Merge #12079: Improve prioritisetransaction test coverage
[bitcoinplatinum.git] / src / bloom.cpp
blobf07b5b60664528769563b0e3642b52e02dcb2c06
1 // Copyright (c) 2012-2017 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 #include <bloom.h>
7 #include <primitives/transaction.h>
8 #include <hash.h>
9 #include <script/script.h>
10 #include <script/standard.h>
11 #include <random.h>
12 #include <streams.h>
14 #include <math.h>
15 #include <stdlib.h>
18 #define LN2SQUARED 0.4804530139182014246671025263266649717305529515945455
19 #define LN2 0.6931471805599453094172321214581765680755001343602552
21 CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn, unsigned char nFlagsIn) :
22 /**
23 * The ideal size for a bloom filter with a given number of elements and false positive rate is:
24 * - nElements * log(fp rate) / ln(2)^2
25 * We ignore filter parameters which will create a bloom filter larger than the protocol limits
27 vData(std::min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
28 /**
29 * The ideal number of hash functions is filter size * ln(2) / number of elements
30 * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
31 * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
33 isFull(false),
34 isEmpty(true),
35 nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
36 nTweak(nTweakIn),
37 nFlags(nFlagsIn)
41 // Private constructor used by CRollingBloomFilter
42 CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn) :
43 vData((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)) / 8),
44 isFull(false),
45 isEmpty(true),
46 nHashFuncs((unsigned int)(vData.size() * 8 / nElements * LN2)),
47 nTweak(nTweakIn),
48 nFlags(BLOOM_UPDATE_NONE)
52 inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const
54 // 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
55 return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
58 void CBloomFilter::insert(const std::vector<unsigned char>& vKey)
60 if (isFull)
61 return;
62 for (unsigned int i = 0; i < nHashFuncs; i++)
64 unsigned int nIndex = Hash(i, vKey);
65 // Sets bit nIndex of vData
66 vData[nIndex >> 3] |= (1 << (7 & nIndex));
68 isEmpty = false;
71 void CBloomFilter::insert(const COutPoint& outpoint)
73 CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
74 stream << outpoint;
75 std::vector<unsigned char> data(stream.begin(), stream.end());
76 insert(data);
79 void CBloomFilter::insert(const uint256& hash)
81 std::vector<unsigned char> data(hash.begin(), hash.end());
82 insert(data);
85 bool CBloomFilter::contains(const std::vector<unsigned char>& vKey) const
87 if (isFull)
88 return true;
89 if (isEmpty)
90 return false;
91 for (unsigned int i = 0; i < nHashFuncs; i++)
93 unsigned int nIndex = Hash(i, vKey);
94 // Checks bit nIndex of vData
95 if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
96 return false;
98 return true;
101 bool CBloomFilter::contains(const COutPoint& outpoint) const
103 CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
104 stream << outpoint;
105 std::vector<unsigned char> data(stream.begin(), stream.end());
106 return contains(data);
109 bool CBloomFilter::contains(const uint256& hash) const
111 std::vector<unsigned char> data(hash.begin(), hash.end());
112 return contains(data);
115 void CBloomFilter::clear()
117 vData.assign(vData.size(),0);
118 isFull = false;
119 isEmpty = true;
122 void CBloomFilter::reset(const unsigned int nNewTweak)
124 clear();
125 nTweak = nNewTweak;
128 bool CBloomFilter::IsWithinSizeConstraints() const
130 return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
133 bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
135 bool fFound = false;
136 // Match if the filter contains the hash of tx
137 // for finding tx when they appear in a block
138 if (isFull)
139 return true;
140 if (isEmpty)
141 return false;
142 const uint256& hash = tx.GetHash();
143 if (contains(hash))
144 fFound = true;
146 for (unsigned int i = 0; i < tx.vout.size(); i++)
148 const CTxOut& txout = tx.vout[i];
149 // Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
150 // If this matches, also add the specific output that was matched.
151 // This means clients don't have to update the filter themselves when a new relevant tx
152 // is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
153 CScript::const_iterator pc = txout.scriptPubKey.begin();
154 std::vector<unsigned char> data;
155 while (pc < txout.scriptPubKey.end())
157 opcodetype opcode;
158 if (!txout.scriptPubKey.GetOp(pc, opcode, data))
159 break;
160 if (data.size() != 0 && contains(data))
162 fFound = true;
163 if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
164 insert(COutPoint(hash, i));
165 else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
167 txnouttype type;
168 std::vector<std::vector<unsigned char> > vSolutions;
169 if (Solver(txout.scriptPubKey, type, vSolutions) &&
170 (type == TX_PUBKEY || type == TX_MULTISIG))
171 insert(COutPoint(hash, i));
173 break;
178 if (fFound)
179 return true;
181 for (const CTxIn& txin : tx.vin)
183 // Match if the filter contains an outpoint tx spends
184 if (contains(txin.prevout))
185 return true;
187 // Match if the filter contains any arbitrary script data element in any scriptSig in tx
188 CScript::const_iterator pc = txin.scriptSig.begin();
189 std::vector<unsigned char> data;
190 while (pc < txin.scriptSig.end())
192 opcodetype opcode;
193 if (!txin.scriptSig.GetOp(pc, opcode, data))
194 break;
195 if (data.size() != 0 && contains(data))
196 return true;
200 return false;
203 void CBloomFilter::UpdateEmptyFull()
205 bool full = true;
206 bool empty = true;
207 for (unsigned int i = 0; i < vData.size(); i++)
209 full &= vData[i] == 0xff;
210 empty &= vData[i] == 0;
212 isFull = full;
213 isEmpty = empty;
216 CRollingBloomFilter::CRollingBloomFilter(const unsigned int nElements, const double fpRate)
218 double logFpRate = log(fpRate);
219 /* The optimal number of hash functions is log(fpRate) / log(0.5), but
220 * restrict it to the range 1-50. */
221 nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
222 /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
223 nEntriesPerGeneration = (nElements + 1) / 2;
224 uint32_t nMaxElements = nEntriesPerGeneration * 3;
225 /* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
226 * => pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
227 * => 1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
228 * => log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
229 * => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
230 * => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
232 uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
233 data.clear();
234 /* For each data element we need to store 2 bits. If both bits are 0, the
235 * bit is treated as unset. If the bits are (01), (10), or (11), the bit is
236 * treated as set in generation 1, 2, or 3 respectively.
237 * These bits are stored in separate integers: position P corresponds to bit
238 * (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */
239 data.resize(((nFilterBits + 63) / 64) << 1);
240 reset();
243 /* Similar to CBloomFilter::Hash */
244 static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, const std::vector<unsigned char>& vDataToHash) {
245 return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash);
248 void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
250 if (nEntriesThisGeneration == nEntriesPerGeneration) {
251 nEntriesThisGeneration = 0;
252 nGeneration++;
253 if (nGeneration == 4) {
254 nGeneration = 1;
256 uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1);
257 uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1);
258 /* Wipe old entries that used this generation number. */
259 for (uint32_t p = 0; p < data.size(); p += 2) {
260 uint64_t p1 = data[p], p2 = data[p + 1];
261 uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2);
262 data[p] = p1 & mask;
263 data[p + 1] = p2 & mask;
266 nEntriesThisGeneration++;
268 for (int n = 0; n < nHashFuncs; n++) {
269 uint32_t h = RollingBloomHash(n, nTweak, vKey);
270 int bit = h & 0x3F;
271 uint32_t pos = (h >> 6) % data.size();
272 /* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */
273 data[pos & ~1] = (data[pos & ~1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration & 1)) << bit;
274 data[pos | 1] = (data[pos | 1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration >> 1)) << bit;
278 void CRollingBloomFilter::insert(const uint256& hash)
280 std::vector<unsigned char> vData(hash.begin(), hash.end());
281 insert(vData);
284 bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
286 for (int n = 0; n < nHashFuncs; n++) {
287 uint32_t h = RollingBloomHash(n, nTweak, vKey);
288 int bit = h & 0x3F;
289 uint32_t pos = (h >> 6) % data.size();
290 /* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */
291 if (!(((data[pos & ~1] | data[pos | 1]) >> bit) & 1)) {
292 return false;
295 return true;
298 bool CRollingBloomFilter::contains(const uint256& hash) const
300 std::vector<unsigned char> vData(hash.begin(), hash.end());
301 return contains(vData);
304 void CRollingBloomFilter::reset()
306 nTweak = GetRand(std::numeric_limits<unsigned int>::max());
307 nEntriesThisGeneration = 0;
308 nGeneration = 1;
309 for (std::vector<uint64_t>::iterator it = data.begin(); it != data.end(); it++) {
310 *it = 0;