1 // Copyright (c) 2012-2016 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
13 * calculate number of bytes for the bitmask, and its number of non-zero bytes
14 * each bit in the bitmask represents the availability of one output, but the
15 * availabilities of the first two outputs are encoded separately
17 void CCoins::CalcMaskSize(unsigned int &nBytes
, unsigned int &nNonzeroBytes
) const {
18 unsigned int nLastUsedByte
= 0;
19 for (unsigned int b
= 0; 2+b
*8 < vout
.size(); b
++) {
21 for (unsigned int i
= 0; i
< 8 && 2+b
*8+i
< vout
.size(); i
++) {
22 if (!vout
[2+b
*8+i
].IsNull()) {
28 nLastUsedByte
= b
+ 1;
32 nBytes
+= nLastUsedByte
;
35 bool CCoins::Spend(uint32_t nPos
)
37 if (nPos
>= vout
.size() || vout
[nPos
].IsNull())
44 bool CCoinsView::GetCoins(const uint256
&txid
, CCoins
&coins
) const { return false; }
45 bool CCoinsView::HaveCoins(const uint256
&txid
) const { return false; }
46 uint256
CCoinsView::GetBestBlock() const { return uint256(); }
47 bool CCoinsView::BatchWrite(CCoinsMap
&mapCoins
, const uint256
&hashBlock
) { return false; }
48 CCoinsViewCursor
*CCoinsView::Cursor() const { return 0; }
51 CCoinsViewBacked::CCoinsViewBacked(CCoinsView
*viewIn
) : base(viewIn
) { }
52 bool CCoinsViewBacked::GetCoins(const uint256
&txid
, CCoins
&coins
) const { return base
->GetCoins(txid
, coins
); }
53 bool CCoinsViewBacked::HaveCoins(const uint256
&txid
) const { return base
->HaveCoins(txid
); }
54 uint256
CCoinsViewBacked::GetBestBlock() const { return base
->GetBestBlock(); }
55 void CCoinsViewBacked::SetBackend(CCoinsView
&viewIn
) { base
= &viewIn
; }
56 bool CCoinsViewBacked::BatchWrite(CCoinsMap
&mapCoins
, const uint256
&hashBlock
) { return base
->BatchWrite(mapCoins
, hashBlock
); }
57 CCoinsViewCursor
*CCoinsViewBacked::Cursor() const { return base
->Cursor(); }
59 SaltedTxidHasher::SaltedTxidHasher() : k0(GetRand(std::numeric_limits
<uint64_t>::max())), k1(GetRand(std::numeric_limits
<uint64_t>::max())) {}
61 CCoinsViewCache::CCoinsViewCache(CCoinsView
*baseIn
) : CCoinsViewBacked(baseIn
), hasModifier(false), cachedCoinsUsage(0) { }
63 CCoinsViewCache::~CCoinsViewCache()
68 size_t CCoinsViewCache::DynamicMemoryUsage() const {
69 return memusage::DynamicUsage(cacheCoins
) + cachedCoinsUsage
;
72 CCoinsMap::const_iterator
CCoinsViewCache::FetchCoins(const uint256
&txid
) const {
73 CCoinsMap::iterator it
= cacheCoins
.find(txid
);
74 if (it
!= cacheCoins
.end())
77 if (!base
->GetCoins(txid
, tmp
))
78 return cacheCoins
.end();
79 CCoinsMap::iterator ret
= cacheCoins
.insert(std::make_pair(txid
, CCoinsCacheEntry())).first
;
80 tmp
.swap(ret
->second
.coins
);
81 if (ret
->second
.coins
.IsPruned()) {
82 // The parent only has an empty entry for this txid; we can consider our
84 ret
->second
.flags
= CCoinsCacheEntry::FRESH
;
86 cachedCoinsUsage
+= ret
->second
.coins
.DynamicMemoryUsage();
90 bool CCoinsViewCache::GetCoins(const uint256
&txid
, CCoins
&coins
) const {
91 CCoinsMap::const_iterator it
= FetchCoins(txid
);
92 if (it
!= cacheCoins
.end()) {
93 coins
= it
->second
.coins
;
99 CCoinsModifier
CCoinsViewCache::ModifyCoins(const uint256
&txid
) {
100 assert(!hasModifier
);
101 std::pair
<CCoinsMap::iterator
, bool> ret
= cacheCoins
.insert(std::make_pair(txid
, CCoinsCacheEntry()));
102 size_t cachedCoinUsage
= 0;
104 if (!base
->GetCoins(txid
, ret
.first
->second
.coins
)) {
105 // The parent view does not have this entry; mark it as fresh.
106 ret
.first
->second
.coins
.Clear();
107 ret
.first
->second
.flags
= CCoinsCacheEntry::FRESH
;
108 } else if (ret
.first
->second
.coins
.IsPruned()) {
109 // The parent view only has a pruned entry for this; mark it as fresh.
110 ret
.first
->second
.flags
= CCoinsCacheEntry::FRESH
;
113 cachedCoinUsage
= ret
.first
->second
.coins
.DynamicMemoryUsage();
115 // Assume that whenever ModifyCoins is called, the entry will be modified.
116 ret
.first
->second
.flags
|= CCoinsCacheEntry::DIRTY
;
117 return CCoinsModifier(*this, ret
.first
, cachedCoinUsage
);
120 /* ModifyNewCoins allows for faster coin modification when creating the new
121 * outputs from a transaction. It assumes that BIP 30 (no duplicate txids)
122 * applies and has already been tested for (or the test is not required due to
123 * BIP 34, height in coinbase). If we can assume BIP 30 then we know that any
124 * non-coinbase transaction we are adding to the UTXO must not already exist in
125 * the utxo unless it is fully spent. Thus we can check only if it exists DIRTY
126 * at the current level of the cache, in which case it is not safe to mark it
127 * FRESH (b/c then its spentness still needs to flushed). If it's not dirty and
128 * doesn't exist or is pruned in the current cache, we know it either doesn't
129 * exist or is pruned in parent caches, which is the definition of FRESH. The
130 * exception to this is the two historical violations of BIP 30 in the chain,
131 * both of which were coinbases. We do not mark these fresh so we we can ensure
132 * that they will still be properly overwritten when spent.
134 CCoinsModifier
CCoinsViewCache::ModifyNewCoins(const uint256
&txid
, bool coinbase
) {
135 assert(!hasModifier
);
136 std::pair
<CCoinsMap::iterator
, bool> ret
= cacheCoins
.insert(std::make_pair(txid
, CCoinsCacheEntry()));
138 // New coins must not already exist.
139 if (!ret
.first
->second
.coins
.IsPruned())
140 throw std::logic_error("ModifyNewCoins should not find pre-existing coins on a non-coinbase unless they are pruned!");
142 if (!(ret
.first
->second
.flags
& CCoinsCacheEntry::DIRTY
)) {
143 // If the coin is known to be pruned (have no unspent outputs) in
144 // the current view and the cache entry is not dirty, we know the
145 // coin also must be pruned in the parent view as well, so it is safe
146 // to mark this fresh.
147 ret
.first
->second
.flags
|= CCoinsCacheEntry::FRESH
;
150 ret
.first
->second
.coins
.Clear();
151 ret
.first
->second
.flags
|= CCoinsCacheEntry::DIRTY
;
152 return CCoinsModifier(*this, ret
.first
, 0);
155 const CCoins
* CCoinsViewCache::AccessCoins(const uint256
&txid
) const {
156 CCoinsMap::const_iterator it
= FetchCoins(txid
);
157 if (it
== cacheCoins
.end()) {
160 return &it
->second
.coins
;
164 bool CCoinsViewCache::HaveCoins(const uint256
&txid
) const {
165 CCoinsMap::const_iterator it
= FetchCoins(txid
);
166 // We're using vtx.empty() instead of IsPruned here for performance reasons,
167 // as we only care about the case where a transaction was replaced entirely
168 // in a reorganization (which wipes vout entirely, as opposed to spending
169 // which just cleans individual outputs).
170 return (it
!= cacheCoins
.end() && !it
->second
.coins
.vout
.empty());
173 bool CCoinsViewCache::HaveCoinsInCache(const uint256
&txid
) const {
174 CCoinsMap::const_iterator it
= cacheCoins
.find(txid
);
175 return it
!= cacheCoins
.end();
178 uint256
CCoinsViewCache::GetBestBlock() const {
179 if (hashBlock
.IsNull())
180 hashBlock
= base
->GetBestBlock();
184 void CCoinsViewCache::SetBestBlock(const uint256
&hashBlockIn
) {
185 hashBlock
= hashBlockIn
;
188 bool CCoinsViewCache::BatchWrite(CCoinsMap
&mapCoins
, const uint256
&hashBlockIn
) {
189 assert(!hasModifier
);
190 for (CCoinsMap::iterator it
= mapCoins
.begin(); it
!= mapCoins
.end();) {
191 if (it
->second
.flags
& CCoinsCacheEntry::DIRTY
) { // Ignore non-dirty entries (optimization).
192 CCoinsMap::iterator itUs
= cacheCoins
.find(it
->first
);
193 if (itUs
== cacheCoins
.end()) {
194 // The parent cache does not have an entry, while the child does
195 // We can ignore it if it's both FRESH and pruned in the child
196 if (!(it
->second
.flags
& CCoinsCacheEntry::FRESH
&& it
->second
.coins
.IsPruned())) {
197 // Otherwise we will need to create it in the parent
198 // and move the data up and mark it as dirty
199 CCoinsCacheEntry
& entry
= cacheCoins
[it
->first
];
200 entry
.coins
.swap(it
->second
.coins
);
201 cachedCoinsUsage
+= entry
.coins
.DynamicMemoryUsage();
202 entry
.flags
= CCoinsCacheEntry::DIRTY
;
203 // We can mark it FRESH in the parent if it was FRESH in the child
204 // Otherwise it might have just been flushed from the parent's cache
205 // and already exist in the grandparent
206 if (it
->second
.flags
& CCoinsCacheEntry::FRESH
)
207 entry
.flags
|= CCoinsCacheEntry::FRESH
;
210 // Assert that the child cache entry was not marked FRESH if the
211 // parent cache entry has unspent outputs. If this ever happens,
212 // it means the FRESH flag was misapplied and there is a logic
213 // error in the calling code.
214 if ((it
->second
.flags
& CCoinsCacheEntry::FRESH
) && !itUs
->second
.coins
.IsPruned())
215 throw std::logic_error("FRESH flag misapplied to cache entry for base transaction with spendable outputs");
217 // Found the entry in the parent cache
218 if ((itUs
->second
.flags
& CCoinsCacheEntry::FRESH
) && it
->second
.coins
.IsPruned()) {
219 // The grandparent does not have an entry, and the child is
220 // modified and being pruned. This means we can just delete
221 // it from the parent.
222 cachedCoinsUsage
-= itUs
->second
.coins
.DynamicMemoryUsage();
223 cacheCoins
.erase(itUs
);
225 // A normal modification.
226 cachedCoinsUsage
-= itUs
->second
.coins
.DynamicMemoryUsage();
227 itUs
->second
.coins
.swap(it
->second
.coins
);
228 cachedCoinsUsage
+= itUs
->second
.coins
.DynamicMemoryUsage();
229 itUs
->second
.flags
|= CCoinsCacheEntry::DIRTY
;
230 // NOTE: It is possible the child has a FRESH flag here in
231 // the event the entry we found in the parent is pruned. But
232 // we must not copy that FRESH flag to the parent as that
233 // pruned state likely still needs to be communicated to the
238 CCoinsMap::iterator itOld
= it
++;
239 mapCoins
.erase(itOld
);
241 hashBlock
= hashBlockIn
;
245 bool CCoinsViewCache::Flush() {
246 bool fOk
= base
->BatchWrite(cacheCoins
, hashBlock
);
248 cachedCoinsUsage
= 0;
252 void CCoinsViewCache::Uncache(const uint256
& hash
)
254 CCoinsMap::iterator it
= cacheCoins
.find(hash
);
255 if (it
!= cacheCoins
.end() && it
->second
.flags
== 0) {
256 cachedCoinsUsage
-= it
->second
.coins
.DynamicMemoryUsage();
257 cacheCoins
.erase(it
);
261 unsigned int CCoinsViewCache::GetCacheSize() const {
262 return cacheCoins
.size();
265 const CTxOut
&CCoinsViewCache::GetOutputFor(const CTxIn
& input
) const
267 const CCoins
* coins
= AccessCoins(input
.prevout
.hash
);
268 assert(coins
&& coins
->IsAvailable(input
.prevout
.n
));
269 return coins
->vout
[input
.prevout
.n
];
272 CAmount
CCoinsViewCache::GetValueIn(const CTransaction
& tx
) const
278 for (unsigned int i
= 0; i
< tx
.vin
.size(); i
++)
279 nResult
+= GetOutputFor(tx
.vin
[i
]).nValue
;
284 bool CCoinsViewCache::HaveInputs(const CTransaction
& tx
) const
286 if (!tx
.IsCoinBase()) {
287 for (unsigned int i
= 0; i
< tx
.vin
.size(); i
++) {
288 const COutPoint
&prevout
= tx
.vin
[i
].prevout
;
289 const CCoins
* coins
= AccessCoins(prevout
.hash
);
290 if (!coins
|| !coins
->IsAvailable(prevout
.n
)) {
298 CCoinsModifier::CCoinsModifier(CCoinsViewCache
& cache_
, CCoinsMap::iterator it_
, size_t usage
) : cache(cache_
), it(it_
), cachedCoinUsage(usage
) {
299 assert(!cache
.hasModifier
);
300 cache
.hasModifier
= true;
303 CCoinsModifier::~CCoinsModifier()
305 assert(cache
.hasModifier
);
306 cache
.hasModifier
= false;
307 it
->second
.coins
.Cleanup();
308 cache
.cachedCoinsUsage
-= cachedCoinUsage
; // Subtract the old usage
309 if ((it
->second
.flags
& CCoinsCacheEntry::FRESH
) && it
->second
.coins
.IsPruned()) {
310 cache
.cacheCoins
.erase(it
);
312 // If the coin still exists after the modification, add the new usage
313 cache
.cachedCoinsUsage
+= it
->second
.coins
.DynamicMemoryUsage();
317 CCoinsViewCursor::~CCoinsViewCursor()