Do not allow users to get keys from keypool without reserving them
[bitcoinplatinum.git] / src / key.h
blob2c6f151727b6447fc1ac7c2816310d434195ab7f
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2016 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #ifndef BITCOIN_KEY_H
7 #define BITCOIN_KEY_H
9 #include "pubkey.h"
10 #include "serialize.h"
11 #include "support/allocators/secure.h"
12 #include "uint256.h"
14 #include <stdexcept>
15 #include <vector>
18 /**
19 * secp256k1:
20 * const unsigned int PRIVATE_KEY_SIZE = 279;
21 * const unsigned int PUBLIC_KEY_SIZE = 65;
22 * const unsigned int SIGNATURE_SIZE = 72;
24 * see www.keylength.com
25 * script supports up to 75 for single byte push
28 /**
29 * secure_allocator is defined in allocators.h
30 * CPrivKey is a serialized private key, with all parameters included (279 bytes)
32 typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
34 /** An encapsulated private key. */
35 class CKey
37 private:
38 //! Whether this private key is valid. We check for correctness when modifying the key
39 //! data, so fValid should always correspond to the actual state.
40 bool fValid;
42 //! Whether the public key corresponding to this private key is (to be) compressed.
43 bool fCompressed;
45 //! The actual byte data
46 std::vector<unsigned char, secure_allocator<unsigned char> > keydata;
48 //! Check whether the 32-byte array pointed to by vch is valid keydata.
49 bool static Check(const unsigned char* vch);
51 public:
52 //! Construct an invalid private key.
53 CKey() : fValid(false), fCompressed(false)
55 // Important: vch must be 32 bytes in length to not break serialization
56 keydata.resize(32);
59 //! Destructor (again necessary because of memlocking).
60 ~CKey()
64 friend bool operator==(const CKey& a, const CKey& b)
66 return a.fCompressed == b.fCompressed &&
67 a.size() == b.size() &&
68 memcmp(a.keydata.data(), b.keydata.data(), a.size()) == 0;
71 //! Initialize using begin and end iterators to byte data.
72 template <typename T>
73 void Set(const T pbegin, const T pend, bool fCompressedIn)
75 if (size_t(pend - pbegin) != keydata.size()) {
76 fValid = false;
77 } else if (Check(&pbegin[0])) {
78 memcpy(keydata.data(), (unsigned char*)&pbegin[0], keydata.size());
79 fValid = true;
80 fCompressed = fCompressedIn;
81 } else {
82 fValid = false;
86 //! Simple read-only vector-like interface.
87 unsigned int size() const { return (fValid ? keydata.size() : 0); }
88 const unsigned char* begin() const { return keydata.data(); }
89 const unsigned char* end() const { return keydata.data() + size(); }
91 //! Check whether this private key is valid.
92 bool IsValid() const { return fValid; }
94 //! Check whether the public key corresponding to this private key is (to be) compressed.
95 bool IsCompressed() const { return fCompressed; }
97 //! Generate a new private key using a cryptographic PRNG.
98 void MakeNewKey(bool fCompressed);
101 * Convert the private key to a CPrivKey (serialized OpenSSL private key data).
102 * This is expensive.
104 CPrivKey GetPrivKey() const;
107 * Compute the public key from a private key.
108 * This is expensive.
110 CPubKey GetPubKey() const;
113 * Create a DER-serialized signature.
114 * The test_case parameter tweaks the deterministic nonce.
116 bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig, uint32_t test_case = 0) const;
119 * Create a compact signature (65 bytes), which allows reconstructing the used public key.
120 * The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
121 * The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
122 * 0x1D = second key with even y, 0x1E = second key with odd y,
123 * add 0x04 for compressed keys.
125 bool SignCompact(const uint256& hash, std::vector<unsigned char>& vchSig) const;
127 //! Derive BIP32 child key.
128 bool Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const;
131 * Verify thoroughly whether a private key and a public key match.
132 * This is done using a different mechanism than just regenerating it.
134 bool VerifyPubKey(const CPubKey& vchPubKey) const;
136 //! Load private key and check that public key matches.
137 bool Load(CPrivKey& privkey, CPubKey& vchPubKey, bool fSkipCheck);
140 struct CExtKey {
141 unsigned char nDepth;
142 unsigned char vchFingerprint[4];
143 unsigned int nChild;
144 ChainCode chaincode;
145 CKey key;
147 friend bool operator==(const CExtKey& a, const CExtKey& b)
149 return a.nDepth == b.nDepth &&
150 memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], sizeof(vchFingerprint)) == 0 &&
151 a.nChild == b.nChild &&
152 a.chaincode == b.chaincode &&
153 a.key == b.key;
156 void Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const;
157 void Decode(const unsigned char code[BIP32_EXTKEY_SIZE]);
158 bool Derive(CExtKey& out, unsigned int nChild) const;
159 CExtPubKey Neuter() const;
160 void SetMaster(const unsigned char* seed, unsigned int nSeedLen);
161 template <typename Stream>
162 void Serialize(Stream& s) const
164 unsigned int len = BIP32_EXTKEY_SIZE;
165 ::WriteCompactSize(s, len);
166 unsigned char code[BIP32_EXTKEY_SIZE];
167 Encode(code);
168 s.write((const char *)&code[0], len);
170 template <typename Stream>
171 void Unserialize(Stream& s)
173 unsigned int len = ::ReadCompactSize(s);
174 unsigned char code[BIP32_EXTKEY_SIZE];
175 s.read((char *)&code[0], len);
176 Decode(code);
180 /** Initialize the elliptic curve support. May not be called twice without calling ECC_Stop first. */
181 void ECC_Start(void);
183 /** Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called first. */
184 void ECC_Stop(void);
186 /** Check that required EC support is available at runtime. */
187 bool ECC_InitSanityCheck(void);
189 #endif // BITCOIN_KEY_H