chaincodes: abstract away more chaincode behavior
[bitcoinplatinum.git] / src / arith_uint256.cpp
blob2e613635761d8622032ff85c51f506548700f70d
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2014 The Bitcoin developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #include "arith_uint256.h"
8 #include "uint256.h"
9 #include "utilstrencodings.h"
10 #include "crypto/common.h"
12 #include <stdio.h>
13 #include <string.h>
15 template <unsigned int BITS>
16 base_uint<BITS>::base_uint(const std::string& str)
18 SetHex(str);
21 template <unsigned int BITS>
22 base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
24 base_uint<BITS> a(*this);
25 for (int i = 0; i < WIDTH; i++)
26 pn[i] = 0;
27 int k = shift / 32;
28 shift = shift % 32;
29 for (int i = 0; i < WIDTH; i++) {
30 if (i + k + 1 < WIDTH && shift != 0)
31 pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
32 if (i + k < WIDTH)
33 pn[i + k] |= (a.pn[i] << shift);
35 return *this;
38 template <unsigned int BITS>
39 base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
41 base_uint<BITS> a(*this);
42 for (int i = 0; i < WIDTH; i++)
43 pn[i] = 0;
44 int k = shift / 32;
45 shift = shift % 32;
46 for (int i = 0; i < WIDTH; i++) {
47 if (i - k - 1 >= 0 && shift != 0)
48 pn[i - k - 1] |= (a.pn[i] << (32 - shift));
49 if (i - k >= 0)
50 pn[i - k] |= (a.pn[i] >> shift);
52 return *this;
55 template <unsigned int BITS>
56 base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
58 uint64_t carry = 0;
59 for (int i = 0; i < WIDTH; i++) {
60 uint64_t n = carry + (uint64_t)b32 * pn[i];
61 pn[i] = n & 0xffffffff;
62 carry = n >> 32;
64 return *this;
67 template <unsigned int BITS>
68 base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
70 base_uint<BITS> a = *this;
71 *this = 0;
72 for (int j = 0; j < WIDTH; j++) {
73 uint64_t carry = 0;
74 for (int i = 0; i + j < WIDTH; i++) {
75 uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
76 pn[i + j] = n & 0xffffffff;
77 carry = n >> 32;
80 return *this;
83 template <unsigned int BITS>
84 base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
86 base_uint<BITS> div = b; // make a copy, so we can shift.
87 base_uint<BITS> num = *this; // make a copy, so we can subtract.
88 *this = 0; // the quotient.
89 int num_bits = num.bits();
90 int div_bits = div.bits();
91 if (div_bits == 0)
92 throw uint_error("Division by zero");
93 if (div_bits > num_bits) // the result is certainly 0.
94 return *this;
95 int shift = num_bits - div_bits;
96 div <<= shift; // shift so that div and num align.
97 while (shift >= 0) {
98 if (num >= div) {
99 num -= div;
100 pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
102 div >>= 1; // shift back.
103 shift--;
105 // num now contains the remainder of the division.
106 return *this;
109 template <unsigned int BITS>
110 int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
112 for (int i = WIDTH - 1; i >= 0; i--) {
113 if (pn[i] < b.pn[i])
114 return -1;
115 if (pn[i] > b.pn[i])
116 return 1;
118 return 0;
121 template <unsigned int BITS>
122 bool base_uint<BITS>::EqualTo(uint64_t b) const
124 for (int i = WIDTH - 1; i >= 2; i--) {
125 if (pn[i])
126 return false;
128 if (pn[1] != (b >> 32))
129 return false;
130 if (pn[0] != (b & 0xfffffffful))
131 return false;
132 return true;
135 template <unsigned int BITS>
136 double base_uint<BITS>::getdouble() const
138 double ret = 0.0;
139 double fact = 1.0;
140 for (int i = 0; i < WIDTH; i++) {
141 ret += fact * pn[i];
142 fact *= 4294967296.0;
144 return ret;
147 template <unsigned int BITS>
148 std::string base_uint<BITS>::GetHex() const
150 return ArithToUint256(*this).GetHex();
153 template <unsigned int BITS>
154 void base_uint<BITS>::SetHex(const char* psz)
156 *this = UintToArith256(uint256S(psz));
159 template <unsigned int BITS>
160 void base_uint<BITS>::SetHex(const std::string& str)
162 SetHex(str.c_str());
165 template <unsigned int BITS>
166 std::string base_uint<BITS>::ToString() const
168 return (GetHex());
171 template <unsigned int BITS>
172 unsigned int base_uint<BITS>::bits() const
174 for (int pos = WIDTH - 1; pos >= 0; pos--) {
175 if (pn[pos]) {
176 for (int bits = 31; bits > 0; bits--) {
177 if (pn[pos] & 1 << bits)
178 return 32 * pos + bits + 1;
180 return 32 * pos + 1;
183 return 0;
186 // Explicit instantiations for base_uint<256>
187 template base_uint<256>::base_uint(const std::string&);
188 template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
189 template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
190 template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
191 template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
192 template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
193 template int base_uint<256>::CompareTo(const base_uint<256>&) const;
194 template bool base_uint<256>::EqualTo(uint64_t) const;
195 template double base_uint<256>::getdouble() const;
196 template std::string base_uint<256>::GetHex() const;
197 template std::string base_uint<256>::ToString() const;
198 template void base_uint<256>::SetHex(const char*);
199 template void base_uint<256>::SetHex(const std::string&);
200 template unsigned int base_uint<256>::bits() const;
202 // This implementation directly uses shifts instead of going
203 // through an intermediate MPI representation.
204 arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
206 int nSize = nCompact >> 24;
207 uint32_t nWord = nCompact & 0x007fffff;
208 if (nSize <= 3) {
209 nWord >>= 8 * (3 - nSize);
210 *this = nWord;
211 } else {
212 *this = nWord;
213 *this <<= 8 * (nSize - 3);
215 if (pfNegative)
216 *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
217 if (pfOverflow)
218 *pfOverflow = nWord != 0 && ((nSize > 34) ||
219 (nWord > 0xff && nSize > 33) ||
220 (nWord > 0xffff && nSize > 32));
221 return *this;
224 uint32_t arith_uint256::GetCompact(bool fNegative) const
226 int nSize = (bits() + 7) / 8;
227 uint32_t nCompact = 0;
228 if (nSize <= 3) {
229 nCompact = GetLow64() << 8 * (3 - nSize);
230 } else {
231 arith_uint256 bn = *this >> 8 * (nSize - 3);
232 nCompact = bn.GetLow64();
234 // The 0x00800000 bit denotes the sign.
235 // Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
236 if (nCompact & 0x00800000) {
237 nCompact >>= 8;
238 nSize++;
240 assert((nCompact & ~0x007fffff) == 0);
241 assert(nSize < 256);
242 nCompact |= nSize << 24;
243 nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
244 return nCompact;
247 uint256 ArithToUint256(const arith_uint256 &a)
249 uint256 b;
250 for(int x=0; x<a.WIDTH; ++x)
251 WriteLE32(b.begin() + x*4, a.pn[x]);
252 return b;
254 arith_uint256 UintToArith256(const uint256 &a)
256 arith_uint256 b;
257 for(int x=0; x<b.WIDTH; ++x)
258 b.pn[x] = ReadLE32(a.begin() + x*4);
259 return b;