1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2016 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
8 #include "crypto/sha512.h"
9 #include "support/cleanse.h"
11 #include "compat.h" // for Windows API
14 #include "util.h" // for LogPrint()
15 #include "utilstrencodings.h" // for GetTime()
26 #ifdef HAVE_SYS_GETRANDOM
27 #include <sys/syscall.h>
28 #include <linux/random.h>
30 #if defined(HAVE_GETENTROPY) || (defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX))
33 #if defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
34 #include <sys/random.h>
36 #ifdef HAVE_SYSCTL_ARND
37 #include <sys/sysctl.h>
42 #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
46 #include <openssl/err.h>
47 #include <openssl/rand.h>
49 [[noreturn
]] static void RandFailure()
51 LogPrintf("Failed to read randomness, aborting\n");
55 static inline int64_t GetPerformanceCounter()
57 // Read the hardware time stamp counter when available.
58 // See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
59 #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
61 #elif !defined(_MSC_VER) && defined(__i386__)
63 __asm__
volatile ("rdtsc" : "=A"(r
)); // Constrain the r variable to the eax:edx pair.
65 #elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__))
66 uint64_t r1
= 0, r2
= 0;
67 __asm__
volatile ("rdtsc" : "=a"(r1
), "=d"(r2
)); // Constrain r1 to rax and r2 to rdx.
68 return (r2
<< 32) | r1
;
70 // Fall back to using C++11 clock (usually microsecond or nanosecond precision)
71 return std::chrono::high_resolution_clock::now().time_since_epoch().count();
76 #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
77 static std::atomic
<bool> hwrand_initialized
{false};
78 static bool rdrand_supported
= false;
79 static constexpr uint32_t CPUID_F1_ECX_RDRAND
= 0x40000000;
80 static void RDRandInit()
82 uint32_t eax
, ebx
, ecx
, edx
;
83 if (__get_cpuid(1, &eax
, &ebx
, &ecx
, &edx
) && (ecx
& CPUID_F1_ECX_RDRAND
)) {
84 LogPrintf("Using RdRand as an additional entropy source\n");
85 rdrand_supported
= true;
87 hwrand_initialized
.store(true);
90 static void RDRandInit() {}
93 static bool GetHWRand(unsigned char* ent32
) {
94 #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
95 assert(hwrand_initialized
.load(std::memory_order_relaxed
));
96 if (rdrand_supported
) {
98 // Not all assemblers support the rdrand instruction, write it in hex.
100 for (int iter
= 0; iter
< 4; ++iter
) {
102 __asm__
volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax
103 ".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx
105 "=a"(r1
), "=d"(r2
), "=q"(ok
) :: "cc");
106 if (!ok
) return false;
107 WriteLE32(ent32
+ 8 * iter
, r1
);
108 WriteLE32(ent32
+ 8 * iter
+ 4, r2
);
111 uint64_t r1
, r2
, r3
, r4
;
112 __asm__
volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax
113 "0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx
114 "0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx
115 "0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx
117 "=a"(r1
), "=b"(r2
), "=c"(r3
), "=d"(r4
), "=q"(ok
) :: "cc");
118 if (!ok
) return false;
119 WriteLE64(ent32
, r1
);
120 WriteLE64(ent32
+ 8, r2
);
121 WriteLE64(ent32
+ 16, r3
);
122 WriteLE64(ent32
+ 24, r4
);
132 // Seed with CPU performance counter
133 int64_t nCounter
= GetPerformanceCounter();
134 RAND_add(&nCounter
, sizeof(nCounter
), 1.5);
135 memory_cleanse((void*)&nCounter
, sizeof(nCounter
));
138 static void RandAddSeedPerfmon()
143 // Don't need this on Linux, OpenSSL automatically uses /dev/urandom
144 // Seed with the entire set of perfmon data
146 // This can take up to 2 seconds, so only do it every 10 minutes
147 static int64_t nLastPerfmon
;
148 if (GetTime() < nLastPerfmon
+ 10 * 60)
150 nLastPerfmon
= GetTime();
152 std::vector
<unsigned char> vData(250000, 0);
154 unsigned long nSize
= 0;
155 const size_t nMaxSize
= 10000000; // Bail out at more than 10MB of performance data
157 nSize
= vData
.size();
158 ret
= RegQueryValueExA(HKEY_PERFORMANCE_DATA
, "Global", nullptr, nullptr, vData
.data(), &nSize
);
159 if (ret
!= ERROR_MORE_DATA
|| vData
.size() >= nMaxSize
)
161 vData
.resize(std::max((vData
.size() * 3) / 2, nMaxSize
)); // Grow size of buffer exponentially
163 RegCloseKey(HKEY_PERFORMANCE_DATA
);
164 if (ret
== ERROR_SUCCESS
) {
165 RAND_add(vData
.data(), nSize
, nSize
/ 100.0);
166 memory_cleanse(vData
.data(), nSize
);
167 LogPrint(BCLog::RAND
, "%s: %lu bytes\n", __func__
, nSize
);
169 static bool warned
= false; // Warn only once
171 LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__
, ret
);
179 /** Fallback: get 32 bytes of system entropy from /dev/urandom. The most
180 * compatible way to get cryptographic randomness on UNIX-ish platforms.
182 void GetDevURandom(unsigned char *ent32
)
184 int f
= open("/dev/urandom", O_RDONLY
);
190 ssize_t n
= read(f
, ent32
+ have
, NUM_OS_RANDOM_BYTES
- have
);
191 if (n
<= 0 || n
+ have
> NUM_OS_RANDOM_BYTES
) {
196 } while (have
< NUM_OS_RANDOM_BYTES
);
201 /** Get 32 bytes of system entropy. */
202 void GetOSRand(unsigned char *ent32
)
205 HCRYPTPROV hProvider
;
206 int ret
= CryptAcquireContextW(&hProvider
, nullptr, nullptr, PROV_RSA_FULL
, CRYPT_VERIFYCONTEXT
);
210 ret
= CryptGenRandom(hProvider
, NUM_OS_RANDOM_BYTES
, ent32
);
214 CryptReleaseContext(hProvider
, 0);
215 #elif defined(HAVE_SYS_GETRANDOM)
216 /* Linux. From the getrandom(2) man page:
217 * "If the urandom source has been initialized, reads of up to 256 bytes
218 * will always return as many bytes as requested and will not be
219 * interrupted by signals."
221 int rv
= syscall(SYS_getrandom
, ent32
, NUM_OS_RANDOM_BYTES
, 0);
222 if (rv
!= NUM_OS_RANDOM_BYTES
) {
223 if (rv
< 0 && errno
== ENOSYS
) {
224 /* Fallback for kernel <3.17: the return value will be -1 and errno
225 * ENOSYS if the syscall is not available, in that case fall back
228 GetDevURandom(ent32
);
233 #elif defined(HAVE_GETENTROPY) && defined(__OpenBSD__)
234 /* On OpenBSD this can return up to 256 bytes of entropy, will return an
235 * error if more are requested.
236 * The call cannot return less than the requested number of bytes.
237 getentropy is explicitly limited to openbsd here, as a similar (but not
238 the same) function may exist on other platforms via glibc.
240 if (getentropy(ent32
, NUM_OS_RANDOM_BYTES
) != 0) {
243 #elif defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
244 // We need a fallback for OSX < 10.12
245 if (&getentropy
!= nullptr) {
246 if (getentropy(ent32
, NUM_OS_RANDOM_BYTES
) != 0) {
250 GetDevURandom(ent32
);
252 #elif defined(HAVE_SYSCTL_ARND)
253 /* FreeBSD and similar. It is possible for the call to return less
254 * bytes than requested, so need to read in a loop.
256 static const int name
[2] = {CTL_KERN
, KERN_ARND
};
259 size_t len
= NUM_OS_RANDOM_BYTES
- have
;
260 if (sysctl(name
, ARRAYLEN(name
), ent32
+ have
, &len
, nullptr, 0) != 0) {
264 } while (have
< NUM_OS_RANDOM_BYTES
);
266 /* Fall back to /dev/urandom if there is no specific method implemented to
267 * get system entropy for this OS.
269 GetDevURandom(ent32
);
273 void GetRandBytes(unsigned char* buf
, int num
)
275 if (RAND_bytes(buf
, num
) != 1) {
280 static void AddDataToRng(void* data
, size_t len
);
282 void RandAddSeedSleep()
284 int64_t nPerfCounter1
= GetPerformanceCounter();
285 std::this_thread::sleep_for(std::chrono::milliseconds(1));
286 int64_t nPerfCounter2
= GetPerformanceCounter();
288 // Combine with and update state
289 AddDataToRng(&nPerfCounter1
, sizeof(nPerfCounter1
));
290 AddDataToRng(&nPerfCounter2
, sizeof(nPerfCounter2
));
292 memory_cleanse(&nPerfCounter1
, sizeof(nPerfCounter1
));
293 memory_cleanse(&nPerfCounter2
, sizeof(nPerfCounter2
));
297 static std::mutex cs_rng_state
;
298 static unsigned char rng_state
[32] = {0};
299 static uint64_t rng_counter
= 0;
301 static void AddDataToRng(void* data
, size_t len
) {
303 hasher
.Write((const unsigned char*)&len
, sizeof(len
));
304 hasher
.Write((const unsigned char*)data
, len
);
305 unsigned char buf
[64];
307 std::unique_lock
<std::mutex
> lock(cs_rng_state
);
308 hasher
.Write(rng_state
, sizeof(rng_state
));
309 hasher
.Write((const unsigned char*)&rng_counter
, sizeof(rng_counter
));
311 hasher
.Finalize(buf
);
312 memcpy(rng_state
, buf
+ 32, 32);
314 memory_cleanse(buf
, 64);
317 void GetStrongRandBytes(unsigned char* out
, int num
)
321 unsigned char buf
[64];
323 // First source: OpenSSL's RNG
324 RandAddSeedPerfmon();
325 GetRandBytes(buf
, 32);
326 hasher
.Write(buf
, 32);
328 // Second source: OS RNG
330 hasher
.Write(buf
, 32);
332 // Third source: HW RNG, if available.
333 if (GetHWRand(buf
)) {
334 hasher
.Write(buf
, 32);
337 // Combine with and update state
339 std::unique_lock
<std::mutex
> lock(cs_rng_state
);
340 hasher
.Write(rng_state
, sizeof(rng_state
));
341 hasher
.Write((const unsigned char*)&rng_counter
, sizeof(rng_counter
));
343 hasher
.Finalize(buf
);
344 memcpy(rng_state
, buf
+ 32, 32);
348 memcpy(out
, buf
, num
);
349 memory_cleanse(buf
, 64);
352 uint64_t GetRand(uint64_t nMax
)
357 // The range of the random source must be a multiple of the modulus
358 // to give every possible output value an equal possibility
359 uint64_t nRange
= (std::numeric_limits
<uint64_t>::max() / nMax
) * nMax
;
362 GetRandBytes((unsigned char*)&nRand
, sizeof(nRand
));
363 } while (nRand
>= nRange
);
364 return (nRand
% nMax
);
367 int GetRandInt(int nMax
)
369 return GetRand(nMax
);
372 uint256
GetRandHash()
375 GetRandBytes((unsigned char*)&hash
, sizeof(hash
));
379 void FastRandomContext::RandomSeed()
381 uint256 seed
= GetRandHash();
382 rng
.SetKey(seed
.begin(), 32);
383 requires_seed
= false;
386 uint256
FastRandomContext::rand256()
388 if (bytebuf_size
< 32) {
392 memcpy(ret
.begin(), bytebuf
+ 64 - bytebuf_size
, 32);
397 std::vector
<unsigned char> FastRandomContext::randbytes(size_t len
)
399 std::vector
<unsigned char> ret(len
);
401 rng
.Output(&ret
[0], len
);
406 FastRandomContext::FastRandomContext(const uint256
& seed
) : requires_seed(false), bytebuf_size(0), bitbuf_size(0)
408 rng
.SetKey(seed
.begin(), 32);
411 bool Random_SanityCheck()
413 uint64_t start
= GetPerformanceCounter();
415 /* This does not measure the quality of randomness, but it does test that
416 * OSRandom() overwrites all 32 bytes of the output given a maximum
419 static const ssize_t MAX_TRIES
= 1024;
420 uint8_t data
[NUM_OS_RANDOM_BYTES
];
421 bool overwritten
[NUM_OS_RANDOM_BYTES
] = {}; /* Tracks which bytes have been overwritten at least once */
424 /* Loop until all bytes have been overwritten at least once, or max number tries reached */
426 memset(data
, 0, NUM_OS_RANDOM_BYTES
);
428 for (int x
=0; x
< NUM_OS_RANDOM_BYTES
; ++x
) {
429 overwritten
[x
] |= (data
[x
] != 0);
433 for (int x
=0; x
< NUM_OS_RANDOM_BYTES
; ++x
) {
434 if (overwritten
[x
]) {
435 num_overwritten
+= 1;
440 } while (num_overwritten
< NUM_OS_RANDOM_BYTES
&& tries
< MAX_TRIES
);
441 if (num_overwritten
!= NUM_OS_RANDOM_BYTES
) return false; /* If this failed, bailed out after too many tries */
443 // Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep.
444 std::this_thread::sleep_for(std::chrono::milliseconds(1));
445 uint64_t stop
= GetPerformanceCounter();
446 if (stop
== start
) return false;
448 // We called GetPerformanceCounter. Use it as entropy.
449 RAND_add((const unsigned char*)&start
, sizeof(start
), 1);
450 RAND_add((const unsigned char*)&stop
, sizeof(stop
), 1);
455 FastRandomContext::FastRandomContext(bool fDeterministic
) : requires_seed(!fDeterministic
), bytebuf_size(0), bitbuf_size(0)
457 if (!fDeterministic
) {
461 rng
.SetKey(seed
.begin(), 32);