Scan media entities as well, not just url entities. This should expand more
[bitlbee.git] / lib / md5.c
blob355f5495b6ce46d628538d325c4fdd6555bf80a1
1 /*
2 * MD5 hashing code copied from Lepton's crack <http://usuarios.lycos.es/reinob/>
4 * Adapted to be API-compatible with the previous (GPL-incompatible) code.
5 */
7 /*
8 * This code implements the MD5 message-digest algorithm.
9 * The algorithm is due to Ron Rivest. This code was
10 * written by Colin Plumb in 1993, no copyright is claimed.
11 * This code is in the public domain; do with it what you wish.
13 * Equivalent code is available from RSA Data Security, Inc.
14 * This code has been tested against that, and is equivalent,
15 * except that you don't need to include two pages of legalese
16 * with every copy.
18 * To compute the message digest of a chunk of bytes, declare an
19 * MD5Context structure, pass it to MD5Init, call MD5Update as
20 * needed on buffers full of bytes, and then call MD5Final, which
21 * will fill a supplied 16-byte array with the digest.
24 #include <sys/types.h>
25 #include <string.h> /* for memcpy() */
26 #include <stdio.h>
27 #include "md5.h"
29 static void md5_transform(uint32_t buf[4], uint32_t const in[16]);
32 * Wrapper function for all-in-one MD5
34 * Bernardo Reino, aka Lepton.
35 * 20021120
38 /* Turns out MD5 was designed for little-endian machines. If we're running
39 on a big-endian machines, we have to swap some bytes. Since detecting
40 endianness at compile time reliably seems pretty hard, let's do it at
41 run-time. It's not like we're going to checksum megabytes of data... */
42 static uint32_t cvt32(uint32_t val)
44 static int little_endian = -1;
46 if (little_endian == -1)
48 little_endian = 1;
49 little_endian = *((char*) &little_endian);
52 if (little_endian)
53 return val;
54 else
55 return (val >> 24) |
56 ((val >> 8) & 0xff00) |
57 ((val << 8) & 0xff0000) |
58 (val << 24);
61 void md5_init(struct MD5Context *ctx)
63 ctx->buf[0] = 0x67452301;
64 ctx->buf[1] = 0xefcdab89;
65 ctx->buf[2] = 0x98badcfe;
66 ctx->buf[3] = 0x10325476;
68 ctx->bits[0] = 0;
69 ctx->bits[1] = 0;
73 * Update context to reflect the concatenation of another buffer full
74 * of bytes.
76 void md5_append(struct MD5Context *ctx, const md5_byte_t *buf,
77 unsigned int len)
79 uint32_t t;
81 /* Update bitcount */
83 t = ctx->bits[0];
84 if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
85 ctx->bits[1]++; /* Carry from low to high */
86 ctx->bits[1] += len >> 29;
88 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
90 /* Handle any leading odd-sized chunks */
92 if (t) {
93 unsigned char *p = (unsigned char *) ctx->in + t;
95 t = 64 - t;
96 if (len < t) {
97 memcpy(p, buf, len);
98 return;
100 memcpy(p, buf, t);
101 md5_transform(ctx->buf, (uint32_t *) ctx->in);
102 buf += t;
103 len -= t;
105 /* Process data in 64-byte chunks */
107 while (len >= 64) {
108 memcpy(ctx->in, buf, 64);
109 md5_transform(ctx->buf, (uint32_t *) ctx->in);
110 buf += 64;
111 len -= 64;
114 /* Handle any remaining bytes of data. */
116 memcpy(ctx->in, buf, len);
120 * Final wrapup - pad to 64-byte boundary with the bit pattern
121 * 1 0* (64-bit count of bits processed, MSB-first)
123 void md5_finish(struct MD5Context *ctx, md5_byte_t digest[16])
125 unsigned count;
126 unsigned char *p;
128 /* Compute number of bytes mod 64 */
129 count = (ctx->bits[0] >> 3) & 0x3F;
131 /* Set the first char of padding to 0x80. This is safe since there is
132 always at least one byte free */
133 p = ctx->in + count;
134 *p++ = 0x80;
136 /* Bytes of padding needed to make 64 bytes */
137 count = 64 - 1 - count;
139 /* Pad out to 56 mod 64 */
140 if (count < 8) {
141 /* Two lots of padding: Pad the first block to 64 bytes */
142 memset(p, 0, count);
143 md5_transform(ctx->buf, (uint32_t *) ctx->in);
145 /* Now fill the next block with 56 bytes */
146 memset(ctx->in, 0, 56);
147 } else {
148 /* Pad block to 56 bytes */
149 memset(p, 0, count - 8);
152 /* Append length in bits and transform */
153 ((uint32_t *) ctx->in)[14] = cvt32(ctx->bits[0]);
154 ((uint32_t *) ctx->in)[15] = cvt32(ctx->bits[1]);
156 md5_transform(ctx->buf, (uint32_t *) ctx->in);
157 ctx->buf[0] = cvt32(ctx->buf[0]);
158 ctx->buf[1] = cvt32(ctx->buf[1]);
159 ctx->buf[2] = cvt32(ctx->buf[2]);
160 ctx->buf[3] = cvt32(ctx->buf[3]);
161 memcpy(digest, ctx->buf, 16);
162 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
165 void md5_finish_ascii(struct MD5Context *context, char *ascii)
167 md5_byte_t bin[16];
168 int i;
170 md5_finish(context, bin);
171 for (i = 0; i < 16; i ++)
172 sprintf(ascii + i * 2, "%02x", bin[i]);
175 /* The four core functions - F1 is optimized somewhat */
177 /* #define F1(x, y, z) (x & y | ~x & z) */
178 #define F1(x, y, z) (z ^ (x & (y ^ z)))
179 #define F2(x, y, z) F1(z, x, y)
180 #define F3(x, y, z) (x ^ y ^ z)
181 #define F4(x, y, z) (y ^ (x | ~z))
183 /* This is the central step in the MD5 algorithm. */
184 #define MD5STEP(f, w, x, y, z, data, s) \
185 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
188 * The core of the MD5 algorithm, this alters an existing MD5 hash to
189 * reflect the addition of 16 longwords of new data. MD5Update blocks
190 * the data and converts bytes into longwords for this routine.
192 static void md5_transform(uint32_t buf[4], uint32_t const in[16])
194 register uint32_t a, b, c, d;
196 a = buf[0];
197 b = buf[1];
198 c = buf[2];
199 d = buf[3];
201 MD5STEP(F1, a, b, c, d, cvt32(in[0]) + 0xd76aa478, 7);
202 MD5STEP(F1, d, a, b, c, cvt32(in[1]) + 0xe8c7b756, 12);
203 MD5STEP(F1, c, d, a, b, cvt32(in[2]) + 0x242070db, 17);
204 MD5STEP(F1, b, c, d, a, cvt32(in[3]) + 0xc1bdceee, 22);
205 MD5STEP(F1, a, b, c, d, cvt32(in[4]) + 0xf57c0faf, 7);
206 MD5STEP(F1, d, a, b, c, cvt32(in[5]) + 0x4787c62a, 12);
207 MD5STEP(F1, c, d, a, b, cvt32(in[6]) + 0xa8304613, 17);
208 MD5STEP(F1, b, c, d, a, cvt32(in[7]) + 0xfd469501, 22);
209 MD5STEP(F1, a, b, c, d, cvt32(in[8]) + 0x698098d8, 7);
210 MD5STEP(F1, d, a, b, c, cvt32(in[9]) + 0x8b44f7af, 12);
211 MD5STEP(F1, c, d, a, b, cvt32(in[10]) + 0xffff5bb1, 17);
212 MD5STEP(F1, b, c, d, a, cvt32(in[11]) + 0x895cd7be, 22);
213 MD5STEP(F1, a, b, c, d, cvt32(in[12]) + 0x6b901122, 7);
214 MD5STEP(F1, d, a, b, c, cvt32(in[13]) + 0xfd987193, 12);
215 MD5STEP(F1, c, d, a, b, cvt32(in[14]) + 0xa679438e, 17);
216 MD5STEP(F1, b, c, d, a, cvt32(in[15]) + 0x49b40821, 22);
218 MD5STEP(F2, a, b, c, d, cvt32(in[1]) + 0xf61e2562, 5);
219 MD5STEP(F2, d, a, b, c, cvt32(in[6]) + 0xc040b340, 9);
220 MD5STEP(F2, c, d, a, b, cvt32(in[11]) + 0x265e5a51, 14);
221 MD5STEP(F2, b, c, d, a, cvt32(in[0]) + 0xe9b6c7aa, 20);
222 MD5STEP(F2, a, b, c, d, cvt32(in[5]) + 0xd62f105d, 5);
223 MD5STEP(F2, d, a, b, c, cvt32(in[10]) + 0x02441453, 9);
224 MD5STEP(F2, c, d, a, b, cvt32(in[15]) + 0xd8a1e681, 14);
225 MD5STEP(F2, b, c, d, a, cvt32(in[4]) + 0xe7d3fbc8, 20);
226 MD5STEP(F2, a, b, c, d, cvt32(in[9]) + 0x21e1cde6, 5);
227 MD5STEP(F2, d, a, b, c, cvt32(in[14]) + 0xc33707d6, 9);
228 MD5STEP(F2, c, d, a, b, cvt32(in[3]) + 0xf4d50d87, 14);
229 MD5STEP(F2, b, c, d, a, cvt32(in[8]) + 0x455a14ed, 20);
230 MD5STEP(F2, a, b, c, d, cvt32(in[13]) + 0xa9e3e905, 5);
231 MD5STEP(F2, d, a, b, c, cvt32(in[2]) + 0xfcefa3f8, 9);
232 MD5STEP(F2, c, d, a, b, cvt32(in[7]) + 0x676f02d9, 14);
233 MD5STEP(F2, b, c, d, a, cvt32(in[12]) + 0x8d2a4c8a, 20);
235 MD5STEP(F3, a, b, c, d, cvt32(in[5]) + 0xfffa3942, 4);
236 MD5STEP(F3, d, a, b, c, cvt32(in[8]) + 0x8771f681, 11);
237 MD5STEP(F3, c, d, a, b, cvt32(in[11]) + 0x6d9d6122, 16);
238 MD5STEP(F3, b, c, d, a, cvt32(in[14]) + 0xfde5380c, 23);
239 MD5STEP(F3, a, b, c, d, cvt32(in[1]) + 0xa4beea44, 4);
240 MD5STEP(F3, d, a, b, c, cvt32(in[4]) + 0x4bdecfa9, 11);
241 MD5STEP(F3, c, d, a, b, cvt32(in[7]) + 0xf6bb4b60, 16);
242 MD5STEP(F3, b, c, d, a, cvt32(in[10]) + 0xbebfbc70, 23);
243 MD5STEP(F3, a, b, c, d, cvt32(in[13]) + 0x289b7ec6, 4);
244 MD5STEP(F3, d, a, b, c, cvt32(in[0]) + 0xeaa127fa, 11);
245 MD5STEP(F3, c, d, a, b, cvt32(in[3]) + 0xd4ef3085, 16);
246 MD5STEP(F3, b, c, d, a, cvt32(in[6]) + 0x04881d05, 23);
247 MD5STEP(F3, a, b, c, d, cvt32(in[9]) + 0xd9d4d039, 4);
248 MD5STEP(F3, d, a, b, c, cvt32(in[12]) + 0xe6db99e5, 11);
249 MD5STEP(F3, c, d, a, b, cvt32(in[15]) + 0x1fa27cf8, 16);
250 MD5STEP(F3, b, c, d, a, cvt32(in[2]) + 0xc4ac5665, 23);
252 MD5STEP(F4, a, b, c, d, cvt32(in[0]) + 0xf4292244, 6);
253 MD5STEP(F4, d, a, b, c, cvt32(in[7]) + 0x432aff97, 10);
254 MD5STEP(F4, c, d, a, b, cvt32(in[14]) + 0xab9423a7, 15);
255 MD5STEP(F4, b, c, d, a, cvt32(in[5]) + 0xfc93a039, 21);
256 MD5STEP(F4, a, b, c, d, cvt32(in[12]) + 0x655b59c3, 6);
257 MD5STEP(F4, d, a, b, c, cvt32(in[3]) + 0x8f0ccc92, 10);
258 MD5STEP(F4, c, d, a, b, cvt32(in[10]) + 0xffeff47d, 15);
259 MD5STEP(F4, b, c, d, a, cvt32(in[1]) + 0x85845dd1, 21);
260 MD5STEP(F4, a, b, c, d, cvt32(in[8]) + 0x6fa87e4f, 6);
261 MD5STEP(F4, d, a, b, c, cvt32(in[15]) + 0xfe2ce6e0, 10);
262 MD5STEP(F4, c, d, a, b, cvt32(in[6]) + 0xa3014314, 15);
263 MD5STEP(F4, b, c, d, a, cvt32(in[13]) + 0x4e0811a1, 21);
264 MD5STEP(F4, a, b, c, d, cvt32(in[4]) + 0xf7537e82, 6);
265 MD5STEP(F4, d, a, b, c, cvt32(in[11]) + 0xbd3af235, 10);
266 MD5STEP(F4, c, d, a, b, cvt32(in[2]) + 0x2ad7d2bb, 15);
267 MD5STEP(F4, b, c, d, a, cvt32(in[9]) + 0xeb86d391, 21);
269 buf[0] += a;
270 buf[1] += b;
271 buf[2] += c;
272 buf[3] += d;