scripted-diff: Use the C++11 keyword nullptr to denote the pointer literal instead...
[bitcoinplatinum.git] / src / support / lockedpool.cpp
blob2ead72185f7e1683f1a865d39d87c0588b3adfae
1 // Copyright (c) 2016 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 #include "support/lockedpool.h"
6 #include "support/cleanse.h"
8 #if defined(HAVE_CONFIG_H)
9 #include "config/bitcoin-config.h"
10 #endif
12 #ifdef WIN32
13 #ifdef _WIN32_WINNT
14 #undef _WIN32_WINNT
15 #endif
16 #define _WIN32_WINNT 0x0501
17 #define WIN32_LEAN_AND_MEAN 1
18 #ifndef NOMINMAX
19 #define NOMINMAX
20 #endif
21 #include <windows.h>
22 #else
23 #include <sys/mman.h> // for mmap
24 #include <sys/resource.h> // for getrlimit
25 #include <limits.h> // for PAGESIZE
26 #include <unistd.h> // for sysconf
27 #endif
29 #include <algorithm>
31 LockedPoolManager* LockedPoolManager::_instance = nullptr;
32 std::once_flag LockedPoolManager::init_flag;
34 /*******************************************************************************/
35 // Utilities
37 /** Align up to power of 2 */
38 static inline size_t align_up(size_t x, size_t align)
40 return (x + align - 1) & ~(align - 1);
43 /*******************************************************************************/
44 // Implementation: Arena
46 Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
47 base(static_cast<char*>(base_in)), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
49 // Start with one free chunk that covers the entire arena
50 chunks_free.emplace(base, size_in);
53 Arena::~Arena()
57 void* Arena::alloc(size_t size)
59 // Round to next multiple of alignment
60 size = align_up(size, alignment);
62 // Don't handle zero-sized chunks
63 if (size == 0)
64 return nullptr;
66 // Pick a large enough free-chunk
67 auto it = std::find_if(chunks_free.begin(), chunks_free.end(),
68 [=](const std::map<char*, size_t>::value_type& chunk){ return chunk.second >= size; });
69 if (it == chunks_free.end())
70 return nullptr;
72 // Create the used-chunk, taking its space from the end of the free-chunk
73 auto alloced = chunks_used.emplace(it->first + it->second - size, size).first;
74 if (!(it->second -= size))
75 chunks_free.erase(it);
76 return reinterpret_cast<void*>(alloced->first);
79 /* extend the Iterator if other begins at its end */
80 template <class Iterator, class Pair> bool extend(Iterator it, const Pair& other) {
81 if (it->first + it->second == other.first) {
82 it->second += other.second;
83 return true;
85 return false;
88 void Arena::free(void *ptr)
90 // Freeing the nullptr pointer is OK.
91 if (ptr == nullptr) {
92 return;
95 // Remove chunk from used map
96 auto i = chunks_used.find(static_cast<char*>(ptr));
97 if (i == chunks_used.end()) {
98 throw std::runtime_error("Arena: invalid or double free");
100 auto freed = *i;
101 chunks_used.erase(i);
103 // Add space to free map, coalescing contiguous chunks
104 auto next = chunks_free.upper_bound(freed.first);
105 auto prev = (next == chunks_free.begin()) ? chunks_free.end() : std::prev(next);
106 if (prev == chunks_free.end() || !extend(prev, freed))
107 prev = chunks_free.emplace_hint(next, freed);
108 if (next != chunks_free.end() && extend(prev, *next))
109 chunks_free.erase(next);
112 Arena::Stats Arena::stats() const
114 Arena::Stats r{ 0, 0, 0, chunks_used.size(), chunks_free.size() };
115 for (const auto& chunk: chunks_used)
116 r.used += chunk.second;
117 for (const auto& chunk: chunks_free)
118 r.free += chunk.second;
119 r.total = r.used + r.free;
120 return r;
123 #ifdef ARENA_DEBUG
124 void printchunk(char* base, size_t sz, bool used) {
125 std::cout <<
126 "0x" << std::hex << std::setw(16) << std::setfill('0') << base <<
127 " 0x" << std::hex << std::setw(16) << std::setfill('0') << sz <<
128 " 0x" << used << std::endl;
130 void Arena::walk() const
132 for (const auto& chunk: chunks_used)
133 printchunk(chunk.first, chunk.second, true);
134 std::cout << std::endl;
135 for (const auto& chunk: chunks_free)
136 printchunk(chunk.first, chunk.second, false);
137 std::cout << std::endl;
139 #endif
141 /*******************************************************************************/
142 // Implementation: Win32LockedPageAllocator
144 #ifdef WIN32
145 /** LockedPageAllocator specialized for Windows.
147 class Win32LockedPageAllocator: public LockedPageAllocator
149 public:
150 Win32LockedPageAllocator();
151 void* AllocateLocked(size_t len, bool *lockingSuccess) override;
152 void FreeLocked(void* addr, size_t len) override;
153 size_t GetLimit() override;
154 private:
155 size_t page_size;
158 Win32LockedPageAllocator::Win32LockedPageAllocator()
160 // Determine system page size in bytes
161 SYSTEM_INFO sSysInfo;
162 GetSystemInfo(&sSysInfo);
163 page_size = sSysInfo.dwPageSize;
165 void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
167 len = align_up(len, page_size);
168 void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
169 if (addr) {
170 // VirtualLock is used to attempt to keep keying material out of swap. Note
171 // that it does not provide this as a guarantee, but, in practice, memory
172 // that has been VirtualLock'd almost never gets written to the pagefile
173 // except in rare circumstances where memory is extremely low.
174 *lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
176 return addr;
178 void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
180 len = align_up(len, page_size);
181 memory_cleanse(addr, len);
182 VirtualUnlock(const_cast<void*>(addr), len);
185 size_t Win32LockedPageAllocator::GetLimit()
187 // TODO is there a limit on windows, how to get it?
188 return std::numeric_limits<size_t>::max();
190 #endif
192 /*******************************************************************************/
193 // Implementation: PosixLockedPageAllocator
195 #ifndef WIN32
196 /** LockedPageAllocator specialized for OSes that don't try to be
197 * special snowflakes.
199 class PosixLockedPageAllocator: public LockedPageAllocator
201 public:
202 PosixLockedPageAllocator();
203 void* AllocateLocked(size_t len, bool *lockingSuccess) override;
204 void FreeLocked(void* addr, size_t len) override;
205 size_t GetLimit() override;
206 private:
207 size_t page_size;
210 PosixLockedPageAllocator::PosixLockedPageAllocator()
212 // Determine system page size in bytes
213 #if defined(PAGESIZE) // defined in limits.h
214 page_size = PAGESIZE;
215 #else // assume some POSIX OS
216 page_size = sysconf(_SC_PAGESIZE);
217 #endif
220 // Some systems (at least OS X) do not define MAP_ANONYMOUS yet and define
221 // MAP_ANON which is deprecated
222 #ifndef MAP_ANONYMOUS
223 #define MAP_ANONYMOUS MAP_ANON
224 #endif
226 void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
228 void *addr;
229 len = align_up(len, page_size);
230 addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
231 if (addr) {
232 *lockingSuccess = mlock(addr, len) == 0;
234 return addr;
236 void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
238 len = align_up(len, page_size);
239 memory_cleanse(addr, len);
240 munlock(addr, len);
241 munmap(addr, len);
243 size_t PosixLockedPageAllocator::GetLimit()
245 #ifdef RLIMIT_MEMLOCK
246 struct rlimit rlim;
247 if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
248 if (rlim.rlim_cur != RLIM_INFINITY) {
249 return rlim.rlim_cur;
252 #endif
253 return std::numeric_limits<size_t>::max();
255 #endif
257 /*******************************************************************************/
258 // Implementation: LockedPool
260 LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in):
261 allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0)
265 LockedPool::~LockedPool()
268 void* LockedPool::alloc(size_t size)
270 std::lock_guard<std::mutex> lock(mutex);
272 // Don't handle impossible sizes
273 if (size == 0 || size > ARENA_SIZE)
274 return nullptr;
276 // Try allocating from each current arena
277 for (auto &arena: arenas) {
278 void *addr = arena.alloc(size);
279 if (addr) {
280 return addr;
283 // If that fails, create a new one
284 if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
285 return arenas.back().alloc(size);
287 return nullptr;
290 void LockedPool::free(void *ptr)
292 std::lock_guard<std::mutex> lock(mutex);
293 // TODO we can do better than this linear search by keeping a map of arena
294 // extents to arena, and looking up the address.
295 for (auto &arena: arenas) {
296 if (arena.addressInArena(ptr)) {
297 arena.free(ptr);
298 return;
301 throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
304 LockedPool::Stats LockedPool::stats() const
306 std::lock_guard<std::mutex> lock(mutex);
307 LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0};
308 for (const auto &arena: arenas) {
309 Arena::Stats i = arena.stats();
310 r.used += i.used;
311 r.free += i.free;
312 r.total += i.total;
313 r.chunks_used += i.chunks_used;
314 r.chunks_free += i.chunks_free;
316 return r;
319 bool LockedPool::new_arena(size_t size, size_t align)
321 bool locked;
322 // If this is the first arena, handle this specially: Cap the upper size
323 // by the process limit. This makes sure that the first arena will at least
324 // be locked. An exception to this is if the process limit is 0:
325 // in this case no memory can be locked at all so we'll skip past this logic.
326 if (arenas.empty()) {
327 size_t limit = allocator->GetLimit();
328 if (limit > 0) {
329 size = std::min(size, limit);
332 void *addr = allocator->AllocateLocked(size, &locked);
333 if (!addr) {
334 return false;
336 if (locked) {
337 cumulative_bytes_locked += size;
338 } else if (lf_cb) { // Call the locking-failed callback if locking failed
339 if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
340 allocator->FreeLocked(addr, size);
341 return false;
344 arenas.emplace_back(allocator.get(), addr, size, align);
345 return true;
348 LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
349 Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
352 LockedPool::LockedPageArena::~LockedPageArena()
354 allocator->FreeLocked(base, size);
357 /*******************************************************************************/
358 // Implementation: LockedPoolManager
360 LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator_in):
361 LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed)
365 bool LockedPoolManager::LockingFailed()
367 // TODO: log something but how? without including util.h
368 return true;
371 void LockedPoolManager::CreateInstance()
373 // Using a local static instance guarantees that the object is initialized
374 // when it's first needed and also deinitialized after all objects that use
375 // it are done with it. I can think of one unlikely scenario where we may
376 // have a static deinitialization order/problem, but the check in
377 // LockedPoolManagerBase's destructor helps us detect if that ever happens.
378 #ifdef WIN32
379 std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
380 #else
381 std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
382 #endif
383 static LockedPoolManager instance(std::move(allocator));
384 LockedPoolManager::_instance = &instance;