Update to LevelDB 1.20
[bitcoinplatinum.git] / src / leveldb / db / version_set.cc
blobb1256f90e1c2bc6f9f6f449029bed9266bbb55b9
1 // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. See the AUTHORS file for names of contributors.
5 #include "db/version_set.h"
7 #include <algorithm>
8 #include <stdio.h>
9 #include "db/filename.h"
10 #include "db/log_reader.h"
11 #include "db/log_writer.h"
12 #include "db/memtable.h"
13 #include "db/table_cache.h"
14 #include "leveldb/env.h"
15 #include "leveldb/table_builder.h"
16 #include "table/merger.h"
17 #include "table/two_level_iterator.h"
18 #include "util/coding.h"
19 #include "util/logging.h"
21 namespace leveldb {
23 static int TargetFileSize(const Options* options) {
24 return options->max_file_size;
27 // Maximum bytes of overlaps in grandparent (i.e., level+2) before we
28 // stop building a single file in a level->level+1 compaction.
29 static int64_t MaxGrandParentOverlapBytes(const Options* options) {
30 return 10 * TargetFileSize(options);
33 // Maximum number of bytes in all compacted files. We avoid expanding
34 // the lower level file set of a compaction if it would make the
35 // total compaction cover more than this many bytes.
36 static int64_t ExpandedCompactionByteSizeLimit(const Options* options) {
37 return 25 * TargetFileSize(options);
40 static double MaxBytesForLevel(const Options* options, int level) {
41 // Note: the result for level zero is not really used since we set
42 // the level-0 compaction threshold based on number of files.
44 // Result for both level-0 and level-1
45 double result = 10. * 1048576.0;
46 while (level > 1) {
47 result *= 10;
48 level--;
50 return result;
53 static uint64_t MaxFileSizeForLevel(const Options* options, int level) {
54 // We could vary per level to reduce number of files?
55 return TargetFileSize(options);
58 static int64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
59 int64_t sum = 0;
60 for (size_t i = 0; i < files.size(); i++) {
61 sum += files[i]->file_size;
63 return sum;
66 Version::~Version() {
67 assert(refs_ == 0);
69 // Remove from linked list
70 prev_->next_ = next_;
71 next_->prev_ = prev_;
73 // Drop references to files
74 for (int level = 0; level < config::kNumLevels; level++) {
75 for (size_t i = 0; i < files_[level].size(); i++) {
76 FileMetaData* f = files_[level][i];
77 assert(f->refs > 0);
78 f->refs--;
79 if (f->refs <= 0) {
80 delete f;
86 int FindFile(const InternalKeyComparator& icmp,
87 const std::vector<FileMetaData*>& files,
88 const Slice& key) {
89 uint32_t left = 0;
90 uint32_t right = files.size();
91 while (left < right) {
92 uint32_t mid = (left + right) / 2;
93 const FileMetaData* f = files[mid];
94 if (icmp.InternalKeyComparator::Compare(f->largest.Encode(), key) < 0) {
95 // Key at "mid.largest" is < "target". Therefore all
96 // files at or before "mid" are uninteresting.
97 left = mid + 1;
98 } else {
99 // Key at "mid.largest" is >= "target". Therefore all files
100 // after "mid" are uninteresting.
101 right = mid;
104 return right;
107 static bool AfterFile(const Comparator* ucmp,
108 const Slice* user_key, const FileMetaData* f) {
109 // NULL user_key occurs before all keys and is therefore never after *f
110 return (user_key != NULL &&
111 ucmp->Compare(*user_key, f->largest.user_key()) > 0);
114 static bool BeforeFile(const Comparator* ucmp,
115 const Slice* user_key, const FileMetaData* f) {
116 // NULL user_key occurs after all keys and is therefore never before *f
117 return (user_key != NULL &&
118 ucmp->Compare(*user_key, f->smallest.user_key()) < 0);
121 bool SomeFileOverlapsRange(
122 const InternalKeyComparator& icmp,
123 bool disjoint_sorted_files,
124 const std::vector<FileMetaData*>& files,
125 const Slice* smallest_user_key,
126 const Slice* largest_user_key) {
127 const Comparator* ucmp = icmp.user_comparator();
128 if (!disjoint_sorted_files) {
129 // Need to check against all files
130 for (size_t i = 0; i < files.size(); i++) {
131 const FileMetaData* f = files[i];
132 if (AfterFile(ucmp, smallest_user_key, f) ||
133 BeforeFile(ucmp, largest_user_key, f)) {
134 // No overlap
135 } else {
136 return true; // Overlap
139 return false;
142 // Binary search over file list
143 uint32_t index = 0;
144 if (smallest_user_key != NULL) {
145 // Find the earliest possible internal key for smallest_user_key
146 InternalKey small(*smallest_user_key, kMaxSequenceNumber,kValueTypeForSeek);
147 index = FindFile(icmp, files, small.Encode());
150 if (index >= files.size()) {
151 // beginning of range is after all files, so no overlap.
152 return false;
155 return !BeforeFile(ucmp, largest_user_key, files[index]);
158 // An internal iterator. For a given version/level pair, yields
159 // information about the files in the level. For a given entry, key()
160 // is the largest key that occurs in the file, and value() is an
161 // 16-byte value containing the file number and file size, both
162 // encoded using EncodeFixed64.
163 class Version::LevelFileNumIterator : public Iterator {
164 public:
165 LevelFileNumIterator(const InternalKeyComparator& icmp,
166 const std::vector<FileMetaData*>* flist)
167 : icmp_(icmp),
168 flist_(flist),
169 index_(flist->size()) { // Marks as invalid
171 virtual bool Valid() const {
172 return index_ < flist_->size();
174 virtual void Seek(const Slice& target) {
175 index_ = FindFile(icmp_, *flist_, target);
177 virtual void SeekToFirst() { index_ = 0; }
178 virtual void SeekToLast() {
179 index_ = flist_->empty() ? 0 : flist_->size() - 1;
181 virtual void Next() {
182 assert(Valid());
183 index_++;
185 virtual void Prev() {
186 assert(Valid());
187 if (index_ == 0) {
188 index_ = flist_->size(); // Marks as invalid
189 } else {
190 index_--;
193 Slice key() const {
194 assert(Valid());
195 return (*flist_)[index_]->largest.Encode();
197 Slice value() const {
198 assert(Valid());
199 EncodeFixed64(value_buf_, (*flist_)[index_]->number);
200 EncodeFixed64(value_buf_+8, (*flist_)[index_]->file_size);
201 return Slice(value_buf_, sizeof(value_buf_));
203 virtual Status status() const { return Status::OK(); }
204 private:
205 const InternalKeyComparator icmp_;
206 const std::vector<FileMetaData*>* const flist_;
207 uint32_t index_;
209 // Backing store for value(). Holds the file number and size.
210 mutable char value_buf_[16];
213 static Iterator* GetFileIterator(void* arg,
214 const ReadOptions& options,
215 const Slice& file_value) {
216 TableCache* cache = reinterpret_cast<TableCache*>(arg);
217 if (file_value.size() != 16) {
218 return NewErrorIterator(
219 Status::Corruption("FileReader invoked with unexpected value"));
220 } else {
221 return cache->NewIterator(options,
222 DecodeFixed64(file_value.data()),
223 DecodeFixed64(file_value.data() + 8));
227 Iterator* Version::NewConcatenatingIterator(const ReadOptions& options,
228 int level) const {
229 return NewTwoLevelIterator(
230 new LevelFileNumIterator(vset_->icmp_, &files_[level]),
231 &GetFileIterator, vset_->table_cache_, options);
234 void Version::AddIterators(const ReadOptions& options,
235 std::vector<Iterator*>* iters) {
236 // Merge all level zero files together since they may overlap
237 for (size_t i = 0; i < files_[0].size(); i++) {
238 iters->push_back(
239 vset_->table_cache_->NewIterator(
240 options, files_[0][i]->number, files_[0][i]->file_size));
243 // For levels > 0, we can use a concatenating iterator that sequentially
244 // walks through the non-overlapping files in the level, opening them
245 // lazily.
246 for (int level = 1; level < config::kNumLevels; level++) {
247 if (!files_[level].empty()) {
248 iters->push_back(NewConcatenatingIterator(options, level));
253 // Callback from TableCache::Get()
254 namespace {
255 enum SaverState {
256 kNotFound,
257 kFound,
258 kDeleted,
259 kCorrupt,
261 struct Saver {
262 SaverState state;
263 const Comparator* ucmp;
264 Slice user_key;
265 std::string* value;
268 static void SaveValue(void* arg, const Slice& ikey, const Slice& v) {
269 Saver* s = reinterpret_cast<Saver*>(arg);
270 ParsedInternalKey parsed_key;
271 if (!ParseInternalKey(ikey, &parsed_key)) {
272 s->state = kCorrupt;
273 } else {
274 if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) {
275 s->state = (parsed_key.type == kTypeValue) ? kFound : kDeleted;
276 if (s->state == kFound) {
277 s->value->assign(v.data(), v.size());
283 static bool NewestFirst(FileMetaData* a, FileMetaData* b) {
284 return a->number > b->number;
287 void Version::ForEachOverlapping(Slice user_key, Slice internal_key,
288 void* arg,
289 bool (*func)(void*, int, FileMetaData*)) {
290 // TODO(sanjay): Change Version::Get() to use this function.
291 const Comparator* ucmp = vset_->icmp_.user_comparator();
293 // Search level-0 in order from newest to oldest.
294 std::vector<FileMetaData*> tmp;
295 tmp.reserve(files_[0].size());
296 for (uint32_t i = 0; i < files_[0].size(); i++) {
297 FileMetaData* f = files_[0][i];
298 if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 &&
299 ucmp->Compare(user_key, f->largest.user_key()) <= 0) {
300 tmp.push_back(f);
303 if (!tmp.empty()) {
304 std::sort(tmp.begin(), tmp.end(), NewestFirst);
305 for (uint32_t i = 0; i < tmp.size(); i++) {
306 if (!(*func)(arg, 0, tmp[i])) {
307 return;
312 // Search other levels.
313 for (int level = 1; level < config::kNumLevels; level++) {
314 size_t num_files = files_[level].size();
315 if (num_files == 0) continue;
317 // Binary search to find earliest index whose largest key >= internal_key.
318 uint32_t index = FindFile(vset_->icmp_, files_[level], internal_key);
319 if (index < num_files) {
320 FileMetaData* f = files_[level][index];
321 if (ucmp->Compare(user_key, f->smallest.user_key()) < 0) {
322 // All of "f" is past any data for user_key
323 } else {
324 if (!(*func)(arg, level, f)) {
325 return;
332 Status Version::Get(const ReadOptions& options,
333 const LookupKey& k,
334 std::string* value,
335 GetStats* stats) {
336 Slice ikey = k.internal_key();
337 Slice user_key = k.user_key();
338 const Comparator* ucmp = vset_->icmp_.user_comparator();
339 Status s;
341 stats->seek_file = NULL;
342 stats->seek_file_level = -1;
343 FileMetaData* last_file_read = NULL;
344 int last_file_read_level = -1;
346 // We can search level-by-level since entries never hop across
347 // levels. Therefore we are guaranteed that if we find data
348 // in an smaller level, later levels are irrelevant.
349 std::vector<FileMetaData*> tmp;
350 FileMetaData* tmp2;
351 for (int level = 0; level < config::kNumLevels; level++) {
352 size_t num_files = files_[level].size();
353 if (num_files == 0) continue;
355 // Get the list of files to search in this level
356 FileMetaData* const* files = &files_[level][0];
357 if (level == 0) {
358 // Level-0 files may overlap each other. Find all files that
359 // overlap user_key and process them in order from newest to oldest.
360 tmp.reserve(num_files);
361 for (uint32_t i = 0; i < num_files; i++) {
362 FileMetaData* f = files[i];
363 if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 &&
364 ucmp->Compare(user_key, f->largest.user_key()) <= 0) {
365 tmp.push_back(f);
368 if (tmp.empty()) continue;
370 std::sort(tmp.begin(), tmp.end(), NewestFirst);
371 files = &tmp[0];
372 num_files = tmp.size();
373 } else {
374 // Binary search to find earliest index whose largest key >= ikey.
375 uint32_t index = FindFile(vset_->icmp_, files_[level], ikey);
376 if (index >= num_files) {
377 files = NULL;
378 num_files = 0;
379 } else {
380 tmp2 = files[index];
381 if (ucmp->Compare(user_key, tmp2->smallest.user_key()) < 0) {
382 // All of "tmp2" is past any data for user_key
383 files = NULL;
384 num_files = 0;
385 } else {
386 files = &tmp2;
387 num_files = 1;
392 for (uint32_t i = 0; i < num_files; ++i) {
393 if (last_file_read != NULL && stats->seek_file == NULL) {
394 // We have had more than one seek for this read. Charge the 1st file.
395 stats->seek_file = last_file_read;
396 stats->seek_file_level = last_file_read_level;
399 FileMetaData* f = files[i];
400 last_file_read = f;
401 last_file_read_level = level;
403 Saver saver;
404 saver.state = kNotFound;
405 saver.ucmp = ucmp;
406 saver.user_key = user_key;
407 saver.value = value;
408 s = vset_->table_cache_->Get(options, f->number, f->file_size,
409 ikey, &saver, SaveValue);
410 if (!s.ok()) {
411 return s;
413 switch (saver.state) {
414 case kNotFound:
415 break; // Keep searching in other files
416 case kFound:
417 return s;
418 case kDeleted:
419 s = Status::NotFound(Slice()); // Use empty error message for speed
420 return s;
421 case kCorrupt:
422 s = Status::Corruption("corrupted key for ", user_key);
423 return s;
428 return Status::NotFound(Slice()); // Use an empty error message for speed
431 bool Version::UpdateStats(const GetStats& stats) {
432 FileMetaData* f = stats.seek_file;
433 if (f != NULL) {
434 f->allowed_seeks--;
435 if (f->allowed_seeks <= 0 && file_to_compact_ == NULL) {
436 file_to_compact_ = f;
437 file_to_compact_level_ = stats.seek_file_level;
438 return true;
441 return false;
444 bool Version::RecordReadSample(Slice internal_key) {
445 ParsedInternalKey ikey;
446 if (!ParseInternalKey(internal_key, &ikey)) {
447 return false;
450 struct State {
451 GetStats stats; // Holds first matching file
452 int matches;
454 static bool Match(void* arg, int level, FileMetaData* f) {
455 State* state = reinterpret_cast<State*>(arg);
456 state->matches++;
457 if (state->matches == 1) {
458 // Remember first match.
459 state->stats.seek_file = f;
460 state->stats.seek_file_level = level;
462 // We can stop iterating once we have a second match.
463 return state->matches < 2;
467 State state;
468 state.matches = 0;
469 ForEachOverlapping(ikey.user_key, internal_key, &state, &State::Match);
471 // Must have at least two matches since we want to merge across
472 // files. But what if we have a single file that contains many
473 // overwrites and deletions? Should we have another mechanism for
474 // finding such files?
475 if (state.matches >= 2) {
476 // 1MB cost is about 1 seek (see comment in Builder::Apply).
477 return UpdateStats(state.stats);
479 return false;
482 void Version::Ref() {
483 ++refs_;
486 void Version::Unref() {
487 assert(this != &vset_->dummy_versions_);
488 assert(refs_ >= 1);
489 --refs_;
490 if (refs_ == 0) {
491 delete this;
495 bool Version::OverlapInLevel(int level,
496 const Slice* smallest_user_key,
497 const Slice* largest_user_key) {
498 return SomeFileOverlapsRange(vset_->icmp_, (level > 0), files_[level],
499 smallest_user_key, largest_user_key);
502 int Version::PickLevelForMemTableOutput(
503 const Slice& smallest_user_key,
504 const Slice& largest_user_key) {
505 int level = 0;
506 if (!OverlapInLevel(0, &smallest_user_key, &largest_user_key)) {
507 // Push to next level if there is no overlap in next level,
508 // and the #bytes overlapping in the level after that are limited.
509 InternalKey start(smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek);
510 InternalKey limit(largest_user_key, 0, static_cast<ValueType>(0));
511 std::vector<FileMetaData*> overlaps;
512 while (level < config::kMaxMemCompactLevel) {
513 if (OverlapInLevel(level + 1, &smallest_user_key, &largest_user_key)) {
514 break;
516 if (level + 2 < config::kNumLevels) {
517 // Check that file does not overlap too many grandparent bytes.
518 GetOverlappingInputs(level + 2, &start, &limit, &overlaps);
519 const int64_t sum = TotalFileSize(overlaps);
520 if (sum > MaxGrandParentOverlapBytes(vset_->options_)) {
521 break;
524 level++;
527 return level;
530 // Store in "*inputs" all files in "level" that overlap [begin,end]
531 void Version::GetOverlappingInputs(
532 int level,
533 const InternalKey* begin,
534 const InternalKey* end,
535 std::vector<FileMetaData*>* inputs) {
536 assert(level >= 0);
537 assert(level < config::kNumLevels);
538 inputs->clear();
539 Slice user_begin, user_end;
540 if (begin != NULL) {
541 user_begin = begin->user_key();
543 if (end != NULL) {
544 user_end = end->user_key();
546 const Comparator* user_cmp = vset_->icmp_.user_comparator();
547 for (size_t i = 0; i < files_[level].size(); ) {
548 FileMetaData* f = files_[level][i++];
549 const Slice file_start = f->smallest.user_key();
550 const Slice file_limit = f->largest.user_key();
551 if (begin != NULL && user_cmp->Compare(file_limit, user_begin) < 0) {
552 // "f" is completely before specified range; skip it
553 } else if (end != NULL && user_cmp->Compare(file_start, user_end) > 0) {
554 // "f" is completely after specified range; skip it
555 } else {
556 inputs->push_back(f);
557 if (level == 0) {
558 // Level-0 files may overlap each other. So check if the newly
559 // added file has expanded the range. If so, restart search.
560 if (begin != NULL && user_cmp->Compare(file_start, user_begin) < 0) {
561 user_begin = file_start;
562 inputs->clear();
563 i = 0;
564 } else if (end != NULL && user_cmp->Compare(file_limit, user_end) > 0) {
565 user_end = file_limit;
566 inputs->clear();
567 i = 0;
574 std::string Version::DebugString() const {
575 std::string r;
576 for (int level = 0; level < config::kNumLevels; level++) {
577 // E.g.,
578 // --- level 1 ---
579 // 17:123['a' .. 'd']
580 // 20:43['e' .. 'g']
581 r.append("--- level ");
582 AppendNumberTo(&r, level);
583 r.append(" ---\n");
584 const std::vector<FileMetaData*>& files = files_[level];
585 for (size_t i = 0; i < files.size(); i++) {
586 r.push_back(' ');
587 AppendNumberTo(&r, files[i]->number);
588 r.push_back(':');
589 AppendNumberTo(&r, files[i]->file_size);
590 r.append("[");
591 r.append(files[i]->smallest.DebugString());
592 r.append(" .. ");
593 r.append(files[i]->largest.DebugString());
594 r.append("]\n");
597 return r;
600 // A helper class so we can efficiently apply a whole sequence
601 // of edits to a particular state without creating intermediate
602 // Versions that contain full copies of the intermediate state.
603 class VersionSet::Builder {
604 private:
605 // Helper to sort by v->files_[file_number].smallest
606 struct BySmallestKey {
607 const InternalKeyComparator* internal_comparator;
609 bool operator()(FileMetaData* f1, FileMetaData* f2) const {
610 int r = internal_comparator->Compare(f1->smallest, f2->smallest);
611 if (r != 0) {
612 return (r < 0);
613 } else {
614 // Break ties by file number
615 return (f1->number < f2->number);
620 typedef std::set<FileMetaData*, BySmallestKey> FileSet;
621 struct LevelState {
622 std::set<uint64_t> deleted_files;
623 FileSet* added_files;
626 VersionSet* vset_;
627 Version* base_;
628 LevelState levels_[config::kNumLevels];
630 public:
631 // Initialize a builder with the files from *base and other info from *vset
632 Builder(VersionSet* vset, Version* base)
633 : vset_(vset),
634 base_(base) {
635 base_->Ref();
636 BySmallestKey cmp;
637 cmp.internal_comparator = &vset_->icmp_;
638 for (int level = 0; level < config::kNumLevels; level++) {
639 levels_[level].added_files = new FileSet(cmp);
643 ~Builder() {
644 for (int level = 0; level < config::kNumLevels; level++) {
645 const FileSet* added = levels_[level].added_files;
646 std::vector<FileMetaData*> to_unref;
647 to_unref.reserve(added->size());
648 for (FileSet::const_iterator it = added->begin();
649 it != added->end(); ++it) {
650 to_unref.push_back(*it);
652 delete added;
653 for (uint32_t i = 0; i < to_unref.size(); i++) {
654 FileMetaData* f = to_unref[i];
655 f->refs--;
656 if (f->refs <= 0) {
657 delete f;
661 base_->Unref();
664 // Apply all of the edits in *edit to the current state.
665 void Apply(VersionEdit* edit) {
666 // Update compaction pointers
667 for (size_t i = 0; i < edit->compact_pointers_.size(); i++) {
668 const int level = edit->compact_pointers_[i].first;
669 vset_->compact_pointer_[level] =
670 edit->compact_pointers_[i].second.Encode().ToString();
673 // Delete files
674 const VersionEdit::DeletedFileSet& del = edit->deleted_files_;
675 for (VersionEdit::DeletedFileSet::const_iterator iter = del.begin();
676 iter != del.end();
677 ++iter) {
678 const int level = iter->first;
679 const uint64_t number = iter->second;
680 levels_[level].deleted_files.insert(number);
683 // Add new files
684 for (size_t i = 0; i < edit->new_files_.size(); i++) {
685 const int level = edit->new_files_[i].first;
686 FileMetaData* f = new FileMetaData(edit->new_files_[i].second);
687 f->refs = 1;
689 // We arrange to automatically compact this file after
690 // a certain number of seeks. Let's assume:
691 // (1) One seek costs 10ms
692 // (2) Writing or reading 1MB costs 10ms (100MB/s)
693 // (3) A compaction of 1MB does 25MB of IO:
694 // 1MB read from this level
695 // 10-12MB read from next level (boundaries may be misaligned)
696 // 10-12MB written to next level
697 // This implies that 25 seeks cost the same as the compaction
698 // of 1MB of data. I.e., one seek costs approximately the
699 // same as the compaction of 40KB of data. We are a little
700 // conservative and allow approximately one seek for every 16KB
701 // of data before triggering a compaction.
702 f->allowed_seeks = (f->file_size / 16384);
703 if (f->allowed_seeks < 100) f->allowed_seeks = 100;
705 levels_[level].deleted_files.erase(f->number);
706 levels_[level].added_files->insert(f);
710 // Save the current state in *v.
711 void SaveTo(Version* v) {
712 BySmallestKey cmp;
713 cmp.internal_comparator = &vset_->icmp_;
714 for (int level = 0; level < config::kNumLevels; level++) {
715 // Merge the set of added files with the set of pre-existing files.
716 // Drop any deleted files. Store the result in *v.
717 const std::vector<FileMetaData*>& base_files = base_->files_[level];
718 std::vector<FileMetaData*>::const_iterator base_iter = base_files.begin();
719 std::vector<FileMetaData*>::const_iterator base_end = base_files.end();
720 const FileSet* added = levels_[level].added_files;
721 v->files_[level].reserve(base_files.size() + added->size());
722 for (FileSet::const_iterator added_iter = added->begin();
723 added_iter != added->end();
724 ++added_iter) {
725 // Add all smaller files listed in base_
726 for (std::vector<FileMetaData*>::const_iterator bpos
727 = std::upper_bound(base_iter, base_end, *added_iter, cmp);
728 base_iter != bpos;
729 ++base_iter) {
730 MaybeAddFile(v, level, *base_iter);
733 MaybeAddFile(v, level, *added_iter);
736 // Add remaining base files
737 for (; base_iter != base_end; ++base_iter) {
738 MaybeAddFile(v, level, *base_iter);
741 #ifndef NDEBUG
742 // Make sure there is no overlap in levels > 0
743 if (level > 0) {
744 for (uint32_t i = 1; i < v->files_[level].size(); i++) {
745 const InternalKey& prev_end = v->files_[level][i-1]->largest;
746 const InternalKey& this_begin = v->files_[level][i]->smallest;
747 if (vset_->icmp_.Compare(prev_end, this_begin) >= 0) {
748 fprintf(stderr, "overlapping ranges in same level %s vs. %s\n",
749 prev_end.DebugString().c_str(),
750 this_begin.DebugString().c_str());
751 abort();
755 #endif
759 void MaybeAddFile(Version* v, int level, FileMetaData* f) {
760 if (levels_[level].deleted_files.count(f->number) > 0) {
761 // File is deleted: do nothing
762 } else {
763 std::vector<FileMetaData*>* files = &v->files_[level];
764 if (level > 0 && !files->empty()) {
765 // Must not overlap
766 assert(vset_->icmp_.Compare((*files)[files->size()-1]->largest,
767 f->smallest) < 0);
769 f->refs++;
770 files->push_back(f);
775 VersionSet::VersionSet(const std::string& dbname,
776 const Options* options,
777 TableCache* table_cache,
778 const InternalKeyComparator* cmp)
779 : env_(options->env),
780 dbname_(dbname),
781 options_(options),
782 table_cache_(table_cache),
783 icmp_(*cmp),
784 next_file_number_(2),
785 manifest_file_number_(0), // Filled by Recover()
786 last_sequence_(0),
787 log_number_(0),
788 prev_log_number_(0),
789 descriptor_file_(NULL),
790 descriptor_log_(NULL),
791 dummy_versions_(this),
792 current_(NULL) {
793 AppendVersion(new Version(this));
796 VersionSet::~VersionSet() {
797 current_->Unref();
798 assert(dummy_versions_.next_ == &dummy_versions_); // List must be empty
799 delete descriptor_log_;
800 delete descriptor_file_;
803 void VersionSet::AppendVersion(Version* v) {
804 // Make "v" current
805 assert(v->refs_ == 0);
806 assert(v != current_);
807 if (current_ != NULL) {
808 current_->Unref();
810 current_ = v;
811 v->Ref();
813 // Append to linked list
814 v->prev_ = dummy_versions_.prev_;
815 v->next_ = &dummy_versions_;
816 v->prev_->next_ = v;
817 v->next_->prev_ = v;
820 Status VersionSet::LogAndApply(VersionEdit* edit, port::Mutex* mu) {
821 if (edit->has_log_number_) {
822 assert(edit->log_number_ >= log_number_);
823 assert(edit->log_number_ < next_file_number_);
824 } else {
825 edit->SetLogNumber(log_number_);
828 if (!edit->has_prev_log_number_) {
829 edit->SetPrevLogNumber(prev_log_number_);
832 edit->SetNextFile(next_file_number_);
833 edit->SetLastSequence(last_sequence_);
835 Version* v = new Version(this);
837 Builder builder(this, current_);
838 builder.Apply(edit);
839 builder.SaveTo(v);
841 Finalize(v);
843 // Initialize new descriptor log file if necessary by creating
844 // a temporary file that contains a snapshot of the current version.
845 std::string new_manifest_file;
846 Status s;
847 if (descriptor_log_ == NULL) {
848 // No reason to unlock *mu here since we only hit this path in the
849 // first call to LogAndApply (when opening the database).
850 assert(descriptor_file_ == NULL);
851 new_manifest_file = DescriptorFileName(dbname_, manifest_file_number_);
852 edit->SetNextFile(next_file_number_);
853 s = env_->NewWritableFile(new_manifest_file, &descriptor_file_);
854 if (s.ok()) {
855 descriptor_log_ = new log::Writer(descriptor_file_);
856 s = WriteSnapshot(descriptor_log_);
860 // Unlock during expensive MANIFEST log write
862 mu->Unlock();
864 // Write new record to MANIFEST log
865 if (s.ok()) {
866 std::string record;
867 edit->EncodeTo(&record);
868 s = descriptor_log_->AddRecord(record);
869 if (s.ok()) {
870 s = descriptor_file_->Sync();
872 if (!s.ok()) {
873 Log(options_->info_log, "MANIFEST write: %s\n", s.ToString().c_str());
877 // If we just created a new descriptor file, install it by writing a
878 // new CURRENT file that points to it.
879 if (s.ok() && !new_manifest_file.empty()) {
880 s = SetCurrentFile(env_, dbname_, manifest_file_number_);
883 mu->Lock();
886 // Install the new version
887 if (s.ok()) {
888 AppendVersion(v);
889 log_number_ = edit->log_number_;
890 prev_log_number_ = edit->prev_log_number_;
891 } else {
892 delete v;
893 if (!new_manifest_file.empty()) {
894 delete descriptor_log_;
895 delete descriptor_file_;
896 descriptor_log_ = NULL;
897 descriptor_file_ = NULL;
898 env_->DeleteFile(new_manifest_file);
902 return s;
905 Status VersionSet::Recover(bool *save_manifest) {
906 struct LogReporter : public log::Reader::Reporter {
907 Status* status;
908 virtual void Corruption(size_t bytes, const Status& s) {
909 if (this->status->ok()) *this->status = s;
913 // Read "CURRENT" file, which contains a pointer to the current manifest file
914 std::string current;
915 Status s = ReadFileToString(env_, CurrentFileName(dbname_), &current);
916 if (!s.ok()) {
917 return s;
919 if (current.empty() || current[current.size()-1] != '\n') {
920 return Status::Corruption("CURRENT file does not end with newline");
922 current.resize(current.size() - 1);
924 std::string dscname = dbname_ + "/" + current;
925 SequentialFile* file;
926 s = env_->NewSequentialFile(dscname, &file);
927 if (!s.ok()) {
928 return s;
931 bool have_log_number = false;
932 bool have_prev_log_number = false;
933 bool have_next_file = false;
934 bool have_last_sequence = false;
935 uint64_t next_file = 0;
936 uint64_t last_sequence = 0;
937 uint64_t log_number = 0;
938 uint64_t prev_log_number = 0;
939 Builder builder(this, current_);
942 LogReporter reporter;
943 reporter.status = &s;
944 log::Reader reader(file, &reporter, true/*checksum*/, 0/*initial_offset*/);
945 Slice record;
946 std::string scratch;
947 while (reader.ReadRecord(&record, &scratch) && s.ok()) {
948 VersionEdit edit;
949 s = edit.DecodeFrom(record);
950 if (s.ok()) {
951 if (edit.has_comparator_ &&
952 edit.comparator_ != icmp_.user_comparator()->Name()) {
953 s = Status::InvalidArgument(
954 edit.comparator_ + " does not match existing comparator ",
955 icmp_.user_comparator()->Name());
959 if (s.ok()) {
960 builder.Apply(&edit);
963 if (edit.has_log_number_) {
964 log_number = edit.log_number_;
965 have_log_number = true;
968 if (edit.has_prev_log_number_) {
969 prev_log_number = edit.prev_log_number_;
970 have_prev_log_number = true;
973 if (edit.has_next_file_number_) {
974 next_file = edit.next_file_number_;
975 have_next_file = true;
978 if (edit.has_last_sequence_) {
979 last_sequence = edit.last_sequence_;
980 have_last_sequence = true;
984 delete file;
985 file = NULL;
987 if (s.ok()) {
988 if (!have_next_file) {
989 s = Status::Corruption("no meta-nextfile entry in descriptor");
990 } else if (!have_log_number) {
991 s = Status::Corruption("no meta-lognumber entry in descriptor");
992 } else if (!have_last_sequence) {
993 s = Status::Corruption("no last-sequence-number entry in descriptor");
996 if (!have_prev_log_number) {
997 prev_log_number = 0;
1000 MarkFileNumberUsed(prev_log_number);
1001 MarkFileNumberUsed(log_number);
1004 if (s.ok()) {
1005 Version* v = new Version(this);
1006 builder.SaveTo(v);
1007 // Install recovered version
1008 Finalize(v);
1009 AppendVersion(v);
1010 manifest_file_number_ = next_file;
1011 next_file_number_ = next_file + 1;
1012 last_sequence_ = last_sequence;
1013 log_number_ = log_number;
1014 prev_log_number_ = prev_log_number;
1016 // See if we can reuse the existing MANIFEST file.
1017 if (ReuseManifest(dscname, current)) {
1018 // No need to save new manifest
1019 } else {
1020 *save_manifest = true;
1024 return s;
1027 bool VersionSet::ReuseManifest(const std::string& dscname,
1028 const std::string& dscbase) {
1029 if (!options_->reuse_logs) {
1030 return false;
1032 FileType manifest_type;
1033 uint64_t manifest_number;
1034 uint64_t manifest_size;
1035 if (!ParseFileName(dscbase, &manifest_number, &manifest_type) ||
1036 manifest_type != kDescriptorFile ||
1037 !env_->GetFileSize(dscname, &manifest_size).ok() ||
1038 // Make new compacted MANIFEST if old one is too big
1039 manifest_size >= TargetFileSize(options_)) {
1040 return false;
1043 assert(descriptor_file_ == NULL);
1044 assert(descriptor_log_ == NULL);
1045 Status r = env_->NewAppendableFile(dscname, &descriptor_file_);
1046 if (!r.ok()) {
1047 Log(options_->info_log, "Reuse MANIFEST: %s\n", r.ToString().c_str());
1048 assert(descriptor_file_ == NULL);
1049 return false;
1052 Log(options_->info_log, "Reusing MANIFEST %s\n", dscname.c_str());
1053 descriptor_log_ = new log::Writer(descriptor_file_, manifest_size);
1054 manifest_file_number_ = manifest_number;
1055 return true;
1058 void VersionSet::MarkFileNumberUsed(uint64_t number) {
1059 if (next_file_number_ <= number) {
1060 next_file_number_ = number + 1;
1064 void VersionSet::Finalize(Version* v) {
1065 // Precomputed best level for next compaction
1066 int best_level = -1;
1067 double best_score = -1;
1069 for (int level = 0; level < config::kNumLevels-1; level++) {
1070 double score;
1071 if (level == 0) {
1072 // We treat level-0 specially by bounding the number of files
1073 // instead of number of bytes for two reasons:
1075 // (1) With larger write-buffer sizes, it is nice not to do too
1076 // many level-0 compactions.
1078 // (2) The files in level-0 are merged on every read and
1079 // therefore we wish to avoid too many files when the individual
1080 // file size is small (perhaps because of a small write-buffer
1081 // setting, or very high compression ratios, or lots of
1082 // overwrites/deletions).
1083 score = v->files_[level].size() /
1084 static_cast<double>(config::kL0_CompactionTrigger);
1085 } else {
1086 // Compute the ratio of current size to size limit.
1087 const uint64_t level_bytes = TotalFileSize(v->files_[level]);
1088 score =
1089 static_cast<double>(level_bytes) / MaxBytesForLevel(options_, level);
1092 if (score > best_score) {
1093 best_level = level;
1094 best_score = score;
1098 v->compaction_level_ = best_level;
1099 v->compaction_score_ = best_score;
1102 Status VersionSet::WriteSnapshot(log::Writer* log) {
1103 // TODO: Break up into multiple records to reduce memory usage on recovery?
1105 // Save metadata
1106 VersionEdit edit;
1107 edit.SetComparatorName(icmp_.user_comparator()->Name());
1109 // Save compaction pointers
1110 for (int level = 0; level < config::kNumLevels; level++) {
1111 if (!compact_pointer_[level].empty()) {
1112 InternalKey key;
1113 key.DecodeFrom(compact_pointer_[level]);
1114 edit.SetCompactPointer(level, key);
1118 // Save files
1119 for (int level = 0; level < config::kNumLevels; level++) {
1120 const std::vector<FileMetaData*>& files = current_->files_[level];
1121 for (size_t i = 0; i < files.size(); i++) {
1122 const FileMetaData* f = files[i];
1123 edit.AddFile(level, f->number, f->file_size, f->smallest, f->largest);
1127 std::string record;
1128 edit.EncodeTo(&record);
1129 return log->AddRecord(record);
1132 int VersionSet::NumLevelFiles(int level) const {
1133 assert(level >= 0);
1134 assert(level < config::kNumLevels);
1135 return current_->files_[level].size();
1138 const char* VersionSet::LevelSummary(LevelSummaryStorage* scratch) const {
1139 // Update code if kNumLevels changes
1140 assert(config::kNumLevels == 7);
1141 snprintf(scratch->buffer, sizeof(scratch->buffer),
1142 "files[ %d %d %d %d %d %d %d ]",
1143 int(current_->files_[0].size()),
1144 int(current_->files_[1].size()),
1145 int(current_->files_[2].size()),
1146 int(current_->files_[3].size()),
1147 int(current_->files_[4].size()),
1148 int(current_->files_[5].size()),
1149 int(current_->files_[6].size()));
1150 return scratch->buffer;
1153 uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) {
1154 uint64_t result = 0;
1155 for (int level = 0; level < config::kNumLevels; level++) {
1156 const std::vector<FileMetaData*>& files = v->files_[level];
1157 for (size_t i = 0; i < files.size(); i++) {
1158 if (icmp_.Compare(files[i]->largest, ikey) <= 0) {
1159 // Entire file is before "ikey", so just add the file size
1160 result += files[i]->file_size;
1161 } else if (icmp_.Compare(files[i]->smallest, ikey) > 0) {
1162 // Entire file is after "ikey", so ignore
1163 if (level > 0) {
1164 // Files other than level 0 are sorted by meta->smallest, so
1165 // no further files in this level will contain data for
1166 // "ikey".
1167 break;
1169 } else {
1170 // "ikey" falls in the range for this table. Add the
1171 // approximate offset of "ikey" within the table.
1172 Table* tableptr;
1173 Iterator* iter = table_cache_->NewIterator(
1174 ReadOptions(), files[i]->number, files[i]->file_size, &tableptr);
1175 if (tableptr != NULL) {
1176 result += tableptr->ApproximateOffsetOf(ikey.Encode());
1178 delete iter;
1182 return result;
1185 void VersionSet::AddLiveFiles(std::set<uint64_t>* live) {
1186 for (Version* v = dummy_versions_.next_;
1187 v != &dummy_versions_;
1188 v = v->next_) {
1189 for (int level = 0; level < config::kNumLevels; level++) {
1190 const std::vector<FileMetaData*>& files = v->files_[level];
1191 for (size_t i = 0; i < files.size(); i++) {
1192 live->insert(files[i]->number);
1198 int64_t VersionSet::NumLevelBytes(int level) const {
1199 assert(level >= 0);
1200 assert(level < config::kNumLevels);
1201 return TotalFileSize(current_->files_[level]);
1204 int64_t VersionSet::MaxNextLevelOverlappingBytes() {
1205 int64_t result = 0;
1206 std::vector<FileMetaData*> overlaps;
1207 for (int level = 1; level < config::kNumLevels - 1; level++) {
1208 for (size_t i = 0; i < current_->files_[level].size(); i++) {
1209 const FileMetaData* f = current_->files_[level][i];
1210 current_->GetOverlappingInputs(level+1, &f->smallest, &f->largest,
1211 &overlaps);
1212 const int64_t sum = TotalFileSize(overlaps);
1213 if (sum > result) {
1214 result = sum;
1218 return result;
1221 // Stores the minimal range that covers all entries in inputs in
1222 // *smallest, *largest.
1223 // REQUIRES: inputs is not empty
1224 void VersionSet::GetRange(const std::vector<FileMetaData*>& inputs,
1225 InternalKey* smallest,
1226 InternalKey* largest) {
1227 assert(!inputs.empty());
1228 smallest->Clear();
1229 largest->Clear();
1230 for (size_t i = 0; i < inputs.size(); i++) {
1231 FileMetaData* f = inputs[i];
1232 if (i == 0) {
1233 *smallest = f->smallest;
1234 *largest = f->largest;
1235 } else {
1236 if (icmp_.Compare(f->smallest, *smallest) < 0) {
1237 *smallest = f->smallest;
1239 if (icmp_.Compare(f->largest, *largest) > 0) {
1240 *largest = f->largest;
1246 // Stores the minimal range that covers all entries in inputs1 and inputs2
1247 // in *smallest, *largest.
1248 // REQUIRES: inputs is not empty
1249 void VersionSet::GetRange2(const std::vector<FileMetaData*>& inputs1,
1250 const std::vector<FileMetaData*>& inputs2,
1251 InternalKey* smallest,
1252 InternalKey* largest) {
1253 std::vector<FileMetaData*> all = inputs1;
1254 all.insert(all.end(), inputs2.begin(), inputs2.end());
1255 GetRange(all, smallest, largest);
1258 Iterator* VersionSet::MakeInputIterator(Compaction* c) {
1259 ReadOptions options;
1260 options.verify_checksums = options_->paranoid_checks;
1261 options.fill_cache = false;
1263 // Level-0 files have to be merged together. For other levels,
1264 // we will make a concatenating iterator per level.
1265 // TODO(opt): use concatenating iterator for level-0 if there is no overlap
1266 const int space = (c->level() == 0 ? c->inputs_[0].size() + 1 : 2);
1267 Iterator** list = new Iterator*[space];
1268 int num = 0;
1269 for (int which = 0; which < 2; which++) {
1270 if (!c->inputs_[which].empty()) {
1271 if (c->level() + which == 0) {
1272 const std::vector<FileMetaData*>& files = c->inputs_[which];
1273 for (size_t i = 0; i < files.size(); i++) {
1274 list[num++] = table_cache_->NewIterator(
1275 options, files[i]->number, files[i]->file_size);
1277 } else {
1278 // Create concatenating iterator for the files from this level
1279 list[num++] = NewTwoLevelIterator(
1280 new Version::LevelFileNumIterator(icmp_, &c->inputs_[which]),
1281 &GetFileIterator, table_cache_, options);
1285 assert(num <= space);
1286 Iterator* result = NewMergingIterator(&icmp_, list, num);
1287 delete[] list;
1288 return result;
1291 Compaction* VersionSet::PickCompaction() {
1292 Compaction* c;
1293 int level;
1295 // We prefer compactions triggered by too much data in a level over
1296 // the compactions triggered by seeks.
1297 const bool size_compaction = (current_->compaction_score_ >= 1);
1298 const bool seek_compaction = (current_->file_to_compact_ != NULL);
1299 if (size_compaction) {
1300 level = current_->compaction_level_;
1301 assert(level >= 0);
1302 assert(level+1 < config::kNumLevels);
1303 c = new Compaction(options_, level);
1305 // Pick the first file that comes after compact_pointer_[level]
1306 for (size_t i = 0; i < current_->files_[level].size(); i++) {
1307 FileMetaData* f = current_->files_[level][i];
1308 if (compact_pointer_[level].empty() ||
1309 icmp_.Compare(f->largest.Encode(), compact_pointer_[level]) > 0) {
1310 c->inputs_[0].push_back(f);
1311 break;
1314 if (c->inputs_[0].empty()) {
1315 // Wrap-around to the beginning of the key space
1316 c->inputs_[0].push_back(current_->files_[level][0]);
1318 } else if (seek_compaction) {
1319 level = current_->file_to_compact_level_;
1320 c = new Compaction(options_, level);
1321 c->inputs_[0].push_back(current_->file_to_compact_);
1322 } else {
1323 return NULL;
1326 c->input_version_ = current_;
1327 c->input_version_->Ref();
1329 // Files in level 0 may overlap each other, so pick up all overlapping ones
1330 if (level == 0) {
1331 InternalKey smallest, largest;
1332 GetRange(c->inputs_[0], &smallest, &largest);
1333 // Note that the next call will discard the file we placed in
1334 // c->inputs_[0] earlier and replace it with an overlapping set
1335 // which will include the picked file.
1336 current_->GetOverlappingInputs(0, &smallest, &largest, &c->inputs_[0]);
1337 assert(!c->inputs_[0].empty());
1340 SetupOtherInputs(c);
1342 return c;
1345 void VersionSet::SetupOtherInputs(Compaction* c) {
1346 const int level = c->level();
1347 InternalKey smallest, largest;
1348 GetRange(c->inputs_[0], &smallest, &largest);
1350 current_->GetOverlappingInputs(level+1, &smallest, &largest, &c->inputs_[1]);
1352 // Get entire range covered by compaction
1353 InternalKey all_start, all_limit;
1354 GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);
1356 // See if we can grow the number of inputs in "level" without
1357 // changing the number of "level+1" files we pick up.
1358 if (!c->inputs_[1].empty()) {
1359 std::vector<FileMetaData*> expanded0;
1360 current_->GetOverlappingInputs(level, &all_start, &all_limit, &expanded0);
1361 const int64_t inputs0_size = TotalFileSize(c->inputs_[0]);
1362 const int64_t inputs1_size = TotalFileSize(c->inputs_[1]);
1363 const int64_t expanded0_size = TotalFileSize(expanded0);
1364 if (expanded0.size() > c->inputs_[0].size() &&
1365 inputs1_size + expanded0_size <
1366 ExpandedCompactionByteSizeLimit(options_)) {
1367 InternalKey new_start, new_limit;
1368 GetRange(expanded0, &new_start, &new_limit);
1369 std::vector<FileMetaData*> expanded1;
1370 current_->GetOverlappingInputs(level+1, &new_start, &new_limit,
1371 &expanded1);
1372 if (expanded1.size() == c->inputs_[1].size()) {
1373 Log(options_->info_log,
1374 "Expanding@%d %d+%d (%ld+%ld bytes) to %d+%d (%ld+%ld bytes)\n",
1375 level,
1376 int(c->inputs_[0].size()),
1377 int(c->inputs_[1].size()),
1378 long(inputs0_size), long(inputs1_size),
1379 int(expanded0.size()),
1380 int(expanded1.size()),
1381 long(expanded0_size), long(inputs1_size));
1382 smallest = new_start;
1383 largest = new_limit;
1384 c->inputs_[0] = expanded0;
1385 c->inputs_[1] = expanded1;
1386 GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit);
1391 // Compute the set of grandparent files that overlap this compaction
1392 // (parent == level+1; grandparent == level+2)
1393 if (level + 2 < config::kNumLevels) {
1394 current_->GetOverlappingInputs(level + 2, &all_start, &all_limit,
1395 &c->grandparents_);
1398 if (false) {
1399 Log(options_->info_log, "Compacting %d '%s' .. '%s'",
1400 level,
1401 smallest.DebugString().c_str(),
1402 largest.DebugString().c_str());
1405 // Update the place where we will do the next compaction for this level.
1406 // We update this immediately instead of waiting for the VersionEdit
1407 // to be applied so that if the compaction fails, we will try a different
1408 // key range next time.
1409 compact_pointer_[level] = largest.Encode().ToString();
1410 c->edit_.SetCompactPointer(level, largest);
1413 Compaction* VersionSet::CompactRange(
1414 int level,
1415 const InternalKey* begin,
1416 const InternalKey* end) {
1417 std::vector<FileMetaData*> inputs;
1418 current_->GetOverlappingInputs(level, begin, end, &inputs);
1419 if (inputs.empty()) {
1420 return NULL;
1423 // Avoid compacting too much in one shot in case the range is large.
1424 // But we cannot do this for level-0 since level-0 files can overlap
1425 // and we must not pick one file and drop another older file if the
1426 // two files overlap.
1427 if (level > 0) {
1428 const uint64_t limit = MaxFileSizeForLevel(options_, level);
1429 uint64_t total = 0;
1430 for (size_t i = 0; i < inputs.size(); i++) {
1431 uint64_t s = inputs[i]->file_size;
1432 total += s;
1433 if (total >= limit) {
1434 inputs.resize(i + 1);
1435 break;
1440 Compaction* c = new Compaction(options_, level);
1441 c->input_version_ = current_;
1442 c->input_version_->Ref();
1443 c->inputs_[0] = inputs;
1444 SetupOtherInputs(c);
1445 return c;
1448 Compaction::Compaction(const Options* options, int level)
1449 : level_(level),
1450 max_output_file_size_(MaxFileSizeForLevel(options, level)),
1451 input_version_(NULL),
1452 grandparent_index_(0),
1453 seen_key_(false),
1454 overlapped_bytes_(0) {
1455 for (int i = 0; i < config::kNumLevels; i++) {
1456 level_ptrs_[i] = 0;
1460 Compaction::~Compaction() {
1461 if (input_version_ != NULL) {
1462 input_version_->Unref();
1466 bool Compaction::IsTrivialMove() const {
1467 const VersionSet* vset = input_version_->vset_;
1468 // Avoid a move if there is lots of overlapping grandparent data.
1469 // Otherwise, the move could create a parent file that will require
1470 // a very expensive merge later on.
1471 return (num_input_files(0) == 1 && num_input_files(1) == 0 &&
1472 TotalFileSize(grandparents_) <=
1473 MaxGrandParentOverlapBytes(vset->options_));
1476 void Compaction::AddInputDeletions(VersionEdit* edit) {
1477 for (int which = 0; which < 2; which++) {
1478 for (size_t i = 0; i < inputs_[which].size(); i++) {
1479 edit->DeleteFile(level_ + which, inputs_[which][i]->number);
1484 bool Compaction::IsBaseLevelForKey(const Slice& user_key) {
1485 // Maybe use binary search to find right entry instead of linear search?
1486 const Comparator* user_cmp = input_version_->vset_->icmp_.user_comparator();
1487 for (int lvl = level_ + 2; lvl < config::kNumLevels; lvl++) {
1488 const std::vector<FileMetaData*>& files = input_version_->files_[lvl];
1489 for (; level_ptrs_[lvl] < files.size(); ) {
1490 FileMetaData* f = files[level_ptrs_[lvl]];
1491 if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) {
1492 // We've advanced far enough
1493 if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) {
1494 // Key falls in this file's range, so definitely not base level
1495 return false;
1497 break;
1499 level_ptrs_[lvl]++;
1502 return true;
1505 bool Compaction::ShouldStopBefore(const Slice& internal_key) {
1506 const VersionSet* vset = input_version_->vset_;
1507 // Scan to find earliest grandparent file that contains key.
1508 const InternalKeyComparator* icmp = &vset->icmp_;
1509 while (grandparent_index_ < grandparents_.size() &&
1510 icmp->Compare(internal_key,
1511 grandparents_[grandparent_index_]->largest.Encode()) > 0) {
1512 if (seen_key_) {
1513 overlapped_bytes_ += grandparents_[grandparent_index_]->file_size;
1515 grandparent_index_++;
1517 seen_key_ = true;
1519 if (overlapped_bytes_ > MaxGrandParentOverlapBytes(vset->options_)) {
1520 // Too much overlap for current output; start new output
1521 overlapped_bytes_ = 0;
1522 return true;
1523 } else {
1524 return false;
1528 void Compaction::ReleaseInputs() {
1529 if (input_version_ != NULL) {
1530 input_version_->Unref();
1531 input_version_ = NULL;
1535 } // namespace leveldb