Update to latest libsecp256k1
[bitcoinplatinum.git] / src / arith_uint256.h
blob0f6b3d4fba85682a837d510e1a0db0e1df6611e8
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2016 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #ifndef BITCOIN_ARITH_UINT256_H
7 #define BITCOIN_ARITH_UINT256_H
9 #include <assert.h>
10 #include <cstring>
11 #include <stdexcept>
12 #include <stdint.h>
13 #include <string>
14 #include <vector>
16 class uint256;
18 class uint_error : public std::runtime_error {
19 public:
20 explicit uint_error(const std::string& str) : std::runtime_error(str) {}
23 /** Template base class for unsigned big integers. */
24 template<unsigned int BITS>
25 class base_uint
27 protected:
28 enum { WIDTH=BITS/32 };
29 uint32_t pn[WIDTH];
30 public:
32 base_uint()
34 for (int i = 0; i < WIDTH; i++)
35 pn[i] = 0;
38 base_uint(const base_uint& b)
40 for (int i = 0; i < WIDTH; i++)
41 pn[i] = b.pn[i];
44 base_uint& operator=(const base_uint& b)
46 for (int i = 0; i < WIDTH; i++)
47 pn[i] = b.pn[i];
48 return *this;
51 base_uint(uint64_t b)
53 pn[0] = (unsigned int)b;
54 pn[1] = (unsigned int)(b >> 32);
55 for (int i = 2; i < WIDTH; i++)
56 pn[i] = 0;
59 explicit base_uint(const std::string& str);
61 bool operator!() const
63 for (int i = 0; i < WIDTH; i++)
64 if (pn[i] != 0)
65 return false;
66 return true;
69 const base_uint operator~() const
71 base_uint ret;
72 for (int i = 0; i < WIDTH; i++)
73 ret.pn[i] = ~pn[i];
74 return ret;
77 const base_uint operator-() const
79 base_uint ret;
80 for (int i = 0; i < WIDTH; i++)
81 ret.pn[i] = ~pn[i];
82 ret++;
83 return ret;
86 double getdouble() const;
88 base_uint& operator=(uint64_t b)
90 pn[0] = (unsigned int)b;
91 pn[1] = (unsigned int)(b >> 32);
92 for (int i = 2; i < WIDTH; i++)
93 pn[i] = 0;
94 return *this;
97 base_uint& operator^=(const base_uint& b)
99 for (int i = 0; i < WIDTH; i++)
100 pn[i] ^= b.pn[i];
101 return *this;
104 base_uint& operator&=(const base_uint& b)
106 for (int i = 0; i < WIDTH; i++)
107 pn[i] &= b.pn[i];
108 return *this;
111 base_uint& operator|=(const base_uint& b)
113 for (int i = 0; i < WIDTH; i++)
114 pn[i] |= b.pn[i];
115 return *this;
118 base_uint& operator^=(uint64_t b)
120 pn[0] ^= (unsigned int)b;
121 pn[1] ^= (unsigned int)(b >> 32);
122 return *this;
125 base_uint& operator|=(uint64_t b)
127 pn[0] |= (unsigned int)b;
128 pn[1] |= (unsigned int)(b >> 32);
129 return *this;
132 base_uint& operator<<=(unsigned int shift);
133 base_uint& operator>>=(unsigned int shift);
135 base_uint& operator+=(const base_uint& b)
137 uint64_t carry = 0;
138 for (int i = 0; i < WIDTH; i++)
140 uint64_t n = carry + pn[i] + b.pn[i];
141 pn[i] = n & 0xffffffff;
142 carry = n >> 32;
144 return *this;
147 base_uint& operator-=(const base_uint& b)
149 *this += -b;
150 return *this;
153 base_uint& operator+=(uint64_t b64)
155 base_uint b;
156 b = b64;
157 *this += b;
158 return *this;
161 base_uint& operator-=(uint64_t b64)
163 base_uint b;
164 b = b64;
165 *this += -b;
166 return *this;
169 base_uint& operator*=(uint32_t b32);
170 base_uint& operator*=(const base_uint& b);
171 base_uint& operator/=(const base_uint& b);
173 base_uint& operator++()
175 // prefix operator
176 int i = 0;
177 while (++pn[i] == 0 && i < WIDTH-1)
178 i++;
179 return *this;
182 const base_uint operator++(int)
184 // postfix operator
185 const base_uint ret = *this;
186 ++(*this);
187 return ret;
190 base_uint& operator--()
192 // prefix operator
193 int i = 0;
194 while (--pn[i] == (uint32_t)-1 && i < WIDTH-1)
195 i++;
196 return *this;
199 const base_uint operator--(int)
201 // postfix operator
202 const base_uint ret = *this;
203 --(*this);
204 return ret;
207 int CompareTo(const base_uint& b) const;
208 bool EqualTo(uint64_t b) const;
210 friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
211 friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
212 friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
213 friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
214 friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
215 friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
216 friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
217 friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
218 friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
219 friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
220 friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; }
221 friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; }
222 friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; }
223 friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; }
224 friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; }
225 friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; }
226 friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
227 friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
229 std::string GetHex() const;
230 void SetHex(const char* psz);
231 void SetHex(const std::string& str);
232 std::string ToString() const;
234 unsigned int size() const
236 return sizeof(pn);
240 * Returns the position of the highest bit set plus one, or zero if the
241 * value is zero.
243 unsigned int bits() const;
245 uint64_t GetLow64() const
247 assert(WIDTH >= 2);
248 return pn[0] | (uint64_t)pn[1] << 32;
252 /** 256-bit unsigned big integer. */
253 class arith_uint256 : public base_uint<256> {
254 public:
255 arith_uint256() {}
256 arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {}
257 arith_uint256(uint64_t b) : base_uint<256>(b) {}
258 explicit arith_uint256(const std::string& str) : base_uint<256>(str) {}
261 * The "compact" format is a representation of a whole
262 * number N using an unsigned 32bit number similar to a
263 * floating point format.
264 * The most significant 8 bits are the unsigned exponent of base 256.
265 * This exponent can be thought of as "number of bytes of N".
266 * The lower 23 bits are the mantissa.
267 * Bit number 24 (0x800000) represents the sign of N.
268 * N = (-1^sign) * mantissa * 256^(exponent-3)
270 * Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
271 * MPI uses the most significant bit of the first byte as sign.
272 * Thus 0x1234560000 is compact (0x05123456)
273 * and 0xc0de000000 is compact (0x0600c0de)
275 * Bitcoin only uses this "compact" format for encoding difficulty
276 * targets, which are unsigned 256bit quantities. Thus, all the
277 * complexities of the sign bit and using base 256 are probably an
278 * implementation accident.
280 arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL);
281 uint32_t GetCompact(bool fNegative = false) const;
283 friend uint256 ArithToUint256(const arith_uint256 &);
284 friend arith_uint256 UintToArith256(const uint256 &);
287 uint256 ArithToUint256(const arith_uint256 &);
288 arith_uint256 UintToArith256(const uint256 &);
290 #endif // BITCOIN_ARITH_UINT256_H