Introduce CHashVerifier to hash read data
[bitcoinplatinum.git] / src / cuckoocache.h
blob58375494555ec88d737f3aeea91bef3d151eba24
1 // Copyright (c) 2016 Jeremy Rubin
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 #ifndef _BITCOIN_CUCKOOCACHE_H_
6 #define _BITCOIN_CUCKOOCACHE_H_
8 #include <array>
9 #include <algorithm>
10 #include <atomic>
11 #include <cstring>
12 #include <cmath>
13 #include <memory>
14 #include <vector>
17 /** namespace CuckooCache provides high performance cache primitives
19 * Summary:
21 * 1) bit_packed_atomic_flags is bit-packed atomic flags for garbage collection
23 * 2) cache is a cache which is performant in memory usage and lookup speed. It
24 * is lockfree for erase operations. Elements are lazily erased on the next
25 * insert.
27 namespace CuckooCache
29 /** bit_packed_atomic_flags implements a container for garbage collection flags
30 * that is only thread unsafe on calls to setup. This class bit-packs collection
31 * flags for memory efficiency.
33 * All operations are std::memory_order_relaxed so external mechanisms must
34 * ensure that writes and reads are properly synchronized.
36 * On setup(n), all bits up to n are marked as collected.
38 * Under the hood, because it is an 8-bit type, it makes sense to use a multiple
39 * of 8 for setup, but it will be safe if that is not the case as well.
42 class bit_packed_atomic_flags
44 std::unique_ptr<std::atomic<uint8_t>[]> mem;
46 public:
47 /** No default constructor as there must be some size */
48 bit_packed_atomic_flags() = delete;
50 /**
51 * bit_packed_atomic_flags constructor creates memory to sufficiently
52 * keep track of garbage collection information for size entries.
54 * @param size the number of elements to allocate space for
56 * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
57 * size
58 * @post All calls to bit_is_set (without subsequent bit_unset) will return
59 * true.
61 bit_packed_atomic_flags(uint32_t size)
63 // pad out the size if needed
64 size = (size + 7) / 8;
65 mem.reset(new std::atomic<uint8_t>[size]);
66 for (uint32_t i = 0; i < size; ++i)
67 mem[i].store(0xFF);
70 /** setup marks all entries and ensures that bit_packed_atomic_flags can store
71 * at least size entries
73 * @param b the number of elements to allocate space for
74 * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
75 * b
76 * @post All calls to bit_is_set (without subsequent bit_unset) will return
77 * true.
79 inline void setup(uint32_t b)
81 bit_packed_atomic_flags d(b);
82 std::swap(mem, d.mem);
85 /** bit_set sets an entry as discardable.
87 * @param s the index of the entry to bit_set.
88 * @post immediately subsequent call (assuming proper external memory
89 * ordering) to bit_is_set(s) == true.
92 inline void bit_set(uint32_t s)
94 mem[s >> 3].fetch_or(1 << (s & 7), std::memory_order_relaxed);
97 /** bit_unset marks an entry as something that should not be overwritten
99 * @param s the index of the entry to bit_unset.
100 * @post immediately subsequent call (assuming proper external memory
101 * ordering) to bit_is_set(s) == false.
103 inline void bit_unset(uint32_t s)
105 mem[s >> 3].fetch_and(~(1 << (s & 7)), std::memory_order_relaxed);
108 /** bit_is_set queries the table for discardability at s
110 * @param s the index of the entry to read.
111 * @returns if the bit at index s was set.
112 * */
113 inline bool bit_is_set(uint32_t s) const
115 return (1 << (s & 7)) & mem[s >> 3].load(std::memory_order_relaxed);
119 /** cache implements a cache with properties similar to a cuckoo-set
121 * The cache is able to hold up to (~(uint32_t)0) - 1 elements.
123 * Read Operations:
124 * - contains(*, false)
126 * Read+Erase Operations:
127 * - contains(*, true)
129 * Erase Operations:
130 * - allow_erase()
132 * Write Operations:
133 * - setup()
134 * - setup_bytes()
135 * - insert()
136 * - please_keep()
138 * Synchronization Free Operations:
139 * - invalid()
140 * - compute_hashes()
142 * User Must Guarantee:
144 * 1) Write Requires synchronized access (e.g., a lock)
145 * 2) Read Requires no concurrent Write, synchronized with the last insert.
146 * 3) Erase requires no concurrent Write, synchronized with last insert.
147 * 4) An Erase caller must release all memory before allowing a new Writer.
150 * Note on function names:
151 * - The name "allow_erase" is used because the real discard happens later.
152 * - The name "please_keep" is used because elements may be erased anyways on insert.
154 * @tparam Element should be a movable and copyable type
155 * @tparam Hash should be a function/callable which takes a template parameter
156 * hash_select and an Element and extracts a hash from it. Should return
157 * high-entropy uint32_t hashes for `Hash h; h<0>(e) ... h<7>(e)`.
159 template <typename Element, typename Hash>
160 class cache
162 private:
163 /** table stores all the elements */
164 std::vector<Element> table;
166 /** size stores the total available slots in the hash table */
167 uint32_t size;
169 /** The bit_packed_atomic_flags array is marked mutable because we want
170 * garbage collection to be allowed to occur from const methods */
171 mutable bit_packed_atomic_flags collection_flags;
173 /** epoch_flags tracks how recently an element was inserted into
174 * the cache. true denotes recent, false denotes not-recent. See insert()
175 * method for full semantics.
177 mutable std::vector<bool> epoch_flags;
179 /** epoch_heuristic_counter is used to determine when a epoch might be aged
180 * & an expensive scan should be done. epoch_heuristic_counter is
181 * decremented on insert and reset to the new number of inserts which would
182 * cause the epoch to reach epoch_size when it reaches zero.
184 uint32_t epoch_heuristic_counter;
186 /** epoch_size is set to be the number of elements supposed to be in a
187 * epoch. When the number of non-erased elements in a epoch
188 * exceeds epoch_size, a new epoch should be started and all
189 * current entries demoted. epoch_size is set to be 45% of size because
190 * we want to keep load around 90%, and we support 3 epochs at once --
191 * one "dead" which has been erased, one "dying" which has been marked to be
192 * erased next, and one "living" which new inserts add to.
194 uint32_t epoch_size;
196 /** depth_limit determines how many elements insert should try to replace.
197 * Should be set to log2(n)*/
198 uint8_t depth_limit;
200 /** hash_function is a const instance of the hash function. It cannot be
201 * static or initialized at call time as it may have internal state (such as
202 * a nonce).
203 * */
204 const Hash hash_function;
206 /** compute_hashes is convenience for not having to write out this
207 * expression everywhere we use the hash values of an Element.
209 * @param e the element whose hashes will be returned
210 * @returns std::array<uint32_t, 8> of deterministic hashes derived from e
212 inline std::array<uint32_t, 8> compute_hashes(const Element& e) const
214 return {{(uint32_t)((hash_function.template operator()<0>(e) * (uint64_t)size) >> 32),
215 (uint32_t)((hash_function.template operator()<1>(e) * (uint64_t)size) >> 32),
216 (uint32_t)((hash_function.template operator()<2>(e) * (uint64_t)size) >> 32),
217 (uint32_t)((hash_function.template operator()<3>(e) * (uint64_t)size) >> 32),
218 (uint32_t)((hash_function.template operator()<4>(e) * (uint64_t)size) >> 32),
219 (uint32_t)((hash_function.template operator()<5>(e) * (uint64_t)size) >> 32),
220 (uint32_t)((hash_function.template operator()<6>(e) * (uint64_t)size) >> 32),
221 (uint32_t)((hash_function.template operator()<7>(e) * (uint64_t)size) >> 32)}};
224 /* end
225 * @returns a constexpr index that can never be inserted to */
226 constexpr uint32_t invalid() const
228 return ~(uint32_t)0;
231 /** allow_erase marks the element at index n as discardable. Threadsafe
232 * without any concurrent insert.
233 * @param n the index to allow erasure of
235 inline void allow_erase(uint32_t n) const
237 collection_flags.bit_set(n);
240 /** please_keep marks the element at index n as an entry that should be kept.
241 * Threadsafe without any concurrent insert.
242 * @param n the index to prioritize keeping
244 inline void please_keep(uint32_t n) const
246 collection_flags.bit_unset(n);
249 /** epoch_check handles the changing of epochs for elements stored in the
250 * cache. epoch_check should be run before every insert.
252 * First, epoch_check decrements and checks the cheap heuristic, and then does
253 * a more expensive scan if the cheap heuristic runs out. If the expensive
254 * scan succeeds, the epochs are aged and old elements are allow_erased. The
255 * cheap heuristic is reset to retrigger after the worst case growth of the
256 * current epoch's elements would exceed the epoch_size.
258 void epoch_check()
260 if (epoch_heuristic_counter != 0) {
261 --epoch_heuristic_counter;
262 return;
264 // count the number of elements from the latest epoch which
265 // have not been erased.
266 uint32_t epoch_unused_count = 0;
267 for (uint32_t i = 0; i < size; ++i)
268 epoch_unused_count += epoch_flags[i] &&
269 !collection_flags.bit_is_set(i);
270 // If there are more non-deleted entries in the current epoch than the
271 // epoch size, then allow_erase on all elements in the old epoch (marked
272 // false) and move all elements in the current epoch to the old epoch
273 // but do not call allow_erase on their indices.
274 if (epoch_unused_count >= epoch_size) {
275 for (uint32_t i = 0; i < size; ++i)
276 if (epoch_flags[i])
277 epoch_flags[i] = false;
278 else
279 allow_erase(i);
280 epoch_heuristic_counter = epoch_size;
281 } else
282 // reset the epoch_heuristic_counter to next do a scan when worst
283 // case behavior (no intermittent erases) would exceed epoch size,
284 // with a reasonable minimum scan size.
285 // Ordinarily, we would have to sanity check std::min(epoch_size,
286 // epoch_unused_count), but we already know that `epoch_unused_count
287 // < epoch_size` in this branch
288 epoch_heuristic_counter = std::max(1u, std::max(epoch_size / 16,
289 epoch_size - epoch_unused_count));
292 public:
293 /** You must always construct a cache with some elements via a subsequent
294 * call to setup or setup_bytes, otherwise operations may segfault.
296 cache() : table(), size(), collection_flags(0), epoch_flags(),
297 epoch_heuristic_counter(), epoch_size(), depth_limit(0), hash_function()
301 /** setup initializes the container to store no more than new_size
302 * elements.
304 * setup should only be called once.
306 * @param new_size the desired number of elements to store
307 * @returns the maximum number of elements storable
309 uint32_t setup(uint32_t new_size)
311 // depth_limit must be at least one otherwise errors can occur.
312 depth_limit = static_cast<uint8_t>(std::log2(static_cast<float>(std::max((uint32_t)2, new_size))));
313 size = std::max<uint32_t>(2, new_size);
314 table.resize(size);
315 collection_flags.setup(size);
316 epoch_flags.resize(size);
317 // Set to 45% as described above
318 epoch_size = std::max((uint32_t)1, (45 * size) / 100);
319 // Initially set to wait for a whole epoch
320 epoch_heuristic_counter = epoch_size;
321 return size;
324 /** setup_bytes is a convenience function which accounts for internal memory
325 * usage when deciding how many elements to store. It isn't perfect because
326 * it doesn't account for any overhead (struct size, MallocUsage, collection
327 * and epoch flags). This was done to simplify selecting a power of two
328 * size. In the expected use case, an extra two bits per entry should be
329 * negligible compared to the size of the elements.
331 * @param bytes the approximate number of bytes to use for this data
332 * structure.
333 * @returns the maximum number of elements storable (see setup()
334 * documentation for more detail)
336 uint32_t setup_bytes(size_t bytes)
338 return setup(bytes/sizeof(Element));
341 /** insert loops at most depth_limit times trying to insert a hash
342 * at various locations in the table via a variant of the Cuckoo Algorithm
343 * with eight hash locations.
345 * It drops the last tried element if it runs out of depth before
346 * encountering an open slot.
348 * Thus
350 * insert(x);
351 * return contains(x, false);
353 * is not guaranteed to return true.
355 * @param e the element to insert
356 * @post one of the following: All previously inserted elements and e are
357 * now in the table, one previously inserted element is evicted from the
358 * table, the entry attempted to be inserted is evicted.
361 inline void insert(Element e)
363 epoch_check();
364 uint32_t last_loc = invalid();
365 bool last_epoch = true;
366 std::array<uint32_t, 8> locs = compute_hashes(e);
367 // Make sure we have not already inserted this element
368 // If we have, make sure that it does not get deleted
369 for (uint32_t loc : locs)
370 if (table[loc] == e) {
371 please_keep(loc);
372 epoch_flags[loc] = last_epoch;
373 return;
375 for (uint8_t depth = 0; depth < depth_limit; ++depth) {
376 // First try to insert to an empty slot, if one exists
377 for (uint32_t loc : locs) {
378 if (!collection_flags.bit_is_set(loc))
379 continue;
380 table[loc] = std::move(e);
381 please_keep(loc);
382 epoch_flags[loc] = last_epoch;
383 return;
385 /** Swap with the element at the location that was
386 * not the last one looked at. Example:
388 * 1) On first iteration, last_loc == invalid(), find returns last, so
389 * last_loc defaults to locs[0].
390 * 2) On further iterations, where last_loc == locs[k], last_loc will
391 * go to locs[k+1 % 8], i.e., next of the 8 indices wrapping around
392 * to 0 if needed.
394 * This prevents moving the element we just put in.
396 * The swap is not a move -- we must switch onto the evicted element
397 * for the next iteration.
399 last_loc = locs[(1 + (std::find(locs.begin(), locs.end(), last_loc) - locs.begin())) & 7];
400 std::swap(table[last_loc], e);
401 // Can't std::swap a std::vector<bool>::reference and a bool&.
402 bool epoch = last_epoch;
403 last_epoch = epoch_flags[last_loc];
404 epoch_flags[last_loc] = epoch;
406 // Recompute the locs -- unfortunately happens one too many times!
407 locs = compute_hashes(e);
411 /* contains iterates through the hash locations for a given element
412 * and checks to see if it is present.
414 * contains does not check garbage collected state (in other words,
415 * garbage is only collected when the space is needed), so:
417 * insert(x);
418 * if (contains(x, true))
419 * return contains(x, false);
420 * else
421 * return true;
423 * executed on a single thread will always return true!
425 * This is a great property for re-org performance for example.
427 * contains returns a bool set true if the element was found.
429 * @param e the element to check
430 * @param erase
432 * @post if erase is true and the element is found, then the garbage collect
433 * flag is set
434 * @returns true if the element is found, false otherwise
436 inline bool contains(const Element& e, const bool erase) const
438 std::array<uint32_t, 8> locs = compute_hashes(e);
439 for (uint32_t loc : locs)
440 if (table[loc] == e) {
441 if (erase)
442 allow_erase(loc);
443 return true;
445 return false;
448 } // namespace CuckooCache
450 #endif