1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2016 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
10 #include "serialize.h"
11 #include "support/allocators/secure.h"
20 * const unsigned int PRIVATE_KEY_SIZE = 279;
21 * const unsigned int PUBLIC_KEY_SIZE = 65;
22 * const unsigned int SIGNATURE_SIZE = 72;
24 * see www.keylength.com
25 * script supports up to 75 for single byte push
29 * secure_allocator is defined in allocators.h
30 * CPrivKey is a serialized private key, with all parameters included (279 bytes)
32 typedef std::vector
<unsigned char, secure_allocator
<unsigned char> > CPrivKey
;
34 /** An encapsulated private key. */
38 //! Whether this private key is valid. We check for correctness when modifying the key
39 //! data, so fValid should always correspond to the actual state.
42 //! Whether the public key corresponding to this private key is (to be) compressed.
45 //! The actual byte data
46 std::vector
<unsigned char, secure_allocator
<unsigned char> > keydata
;
48 //! Check whether the 32-byte array pointed to by vch is valid keydata.
49 bool static Check(const unsigned char* vch
);
52 //! Construct an invalid private key.
53 CKey() : fValid(false), fCompressed(false)
55 // Important: vch must be 32 bytes in length to not break serialization
59 //! Destructor (again necessary because of memlocking).
64 friend bool operator==(const CKey
& a
, const CKey
& b
)
66 return a
.fCompressed
== b
.fCompressed
&&
67 a
.size() == b
.size() &&
68 memcmp(a
.keydata
.data(), b
.keydata
.data(), a
.size()) == 0;
71 //! Initialize using begin and end iterators to byte data.
73 void Set(const T pbegin
, const T pend
, bool fCompressedIn
)
75 if (size_t(pend
- pbegin
) != keydata
.size()) {
77 } else if (Check(&pbegin
[0])) {
78 memcpy(keydata
.data(), (unsigned char*)&pbegin
[0], keydata
.size());
80 fCompressed
= fCompressedIn
;
86 //! Simple read-only vector-like interface.
87 unsigned int size() const { return (fValid
? keydata
.size() : 0); }
88 const unsigned char* begin() const { return keydata
.data(); }
89 const unsigned char* end() const { return keydata
.data() + size(); }
91 //! Check whether this private key is valid.
92 bool IsValid() const { return fValid
; }
94 //! Check whether the public key corresponding to this private key is (to be) compressed.
95 bool IsCompressed() const { return fCompressed
; }
97 //! Generate a new private key using a cryptographic PRNG.
98 void MakeNewKey(bool fCompressed
);
101 * Convert the private key to a CPrivKey (serialized OpenSSL private key data).
104 CPrivKey
GetPrivKey() const;
107 * Compute the public key from a private key.
110 CPubKey
GetPubKey() const;
113 * Create a DER-serialized signature.
114 * The test_case parameter tweaks the deterministic nonce.
116 bool Sign(const uint256
& hash
, std::vector
<unsigned char>& vchSig
, uint32_t test_case
= 0) const;
119 * Create a compact signature (65 bytes), which allows reconstructing the used public key.
120 * The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
121 * The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
122 * 0x1D = second key with even y, 0x1E = second key with odd y,
123 * add 0x04 for compressed keys.
125 bool SignCompact(const uint256
& hash
, std::vector
<unsigned char>& vchSig
) const;
127 //! Derive BIP32 child key.
128 bool Derive(CKey
& keyChild
, ChainCode
&ccChild
, unsigned int nChild
, const ChainCode
& cc
) const;
131 * Verify thoroughly whether a private key and a public key match.
132 * This is done using a different mechanism than just regenerating it.
134 bool VerifyPubKey(const CPubKey
& vchPubKey
) const;
136 //! Load private key and check that public key matches.
137 bool Load(CPrivKey
& privkey
, CPubKey
& vchPubKey
, bool fSkipCheck
);
141 unsigned char nDepth
;
142 unsigned char vchFingerprint
[4];
147 friend bool operator==(const CExtKey
& a
, const CExtKey
& b
)
149 return a
.nDepth
== b
.nDepth
&&
150 memcmp(&a
.vchFingerprint
[0], &b
.vchFingerprint
[0], sizeof(vchFingerprint
)) == 0 &&
151 a
.nChild
== b
.nChild
&&
152 a
.chaincode
== b
.chaincode
&&
156 void Encode(unsigned char code
[BIP32_EXTKEY_SIZE
]) const;
157 void Decode(const unsigned char code
[BIP32_EXTKEY_SIZE
]);
158 bool Derive(CExtKey
& out
, unsigned int nChild
) const;
159 CExtPubKey
Neuter() const;
160 void SetMaster(const unsigned char* seed
, unsigned int nSeedLen
);
161 template <typename Stream
>
162 void Serialize(Stream
& s
) const
164 unsigned int len
= BIP32_EXTKEY_SIZE
;
165 ::WriteCompactSize(s
, len
);
166 unsigned char code
[BIP32_EXTKEY_SIZE
];
168 s
.write((const char *)&code
[0], len
);
170 template <typename Stream
>
171 void Unserialize(Stream
& s
)
173 unsigned int len
= ::ReadCompactSize(s
);
174 unsigned char code
[BIP32_EXTKEY_SIZE
];
175 s
.read((char *)&code
[0], len
);
180 /** Initialize the elliptic curve support. May not be called twice without calling ECC_Stop first. */
181 void ECC_Start(void);
183 /** Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called first. */
186 /** Check that required EC support is available at runtime. */
187 bool ECC_InitSanityCheck(void);
189 #endif // BITCOIN_KEY_H