Extensions: change the constant for the complete status
[blender-addons-contrib.git] / mocap / mocap_tools.py
blob04a4261370d7814c770202ed75df902fc590f277
1 # ##### BEGIN GPL LICENSE BLOCK #####
3 # This program is free software; you can redistribute it and/or
4 # modify it under the terms of the GNU General Public License
5 # as published by the Free Software Foundation; either version 2
6 # of the License, or (at your option) any later version.
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
13 # You should have received a copy of the GNU General Public License
14 # along with this program; if not, write to the Free Software Foundation,
15 # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 # ##### END GPL LICENSE BLOCK #####
19 from math import sqrt, radians, floor, ceil
20 import bpy
21 import time
22 from mathutils import Vector, Matrix
25 # A Python implementation of n sized Vectors.
26 # Mathutils has a max size of 4, and we need at least 5 for Simplify Curves and even more for Cross Correlation.
27 # Vector utility functions
28 class NdVector:
29 vec = []
31 def __init__(self, vec):
32 self.vec = vec[:]
34 def __len__(self):
35 return len(self.vec)
37 def __mul__(self, otherMember):
38 # assume anything with list access is a vector
39 if isinstance(otherMember, NdVector):
40 a = self.vec
41 b = otherMember.vec
42 n = len(self)
43 return sum([a[i] * b[i] for i in range(n)])
44 else:
45 # int/float
46 return NdVector([otherMember * x for x in self.vec])
48 def __sub__(self, otherVec):
49 a = self.vec
50 b = otherVec.vec
51 n = len(self)
52 return NdVector([a[i] - b[i] for i in range(n)])
54 def __add__(self, otherVec):
55 a = self.vec
56 b = otherVec.vec
57 n = len(self)
58 return NdVector([a[i] + b[i] for i in range(n)])
60 def __div__(self, scalar):
61 return NdVector([x / scalar for x in self.vec])
63 @property
64 def length(self):
65 return sqrt(self * self)
67 @property
68 def lengthSq(self):
69 return (self * self)
71 def normalize(self):
72 len = self.length
73 if len > 0:
74 self.vec = [x / len for x in self.vec]
76 def copy(self):
77 return NdVector(self.vec)
79 def __getitem__(self, i):
80 return self.vec[i]
82 @property
83 def x(self):
84 return self.vec[0]
86 @property
87 def y(self):
88 return self.vec[1]
90 def resize_2d(self):
91 return Vector((self.x, self.y))
94 #Sampled Data Point class for Simplify Curves
95 class dataPoint:
96 index = 0
97 # x,y1,y2,y3 coordinate of original point
98 co = NdVector((0, 0, 0, 0, 0))
99 #position according to parametric view of original data, [0,1] range
100 u = 0
101 #use this for anything
102 temp = 0
104 def __init__(self, index, co, u=0):
105 self.index = index
106 self.co = co
107 self.u = u
110 # Helper to convert from a sampled fcurve back to editable keyframes one.
111 def make_editable_fcurves(fcurves):
112 for fc in fcurves:
113 if fc.sampled_points:
114 fc.convert_to_keyframes(floor(fc.sampled_points[0].co[0]), ceil(fc.sampled_points[-1].co[0]) + 1)
117 #Cross Correlation Function
118 #http://en.wikipedia.org/wiki/Cross_correlation
119 #IN: curvesA, curvesB - bpy_collection/list of fcurves to analyze. Auto-Correlation is when they are the same.
120 # margin - When searching for the best "start" frame, how large a neighborhood of frames should we inspect (similar to epsilon in Calculus)
121 #OUT: startFrame, length of new anim, and curvesA
122 def crossCorrelationMatch(curvesA, curvesB, margin):
123 dataA = []
124 dataB = []
125 start = int(max(curvesA[0].range()[0], curvesB[0].range()[0]))
126 end = int(min(curvesA[0].range()[1], curvesB[0].range()[1]))
128 #transfer all fcurves data on each frame to a single NdVector.
129 for i in range(1, end):
130 vec = []
131 for fcurve in curvesA:
132 if fcurve.data_path in [otherFcurve.data_path for otherFcurve in curvesB]:
133 vec.append(fcurve.evaluate(i))
134 dataA.append(NdVector(vec))
135 vec = []
136 for fcurve in curvesB:
137 if fcurve.data_path in [otherFcurve.data_path for otherFcurve in curvesA]:
138 vec.append(fcurve.evaluate(i))
139 dataB.append(NdVector(vec))
141 #Comparator for Cross Correlation. "Classic" implementation uses dot product, as do we.
142 def comp(a, b):
143 return a * b
145 #Create Rxy, which holds the Cross Correlation data.
146 N = len(dataA)
147 Rxy = [0.0] * N
148 for i in range(N):
149 for j in range(i, min(i + N, N)):
150 Rxy[i] += comp(dataA[j], dataB[j - i])
151 for j in range(i):
152 Rxy[i] += comp(dataA[j], dataB[j - i + N])
153 Rxy[i] /= float(N)
155 #Find the Local maximums in the Cross Correlation data via numerical derivative.
156 def LocalMaximums(Rxy):
157 Rxyd = [Rxy[i] - Rxy[i - 1] for i in range(1, len(Rxy))]
158 maxs = []
159 for i in range(1, len(Rxyd) - 1):
160 a = Rxyd[i - 1]
161 b = Rxyd[i]
162 #sign change (zerocrossing) at point i, denoting max point (only)
163 if (a >= 0 and b < 0) or (a < 0 and b >= 0):
164 maxs.append((i, max(Rxy[i], Rxy[i - 1])))
165 return [x[0] for x in maxs]
166 #~ return max(maxs, key=lambda x: x[1])[0]
168 #flms - the possible offsets of the first part of the animation. In Auto-Corr, this is the length of the loop.
169 flms = LocalMaximums(Rxy[0:int(len(Rxy))])
170 ss = []
172 #for every local maximum, find the best one - i.e. also has the best start frame.
173 for flm in flms:
174 diff = []
176 for i in range(len(dataA) - flm):
177 diff.append((dataA[i] - dataB[i + flm]).lengthSq)
179 def lowerErrorSlice(diff, e):
180 #index, error at index
181 bestSlice = (0, 100000)
182 for i in range(e, len(diff) - e):
183 errorSlice = sum(diff[i - e:i + e + 1])
184 if errorSlice < bestSlice[1]:
185 bestSlice = (i, errorSlice, flm)
186 return bestSlice
188 s = lowerErrorSlice(diff, margin)
189 ss.append(s)
191 #Find the best result and return it.
192 ss.sort(key=lambda x: x[1])
193 return ss[0][2], ss[0][0], dataA
196 #Uses auto correlation (cross correlation of the same set of curves) and trims the active_object's fcurves
197 #Except for location curves (which in mocap tend to be not cyclic, e.g. a walk cycle forward)
198 #Transfers the fcurve data to a list of NdVector (length of list is number of fcurves), and calls the cross correlation function.
199 #Then trims the fcurve accordingly.
200 #IN: Nothing, set the object you want as active and call. Assumes object has animation_data.action!
201 #OUT: Trims the object's fcurves (except location curves).
202 def autoloop_anim():
203 context = bpy.context
204 obj = context.active_object
206 def locCurve(x):
207 x.data_path == "location"
209 fcurves = [x for x in obj.animation_data.action.fcurves if not locCurve(x)]
211 margin = 10
213 flm, s, data = crossCorrelationMatch(fcurves, fcurves, margin)
214 loop = data[s:s + flm]
216 #performs blending with a root falloff on the seam's neighborhood to ensure good tiling.
217 for i in range(1, margin + 1):
218 w1 = sqrt(float(i) / margin)
219 loop[-i] = (loop[-i] * w1) + (loop[0] * (1 - w1))
221 for curve in fcurves:
222 pts = curve.keyframe_points
223 for i in range(len(pts) - 1, -1, -1):
224 pts.remove(pts[i])
226 for c, curve in enumerate(fcurves):
227 pts = curve.keyframe_points
228 for i in range(len(loop)):
229 pts.insert(i + 2, loop[i][c])
231 context.scene.frame_end = flm
234 #simplifyCurves: performs the bulk of the samples to bezier conversion.
235 #IN: curveGroup - which can be a collection of singleFcurves, or grouped (via nested lists) .
236 # error - threshold of permittable error (max distance) of the new beziers to the original data
237 # reparaError - threshold of error where we should try to fix the parameterization rather than split the existing curve. > error, usually by a small constant factor for best performance.
238 # maxIterations - maximum number of iterations of reparameterizations we should attempt. (Newton-Rahpson is not guaranteed to converge, so this is needed).
239 # group_mode - boolean, indicating whether we should place bezier keyframes on the same x (frame), or optimize each individual curve.
240 #OUT: None. Deletes the existing curves and creates the new beziers.
241 def simplifyCurves(curveGroup, error, reparaError, maxIterations, group_mode):
242 #Calculates the unit tangent of point v
243 def unitTangent(v, data_pts):
244 tang = NdVector((0, 0, 0, 0, 0))
245 if v != 0:
246 #If it's not the first point, we can calculate a leftside tangent
247 tang += data_pts[v].co - data_pts[v - 1].co
248 if v != len(data_pts) - 1:
249 #If it's not the last point, we can calculate a rightside tangent
250 tang += data_pts[v + 1].co - data_pts[v].co
251 tang.normalize()
252 return tang
254 #assign parametric u value for each point in original data, via relative arc length
255 #http://en.wikipedia.org/wiki/Arc_length
256 def chordLength(data_pts, s, e):
257 totalLength = 0
258 for pt in data_pts[s:e + 1]:
259 i = pt.index
260 if i == s:
261 chordLength = 0
262 else:
263 chordLength = (data_pts[i].co - data_pts[i - 1].co).length
264 totalLength += chordLength
265 pt.temp = totalLength
266 for pt in data_pts[s:e + 1]:
267 if totalLength == 0:
268 print(s, e)
269 pt.u = (pt.temp / totalLength)
271 # get binomial coefficient lookup table, this function/table is only called with args
272 # (3,0),(3,1),(3,2),(3,3),(2,0),(2,1),(2,2)!
273 binomDict = {(3, 0): 1,
274 (3, 1): 3,
275 (3, 2): 3,
276 (3, 3): 1,
277 (2, 0): 1,
278 (2, 1): 2,
279 (2, 2): 1,
282 #value at pt t of a single bernstein Polynomial
283 def bernsteinPoly(n, i, t):
284 binomCoeff = binomDict[(n, i)]
285 return binomCoeff * pow(t, i) * pow(1 - t, n - i)
287 # fit a single cubic to data points in range [s(tart),e(nd)].
288 def fitSingleCubic(data_pts, s, e):
290 # A - matrix used for calculating C matrices for fitting
291 def A(i, j, s, e, t1, t2):
292 if j == 1:
293 t = t1
294 if j == 2:
295 t = t2
296 u = data_pts[i].u
297 return t * bernsteinPoly(3, j, u)
299 # X component, used for calculating X matrices for fitting
300 def xComponent(i, s, e):
301 di = data_pts[i].co
302 u = data_pts[i].u
303 v0 = data_pts[s].co
304 v3 = data_pts[e].co
305 a = v0 * bernsteinPoly(3, 0, u)
306 b = v0 * bernsteinPoly(3, 1, u)
307 c = v3 * bernsteinPoly(3, 2, u)
308 d = v3 * bernsteinPoly(3, 3, u)
309 return (di - (a + b + c + d))
311 t1 = unitTangent(s, data_pts)
312 t2 = unitTangent(e, data_pts)
313 c11 = sum([A(i, 1, s, e, t1, t2) * A(i, 1, s, e, t1, t2) for i in range(s, e + 1)])
314 c12 = sum([A(i, 1, s, e, t1, t2) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
315 c21 = c12
316 c22 = sum([A(i, 2, s, e, t1, t2) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
318 x1 = sum([xComponent(i, s, e) * A(i, 1, s, e, t1, t2) for i in range(s, e + 1)])
319 x2 = sum([xComponent(i, s, e) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
321 # calculate Determinate of the 3 matrices
322 det_cc = c11 * c22 - c21 * c12
323 det_cx = c11 * x2 - c12 * x1
324 det_xc = x1 * c22 - x2 * c12
326 # if matrix is not homogenous, fudge the data a bit
327 if det_cc == 0:
328 det_cc = 0.01
330 # alpha's are the correct offset for bezier handles
331 alpha0 = det_xc / det_cc # offset from right (first) point
332 alpha1 = det_cx / det_cc # offset from left (last) point
334 sRightHandle = data_pts[s].co.copy()
335 sTangent = t1 * abs(alpha0)
336 sRightHandle += sTangent # position of first pt's handle
337 eLeftHandle = data_pts[e].co.copy()
338 eTangent = t2 * abs(alpha1)
339 eLeftHandle += eTangent # position of last pt's handle.
341 # return a 4 member tuple representing the bezier
342 return (data_pts[s].co,
343 sRightHandle,
344 eLeftHandle,
345 data_pts[e].co)
347 # convert 2 given data points into a cubic bezier.
348 # handles are offset along the tangent at
349 # a 3rd of the length between the points.
350 def fitSingleCubic2Pts(data_pts, s, e):
351 alpha0 = alpha1 = (data_pts[s].co - data_pts[e].co).length / 3
353 sRightHandle = data_pts[s].co.copy()
354 sTangent = unitTangent(s, data_pts) * abs(alpha0)
355 sRightHandle += sTangent # position of first pt's handle
356 eLeftHandle = data_pts[e].co.copy()
357 eTangent = unitTangent(e, data_pts) * abs(alpha1)
358 eLeftHandle += eTangent # position of last pt's handle.
360 #return a 4 member tuple representing the bezier
361 return (data_pts[s].co,
362 sRightHandle,
363 eLeftHandle,
364 data_pts[e].co)
366 #evaluate bezier, represented by a 4 member tuple (pts) at point t.
367 def bezierEval(pts, t):
368 sumVec = NdVector((0, 0, 0, 0, 0))
369 for i in range(4):
370 sumVec += pts[i] * bernsteinPoly(3, i, t)
371 return sumVec
373 #calculate the highest error between bezier and original data
374 #returns the distance and the index of the point where max error occurs.
375 def maxErrorAmount(data_pts, bez, s, e):
376 maxError = 0
377 maxErrorPt = s
378 if e - s < 3:
379 return 0, None
380 for pt in data_pts[s:e + 1]:
381 bezVal = bezierEval(bez, pt.u)
382 normalize_error = pt.co.length
383 if normalize_error == 0:
384 normalize_error = 1
385 tmpError = (pt.co - bezVal).length / normalize_error
386 if tmpError >= maxError:
387 maxError = tmpError
388 maxErrorPt = pt.index
389 return maxError, maxErrorPt
391 #calculated bezier derivative at point t.
392 #That is, tangent of point t.
393 def getBezDerivative(bez, t):
394 n = len(bez) - 1
395 sumVec = NdVector((0, 0, 0, 0, 0))
396 for i in range(n - 1):
397 sumVec += (bez[i + 1] - bez[i]) * bernsteinPoly(n - 1, i, t)
398 return sumVec
400 #use Newton-Raphson to find a better parameterization of datapoints,
401 #one that minimizes the distance (or error)
402 # between bezier and original data.
403 def newtonRaphson(data_pts, s, e, bez):
404 for pt in data_pts[s:e + 1]:
405 if pt.index == s:
406 pt.u = 0
407 elif pt.index == e:
408 pt.u = 1
409 else:
410 u = pt.u
411 qu = bezierEval(bez, pt.u)
412 qud = getBezDerivative(bez, u)
413 #we wish to minimize f(u),
414 #the squared distance between curve and data
415 fu = (qu - pt.co).length ** 2
416 fud = (2 * (qu.x - pt.co.x) * (qud.x)) - (2 * (qu.y - pt.co.y) * (qud.y))
417 if fud == 0:
418 fu = 0
419 fud = 1
420 pt.u = pt.u - (fu / fud)
422 #Create data_pts, a list of dataPoint type, each is assigned index i, and an NdVector
423 def createDataPts(curveGroup, group_mode):
424 make_editable_fcurves(curveGroup if group_mode else (curveGroup,))
426 if group_mode:
427 print([x.data_path for x in curveGroup])
428 comp_cos = (0,) * (4 - len(curveGroup)) # We need to add that number of null cos to get our 5D vector.
429 kframes = sorted(set(kf.co.x for fc in curveGroup for kf in fc.keyframe_points))
430 data_pts = [dataPoint(i, NdVector((fra,) + tuple(fc.evaluate(fra) for fc in curveGroup) + comp_cos))
431 for i, fra in enumerate(kframes)]
432 else:
433 data_pts = [dataPoint(i, NdVector((kf.co.x, kf.co.y, 0, 0, 0)))
434 for i, kf in enumerate(curveGroup.keyframe_points)]
435 return data_pts
437 #Recursively fit cubic beziers to the data_pts between s and e
438 def fitCubic(data_pts, s, e):
439 # if there are less than 3 points, fit a single basic bezier
440 if e - s < 3:
441 bez = fitSingleCubic2Pts(data_pts, s, e)
442 else:
443 #if there are more, parameterize the points
444 # and fit a single cubic bezier
445 chordLength(data_pts, s, e)
446 bez = fitSingleCubic(data_pts, s, e)
448 #calculate max error and point where it occurs
449 maxError, maxErrorPt = maxErrorAmount(data_pts, bez, s, e)
450 #if error is small enough, reparameterization might be enough
451 if maxError < reparaError and maxError > error:
452 for i in range(maxIterations):
453 newtonRaphson(data_pts, s, e, bez)
454 if e - s < 3:
455 bez = fitSingleCubic2Pts(data_pts, s, e)
456 else:
457 bez = fitSingleCubic(data_pts, s, e)
459 #recalculate max error and point where it occurs
460 maxError, maxErrorPt = maxErrorAmount(data_pts, bez, s, e)
462 #repara wasn't enough, we need 2 beziers for this range.
463 #Split the bezier at point of maximum error
464 if maxError > error:
465 fitCubic(data_pts, s, maxErrorPt)
466 fitCubic(data_pts, maxErrorPt, e)
467 else:
468 #error is small enough, return the beziers.
469 beziers.append(bez)
470 return
472 # deletes the sampled points and creates beziers.
473 def createNewCurves(curveGroup, beziers, group_mode):
474 #remove all existing data points
475 if group_mode:
476 for fcurve in curveGroup:
477 for i in range(len(fcurve.keyframe_points) - 1, 0, -1):
478 fcurve.keyframe_points.remove(fcurve.keyframe_points[i], fast=True)
479 else:
480 fcurve = curveGroup
481 for i in range(len(fcurve.keyframe_points) - 1, 0, -1):
482 fcurve.keyframe_points.remove(fcurve.keyframe_points[i], fast=True)
484 #insert the calculated beziers to blender data.
485 if group_mode:
486 for fullbez in beziers:
487 for i, fcurve in enumerate(curveGroup):
488 bez = [Vector((vec[0], vec[i + 1])) for vec in fullbez]
489 newKey = fcurve.keyframe_points.insert(frame=bez[0].x, value=bez[0].y, options={'FAST'})
490 newKey.handle_right = (bez[1].x, bez[1].y)
492 newKey = fcurve.keyframe_points.insert(frame=bez[3].x, value=bez[3].y, options={'FAST'})
493 newKey.handle_left = (bez[2].x, bez[2].y)
494 else:
495 for bez in beziers:
496 for vec in bez:
497 vec.resize_2d()
498 newKey = fcurve.keyframe_points.insert(frame=bez[0].x, value=bez[0].y, options={'FAST'})
499 newKey.handle_right = (bez[1].x, bez[1].y)
501 newKey = fcurve.keyframe_points.insert(frame=bez[3].x, value=bez[3].y, options={'FAST'})
502 newKey.handle_left = (bez[2].x, bez[2].y)
504 # We used fast remove/insert, time to update the curves!
505 for fcurve in (curveGroup if group_mode else (curveGroup,)):
506 fcurve.update()
508 # indices are detached from data point's frame (x) value and
509 # stored in the dataPoint object, represent a range
511 data_pts = createDataPts(curveGroup, group_mode)
513 if not data_pts:
514 return
516 s = 0 # start
517 e = len(data_pts) - 1 # end
519 beziers = []
521 #begin the recursive fitting algorithm.
522 fitCubic(data_pts, s, e)
524 #remove old Fcurves and insert the new ones
525 createNewCurves(curveGroup, beziers, group_mode)
528 #Main function of simplification, which called by Operator
529 #IN:
530 # sel_opt- either "sel" (selected) or "all" for which curves to effect
531 # error- maximum error allowed, in fraction (20% = 0.0020, which is the default),
532 # i.e. divide by 10000 from percentage wanted.
533 # group_mode- boolean, to analyze each curve separately or in groups,
534 # where a group is all curves that effect the same property/RNA path
535 def fcurves_simplify(context, obj, sel_opt="all", error=0.002, group_mode=True):
536 # main vars
537 fcurves = obj.animation_data.action.fcurves
539 if sel_opt == "sel":
540 sel_fcurves = [fcurve for fcurve in fcurves if fcurve.select]
541 else:
542 sel_fcurves = fcurves[:]
544 #Error threshold for Newton Raphson reparamatizing
545 reparaError = error * 32
546 maxIterations = 16
548 if group_mode:
549 fcurveDict = {}
550 #this loop sorts all the fcurves into groups of 3 or 4,
551 #based on their RNA Data path, which corresponds to
552 #which property they effect
553 for curve in sel_fcurves:
554 if curve.data_path in fcurveDict: # if this bone has been added, append the curve to its list
555 fcurveDict[curve.data_path].append(curve)
556 else:
557 fcurveDict[curve.data_path] = [curve] # new bone, add a new dict value with this first curve
558 fcurveGroups = fcurveDict.values()
559 else:
560 fcurveGroups = sel_fcurves
562 if error > 0.00000:
563 #simplify every selected curve.
564 totalt = 0
565 for i, fcurveGroup in enumerate(fcurveGroups):
566 print("Processing curve " + str(i + 1) + "/" + str(len(fcurveGroups)))
567 t = time.clock()
568 simplifyCurves(fcurveGroup, error, reparaError, maxIterations, group_mode)
569 t = time.clock() - t
570 print(str(t)[:5] + " seconds to process last curve")
571 totalt += t
572 print(str(totalt)[:5] + " seconds, total time elapsed")
574 return
577 def detect_min_max(v):
579 Converted from MATLAB script at http://billauer.co.il/peakdet.html
581 Yields indices of peaks, i.e. local minima/maxima.
583 % Eli Billauer, 3.4.05 (Explicitly not copyrighted).
584 % This function is released to the public domain; Any use is allowed.
587 min_val, max_val = float('inf'), -float('inf')
589 check_max = True
591 for i, val in enumerate(v):
592 if val > max_val:
593 max_val = val
594 if val < min_val:
595 min_val = val
597 if check_max:
598 if val < max_val:
599 yield i
600 min_val = val
601 check_max = False
602 else:
603 if val > min_val:
604 yield i
605 max_val = val
606 check_max = True
609 def denoise(obj, fcurves):
611 Implementation of non-linear blur filter.
612 Finds spikes in the fcurve, and replaces spikes that are too big with the average of the surrounding keyframes.
614 make_editable_fcurves(fcurves)
616 for fcurve in fcurves:
617 org_pts = fcurve.keyframe_points[:]
619 for idx in detect_min_max(pt.co.y for pt in fcurve.keyframe_points[1:-1]):
620 # Find the neighbours
621 prev_pt = org_pts[idx - 1].co.y
622 next_pt = org_pts[idx + 1].co.y
623 this_pt = org_pts[idx]
625 # Check the distance from the min/max to the average of the surrounding points.
626 avg = (prev_pt + next_pt) / 2
627 is_peak = abs(this_pt.co.y - avg) > avg * 0.02
629 if is_peak:
630 diff = avg - fcurve.keyframe_points[idx].co.y
631 fcurve.keyframe_points[idx].co.y = avg
632 fcurve.keyframe_points[idx].handle_left.y += diff
633 fcurve.keyframe_points[idx].handle_right.y += diff
635 # Important to update the curve after modifying it!
636 fcurve.update()
639 # Receives armature, and rotations all bones by 90 degrees along the X axis
640 # This fixes the common axis issue BVH files have when importing.
641 # IN: Armature (bpy.types.Armature)
642 def rotate_fix_armature(arm_data):
643 global_matrix = Matrix.Rotation(radians(90), 4, "X")
644 bpy.ops.object.mode_set(mode='EDIT', toggle=False)
645 #disconnect all bones for ease of global rotation
646 connectedBones = []
647 for bone in arm_data.edit_bones:
648 if bone.use_connect:
649 connectedBones.append(bone.name)
650 bone.use_connect = False
652 #rotate all the bones around their center
653 for bone in arm_data.edit_bones:
654 bone.transform(global_matrix)
656 #reconnect the bones
657 for bone in connectedBones:
658 arm_data.edit_bones[bone].use_connect = True
659 bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
662 #Roughly scales the performer armature to match the enduser armature
663 #IN: perfromer_obj, enduser_obj, Blender objects whose .data is an armature.
664 def scale_fix_armature(performer_obj, enduser_obj):
665 perf_bones = performer_obj.data.bones
666 end_bones = enduser_obj.data.bones
668 def calculateBoundingRadius(bones):
669 # Calculate the average position of each bone
670 center = sum((bone.head_local for bone in bones), Vector())
671 center /= len(bones)
673 # The radius is defined as the max distance from the center.
674 radius = max((bone.head_local - center).length for bone in bones)
675 return radius
677 perf_rad = calculateBoundingRadius(performer_obj.data.bones)
678 end_rad = calculateBoundingRadius(enduser_obj.data.bones)
680 factor = end_rad / perf_rad
681 performer_obj.scale = factor * Vector((1, 1, 1))
684 #Guess Mapping
685 #Given a performer and enduser armature, attempts to guess the hierarchy mapping
686 def guessMapping(performer_obj, enduser_obj):
687 perf_bones = performer_obj.data.bones
688 end_bones = enduser_obj.data.bones
690 root = perf_bones[0]
692 def findBoneSide(bone):
693 if "Left" in bone:
694 return "Left", bone.replace("Left", "").lower().replace(".", "")
695 if "Right" in bone:
696 return "Right", bone.replace("Right", "").lower().replace(".", "")
697 if "L" in bone:
698 return "Left", bone.replace("Left", "").lower().replace(".", "")
699 if "R" in bone:
700 return "Right", bone.replace("Right", "").lower().replace(".", "")
701 return "", bone
703 def nameMatch(bone_a, bone_b):
704 # nameMatch - receives two strings, returns 2 if they are relatively the same, 1 if they are the same but R and L and 0 if no match at all
705 side_a, noside_a = findBoneSide(bone_a)
706 side_b, noside_b = findBoneSide(bone_b)
707 if side_a == side_b:
708 if noside_a in noside_b or noside_b in noside_a:
709 return 2
710 else:
711 if noside_a in noside_b or noside_b in noside_a:
712 return 1
713 return 0
715 def guessSingleMapping(perf_bone):
716 possible_bones = [end_bones[0]]
718 while possible_bones:
719 for end_bone in possible_bones:
720 match = nameMatch(perf_bone.name, end_bone.name)
721 if match == 2 and not perf_bone.map:
722 perf_bone.map = end_bone.name
723 #~ elif match == 1 and not perf_bone.map:
724 #~ oppo = perf_bones[oppositeBone(perf_bone)].map
725 # if oppo:
726 # perf_bone = oppo
727 newPossibleBones = []
728 for end_bone in possible_bones:
729 newPossibleBones += list(end_bone.children)
730 possible_bones = newPossibleBones
732 for child in perf_bone.children:
733 guessSingleMapping(child)
735 guessSingleMapping(root)
738 # Creates limit rotation constraints on the enduser armature based on range of motion (max min of fcurves) of the performer.
739 # IN: context (bpy.context, etc.), and 2 blender objects which are armatures
740 # OUT: creates the limit constraints.
741 def limit_dof(context, performer_obj, enduser_obj):
742 limitDict = {}
743 perf_bones = [bone for bone in performer_obj.pose.bones if bone.bone.map]
744 c_frame = context.scene.frame_current
745 for bone in perf_bones:
746 limitDict[bone.bone.map] = [1000, 1000, 1000, -1000, -1000, -1000]
747 for t in range(context.scene.frame_start, context.scene.frame_end):
748 context.scene.frame_set(t)
749 for bone in perf_bones:
750 end_bone = enduser_obj.pose.bones[bone.bone.map]
751 bake_matrix = bone.matrix
752 rest_matrix = end_bone.bone.matrix_local
754 if end_bone.parent and end_bone.bone.use_inherit_rotation:
755 srcParent = bone.parent
756 parent_mat = srcParent.matrix
757 parent_rest = end_bone.parent.bone.matrix_local
758 parent_rest_inv = parent_rest.inverted()
759 parent_mat_inv = parent_mat.inverted()
760 bake_matrix = parent_mat_inv @ bake_matrix
761 rest_matrix = parent_rest_inv @ rest_matrix
763 rest_matrix_inv = rest_matrix.inverted()
764 bake_matrix = rest_matrix_inv @ bake_matrix
766 mat = bake_matrix
767 euler = mat.to_euler()
768 limitDict[bone.bone.map][0] = min(limitDict[bone.bone.map][0], euler.x)
769 limitDict[bone.bone.map][1] = min(limitDict[bone.bone.map][1], euler.y)
770 limitDict[bone.bone.map][2] = min(limitDict[bone.bone.map][2], euler.z)
771 limitDict[bone.bone.map][3] = max(limitDict[bone.bone.map][3], euler.x)
772 limitDict[bone.bone.map][4] = max(limitDict[bone.bone.map][4], euler.y)
773 limitDict[bone.bone.map][5] = max(limitDict[bone.bone.map][5], euler.z)
774 for bone in enduser_obj.pose.bones:
775 existingConstraint = [constraint for constraint in bone.constraints if constraint.name == "DOF Limitation"]
776 if existingConstraint:
777 bone.constraints.remove(existingConstraint[0])
778 end_bones = [bone for bone in enduser_obj.pose.bones if bone.name in limitDict.keys()]
779 for bone in end_bones:
780 #~ if not bone.is_in_ik_chain:
781 newCons = bone.constraints.new("LIMIT_ROTATION")
782 newCons.name = "DOF Limitation"
783 newCons.owner_space = "LOCAL"
784 newCons.min_x, newCons.min_y, newCons.min_z, newCons.max_x, newCons.max_y, newCons.max_z = limitDict[bone.name]
785 newCons.use_limit_x = True
786 newCons.use_limit_y = True
787 newCons.use_limit_z = True
788 context.scene.frame_set(c_frame)
791 # Removes the constraints that were added by limit_dof on the enduser_obj
792 def limit_dof_toggle_off(context, enduser_obj):
793 for bone in enduser_obj.pose.bones:
794 existingConstraint = [constraint for constraint in bone.constraints if constraint.name == "DOF Limitation"]
795 if existingConstraint:
796 bone.constraints.remove(existingConstraint[0])
799 # Reparameterizes a blender path via keyframing it's eval_time to match a stride_object's forward velocity.
800 # IN: Context, stride object (blender object with location keyframes), path object.
801 def path_editing(context, stride_obj, path):
802 y_fcurve = [fcurve for fcurve in stride_obj.animation_data.action.fcurves if fcurve.data_path == "location"][1]
803 s, e = context.scene.frame_start, context.scene.frame_end # y_fcurve.range()
804 s = int(s)
805 e = int(e)
806 y_s = y_fcurve.evaluate(s)
807 y_e = y_fcurve.evaluate(e)
808 direction = (y_e - y_s) / abs(y_e - y_s)
809 existing_cons = [constraint for constraint in stride_obj.constraints if constraint.type == "FOLLOW_PATH"]
810 for cons in existing_cons:
811 stride_obj.constraints.remove(cons)
812 path_cons = stride_obj.constraints.new("FOLLOW_PATH")
813 if direction < 0:
814 path_cons.forward_axis = "TRACK_NEGATIVE_Y"
815 else:
816 path_cons.forward_axis = "FORWARD_Y"
817 path_cons.target = path
818 path_cons.use_curve_follow = True
819 path.data.path_duration = e - s
820 try:
821 path.data.animation_data.action.fcurves
822 except AttributeError:
823 path.data.keyframe_insert("eval_time", frame=0)
824 eval_time_fcurve = [fcurve for fcurve in path.data.animation_data.action.fcurves if fcurve.data_path == "eval_time"]
825 eval_time_fcurve = eval_time_fcurve[0]
826 totalLength = 0
827 parameterization = {}
828 print("evaluating curve")
829 for t in range(s, e - 1):
830 if s == t:
831 chordLength = 0
832 else:
833 chordLength = (y_fcurve.evaluate(t) - y_fcurve.evaluate(t + 1))
834 totalLength += chordLength
835 parameterization[t] = totalLength
836 for t in range(s + 1, e - 1):
837 if totalLength == 0:
838 print("no forward motion")
839 parameterization[t] /= totalLength
840 parameterization[t] *= e - s
841 parameterization[e] = e - s
842 for t in parameterization.keys():
843 eval_time_fcurve.keyframe_points.insert(frame=t, value=parameterization[t])
844 y_fcurve.mute = True
845 print("finished path editing")
848 #Animation Stitching
849 #Stitches two retargeted animations together via NLA settings.
850 #IN: enduser_obj, a blender armature that has had two retargets applied.
851 def anim_stitch(context, enduser_obj):
852 stitch_settings = enduser_obj.data.stitch_settings
853 action_1 = stitch_settings.first_action
854 action_2 = stitch_settings.second_action
855 if stitch_settings.stick_bone != "":
856 selected_bone = enduser_obj.pose.bones[stitch_settings.stick_bone]
857 else:
858 selected_bone = enduser_obj.pose.bones[0]
859 scene = context.scene
860 TrackNamesA = enduser_obj.data.mocapNLATracks[action_1]
861 TrackNamesB = enduser_obj.data.mocapNLATracks[action_2]
862 enduser_obj.data.active_mocap = action_1
863 anim_data = enduser_obj.animation_data
864 # add tracks for action 2
865 mocapAction = bpy.data.actions[TrackNamesB.base_track]
866 mocapTrack = anim_data.nla_tracks.new()
867 mocapTrack.name = TrackNamesB.base_track
868 mocapStrip = mocapTrack.strips.new(TrackNamesB.base_track, stitch_settings.blend_frame, mocapAction)
869 mocapStrip.extrapolation = "HOLD_FORWARD"
870 mocapStrip.blend_in = stitch_settings.blend_amount
871 mocapStrip.action_frame_start += stitch_settings.second_offset
872 mocapStrip.action_frame_end += stitch_settings.second_offset
873 constraintTrack = anim_data.nla_tracks.new()
874 constraintTrack.name = TrackNamesB.auto_fix_track
875 constraintAction = bpy.data.actions[TrackNamesB.auto_fix_track]
876 constraintStrip = constraintTrack.strips.new(TrackNamesB.auto_fix_track, stitch_settings.blend_frame, constraintAction)
877 constraintStrip.extrapolation = "HOLD_FORWARD"
878 constraintStrip.blend_in = stitch_settings.blend_amount
879 userTrack = anim_data.nla_tracks.new()
880 userTrack.name = TrackNamesB.manual_fix_track
881 userAction = bpy.data.actions[TrackNamesB.manual_fix_track]
882 userStrip = userTrack.strips.new(TrackNamesB.manual_fix_track, stitch_settings.blend_frame, userAction)
883 userStrip.extrapolation = "HOLD_FORWARD"
884 userStrip.blend_in = stitch_settings.blend_amount
885 #stride bone
886 if enduser_obj.parent:
887 if enduser_obj.parent.name == "stride_bone":
888 stride_bone = enduser_obj.parent
889 stride_anim_data = stride_bone.animation_data
890 stride_anim_data.use_nla = True
891 stride_anim_data.action = None
892 for track in stride_anim_data.nla_tracks:
893 stride_anim_data.nla_tracks.remove(track)
894 actionATrack = stride_anim_data.nla_tracks.new()
895 actionATrack.name = TrackNamesA.stride_action
896 actionAStrip = actionATrack.strips.new(TrackNamesA.stride_action, 0, bpy.data.actions[TrackNamesA.stride_action])
897 actionAStrip.extrapolation = "NOTHING"
898 actionBTrack = stride_anim_data.nla_tracks.new()
899 actionBTrack.name = TrackNamesB.stride_action
900 actionBStrip = actionBTrack.strips.new(TrackNamesB.stride_action, stitch_settings.blend_frame, bpy.data.actions[TrackNamesB.stride_action])
901 actionBStrip.action_frame_start += stitch_settings.second_offset
902 actionBStrip.action_frame_end += stitch_settings.second_offset
903 actionBStrip.extrapolation = "NOTHING"
904 #we need to change the stride_bone's action to add the offset
905 aStrideCurves = [fcurve for fcurve in bpy.data.actions[TrackNamesA.stride_action].fcurves if fcurve.data_path == "location"]
906 bStrideCurves = [fcurve for fcurve in bpy.data.actions[TrackNamesB.stride_action].fcurves if fcurve.data_path == "location"]
907 scene.frame_set(stitch_settings.blend_frame - 1)
908 desired_pos = (enduser_obj.matrix_world * selected_bone.matrix.to_translation())
909 scene.frame_set(stitch_settings.blend_frame)
910 actual_pos = (enduser_obj.matrix_world * selected_bone.matrix.to_translation())
911 print(desired_pos, actual_pos)
912 offset = Vector(actual_pos) - Vector(desired_pos)
914 for i, fcurve in enumerate(bStrideCurves):
915 print(offset[i], i, fcurve.array_index)
916 for pt in fcurve.keyframe_points:
917 pt.co.y -= offset[i]
918 pt.handle_left.y -= offset[i]
919 pt.handle_right.y -= offset[i]
921 #actionBStrip.blend_in = stitch_settings.blend_amount
924 #Guesses setting for animation stitching via Cross Correlation
925 def guess_anim_stitch(context, enduser_obj):
926 stitch_settings = enduser_obj.data.stitch_settings
927 action_1 = stitch_settings.first_action
928 action_2 = stitch_settings.second_action
929 TrackNamesA = enduser_obj.data.mocapNLATracks[action_1]
930 TrackNamesB = enduser_obj.data.mocapNLATracks[action_2]
931 mocapA = bpy.data.actions[TrackNamesA.base_track]
932 mocapB = bpy.data.actions[TrackNamesB.base_track]
933 curvesA = mocapA.fcurves
934 curvesB = mocapB.fcurves
935 flm, s, data = crossCorrelationMatch(curvesA, curvesB, 10)
936 print("Guessed the following for start and offset: ", s, flm)
937 enduser_obj.data.stitch_settings.blend_frame = flm
938 enduser_obj.data.stitch_settings.second_offset = s