[wallet] getreceivedbyaddress should return error if address is not mine
[bitcoinplatinum.git] / src / bech32.cpp
blob573eac58bb8eec775a28ce76ea088dbaac8e705a
1 // Copyright (c) 2017 Pieter Wuille
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 #include "bech32.h"
7 namespace
10 typedef std::vector<uint8_t> data;
12 /** The Bech32 character set for encoding. */
13 const char* CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
15 /** The Bech32 character set for decoding. */
16 const int8_t CHARSET_REV[128] = {
17 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
18 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
19 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
20 15, -1, 10, 17, 21, 20, 26, 30, 7, 5, -1, -1, -1, -1, -1, -1,
21 -1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1,
22 1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1,
23 -1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1,
24 1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1
27 /** Concatenate two byte arrays. */
28 data Cat(data x, const data& y)
30 x.insert(x.end(), y.begin(), y.end());
31 return x;
34 /** This function will compute what 6 5-bit values to XOR into the last 6 input values, in order to
35 * make the checksum 0. These 6 values are packed together in a single 30-bit integer. The higher
36 * bits correspond to earlier values. */
37 uint32_t PolyMod(const data& v)
39 // The input is interpreted as a list of coefficients of a polynomial over F = GF(32), with an
40 // implicit 1 in front. If the input is [v0,v1,v2,v3,v4], that polynomial is v(x) =
41 // 1*x^5 + v0*x^4 + v1*x^3 + v2*x^2 + v3*x + v4. The implicit 1 guarantees that
42 // [v0,v1,v2,...] has a distinct checksum from [0,v0,v1,v2,...].
44 // The output is a 30-bit integer whose 5-bit groups are the coefficients of the remainder of
45 // v(x) mod g(x), where g(x) is the Bech32 generator,
46 // x^6 + {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}. g(x) is chosen in such a way
47 // that the resulting code is a BCH code, guaranteeing detection of up to 3 errors within a
48 // window of 1023 characters. Among the various possible BCH codes, one was selected to in
49 // fact guarantee detection of up to 4 errors within a window of 89 characters.
51 // Note that the coefficients are elements of GF(32), here represented as decimal numbers
52 // between {}. In this finite field, addition is just XOR of the corresponding numbers. For
53 // example, {27} + {13} = {27 ^ 13} = {22}. Multiplication is more complicated, and requires
54 // treating the bits of values themselves as coefficients of a polynomial over a smaller field,
55 // GF(2), and multiplying those polynomials mod a^5 + a^3 + 1. For example, {5} * {26} =
56 // (a^2 + 1) * (a^4 + a^3 + a) = (a^4 + a^3 + a) * a^2 + (a^4 + a^3 + a) = a^6 + a^5 + a^4 + a
57 // = a^3 + 1 (mod a^5 + a^3 + 1) = {9}.
59 // During the course of the loop below, `c` contains the bitpacked coefficients of the
60 // polynomial constructed from just the values of v that were processed so far, mod g(x). In
61 // the above example, `c` initially corresponds to 1 mod (x), and after processing 2 inputs of
62 // v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value
63 // for `c`.
64 uint32_t c = 1;
65 for (auto v_i : v) {
66 // We want to update `c` to correspond to a polynomial with one extra term. If the initial
67 // value of `c` consists of the coefficients of c(x) = f(x) mod g(x), we modify it to
68 // correspond to c'(x) = (f(x) * x + v_i) mod g(x), where v_i is the next input to
69 // process. Simplifying:
70 // c'(x) = (f(x) * x + v_i) mod g(x)
71 // ((f(x) mod g(x)) * x + v_i) mod g(x)
72 // (c(x) * x + v_i) mod g(x)
73 // If c(x) = c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5, we want to compute
74 // c'(x) = (c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5) * x + v_i mod g(x)
75 // = c0*x^6 + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i mod g(x)
76 // = c0*(x^6 mod g(x)) + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i
77 // If we call (x^6 mod g(x)) = k(x), this can be written as
78 // c'(x) = (c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i) + c0*k(x)
80 // First, determine the value of c0:
81 uint8_t c0 = c >> 25;
83 // Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i:
84 c = ((c & 0x1ffffff) << 5) ^ v_i;
86 // Finally, for each set bit n in c0, conditionally add {2^n}k(x):
87 if (c0 & 1) c ^= 0x3b6a57b2; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}
88 if (c0 & 2) c ^= 0x26508e6d; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13}
89 if (c0 & 4) c ^= 0x1ea119fa; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26}
90 if (c0 & 8) c ^= 0x3d4233dd; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29}
91 if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19}
93 return c;
96 /** Convert to lower case. */
97 inline unsigned char LowerCase(unsigned char c)
99 return (c >= 'A' && c <= 'Z') ? (c - 'A') + 'a' : c;
102 /** Expand a HRP for use in checksum computation. */
103 data ExpandHRP(const std::string& hrp)
105 data ret;
106 ret.reserve(hrp.size() + 90);
107 ret.resize(hrp.size() * 2 + 1);
108 for (size_t i = 0; i < hrp.size(); ++i) {
109 unsigned char c = hrp[i];
110 ret[i] = c >> 5;
111 ret[i + hrp.size() + 1] = c & 0x1f;
113 ret[hrp.size()] = 0;
114 return ret;
117 /** Verify a checksum. */
118 bool VerifyChecksum(const std::string& hrp, const data& values)
120 // PolyMod computes what value to xor into the final values to make the checksum 0. However,
121 // if we required that the checksum was 0, it would be the case that appending a 0 to a valid
122 // list of values would result in a new valid list. For that reason, Bech32 requires the
123 // resulting checksum to be 1 instead.
124 return PolyMod(Cat(ExpandHRP(hrp), values)) == 1;
127 /** Create a checksum. */
128 data CreateChecksum(const std::string& hrp, const data& values)
130 data enc = Cat(ExpandHRP(hrp), values);
131 enc.resize(enc.size() + 6); // Append 6 zeroes
132 uint32_t mod = PolyMod(enc) ^ 1; // Determine what to XOR into those 6 zeroes.
133 data ret(6);
134 for (size_t i = 0; i < 6; ++i) {
135 // Convert the 5-bit groups in mod to checksum values.
136 ret[i] = (mod >> (5 * (5 - i))) & 31;
138 return ret;
141 } // namespace
143 namespace bech32
146 /** Encode a Bech32 string. */
147 std::string Encode(const std::string& hrp, const data& values) {
148 data checksum = CreateChecksum(hrp, values);
149 data combined = Cat(values, checksum);
150 std::string ret = hrp + '1';
151 ret.reserve(ret.size() + combined.size());
152 for (auto c : combined) {
153 ret += CHARSET[c];
155 return ret;
158 /** Decode a Bech32 string. */
159 std::pair<std::string, data> Decode(const std::string& str) {
160 bool lower = false, upper = false;
161 for (size_t i = 0; i < str.size(); ++i) {
162 unsigned char c = str[i];
163 if (c < 33 || c > 126) return {};
164 if (c >= 'a' && c <= 'z') lower = true;
165 if (c >= 'A' && c <= 'Z') upper = true;
167 if (lower && upper) return {};
168 size_t pos = str.rfind('1');
169 if (str.size() > 90 || pos == str.npos || pos == 0 || pos + 7 > str.size()) {
170 return {};
172 data values(str.size() - 1 - pos);
173 for (size_t i = 0; i < str.size() - 1 - pos; ++i) {
174 unsigned char c = str[i + pos + 1];
175 int8_t rev = (c < 33 || c > 126) ? -1 : CHARSET_REV[c];
176 if (rev == -1) {
177 return {};
179 values[i] = rev;
181 std::string hrp;
182 for (size_t i = 0; i < pos; ++i) {
183 hrp += LowerCase(str[i]);
185 if (!VerifyChecksum(hrp, values)) {
186 return {};
188 return {hrp, data(values.begin(), values.end() - 6)};
191 } // namespace bech32