1 /**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
7 #ifndef SECP256K1_FIELD_REPR_IMPL_H
8 #define SECP256K1_FIELD_REPR_IMPL_H
10 #if defined HAVE_CONFIG_H
11 #include "libsecp256k1-config.h"
18 #if defined(USE_ASM_X86_64)
19 #include "field_5x52_asm_impl.h"
21 #include "field_5x52_int128_impl.h"
24 /** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
25 * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
26 * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
27 * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
28 * accept any input with magnitude at most M, and have different rules for propagating magnitude to their
33 static void secp256k1_fe_verify(const secp256k1_fe
*a
) {
34 const uint64_t *d
= a
->n
;
35 int m
= a
->normalized
? 1 : 2 * a
->magnitude
, r
= 1;
36 /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
37 r
&= (d
[0] <= 0xFFFFFFFFFFFFFULL
* m
);
38 r
&= (d
[1] <= 0xFFFFFFFFFFFFFULL
* m
);
39 r
&= (d
[2] <= 0xFFFFFFFFFFFFFULL
* m
);
40 r
&= (d
[3] <= 0xFFFFFFFFFFFFFULL
* m
);
41 r
&= (d
[4] <= 0x0FFFFFFFFFFFFULL
* m
);
42 r
&= (a
->magnitude
>= 0);
43 r
&= (a
->magnitude
<= 2048);
45 r
&= (a
->magnitude
<= 1);
46 if (r
&& (d
[4] == 0x0FFFFFFFFFFFFULL
) && ((d
[3] & d
[2] & d
[1]) == 0xFFFFFFFFFFFFFULL
)) {
47 r
&= (d
[0] < 0xFFFFEFFFFFC2FULL
);
54 static void secp256k1_fe_normalize(secp256k1_fe
*r
) {
55 uint64_t t0
= r
->n
[0], t1
= r
->n
[1], t2
= r
->n
[2], t3
= r
->n
[3], t4
= r
->n
[4];
57 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
59 uint64_t x
= t4
>> 48; t4
&= 0x0FFFFFFFFFFFFULL
;
61 /* The first pass ensures the magnitude is 1, ... */
62 t0
+= x
* 0x1000003D1ULL
;
63 t1
+= (t0
>> 52); t0
&= 0xFFFFFFFFFFFFFULL
;
64 t2
+= (t1
>> 52); t1
&= 0xFFFFFFFFFFFFFULL
; m
= t1
;
65 t3
+= (t2
>> 52); t2
&= 0xFFFFFFFFFFFFFULL
; m
&= t2
;
66 t4
+= (t3
>> 52); t3
&= 0xFFFFFFFFFFFFFULL
; m
&= t3
;
68 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
69 VERIFY_CHECK(t4
>> 49 == 0);
71 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
72 x
= (t4
>> 48) | ((t4
== 0x0FFFFFFFFFFFFULL
) & (m
== 0xFFFFFFFFFFFFFULL
)
73 & (t0
>= 0xFFFFEFFFFFC2FULL
));
75 /* Apply the final reduction (for constant-time behaviour, we do it always) */
76 t0
+= x
* 0x1000003D1ULL
;
77 t1
+= (t0
>> 52); t0
&= 0xFFFFFFFFFFFFFULL
;
78 t2
+= (t1
>> 52); t1
&= 0xFFFFFFFFFFFFFULL
;
79 t3
+= (t2
>> 52); t2
&= 0xFFFFFFFFFFFFFULL
;
80 t4
+= (t3
>> 52); t3
&= 0xFFFFFFFFFFFFFULL
;
82 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
83 VERIFY_CHECK(t4
>> 48 == x
);
85 /* Mask off the possible multiple of 2^256 from the final reduction */
86 t4
&= 0x0FFFFFFFFFFFFULL
;
88 r
->n
[0] = t0
; r
->n
[1] = t1
; r
->n
[2] = t2
; r
->n
[3] = t3
; r
->n
[4] = t4
;
93 secp256k1_fe_verify(r
);
97 static void secp256k1_fe_normalize_weak(secp256k1_fe
*r
) {
98 uint64_t t0
= r
->n
[0], t1
= r
->n
[1], t2
= r
->n
[2], t3
= r
->n
[3], t4
= r
->n
[4];
100 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
101 uint64_t x
= t4
>> 48; t4
&= 0x0FFFFFFFFFFFFULL
;
103 /* The first pass ensures the magnitude is 1, ... */
104 t0
+= x
* 0x1000003D1ULL
;
105 t1
+= (t0
>> 52); t0
&= 0xFFFFFFFFFFFFFULL
;
106 t2
+= (t1
>> 52); t1
&= 0xFFFFFFFFFFFFFULL
;
107 t3
+= (t2
>> 52); t2
&= 0xFFFFFFFFFFFFFULL
;
108 t4
+= (t3
>> 52); t3
&= 0xFFFFFFFFFFFFFULL
;
110 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
111 VERIFY_CHECK(t4
>> 49 == 0);
113 r
->n
[0] = t0
; r
->n
[1] = t1
; r
->n
[2] = t2
; r
->n
[3] = t3
; r
->n
[4] = t4
;
117 secp256k1_fe_verify(r
);
121 static void secp256k1_fe_normalize_var(secp256k1_fe
*r
) {
122 uint64_t t0
= r
->n
[0], t1
= r
->n
[1], t2
= r
->n
[2], t3
= r
->n
[3], t4
= r
->n
[4];
124 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
126 uint64_t x
= t4
>> 48; t4
&= 0x0FFFFFFFFFFFFULL
;
128 /* The first pass ensures the magnitude is 1, ... */
129 t0
+= x
* 0x1000003D1ULL
;
130 t1
+= (t0
>> 52); t0
&= 0xFFFFFFFFFFFFFULL
;
131 t2
+= (t1
>> 52); t1
&= 0xFFFFFFFFFFFFFULL
; m
= t1
;
132 t3
+= (t2
>> 52); t2
&= 0xFFFFFFFFFFFFFULL
; m
&= t2
;
133 t4
+= (t3
>> 52); t3
&= 0xFFFFFFFFFFFFFULL
; m
&= t3
;
135 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
136 VERIFY_CHECK(t4
>> 49 == 0);
138 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
139 x
= (t4
>> 48) | ((t4
== 0x0FFFFFFFFFFFFULL
) & (m
== 0xFFFFFFFFFFFFFULL
)
140 & (t0
>= 0xFFFFEFFFFFC2FULL
));
143 t0
+= 0x1000003D1ULL
;
144 t1
+= (t0
>> 52); t0
&= 0xFFFFFFFFFFFFFULL
;
145 t2
+= (t1
>> 52); t1
&= 0xFFFFFFFFFFFFFULL
;
146 t3
+= (t2
>> 52); t2
&= 0xFFFFFFFFFFFFFULL
;
147 t4
+= (t3
>> 52); t3
&= 0xFFFFFFFFFFFFFULL
;
149 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
150 VERIFY_CHECK(t4
>> 48 == x
);
152 /* Mask off the possible multiple of 2^256 from the final reduction */
153 t4
&= 0x0FFFFFFFFFFFFULL
;
156 r
->n
[0] = t0
; r
->n
[1] = t1
; r
->n
[2] = t2
; r
->n
[3] = t3
; r
->n
[4] = t4
;
161 secp256k1_fe_verify(r
);
165 static int secp256k1_fe_normalizes_to_zero(secp256k1_fe
*r
) {
166 uint64_t t0
= r
->n
[0], t1
= r
->n
[1], t2
= r
->n
[2], t3
= r
->n
[3], t4
= r
->n
[4];
168 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
171 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
172 uint64_t x
= t4
>> 48; t4
&= 0x0FFFFFFFFFFFFULL
;
174 /* The first pass ensures the magnitude is 1, ... */
175 t0
+= x
* 0x1000003D1ULL
;
176 t1
+= (t0
>> 52); t0
&= 0xFFFFFFFFFFFFFULL
; z0
= t0
; z1
= t0
^ 0x1000003D0ULL
;
177 t2
+= (t1
>> 52); t1
&= 0xFFFFFFFFFFFFFULL
; z0
|= t1
; z1
&= t1
;
178 t3
+= (t2
>> 52); t2
&= 0xFFFFFFFFFFFFFULL
; z0
|= t2
; z1
&= t2
;
179 t4
+= (t3
>> 52); t3
&= 0xFFFFFFFFFFFFFULL
; z0
|= t3
; z1
&= t3
;
180 z0
|= t4
; z1
&= t4
^ 0xF000000000000ULL
;
182 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
183 VERIFY_CHECK(t4
>> 49 == 0);
185 return (z0
== 0) | (z1
== 0xFFFFFFFFFFFFFULL
);
188 static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe
*r
) {
189 uint64_t t0
, t1
, t2
, t3
, t4
;
196 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
199 /* The first pass ensures the magnitude is 1, ... */
200 t0
+= x
* 0x1000003D1ULL
;
202 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
203 z0
= t0
& 0xFFFFFFFFFFFFFULL
;
204 z1
= z0
^ 0x1000003D0ULL
;
206 /* Fast return path should catch the majority of cases */
207 if ((z0
!= 0ULL) & (z1
!= 0xFFFFFFFFFFFFFULL
)) {
215 t4
&= 0x0FFFFFFFFFFFFULL
;
218 t2
+= (t1
>> 52); t1
&= 0xFFFFFFFFFFFFFULL
; z0
|= t1
; z1
&= t1
;
219 t3
+= (t2
>> 52); t2
&= 0xFFFFFFFFFFFFFULL
; z0
|= t2
; z1
&= t2
;
220 t4
+= (t3
>> 52); t3
&= 0xFFFFFFFFFFFFFULL
; z0
|= t3
; z1
&= t3
;
221 z0
|= t4
; z1
&= t4
^ 0xF000000000000ULL
;
223 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
224 VERIFY_CHECK(t4
>> 49 == 0);
226 return (z0
== 0) | (z1
== 0xFFFFFFFFFFFFFULL
);
229 SECP256K1_INLINE
static void secp256k1_fe_set_int(secp256k1_fe
*r
, int a
) {
231 r
->n
[1] = r
->n
[2] = r
->n
[3] = r
->n
[4] = 0;
235 secp256k1_fe_verify(r
);
239 SECP256K1_INLINE
static int secp256k1_fe_is_zero(const secp256k1_fe
*a
) {
240 const uint64_t *t
= a
->n
;
242 VERIFY_CHECK(a
->normalized
);
243 secp256k1_fe_verify(a
);
245 return (t
[0] | t
[1] | t
[2] | t
[3] | t
[4]) == 0;
248 SECP256K1_INLINE
static int secp256k1_fe_is_odd(const secp256k1_fe
*a
) {
250 VERIFY_CHECK(a
->normalized
);
251 secp256k1_fe_verify(a
);
256 SECP256K1_INLINE
static void secp256k1_fe_clear(secp256k1_fe
*a
) {
262 for (i
=0; i
<5; i
++) {
267 static int secp256k1_fe_cmp_var(const secp256k1_fe
*a
, const secp256k1_fe
*b
) {
270 VERIFY_CHECK(a
->normalized
);
271 VERIFY_CHECK(b
->normalized
);
272 secp256k1_fe_verify(a
);
273 secp256k1_fe_verify(b
);
275 for (i
= 4; i
>= 0; i
--) {
276 if (a
->n
[i
] > b
->n
[i
]) {
279 if (a
->n
[i
] < b
->n
[i
]) {
286 static int secp256k1_fe_set_b32(secp256k1_fe
*r
, const unsigned char *a
) {
287 r
->n
[0] = (uint64_t)a
[31]
288 | ((uint64_t)a
[30] << 8)
289 | ((uint64_t)a
[29] << 16)
290 | ((uint64_t)a
[28] << 24)
291 | ((uint64_t)a
[27] << 32)
292 | ((uint64_t)a
[26] << 40)
293 | ((uint64_t)(a
[25] & 0xF) << 48);
294 r
->n
[1] = (uint64_t)((a
[25] >> 4) & 0xF)
295 | ((uint64_t)a
[24] << 4)
296 | ((uint64_t)a
[23] << 12)
297 | ((uint64_t)a
[22] << 20)
298 | ((uint64_t)a
[21] << 28)
299 | ((uint64_t)a
[20] << 36)
300 | ((uint64_t)a
[19] << 44);
301 r
->n
[2] = (uint64_t)a
[18]
302 | ((uint64_t)a
[17] << 8)
303 | ((uint64_t)a
[16] << 16)
304 | ((uint64_t)a
[15] << 24)
305 | ((uint64_t)a
[14] << 32)
306 | ((uint64_t)a
[13] << 40)
307 | ((uint64_t)(a
[12] & 0xF) << 48);
308 r
->n
[3] = (uint64_t)((a
[12] >> 4) & 0xF)
309 | ((uint64_t)a
[11] << 4)
310 | ((uint64_t)a
[10] << 12)
311 | ((uint64_t)a
[9] << 20)
312 | ((uint64_t)a
[8] << 28)
313 | ((uint64_t)a
[7] << 36)
314 | ((uint64_t)a
[6] << 44);
315 r
->n
[4] = (uint64_t)a
[5]
316 | ((uint64_t)a
[4] << 8)
317 | ((uint64_t)a
[3] << 16)
318 | ((uint64_t)a
[2] << 24)
319 | ((uint64_t)a
[1] << 32)
320 | ((uint64_t)a
[0] << 40);
321 if (r
->n
[4] == 0x0FFFFFFFFFFFFULL
&& (r
->n
[3] & r
->n
[2] & r
->n
[1]) == 0xFFFFFFFFFFFFFULL
&& r
->n
[0] >= 0xFFFFEFFFFFC2FULL
) {
327 secp256k1_fe_verify(r
);
332 /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
333 static void secp256k1_fe_get_b32(unsigned char *r
, const secp256k1_fe
*a
) {
335 VERIFY_CHECK(a
->normalized
);
336 secp256k1_fe_verify(a
);
338 r
[0] = (a
->n
[4] >> 40) & 0xFF;
339 r
[1] = (a
->n
[4] >> 32) & 0xFF;
340 r
[2] = (a
->n
[4] >> 24) & 0xFF;
341 r
[3] = (a
->n
[4] >> 16) & 0xFF;
342 r
[4] = (a
->n
[4] >> 8) & 0xFF;
343 r
[5] = a
->n
[4] & 0xFF;
344 r
[6] = (a
->n
[3] >> 44) & 0xFF;
345 r
[7] = (a
->n
[3] >> 36) & 0xFF;
346 r
[8] = (a
->n
[3] >> 28) & 0xFF;
347 r
[9] = (a
->n
[3] >> 20) & 0xFF;
348 r
[10] = (a
->n
[3] >> 12) & 0xFF;
349 r
[11] = (a
->n
[3] >> 4) & 0xFF;
350 r
[12] = ((a
->n
[2] >> 48) & 0xF) | ((a
->n
[3] & 0xF) << 4);
351 r
[13] = (a
->n
[2] >> 40) & 0xFF;
352 r
[14] = (a
->n
[2] >> 32) & 0xFF;
353 r
[15] = (a
->n
[2] >> 24) & 0xFF;
354 r
[16] = (a
->n
[2] >> 16) & 0xFF;
355 r
[17] = (a
->n
[2] >> 8) & 0xFF;
356 r
[18] = a
->n
[2] & 0xFF;
357 r
[19] = (a
->n
[1] >> 44) & 0xFF;
358 r
[20] = (a
->n
[1] >> 36) & 0xFF;
359 r
[21] = (a
->n
[1] >> 28) & 0xFF;
360 r
[22] = (a
->n
[1] >> 20) & 0xFF;
361 r
[23] = (a
->n
[1] >> 12) & 0xFF;
362 r
[24] = (a
->n
[1] >> 4) & 0xFF;
363 r
[25] = ((a
->n
[0] >> 48) & 0xF) | ((a
->n
[1] & 0xF) << 4);
364 r
[26] = (a
->n
[0] >> 40) & 0xFF;
365 r
[27] = (a
->n
[0] >> 32) & 0xFF;
366 r
[28] = (a
->n
[0] >> 24) & 0xFF;
367 r
[29] = (a
->n
[0] >> 16) & 0xFF;
368 r
[30] = (a
->n
[0] >> 8) & 0xFF;
369 r
[31] = a
->n
[0] & 0xFF;
372 SECP256K1_INLINE
static void secp256k1_fe_negate(secp256k1_fe
*r
, const secp256k1_fe
*a
, int m
) {
374 VERIFY_CHECK(a
->magnitude
<= m
);
375 secp256k1_fe_verify(a
);
377 r
->n
[0] = 0xFFFFEFFFFFC2FULL
* 2 * (m
+ 1) - a
->n
[0];
378 r
->n
[1] = 0xFFFFFFFFFFFFFULL
* 2 * (m
+ 1) - a
->n
[1];
379 r
->n
[2] = 0xFFFFFFFFFFFFFULL
* 2 * (m
+ 1) - a
->n
[2];
380 r
->n
[3] = 0xFFFFFFFFFFFFFULL
* 2 * (m
+ 1) - a
->n
[3];
381 r
->n
[4] = 0x0FFFFFFFFFFFFULL
* 2 * (m
+ 1) - a
->n
[4];
383 r
->magnitude
= m
+ 1;
385 secp256k1_fe_verify(r
);
389 SECP256K1_INLINE
static void secp256k1_fe_mul_int(secp256k1_fe
*r
, int a
) {
398 secp256k1_fe_verify(r
);
402 SECP256K1_INLINE
static void secp256k1_fe_add(secp256k1_fe
*r
, const secp256k1_fe
*a
) {
404 secp256k1_fe_verify(a
);
412 r
->magnitude
+= a
->magnitude
;
414 secp256k1_fe_verify(r
);
418 static void secp256k1_fe_mul(secp256k1_fe
*r
, const secp256k1_fe
*a
, const secp256k1_fe
* SECP256K1_RESTRICT b
) {
420 VERIFY_CHECK(a
->magnitude
<= 8);
421 VERIFY_CHECK(b
->magnitude
<= 8);
422 secp256k1_fe_verify(a
);
423 secp256k1_fe_verify(b
);
424 VERIFY_CHECK(r
!= b
);
426 secp256k1_fe_mul_inner(r
->n
, a
->n
, b
->n
);
430 secp256k1_fe_verify(r
);
434 static void secp256k1_fe_sqr(secp256k1_fe
*r
, const secp256k1_fe
*a
) {
436 VERIFY_CHECK(a
->magnitude
<= 8);
437 secp256k1_fe_verify(a
);
439 secp256k1_fe_sqr_inner(r
->n
, a
->n
);
443 secp256k1_fe_verify(r
);
447 static SECP256K1_INLINE
void secp256k1_fe_cmov(secp256k1_fe
*r
, const secp256k1_fe
*a
, int flag
) {
448 uint64_t mask0
, mask1
;
449 mask0
= flag
+ ~((uint64_t)0);
451 r
->n
[0] = (r
->n
[0] & mask0
) | (a
->n
[0] & mask1
);
452 r
->n
[1] = (r
->n
[1] & mask0
) | (a
->n
[1] & mask1
);
453 r
->n
[2] = (r
->n
[2] & mask0
) | (a
->n
[2] & mask1
);
454 r
->n
[3] = (r
->n
[3] & mask0
) | (a
->n
[3] & mask1
);
455 r
->n
[4] = (r
->n
[4] & mask0
) | (a
->n
[4] & mask1
);
457 if (a
->magnitude
> r
->magnitude
) {
458 r
->magnitude
= a
->magnitude
;
460 r
->normalized
&= a
->normalized
;
464 static SECP256K1_INLINE
void secp256k1_fe_storage_cmov(secp256k1_fe_storage
*r
, const secp256k1_fe_storage
*a
, int flag
) {
465 uint64_t mask0
, mask1
;
466 mask0
= flag
+ ~((uint64_t)0);
468 r
->n
[0] = (r
->n
[0] & mask0
) | (a
->n
[0] & mask1
);
469 r
->n
[1] = (r
->n
[1] & mask0
) | (a
->n
[1] & mask1
);
470 r
->n
[2] = (r
->n
[2] & mask0
) | (a
->n
[2] & mask1
);
471 r
->n
[3] = (r
->n
[3] & mask0
) | (a
->n
[3] & mask1
);
474 static void secp256k1_fe_to_storage(secp256k1_fe_storage
*r
, const secp256k1_fe
*a
) {
476 VERIFY_CHECK(a
->normalized
);
478 r
->n
[0] = a
->n
[0] | a
->n
[1] << 52;
479 r
->n
[1] = a
->n
[1] >> 12 | a
->n
[2] << 40;
480 r
->n
[2] = a
->n
[2] >> 24 | a
->n
[3] << 28;
481 r
->n
[3] = a
->n
[3] >> 36 | a
->n
[4] << 16;
484 static SECP256K1_INLINE
void secp256k1_fe_from_storage(secp256k1_fe
*r
, const secp256k1_fe_storage
*a
) {
485 r
->n
[0] = a
->n
[0] & 0xFFFFFFFFFFFFFULL
;
486 r
->n
[1] = a
->n
[0] >> 52 | ((a
->n
[1] << 12) & 0xFFFFFFFFFFFFFULL
);
487 r
->n
[2] = a
->n
[1] >> 40 | ((a
->n
[2] << 24) & 0xFFFFFFFFFFFFFULL
);
488 r
->n
[3] = a
->n
[2] >> 28 | ((a
->n
[3] << 36) & 0xFFFFFFFFFFFFFULL
);
489 r
->n
[4] = a
->n
[3] >> 16;
496 #endif /* SECP256K1_FIELD_REPR_IMPL_H */