1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2015 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #include "interpreter.h"
8 #include "primitives/transaction.h"
9 #include "crypto/ripemd160.h"
10 #include "crypto/sha1.h"
11 #include "crypto/sha256.h"
13 #include "script/script.h"
18 typedef vector
<unsigned char> valtype
;
22 inline bool set_success(ScriptError
* ret
)
29 inline bool set_error(ScriptError
* ret
, const ScriptError serror
)
38 bool CastToBool(const valtype
& vch
)
40 for (unsigned int i
= 0; i
< vch
.size(); i
++)
44 // Can be negative zero
45 if (i
== vch
.size()-1 && vch
[i
] == 0x80)
54 * Script is a stack machine (like Forth) that evaluates a predicate
55 * returning a bool indicating valid or not. There are no loops.
57 #define stacktop(i) (stack.at(stack.size()+(i)))
58 #define altstacktop(i) (altstack.at(altstack.size()+(i)))
59 static inline void popstack(vector
<valtype
>& stack
)
62 throw runtime_error("popstack(): stack empty");
66 bool static IsCompressedOrUncompressedPubKey(const valtype
&vchPubKey
) {
67 if (vchPubKey
.size() < 33) {
68 // Non-canonical public key: too short
71 if (vchPubKey
[0] == 0x04) {
72 if (vchPubKey
.size() != 65) {
73 // Non-canonical public key: invalid length for uncompressed key
76 } else if (vchPubKey
[0] == 0x02 || vchPubKey
[0] == 0x03) {
77 if (vchPubKey
.size() != 33) {
78 // Non-canonical public key: invalid length for compressed key
82 // Non-canonical public key: neither compressed nor uncompressed
89 * A canonical signature exists of: <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype>
90 * Where R and S are not negative (their first byte has its highest bit not set), and not
91 * excessively padded (do not start with a 0 byte, unless an otherwise negative number follows,
92 * in which case a single 0 byte is necessary and even required).
94 * See https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623
96 * This function is consensus-critical since BIP66.
98 bool static IsValidSignatureEncoding(const std::vector
<unsigned char> &sig
) {
99 // Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
100 // * total-length: 1-byte length descriptor of everything that follows,
101 // excluding the sighash byte.
102 // * R-length: 1-byte length descriptor of the R value that follows.
103 // * R: arbitrary-length big-endian encoded R value. It must use the shortest
104 // possible encoding for a positive integers (which means no null bytes at
105 // the start, except a single one when the next byte has its highest bit set).
106 // * S-length: 1-byte length descriptor of the S value that follows.
107 // * S: arbitrary-length big-endian encoded S value. The same rules apply.
108 // * sighash: 1-byte value indicating what data is hashed (not part of the DER
111 // Minimum and maximum size constraints.
112 if (sig
.size() < 9) return false;
113 if (sig
.size() > 73) return false;
115 // A signature is of type 0x30 (compound).
116 if (sig
[0] != 0x30) return false;
118 // Make sure the length covers the entire signature.
119 if (sig
[1] != sig
.size() - 3) return false;
121 // Extract the length of the R element.
122 unsigned int lenR
= sig
[3];
124 // Make sure the length of the S element is still inside the signature.
125 if (5 + lenR
>= sig
.size()) return false;
127 // Extract the length of the S element.
128 unsigned int lenS
= sig
[5 + lenR
];
130 // Verify that the length of the signature matches the sum of the length
132 if ((size_t)(lenR
+ lenS
+ 7) != sig
.size()) return false;
134 // Check whether the R element is an integer.
135 if (sig
[2] != 0x02) return false;
137 // Zero-length integers are not allowed for R.
138 if (lenR
== 0) return false;
140 // Negative numbers are not allowed for R.
141 if (sig
[4] & 0x80) return false;
143 // Null bytes at the start of R are not allowed, unless R would
144 // otherwise be interpreted as a negative number.
145 if (lenR
> 1 && (sig
[4] == 0x00) && !(sig
[5] & 0x80)) return false;
147 // Check whether the S element is an integer.
148 if (sig
[lenR
+ 4] != 0x02) return false;
150 // Zero-length integers are not allowed for S.
151 if (lenS
== 0) return false;
153 // Negative numbers are not allowed for S.
154 if (sig
[lenR
+ 6] & 0x80) return false;
156 // Null bytes at the start of S are not allowed, unless S would otherwise be
157 // interpreted as a negative number.
158 if (lenS
> 1 && (sig
[lenR
+ 6] == 0x00) && !(sig
[lenR
+ 7] & 0x80)) return false;
163 bool static IsLowDERSignature(const valtype
&vchSig
, ScriptError
* serror
) {
164 if (!IsValidSignatureEncoding(vchSig
)) {
165 return set_error(serror
, SCRIPT_ERR_SIG_DER
);
167 std::vector
<unsigned char> vchSigCopy(vchSig
.begin(), vchSig
.begin() + vchSig
.size() - 1);
168 if (!CPubKey::CheckLowS(vchSigCopy
)) {
169 return set_error(serror
, SCRIPT_ERR_SIG_HIGH_S
);
174 bool static IsDefinedHashtypeSignature(const valtype
&vchSig
) {
175 if (vchSig
.size() == 0) {
178 unsigned char nHashType
= vchSig
[vchSig
.size() - 1] & (~(SIGHASH_ANYONECANPAY
));
179 if (nHashType
< SIGHASH_ALL
|| nHashType
> SIGHASH_SINGLE
)
185 bool CheckSignatureEncoding(const vector
<unsigned char> &vchSig
, unsigned int flags
, ScriptError
* serror
) {
186 // Empty signature. Not strictly DER encoded, but allowed to provide a
187 // compact way to provide an invalid signature for use with CHECK(MULTI)SIG
188 if (vchSig
.size() == 0) {
191 if ((flags
& (SCRIPT_VERIFY_DERSIG
| SCRIPT_VERIFY_LOW_S
| SCRIPT_VERIFY_STRICTENC
)) != 0 && !IsValidSignatureEncoding(vchSig
)) {
192 return set_error(serror
, SCRIPT_ERR_SIG_DER
);
193 } else if ((flags
& SCRIPT_VERIFY_LOW_S
) != 0 && !IsLowDERSignature(vchSig
, serror
)) {
196 } else if ((flags
& SCRIPT_VERIFY_STRICTENC
) != 0 && !IsDefinedHashtypeSignature(vchSig
)) {
197 return set_error(serror
, SCRIPT_ERR_SIG_HASHTYPE
);
202 bool static CheckPubKeyEncoding(const valtype
&vchSig
, unsigned int flags
, ScriptError
* serror
) {
203 if ((flags
& SCRIPT_VERIFY_STRICTENC
) != 0 && !IsCompressedOrUncompressedPubKey(vchSig
)) {
204 return set_error(serror
, SCRIPT_ERR_PUBKEYTYPE
);
209 bool static CheckMinimalPush(const valtype
& data
, opcodetype opcode
) {
210 if (data
.size() == 0) {
211 // Could have used OP_0.
212 return opcode
== OP_0
;
213 } else if (data
.size() == 1 && data
[0] >= 1 && data
[0] <= 16) {
214 // Could have used OP_1 .. OP_16.
215 return opcode
== OP_1
+ (data
[0] - 1);
216 } else if (data
.size() == 1 && data
[0] == 0x81) {
217 // Could have used OP_1NEGATE.
218 return opcode
== OP_1NEGATE
;
219 } else if (data
.size() <= 75) {
220 // Could have used a direct push (opcode indicating number of bytes pushed + those bytes).
221 return opcode
== data
.size();
222 } else if (data
.size() <= 255) {
223 // Could have used OP_PUSHDATA.
224 return opcode
== OP_PUSHDATA1
;
225 } else if (data
.size() <= 65535) {
226 // Could have used OP_PUSHDATA2.
227 return opcode
== OP_PUSHDATA2
;
232 bool EvalScript(vector
<vector
<unsigned char> >& stack
, const CScript
& script
, unsigned int flags
, const BaseSignatureChecker
& checker
, ScriptError
* serror
)
234 static const CScriptNum
bnZero(0);
235 static const CScriptNum
bnOne(1);
236 static const CScriptNum
bnFalse(0);
237 static const CScriptNum
bnTrue(1);
238 static const valtype
vchFalse(0);
239 static const valtype
vchZero(0);
240 static const valtype
vchTrue(1, 1);
242 CScript::const_iterator pc
= script
.begin();
243 CScript::const_iterator pend
= script
.end();
244 CScript::const_iterator pbegincodehash
= script
.begin();
246 valtype vchPushValue
;
248 vector
<valtype
> altstack
;
249 set_error(serror
, SCRIPT_ERR_UNKNOWN_ERROR
);
250 if (script
.size() > 10000)
251 return set_error(serror
, SCRIPT_ERR_SCRIPT_SIZE
);
253 bool fRequireMinimal
= (flags
& SCRIPT_VERIFY_MINIMALDATA
) != 0;
259 bool fExec
= !count(vfExec
.begin(), vfExec
.end(), false);
264 if (!script
.GetOp(pc
, opcode
, vchPushValue
))
265 return set_error(serror
, SCRIPT_ERR_BAD_OPCODE
);
266 if (vchPushValue
.size() > MAX_SCRIPT_ELEMENT_SIZE
)
267 return set_error(serror
, SCRIPT_ERR_PUSH_SIZE
);
269 // Note how OP_RESERVED does not count towards the opcode limit.
270 if (opcode
> OP_16
&& ++nOpCount
> MAX_OPS_PER_SCRIPT
)
271 return set_error(serror
, SCRIPT_ERR_OP_COUNT
);
273 if (opcode
== OP_CAT
||
274 opcode
== OP_SUBSTR
||
276 opcode
== OP_RIGHT
||
277 opcode
== OP_INVERT
||
286 opcode
== OP_LSHIFT
||
288 return set_error(serror
, SCRIPT_ERR_DISABLED_OPCODE
); // Disabled opcodes.
290 if (fExec
&& 0 <= opcode
&& opcode
<= OP_PUSHDATA4
) {
291 if (fRequireMinimal
&& !CheckMinimalPush(vchPushValue
, opcode
)) {
292 return set_error(serror
, SCRIPT_ERR_MINIMALDATA
);
294 stack
.push_back(vchPushValue
);
295 } else if (fExec
|| (OP_IF
<= opcode
&& opcode
<= OP_ENDIF
))
320 CScriptNum
bn((int)opcode
- (int)(OP_1
- 1));
321 stack
.push_back(bn
.getvch());
322 // The result of these opcodes should always be the minimal way to push the data
323 // they push, so no need for a CheckMinimalPush here.
334 case OP_CHECKLOCKTIMEVERIFY
:
336 if (!(flags
& SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY
)) {
337 // not enabled; treat as a NOP2
338 if (flags
& SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS
) {
339 return set_error(serror
, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS
);
344 if (stack
.size() < 1)
345 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
347 // Note that elsewhere numeric opcodes are limited to
348 // operands in the range -2**31+1 to 2**31-1, however it is
349 // legal for opcodes to produce results exceeding that
350 // range. This limitation is implemented by CScriptNum's
351 // default 4-byte limit.
353 // If we kept to that limit we'd have a year 2038 problem,
354 // even though the nLockTime field in transactions
355 // themselves is uint32 which only becomes meaningless
356 // after the year 2106.
358 // Thus as a special case we tell CScriptNum to accept up
359 // to 5-byte bignums, which are good until 2**39-1, well
360 // beyond the 2**32-1 limit of the nLockTime field itself.
361 const CScriptNum
nLockTime(stacktop(-1), fRequireMinimal
, 5);
363 // In the rare event that the argument may be < 0 due to
364 // some arithmetic being done first, you can always use
365 // 0 MAX CHECKLOCKTIMEVERIFY.
367 return set_error(serror
, SCRIPT_ERR_NEGATIVE_LOCKTIME
);
369 // Actually compare the specified lock time with the transaction.
370 if (!checker
.CheckLockTime(nLockTime
))
371 return set_error(serror
, SCRIPT_ERR_UNSATISFIED_LOCKTIME
);
376 case OP_CHECKSEQUENCEVERIFY
:
378 if (!(flags
& SCRIPT_VERIFY_CHECKSEQUENCEVERIFY
)) {
379 // not enabled; treat as a NOP3
380 if (flags
& SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS
) {
381 return set_error(serror
, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS
);
386 if (stack
.size() < 1)
387 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
389 // nSequence, like nLockTime, is a 32-bit unsigned integer
390 // field. See the comment in CHECKLOCKTIMEVERIFY regarding
391 // 5-byte numeric operands.
392 const CScriptNum
nSequence(stacktop(-1), fRequireMinimal
, 5);
394 // In the rare event that the argument may be < 0 due to
395 // some arithmetic being done first, you can always use
396 // 0 MAX CHECKSEQUENCEVERIFY.
398 return set_error(serror
, SCRIPT_ERR_NEGATIVE_LOCKTIME
);
400 // To provide for future soft-fork extensibility, if the
401 // operand has the disabled lock-time flag set,
402 // CHECKSEQUENCEVERIFY behaves as a NOP.
403 if ((nSequence
& CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG
) != 0)
406 // Compare the specified sequence number with the input.
407 if (!checker
.CheckSequence(nSequence
))
408 return set_error(serror
, SCRIPT_ERR_UNSATISFIED_LOCKTIME
);
413 case OP_NOP1
: case OP_NOP4
: case OP_NOP5
:
414 case OP_NOP6
: case OP_NOP7
: case OP_NOP8
: case OP_NOP9
: case OP_NOP10
:
416 if (flags
& SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS
)
417 return set_error(serror
, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS
);
424 // <expression> if [statements] [else [statements]] endif
428 if (stack
.size() < 1)
429 return set_error(serror
, SCRIPT_ERR_UNBALANCED_CONDITIONAL
);
430 valtype
& vch
= stacktop(-1);
431 fValue
= CastToBool(vch
);
432 if (opcode
== OP_NOTIF
)
436 vfExec
.push_back(fValue
);
443 return set_error(serror
, SCRIPT_ERR_UNBALANCED_CONDITIONAL
);
444 vfExec
.back() = !vfExec
.back();
451 return set_error(serror
, SCRIPT_ERR_UNBALANCED_CONDITIONAL
);
459 // (false -- false) and return
460 if (stack
.size() < 1)
461 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
462 bool fValue
= CastToBool(stacktop(-1));
466 return set_error(serror
, SCRIPT_ERR_VERIFY
);
472 return set_error(serror
, SCRIPT_ERR_OP_RETURN
);
482 if (stack
.size() < 1)
483 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
484 altstack
.push_back(stacktop(-1));
489 case OP_FROMALTSTACK
:
491 if (altstack
.size() < 1)
492 return set_error(serror
, SCRIPT_ERR_INVALID_ALTSTACK_OPERATION
);
493 stack
.push_back(altstacktop(-1));
501 if (stack
.size() < 2)
502 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
510 // (x1 x2 -- x1 x2 x1 x2)
511 if (stack
.size() < 2)
512 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
513 valtype vch1
= stacktop(-2);
514 valtype vch2
= stacktop(-1);
515 stack
.push_back(vch1
);
516 stack
.push_back(vch2
);
522 // (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)
523 if (stack
.size() < 3)
524 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
525 valtype vch1
= stacktop(-3);
526 valtype vch2
= stacktop(-2);
527 valtype vch3
= stacktop(-1);
528 stack
.push_back(vch1
);
529 stack
.push_back(vch2
);
530 stack
.push_back(vch3
);
536 // (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
537 if (stack
.size() < 4)
538 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
539 valtype vch1
= stacktop(-4);
540 valtype vch2
= stacktop(-3);
541 stack
.push_back(vch1
);
542 stack
.push_back(vch2
);
548 // (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
549 if (stack
.size() < 6)
550 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
551 valtype vch1
= stacktop(-6);
552 valtype vch2
= stacktop(-5);
553 stack
.erase(stack
.end()-6, stack
.end()-4);
554 stack
.push_back(vch1
);
555 stack
.push_back(vch2
);
561 // (x1 x2 x3 x4 -- x3 x4 x1 x2)
562 if (stack
.size() < 4)
563 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
564 swap(stacktop(-4), stacktop(-2));
565 swap(stacktop(-3), stacktop(-1));
572 if (stack
.size() < 1)
573 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
574 valtype vch
= stacktop(-1);
576 stack
.push_back(vch
);
583 CScriptNum
bn(stack
.size());
584 stack
.push_back(bn
.getvch());
591 if (stack
.size() < 1)
592 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
600 if (stack
.size() < 1)
601 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
602 valtype vch
= stacktop(-1);
603 stack
.push_back(vch
);
610 if (stack
.size() < 2)
611 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
612 stack
.erase(stack
.end() - 2);
618 // (x1 x2 -- x1 x2 x1)
619 if (stack
.size() < 2)
620 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
621 valtype vch
= stacktop(-2);
622 stack
.push_back(vch
);
629 // (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn)
630 // (xn ... x2 x1 x0 n - ... x2 x1 x0 xn)
631 if (stack
.size() < 2)
632 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
633 int n
= CScriptNum(stacktop(-1), fRequireMinimal
).getint();
635 if (n
< 0 || n
>= (int)stack
.size())
636 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
637 valtype vch
= stacktop(-n
-1);
638 if (opcode
== OP_ROLL
)
639 stack
.erase(stack
.end()-n
-1);
640 stack
.push_back(vch
);
646 // (x1 x2 x3 -- x2 x3 x1)
647 // x2 x1 x3 after first swap
648 // x2 x3 x1 after second swap
649 if (stack
.size() < 3)
650 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
651 swap(stacktop(-3), stacktop(-2));
652 swap(stacktop(-2), stacktop(-1));
659 if (stack
.size() < 2)
660 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
661 swap(stacktop(-2), stacktop(-1));
667 // (x1 x2 -- x2 x1 x2)
668 if (stack
.size() < 2)
669 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
670 valtype vch
= stacktop(-1);
671 stack
.insert(stack
.end()-2, vch
);
679 if (stack
.size() < 1)
680 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
681 CScriptNum
bn(stacktop(-1).size());
682 stack
.push_back(bn
.getvch());
692 //case OP_NOTEQUAL: // use OP_NUMNOTEQUAL
695 if (stack
.size() < 2)
696 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
697 valtype
& vch1
= stacktop(-2);
698 valtype
& vch2
= stacktop(-1);
699 bool fEqual
= (vch1
== vch2
);
700 // OP_NOTEQUAL is disabled because it would be too easy to say
701 // something like n != 1 and have some wiseguy pass in 1 with extra
702 // zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001)
703 //if (opcode == OP_NOTEQUAL)
707 stack
.push_back(fEqual
? vchTrue
: vchFalse
);
708 if (opcode
== OP_EQUALVERIFY
)
713 return set_error(serror
, SCRIPT_ERR_EQUALVERIFY
);
730 if (stack
.size() < 1)
731 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
732 CScriptNum
bn(stacktop(-1), fRequireMinimal
);
735 case OP_1ADD
: bn
+= bnOne
; break;
736 case OP_1SUB
: bn
-= bnOne
; break;
737 case OP_NEGATE
: bn
= -bn
; break;
738 case OP_ABS
: if (bn
< bnZero
) bn
= -bn
; break;
739 case OP_NOT
: bn
= (bn
== bnZero
); break;
740 case OP_0NOTEQUAL
: bn
= (bn
!= bnZero
); break;
741 default: assert(!"invalid opcode"); break;
744 stack
.push_back(bn
.getvch());
753 case OP_NUMEQUALVERIFY
:
757 case OP_LESSTHANOREQUAL
:
758 case OP_GREATERTHANOREQUAL
:
763 if (stack
.size() < 2)
764 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
765 CScriptNum
bn1(stacktop(-2), fRequireMinimal
);
766 CScriptNum
bn2(stacktop(-1), fRequireMinimal
);
778 case OP_BOOLAND
: bn
= (bn1
!= bnZero
&& bn2
!= bnZero
); break;
779 case OP_BOOLOR
: bn
= (bn1
!= bnZero
|| bn2
!= bnZero
); break;
780 case OP_NUMEQUAL
: bn
= (bn1
== bn2
); break;
781 case OP_NUMEQUALVERIFY
: bn
= (bn1
== bn2
); break;
782 case OP_NUMNOTEQUAL
: bn
= (bn1
!= bn2
); break;
783 case OP_LESSTHAN
: bn
= (bn1
< bn2
); break;
784 case OP_GREATERTHAN
: bn
= (bn1
> bn2
); break;
785 case OP_LESSTHANOREQUAL
: bn
= (bn1
<= bn2
); break;
786 case OP_GREATERTHANOREQUAL
: bn
= (bn1
>= bn2
); break;
787 case OP_MIN
: bn
= (bn1
< bn2
? bn1
: bn2
); break;
788 case OP_MAX
: bn
= (bn1
> bn2
? bn1
: bn2
); break;
789 default: assert(!"invalid opcode"); break;
793 stack
.push_back(bn
.getvch());
795 if (opcode
== OP_NUMEQUALVERIFY
)
797 if (CastToBool(stacktop(-1)))
800 return set_error(serror
, SCRIPT_ERR_NUMEQUALVERIFY
);
807 // (x min max -- out)
808 if (stack
.size() < 3)
809 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
810 CScriptNum
bn1(stacktop(-3), fRequireMinimal
);
811 CScriptNum
bn2(stacktop(-2), fRequireMinimal
);
812 CScriptNum
bn3(stacktop(-1), fRequireMinimal
);
813 bool fValue
= (bn2
<= bn1
&& bn1
< bn3
);
817 stack
.push_back(fValue
? vchTrue
: vchFalse
);
832 if (stack
.size() < 1)
833 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
834 valtype
& vch
= stacktop(-1);
835 valtype
vchHash((opcode
== OP_RIPEMD160
|| opcode
== OP_SHA1
|| opcode
== OP_HASH160
) ? 20 : 32);
836 if (opcode
== OP_RIPEMD160
)
837 CRIPEMD160().Write(begin_ptr(vch
), vch
.size()).Finalize(begin_ptr(vchHash
));
838 else if (opcode
== OP_SHA1
)
839 CSHA1().Write(begin_ptr(vch
), vch
.size()).Finalize(begin_ptr(vchHash
));
840 else if (opcode
== OP_SHA256
)
841 CSHA256().Write(begin_ptr(vch
), vch
.size()).Finalize(begin_ptr(vchHash
));
842 else if (opcode
== OP_HASH160
)
843 CHash160().Write(begin_ptr(vch
), vch
.size()).Finalize(begin_ptr(vchHash
));
844 else if (opcode
== OP_HASH256
)
845 CHash256().Write(begin_ptr(vch
), vch
.size()).Finalize(begin_ptr(vchHash
));
847 stack
.push_back(vchHash
);
851 case OP_CODESEPARATOR
:
853 // Hash starts after the code separator
859 case OP_CHECKSIGVERIFY
:
861 // (sig pubkey -- bool)
862 if (stack
.size() < 2)
863 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
865 valtype
& vchSig
= stacktop(-2);
866 valtype
& vchPubKey
= stacktop(-1);
868 // Subset of script starting at the most recent codeseparator
869 CScript
scriptCode(pbegincodehash
, pend
);
871 // Drop the signature, since there's no way for a signature to sign itself
872 scriptCode
.FindAndDelete(CScript(vchSig
));
874 if (!CheckSignatureEncoding(vchSig
, flags
, serror
) || !CheckPubKeyEncoding(vchPubKey
, flags
, serror
)) {
878 bool fSuccess
= checker
.CheckSig(vchSig
, vchPubKey
, scriptCode
);
882 stack
.push_back(fSuccess
? vchTrue
: vchFalse
);
883 if (opcode
== OP_CHECKSIGVERIFY
)
888 return set_error(serror
, SCRIPT_ERR_CHECKSIGVERIFY
);
893 case OP_CHECKMULTISIG
:
894 case OP_CHECKMULTISIGVERIFY
:
896 // ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool)
899 if ((int)stack
.size() < i
)
900 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
902 int nKeysCount
= CScriptNum(stacktop(-i
), fRequireMinimal
).getint();
903 if (nKeysCount
< 0 || nKeysCount
> MAX_PUBKEYS_PER_MULTISIG
)
904 return set_error(serror
, SCRIPT_ERR_PUBKEY_COUNT
);
905 nOpCount
+= nKeysCount
;
906 if (nOpCount
> MAX_OPS_PER_SCRIPT
)
907 return set_error(serror
, SCRIPT_ERR_OP_COUNT
);
910 if ((int)stack
.size() < i
)
911 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
913 int nSigsCount
= CScriptNum(stacktop(-i
), fRequireMinimal
).getint();
914 if (nSigsCount
< 0 || nSigsCount
> nKeysCount
)
915 return set_error(serror
, SCRIPT_ERR_SIG_COUNT
);
918 if ((int)stack
.size() < i
)
919 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
921 // Subset of script starting at the most recent codeseparator
922 CScript
scriptCode(pbegincodehash
, pend
);
924 // Drop the signatures, since there's no way for a signature to sign itself
925 for (int k
= 0; k
< nSigsCount
; k
++)
927 valtype
& vchSig
= stacktop(-isig
-k
);
928 scriptCode
.FindAndDelete(CScript(vchSig
));
931 bool fSuccess
= true;
932 while (fSuccess
&& nSigsCount
> 0)
934 valtype
& vchSig
= stacktop(-isig
);
935 valtype
& vchPubKey
= stacktop(-ikey
);
937 // Note how this makes the exact order of pubkey/signature evaluation
938 // distinguishable by CHECKMULTISIG NOT if the STRICTENC flag is set.
939 // See the script_(in)valid tests for details.
940 if (!CheckSignatureEncoding(vchSig
, flags
, serror
) || !CheckPubKeyEncoding(vchPubKey
, flags
, serror
)) {
946 bool fOk
= checker
.CheckSig(vchSig
, vchPubKey
, scriptCode
);
955 // If there are more signatures left than keys left,
956 // then too many signatures have failed. Exit early,
957 // without checking any further signatures.
958 if (nSigsCount
> nKeysCount
)
962 // Clean up stack of actual arguments
966 // A bug causes CHECKMULTISIG to consume one extra argument
967 // whose contents were not checked in any way.
969 // Unfortunately this is a potential source of mutability,
970 // so optionally verify it is exactly equal to zero prior
971 // to removing it from the stack.
972 if (stack
.size() < 1)
973 return set_error(serror
, SCRIPT_ERR_INVALID_STACK_OPERATION
);
974 if ((flags
& SCRIPT_VERIFY_NULLDUMMY
) && stacktop(-1).size())
975 return set_error(serror
, SCRIPT_ERR_SIG_NULLDUMMY
);
978 stack
.push_back(fSuccess
? vchTrue
: vchFalse
);
980 if (opcode
== OP_CHECKMULTISIGVERIFY
)
985 return set_error(serror
, SCRIPT_ERR_CHECKMULTISIGVERIFY
);
991 return set_error(serror
, SCRIPT_ERR_BAD_OPCODE
);
995 if (stack
.size() + altstack
.size() > 1000)
996 return set_error(serror
, SCRIPT_ERR_STACK_SIZE
);
1001 return set_error(serror
, SCRIPT_ERR_UNKNOWN_ERROR
);
1004 if (!vfExec
.empty())
1005 return set_error(serror
, SCRIPT_ERR_UNBALANCED_CONDITIONAL
);
1007 return set_success(serror
);
1013 * Wrapper that serializes like CTransaction, but with the modifications
1014 * required for the signature hash done in-place
1016 class CTransactionSignatureSerializer
{
1018 const CTransaction
&txTo
; //! reference to the spending transaction (the one being serialized)
1019 const CScript
&scriptCode
; //! output script being consumed
1020 const unsigned int nIn
; //! input index of txTo being signed
1021 const bool fAnyoneCanPay
; //! whether the hashtype has the SIGHASH_ANYONECANPAY flag set
1022 const bool fHashSingle
; //! whether the hashtype is SIGHASH_SINGLE
1023 const bool fHashNone
; //! whether the hashtype is SIGHASH_NONE
1026 CTransactionSignatureSerializer(const CTransaction
&txToIn
, const CScript
&scriptCodeIn
, unsigned int nInIn
, int nHashTypeIn
) :
1027 txTo(txToIn
), scriptCode(scriptCodeIn
), nIn(nInIn
),
1028 fAnyoneCanPay(!!(nHashTypeIn
& SIGHASH_ANYONECANPAY
)),
1029 fHashSingle((nHashTypeIn
& 0x1f) == SIGHASH_SINGLE
),
1030 fHashNone((nHashTypeIn
& 0x1f) == SIGHASH_NONE
) {}
1032 /** Serialize the passed scriptCode, skipping OP_CODESEPARATORs */
1033 template<typename S
>
1034 void SerializeScriptCode(S
&s
, int nType
, int nVersion
) const {
1035 CScript::const_iterator it
= scriptCode
.begin();
1036 CScript::const_iterator itBegin
= it
;
1038 unsigned int nCodeSeparators
= 0;
1039 while (scriptCode
.GetOp(it
, opcode
)) {
1040 if (opcode
== OP_CODESEPARATOR
)
1043 ::WriteCompactSize(s
, scriptCode
.size() - nCodeSeparators
);
1045 while (scriptCode
.GetOp(it
, opcode
)) {
1046 if (opcode
== OP_CODESEPARATOR
) {
1047 s
.write((char*)&itBegin
[0], it
-itBegin
-1);
1051 if (itBegin
!= scriptCode
.end())
1052 s
.write((char*)&itBegin
[0], it
-itBegin
);
1055 /** Serialize an input of txTo */
1056 template<typename S
>
1057 void SerializeInput(S
&s
, unsigned int nInput
, int nType
, int nVersion
) const {
1058 // In case of SIGHASH_ANYONECANPAY, only the input being signed is serialized
1061 // Serialize the prevout
1062 ::Serialize(s
, txTo
.vin
[nInput
].prevout
, nType
, nVersion
);
1063 // Serialize the script
1065 // Blank out other inputs' signatures
1066 ::Serialize(s
, CScriptBase(), nType
, nVersion
);
1068 SerializeScriptCode(s
, nType
, nVersion
);
1069 // Serialize the nSequence
1070 if (nInput
!= nIn
&& (fHashSingle
|| fHashNone
))
1071 // let the others update at will
1072 ::Serialize(s
, (int)0, nType
, nVersion
);
1074 ::Serialize(s
, txTo
.vin
[nInput
].nSequence
, nType
, nVersion
);
1077 /** Serialize an output of txTo */
1078 template<typename S
>
1079 void SerializeOutput(S
&s
, unsigned int nOutput
, int nType
, int nVersion
) const {
1080 if (fHashSingle
&& nOutput
!= nIn
)
1081 // Do not lock-in the txout payee at other indices as txin
1082 ::Serialize(s
, CTxOut(), nType
, nVersion
);
1084 ::Serialize(s
, txTo
.vout
[nOutput
], nType
, nVersion
);
1087 /** Serialize txTo */
1088 template<typename S
>
1089 void Serialize(S
&s
, int nType
, int nVersion
) const {
1090 // Serialize nVersion
1091 ::Serialize(s
, txTo
.nVersion
, nType
, nVersion
);
1093 unsigned int nInputs
= fAnyoneCanPay
? 1 : txTo
.vin
.size();
1094 ::WriteCompactSize(s
, nInputs
);
1095 for (unsigned int nInput
= 0; nInput
< nInputs
; nInput
++)
1096 SerializeInput(s
, nInput
, nType
, nVersion
);
1098 unsigned int nOutputs
= fHashNone
? 0 : (fHashSingle
? nIn
+1 : txTo
.vout
.size());
1099 ::WriteCompactSize(s
, nOutputs
);
1100 for (unsigned int nOutput
= 0; nOutput
< nOutputs
; nOutput
++)
1101 SerializeOutput(s
, nOutput
, nType
, nVersion
);
1102 // Serialize nLockTime
1103 ::Serialize(s
, txTo
.nLockTime
, nType
, nVersion
);
1109 uint256
SignatureHash(const CScript
& scriptCode
, const CTransaction
& txTo
, unsigned int nIn
, int nHashType
)
1111 static const uint256
one(uint256S("0000000000000000000000000000000000000000000000000000000000000001"));
1112 if (nIn
>= txTo
.vin
.size()) {
1117 // Check for invalid use of SIGHASH_SINGLE
1118 if ((nHashType
& 0x1f) == SIGHASH_SINGLE
) {
1119 if (nIn
>= txTo
.vout
.size()) {
1120 // nOut out of range
1125 // Wrapper to serialize only the necessary parts of the transaction being signed
1126 CTransactionSignatureSerializer
txTmp(txTo
, scriptCode
, nIn
, nHashType
);
1128 // Serialize and hash
1129 CHashWriter
ss(SER_GETHASH
, 0);
1130 ss
<< txTmp
<< nHashType
;
1131 return ss
.GetHash();
1134 bool TransactionSignatureChecker::VerifySignature(const std::vector
<unsigned char>& vchSig
, const CPubKey
& pubkey
, const uint256
& sighash
) const
1136 return pubkey
.Verify(sighash
, vchSig
);
1139 bool TransactionSignatureChecker::CheckSig(const vector
<unsigned char>& vchSigIn
, const vector
<unsigned char>& vchPubKey
, const CScript
& scriptCode
) const
1141 CPubKey
pubkey(vchPubKey
);
1142 if (!pubkey
.IsValid())
1145 // Hash type is one byte tacked on to the end of the signature
1146 vector
<unsigned char> vchSig(vchSigIn
);
1149 int nHashType
= vchSig
.back();
1152 uint256 sighash
= SignatureHash(scriptCode
, *txTo
, nIn
, nHashType
);
1154 if (!VerifySignature(vchSig
, pubkey
, sighash
))
1160 bool TransactionSignatureChecker::CheckLockTime(const CScriptNum
& nLockTime
) const
1162 // There are two kinds of nLockTime: lock-by-blockheight
1163 // and lock-by-blocktime, distinguished by whether
1164 // nLockTime < LOCKTIME_THRESHOLD.
1166 // We want to compare apples to apples, so fail the script
1167 // unless the type of nLockTime being tested is the same as
1168 // the nLockTime in the transaction.
1170 (txTo
->nLockTime
< LOCKTIME_THRESHOLD
&& nLockTime
< LOCKTIME_THRESHOLD
) ||
1171 (txTo
->nLockTime
>= LOCKTIME_THRESHOLD
&& nLockTime
>= LOCKTIME_THRESHOLD
)
1175 // Now that we know we're comparing apples-to-apples, the
1176 // comparison is a simple numeric one.
1177 if (nLockTime
> (int64_t)txTo
->nLockTime
)
1180 // Finally the nLockTime feature can be disabled and thus
1181 // CHECKLOCKTIMEVERIFY bypassed if every txin has been
1182 // finalized by setting nSequence to maxint. The
1183 // transaction would be allowed into the blockchain, making
1184 // the opcode ineffective.
1186 // Testing if this vin is not final is sufficient to
1187 // prevent this condition. Alternatively we could test all
1188 // inputs, but testing just this input minimizes the data
1189 // required to prove correct CHECKLOCKTIMEVERIFY execution.
1190 if (CTxIn::SEQUENCE_FINAL
== txTo
->vin
[nIn
].nSequence
)
1196 bool TransactionSignatureChecker::CheckSequence(const CScriptNum
& nSequence
) const
1198 // Relative lock times are supported by comparing the passed
1199 // in operand to the sequence number of the input.
1200 const int64_t txToSequence
= (int64_t)txTo
->vin
[nIn
].nSequence
;
1202 // Fail if the transaction's version number is not set high
1203 // enough to trigger BIP 68 rules.
1204 if (static_cast<uint32_t>(txTo
->nVersion
) < 2)
1207 // Sequence numbers with their most significant bit set are not
1208 // consensus constrained. Testing that the transaction's sequence
1209 // number do not have this bit set prevents using this property
1210 // to get around a CHECKSEQUENCEVERIFY check.
1211 if (txToSequence
& CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG
)
1214 // Mask off any bits that do not have consensus-enforced meaning
1215 // before doing the integer comparisons
1216 const uint32_t nLockTimeMask
= CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG
| CTxIn::SEQUENCE_LOCKTIME_MASK
;
1217 const int64_t txToSequenceMasked
= txToSequence
& nLockTimeMask
;
1218 const CScriptNum nSequenceMasked
= nSequence
& nLockTimeMask
;
1220 // There are two kinds of nSequence: lock-by-blockheight
1221 // and lock-by-blocktime, distinguished by whether
1222 // nSequenceMasked < CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG.
1224 // We want to compare apples to apples, so fail the script
1225 // unless the type of nSequenceMasked being tested is the same as
1226 // the nSequenceMasked in the transaction.
1228 (txToSequenceMasked
< CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG
&& nSequenceMasked
< CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG
) ||
1229 (txToSequenceMasked
>= CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG
&& nSequenceMasked
>= CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG
)
1233 // Now that we know we're comparing apples-to-apples, the
1234 // comparison is a simple numeric one.
1235 if (nSequenceMasked
> txToSequenceMasked
)
1241 bool VerifyScript(const CScript
& scriptSig
, const CScript
& scriptPubKey
, unsigned int flags
, const BaseSignatureChecker
& checker
, ScriptError
* serror
)
1243 set_error(serror
, SCRIPT_ERR_UNKNOWN_ERROR
);
1245 if ((flags
& SCRIPT_VERIFY_SIGPUSHONLY
) != 0 && !scriptSig
.IsPushOnly()) {
1246 return set_error(serror
, SCRIPT_ERR_SIG_PUSHONLY
);
1249 vector
<vector
<unsigned char> > stack
, stackCopy
;
1250 if (!EvalScript(stack
, scriptSig
, flags
, checker
, serror
))
1253 if (flags
& SCRIPT_VERIFY_P2SH
)
1255 if (!EvalScript(stack
, scriptPubKey
, flags
, checker
, serror
))
1259 return set_error(serror
, SCRIPT_ERR_EVAL_FALSE
);
1260 if (CastToBool(stack
.back()) == false)
1261 return set_error(serror
, SCRIPT_ERR_EVAL_FALSE
);
1263 // Additional validation for spend-to-script-hash transactions:
1264 if ((flags
& SCRIPT_VERIFY_P2SH
) && scriptPubKey
.IsPayToScriptHash())
1266 // scriptSig must be literals-only or validation fails
1267 if (!scriptSig
.IsPushOnly())
1268 return set_error(serror
, SCRIPT_ERR_SIG_PUSHONLY
);
1271 swap(stack
, stackCopy
);
1273 // stack cannot be empty here, because if it was the
1274 // P2SH HASH <> EQUAL scriptPubKey would be evaluated with
1275 // an empty stack and the EvalScript above would return false.
1276 assert(!stack
.empty());
1278 const valtype
& pubKeySerialized
= stack
.back();
1279 CScript
pubKey2(pubKeySerialized
.begin(), pubKeySerialized
.end());
1282 if (!EvalScript(stack
, pubKey2
, flags
, checker
, serror
))
1286 return set_error(serror
, SCRIPT_ERR_EVAL_FALSE
);
1287 if (!CastToBool(stack
.back()))
1288 return set_error(serror
, SCRIPT_ERR_EVAL_FALSE
);
1291 // The CLEANSTACK check is only performed after potential P2SH evaluation,
1292 // as the non-P2SH evaluation of a P2SH script will obviously not result in
1293 // a clean stack (the P2SH inputs remain).
1294 if ((flags
& SCRIPT_VERIFY_CLEANSTACK
) != 0) {
1295 // Disallow CLEANSTACK without P2SH, as otherwise a switch CLEANSTACK->P2SH+CLEANSTACK
1296 // would be possible, which is not a softfork (and P2SH should be one).
1297 assert((flags
& SCRIPT_VERIFY_P2SH
) != 0);
1298 if (stack
.size() != 1) {
1299 return set_error(serror
, SCRIPT_ERR_CLEANSTACK
);
1303 return set_success(serror
);