Update osx build instructions to ensure users link to the correct version of OpenSSL
[bitcoinplatinum.git] / src / crypter.h
blob6f75170baccfb1b702159b269e59e5d1f729c1bf
1 // Copyright (c) 2009-2012 The Bitcoin Developers
2 // Distributed under the MIT/X11 software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 #ifndef __CRYPTER_H__
5 #define __CRYPTER_H__
7 #include "allocators.h" /* for SecureString */
8 #include "key.h"
9 #include "serialize.h"
11 const unsigned int WALLET_CRYPTO_KEY_SIZE = 32;
12 const unsigned int WALLET_CRYPTO_SALT_SIZE = 8;
15 Private key encryption is done based on a CMasterKey,
16 which holds a salt and random encryption key.
18 CMasterKeys are encrypted using AES-256-CBC using a key
19 derived using derivation method nDerivationMethod
20 (0 == EVP_sha512()) and derivation iterations nDeriveIterations.
21 vchOtherDerivationParameters is provided for alternative algorithms
22 which may require more parameters (such as scrypt).
24 Wallet Private Keys are then encrypted using AES-256-CBC
25 with the double-sha256 of the public key as the IV, and the
26 master key's key as the encryption key (see keystore.[ch]).
29 /** Master key for wallet encryption */
30 class CMasterKey
32 public:
33 std::vector<unsigned char> vchCryptedKey;
34 std::vector<unsigned char> vchSalt;
35 // 0 = EVP_sha512()
36 // 1 = scrypt()
37 unsigned int nDerivationMethod;
38 unsigned int nDeriveIterations;
39 // Use this for more parameters to key derivation,
40 // such as the various parameters to scrypt
41 std::vector<unsigned char> vchOtherDerivationParameters;
43 IMPLEMENT_SERIALIZE
45 READWRITE(vchCryptedKey);
46 READWRITE(vchSalt);
47 READWRITE(nDerivationMethod);
48 READWRITE(nDeriveIterations);
49 READWRITE(vchOtherDerivationParameters);
51 CMasterKey()
53 // 25000 rounds is just under 0.1 seconds on a 1.86 GHz Pentium M
54 // ie slightly lower than the lowest hardware we need bother supporting
55 nDeriveIterations = 25000;
56 nDerivationMethod = 0;
57 vchOtherDerivationParameters = std::vector<unsigned char>(0);
61 typedef std::vector<unsigned char, secure_allocator<unsigned char> > CKeyingMaterial;
63 /** Encryption/decryption context with key information */
64 class CCrypter
66 private:
67 unsigned char chKey[WALLET_CRYPTO_KEY_SIZE];
68 unsigned char chIV[WALLET_CRYPTO_KEY_SIZE];
69 bool fKeySet;
71 public:
72 bool SetKeyFromPassphrase(const SecureString &strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod);
73 bool Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext);
74 bool Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext);
75 bool SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV);
77 void CleanKey()
79 OPENSSL_cleanse(chKey, sizeof(chKey));
80 OPENSSL_cleanse(chIV, sizeof(chIV));
81 fKeySet = false;
84 CCrypter()
86 fKeySet = false;
88 // Try to keep the key data out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap)
89 // Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
90 // Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
91 LockedPageManager::instance.LockRange(&chKey[0], sizeof chKey);
92 LockedPageManager::instance.LockRange(&chIV[0], sizeof chIV);
95 ~CCrypter()
97 CleanKey();
99 LockedPageManager::instance.UnlockRange(&chKey[0], sizeof chKey);
100 LockedPageManager::instance.UnlockRange(&chIV[0], sizeof chIV);
104 bool EncryptSecret(CKeyingMaterial& vMasterKey, const CSecret &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext);
105 bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char> &vchCiphertext, const uint256& nIV, CSecret &vchPlaintext);
107 #endif