Squashed 'src/secp256k1/' changes from 84973d393..0b7024185
[bitcoinplatinum.git] / src / ecmult_impl.h
blob93d3794cb43488eac6b6ab231f067ff7f3db71c8
1 /**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
7 #ifndef SECP256K1_ECMULT_IMPL_H
8 #define SECP256K1_ECMULT_IMPL_H
10 #include <string.h>
12 #include "group.h"
13 #include "scalar.h"
14 #include "ecmult.h"
16 #if defined(EXHAUSTIVE_TEST_ORDER)
17 /* We need to lower these values for exhaustive tests because
18 * the tables cannot have infinities in them (this breaks the
19 * affine-isomorphism stuff which tracks z-ratios) */
20 # if EXHAUSTIVE_TEST_ORDER > 128
21 # define WINDOW_A 5
22 # define WINDOW_G 8
23 # elif EXHAUSTIVE_TEST_ORDER > 8
24 # define WINDOW_A 4
25 # define WINDOW_G 4
26 # else
27 # define WINDOW_A 2
28 # define WINDOW_G 2
29 # endif
30 #else
31 /* optimal for 128-bit and 256-bit exponents. */
32 #define WINDOW_A 5
33 /** larger numbers may result in slightly better performance, at the cost of
34 exponentially larger precomputed tables. */
35 #ifdef USE_ENDOMORPHISM
36 /** Two tables for window size 15: 1.375 MiB. */
37 #define WINDOW_G 15
38 #else
39 /** One table for window size 16: 1.375 MiB. */
40 #define WINDOW_G 16
41 #endif
42 #endif
44 /** The number of entries a table with precomputed multiples needs to have. */
45 #define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
47 /** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
48 * the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
49 * contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
50 * Prej's Z values are undefined, except for the last value.
52 static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
53 secp256k1_gej d;
54 secp256k1_ge a_ge, d_ge;
55 int i;
57 VERIFY_CHECK(!a->infinity);
59 secp256k1_gej_double_var(&d, a, NULL);
62 * Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
63 * of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
65 d_ge.x = d.x;
66 d_ge.y = d.y;
67 d_ge.infinity = 0;
69 secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
70 prej[0].x = a_ge.x;
71 prej[0].y = a_ge.y;
72 prej[0].z = a->z;
73 prej[0].infinity = 0;
75 zr[0] = d.z;
76 for (i = 1; i < n; i++) {
77 secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
81 * Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
82 * the final point's z coordinate is actually used though, so just update that.
84 secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
87 /** Fill a table 'pre' with precomputed odd multiples of a.
89 * There are two versions of this function:
90 * - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its
91 * resulting point set to a single constant Z denominator, stores the X and Y
92 * coordinates as ge_storage points in pre, and stores the global Z in rz.
93 * It only operates on tables sized for WINDOW_A wnaf multiples.
94 * - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its
95 * resulting point set to actually affine points, and stores those in pre.
96 * It operates on tables of any size, but uses heap-allocated temporaries.
98 * To compute a*P + b*G, we compute a table for P using the first function,
99 * and for G using the second (which requires an inverse, but it only needs to
100 * happen once).
102 static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
103 secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
104 secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
106 /* Compute the odd multiples in Jacobian form. */
107 secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
108 /* Bring them to the same Z denominator. */
109 secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
112 static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
113 secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
114 secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
115 secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
116 int i;
118 /* Compute the odd multiples in Jacobian form. */
119 secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
120 /* Convert them in batch to affine coordinates. */
121 secp256k1_ge_set_table_gej_var(prea, prej, zr, n);
122 /* Convert them to compact storage form. */
123 for (i = 0; i < n; i++) {
124 secp256k1_ge_to_storage(&pre[i], &prea[i]);
127 free(prea);
128 free(prej);
129 free(zr);
132 /** The following two macro retrieves a particular odd multiple from a table
133 * of precomputed multiples. */
134 #define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
135 VERIFY_CHECK(((n) & 1) == 1); \
136 VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
137 VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
138 if ((n) > 0) { \
139 *(r) = (pre)[((n)-1)/2]; \
140 } else { \
141 secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \
143 } while(0)
145 #define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
146 VERIFY_CHECK(((n) & 1) == 1); \
147 VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
148 VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
149 if ((n) > 0) { \
150 secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
151 } else { \
152 secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
153 secp256k1_ge_neg((r), (r)); \
155 } while(0)
157 static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
158 ctx->pre_g = NULL;
159 #ifdef USE_ENDOMORPHISM
160 ctx->pre_g_128 = NULL;
161 #endif
164 static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) {
165 secp256k1_gej gj;
167 if (ctx->pre_g != NULL) {
168 return;
171 /* get the generator */
172 secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
174 ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
176 /* precompute the tables with odd multiples */
177 secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
179 #ifdef USE_ENDOMORPHISM
181 secp256k1_gej g_128j;
182 int i;
184 ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
186 /* calculate 2^128*generator */
187 g_128j = gj;
188 for (i = 0; i < 128; i++) {
189 secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
191 secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
193 #endif
196 static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
197 const secp256k1_ecmult_context *src, const secp256k1_callback *cb) {
198 if (src->pre_g == NULL) {
199 dst->pre_g = NULL;
200 } else {
201 size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
202 dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
203 memcpy(dst->pre_g, src->pre_g, size);
205 #ifdef USE_ENDOMORPHISM
206 if (src->pre_g_128 == NULL) {
207 dst->pre_g_128 = NULL;
208 } else {
209 size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
210 dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
211 memcpy(dst->pre_g_128, src->pre_g_128, size);
213 #endif
216 static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
217 return ctx->pre_g != NULL;
220 static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
221 free(ctx->pre_g);
222 #ifdef USE_ENDOMORPHISM
223 free(ctx->pre_g_128);
224 #endif
225 secp256k1_ecmult_context_init(ctx);
228 /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
229 * with the following guarantees:
230 * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
231 * - two non-zero entries in wnaf are separated by at least w-1 zeroes.
232 * - the number of set values in wnaf is returned. This number is at most 256, and at most one more
233 * than the number of bits in the (absolute value) of the input.
235 static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
236 secp256k1_scalar s = *a;
237 int last_set_bit = -1;
238 int bit = 0;
239 int sign = 1;
240 int carry = 0;
242 VERIFY_CHECK(wnaf != NULL);
243 VERIFY_CHECK(0 <= len && len <= 256);
244 VERIFY_CHECK(a != NULL);
245 VERIFY_CHECK(2 <= w && w <= 31);
247 memset(wnaf, 0, len * sizeof(wnaf[0]));
249 if (secp256k1_scalar_get_bits(&s, 255, 1)) {
250 secp256k1_scalar_negate(&s, &s);
251 sign = -1;
254 while (bit < len) {
255 int now;
256 int word;
257 if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
258 bit++;
259 continue;
262 now = w;
263 if (now > len - bit) {
264 now = len - bit;
267 word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
269 carry = (word >> (w-1)) & 1;
270 word -= carry << w;
272 wnaf[bit] = sign * word;
273 last_set_bit = bit;
275 bit += now;
277 #ifdef VERIFY
278 CHECK(carry == 0);
279 while (bit < 256) {
280 CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0);
282 #endif
283 return last_set_bit + 1;
286 static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
287 secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
288 secp256k1_ge tmpa;
289 secp256k1_fe Z;
290 #ifdef USE_ENDOMORPHISM
291 secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
292 secp256k1_scalar na_1, na_lam;
293 /* Splitted G factors. */
294 secp256k1_scalar ng_1, ng_128;
295 int wnaf_na_1[130];
296 int wnaf_na_lam[130];
297 int bits_na_1;
298 int bits_na_lam;
299 int wnaf_ng_1[129];
300 int bits_ng_1;
301 int wnaf_ng_128[129];
302 int bits_ng_128;
303 #else
304 int wnaf_na[256];
305 int bits_na;
306 int wnaf_ng[256];
307 int bits_ng;
308 #endif
309 int i;
310 int bits;
312 #ifdef USE_ENDOMORPHISM
313 /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
314 secp256k1_scalar_split_lambda(&na_1, &na_lam, na);
316 /* build wnaf representation for na_1 and na_lam. */
317 bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A);
318 bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A);
319 VERIFY_CHECK(bits_na_1 <= 130);
320 VERIFY_CHECK(bits_na_lam <= 130);
321 bits = bits_na_1;
322 if (bits_na_lam > bits) {
323 bits = bits_na_lam;
325 #else
326 /* build wnaf representation for na. */
327 bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A);
328 bits = bits_na;
329 #endif
331 /* Calculate odd multiples of a.
332 * All multiples are brought to the same Z 'denominator', which is stored
333 * in Z. Due to secp256k1' isomorphism we can do all operations pretending
334 * that the Z coordinate was 1, use affine addition formulae, and correct
335 * the Z coordinate of the result once at the end.
336 * The exception is the precomputed G table points, which are actually
337 * affine. Compared to the base used for other points, they have a Z ratio
338 * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
339 * isomorphism to efficiently add with a known Z inverse.
341 secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a);
343 #ifdef USE_ENDOMORPHISM
344 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
345 secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
348 /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
349 secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
351 /* Build wnaf representation for ng_1 and ng_128 */
352 bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
353 bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
354 if (bits_ng_1 > bits) {
355 bits = bits_ng_1;
357 if (bits_ng_128 > bits) {
358 bits = bits_ng_128;
360 #else
361 bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
362 if (bits_ng > bits) {
363 bits = bits_ng;
365 #endif
367 secp256k1_gej_set_infinity(r);
369 for (i = bits - 1; i >= 0; i--) {
370 int n;
371 secp256k1_gej_double_var(r, r, NULL);
372 #ifdef USE_ENDOMORPHISM
373 if (i < bits_na_1 && (n = wnaf_na_1[i])) {
374 ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
375 secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
377 if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
378 ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
379 secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
381 if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
382 ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
383 secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
385 if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
386 ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
387 secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
389 #else
390 if (i < bits_na && (n = wnaf_na[i])) {
391 ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
392 secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
394 if (i < bits_ng && (n = wnaf_ng[i])) {
395 ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
396 secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
398 #endif
401 if (!r->infinity) {
402 secp256k1_fe_mul(&r->z, &r->z, &Z);
406 #endif /* SECP256K1_ECMULT_IMPL_H */