
406 def get_chain_length(self, object, verts_ordered):
407 matrix = object.matrix_world
409 edges_lengths = []
410 edges_lengths_sum = 0
411 for i in range(0, len(verts_ordered)):
412 if i == 0:
413 prev_v_co = matrix @ verts_ordered[i].co
414 else:
415 v_co = matrix @ verts_ordered[i].co
417 v_difs = [prev_v_co[0] - v_co[0], prev_v_co[1] - v_co[1], prev_v_co[2] - v_co[2]]
418 edge_length = abs(sqrt(v_difs[0] * v_difs[0] + v_difs[1] * v_difs[1] + v_difs[2] * v_difs[2]))
420 edges_lengths.append(edge_length)
421 edges_lengths_sum += edge_length
423 prev_v_co = v_co
425 return edges_lengths, edges_lengths_sum
427 # Calculates the proportion of the edges of a chain of edges, relative to the full chain length.
428 def get_edges_proportions(self, edges_lengths, edges_lengths_sum, use_boundaries, fixed_edges_num):
429 edges_proportions = []
430 if use_boundaries:
431 verts_count = 1
432 for l in edges_lengths:
433 edges_proportions.append(l / edges_lengths_sum)
434 verts_count += 1
435 else:
436 verts_count = 1
437 for _n in range(0, fixed_edges_num):
438 edges_proportions.append(1 / fixed_edges_num)
439 verts_count += 1
441 return edges_proportions
443 # Calculates the angle between two pairs of points in space
444 def orientation_difference(self, points_A_co, points_B_co):
445 # each parameter should be a list with two elements,
446 # and each element should be a x,y,z coordinate
447 vec_A = points_A_co[0] - points_A_co[1]
448 vec_B = points_B_co[0] - points_B_co[1]
450 angle = vec_A.angle(vec_B)
452 if angle > 0.5 * pi:
453 angle = abs(angle - pi)
455 return angle
457 # Calculate the which vert of verts_idx list is the nearest one
458 # to the point_co coordinates, and the distance
459 def shortest_distance(self, object, point_co, verts_idx):
460 matrix = object.matrix_world
462 for i in range(0, len(verts_idx)):
463 dist = (point_co - matrix @ object.data.vertices[verts_idx[i]].co).length
464 if i == 0:
465 prev_dist = dist
466 nearest_vert_idx = verts_idx[i]
467 shortest_dist = dist
469 if dist < prev_dist:
470 prev_dist = dist
471 nearest_vert_idx = verts_idx[i]
472 shortest_dist = dist
474 return nearest_vert_idx, shortest_dist
476 # Returns the index of the opposite vert tip in a chain, given a vert tip index
477 # as parameter, and a multidimentional list with all pairs of tips
478 def opposite_tip(self, vert_tip_idx, all_chains_tips_idx):
479 opposite_vert_tip_idx = None
480 for i in range(0, len(all_chains_tips_idx)):
481 if vert_tip_idx == all_chains_tips_idx[i][0]:
482 opposite_vert_tip_idx = all_chains_tips_idx[i][1]
483 if vert_tip_idx == all_chains_tips_idx[i][1]:
484 opposite_vert_tip_idx = all_chains_tips_idx[i][0]
486 return opposite_vert_tip_idx
488 # Simplifies a spline and returns the new points coordinates
489 def simplify_spline(self, spline_coords, segments_num):
490 simplified_spline = []
491 points_between_segments = round(len(spline_coords) / segments_num)
493 simplified_spline.append(spline_coords[0])
494 for i in range(1, segments_num):
495 simplified_spline.append(spline_coords[i * points_between_segments])
497 simplified_spline.append(spline_coords[len(spline_coords) - 1])
499 return simplified_spline
501 # Returns a list with the coords of the points distributed over the splines
502 # passed to this method according to the proportions parameter
503 def distribute_pts(self, surface_splines, proportions):
505 # Calculate the length of each final surface spline
506 surface_splines_lengths = []
507 surface_splines_parsed = []
509 for sp_idx in range(0, len(surface_splines)):
510 # Calculate spline length
511 surface_splines_lengths.append(0)
513 for i in range(0, len(surface_splines[sp_idx].bezier_points)):
514 if i == 0:
515 prev_p = surface_splines[sp_idx].bezier_points[i]
516 else:
517 p = surface_splines[sp_idx].bezier_points[i]
518 edge_length = (prev_p.co - p.co).length
519 surface_splines_lengths[sp_idx] += edge_length
521 prev_p = p
523 # Calculate vertex positions with appropriate edge proportions, and ordered, for each spline
524 for sp_idx in range(0, len(surface_splines)):
525 surface_splines_parsed.append([])
526 surface_splines_parsed[sp_idx].append(surface_splines[sp_idx].bezier_points[0].co)
528 prev_p_co = surface_splines[sp_idx].bezier_points[0].co
529 p_idx = 0
531 for prop_idx in range(len(proportions) - 1):
532 target_length = surface_splines_lengths[sp_idx] * proportions[prop_idx]
533 partial_segment_length = 0
534 finish_while = False
536 while True:
537 # if not it'll pass the p_idx as an index below and crash
538 if p_idx < len(surface_splines[sp_idx].bezier_points):
539 p_co = surface_splines[sp_idx].bezier_points[p_idx].co
540 new_dist = (prev_p_co - p_co).length
542 # The new distance that could have the partial segment if
543 # it is still shorter than the target length
544 potential_segment_length = partial_segment_length + new_dist
546 # If the potential is still shorter, keep adding
547 if potential_segment_length < target_length:
548 partial_segment_length = potential_segment_length
550 p_idx += 1
551 prev_p_co = p_co
553 # If the potential is longer than the target, calculate the target
554 # (a point between the last two points), and assign
555 elif potential_segment_length > target_length:
556 remaining_dist = target_length - partial_segment_length
557 vec = p_co - prev_p_co
558 vec.normalize()
559 intermediate_co = prev_p_co + (vec * remaining_dist)
561 surface_splines_parsed[sp_idx].append(intermediate_co)
563 partial_segment_length += remaining_dist
564 prev_p_co = intermediate_co
566 finish_while = True
568 # If the potential is equal to the target, assign
569 elif potential_segment_length == target_length:
570 surface_splines_parsed[sp_idx].append(p_co)
571 prev_p_co = p_co
573 finish_while = True
575 if finish_while:
576 break
578 # last point of the spline
579 surface_splines_parsed[sp_idx].append(
580 surface_splines[sp_idx].bezier_points[len(surface_splines[sp_idx].bezier_points) - 1].co
583 return surface_splines_parsed
585 # Counts the number of faces that belong to each edge
586 def edge_face_count(self, ob):
587 ed_keys_count_dict = {}
589 for face in ob.data.polygons:
590 for ed_keys in face.edge_keys:
591 if ed_keys not in ed_keys_count_dict:
592 ed_keys_count_dict[ed_keys] = 1
593 else:
594 ed_keys_count_dict[ed_keys] += 1
596 edge_face_count = []
597 for i in range(len(ob.data.edges)):
598 edge_face_count.append(0)
600 for i in range(len(ob.data.edges)):
601 ed = ob.data.edges[i]
603 v1 = ed.vertices[0]
604 v2 = ed.vertices[1]
606 if (v1, v2) in ed_keys_count_dict:
607 edge_face_count[i] = ed_keys_count_dict[(v1, v2)]
608 elif (v2, v1) in ed_keys_count_dict:
609 edge_face_count[i] = ed_keys_count_dict[(v2, v1)]
611 return edge_face_count
613 # Fills with faces all the selected vertices which form empty triangles or quads
614 def fill_with_faces(self, object):
615 all_selected_verts_count = self.main_object_selected_verts_count
617 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
619 # Calculate average length of selected edges
620 all_selected_verts = []
621 original_sel_edges_count = 0
622 for ed in object.data.edges:
623 if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
624 coords = []
625 coords.append(object.data.vertices[ed.vertices[0]].co)
626 coords.append(object.data.vertices[ed.vertices[1]].co)
628 original_sel_edges_count += 1
630 if not ed.vertices[0] in all_selected_verts:
631 all_selected_verts.append(ed.vertices[0])
633 if not ed.vertices[1] in all_selected_verts:
634 all_selected_verts.append(ed.vertices[1])
636 tuple(all_selected_verts)
638 # Check if there is any edge selected. If not, interrupt the script
639 if original_sel_edges_count == 0 and all_selected_verts_count > 0:
640 return 0
642 # Get all edges connected to selected verts
643 all_edges_around_sel_verts = []
644 edges_connected_to_sel_verts = {}
645 verts_connected_to_every_vert = {}
646 for ed_idx in range(len(object.data.edges)):
647 ed = object.data.edges[ed_idx]
648 include_edge = False
650 if ed.vertices[0] in all_selected_verts:
651 if not ed.vertices[0] in edges_connected_to_sel_verts:
652 edges_connected_to_sel_verts[ed.vertices[0]] = []
654 edges_connected_to_sel_verts[ed.vertices[0]].append(ed_idx)
655 include_edge = True
657 if ed.vertices[1] in all_selected_verts:
658 if not ed.vertices[1] in edges_connected_to_sel_verts:
659 edges_connected_to_sel_verts[ed.vertices[1]] = []
661 edges_connected_to_sel_verts[ed.vertices[1]].append(ed_idx)
662 include_edge = True
664 if include_edge is True:
665 all_edges_around_sel_verts.append(ed_idx)
667 # Get all connected verts to each vert
668 if not ed.vertices[0] in verts_connected_to_every_vert:
669 verts_connected_to_every_vert[ed.vertices[0]] = []
671 if not ed.vertices[1] in verts_connected_to_every_vert:
672 verts_connected_to_every_vert[ed.vertices[1]] = []
674 verts_connected_to_every_vert[ed.vertices[0]].append(ed.vertices[1])
675 verts_connected_to_every_vert[ed.vertices[1]].append(ed.vertices[0])
677 # Get all verts connected to faces
678 all_verts_part_of_faces = []
679 all_edges_faces_count = []
680 all_edges_faces_count += self.edge_face_count(object)
682 # Get only the selected edges that have faces attached.
683 count_faces_of_edges_around_sel_verts = {}
684 selected_verts_with_faces = []
685 for ed_idx in all_edges_around_sel_verts:
686 count_faces_of_edges_around_sel_verts[ed_idx] = all_edges_faces_count[ed_idx]
688 if all_edges_faces_count[ed_idx] > 0:
689 ed = object.data.edges[ed_idx]
691 if not ed.vertices[0] in selected_verts_with_faces:
692 selected_verts_with_faces.append(ed.vertices[0])
694 if not ed.vertices[1] in selected_verts_with_faces:
695 selected_verts_with_faces.append(ed.vertices[1])
697 all_verts_part_of_faces.append(ed.vertices[0])
698 all_verts_part_of_faces.append(ed.vertices[1])
700 tuple(selected_verts_with_faces)
702 # Discard unneeded verts from calculations
703 participating_verts = []
704 movable_verts = []
705 for v_idx in all_selected_verts:
706 vert_has_edges_with_one_face = False
708 # Check if the actual vert has at least one edge connected to only one face
709 for ed_idx in edges_connected_to_sel_verts[v_idx]:
710 if count_faces_of_edges_around_sel_verts[ed_idx] == 1:
711 vert_has_edges_with_one_face = True
713 # If the vert has two or less edges connected and the vert is not part of any face.
714 # Or the vert is part of any face and at least one of
715 # the connected edges has only one face attached to it.
716 if (len(edges_connected_to_sel_verts[v_idx]) == 2 and
717 v_idx not in all_verts_part_of_faces) or \
718 len(edges_connected_to_sel_verts[v_idx]) == 1 or \
719 (v_idx in all_verts_part_of_faces and
720 vert_has_edges_with_one_face):
722 participating_verts.append(v_idx)
724 if v_idx not in all_verts_part_of_faces:
725 movable_verts.append(v_idx)
727 # Remove from movable verts list those that are part of closed geometry (ie: triangles, quads)
728 for mv_idx in movable_verts:
729 freeze_vert = False
730 mv_connected_verts = verts_connected_to_every_vert[mv_idx]
732 for actual_v_idx in all_selected_verts:
733 count_shared_neighbors = 0
734 checked_verts = []
736 for mv_conn_v_idx in mv_connected_verts:
737 if mv_idx != actual_v_idx:
738 if mv_conn_v_idx in verts_connected_to_every_vert[actual_v_idx] and \
739 mv_conn_v_idx not in checked_verts:
740 count_shared_neighbors += 1
741 checked_verts.append(mv_conn_v_idx)
743 if actual_v_idx in mv_connected_verts:
744 freeze_vert = True
745 break
747 if count_shared_neighbors == 2:
748 freeze_vert = True
749 break
751 if freeze_vert:
752 break
754 if freeze_vert:
755 movable_verts.remove(mv_idx)
757 # Calculate merge distance for participating verts
758 shortest_edge_length = None
759 for ed in object.data.edges:
760 if ed.vertices[0] in movable_verts and ed.vertices[1] in movable_verts:
761 v1 = object.data.vertices[ed.vertices[0]]
762 v2 = object.data.vertices[ed.vertices[1]]
764 length = (v1.co - v2.co).length
766 if shortest_edge_length is None:
767 shortest_edge_length = length
768 else:
769 if length < shortest_edge_length:
770 shortest_edge_length = length
772 if shortest_edge_length is not None:
773 edges_merge_distance = shortest_edge_length * 0.5
774 else:
775 edges_merge_distance = 0
777 # Get together the verts near enough. They will be merged later
778 remaining_verts = []
779 remaining_verts += participating_verts
780 for v1_idx in participating_verts:
781 if v1_idx in remaining_verts and v1_idx in movable_verts:
782 verts_to_merge = []
783 coords_verts_to_merge = {}
785 verts_to_merge.append(v1_idx)
787 v1_co = object.data.vertices[v1_idx].co
788 coords_verts_to_merge[v1_idx] = (v1_co[0], v1_co[1], v1_co[2])
790 for v2_idx in remaining_verts:
791 if v1_idx != v2_idx:
792 v2_co = object.data.vertices[v2_idx].co
794 dist = (v1_co - v2_co).length
796 if dist <= edges_merge_distance: # Add the verts which are near enough
797 verts_to_merge.append(v2_idx)
799 coords_verts_to_merge[v2_idx] = (v2_co[0], v2_co[1], v2_co[2])
801 for vm_idx in verts_to_merge:
802 remaining_verts.remove(vm_idx)
804 if len(verts_to_merge) > 1:
805 # Calculate middle point of the verts to merge.
806 sum_x_co = 0
807 sum_y_co = 0
808 sum_z_co = 0
809 movable_verts_to_merge_count = 0
810 for i in range(len(verts_to_merge)):
811 if verts_to_merge[i] in movable_verts:
812 v_co = object.data.vertices[verts_to_merge[i]].co
814 sum_x_co += v_co[0]
815 sum_y_co += v_co[1]
816 sum_z_co += v_co[2]
818 movable_verts_to_merge_count += 1
820 middle_point_co = [
821 sum_x_co / movable_verts_to_merge_count,
822 sum_y_co / movable_verts_to_merge_count,
823 sum_z_co / movable_verts_to_merge_count
826 # Check if any vert to be merged is not movable
827 shortest_dist = None
828 are_verts_not_movable = False
829 verts_not_movable = []
830 for v_merge_idx in verts_to_merge:
831 if v_merge_idx in participating_verts and v_merge_idx not in movable_verts:
832 are_verts_not_movable = True
833 verts_not_movable.append(v_merge_idx)
835 if are_verts_not_movable:
836 # Get the vert connected to faces, that is nearest to
837 # the middle point of the movable verts
838 shortest_dist = None
839 for vcf_idx in verts_not_movable:
840 dist = abs((object.data.vertices[vcf_idx].co -
841 Vector(middle_point_co)).length)
843 if shortest_dist is None:
844 shortest_dist = dist
845 nearest_vert_idx = vcf_idx
846 else:
847 if dist < shortest_dist:
848 shortest_dist = dist
849 nearest_vert_idx = vcf_idx
851 coords = object.data.vertices[nearest_vert_idx].co
852 target_point_co = [coords[0], coords[1], coords[2]]
853 else:
854 target_point_co = middle_point_co
856 # Move verts to merge to the middle position
857 for v_merge_idx in verts_to_merge:
858 if v_merge_idx in movable_verts: # Only move the verts that are not part of faces
859 object.data.vertices[v_merge_idx].co[0] = target_point_co[0]
860 object.data.vertices[v_merge_idx].co[1] = target_point_co[1]
861 object.data.vertices[v_merge_idx].co[2] = target_point_co[2]
863 # Perform "Remove Doubles" to weld all the disconnected verts
864 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
865 bpy.ops.mesh.remove_doubles(threshold=0.0001)
867 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
869 # Get all the definitive selected edges, after weldding
870 selected_edges = []
871 edges_per_vert = {} # Number of faces of each selected edge
872 for ed in object.data.edges:
873 if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
874 selected_edges.append(ed.index)
876 # Save all the edges that belong to each vertex.
877 if not ed.vertices[0] in edges_per_vert:
878 edges_per_vert[ed.vertices[0]] = []
880 if not ed.vertices[1] in edges_per_vert:
881 edges_per_vert[ed.vertices[1]] = []
883 edges_per_vert[ed.vertices[0]].append(ed.index)
884 edges_per_vert[ed.vertices[1]].append(ed.index)
886 # Check if all the edges connected to each vert have two faces attached to them.
887 # To discard them later and make calculations faster
888 a = []
889 a += self.edge_face_count(object)
890 tuple(a)
891 verts_surrounded_by_faces = {}
892 for v_idx in edges_per_vert:
893 edges_with_two_faces_count = 0
895 for ed_idx in edges_per_vert[v_idx]:
896 if a[ed_idx] == 2:
897 edges_with_two_faces_count += 1
899 if edges_with_two_faces_count == len(edges_per_vert[v_idx]):
900 verts_surrounded_by_faces[v_idx] = True
901 else:
902 verts_surrounded_by_faces[v_idx] = False
904 # Get all the selected vertices
905 selected_verts_idx = []
906 for v in object.data.vertices:
907 if v.select:
908 selected_verts_idx.append(v.index)
910 # Get all the faces of the object
911 all_object_faces_verts_idx = []
912 for face in object.data.polygons:
913 face_verts = []
914 face_verts.append(face.vertices[0])
915 face_verts.append(face.vertices[1])
916 face_verts.append(face.vertices[2])
918 if len(face.vertices) == 4:
919 face_verts.append(face.vertices[3])
921 all_object_faces_verts_idx.append(face_verts)
923 # Deselect all vertices
924 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
925 bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
926 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
928 # Make a dictionary with the verts related to each vert
929 related_key_verts = {}
930 for ed_idx in selected_edges:
931 ed = object.data.edges[ed_idx]
933 if not verts_surrounded_by_faces[ed.vertices[0]]:
934 if not ed.vertices[0] in related_key_verts:
935 related_key_verts[ed.vertices[0]] = []
937 if not ed.vertices[1] in related_key_verts[ed.vertices[0]]:
938 related_key_verts[ed.vertices[0]].append(ed.vertices[1])
940 if not verts_surrounded_by_faces[ed.vertices[1]]:
941 if not ed.vertices[1] in related_key_verts:
942 related_key_verts[ed.vertices[1]] = []
944 if not ed.vertices[0] in related_key_verts[ed.vertices[1]]:
945 related_key_verts[ed.vertices[1]].append(ed.vertices[0])
947 # Get groups of verts forming each face
948 faces_verts_idx = []
949 for v1 in related_key_verts: # verts-1 ....
950 for v2 in related_key_verts: # verts-2
951 if v1 != v2:
952 related_verts_in_common = []
953 v2_in_rel_v1 = False
954 v1_in_rel_v2 = False
955 for rel_v1 in related_key_verts[v1]:
956 # Check if related verts of verts-1 are related verts of verts-2
957 if rel_v1 in related_key_verts[v2]:
958 related_verts_in_common.append(rel_v1)
960 if v2 in related_key_verts[v1]:
961 v2_in_rel_v1 = True
963 if v1 in related_key_verts[v2]:
964 v1_in_rel_v2 = True
966 repeated_face = False
967 # If two verts have two related verts in common, they form a quad
968 if len(related_verts_in_common) == 2:
969 # Check if the face is already saved
970 all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
972 for f_verts in all_faces_to_check_idx:
973 repeated_verts = 0
975 if len(f_verts) == 4:
976 if v1 in f_verts:
977 repeated_verts += 1
978 if v2 in f_verts:
979 repeated_verts += 1
980 if related_verts_in_common[0] in f_verts:
981 repeated_verts += 1
982 if related_verts_in_common[1] in f_verts:
983 repeated_verts += 1
985 if repeated_verts == len(f_verts):
986 repeated_face = True
987 break
989 if not repeated_face:
990 faces_verts_idx.append(
991 [v1, related_verts_in_common[0], v2, related_verts_in_common[1]]
994 # If Two verts have one related vert in common and
995 # they are related to each other, they form a triangle
996 elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1:
997 # Check if the face is already saved.
998 all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
1000 for f_verts in all_faces_to_check_idx:
1001 repeated_verts = 0
1003 if len(f_verts) == 3:
1004 if v1 in f_verts:
1005 repeated_verts += 1
1006 if v2 in f_verts:
1007 repeated_verts += 1
1008 if related_verts_in_common[0] in f_verts:
1009 repeated_verts += 1
1011 if repeated_verts == len(f_verts):
1012 repeated_face = True
1013 break
1015 if not repeated_face:
1016 faces_verts_idx.append([v1, related_verts_in_common[0], v2])
1018 # Keep only the faces that don't overlap by ignoring quads
1019 # that overlap with two adjacent triangles
1020 faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate
1021 all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
1022 for i in range(len(faces_verts_idx)):
1023 for t in range(len(all_faces_to_check_idx)):
1024 if i != t:
1025 verts_in_common = 0
1027 if len(faces_verts_idx[i]) == 4 and len(all_faces_to_check_idx[t]) == 3:
1028 for v_idx in all_faces_to_check_idx[t]:
1029 if v_idx in faces_verts_idx[i]:
1030 verts_in_common += 1
1031 # If it doesn't have all it's vertices repeated in the other face
1032 if verts_in_common == 3:
1033 if i not in faces_to_not_include_idx:
1034 faces_to_not_include_idx.append(i)
1036 # Build faces discarding the ones in faces_to_not_include
1037 me = object.data
1038 bm = bmesh.new()
1039 bm.from_mesh(me)
1041 num_faces_created = 0
1042 for i in range(len(faces_verts_idx)):
1043 if i not in faces_to_not_include_idx:
1044 bm.faces.new([bm.verts[v] for v in faces_verts_idx[i]])
1046 num_faces_created += 1
1048 bm.to_mesh(me)
1049 bm.free()
1051 for v_idx in selected_verts_idx:
1052 self.main_object.data.vertices[v_idx].select = True
1054 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
1055 bpy.ops.mesh.normals_make_consistent(inside=False)
1056 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
1058 self.update()
1060 return num_faces_created
1062 # Crosshatch skinning
1063 def crosshatch_surface_invoke(self, ob_original_splines):
1064 self.is_crosshatch = False
1065 self.crosshatch_merge_distance = 0
1067 objects_to_delete = [] # duplicated strokes to be deleted.
1069 # If the main object uses modifiers deactivate them temporarily until the surface is joined
1070 # (without this the surface verts merging with the main object doesn't work well)
1071 self.modifiers_prev_viewport_state = []
1072 if len(self.main_object.modifiers) > 0:
1073 for m_idx in range(len(self.main_object.modifiers)):
1074 self.modifiers_prev_viewport_state.append(
1075 self.main_object.modifiers[m_idx].show_viewport
1077 self.main_object.modifiers[m_idx].show_viewport = False
1079 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
1080 ob_original_splines.select_set(True)
1081 bpy.context.view_layer.objects.active = ob_original_splines
1083 if len(ob_original_splines.data.splines) >= 2:
1084 bpy.ops.object.duplicate('INVOKE_REGION_WIN')
1085 ob_splines = bpy.context.object
1086 ob_splines.name = "SURFSKIO_NE_STR"
1088 # Get estimative merge distance (sum up the distances from the first point to
1089 # all other points, then average them and then divide them)
1090 first_point_dist_sum = 0
1091 first_dist = 0
1092 second_dist = 0
1093 coords_first_pt = ob_splines.data.splines[0].bezier_points[0].co
1094 for i in range(len(ob_splines.data.splines)):
1095 sp = ob_splines.data.splines[i]
1097 if coords_first_pt != sp.bezier_points[0].co:
1098 first_dist = (coords_first_pt - sp.bezier_points[0].co).length
1100 if coords_first_pt != sp.bezier_points[len(sp.bezier_points) - 1].co:
1101 second_dist = (coords_first_pt - sp.bezier_points[len(sp.bezier_points) - 1].co).length
1103 first_point_dist_sum += first_dist + second_dist
1105 if i == 0:
1106 if first_dist != 0:
1107 shortest_dist = first_dist
1108 elif second_dist != 0:
1109 shortest_dist = second_dist
1111 if shortest_dist > first_dist and first_dist != 0:
1112 shortest_dist = first_dist
1114 if shortest_dist > second_dist and second_dist != 0:
1115 shortest_dist = second_dist
1117 self.crosshatch_merge_distance = shortest_dist / 20
1119 # Recalculation of merge distance
1121 bpy.ops.object.duplicate('INVOKE_REGION_WIN')
1123 ob_calc_merge_dist = bpy.context.object
1124 ob_calc_merge_dist.name = "SURFSKIO_CALC_TMP"
1126 objects_to_delete.append(ob_calc_merge_dist)
1128 # Smooth out strokes a little to improve crosshatch detection
1129 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1130 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
1132 for i in range(4):
1133 bpy.ops.curve.smooth('INVOKE_REGION_WIN')
1135 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
1136 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1138 # Convert curves into mesh
1139 ob_calc_merge_dist.data.resolution_u = 12
1140 bpy.ops.object.convert(target='MESH', keep_original=False)
1142 # Find "intersection-nodes"
1143 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1144 bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
1145 bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN',
1146 threshold=self.crosshatch_merge_distance)
1147 bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
1148 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1150 # Remove verts with less than three edges
1151 verts_edges_count = {}
1152 for ed in ob_calc_merge_dist.data.edges:
1153 v = ed.vertices
1155 if v[0] not in verts_edges_count:
1156 verts_edges_count[v[0]] = 0
1158 if v[1] not in verts_edges_count:
1159 verts_edges_count[v[1]] = 0
1161 verts_edges_count[v[0]] += 1
1162 verts_edges_count[v[1]] += 1
1164 nodes_verts_coords = []
1165 for v_idx in verts_edges_count:
1166 v = ob_calc_merge_dist.data.vertices[v_idx]
1168 if verts_edges_count[v_idx] < 3:
1169 v.select = True
1171 # Remove them
1172 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1173 bpy.ops.mesh.delete('INVOKE_REGION_WIN', type='VERT')
1174 bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
1176 # Remove doubles to discard very near verts from calculations of distance
1177 bpy.ops.mesh.remove_doubles(
1178 'INVOKE_REGION_WIN',
1179 threshold=self.crosshatch_merge_distance * 4.0
1181 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1183 # Get all coords of the resulting nodes
1184 nodes_verts_coords = [(v.co[0], v.co[1], v.co[2]) for
1185 v in ob_calc_merge_dist.data.vertices]
1187 # Check if the strokes are a crosshatch
1188 if len(nodes_verts_coords) >= 3:
1189 self.is_crosshatch = True
1191 shortest_dist = None
1192 for co_1 in nodes_verts_coords:
1193 for co_2 in nodes_verts_coords:
1194 if co_1 != co_2:
1195 dist = (Vector(co_1) - Vector(co_2)).length
1197 if shortest_dist is not None:
1198 if dist < shortest_dist:
1199 shortest_dist = dist
1200 else:
1201 shortest_dist = dist
1203 self.crosshatch_merge_distance = shortest_dist / 3
1205 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
1206 ob_splines.select_set(True)
1207 bpy.context.view_layer.objects.active = ob_splines
1209 # Deselect all points
1210 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1211 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
1212 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1214 # Smooth splines in a localized way, to eliminate "saw-teeth"
1215 # like shapes when there are many points
1216 for sp in ob_splines.data.splines:
1217 angle_sum = 0
1219 angle_limit = 2 # Degrees
1220 for t in range(len(sp.bezier_points)):
1221 # Because on each iteration it checks the "next two points"
1222 # of the actual. This way it doesn't go out of range
1223 if t <= len(sp.bezier_points) - 3:
1224 p1 = sp.bezier_points[t]
1225 p2 = sp.bezier_points[t + 1]
1226 p3 = sp.bezier_points[t + 2]
1228 vec_1 = p1.co - p2.co
1229 vec_2 = p2.co - p3.co
1231 if p2.co != p1.co and p2.co != p3.co:
1232 angle = vec_1.angle(vec_2)
1233 angle_sum += degrees(angle)
1235 if angle_sum >= angle_limit: # If sum of angles is grater than the limit
1236 if (p1.co - p2.co).length <= self.crosshatch_merge_distance:
1237 p1.select_control_point = True
1238 p1.select_left_handle = True
1239 p1.select_right_handle = True
1241 p2.select_control_point = True
1242 p2.select_left_handle = True
1243 p2.select_right_handle = True
1245 if (p1.co - p2.co).length <= self.crosshatch_merge_distance:
1246 p3.select_control_point = True
1247 p3.select_left_handle = True
1248 p3.select_right_handle = True
1250 angle_sum = 0
1252 sp.bezier_points[0].select_control_point = False
1253 sp.bezier_points[0].select_left_handle = False
1254 sp.bezier_points[0].select_right_handle = False
1256 sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = False
1257 sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = False
1258 sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle = False
1260 # Smooth out strokes a little to improve crosshatch detection
1261 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1263 for i in range(15):
1264 bpy.ops.curve.smooth('INVOKE_REGION_WIN')
1266 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
1267 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1269 # Simplify the splines
1270 for sp in ob_splines.data.splines:
1271 angle_sum = 0
1273 sp.bezier_points[0].select_control_point = True
1274 sp.bezier_points[0].select_left_handle = True
1275 sp.bezier_points[0].select_right_handle = True
1277 sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = True
1278 sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = True
1279 sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle = True
1281 angle_limit = 15 # Degrees
1282 for t in range(len(sp.bezier_points)):
1283 # Because on each iteration it checks the "next two points"
1284 # of the actual. This way it doesn't go out of range
1285 if t <= len(sp.bezier_points) - 3:
1286 p1 = sp.bezier_points[t]
1287 p2 = sp.bezier_points[t + 1]
1288 p3 = sp.bezier_points[t + 2]
1290 vec_1 = p1.co - p2.co
1291 vec_2 = p2.co - p3.co
1293 if p2.co != p1.co and p2.co != p3.co:
1294 angle = vec_1.angle(vec_2)
1295 angle_sum += degrees(angle)
1296 # If sum of angles is grater than the limit
1297 if angle_sum >= angle_limit:
1298 p1.select_control_point = True
1299 p1.select_left_handle = True
1300 p1.select_right_handle = True
1302 p2.select_control_point = True
1303 p2.select_left_handle = True
1304 p2.select_right_handle = True
1306 p3.select_control_point = True
1307 p3.select_left_handle = True
1308 p3.select_right_handle = True
1310 angle_sum = 0
1312 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1313 bpy.ops.curve.select_all(action='INVERT')
1315 bpy.ops.curve.delete(type='VERT')
1316 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1318 objects_to_delete.append(ob_splines)
1320 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1321 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
1322 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1324 # Check if the strokes are a crosshatch
1325 if self.is_crosshatch:
1326 all_points_coords = []
1327 for i in range(len(ob_splines.data.splines)):
1328 all_points_coords.append([])
1330 all_points_coords[i] = [Vector((x, y, z)) for
1331 x, y, z in [bp.co for
1332 bp in ob_splines.data.splines[i].bezier_points]]
1334 all_intersections = []
1335 checked_splines = []
1336 for i in range(len(all_points_coords)):
1338 for t in range(len(all_points_coords[i]) - 1):
1339 bp1_co = all_points_coords[i][t]
1340 bp2_co = all_points_coords[i][t + 1]
1342 for i2 in range(len(all_points_coords)):
1343 if i != i2 and i2 not in checked_splines:
1344 for t2 in range(len(all_points_coords[i2]) - 1):
1345 bp3_co = all_points_coords[i2][t2]
1346 bp4_co = all_points_coords[i2][t2 + 1]
1348 intersec_coords = intersect_line_line(
1349 bp1_co, bp2_co, bp3_co, bp4_co
1351 if intersec_coords is not None:
1352 dist = (intersec_coords[0] - intersec_coords[1]).length
1354 if dist <= self.crosshatch_merge_distance * 1.5:
1355 _temp_co, percent1 = intersect_point_line(
1356 intersec_coords[0], bp1_co, bp2_co
1358 if (percent1 >= -0.02 and percent1 <= 1.02):
1359 _temp_co, percent2 = intersect_point_line(
1360 intersec_coords[1], bp3_co, bp4_co
1362 if (percent2 >= -0.02 and percent2 <= 1.02):
1363 # Format: spline index, first point index from
1364 # corresponding segment, percentage from first point of
1365 # actual segment, coords of intersection point
1366 all_intersections.append(
1367 (i, t, percent1,
1368 ob_splines.matrix_world @ intersec_coords[0])
1370 all_intersections.append(
1371 (i2, t2, percent2,
1372 ob_splines.matrix_world @ intersec_coords[1])
1375 checked_splines.append(i)
1376 # Sort list by spline, then by corresponding first point index of segment,
1377 # and then by percentage from first point of segment: elements 0 and 1 respectively
1378 all_intersections.sort(key=operator.itemgetter(0, 1, 2))
1380 self.crosshatch_strokes_coords = {}
1381 for i in range(len(all_intersections)):
1382 if not all_intersections[i][0] in self.crosshatch_strokes_coords:
1383 self.crosshatch_strokes_coords[all_intersections[i][0]] = []
1385 self.crosshatch_strokes_coords[all_intersections[i][0]].append(
1386 all_intersections[i][3]
1387 ) # Save intersection coords
1388 else:
1389 self.is_crosshatch = False
1391 # Delete all duplicates
1392 bpy.ops.object.delete({"selected_objects": objects_to_delete})
1394 # If the main object has modifiers, turn their "viewport view status" to
1395 # what it was before the forced deactivation above
1396 if len(self.main_object.modifiers) > 0:
1397 for m_idx in range(len(self.main_object.modifiers)):
1398 self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx]
1400 self.update()
1402 return
1404 # Part of the Crosshatch process that is repeated when the operator is tweaked
1405 def crosshatch_surface_execute(self, context):
1406 # If the main object uses modifiers deactivate them temporarily until the surface is joined
1407 # (without this the surface verts merging with the main object doesn't work well)
1408 self.modifiers_prev_viewport_state = []
1409 if len(self.main_object.modifiers) > 0:
1410 for m_idx in range(len(self.main_object.modifiers)):
1411 self.modifiers_prev_viewport_state.append(self.main_object.modifiers[m_idx].show_viewport)
1413 self.main_object.modifiers[m_idx].show_viewport = False
1415 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1417 me_name = "SURFSKIO_STK_TMP"
1418 me = bpy.data.meshes.new(me_name)
1420 all_verts_coords = []
1421 all_edges = []
1422 for st_idx in self.crosshatch_strokes_coords:
1423 for co_idx in range(len(self.crosshatch_strokes_coords[st_idx])):
1424 coords = self.crosshatch_strokes_coords[st_idx][co_idx]
1426 all_verts_coords.append(coords)
1428 if co_idx > 0:
1429 all_edges.append((len(all_verts_coords) - 2, len(all_verts_coords) - 1))
1431 me.from_pydata(all_verts_coords, all_edges, [])
1432 ob = object_utils.object_data_add(context, me)
1433 ob.location = (0.0, 0.0, 0.0)
1434 ob.rotation_euler = (0.0, 0.0, 0.0)
1435 ob.scale = (1.0, 1.0, 1.0)
1437 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
1438 ob.select_set(True)
1439 bpy.context.view_layer.objects.active = ob
1441 # Get together each vert and its nearest, to the middle position
1442 verts = ob.data.vertices
1443 checked_verts = []
1444 for i in range(len(verts)):
1445 shortest_dist = None
1447 if i not in checked_verts:
1448 for t in range(len(verts)):
1449 if i != t and t not in checked_verts:
1450 dist = (verts[i].co - verts[t].co).length
1452 if shortest_dist is not None:
1453 if dist < shortest_dist:
1454 shortest_dist = dist
1455 nearest_vert = t
1456 else:
1457 shortest_dist = dist
1458 nearest_vert = t
1460 middle_location = (verts[i].co + verts[nearest_vert].co) / 2
1462 verts[i].co = middle_location
1463 verts[nearest_vert].co = middle_location
1465 checked_verts.append(i)
1466 checked_verts.append(nearest_vert)
1468 # Calculate average length between all the generated edges
1469 ob = bpy.context.object
1470 lengths_sum = 0
1471 for ed in ob.data.edges:
1472 v1 = ob.data.vertices[ed.vertices[0]]
1473 v2 = ob.data.vertices[ed.vertices[1]]
1475 lengths_sum += (v1.co - v2.co).length
1477 edges_count = len(ob.data.edges)
1478 # possible division by zero here
1479 average_edge_length = lengths_sum / edges_count if edges_count != 0 else 0.0001
1481 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1482 bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
1483 bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN',
1484 threshold=average_edge_length / 15.0)
1485 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1487 final_points_ob = bpy.context.view_layer.objects.active
1489 # Make a dictionary with the verts related to each vert
1490 related_key_verts = {}
1491 for ed in final_points_ob.data.edges:
1492 if not ed.vertices[0] in related_key_verts:
1493 related_key_verts[ed.vertices[0]] = []
1495 if not ed.vertices[1] in related_key_verts:
1496 related_key_verts[ed.vertices[1]] = []
1498 if not ed.vertices[1] in related_key_verts[ed.vertices[0]]:
1499 related_key_verts[ed.vertices[0]].append(ed.vertices[1])
1501 if not ed.vertices[0] in related_key_verts[ed.vertices[1]]:
1502 related_key_verts[ed.vertices[1]].append(ed.vertices[0])
1504 # Get groups of verts forming each face
1505 faces_verts_idx = []
1506 for v1 in related_key_verts: # verts-1 ....
1507 for v2 in related_key_verts: # verts-2
1508 if v1 != v2:
1509 related_verts_in_common = []
1510 v2_in_rel_v1 = False
1511 v1_in_rel_v2 = False
1512 for rel_v1 in related_key_verts[v1]:
1513 # Check if related verts of verts-1 are related verts of verts-2
1514 if rel_v1 in related_key_verts[v2]:
1515 related_verts_in_common.append(rel_v1)
1517 if v2 in related_key_verts[v1]:
1518 v2_in_rel_v1 = True
1520 if v1 in related_key_verts[v2]:
1521 v1_in_rel_v2 = True
1523 repeated_face = False
1524 # If two verts have two related verts in common, they form a quad
1525 if len(related_verts_in_common) == 2:
1526 # Check if the face is already saved
1527 for f_verts in faces_verts_idx:
1528 repeated_verts = 0
1530 if len(f_verts) == 4:
1531 if v1 in f_verts:
1532 repeated_verts += 1
1533 if v2 in f_verts:
1534 repeated_verts += 1
1535 if related_verts_in_common[0] in f_verts:
1536 repeated_verts += 1
1537 if related_verts_in_common[1] in f_verts:
1538 repeated_verts += 1
1540 if repeated_verts == len(f_verts):
1541 repeated_face = True
1542 break
1544 if not repeated_face:
1545 faces_verts_idx.append([v1, related_verts_in_common[0],
1546 v2, related_verts_in_common[1]])
1548 # If Two verts have one related vert in common and they are
1549 # related to each other, they form a triangle
1550 elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1:
1551 # Check if the face is already saved.
1552 for f_verts in faces_verts_idx:
1553 repeated_verts = 0
1555 if len(f_verts) == 3:
1556 if v1 in f_verts:
1557 repeated_verts += 1
1558 if v2 in f_verts:
1559 repeated_verts += 1
1560 if related_verts_in_common[0] in f_verts:
1561 repeated_verts += 1
1563 if repeated_verts == len(f_verts):
1564 repeated_face = True
1565 break
1567 if not repeated_face:
1568 faces_verts_idx.append([v1, related_verts_in_common[0], v2])
1570 # Keep only the faces that don't overlap by ignoring
1571 # quads that overlap with two adjacent triangles
1572 faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate
1573 for i in range(len(faces_verts_idx)):
1574 for t in range(len(faces_verts_idx)):
1575 if i != t:
1576 verts_in_common = 0
1578 if len(faces_verts_idx[i]) == 4 and len(faces_verts_idx[t]) == 3:
1579 for v_idx in faces_verts_idx[t]:
1580 if v_idx in faces_verts_idx[i]:
1581 verts_in_common += 1
1582 # If it doesn't have all it's vertices repeated in the other face
1583 if verts_in_common == 3:
1584 if i not in faces_to_not_include_idx:
1585 faces_to_not_include_idx.append(i)
1587 # Build surface
1588 all_surface_verts_co = []
1589 for i in range(len(final_points_ob.data.vertices)):
1590 coords = final_points_ob.data.vertices[i].co
1591 all_surface_verts_co.append([coords[0], coords[1], coords[2]])
1593 # Verts of each face.
1594 all_surface_faces = []
1595 for i in range(len(faces_verts_idx)):
1596 if i not in faces_to_not_include_idx:
1597 face = []
1598 for v_idx in faces_verts_idx[i]:
1599 face.append(v_idx)
1601 all_surface_faces.append(face)
1603 # Build the mesh
1604 surf_me_name = "SURFSKIO_surface"
1605 me_surf = bpy.data.meshes.new(surf_me_name)
1606 me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces)
1607 ob_surface = object_utils.object_data_add(context, me_surf)
1608 ob_surface.location = (0.0, 0.0, 0.0)
1609 ob_surface.rotation_euler = (0.0, 0.0, 0.0)
1610 ob_surface.scale = (1.0, 1.0, 1.0)
1612 # Delete final points temporal object
1613 bpy.ops.object.delete({"selected_objects": [final_points_ob]})
1615 # Delete isolated verts if there are any
1616 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
1617 ob_surface.select_set(True)
1618 bpy.context.view_layer.objects.active = ob_surface
1620 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1621 bpy.ops.mesh.select_all(action='DESELECT')
1622 bpy.ops.mesh.select_face_by_sides(type='NOTEQUAL')
1623 bpy.ops.mesh.delete()
1624 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1626 # Join crosshatch results with original mesh
1628 # Calculate a distance to merge the verts of the crosshatch surface to the main object
1629 edges_length_sum = 0
1630 for ed in ob_surface.data.edges:
1631 edges_length_sum += (
1632 ob_surface.data.vertices[ed.vertices[0]].co -
1633 ob_surface.data.vertices[ed.vertices[1]].co
1634 ).length
1636 # Make dictionary with all the verts connected to each vert, on the new surface object.
1637 surface_connected_verts = {}
1638 for ed in ob_surface.data.edges:
1639 if not ed.vertices[0] in surface_connected_verts:
1640 surface_connected_verts[ed.vertices[0]] = []
1642 surface_connected_verts[ed.vertices[0]].append(ed.vertices[1])
1644 if ed.vertices[1] not in surface_connected_verts:
1645 surface_connected_verts[ed.vertices[1]] = []
1647 surface_connected_verts[ed.vertices[1]].append(ed.vertices[0])
1649 # Duplicate the new surface object, and use shrinkwrap to
1650 # calculate later the nearest verts to the main object
1651 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1652 bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
1653 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1655 bpy.ops.object.duplicate('INVOKE_REGION_WIN')
1657 final_ob_duplicate = bpy.context.view_layer.objects.active
1659 shrinkwrap_modifier = context.object.modifiers.new("", 'SHRINKWRAP')
1660 shrinkwrap_modifier.wrap_method = "NEAREST_VERTEX"
1661 shrinkwrap_modifier.target = self.main_object
1663 bpy.ops.object.modifier_apply('INVOKE_REGION_WIN', modifier=shrinkwrap_modifier.name)
1665 # Make list with verts of original mesh as index and coords as value
1666 main_object_verts_coords = []
1667 for v in self.main_object.data.vertices:
1668 coords = self.main_object.matrix_world @ v.co
1670 # To avoid problems when taking "-0.00" as a different value as "0.00"
1671 for c in range(len(coords)):
1672 if "%.3f" % coords[c] == "-0.00":
1673 coords[c] = 0
1675 main_object_verts_coords.append(["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]])
1677 tuple(main_object_verts_coords)
1679 # Determine which verts will be merged, snap them to the nearest verts
1680 # on the original verts, and get them selected
1681 crosshatch_verts_to_merge = []
1682 if self.automatic_join:
1683 for i in range(len(ob_surface.data.vertices)-1):
1684 # Calculate the distance from each of the connected verts to the actual vert,
1685 # and compare it with the distance they would have if joined.
1686 # If they don't change much, that vert can be joined
1687 merge_actual_vert = True
1688 try:
1689 if len(surface_connected_verts[i]) < 4:
1690 for c_v_idx in surface_connected_verts[i]:
1691 points_original = []
1692 points_original.append(ob_surface.data.vertices[c_v_idx].co)
1693 points_original.append(ob_surface.data.vertices[i].co)
1695 points_target = []
1696 points_target.append(ob_surface.data.vertices[c_v_idx].co)
1697 points_target.append(final_ob_duplicate.data.vertices[i].co)
1699 vec_A = points_original[0] - points_original[1]
1700 vec_B = points_target[0] - points_target[1]
1702 dist_A = (points_original[0] - points_original[1]).length
1703 dist_B = (points_target[0] - points_target[1]).length
1705 if not (
1706 points_original[0] == points_original[1] or
1707 points_target[0] == points_target[1]
1708 ): # If any vector's length is zero
1710 angle = vec_A.angle(vec_B) / pi
1711 else:
1712 angle = 0
1714 # Set a range of acceptable variation in the connected edges
1715 if dist_B > dist_A * 1.7 * self.join_stretch_factor or \
1716 dist_B < dist_A / 2 / self.join_stretch_factor or \
1717 angle >= 0.15 * self.join_stretch_factor:
1719 merge_actual_vert = False
1720 break
1721 else:
1722 merge_actual_vert = False
1723 except:
1724 self.report({'WARNING'},
1725 "Crosshatch set incorrectly")
1727 if merge_actual_vert:
1728 coords = final_ob_duplicate.data.vertices[i].co
1729 # To avoid problems when taking "-0.000" as a different value as "0.00"
1730 for c in range(len(coords)):
1731 if "%.3f" % coords[c] == "-0.00":
1732 coords[c] = 0
1734 comparison_coords = ["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]]
1736 if comparison_coords in main_object_verts_coords:
1737 # Get the index of the vert with those coords in the main object
1738 main_object_related_vert_idx = main_object_verts_coords.index(comparison_coords)
1740 if self.main_object.data.vertices[main_object_related_vert_idx].select is True or \
1741 self.main_object_selected_verts_count == 0:
1743 ob_surface.data.vertices[i].co = final_ob_duplicate.data.vertices[i].co
1744 ob_surface.data.vertices[i].select = True
1745 crosshatch_verts_to_merge.append(i)
1747 # Make sure the vert in the main object is selected,
1748 # in case it wasn't selected and the "join crosshatch" option is active
1749 self.main_object.data.vertices[main_object_related_vert_idx].select = True
1751 # Delete duplicated object
1752 bpy.ops.object.delete({"selected_objects": [final_ob_duplicate]})
1754 # Join crosshatched surface and main object
1755 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
1756 ob_surface.select_set(True)
1757 self.main_object.select_set(True)
1758 bpy.context.view_layer.objects.active = self.main_object
1760 bpy.ops.object.join('INVOKE_REGION_WIN')
1762 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1763 # Perform Remove doubles to merge verts
1764 if not (self.automatic_join is False and self.main_object_selected_verts_count == 0):
1765 bpy.ops.mesh.remove_doubles(threshold=0.0001)
1767 bpy.ops.mesh.select_all(action='DESELECT')
1769 # If the main object has modifiers, turn their "viewport view status"
1770 # to what it was before the forced deactivation above
1771 if len(self.main_object.modifiers) > 0:
1772 for m_idx in range(len(self.main_object.modifiers)):
1773 self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx]
1775 self.update()
1777 return {'FINISHED'}
1779 def rectangular_surface(self, context):
1780 # Selected edges
1781 all_selected_edges_idx = []
1782 all_selected_verts = []
1783 all_verts_idx = []
1784 for ed in self.main_object.data.edges:
1785 if ed.select:
1786 all_selected_edges_idx.append(ed.index)
1788 # Selected vertices
1789 if not ed.vertices[0] in all_selected_verts:
1790 all_selected_verts.append(self.main_object.data.vertices[ed.vertices[0]])
1791 if not ed.vertices[1] in all_selected_verts:
1792 all_selected_verts.append(self.main_object.data.vertices[ed.vertices[1]])
1794 # All verts (both from each edge) to determine later
1795 # which are at the tips (those not repeated twice)
1796 all_verts_idx.append(ed.vertices[0])
1797 all_verts_idx.append(ed.vertices[1])
1799 # Identify the tips and "middle-vertex" that separates U from V, if there is one
1800 all_chains_tips_idx = []
1801 for v_idx in all_verts_idx:
1802 if all_verts_idx.count(v_idx) < 2:
1803 all_chains_tips_idx.append(v_idx)
1805 edges_connected_to_tips = []
1806 for ed in self.main_object.data.edges:
1807 if (ed.vertices[0] in all_chains_tips_idx or ed.vertices[1] in all_chains_tips_idx) and \
1808 not (ed.vertices[0] in all_verts_idx and ed.vertices[1] in all_verts_idx):
1810 edges_connected_to_tips.append(ed)
1812 # Check closed selections
1813 # List with groups of three verts, where the first element of the pair is
1814 # the unselected vert of a closed selection and the other two elements are the
1815 # selected neighbor verts (it will be useful to determine which selection chain
1816 # the unselected vert belongs to, and determine the "middle-vertex")
1817 single_unselected_verts_and_neighbors = []
1819 # To identify a "closed" selection (a selection that is a closed chain except
1820 # for one vertex) find the vertex in common that have the edges connected to tips.
1821 # If there is a vertex in common, that one is the unselected vert that closes
1822 # the selection or is a "middle-vertex"
1823 single_unselected_verts = []
1824 for ed in edges_connected_to_tips:
1825 for ed_b in edges_connected_to_tips:
1826 if ed != ed_b:
1827 if ed.vertices[0] == ed_b.vertices[0] and \
1828 not self.main_object.data.vertices[ed.vertices[0]].select and \
1829 ed.vertices[0] not in single_unselected_verts:
1831 # The second element is one of the tips of the selected
1832 # vertices of the closed selection
1833 single_unselected_verts_and_neighbors.append(
1834 [ed.vertices[0], ed.vertices[1], ed_b.vertices[1]]
1836 single_unselected_verts.append(ed.vertices[0])
1837 break
1838 elif ed.vertices[0] == ed_b.vertices[1] and \
1839 not self.main_object.data.vertices[ed.vertices[0]].select and \
1840 ed.vertices[0] not in single_unselected_verts:
1842 single_unselected_verts_and_neighbors.append(
1843 [ed.vertices[0], ed.vertices[1], ed_b.vertices[0]]
1845 single_unselected_verts.append(ed.vertices[0])
1846 break
1847 elif ed.vertices[1] == ed_b.vertices[0] and \
1848 not self.main_object.data.vertices[ed.vertices[1]].select and \
1849 ed.vertices[1] not in single_unselected_verts:
1851 single_unselected_verts_and_neighbors.append(
1852 [ed.vertices[1], ed.vertices[0], ed_b.vertices[1]]
1854 single_unselected_verts.append(ed.vertices[1])
1855 break
1856 elif ed.vertices[1] == ed_b.vertices[1] and \
1857 not self.main_object.data.vertices[ed.vertices[1]].select and \
1858 ed.vertices[1] not in single_unselected_verts:
1860 single_unselected_verts_and_neighbors.append(
1861 [ed.vertices[1], ed.vertices[0], ed_b.vertices[0]]
1863 single_unselected_verts.append(ed.vertices[1])
1864 break
1866 middle_vertex_idx = None
1867 tips_to_discard_idx = []
1869 # Check if there is a "middle-vertex", and get its index
1870 for i in range(0, len(single_unselected_verts_and_neighbors)):
1871 actual_chain_verts = self.get_ordered_verts(
1872 self.main_object, all_selected_edges_idx,
1873 all_verts_idx, single_unselected_verts_and_neighbors[i][1],
1874 None, None
1877 if single_unselected_verts_and_neighbors[i][2] != \
1878 actual_chain_verts[len(actual_chain_verts) - 1].index:
1880 middle_vertex_idx = single_unselected_verts_and_neighbors[i][0]
1881 tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][1])
1882 tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][2])
1884 # List with pairs of verts that belong to the tips of each selection chain (row)
1885 verts_tips_same_chain_idx = []
1886 if len(all_chains_tips_idx) >= 2:
1887 checked_v = []
1888 for i in range(0, len(all_chains_tips_idx)):
1889 if all_chains_tips_idx[i] not in checked_v:
1890 v_chain = self.get_ordered_verts(
1891 self.main_object, all_selected_edges_idx,
1892 all_verts_idx, all_chains_tips_idx[i],
1893 middle_vertex_idx, None
1896 verts_tips_same_chain_idx.append([v_chain[0].index, v_chain[len(v_chain) - 1].index])
1898 checked_v.append(v_chain[0].index)
1899 checked_v.append(v_chain[len(v_chain) - 1].index)
1901 # Selection tips (vertices).
1902 verts_tips_parsed_idx = []
1903 if len(all_chains_tips_idx) >= 2:
1904 for spec_v_idx in all_chains_tips_idx:
1905 if (spec_v_idx not in tips_to_discard_idx):
1906 verts_tips_parsed_idx.append(spec_v_idx)
1908 # Identify the type of selection made by the user
1909 if middle_vertex_idx is not None:
1910 # If there are 4 tips (two selection chains), and
1911 # there is only one single unselected vert (the middle vert)
1912 if len(all_chains_tips_idx) == 4 and len(single_unselected_verts_and_neighbors) == 1:
1913 selection_type = "TWO_CONNECTED"
1914 else:
1915 # The type of the selection was not identified, the script stops.
1916 self.report({'WARNING'}, "The selection isn't valid.")
1918 self.stopping_errors = True
1920 return{'CANCELLED'}
1921 else:
1922 if len(all_chains_tips_idx) == 2: # If there are 2 tips
1923 selection_type = "SINGLE"
1924 elif len(all_chains_tips_idx) == 4: # If there are 4 tips
1925 selection_type = "TWO_NOT_CONNECTED"
1926 elif len(all_chains_tips_idx) == 0:
1927 if len(self.main_splines.data.splines) > 1:
1928 selection_type = "NO_SELECTION"
1929 else:
1930 # If the selection was not identified and there is only one stroke,
1931 # there's no possibility to build a surface, so the script is interrupted
1932 self.report({'WARNING'}, "The selection isn't valid.")
1934 self.stopping_errors = True
1936 return{'CANCELLED'}
1937 else:
1938 # The type of the selection was not identified, the script stops
1939 self.report({'WARNING'}, "The selection isn't valid.")
1941 self.stopping_errors = True
1943 return{'CANCELLED'}
1945 # If the selection type is TWO_NOT_CONNECTED and there is only one stroke, stop the script
1946 if selection_type == "TWO_NOT_CONNECTED" and len(self.main_splines.data.splines) == 1:
1947 self.report({'WARNING'},
1948 "At least two strokes are needed when there are two not connected selections")
1950 self.stopping_errors = True
1952 return{'CANCELLED'}
1954 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1956 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
1957 self.main_splines.select_set(True)
1958 bpy.context.view_layer.objects.active = self.main_splines
1960 # Enter editmode for the new curve (converted from grease pencil strokes), to smooth it out
1961 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1962 bpy.ops.curve.smooth('INVOKE_REGION_WIN')
1963 bpy.ops.curve.smooth('INVOKE_REGION_WIN')
1964 bpy.ops.curve.smooth('INVOKE_REGION_WIN')
1965 bpy.ops.curve.smooth('INVOKE_REGION_WIN')
1966 bpy.ops.curve.smooth('INVOKE_REGION_WIN')
1967 bpy.ops.curve.smooth('INVOKE_REGION_WIN')
1968 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
1970 self.selection_U_exists = False
1971 self.selection_U2_exists = False
1972 self.selection_V_exists = False
1973 self.selection_V2_exists = False
1975 self.selection_U_is_closed = False
1976 self.selection_U2_is_closed = False
1977 self.selection_V_is_closed = False
1978 self.selection_V2_is_closed = False
1980 # Define what vertices are at the tips of each selection and are not the middle-vertex
1981 if selection_type == "TWO_CONNECTED":
1982 self.selection_U_exists = True
1983 self.selection_V_exists = True
1985 closing_vert_U_idx = None
1986 closing_vert_V_idx = None
1987 closing_vert_U2_idx = None
1988 closing_vert_V2_idx = None
1990 # Determine which selection is Selection-U and which is Selection-V
1991 points_A = []
1992 points_B = []
1993 points_first_stroke_tips = []
1995 points_A.append(
1996 self.main_object.matrix_world @ self.main_object.data.vertices[verts_tips_parsed_idx[0]].co
1998 points_A.append(
1999 self.main_object.matrix_world @ self.main_object.data.vertices[middle_vertex_idx].co
2001 points_B.append(
2002 self.main_object.matrix_world @ self.main_object.data.vertices[verts_tips_parsed_idx[1]].co
2004 points_B.append(
2005 self.main_object.matrix_world @ self.main_object.data.vertices[middle_vertex_idx].co
2007 points_first_stroke_tips.append(
2008 self.main_splines.data.splines[0].bezier_points[0].co
2010 points_first_stroke_tips.append(
2011 self.main_splines.data.splines[0].bezier_points[
2012 len(self.main_splines.data.splines[0].bezier_points) - 1
2013 ].co
2016 angle_A = self.orientation_difference(points_A, points_first_stroke_tips)
2017 angle_B = self.orientation_difference(points_B, points_first_stroke_tips)
2019 if angle_A < angle_B:
2020 first_vert_U_idx = verts_tips_parsed_idx[0]
2021 first_vert_V_idx = verts_tips_parsed_idx[1]
2022 else:
2023 first_vert_U_idx = verts_tips_parsed_idx[1]
2024 first_vert_V_idx = verts_tips_parsed_idx[0]
2026 elif selection_type == "SINGLE" or selection_type == "TWO_NOT_CONNECTED":
2027 first_sketched_point_first_stroke_co = self.main_splines.data.splines[0].bezier_points[0].co
2028 last_sketched_point_first_stroke_co = \
2029 self.main_splines.data.splines[0].bezier_points[
2030 len(self.main_splines.data.splines[0].bezier_points) - 1
2031 ].co
2032 first_sketched_point_last_stroke_co = \
2033 self.main_splines.data.splines[
2034 len(self.main_splines.data.splines) - 1
2035 ].bezier_points[0].co
2036 if len(self.main_splines.data.splines) > 1:
2037 first_sketched_point_second_stroke_co = self.main_splines.data.splines[1].bezier_points[0].co
2038 last_sketched_point_second_stroke_co = \
2039 self.main_splines.data.splines[1].bezier_points[
2040 len(self.main_splines.data.splines[1].bezier_points) - 1
2041 ].co
2043 single_unselected_neighbors = [] # Only the neighbors of the single unselected verts
2044 for verts_neig_idx in single_unselected_verts_and_neighbors:
2045 single_unselected_neighbors.append(verts_neig_idx[1])
2046 single_unselected_neighbors.append(verts_neig_idx[2])
2048 all_chains_tips_and_middle_vert = []
2049 for v_idx in all_chains_tips_idx:
2050 if v_idx not in single_unselected_neighbors:
2051 all_chains_tips_and_middle_vert.append(v_idx)
2053 all_chains_tips_and_middle_vert += single_unselected_verts
2055 all_participating_verts = all_chains_tips_and_middle_vert + all_verts_idx
2057 # The tip of the selected vertices nearest to the first point of the first sketched stroke
2058 nearest_tip_to_first_st_first_pt_idx, shortest_distance_to_first_stroke = \
2059 self.shortest_distance(
2060 self.main_object,
2061 first_sketched_point_first_stroke_co,
2062 all_chains_tips_and_middle_vert
2064 # If the nearest tip is not from a closed selection, get the opposite tip vertex index
2065 if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or \
2066 nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx:
2068 nearest_tip_to_first_st_first_pt_opposite_idx = \
2069 self.opposite_tip(
2070 nearest_tip_to_first_st_first_pt_idx,
2071 verts_tips_same_chain_idx
2073 # The tip of the selected vertices nearest to the last point of the first sketched stroke
2074 nearest_tip_to_first_st_last_pt_idx, _temp_dist = \
2075 self.shortest_distance(
2076 self.main_object,
2077 last_sketched_point_first_stroke_co,
2078 all_chains_tips_and_middle_vert
2080 # The tip of the selected vertices nearest to the first point of the last sketched stroke
2081 nearest_tip_to_last_st_first_pt_idx, shortest_distance_to_last_stroke = \
2082 self.shortest_distance(
2083 self.main_object,
2084 first_sketched_point_last_stroke_co,
2085 all_chains_tips_and_middle_vert
2087 if len(self.main_splines.data.splines) > 1:
2088 # The selected vertex nearest to the first point of the second sketched stroke
2089 # (This will be useful to determine the direction of the closed
2090 # selection V when extruding along strokes)
2091 nearest_vert_to_second_st_first_pt_idx, _temp_dist = \
2092 self.shortest_distance(
2093 self.main_object,
2094 first_sketched_point_second_stroke_co,
2095 all_verts_idx
2097 # The selected vertex nearest to the first point of the second sketched stroke
2098 # (This will be useful to determine the direction of the closed
2099 # selection V2 when extruding along strokes)
2100 nearest_vert_to_second_st_last_pt_idx, _temp_dist = \
2101 self.shortest_distance(
2102 self.main_object,
2103 last_sketched_point_second_stroke_co,
2104 all_verts_idx
2106 # Determine if the single selection will be treated as U or as V
2107 edges_sum = 0
2108 for i in all_selected_edges_idx:
2109 edges_sum += (
2110 (self.main_object.matrix_world @
2111 self.main_object.data.vertices[self.main_object.data.edges[i].vertices[0]].co) -
2112 (self.main_object.matrix_world @
2113 self.main_object.data.vertices[self.main_object.data.edges[i].vertices[1]].co)
2114 ).length
2116 average_edge_length = edges_sum / len(all_selected_edges_idx)
2118 # Get shortest distance from the first point of the last stroke to any participating vertex
2119 _temp_idx, shortest_distance_to_last_stroke = \
2120 self.shortest_distance(
2121 self.main_object,
2122 first_sketched_point_last_stroke_co,
2123 all_participating_verts
2125 # If the beginning of the first stroke is near enough, and its orientation
2126 # difference with the first edge of the nearest selection chain is not too high,
2127 # interpret things as an "extrude along strokes" instead of "extrude through strokes"
2128 if shortest_distance_to_first_stroke < average_edge_length / 4 and \
2129 shortest_distance_to_last_stroke < average_edge_length and \
2130 len(self.main_splines.data.splines) > 1:
2132 self.selection_U_exists = False
2133 self.selection_V_exists = True
2134 # If the first selection is not closed
2135 if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or \
2136 nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx:
2137 self.selection_V_is_closed = False
2138 closing_vert_U_idx = None
2139 closing_vert_U2_idx = None
2140 closing_vert_V_idx = None
2141 closing_vert_V2_idx = None
2143 first_vert_V_idx = nearest_tip_to_first_st_first_pt_idx
2145 if selection_type == "TWO_NOT_CONNECTED":
2146 self.selection_V2_exists = True
2148 first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
2149 else:
2150 self.selection_V_is_closed = True
2151 closing_vert_V_idx = nearest_tip_to_first_st_first_pt_idx
2153 # Get the neighbors of the first (unselected) vert of the closed selection U.
2154 vert_neighbors = []
2155 for verts in single_unselected_verts_and_neighbors:
2156 if verts[0] == nearest_tip_to_first_st_first_pt_idx:
2157 vert_neighbors.append(verts[1])
2158 vert_neighbors.append(verts[2])
2159 break
2161 verts_V = self.get_ordered_verts(
2162 self.main_object, all_selected_edges_idx,
2163 all_verts_idx, vert_neighbors[0], middle_vertex_idx, None
2166 for i in range(0, len(verts_V)):
2167 if verts_V[i].index == nearest_vert_to_second_st_first_pt_idx:
2168 # If the vertex nearest to the first point of the second stroke
2169 # is in the first half of the selected verts
2170 if i >= len(verts_V) / 2:
2171 first_vert_V_idx = vert_neighbors[1]
2172 break
2173 else:
2174 first_vert_V_idx = vert_neighbors[0]
2175 break
2177 if selection_type == "TWO_NOT_CONNECTED":
2178 self.selection_V2_exists = True
2179 # If the second selection is not closed
2180 if nearest_tip_to_first_st_last_pt_idx not in single_unselected_verts or \
2181 nearest_tip_to_first_st_last_pt_idx == middle_vertex_idx:
2183 self.selection_V2_is_closed = False
2184 closing_vert_V2_idx = None
2185 first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
2187 else:
2188 self.selection_V2_is_closed = True
2189 closing_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
2191 # Get the neighbors of the first (unselected) vert of the closed selection U
2192 vert_neighbors = []
2193 for verts in single_unselected_verts_and_neighbors:
2194 if verts[0] == nearest_tip_to_first_st_last_pt_idx:
2195 vert_neighbors.append(verts[1])
2196 vert_neighbors.append(verts[2])
2197 break
2199 verts_V2 = self.get_ordered_verts(
2200 self.main_object, all_selected_edges_idx,
2201 all_verts_idx, vert_neighbors[0], middle_vertex_idx, None
2204 for i in range(0, len(verts_V2)):
2205 if verts_V2[i].index == nearest_vert_to_second_st_last_pt_idx:
2206 # If the vertex nearest to the first point of the second stroke
2207 # is in the first half of the selected verts
2208 if i >= len(verts_V2) / 2:
2209 first_vert_V2_idx = vert_neighbors[1]
2210 break
2211 else:
2212 first_vert_V2_idx = vert_neighbors[0]
2213 break
2214 else:
2215 self.selection_V2_exists = False
2217 else:
2218 self.selection_U_exists = True
2219 self.selection_V_exists = False
2220 # If the first selection is not closed
2221 if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or \
2222 nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx:
2223 self.selection_U_is_closed = False
2224 closing_vert_U_idx = None
2226 points_tips = []
2227 points_tips.append(
2228 self.main_object.matrix_world @
2229 self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co
2231 points_tips.append(
2232 self.main_object.matrix_world @
2233 self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_opposite_idx].co
2235 points_first_stroke_tips = []
2236 points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
2237 points_first_stroke_tips.append(
2238 self.main_splines.data.splines[0].bezier_points[
2239 len(self.main_splines.data.splines[0].bezier_points) - 1
2240 ].co
2242 vec_A = points_tips[0] - points_tips[1]
2243 vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1]
2245 # Compare the direction of the selection and the first
2246 # grease pencil stroke to determine which is the "first" vertex of the selection
2247 if vec_A.dot(vec_B) < 0:
2248 first_vert_U_idx = nearest_tip_to_first_st_first_pt_opposite_idx
2249 else:
2250 first_vert_U_idx = nearest_tip_to_first_st_first_pt_idx
2252 else:
2253 self.selection_U_is_closed = True
2254 closing_vert_U_idx = nearest_tip_to_first_st_first_pt_idx
2256 # Get the neighbors of the first (unselected) vert of the closed selection U
2257 vert_neighbors = []
2258 for verts in single_unselected_verts_and_neighbors:
2259 if verts[0] == nearest_tip_to_first_st_first_pt_idx:
2260 vert_neighbors.append(verts[1])
2261 vert_neighbors.append(verts[2])
2262 break
2264 points_first_and_neighbor = []
2265 points_first_and_neighbor.append(
2266 self.main_object.matrix_world @
2267 self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co
2269 points_first_and_neighbor.append(
2270 self.main_object.matrix_world @
2271 self.main_object.data.vertices[vert_neighbors[0]].co
2273 points_first_stroke_tips = []
2274 points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
2275 points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[1].co)
2277 vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1]
2278 vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1]
2280 # Compare the direction of the selection and the first grease pencil stroke to
2281 # determine which is the vertex neighbor to the first vertex (unselected) of
2282 # the closed selection. This will determine the direction of the closed selection
2283 if vec_A.dot(vec_B) < 0:
2284 first_vert_U_idx = vert_neighbors[1]
2285 else:
2286 first_vert_U_idx = vert_neighbors[0]
2288 if selection_type == "TWO_NOT_CONNECTED":
2289 self.selection_U2_exists = True
2290 # If the second selection is not closed
2291 if nearest_tip_to_last_st_first_pt_idx not in single_unselected_verts or \
2292 nearest_tip_to_last_st_first_pt_idx == middle_vertex_idx:
2294 self.selection_U2_is_closed = False
2295 closing_vert_U2_idx = None
2296 first_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx
2297 else:
2298 self.selection_U2_is_closed = True
2299 closing_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx
2301 # Get the neighbors of the first (unselected) vert of the closed selection U
2302 vert_neighbors = []
2303 for verts in single_unselected_verts_and_neighbors:
2304 if verts[0] == nearest_tip_to_last_st_first_pt_idx:
2305 vert_neighbors.append(verts[1])
2306 vert_neighbors.append(verts[2])
2307 break
2309 points_first_and_neighbor = []
2310 points_first_and_neighbor.append(
2311 self.main_object.matrix_world @
2312 self.main_object.data.vertices[nearest_tip_to_last_st_first_pt_idx].co
2314 points_first_and_neighbor.append(
2315 self.main_object.matrix_world @
2316 self.main_object.data.vertices[vert_neighbors[0]].co
2318 points_last_stroke_tips = []
2319 points_last_stroke_tips.append(
2320 self.main_splines.data.splines[
2321 len(self.main_splines.data.splines) - 1
2322 ].bezier_points[0].co
2324 points_last_stroke_tips.append(
2325 self.main_splines.data.splines[
2326 len(self.main_splines.data.splines) - 1
2327 ].bezier_points[1].co
2329 vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1]
2330 vec_B = points_last_stroke_tips[0] - points_last_stroke_tips[1]
2332 # Compare the direction of the selection and the last grease pencil stroke to
2333 # determine which is the vertex neighbor to the first vertex (unselected) of
2334 # the closed selection. This will determine the direction of the closed selection
2335 if vec_A.dot(vec_B) < 0:
2336 first_vert_U2_idx = vert_neighbors[1]
2337 else:
2338 first_vert_U2_idx = vert_neighbors[0]
2339 else:
2340 self.selection_U2_exists = False
2342 elif selection_type == "NO_SELECTION":
2343 self.selection_U_exists = False
2344 self.selection_V_exists = False
2346 # Get an ordered list of the vertices of Selection-U
2347 verts_ordered_U = []
2348 if self.selection_U_exists:
2349 verts_ordered_U = self.get_ordered_verts(
2350 self.main_object, all_selected_edges_idx,
2351 all_verts_idx, first_vert_U_idx,
2352 middle_vertex_idx, closing_vert_U_idx
2355 # Get an ordered list of the vertices of Selection-U2
2356 verts_ordered_U2 = []
2357 if self.selection_U2_exists:
2358 verts_ordered_U2 = self.get_ordered_verts(
2359 self.main_object, all_selected_edges_idx,
2360 all_verts_idx, first_vert_U2_idx,
2361 middle_vertex_idx, closing_vert_U2_idx
2364 # Get an ordered list of the vertices of Selection-V
2365 verts_ordered_V = []
2366 if self.selection_V_exists:
2367 verts_ordered_V = self.get_ordered_verts(
2368 self.main_object, all_selected_edges_idx,
2369 all_verts_idx, first_vert_V_idx,
2370 middle_vertex_idx, closing_vert_V_idx
2372 verts_ordered_V_indices = [x.index for x in verts_ordered_V]
2374 # Get an ordered list of the vertices of Selection-V2
2375 verts_ordered_V2 = []
2376 if self.selection_V2_exists:
2377 verts_ordered_V2 = self.get_ordered_verts(
2378 self.main_object, all_selected_edges_idx,
2379 all_verts_idx, first_vert_V2_idx,
2380 middle_vertex_idx, closing_vert_V2_idx
2383 # Check if when there are two-not-connected selections both have the same
2384 # number of verts. If not terminate the script
2385 if ((self.selection_U2_exists and len(verts_ordered_U) != len(verts_ordered_U2)) or
2386 (self.selection_V2_exists and len(verts_ordered_V) != len(verts_ordered_V2))):
2387 # Display a warning
2388 self.report({'WARNING'}, "Both selections must have the same number of edges")
2390 self.stopping_errors = True
2392 return{'CANCELLED'}
2394 # Calculate edges U proportions
2395 # Sum selected edges U lengths
2396 edges_lengths_U = []
2397 edges_lengths_sum_U = 0
2399 if self.selection_U_exists:
2400 edges_lengths_U, edges_lengths_sum_U = self.get_chain_length(
2401 self.main_object,
2402 verts_ordered_U
2404 if self.selection_U2_exists:
2405 edges_lengths_U2, edges_lengths_sum_U2 = self.get_chain_length(
2406 self.main_object,
2407 verts_ordered_U2
2409 # Sum selected edges V lengths
2410 edges_lengths_V = []
2411 edges_lengths_sum_V = 0
2413 if self.selection_V_exists:
2414 edges_lengths_V, edges_lengths_sum_V = self.get_chain_length(
2415 self.main_object,
2416 verts_ordered_V
2418 if self.selection_V2_exists:
2419 edges_lengths_V2, edges_lengths_sum_V2 = self.get_chain_length(
2420 self.main_object,
2421 verts_ordered_V2
2424 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2425 bpy.ops.curve.subdivide('INVOKE_REGION_WIN',
2426 number_cuts=bpy.context.scene.bsurfaces.SURFSK_precision)
2427 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2429 # Proportions U
2430 edges_proportions_U = []
2431 edges_proportions_U = self.get_edges_proportions(
2432 edges_lengths_U, edges_lengths_sum_U,
2433 self.selection_U_exists, self.edges_U
2435 verts_count_U = len(edges_proportions_U) + 1
2437 if self.selection_U2_exists:
2438 edges_proportions_U2 = []
2439 edges_proportions_U2 = self.get_edges_proportions(
2440 edges_lengths_U2, edges_lengths_sum_U2,
2441 self.selection_U2_exists, self.edges_V
2444 # Proportions V
2445 edges_proportions_V = []
2446 edges_proportions_V = self.get_edges_proportions(
2447 edges_lengths_V, edges_lengths_sum_V,
2448 self.selection_V_exists, self.edges_V
2451 if self.selection_V2_exists:
2452 edges_proportions_V2 = []
2453 edges_proportions_V2 = self.get_edges_proportions(
2454 edges_lengths_V2, edges_lengths_sum_V2,
2455 self.selection_V2_exists, self.edges_V
2458 # Cyclic Follow: simplify sketched curves, make them Cyclic, and complete
2459 # the actual sketched curves with a "closing segment"
2460 if self.cyclic_follow and not self.selection_V_exists and not \
2461 ((self.selection_U_exists and not self.selection_U_is_closed) or
2462 (self.selection_U2_exists and not self.selection_U2_is_closed)):
2464 simplified_spline_coords = []
2465 simplified_curve = []
2466 ob_simplified_curve = []
2467 splines_first_v_co = []
2468 for i in range(len(self.main_splines.data.splines)):
2469 # Create a curve object for the actual spline "cyclic extension"
2470 simplified_curve.append(bpy.data.curves.new('SURFSKIO_simpl_crv', 'CURVE'))
2471 ob_simplified_curve.append(bpy.data.objects.new('SURFSKIO_simpl_crv', simplified_curve[i]))
2472 bpy.context.collection.objects.link(ob_simplified_curve[i])
2474 simplified_curve[i].dimensions = "3D"
2476 spline_coords = []
2477 for bp in self.main_splines.data.splines[i].bezier_points:
2478 spline_coords.append(bp.co)
2480 # Simplification
2481 simplified_spline_coords.append(self.simplify_spline(spline_coords, 5))
2483 # Get the coordinates of the first vert of the actual spline
2484 splines_first_v_co.append(simplified_spline_coords[i][0])
2486 # Generate the spline
2487 spline = simplified_curve[i].splines.new('BEZIER')
2488 # less one because one point is added when the spline is created
2489 spline.bezier_points.add(len(simplified_spline_coords[i]) - 1)
2490 for p in range(0, len(simplified_spline_coords[i])):
2491 spline.bezier_points[p].co = simplified_spline_coords[i][p]
2493 spline.use_cyclic_u = True
2495 spline_bp_count = len(spline.bezier_points)
2497 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
2498 ob_simplified_curve[i].select_set(True)
2499 bpy.context.view_layer.objects.active = ob_simplified_curve[i]
2501 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2502 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
2503 bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC')
2504 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
2505 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2507 # Select the "closing segment", and subdivide it
2508 ob_simplified_curve[i].data.splines[0].bezier_points[0].select_control_point = True
2509 ob_simplified_curve[i].data.splines[0].bezier_points[0].select_left_handle = True
2510 ob_simplified_curve[i].data.splines[0].bezier_points[0].select_right_handle = True
2512 ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_control_point = True
2513 ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_left_handle = True
2514 ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_right_handle = True
2516 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2517 segments = sqrt(
2518 (ob_simplified_curve[i].data.splines[0].bezier_points[0].co -
2519 ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].co).length /
2520 self.average_gp_segment_length
2522 for t in range(2):
2523 bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=int(segments))
2525 # Delete the other vertices and make it non-cyclic to
2526 # keep only the needed verts of the "closing segment"
2527 bpy.ops.curve.select_all(action='INVERT')
2528 bpy.ops.curve.delete(type='VERT')
2529 ob_simplified_curve[i].data.splines[0].use_cyclic_u = False
2530 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2532 # Add the points of the "closing segment" to the original curve from grease pencil stroke
2533 first_new_index = len(self.main_splines.data.splines[i].bezier_points)
2534 self.main_splines.data.splines[i].bezier_points.add(
2535 len(ob_simplified_curve[i].data.splines[0].bezier_points) - 1
2537 for t in range(1, len(ob_simplified_curve[i].data.splines[0].bezier_points)):
2538 self.main_splines.data.splines[i].bezier_points[t - 1 + first_new_index].co = \
2539 ob_simplified_curve[i].data.splines[0].bezier_points[t].co
2541 # Delete the temporal curve
2542 bpy.ops.object.delete({"selected_objects": [ob_simplified_curve[i]]})
2544 # Get the coords of the points distributed along the sketched strokes,
2545 # with proportions-U of the first selection
2546 pts_on_strokes_with_proportions_U = self.distribute_pts(
2547 self.main_splines.data.splines,
2548 edges_proportions_U
2550 sketched_splines_parsed = []
2552 if self.selection_U2_exists:
2553 # Initialize the multidimensional list with the proportions of all the segments
2554 proportions_loops_crossing_strokes = []
2555 for i in range(len(pts_on_strokes_with_proportions_U)):
2556 proportions_loops_crossing_strokes.append([])
2558 for t in range(len(pts_on_strokes_with_proportions_U[0])):
2559 proportions_loops_crossing_strokes[i].append(None)
2561 # Calculate the proportions of each segment of the loops-U from pts_on_strokes_with_proportions_U
2562 for lp in range(len(pts_on_strokes_with_proportions_U[0])):
2563 loop_segments_lengths = []
2565 for st in range(len(pts_on_strokes_with_proportions_U)):
2566 # When on the first stroke, add the segment from the selection to the first stroke
2567 if st == 0:
2568 loop_segments_lengths.append(
2569 ((self.main_object.matrix_world @ verts_ordered_U[lp].co) -
2570 pts_on_strokes_with_proportions_U[0][lp]).length
2572 # For all strokes except for the last, calculate the distance
2573 # from the actual stroke to the next
2574 if st != len(pts_on_strokes_with_proportions_U) - 1:
2575 loop_segments_lengths.append(
2576 (pts_on_strokes_with_proportions_U[st][lp] -
2577 pts_on_strokes_with_proportions_U[st + 1][lp]).length
2579 # When on the last stroke, add the segments
2580 # from the last stroke to the second selection
2581 if st == len(pts_on_strokes_with_proportions_U) - 1:
2582 loop_segments_lengths.append(
2583 (pts_on_strokes_with_proportions_U[st][lp] -
2584 (self.main_object.matrix_world @ verts_ordered_U2[lp].co)).length
2586 # Calculate full loop length
2587 loop_seg_lengths_sum = 0
2588 for i in range(len(loop_segments_lengths)):
2589 loop_seg_lengths_sum += loop_segments_lengths[i]
2591 # Fill the multidimensional list with the proportions of all the segments
2592 for st in range(len(pts_on_strokes_with_proportions_U)):
2593 proportions_loops_crossing_strokes[st][lp] = \
2594 loop_segments_lengths[st] / loop_seg_lengths_sum
2596 # Calculate proportions for each stroke
2597 for st in range(len(pts_on_strokes_with_proportions_U)):
2598 actual_stroke_spline = []
2599 # Needs to be a list for the "distribute_pts" method
2600 actual_stroke_spline.append(self.main_splines.data.splines[st])
2602 # Calculate the proportions for the actual stroke.
2603 actual_edges_proportions_U = []
2604 for i in range(len(edges_proportions_U)):
2605 proportions_sum = 0
2607 # Sum the proportions of this loop up to the actual.
2608 for t in range(0, st + 1):
2609 proportions_sum += proportions_loops_crossing_strokes[t][i]
2610 # i + 1, because proportions_loops_crossing_strokes refers to loops,
2611 # and the proportions refer to edges, so we start at the element 1
2612 # of proportions_loops_crossing_strokes instead of element 0
2613 actual_edges_proportions_U.append(
2614 edges_proportions_U[i] -
2615 ((edges_proportions_U[i] - edges_proportions_U2[i]) * proportions_sum)
2617 points_actual_spline = self.distribute_pts(actual_stroke_spline, actual_edges_proportions_U)
2618 sketched_splines_parsed.append(points_actual_spline[0])
2619 else:
2620 sketched_splines_parsed = pts_on_strokes_with_proportions_U
2622 # If the selection type is "TWO_NOT_CONNECTED" replace the
2623 # points of the last spline with the points in the "target" selection
2624 if selection_type == "TWO_NOT_CONNECTED":
2625 if self.selection_U2_exists:
2626 for i in range(0, len(sketched_splines_parsed[len(sketched_splines_parsed) - 1])):
2627 sketched_splines_parsed[len(sketched_splines_parsed) - 1][i] = \
2628 self.main_object.matrix_world @ verts_ordered_U2[i].co
2630 # Create temporary curves along the "control-points" found
2631 # on the sketched curves and the mesh selection
2632 mesh_ctrl_pts_name = "SURFSKIO_ctrl_pts"
2633 me = bpy.data.meshes.new(mesh_ctrl_pts_name)
2634 ob_ctrl_pts = bpy.data.objects.new(mesh_ctrl_pts_name, me)
2635 ob_ctrl_pts.data = me
2636 bpy.context.collection.objects.link(ob_ctrl_pts)
2638 cyclic_loops_U = []
2639 first_verts = []
2640 second_verts = []
2641 last_verts = []
2643 for i in range(0, verts_count_U):
2644 vert_num_in_spline = 1
2646 if self.selection_U_exists:
2647 ob_ctrl_pts.data.vertices.add(1)
2648 last_v = ob_ctrl_pts.data.vertices[len(ob_ctrl_pts.data.vertices) - 1]
2649 last_v.co = self.main_object.matrix_world @ verts_ordered_U[i].co
2651 vert_num_in_spline += 1
2653 for t in range(0, len(sketched_splines_parsed)):
2654 ob_ctrl_pts.data.vertices.add(1)
2655 v = ob_ctrl_pts.data.vertices[len(ob_ctrl_pts.data.vertices) - 1]
2656 v.co = sketched_splines_parsed[t][i]
2658 if vert_num_in_spline > 1:
2659 ob_ctrl_pts.data.edges.add(1)
2660 ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].vertices[0] = \
2661 len(ob_ctrl_pts.data.vertices) - 2
2662 ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].vertices[1] = \
2663 len(ob_ctrl_pts.data.vertices) - 1
2665 if t == 0:
2666 first_verts.append(v.index)
2668 if t == 1:
2669 second_verts.append(v.index)
2671 if t == len(sketched_splines_parsed) - 1:
2672 last_verts.append(v.index)
2674 last_v = v
2675 vert_num_in_spline += 1
2677 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
2678 ob_ctrl_pts.select_set(True)
2679 bpy.context.view_layer.objects.active = ob_ctrl_pts
2681 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2682 bpy.ops.mesh.select_all(action='DESELECT')
2683 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2685 # Determine which loops-U will be "Cyclic"
2686 for i in range(0, len(first_verts)):
2687 # When there is Cyclic Cross there is no need of
2688 # Automatic Join, (and there are at least three strokes)
2689 if self.automatic_join and not self.cyclic_cross and \
2690 selection_type != "TWO_CONNECTED" and len(self.main_splines.data.splines) >= 3:
2692 v = ob_ctrl_pts.data.vertices
2693 first_point_co = v[first_verts[i]].co
2694 second_point_co = v[second_verts[i]].co
2695 last_point_co = v[last_verts[i]].co
2697 # Coordinates of the point in the center of both the first and last verts.
2698 verts_center_co = [
2699 (first_point_co[0] + last_point_co[0]) / 2,
2700 (first_point_co[1] + last_point_co[1]) / 2,
2701 (first_point_co[2] + last_point_co[2]) / 2
2703 vec_A = second_point_co - first_point_co
2704 vec_B = second_point_co - Vector(verts_center_co)
2706 # Calculate the length of the first segment of the loop,
2707 # and the length it would have after moving the first vert
2708 # to the middle position between first and last
2709 length_original = (second_point_co - first_point_co).length
2710 length_target = (second_point_co - Vector(verts_center_co)).length
2712 angle = vec_A.angle(vec_B) / pi
2714 # If the target length doesn't stretch too much, and the
2715 # its angle doesn't change to much either
2716 if length_target <= length_original * 1.03 * self.join_stretch_factor and \
2717 angle <= 0.008 * self.join_stretch_factor and not self.selection_U_exists:
2719 cyclic_loops_U.append(True)
2720 # Move the first vert to the center coordinates
2721 ob_ctrl_pts.data.vertices[first_verts[i]].co = verts_center_co
2722 # Select the last verts from Cyclic loops, for later deletion all at once
2723 v[last_verts[i]].select = True
2724 else:
2725 cyclic_loops_U.append(False)
2726 else:
2727 # If "Cyclic Cross" is active then "all" crossing curves become cyclic
2728 if self.cyclic_cross and not self.selection_U_exists and not \
2729 ((self.selection_V_exists and not self.selection_V_is_closed) or
2730 (self.selection_V2_exists and not self.selection_V2_is_closed)):
2732 cyclic_loops_U.append(True)
2733 else:
2734 cyclic_loops_U.append(False)
2736 # The cyclic_loops_U list needs to be reversed.
2737 cyclic_loops_U.reverse()
2739 # Delete the previously selected (last_)verts.
2740 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2741 bpy.ops.mesh.delete('INVOKE_REGION_WIN', type='VERT')
2742 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2744 # Create curves from control points.
2745 bpy.ops.object.convert('INVOKE_REGION_WIN', target='CURVE', keep_original=False)
2746 ob_curves_surf = bpy.context.view_layer.objects.active
2747 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2748 bpy.ops.curve.spline_type_set('INVOKE_REGION_WIN', type='BEZIER')
2749 bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC')
2751 # Make Cyclic the splines designated as Cyclic.
2752 for i in range(0, len(cyclic_loops_U)):
2753 ob_curves_surf.data.splines[i].use_cyclic_u = cyclic_loops_U[i]
2755 # Get the coords of all points on first loop-U, for later comparison with its
2756 # subdivided version, to know which points of the loops-U are crossed by the
2757 # original strokes. The indices will be the same for the other loops-U
2758 if self.loops_on_strokes:
2759 coords_loops_U_control_points = []
2760 for p in ob_ctrl_pts.data.splines[0].bezier_points:
2761 coords_loops_U_control_points.append(["%.4f" % p.co[0], "%.4f" % p.co[1], "%.4f" % p.co[2]])
2763 tuple(coords_loops_U_control_points)
2765 # Calculate number of edges-V in case option "Loops on strokes" is active or inactive
2766 if self.loops_on_strokes and not self.selection_V_exists:
2767 edges_V_count = len(self.main_splines.data.splines) * self.edges_V
2768 else:
2769 edges_V_count = len(edges_proportions_V)
2771 # The Follow precision will vary depending on the number of Follow face-loops
2772 precision_multiplier = round(2 + (edges_V_count / 15))
2773 curve_cuts = bpy.context.scene.bsurfaces.SURFSK_precision * precision_multiplier
2775 # Subdivide the curves
2776 bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=curve_cuts)
2778 # The verts position shifting that happens with splines subdivision.
2779 # For later reorder splines points
2780 verts_position_shift = curve_cuts + 1
2781 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
2783 # Reorder coordinates of the points of each spline to put the first point of
2784 # the spline starting at the position it was the first point before sudividing
2785 # the curve. And make a new curve object per spline (to handle memory better later)
2786 splines_U_objects = []
2787 for i in range(len(ob_curves_surf.data.splines)):
2788 spline_U_curve = bpy.data.curves.new('SURFSKIO_spline_U_' + str(i), 'CURVE')
2789 ob_spline_U = bpy.data.objects.new('SURFSKIO_spline_U_' + str(i), spline_U_curve)
2790 bpy.context.collection.objects.link(ob_spline_U)
2792 spline_U_curve.dimensions = "3D"
2794 # Add points to the spline in the new curve object
2795 ob_spline_U.data.splines.new('BEZIER')
2796 for t in range(len(ob_curves_surf.data.splines[i].bezier_points)):
2797 if cyclic_loops_U[i] is True and not self.selection_U_exists: # If the loop is cyclic
2798 if t + verts_position_shift <= len(ob_curves_surf.data.splines[i].bezier_points) - 1:
2799 point_index = t + verts_position_shift
2800 else:
2801 point_index = t + verts_position_shift - len(ob_curves_surf.data.splines[i].bezier_points)
2802 else:
2803 point_index = t
2804 # to avoid adding the first point since it's added when the spline is created
2805 if t > 0:
2806 ob_spline_U.data.splines[0].bezier_points.add(1)
2807 ob_spline_U.data.splines[0].bezier_points[t].co = \
2808 ob_curves_surf.data.splines[i].bezier_points[point_index].co
2810 if cyclic_loops_U[i] is True and not self.selection_U_exists: # If the loop is cyclic
2811 # Add a last point at the same location as the first one
2812 ob_spline_U.data.splines[0].bezier_points.add(1)
2813 ob_spline_U.data.splines[0].bezier_points[len(ob_spline_U.data.splines[0].bezier_points) - 1].co = \
2814 ob_spline_U.data.splines[0].bezier_points[0].co
2815 else:
2816 ob_spline_U.data.splines[0].use_cyclic_u = False
2818 splines_U_objects.append(ob_spline_U)
2819 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
2820 ob_spline_U.select_set(True)
2821 bpy.context.view_layer.objects.active = ob_spline_U
2823 # When option "Loops on strokes" is active each "Cross" loop will have
2824 # its own proportions according to where the original strokes "touch" them
2825 if self.loops_on_strokes:
2826 # Get the indices of points where the original strokes "touch" loops-U
2827 points_U_crossed_by_strokes = []
2828 for i in range(len(splines_U_objects[0].data.splines[0].bezier_points)):
2829 bp = splines_U_objects[0].data.splines[0].bezier_points[i]
2830 if ["%.4f" % bp.co[0], "%.4f" % bp.co[1], "%.4f" % bp.co[2]] in coords_loops_U_control_points:
2831 points_U_crossed_by_strokes.append(i)
2833 # Make a dictionary with the number of the edge, in the selected chain V, corresponding to each stroke
2834 edge_order_number_for_splines = {}
2835 if self.selection_V_exists:
2836 # For two-connected selections add a first hypothetic stroke at the beginning.
2837 if selection_type == "TWO_CONNECTED":
2838 edge_order_number_for_splines[0] = 0
2840 for i in range(len(self.main_splines.data.splines)):
2841 sp = self.main_splines.data.splines[i]
2842 v_idx, _dist_temp = self.shortest_distance(
2843 self.main_object,
2844 sp.bezier_points[0].co,
2845 verts_ordered_V_indices
2847 # Get the position (edges count) of the vert v_idx in the selected chain V
2848 edge_idx_in_chain = verts_ordered_V_indices.index(v_idx)
2850 # For two-connected selections the strokes go after the
2851 # hypothetic stroke added before, so the index adds one per spline
2852 if selection_type == "TWO_CONNECTED":
2853 spline_number = i + 1
2854 else:
2855 spline_number = i
2857 edge_order_number_for_splines[spline_number] = edge_idx_in_chain
2859 # Get the first and last verts indices for later comparison
2860 if i == 0:
2861 first_v_idx = v_idx
2862 elif i == len(self.main_splines.data.splines) - 1:
2863 last_v_idx = v_idx
2865 if self.selection_V_is_closed:
2866 # If there is no last stroke on the last vertex (same as first vertex),
2867 # add a hypothetic spline at last vert order
2868 if first_v_idx != last_v_idx:
2869 edge_order_number_for_splines[(len(self.main_splines.data.splines) - 1) + 1] = \
2870 len(verts_ordered_V_indices) - 1
2871 else:
2872 if self.cyclic_cross:
2873 edge_order_number_for_splines[len(self.main_splines.data.splines) - 1] = \
2874 len(verts_ordered_V_indices) - 2
2875 edge_order_number_for_splines[(len(self.main_splines.data.splines) - 1) + 1] = \
2876 len(verts_ordered_V_indices) - 1
2877 else:
2878 edge_order_number_for_splines[len(self.main_splines.data.splines) - 1] = \
2879 len(verts_ordered_V_indices) - 1
2881 # Get the coords of the points distributed along the
2882 # "crossing curves", with appropriate proportions-V
2883 surface_splines_parsed = []
2884 for i in range(len(splines_U_objects)):
2885 sp_ob = splines_U_objects[i]
2886 # If "Loops on strokes" option is active, calculate the proportions for each loop-U
2887 if self.loops_on_strokes:
2888 # Segments distances from stroke to stroke
2889 dist = 0
2890 full_dist = 0
2891 segments_distances = []
2892 for t in range(len(sp_ob.data.splines[0].bezier_points)):
2893 bp = sp_ob.data.splines[0].bezier_points[t]
2895 if t == 0:
2896 last_p = bp.co
2897 else:
2898 actual_p = bp.co
2899 dist += (last_p - actual_p).length
2901 if t in points_U_crossed_by_strokes:
2902 segments_distances.append(dist)
2903 full_dist += dist
2905 dist = 0
2907 last_p = actual_p
2909 # Calculate Proportions.
2910 used_edges_proportions_V = []
2911 for t in range(len(segments_distances)):
2912 if self.selection_V_exists:
2913 if t == 0:
2914 order_number_last_stroke = 0
2916 segment_edges_length_V = 0
2917 segment_edges_length_V2 = 0
2918 for order in range(order_number_last_stroke, edge_order_number_for_splines[t + 1]):
2919 segment_edges_length_V += edges_lengths_V[order]
2920 if self.selection_V2_exists:
2921 segment_edges_length_V2 += edges_lengths_V2[order]
2923 for order in range(order_number_last_stroke, edge_order_number_for_splines[t + 1]):
2924 # Calculate each "sub-segment" (the ones between each stroke) length
2925 if self.selection_V2_exists:
2926 proportion_sub_seg = (edges_lengths_V2[order] -
2927 ((edges_lengths_V2[order] - edges_lengths_V[order]) /
2928 len(splines_U_objects) * i)) / (segment_edges_length_V2 -
2929 (segment_edges_length_V2 - segment_edges_length_V) /
2930 len(splines_U_objects) * i)
2932 sub_seg_dist = segments_distances[t] * proportion_sub_seg
2933 else:
2934 proportion_sub_seg = edges_lengths_V[order] / segment_edges_length_V
2935 sub_seg_dist = segments_distances[t] * proportion_sub_seg
2937 used_edges_proportions_V.append(sub_seg_dist / full_dist)
2939 order_number_last_stroke = edge_order_number_for_splines[t + 1]
2941 else:
2942 for _c in range(self.edges_V):
2943 # Calculate each "sub-segment" (the ones between each stroke) length
2944 sub_seg_dist = segments_distances[t] / self.edges_V
2945 used_edges_proportions_V.append(sub_seg_dist / full_dist)
2947 actual_spline = self.distribute_pts(sp_ob.data.splines, used_edges_proportions_V)
2948 surface_splines_parsed.append(actual_spline[0])
2950 else:
2951 if self.selection_V2_exists:
2952 used_edges_proportions_V = []
2953 for p in range(len(edges_proportions_V)):
2954 used_edges_proportions_V.append(
2955 edges_proportions_V2[p] -
2956 ((edges_proportions_V2[p] -
2957 edges_proportions_V[p]) / len(splines_U_objects) * i)
2959 else:
2960 used_edges_proportions_V = edges_proportions_V
2962 actual_spline = self.distribute_pts(sp_ob.data.splines, used_edges_proportions_V)
2963 surface_splines_parsed.append(actual_spline[0])
2965 # Set the verts of the first and last splines to the locations
2966 # of the respective verts in the selections
2967 if self.selection_V_exists:
2968 for i in range(0, len(surface_splines_parsed[0])):
2969 surface_splines_parsed[len(surface_splines_parsed) - 1][i] = \
2970 self.main_object.matrix_world @ verts_ordered_V[i].co
2972 if selection_type == "TWO_NOT_CONNECTED":
2973 if self.selection_V2_exists:
2974 for i in range(0, len(surface_splines_parsed[0])):
2975 surface_splines_parsed[0][i] = self.main_object.matrix_world @ verts_ordered_V2[i].co
2977 # When "Automatic join" option is active (and the selection type != "TWO_CONNECTED"),
2978 # merge the verts of the tips of the loops when they are "near enough"
2979 if self.automatic_join and selection_type != "TWO_CONNECTED":
2980 # Join the tips of "Follow" loops that are near enough and must be "closed"
2981 if not self.selection_V_exists and len(edges_proportions_U) >= 3:
2982 for i in range(len(surface_splines_parsed[0])):
2983 sp = surface_splines_parsed
2984 loop_segment_dist = (sp[0][i] - sp[1][i]).length
2986 verts_middle_position_co = [
2987 (sp[0][i][0] + sp[len(sp) - 1][i][0]) / 2,
2988 (sp[0][i][1] + sp[len(sp) - 1][i][1]) / 2,
2989 (sp[0][i][2] + sp[len(sp) - 1][i][2]) / 2
2991 points_original = []
2992 points_original.append(sp[1][i])
2993 points_original.append(sp[0][i])
2995 points_target = []
2996 points_target.append(sp[1][i])
2997 points_target.append(Vector(verts_middle_position_co))
2999 vec_A = points_original[0] - points_original[1]
3000 vec_B = points_target[0] - points_target[1]
3001 # check for zero angles, not sure if it is a great fix
3002 if vec_A.length != 0 and vec_B.length != 0:
3003 angle = vec_A.angle(vec_B) / pi
3004 edge_new_length = (Vector(verts_middle_position_co) - sp[1][i]).length
3005 else:
3006 angle = 0
3007 edge_new_length = 0
3009 # If after moving the verts to the middle point, the segment doesn't stretch too much
3010 if edge_new_length <= loop_segment_dist * 1.5 * \
3011 self.join_stretch_factor and angle < 0.25 * self.join_stretch_factor:
3013 # Avoid joining when the actual loop must be merged with the original mesh
3014 if not (self.selection_U_exists and i == 0) and \
3015 not (self.selection_U2_exists and i == len(surface_splines_parsed[0]) - 1):
3017 # Change the coords of both verts to the middle position
3018 surface_splines_parsed[0][i] = verts_middle_position_co
3019 surface_splines_parsed[len(surface_splines_parsed) - 1][i] = verts_middle_position_co
3021 # Delete object with control points and object from grease pencil conversion
3022 bpy.ops.object.delete({"selected_objects": [ob_ctrl_pts]})
3024 bpy.ops.object.delete({"selected_objects": splines_U_objects})
3026 # Generate surface
3028 # Get all verts coords
3029 all_surface_verts_co = []
3030 for i in range(0, len(surface_splines_parsed)):
3031 # Get coords of all verts and make a list with them
3032 for pt_co in surface_splines_parsed[i]:
3033 all_surface_verts_co.append(pt_co)
3035 # Define verts for each face
3036 all_surface_faces = []
3037 for i in range(0, len(all_surface_verts_co) - len(surface_splines_parsed[0])):
3038 if ((i + 1) / len(surface_splines_parsed[0]) != int((i + 1) / len(surface_splines_parsed[0]))):
3039 all_surface_faces.append(
3040 [i + 1, i, i + len(surface_splines_parsed[0]),
3041 i + len(surface_splines_parsed[0]) + 1]
3043 # Build the mesh
3044 surf_me_name = "SURFSKIO_surface"
3045 me_surf = bpy.data.meshes.new(surf_me_name)
3046 me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces)
3047 ob_surface = object_utils.object_data_add(context, me_surf)
3048 ob_surface.location = (0.0, 0.0, 0.0)
3049 ob_surface.rotation_euler = (0.0, 0.0, 0.0)
3050 ob_surface.scale = (1.0, 1.0, 1.0)
3052 # Select all the "unselected but participating" verts, from closed selection
3053 # or double selections with middle-vertex, for later join with remove doubles
3054 for v_idx in single_unselected_verts:
3055 self.main_object.data.vertices[v_idx].select = True
3057 # Join the new mesh to the main object
3058 ob_surface.select_set(True)
3059 self.main_object.select_set(True)
3060 bpy.context.view_layer.objects.active = self.main_object
3062 bpy.ops.object.join('INVOKE_REGION_WIN')
3064 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3066 bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', threshold=0.0001)
3067 bpy.ops.mesh.normals_make_consistent('INVOKE_REGION_WIN', inside=False)
3068 bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
3070 self.update()
3072 return{'FINISHED'}
3074 def update(self):
3075 try:
3076 global global_shade_smooth
3077 if global_shade_smooth:
3078 bpy.ops.object.shade_smooth()
3079 else:
3080 bpy.ops.object.shade_flat()
3081 bpy.context.scene.bsurfaces.SURFSK_shade_smooth = global_shade_smooth
3082 except:
3083 pass
3085 return{'FINISHED'}
3087 def execute(self, context):
3089 if bpy.ops.object.mode_set.poll():
3090 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3092 try:
3093 global global_mesh_object
3094 global_mesh_object = bpy.context.scene.bsurfaces.SURFSK_mesh.name
3095 bpy.data.objects[global_mesh_object].select_set(True)
3096 self.main_object = bpy.data.objects[global_mesh_object]
3097 bpy.context.view_layer.objects.active = self.main_object
3098 bsurfaces_props = bpy.context.scene.bsurfaces
3099 except:
3100 self.report({'WARNING'}, "Specify the name of the object with retopology")
3101 return{"CANCELLED"}
3102 bpy.context.view_layer.objects.active = self.main_object
3104 self.update()
3106 if not self.is_fill_faces:
3107 bpy.ops.wm.context_set_value(data_path='tool_settings.mesh_select_mode',
3108 value='True, False, False')
3110 # Build splines from the "last saved splines".
3111 last_saved_curve = bpy.data.curves.new('SURFSKIO_last_crv', 'CURVE')
3112 self.main_splines = bpy.data.objects.new('SURFSKIO_last_crv', last_saved_curve)
3113 bpy.context.collection.objects.link(self.main_splines)
3115 last_saved_curve.dimensions = "3D"
3117 for sp in self.last_strokes_splines_coords:
3118 spline = self.main_splines.data.splines.new('BEZIER')
3119 # less one because one point is added when the spline is created
3120 spline.bezier_points.add(len(sp) - 1)
3121 for p in range(0, len(sp)):
3122 spline.bezier_points[p].co = [sp[p][0], sp[p][1], sp[p][2]]
3124 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3126 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3127 self.main_splines.select_set(True)
3128 bpy.context.view_layer.objects.active = self.main_splines
3130 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
3132 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
3133 # Important to make it vector first and then automatic, otherwise the
3134 # tips handles get too big and distort the shrinkwrap results later
3135 bpy.ops.curve.handle_type_set(type='VECTOR')
3136 bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC')
3137 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
3138 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3140 self.main_splines.name = "SURFSKIO_temp_strokes"
3142 if self.is_crosshatch:
3143 strokes_for_crosshatch = True
3144 strokes_for_rectangular_surface = False
3145 else:
3146 strokes_for_rectangular_surface = True
3147 strokes_for_crosshatch = False
3149 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3151 if strokes_for_rectangular_surface:
3152 self.rectangular_surface(context)
3153 elif strokes_for_crosshatch:
3154 self.crosshatch_surface_execute(context)
3156 #Set Shade smooth to new polygons
3157 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3158 global global_shade_smooth
3159 if global_shade_smooth:
3160 bpy.ops.object.shade_smooth()
3161 else:
3162 bpy.ops.object.shade_flat()
3164 # Delete main splines
3165 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3166 if self.keep_strokes:
3167 self.main_splines.name = "keep_strokes"
3168 self.main_splines.data.bevel_depth = 0.001
3169 if "keep_strokes_material" in bpy.data.materials :
3170 self.main_splines.data.materials.append(bpy.data.materials["keep_strokes_material"])
3171 else:
3172 mat = bpy.data.materials.new("keep_strokes_material")
3173 mat.diffuse_color = (1, 0, 0, 0)
3174 mat.specular_color = (1, 0, 0)
3175 mat.specular_intensity = 0.0
3176 mat.roughness = 0.0
3177 self.main_splines.data.materials.append(mat)
3178 else:
3179 bpy.ops.object.delete({"selected_objects": [self.main_splines]})
3181 # Delete grease pencil strokes
3182 if self.strokes_type == "GP_STROKES" and not self.stopping_errors:
3183 try:
3184 bpy.context.scene.bsurfaces.SURFSK_gpencil.data.layers.active.clear()
3185 except:
3186 pass
3188 # Delete annotations
3189 if self.strokes_type == "GP_ANNOTATION" and not self.stopping_errors:
3190 try:
3191 bpy.context.annotation_data.layers.active.clear()
3192 except:
3193 pass
3195 bsurfaces_props = bpy.context.scene.bsurfaces
3196 bsurfaces_props.SURFSK_edges_U = self.edges_U
3197 bsurfaces_props.SURFSK_edges_V = self.edges_V
3198 bsurfaces_props.SURFSK_cyclic_cross = self.cyclic_cross
3199 bsurfaces_props.SURFSK_cyclic_follow = self.cyclic_follow
3200 bsurfaces_props.SURFSK_automatic_join = self.automatic_join
3201 bsurfaces_props.SURFSK_loops_on_strokes = self.loops_on_strokes
3202 bsurfaces_props.SURFSK_keep_strokes = self.keep_strokes
3204 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3205 self.main_object.select_set(True)
3206 bpy.context.view_layer.objects.active = self.main_object
3208 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3210 self.update()
3212 return{'FINISHED'}
3214 def invoke(self, context, event):
3216 if bpy.ops.object.mode_set.poll():
3217 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3219 bsurfaces_props = bpy.context.scene.bsurfaces
3220 self.cyclic_cross = bsurfaces_props.SURFSK_cyclic_cross
3221 self.cyclic_follow = bsurfaces_props.SURFSK_cyclic_follow
3222 self.automatic_join = bsurfaces_props.SURFSK_automatic_join
3223 self.loops_on_strokes = bsurfaces_props.SURFSK_loops_on_strokes
3224 self.keep_strokes = bsurfaces_props.SURFSK_keep_strokes
3226 try:
3227 global global_mesh_object
3228 global_mesh_object = bpy.context.scene.bsurfaces.SURFSK_mesh.name
3229 bpy.data.objects[global_mesh_object].select_set(True)
3230 self.main_object = bpy.data.objects[global_mesh_object]
3231 bpy.context.view_layer.objects.active = self.main_object
3232 except:
3233 self.report({'WARNING'}, "Specify the name of the object with retopology")
3234 return{"CANCELLED"}
3236 self.update()
3238 self.main_object_selected_verts_count = len([v for v in self.main_object.data.vertices if v.select])
3240 bpy.ops.wm.context_set_value(data_path='tool_settings.mesh_select_mode',
3241 value='True, False, False')
3243 self.edges_U = bsurfaces_props.SURFSK_edges_U
3244 self.edges_V = bsurfaces_props.SURFSK_edges_V
3246 self.is_fill_faces = False
3247 self.stopping_errors = False
3248 self.last_strokes_splines_coords = []
3250 # Determine the type of the strokes
3251 self.strokes_type = get_strokes_type(context)
3253 # Check if it will be used grease pencil strokes or curves
3254 # If there are strokes to be used
3255 if self.strokes_type == "GP_STROKES" or self.strokes_type == "EXTERNAL_CURVE" or self.strokes_type == "GP_ANNOTATION":
3256 if self.strokes_type == "GP_STROKES":
3257 # Convert grease pencil strokes to curve
3258 global global_gpencil_object
3259 gp = bpy.data.objects[global_gpencil_object]
3260 self.original_curve = conver_gpencil_to_curve(self, context, gp, 'GPensil')
3261 self.using_external_curves = False
3263 elif self.strokes_type == "GP_ANNOTATION":
3264 # Convert grease pencil strokes to curve
3265 gp = bpy.context.annotation_data
3266 self.original_curve = conver_gpencil_to_curve(self, context, gp, 'Annotation')
3267 self.using_external_curves = False
3269 elif self.strokes_type == "EXTERNAL_CURVE":
3270 global global_curve_object
3271 self.original_curve = bpy.data.objects[global_curve_object]
3272 self.using_external_curves = True
3274 # Make sure there are no objects left from erroneous
3275 # executions of this operator, with the reserved names used here
3276 for o in bpy.data.objects:
3277 if o.name.find("SURFSKIO_") != -1:
3278 bpy.ops.object.delete({"selected_objects": [o]})
3280 bpy.context.view_layer.objects.active = self.original_curve
3282 bpy.ops.object.duplicate('INVOKE_REGION_WIN')
3284 self.temporary_curve = bpy.context.view_layer.objects.active
3286 # Deselect all points of the curve
3287 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3288 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
3289 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3291 # Delete splines with only a single isolated point
3292 for i in range(len(self.temporary_curve.data.splines)):
3293 sp = self.temporary_curve.data.splines[i]
3295 if len(sp.bezier_points) == 1:
3296 sp.bezier_points[0].select_control_point = True
3298 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3299 bpy.ops.curve.delete(type='VERT')
3300 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3302 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3303 self.temporary_curve.select_set(True)
3304 bpy.context.view_layer.objects.active = self.temporary_curve
3306 # Set a minimum number of points for crosshatch
3307 minimum_points_num = 15
3309 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3310 # Check if the number of points of each curve has at least the number of points
3311 # of minimum_points_num, which is a bit more than the face-loops limit.
3312 # If not, subdivide to reach at least that number of points
3313 for i in range(len(self.temporary_curve.data.splines)):
3314 sp = self.temporary_curve.data.splines[i]
3316 if len(sp.bezier_points) < minimum_points_num:
3317 for bp in sp.bezier_points:
3318 bp.select_control_point = True
3320 if (len(sp.bezier_points) - 1) != 0:
3321 # Formula to get the number of cuts that will make a curve
3322 # of N number of points have near to "minimum_points_num"
3323 # points, when subdividing with this number of cuts
3324 subdivide_cuts = int(
3325 (minimum_points_num - len(sp.bezier_points)) /
3326 (len(sp.bezier_points) - 1)
3327 ) + 1
3328 else:
3329 subdivide_cuts = 0
3331 bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=subdivide_cuts)
3332 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
3334 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3336 # Detect if the strokes are a crosshatch and do it if it is
3337 self.crosshatch_surface_invoke(self.temporary_curve)
3339 if not self.is_crosshatch:
3340 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3341 self.temporary_curve.select_set(True)
3342 bpy.context.view_layer.objects.active = self.temporary_curve
3344 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3346 # Set a minimum number of points for rectangular surfaces
3347 minimum_points_num = 60
3349 # Check if the number of points of each curve has at least the number of points
3350 # of minimum_points_num, which is a bit more than the face-loops limit.
3351 # If not, subdivide to reach at least that number of points
3352 for i in range(len(self.temporary_curve.data.splines)):
3353 sp = self.temporary_curve.data.splines[i]
3355 if len(sp.bezier_points) < minimum_points_num:
3356 for bp in sp.bezier_points:
3357 bp.select_control_point = True
3359 if (len(sp.bezier_points) - 1) != 0:
3360 # Formula to get the number of cuts that will make a curve of
3361 # N number of points have near to "minimum_points_num" points,
3362 # when subdividing with this number of cuts
3363 subdivide_cuts = int(
3364 (minimum_points_num - len(sp.bezier_points)) /
3365 (len(sp.bezier_points) - 1)
3366 ) + 1
3367 else:
3368 subdivide_cuts = 0
3370 bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=subdivide_cuts)
3371 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
3373 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3375 # Save coordinates of the actual strokes (as the "last saved splines")
3376 for sp_idx in range(len(self.temporary_curve.data.splines)):
3377 self.last_strokes_splines_coords.append([])
3378 for bp_idx in range(len(self.temporary_curve.data.splines[sp_idx].bezier_points)):
3379 coords = self.temporary_curve.matrix_world @ \
3380 self.temporary_curve.data.splines[sp_idx].bezier_points[bp_idx].co
3381 self.last_strokes_splines_coords[sp_idx].append([coords[0], coords[1], coords[2]])
3383 # Check for cyclic splines, put the first and last points in the middle of their actual positions
3384 for sp_idx in range(len(self.temporary_curve.data.splines)):
3385 if self.temporary_curve.data.splines[sp_idx].use_cyclic_u is True:
3386 first_p_co = self.last_strokes_splines_coords[sp_idx][0]
3387 last_p_co = self.last_strokes_splines_coords[sp_idx][
3388 len(self.last_strokes_splines_coords[sp_idx]) - 1
3390 target_co = [
3391 (first_p_co[0] + last_p_co[0]) / 2,
3392 (first_p_co[1] + last_p_co[1]) / 2,
3393 (first_p_co[2] + last_p_co[2]) / 2
3396 self.last_strokes_splines_coords[sp_idx][0] = target_co
3397 self.last_strokes_splines_coords[sp_idx][
3398 len(self.last_strokes_splines_coords[sp_idx]) - 1
3399 ] = target_co
3400 tuple(self.last_strokes_splines_coords)
3402 # Estimation of the average length of the segments between
3403 # each point of the grease pencil strokes.
3404 # Will be useful to determine whether a curve should be made "Cyclic"
3405 segments_lengths_sum = 0
3406 segments_count = 0
3407 random_spline = self.temporary_curve.data.splines[0].bezier_points
3408 for i in range(0, len(random_spline)):
3409 if i != 0 and len(random_spline) - 1 >= i:
3410 segments_lengths_sum += (random_spline[i - 1].co - random_spline[i].co).length
3411 segments_count += 1
3413 self.average_gp_segment_length = segments_lengths_sum / segments_count
3415 # Delete temporary strokes curve object
3416 bpy.ops.object.delete({"selected_objects": [self.temporary_curve]})
3418 # Set again since "execute()" will turn it again to its initial value
3419 self.execute(context)
3421 if not self.stopping_errors:
3422 # Delete grease pencil strokes
3423 if self.strokes_type == "GP_STROKES":
3424 try:
3425 bpy.context.scene.bsurfaces.SURFSK_gpencil.data.layers.active.clear()
3426 except:
3427 pass
3429 # Delete annotation strokes
3430 elif self.strokes_type == "GP_ANNOTATION":
3431 try:
3432 bpy.context.annotation_data.layers.active.clear()
3433 except:
3434 pass
3436 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3437 bpy.ops.object.delete({"selected_objects": [self.original_curve]})
3438 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3440 return {"FINISHED"}
3441 else:
3442 return{"CANCELLED"}
3444 elif self.strokes_type == "SELECTION_ALONE":
3445 self.is_fill_faces = True
3446 created_faces_count = self.fill_with_faces(self.main_object)
3448 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3450 if created_faces_count == 0:
3451 self.report({'WARNING'}, "There aren't any strokes attached to the object")
3452 return {"CANCELLED"}
3453 else:
3454 return {"FINISHED"}
3456 if self.strokes_type == "EXTERNAL_NO_CURVE":
3457 self.report({'WARNING'}, "The secondary object is not a Curve.")
3458 return{"CANCELLED"}
3460 elif self.strokes_type == "MORE_THAN_ONE_EXTERNAL":
3461 self.report({'WARNING'}, "There shouldn't be more than one secondary object selected.")
3462 return{"CANCELLED"}
3464 elif self.strokes_type == "SINGLE_GP_STROKE_NO_SELECTION" or \
3465 self.strokes_type == "SINGLE_CURVE_STROKE_NO_SELECTION":
3467 self.report({'WARNING'}, "It's needed at least one stroke and one selection, or two strokes.")
3468 return{"CANCELLED"}
3470 elif self.strokes_type == "NO_STROKES":
3471 self.report({'WARNING'}, "There aren't any strokes attached to the object")
3472 return{"CANCELLED"}
3474 elif self.strokes_type == "CURVE_WITH_NON_BEZIER_SPLINES":
3475 self.report({'WARNING'}, "All splines must be Bezier.")
3476 return{"CANCELLED"}
3478 else:
3479 return{"CANCELLED"}
3481 # ----------------------------
3482 # Init operator
3483 class MESH_OT_SURFSK_init(Operator):
3484 bl_idname = "mesh.surfsk_init"
3485 bl_label = "Bsurfaces initialize"
3486 bl_description = "Add an empty mesh object with useful settings"
3487 bl_options = {'REGISTER', 'UNDO'}
3489 def execute(self, context):
3491 bs = bpy.context.scene.bsurfaces
3493 if bpy.ops.object.mode_set.poll():
3494 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3496 global global_shade_smooth
3497 global global_mesh_object
3498 global global_gpencil_object
3500 if bs.SURFSK_mesh == None:
3501 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3502 mesh = bpy.data.meshes.new('BSurfaceMesh')
3503 mesh_object = object_utils.object_data_add(context, mesh)
3504 mesh_object.select_set(True)
3505 bpy.context.view_layer.objects.active = mesh_object
3507 mesh_object.show_all_edges = True
3508 mesh_object.display_type = 'SOLID'
3509 mesh_object.show_wire = True
3511 global_shade_smooth = bpy.context.scene.bsurfaces.SURFSK_shade_smooth
3512 if global_shade_smooth:
3513 bpy.ops.object.shade_smooth()
3514 else:
3515 bpy.ops.object.shade_flat()
3517 color_red = [1.0, 0.0, 0.0, 0.3]
3518 material = makeMaterial("BSurfaceMesh", color_red)
3519 mesh_object.data.materials.append(material)
3520 modifier = mesh_object.modifiers.new("", 'SHRINKWRAP')
3521 if self.active_object is not None:
3522 modifier.target = self.active_object
3523 modifier.wrap_method = 'TARGET_PROJECT'
3524 modifier.wrap_mode = 'OUTSIDE_SURFACE'
3525 modifier.show_on_cage = True
3527 global_mesh_object = mesh_object.name
3528 bpy.context.scene.bsurfaces.SURFSK_mesh = bpy.data.objects[global_mesh_object]
3530 bpy.context.scene.tool_settings.snap_elements = {'FACE'}
3531 bpy.context.scene.tool_settings.use_snap = True
3532 bpy.context.scene.tool_settings.use_snap_self = False
3533 bpy.context.scene.tool_settings.use_snap_align_rotation = True
3534 bpy.context.scene.tool_settings.use_snap_project = True
3535 bpy.context.scene.tool_settings.use_snap_rotate = True
3536 bpy.context.scene.tool_settings.use_snap_scale = True
3538 bpy.context.scene.tool_settings.use_mesh_automerge = True
3539 bpy.context.scene.tool_settings.double_threshold = 0.01
3541 if context.scene.bsurfaces.SURFSK_guide == 'GPencil' and bs.SURFSK_gpencil == None:
3542 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3543 bpy.ops.object.gpencil_add(radius=1.0, align='WORLD', location=(0.0, 0.0, 0.0), rotation=(0.0, 0.0, 0.0), type='EMPTY')
3544 bpy.context.scene.tool_settings.gpencil_stroke_placement_view3d = 'SURFACE'
3545 gpencil_object = bpy.context.scene.objects[bpy.context.scene.objects[-1].name]
3546 gpencil_object.select_set(True)
3547 bpy.context.view_layer.objects.active = gpencil_object
3548 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='PAINT_GPENCIL')
3549 global_gpencil_object = gpencil_object.name
3550 bpy.context.scene.bsurfaces.SURFSK_gpencil = bpy.data.objects[global_gpencil_object]
3551 gpencil_object.data.stroke_depth_order = '3D'
3552 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='PAINT_GPENCIL')
3553 bpy.ops.wm.tool_set_by_id(name="builtin_brush.Draw")
3555 if context.scene.bsurfaces.SURFSK_guide == 'Annotation':
3556 bpy.ops.wm.tool_set_by_id(name="builtin.annotate")
3557 bpy.context.scene.tool_settings.annotation_stroke_placement_view3d = 'SURFACE'
3559 def invoke(self, context, event):
3560 if bpy.context.active_object:
3561 self.active_object = bpy.context.active_object
3562 else:
3563 self.active_object = None
3565 self.execute(context)
3567 return {"FINISHED"}
3569 # ----------------------------
3570 # Add modifiers operator
3571 class MESH_OT_SURFSK_add_modifiers(Operator):
3572 bl_idname = "mesh.surfsk_add_modifiers"
3573 bl_label = "Add Mirror and others modifiers"
3574 bl_description = "Add modifiers: Mirror, Shrinkwrap, Subdivision, Solidify"
3575 bl_options = {'REGISTER', 'UNDO'}
3577 def execute(self, context):
3579 bs = bpy.context.scene.bsurfaces
3581 if bpy.ops.object.mode_set.poll():
3582 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3584 if bs.SURFSK_mesh == None:
3585 self.report({'ERROR_INVALID_INPUT'}, "Please select Mesh of BSurface or click Initialize")
3586 else:
3587 mesh_object = bs.SURFSK_mesh
3589 try:
3590 mesh_object.select_set(True)
3591 except:
3592 self.report({'ERROR_INVALID_INPUT'}, "Mesh of BSurface does not exist")
3593 return {"CANCEL"}
3595 bpy.context.view_layer.objects.active = mesh_object
3597 try:
3598 shrinkwrap = next(mod for mod in mesh_object.modifiers
3599 if mod.type == 'SHRINKWRAP')
3600 except:
3601 shrinkwrap = mesh_object.modifiers.new("", 'SHRINKWRAP')
3602 if self.active_object is not None and self.active_object != mesh_object:
3603 shrinkwrap.target = self.active_object
3604 shrinkwrap.wrap_method = 'TARGET_PROJECT'
3605 shrinkwrap.wrap_mode = 'OUTSIDE_SURFACE'
3606 shrinkwrap.show_on_cage = True
3607 shrinkwrap.offset = bpy.context.scene.bsurfaces.SURFSK_Shrinkwrap_offset
3609 try:
3610 mirror = next(mod for mod in mesh_object.modifiers
3611 if mod.type == 'MIRROR')
3612 except:
3613 mirror = mesh_object.modifiers.new("", 'MIRROR')
3614 mirror.use_clip = True
3616 try:
3617 _subsurf = next(mod for mod in mesh_object.modifiers
3618 if mod.type == 'SUBSURF')
3619 except:
3620 _subsurf = mesh_object.modifiers.new("", 'SUBSURF')
3622 try:
3623 solidify = next(mod for mod in mesh_object.modifiers
3624 if mod.type == 'SOLIDIFY')
3625 except:
3626 solidify = mesh_object.modifiers.new("", 'SOLIDIFY')
3627 solidify.thickness = 0.01
3629 return {"FINISHED"}
3631 def invoke(self, context, event):
3632 if bpy.context.active_object:
3633 self.active_object = bpy.context.active_object
3634 else:
3635 self.active_object = None
3637 self.execute(context)
3639 return {"FINISHED"}
3641 # ----------------------------
3642 # Edit surface operator
3643 class MESH_OT_SURFSK_edit_surface(Operator):
3644 bl_idname = "mesh.surfsk_edit_surface"
3645 bl_label = "Bsurfaces edit surface"
3646 bl_description = "Edit surface mesh"
3647 bl_options = {'REGISTER', 'UNDO'}
3649 def execute(self, context):
3650 if bpy.ops.object.mode_set.poll():
3651 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3652 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3653 bpy.context.scene.bsurfaces.SURFSK_mesh.select_set(True)
3654 bpy.context.view_layer.objects.active = bpy.context.scene.bsurfaces.SURFSK_mesh
3655 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
3656 bpy.ops.wm.tool_set_by_id(name="builtin.select")
3658 def invoke(self, context, event):
3659 try:
3660 global_mesh_object = bpy.context.scene.bsurfaces.SURFSK_mesh.name
3661 bpy.data.objects[global_mesh_object].select_set(True)
3662 self.main_object = bpy.data.objects[global_mesh_object]
3663 bpy.context.view_layer.objects.active = self.main_object
3664 except:
3665 self.report({'WARNING'}, "Specify the name of the object with retopology")
3666 return{"CANCELLED"}
3668 self.execute(context)
3670 return {"FINISHED"}
3672 # ----------------------------
3673 # Add strokes operator
3674 class GPENCIL_OT_SURFSK_add_strokes(Operator):
3675 bl_idname = "gpencil.surfsk_add_strokes"
3676 bl_label = "Bsurfaces add strokes"
3677 bl_description = "Add the grease pencil strokes"
3678 bl_options = {'REGISTER', 'UNDO'}
3680 def execute(self, context):
3681 if bpy.ops.object.mode_set.poll():
3682 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3683 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3685 bpy.context.scene.bsurfaces.SURFSK_gpencil.select_set(True)
3686 bpy.context.view_layer.objects.active = bpy.context.scene.bsurfaces.SURFSK_gpencil
3687 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='PAINT_GPENCIL')
3688 bpy.ops.wm.tool_set_by_id(name="builtin_brush.Draw")
3690 return{"FINISHED"}
3692 def invoke(self, context, event):
3693 try:
3694 bpy.context.scene.bsurfaces.SURFSK_gpencil.select_set(True)
3695 except:
3696 self.report({'WARNING'}, "Specify the name of the object with strokes")
3697 return{"CANCELLED"}
3699 self.execute(context)
3701 return {"FINISHED"}
3703 # ----------------------------
3704 # Edit strokes operator
3705 class GPENCIL_OT_SURFSK_edit_strokes(Operator):
3706 bl_idname = "gpencil.surfsk_edit_strokes"
3707 bl_label = "Bsurfaces edit strokes"
3708 bl_description = "Edit the grease pencil strokes"
3709 bl_options = {'REGISTER', 'UNDO'}
3711 def execute(self, context):
3712 if bpy.ops.object.mode_set.poll():
3713 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3714 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3716 gpencil_object = bpy.context.scene.bsurfaces.SURFSK_gpencil
3718 gpencil_object.select_set(True)
3719 bpy.context.view_layer.objects.active = gpencil_object
3721 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT_GPENCIL')
3722 try:
3723 bpy.ops.gpencil.select_all(action='SELECT')
3724 except:
3725 pass
3727 def invoke(self, context, event):
3728 try:
3729 bpy.context.scene.bsurfaces.SURFSK_gpencil.select_set(True)
3730 except:
3731 self.report({'WARNING'}, "Specify the name of the object with strokes")
3732 return{"CANCELLED"}
3734 self.execute(context)
3736 return {"FINISHED"}
3738 # ----------------------------
3739 # Convert annotation to curves operator
3740 class GPENCIL_OT_SURFSK_annotation_to_curves(Operator):
3741 bl_idname = "gpencil.surfsk_annotations_to_curves"
3742 bl_label = "Convert annotation to curves"
3743 bl_description = "Convert annotation to curves for editing"
3744 bl_options = {'REGISTER', 'UNDO'}
3746 def execute(self, context):
3748 if bpy.ops.object.mode_set.poll():
3749 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3751 # Convert annotation to curve
3752 curve = conver_gpencil_to_curve(self, context, None, 'Annotation')
3754 if curve != None:
3755 # Delete annotation strokes
3756 try:
3757 bpy.context.annotation_data.layers.active.clear()
3758 except:
3759 pass
3761 # Clean up curves
3762 curve.select_set(True)
3763 bpy.context.view_layer.objects.active = curve
3765 bpy.ops.wm.tool_set_by_id(name="builtin.select_box")
3767 return {"FINISHED"}
3769 def invoke(self, context, event):
3770 try:
3771 strokes = bpy.context.annotation_data.layers.active.active_frame.strokes
3773 _strokes_num = len(strokes)
3774 except:
3775 self.report({'WARNING'}, "Not active annotation")
3776 return{"CANCELLED"}
3778 self.execute(context)
3780 return {"FINISHED"}
3782 # ----------------------------
3783 # Convert strokes to curves operator
3784 class GPENCIL_OT_SURFSK_strokes_to_curves(Operator):
3785 bl_idname = "gpencil.surfsk_strokes_to_curves"
3786 bl_label = "Convert strokes to curves"
3787 bl_description = "Convert grease pencil strokes to curves for editing"
3788 bl_options = {'REGISTER', 'UNDO'}
3790 def execute(self, context):
3792 if bpy.ops.object.mode_set.poll():
3793 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3795 # Convert grease pencil strokes to curve
3796 gp = bpy.context.scene.bsurfaces.SURFSK_gpencil
3797 curve = conver_gpencil_to_curve(self, context, gp, 'GPensil')
3799 if curve != None:
3800 # Delete grease pencil strokes
3801 try:
3802 bpy.context.scene.bsurfaces.SURFSK_gpencil.data.layers.active.clear()
3803 except:
3804 pass
3806 # Clean up curves
3808 curve.select_set(True)
3809 bpy.context.view_layer.objects.active = curve
3811 bpy.ops.wm.tool_set_by_id(name="builtin.select_box")
3813 return {"FINISHED"}
3815 def invoke(self, context, event):
3816 try:
3817 bpy.context.scene.bsurfaces.SURFSK_gpencil.select_set(True)
3818 except:
3819 self.report({'WARNING'}, "Specify the name of the object with strokes")
3820 return{"CANCELLED"}
3822 self.execute(context)
3824 return {"FINISHED"}
3826 # ----------------------------
3827 # Add annotation
3828 class GPENCIL_OT_SURFSK_add_annotation(Operator):
3829 bl_idname = "gpencil.surfsk_add_annotation"
3830 bl_label = "Bsurfaces add annotation"
3831 bl_description = "Add annotation"
3832 bl_options = {'REGISTER', 'UNDO'}
3834 def execute(self, context):
3835 bpy.ops.wm.tool_set_by_id(name="builtin.annotate")
3836 bpy.context.scene.tool_settings.annotation_stroke_placement_view3d = 'SURFACE'
3838 return{"FINISHED"}
3840 def invoke(self, context, event):
3842 self.execute(context)
3844 return {"FINISHED"}
3847 # ----------------------------
3848 # Edit curve operator
3849 class CURVE_OT_SURFSK_edit_curve(Operator):
3850 bl_idname = "curve.surfsk_edit_curve"
3851 bl_label = "Bsurfaces edit curve"
3852 bl_description = "Edit curve"
3853 bl_options = {'REGISTER', 'UNDO'}
3855 def execute(self, context):
3856 if bpy.ops.object.mode_set.poll():
3857 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
3858 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3859 bpy.context.scene.bsurfaces.SURFSK_curve.select_set(True)
3860 bpy.context.view_layer.objects.active = bpy.context.scene.bsurfaces.SURFSK_curve
3861 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
3863 def invoke(self, context, event):
3864 try:
3865 bpy.context.scene.bsurfaces.SURFSK_curve.select_set(True)
3866 except:
3867 self.report({'WARNING'}, "Specify the name of the object with curve")
3868 return{"CANCELLED"}
3870 self.execute(context)
3872 return {"FINISHED"}
3874 # ----------------------------
3875 # Reorder splines
3876 class CURVE_OT_SURFSK_reorder_splines(Operator):
3877 bl_idname = "curve.surfsk_reorder_splines"
3878 bl_label = "Bsurfaces reorder splines"
3879 bl_description = "Defines the order of the splines by using grease pencil strokes"
3880 bl_options = {'REGISTER', 'UNDO'}
3882 def execute(self, context):
3883 objects_to_delete = []
3884 # Convert grease pencil strokes to curve.
3885 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3886 bpy.ops.gpencil.convert('INVOKE_REGION_WIN', type='CURVE', use_link_strokes=False)
3887 for ob in bpy.context.selected_objects:
3888 if ob != bpy.context.view_layer.objects.active and ob.name.startswith("GP_Layer"):
3889 GP_strokes_curve = ob
3891 # GP_strokes_curve = bpy.context.object
3892 objects_to_delete.append(GP_strokes_curve)
3894 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3895 GP_strokes_curve.select_set(True)
3896 bpy.context.view_layer.objects.active = GP_strokes_curve
3898 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3899 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
3900 bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=100)
3901 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3903 bpy.ops.object.duplicate('INVOKE_REGION_WIN')
3904 GP_strokes_mesh = bpy.context.object
3905 objects_to_delete.append(GP_strokes_mesh)
3907 GP_strokes_mesh.data.resolution_u = 1
3908 bpy.ops.object.convert(target='MESH', keep_original=False)
3910 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3911 self.main_curve.select_set(True)
3912 bpy.context.view_layer.objects.active = self.main_curve
3914 bpy.ops.object.duplicate('INVOKE_REGION_WIN')
3915 curves_duplicate_1 = bpy.context.object
3916 objects_to_delete.append(curves_duplicate_1)
3918 minimum_points_num = 500
3920 # Some iterations since the subdivision operator
3921 # has a limit of 100 subdivisions per iteration
3922 for x in range(round(minimum_points_num / 100)):
3923 # Check if the number of points of each curve has at least the number of points
3924 # of minimum_points_num. If not, subdivide to reach at least that number of points
3925 for i in range(len(curves_duplicate_1.data.splines)):
3926 sp = curves_duplicate_1.data.splines[i]
3928 if len(sp.bezier_points) < minimum_points_num:
3929 for bp in sp.bezier_points:
3930 bp.select_control_point = True
3932 if (len(sp.bezier_points) - 1) != 0:
3933 # Formula to get the number of cuts that will make a curve of N
3934 # number of points have near to "minimum_points_num" points,
3935 # when subdividing with this number of cuts
3936 subdivide_cuts = int(
3937 (minimum_points_num - len(sp.bezier_points)) /
3938 (len(sp.bezier_points) - 1)
3939 ) + 1
3940 else:
3941 subdivide_cuts = 0
3943 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3944 bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts=subdivide_cuts)
3945 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
3946 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
3948 bpy.ops.object.duplicate('INVOKE_REGION_WIN')
3949 curves_duplicate_2 = bpy.context.object
3950 objects_to_delete.append(curves_duplicate_2)
3952 # Duplicate the duplicate and add Shrinkwrap to it, with the grease pencil strokes curve as target
3953 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
3954 curves_duplicate_2.select_set(True)
3955 bpy.context.view_layer.objects.active = curves_duplicate_2
3957 shrinkwrap = curves_duplicate_2.modifiers.new("", 'SHRINKWRAP')
3958 shrinkwrap.wrap_method = "NEAREST_VERTEX"
3959 shrinkwrap.target = GP_strokes_mesh
3960 bpy.ops.object.modifier_apply('INVOKE_REGION_WIN', modifier=shrinkwrap.name)
3962 # Get the distance of each vert from its original position to its position with Shrinkwrap
3963 nearest_points_coords = {}
3964 for st_idx in range(len(curves_duplicate_1.data.splines)):
3965 for bp_idx in range(len(curves_duplicate_1.data.splines[st_idx].bezier_points)):
3966 bp_1_co = curves_duplicate_1.matrix_world @ \
3967 curves_duplicate_1.data.splines[st_idx].bezier_points[bp_idx].co
3969 bp_2_co = curves_duplicate_2.matrix_world @ \
3970 curves_duplicate_2.data.splines[st_idx].bezier_points[bp_idx].co
3972 if bp_idx == 0:
3973 shortest_dist = (bp_1_co - bp_2_co).length
3974 nearest_points_coords[st_idx] = ("%.4f" % bp_2_co[0],
3975 "%.4f" % bp_2_co[1],
3976 "%.4f" % bp_2_co[2])
3978 dist = (bp_1_co - bp_2_co).length
3980 if dist < shortest_dist:
3981 nearest_points_coords[st_idx] = ("%.4f" % bp_2_co[0],
3982 "%.4f" % bp_2_co[1],
3983 "%.4f" % bp_2_co[2])
3984 shortest_dist = dist
3986 # Get all coords of GP strokes points, for comparison
3987 GP_strokes_coords = []
3988 for st_idx in range(len(GP_strokes_curve.data.splines)):
3989 GP_strokes_coords.append(
3990 [("%.4f" % x if "%.4f" % x != "-0.00" else "0.00",
3991 "%.4f" % y if "%.4f" % y != "-0.00" else "0.00",
3992 "%.4f" % z if "%.4f" % z != "-0.00" else "0.00") for
3993 x, y, z in [bp.co for bp in GP_strokes_curve.data.splines[st_idx].bezier_points]]
3996 # Check the point of the GP strokes with the same coords as
3997 # the nearest points of the curves (with shrinkwrap)
3999 # Dictionary with GP stroke index as index, and a list as value.
4000 # The list has as index the point index of the GP stroke
4001 # nearest to the spline, and as value the spline index
4002 GP_connection_points = {}
4003 for gp_st_idx in range(len(GP_strokes_coords)):
4004 GPvert_spline_relationship = {}
4006 for splines_st_idx in range(len(nearest_points_coords)):
4007 if nearest_points_coords[splines_st_idx] in GP_strokes_coords[gp_st_idx]:
4008 GPvert_spline_relationship[
4009 GP_strokes_coords[gp_st_idx].index(nearest_points_coords[splines_st_idx])
4010 ] = splines_st_idx
4012 GP_connection_points[gp_st_idx] = GPvert_spline_relationship
4014 # Get the splines new order
4015 splines_new_order = []
4016 for i in GP_connection_points:
4017 dict_keys = sorted(GP_connection_points[i].keys()) # Sort dictionaries by key
4019 for k in dict_keys:
4020 splines_new_order.append(GP_connection_points[i][k])
4022 # Reorder
4023 curve_original_name = self.main_curve.name
4025 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
4026 self.main_curve.select_set(True)
4027 bpy.context.view_layer.objects.active = self.main_curve
4029 self.main_curve.name = "SURFSKIO_CRV_ORD"
4031 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4032 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
4033 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4035 for _sp_idx in range(len(self.main_curve.data.splines)):
4036 self.main_curve.data.splines[0].bezier_points[0].select_control_point = True
4038 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4039 bpy.ops.curve.separate('EXEC_REGION_WIN')
4040 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4042 # Get the names of the separated splines objects in the original order
4043 splines_unordered = {}
4044 for o in bpy.data.objects:
4045 if o.name.find("SURFSKIO_CRV_ORD") != -1:
4046 spline_order_string = o.name.partition(".")[2]
4048 if spline_order_string != "" and int(spline_order_string) > 0:
4049 spline_order_index = int(spline_order_string) - 1
4050 splines_unordered[spline_order_index] = o.name
4052 # Join all splines objects in final order
4053 for order_idx in splines_new_order:
4054 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
4055 bpy.data.objects[splines_unordered[order_idx]].select_set(True)
4056 bpy.data.objects["SURFSKIO_CRV_ORD"].select_set(True)
4057 bpy.context.view_layer.objects.active = bpy.data.objects["SURFSKIO_CRV_ORD"]
4059 bpy.ops.object.join('INVOKE_REGION_WIN')
4061 # Go back to the original name of the curves object.
4062 bpy.context.object.name = curve_original_name
4064 # Delete all unused objects
4065 bpy.ops.object.delete({"selected_objects": objects_to_delete})
4067 bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
4068 bpy.data.objects[curve_original_name].select_set(True)
4069 bpy.context.view_layer.objects.active = bpy.data.objects[curve_original_name]
4071 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4072 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
4074 try:
4075 bpy.context.scene.bsurfaces.SURFSK_gpencil.data.layers.active.clear()
4076 except:
4077 pass
4080 return {"FINISHED"}
4082 def invoke(self, context, event):
4083 self.main_curve = bpy.context.object
4084 there_are_GP_strokes = False
4086 try:
4087 # Get the active grease pencil layer
4088 strokes_num = len(self.main_curve.grease_pencil.layers.active.active_frame.strokes)
4090 if strokes_num > 0:
4091 there_are_GP_strokes = True
4092 except:
4093 pass
4095 if there_are_GP_strokes:
4096 self.execute(context)
4097 self.report({'INFO'}, "Splines have been reordered")
4098 else:
4099 self.report({'WARNING'}, "Draw grease pencil strokes to connect splines")
4101 return {"FINISHED"}
4103 # ----------------------------
4104 # Set first points operator
4105 class CURVE_OT_SURFSK_first_points(Operator):
4106 bl_idname = "curve.surfsk_first_points"
4107 bl_label = "Bsurfaces set first points"
4108 bl_description = "Set the selected points as the first point of each spline"
4109 bl_options = {'REGISTER', 'UNDO'}
4111 def execute(self, context):
4112 splines_to_invert = []
4114 # Check non-cyclic splines to invert
4115 for i in range(len(self.main_curve.data.splines)):
4116 b_points = self.main_curve.data.splines[i].bezier_points
4118 if i not in self.cyclic_splines: # Only for non-cyclic splines
4119 if b_points[len(b_points) - 1].select_control_point:
4120 splines_to_invert.append(i)
4122 # Reorder points of cyclic splines, and set all handles to "Automatic"
4124 # Check first selected point
4125 cyclic_splines_new_first_pt = {}
4126 for i in self.cyclic_splines:
4127 sp = self.main_curve.data.splines[i]
4129 for t in range(len(sp.bezier_points)):
4130 bp = sp.bezier_points[t]
4131 if bp.select_control_point or bp.select_right_handle or bp.select_left_handle:
4132 cyclic_splines_new_first_pt[i] = t
4133 break # To take only one if there are more
4135 # Reorder
4136 for spline_idx in cyclic_splines_new_first_pt:
4137 sp = self.main_curve.data.splines[spline_idx]
4139 spline_old_coords = []
4140 for bp_old in sp.bezier_points:
4141 coords = (bp_old.co[0], bp_old.co[1], bp_old.co[2])
4143 left_handle_type = str(bp_old.handle_left_type)
4144 left_handle_length = float(bp_old.handle_left.length)
4145 left_handle_xyz = (
4146 float(bp_old.handle_left.x),
4147 float(bp_old.handle_left.y),
4148 float(bp_old.handle_left.z)
4150 right_handle_type = str(bp_old.handle_right_type)
4151 right_handle_length = float(bp_old.handle_right.length)
4152 right_handle_xyz = (
4153 float(bp_old.handle_right.x),
4154 float(bp_old.handle_right.y),
4155 float(bp_old.handle_right.z)
4157 spline_old_coords.append(
4158 [coords, left_handle_type,
4159 right_handle_type, left_handle_length,
4160 right_handle_length, left_handle_xyz,
4161 right_handle_xyz]
4164 for t in range(len(sp.bezier_points)):
4165 bp = sp.bezier_points
4167 if t + cyclic_splines_new_first_pt[spline_idx] + 1 <= len(bp) - 1:
4168 new_index = t + cyclic_splines_new_first_pt[spline_idx] + 1
4169 else:
4170 new_index = t + cyclic_splines_new_first_pt[spline_idx] + 1 - len(bp)
4172 bp[t].co = Vector(spline_old_coords[new_index][0])
4174 bp[t].handle_left.length = spline_old_coords[new_index][3]
4175 bp[t].handle_right.length = spline_old_coords[new_index][4]
4177 bp[t].handle_left_type = "FREE"
4178 bp[t].handle_right_type = "FREE"
4180 bp[t].handle_left.x = spline_old_coords[new_index][5][0]
4181 bp[t].handle_left.y = spline_old_coords[new_index][5][1]
4182 bp[t].handle_left.z = spline_old_coords[new_index][5][2]
4184 bp[t].handle_right.x = spline_old_coords[new_index][6][0]
4185 bp[t].handle_right.y = spline_old_coords[new_index][6][1]
4186 bp[t].handle_right.z = spline_old_coords[new_index][6][2]
4188 bp[t].handle_left_type = spline_old_coords[new_index][1]
4189 bp[t].handle_right_type = spline_old_coords[new_index][2]
4191 # Invert the non-cyclic splines designated above
4192 for i in range(len(splines_to_invert)):
4193 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
4195 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4196 self.main_curve.data.splines[splines_to_invert[i]].bezier_points[0].select_control_point = True
4197 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4199 bpy.ops.curve.switch_direction()
4201 bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
4203 # Keep selected the first vert of each spline
4204 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4205 for i in range(len(self.main_curve.data.splines)):
4206 if not self.main_curve.data.splines[i].use_cyclic_u:
4207 bp = self.main_curve.data.splines[i].bezier_points[0]
4208 else:
4209 bp = self.main_curve.data.splines[i].bezier_points[
4210 len(self.main_curve.data.splines[i].bezier_points) - 1
4213 bp.select_control_point = True
4214 bp.select_right_handle = True
4215 bp.select_left_handle = True
4217 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4219 return {'FINISHED'}
4221 def invoke(self, context, event):
4222 self.main_curve = bpy.context.object
4224 # Check if all curves are Bezier, and detect which ones are cyclic
4225 self.cyclic_splines = []
4226 for i in range(len(self.main_curve.data.splines)):
4227 if self.main_curve.data.splines[i].type != "BEZIER":
4228 self.report({'WARNING'}, "All splines must be Bezier type")
4230 return {'CANCELLED'}
4231 else:
4232 if self.main_curve.data.splines[i].use_cyclic_u:
4233 self.cyclic_splines.append(i)
4235 self.execute(context)
4236 self.report({'INFO'}, "First points have been set")
4238 return {'FINISHED'}
4241 # Add-ons Preferences Update Panel
4243 # Define Panel classes for updating
4244 panels = (
4245 VIEW3D_PT_tools_SURFSK_mesh,
4246 VIEW3D_PT_tools_SURFSK_curve
4250 def conver_gpencil_to_curve(self, context, pencil, type):
4251 newCurve = bpy.data.curves.new(type + '_curve', type='CURVE')
4252 newCurve.dimensions = '3D'
4253 CurveObject = object_utils.object_data_add(context, newCurve)
4254 error = False
4256 if type == 'GPensil':
4257 try:
4258 strokes = pencil.data.layers.active.active_frame.strokes
4259 except:
4260 error = True
4261 CurveObject.location = pencil.location
4262 CurveObject.rotation_euler = pencil.rotation_euler
4263 CurveObject.scale = pencil.scale
4264 elif type == 'Annotation':
4265 try:
4266 strokes = bpy.context.annotation_data.layers.active.active_frame.strokes
4267 except:
4268 error = True
4269 CurveObject.location = (0.0, 0.0, 0.0)
4270 CurveObject.rotation_euler = (0.0, 0.0, 0.0)
4271 CurveObject.scale = (1.0, 1.0, 1.0)
4273 if not error:
4274 for i, _stroke in enumerate(strokes):
4275 stroke_points = strokes[i].points
4276 data_list = [ (point.co.x, point.co.y, point.co.z)
4277 for point in stroke_points ]
4278 points_to_add = len(data_list)-1
4280 flat_list = []
4281 for point in data_list:
4282 flat_list.extend(point)
4284 spline = newCurve.splines.new(type='BEZIER')
4285 spline.bezier_points.add(points_to_add)
4286 spline.bezier_points.foreach_set("co", flat_list)
4288 for point in spline.bezier_points:
4289 point.handle_left_type="AUTO"
4290 point.handle_right_type="AUTO"
4292 return CurveObject
4293 else:
4294 return None
4297 def update_panel(self, context):
4298 message = "Bsurfaces GPL Edition: Updating Panel locations has failed"
4299 try:
4300 for panel in panels:
4301 if "bl_rna" in panel.__dict__:
4302 bpy.utils.unregister_class(panel)
4304 for panel in panels:
4305 category = context.preferences.addons[__name__].preferences.category
4306 if category != 'Tool':
4307 panel.bl_category = context.preferences.addons[__name__].preferences.category
4308 else:
4309 context.preferences.addons[__name__].preferences.category = 'Edit'
4310 panel.bl_category = 'Edit'
4311 raise ValueError("You can not install add-ons in the Tool panel")
4312 bpy.utils.register_class(panel)
4314 except Exception as e:
4315 print("\n[{}]\n{}\n\nError:\n{}".format(__name__, message, e))
4316 pass
4318 def makeMaterial(name, diffuse):
4320 if name in bpy.data.materials:
4321 material = bpy.data.materials[name]
4322 material.diffuse_color = diffuse
4323 else:
4324 material = bpy.data.materials.new(name)
4325 material.diffuse_color = diffuse
4327 return material
4329 def update_mesh(self, context):
4330 try:
4331 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
4332 bpy.ops.object.select_all(action='DESELECT')
4333 bpy.context.view_layer.update()
4334 global global_mesh_object
4335 global_mesh_object = bpy.context.scene.bsurfaces.SURFSK_mesh.name
4336 bpy.data.objects[global_mesh_object].select_set(True)
4337 bpy.context.view_layer.objects.active = bpy.data.objects[global_mesh_object]
4338 except:
4339 print("Select mesh object")
4341 def update_gpencil(self, context):
4342 try:
4343 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
4344 bpy.ops.object.select_all(action='DESELECT')
4345 bpy.context.view_layer.update()
4346 global global_gpencil_object
4347 global_gpencil_object = bpy.context.scene.bsurfaces.SURFSK_gpencil.name
4348 bpy.data.objects[global_gpencil_object].select_set(True)
4349 bpy.context.view_layer.objects.active = bpy.data.objects[global_gpencil_object]
4350 except:
4351 print("Select gpencil object")
4353 def update_curve(self, context):
4354 try:
4355 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
4356 bpy.ops.object.select_all(action='DESELECT')
4357 bpy.context.view_layer.update()
4358 global global_curve_object
4359 global_curve_object = bpy.context.scene.bsurfaces.SURFSK_curve.name
4360 bpy.data.objects[global_curve_object].select_set(True)
4361 bpy.context.view_layer.objects.active = bpy.data.objects[global_curve_object]
4362 except:
4363 print("Select curve object")
4365 def update_shade_smooth(self, context):
4366 try:
4367 global global_shade_smooth
4368 global_shade_smooth = bpy.context.scene.bsurfaces.SURFSK_shade_smooth
4370 contex_mode = bpy.context.mode
4372 if bpy.ops.object.mode_set.poll():
4373 bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
4375 bpy.ops.object.select_all(action='DESELECT')
4376 global global_mesh_object
4377 global_mesh_object = bpy.context.scene.bsurfaces.SURFSK_mesh.name
4378 bpy.data.objects[global_mesh_object].select_set(True)
4380 if global_shade_smooth:
4381 bpy.ops.object.shade_smooth()
4382 else:
4383 bpy.ops.object.shade_flat()
4385 if contex_mode == "EDIT_MESH":
4386 bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
4388 except:
4389 print("Select mesh object")
4392 class BsurfPreferences(AddonPreferences):
4393 # this must match the addon name, use '__package__'
4394 # when defining this in a submodule of a python package.
4395 bl_idname = __name__
4397 category: StringProperty(
4398 name="Tab Category",
4399 description="Choose a name for the category of the panel",
4400 default="Edit",
4401 update=update_panel
4404 def draw(self, context):
4405 layout = self.layout
4407 row = layout.row()
4408 col = row.column()
4409 col.label(text="Tab Category:")
4410 col.prop(self, "category", text="")
4412 # Properties
4413 class BsurfacesProps(PropertyGroup):
4414 SURFSK_guide: EnumProperty(
4415 name="Guide:",
4416 items=[
4417 ('Annotation', 'Annotation', 'Annotation'),
4418 ('GPencil', 'GPencil', 'GPencil'),
4419 ('Curve', 'Curve', 'Curve')
4421 default="Annotation"
4423 SURFSK_edges_U: IntProperty(
4424 name="Cross",
4425 description="Number of face-loops crossing the strokes",
4426 default=5,
4427 min=1,
4428 max=200
4430 SURFSK_edges_V: IntProperty(
4431 name="Follow",
4432 description="Number of face-loops following the strokes",
4433 default=1,
4434 min=1,
4435 max=200
4437 SURFSK_cyclic_cross: BoolProperty(
4438 name="Cyclic Cross",
4439 description="Make cyclic the face-loops crossing the strokes",
4440 default=False
4442 SURFSK_cyclic_follow: BoolProperty(
4443 name="Cyclic Follow",
4444 description="Make cyclic the face-loops following the strokes",
4445 default=False
4447 SURFSK_keep_strokes: BoolProperty(
4448 name="Keep strokes",
4449 description="Keeps the sketched strokes or curves after adding the surface",
4450 default=False
4452 SURFSK_automatic_join: BoolProperty(
4453 name="Automatic join",
4454 description="Join automatically vertices of either surfaces "
4455 "generated by crosshatching, or from the borders of closed shapes",
4456 default=True
4458 SURFSK_loops_on_strokes: BoolProperty(
4459 name="Loops on strokes",
4460 description="Make the loops match the paths of the strokes",
4461 default=True
4463 SURFSK_precision: IntProperty(
4464 name="Precision",
4465 description="Precision level of the surface calculation",
4466 default=2,
4467 min=1,
4468 max=100
4470 SURFSK_mesh: PointerProperty(
4471 name="Mesh of BSurface",
4472 type=bpy.types.Object,
4473 description="Mesh of BSurface",
4474 update=update_mesh,
4476 SURFSK_gpencil: PointerProperty(
4477 name="GreasePencil object",
4478 type=bpy.types.Object,
4479 description="GreasePencil object",
4480 update=update_gpencil,
4482 SURFSK_curve: PointerProperty(
4483 name="Curve object",
4484 type=bpy.types.Object,
4485 description="Curve object",
4486 update=update_curve,
4488 SURFSK_shade_smooth: BoolProperty(
4489 name="Shade smooth",
4490 description="Render and display faces smooth, using interpolated Vertex Normals",
4491 default=False,
4492 update=update_shade_smooth,
4495 classes = (
4496 MESH_OT_SURFSK_init,
4497 MESH_OT_SURFSK_add_modifiers,
4498 MESH_OT_SURFSK_add_surface,
4499 MESH_OT_SURFSK_edit_surface,
4500 GPENCIL_OT_SURFSK_add_strokes,
4501 GPENCIL_OT_SURFSK_edit_strokes,
4502 GPENCIL_OT_SURFSK_strokes_to_curves,
4503 GPENCIL_OT_SURFSK_annotation_to_curves,
4504 GPENCIL_OT_SURFSK_add_annotation,
4505 CURVE_OT_SURFSK_edit_curve,
4506 CURVE_OT_SURFSK_reorder_splines,
4507 CURVE_OT_SURFSK_first_points,
4508 BsurfPreferences,
4509 BsurfacesProps
4512 def register():
4513 for cls in classes:
4514 bpy.utils.register_class(cls)
4516 for panel in panels:
4517 bpy.utils.register_class(panel)
4519 bpy.types.Scene.bsurfaces = PointerProperty(type=BsurfacesProps)
4520 update_panel(None, bpy.context)
4522 def unregister():
4523 for panel in panels:
4524 bpy.utils.unregister_class(panel)
4526 for cls in classes:
4527 bpy.utils.unregister_class(cls)
4529 del bpy.types.Scene.bsurfaces
4531 if __name__ == "__main__":
4532 register()