[tests] Remove unused variables
[bitcoinplatinum.git] / test / functional / bip68-sequence.py
blob89d42a710c5d7126c0d1ec9018e5c43c4dad1333
1 #!/usr/bin/env python3
2 # Copyright (c) 2014-2016 The Bitcoin Core developers
3 # Distributed under the MIT software license, see the accompanying
4 # file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 """Test BIP68 implementation."""
7 from test_framework.test_framework import BitcoinTestFramework
8 from test_framework.util import *
9 from test_framework.blocktools import *
11 SEQUENCE_LOCKTIME_DISABLE_FLAG = (1<<31)
12 SEQUENCE_LOCKTIME_TYPE_FLAG = (1<<22) # this means use time (0 means height)
13 SEQUENCE_LOCKTIME_GRANULARITY = 9 # this is a bit-shift
14 SEQUENCE_LOCKTIME_MASK = 0x0000ffff
16 # RPC error for non-BIP68 final transactions
17 NOT_FINAL_ERROR = "64: non-BIP68-final"
19 class BIP68Test(BitcoinTestFramework):
20 def __init__(self):
21 super().__init__()
22 self.num_nodes = 2
23 self.setup_clean_chain = False
25 def setup_network(self):
26 self.nodes = []
27 self.nodes.append(start_node(0, self.options.tmpdir))
28 self.nodes.append(start_node(1, self.options.tmpdir, ["-acceptnonstdtxn=0"]))
29 self.is_network_split = False
30 self.relayfee = self.nodes[0].getnetworkinfo()["relayfee"]
31 connect_nodes(self.nodes[0], 1)
33 def run_test(self):
34 # Generate some coins
35 self.nodes[0].generate(110)
37 self.log.info("Running test disable flag")
38 self.test_disable_flag()
40 self.log.info("Running test sequence-lock-confirmed-inputs")
41 self.test_sequence_lock_confirmed_inputs()
43 self.log.info("Running test sequence-lock-unconfirmed-inputs")
44 self.test_sequence_lock_unconfirmed_inputs()
46 self.log.info("Running test BIP68 not consensus before versionbits activation")
47 self.test_bip68_not_consensus()
49 self.log.info("Activating BIP68 (and 112/113)")
50 self.activateCSV()
52 self.log.info("Verifying nVersion=2 transactions are standard.")
53 self.log.info("Note that nVersion=2 transactions are always standard (independent of BIP68 activation status).")
54 self.test_version2_relay()
56 self.log.info("Passed")
58 # Test that BIP68 is not in effect if tx version is 1, or if
59 # the first sequence bit is set.
60 def test_disable_flag(self):
61 # Create some unconfirmed inputs
62 new_addr = self.nodes[0].getnewaddress()
63 self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC
65 utxos = self.nodes[0].listunspent(0, 0)
66 assert(len(utxos) > 0)
68 utxo = utxos[0]
70 tx1 = CTransaction()
71 value = int(satoshi_round(utxo["amount"] - self.relayfee)*COIN)
73 # Check that the disable flag disables relative locktime.
74 # If sequence locks were used, this would require 1 block for the
75 # input to mature.
76 sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1
77 tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)]
78 tx1.vout = [CTxOut(value, CScript([b'a']))]
80 tx1_signed = self.nodes[0].signrawtransaction(ToHex(tx1))["hex"]
81 tx1_id = self.nodes[0].sendrawtransaction(tx1_signed)
82 tx1_id = int(tx1_id, 16)
84 # This transaction will enable sequence-locks, so this transaction should
85 # fail
86 tx2 = CTransaction()
87 tx2.nVersion = 2
88 sequence_value = sequence_value & 0x7fffffff
89 tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)]
90 tx2.vout = [CTxOut(int(value-self.relayfee*COIN), CScript([b'a']))]
91 tx2.rehash()
93 assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx2))
95 # Setting the version back down to 1 should disable the sequence lock,
96 # so this should be accepted.
97 tx2.nVersion = 1
99 self.nodes[0].sendrawtransaction(ToHex(tx2))
101 # Calculate the median time past of a prior block ("confirmations" before
102 # the current tip).
103 def get_median_time_past(self, confirmations):
104 block_hash = self.nodes[0].getblockhash(self.nodes[0].getblockcount()-confirmations)
105 return self.nodes[0].getblockheader(block_hash)["mediantime"]
107 # Test that sequence locks are respected for transactions spending confirmed inputs.
108 def test_sequence_lock_confirmed_inputs(self):
109 # Create lots of confirmed utxos, and use them to generate lots of random
110 # transactions.
111 max_outputs = 50
112 addresses = []
113 while len(addresses) < max_outputs:
114 addresses.append(self.nodes[0].getnewaddress())
115 while len(self.nodes[0].listunspent()) < 200:
116 import random
117 random.shuffle(addresses)
118 num_outputs = random.randint(1, max_outputs)
119 outputs = {}
120 for i in range(num_outputs):
121 outputs[addresses[i]] = random.randint(1, 20)*0.01
122 self.nodes[0].sendmany("", outputs)
123 self.nodes[0].generate(1)
125 utxos = self.nodes[0].listunspent()
127 # Try creating a lot of random transactions.
128 # Each time, choose a random number of inputs, and randomly set
129 # some of those inputs to be sequence locked (and randomly choose
130 # between height/time locking). Small random chance of making the locks
131 # all pass.
132 for i in range(400):
133 # Randomly choose up to 10 inputs
134 num_inputs = random.randint(1, 10)
135 random.shuffle(utxos)
137 # Track whether any sequence locks used should fail
138 should_pass = True
140 # Track whether this transaction was built with sequence locks
141 using_sequence_locks = False
143 tx = CTransaction()
144 tx.nVersion = 2
145 value = 0
146 for j in range(num_inputs):
147 sequence_value = 0xfffffffe # this disables sequence locks
149 # 50% chance we enable sequence locks
150 if random.randint(0,1):
151 using_sequence_locks = True
153 # 10% of the time, make the input sequence value pass
154 input_will_pass = (random.randint(1,10) == 1)
155 sequence_value = utxos[j]["confirmations"]
156 if not input_will_pass:
157 sequence_value += 1
158 should_pass = False
160 # Figure out what the median-time-past was for the confirmed input
161 # Note that if an input has N confirmations, we're going back N blocks
162 # from the tip so that we're looking up MTP of the block
163 # PRIOR to the one the input appears in, as per the BIP68 spec.
164 orig_time = self.get_median_time_past(utxos[j]["confirmations"])
165 cur_time = self.get_median_time_past(0) # MTP of the tip
167 # can only timelock this input if it's not too old -- otherwise use height
168 can_time_lock = True
169 if ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) >= SEQUENCE_LOCKTIME_MASK:
170 can_time_lock = False
172 # if time-lockable, then 50% chance we make this a time lock
173 if random.randint(0,1) and can_time_lock:
174 # Find first time-lock value that fails, or latest one that succeeds
175 time_delta = sequence_value << SEQUENCE_LOCKTIME_GRANULARITY
176 if input_will_pass and time_delta > cur_time - orig_time:
177 sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)
178 elif (not input_will_pass and time_delta <= cur_time - orig_time):
179 sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)+1
180 sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
181 tx.vin.append(CTxIn(COutPoint(int(utxos[j]["txid"], 16), utxos[j]["vout"]), nSequence=sequence_value))
182 value += utxos[j]["amount"]*COIN
183 # Overestimate the size of the tx - signatures should be less than 120 bytes, and leave 50 for the output
184 tx_size = len(ToHex(tx))//2 + 120*num_inputs + 50
185 tx.vout.append(CTxOut(int(value-self.relayfee*tx_size*COIN/1000), CScript([b'a'])))
186 rawtx = self.nodes[0].signrawtransaction(ToHex(tx))["hex"]
188 if (using_sequence_locks and not should_pass):
189 # This transaction should be rejected
190 assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, rawtx)
191 else:
192 # This raw transaction should be accepted
193 self.nodes[0].sendrawtransaction(rawtx)
194 utxos = self.nodes[0].listunspent()
196 # Test that sequence locks on unconfirmed inputs must have nSequence
197 # height or time of 0 to be accepted.
198 # Then test that BIP68-invalid transactions are removed from the mempool
199 # after a reorg.
200 def test_sequence_lock_unconfirmed_inputs(self):
201 # Store height so we can easily reset the chain at the end of the test
202 cur_height = self.nodes[0].getblockcount()
204 # Create a mempool tx.
205 txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
206 tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
207 tx1.rehash()
209 # Anyone-can-spend mempool tx.
210 # Sequence lock of 0 should pass.
211 tx2 = CTransaction()
212 tx2.nVersion = 2
213 tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
214 tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
215 tx2_raw = self.nodes[0].signrawtransaction(ToHex(tx2))["hex"]
216 tx2 = FromHex(tx2, tx2_raw)
217 tx2.rehash()
219 self.nodes[0].sendrawtransaction(tx2_raw)
221 # Create a spend of the 0th output of orig_tx with a sequence lock
222 # of 1, and test what happens when submitting.
223 # orig_tx.vout[0] must be an anyone-can-spend output
224 def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
225 sequence_value = 1
226 if not use_height_lock:
227 sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
229 tx = CTransaction()
230 tx.nVersion = 2
231 tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
232 tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee*COIN), CScript([b'a']))]
233 tx.rehash()
235 if (orig_tx.hash in node.getrawmempool()):
236 # sendrawtransaction should fail if the tx is in the mempool
237 assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx))
238 else:
239 # sendrawtransaction should succeed if the tx is not in the mempool
240 node.sendrawtransaction(ToHex(tx))
242 return tx
244 test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
245 test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
247 # Now mine some blocks, but make sure tx2 doesn't get mined.
248 # Use prioritisetransaction to lower the effective feerate to 0
249 self.nodes[0].prioritisetransaction(tx2.hash, int(-self.relayfee*COIN))
250 cur_time = int(time.time())
251 for i in range(10):
252 self.nodes[0].setmocktime(cur_time + 600)
253 self.nodes[0].generate(1)
254 cur_time += 600
256 assert(tx2.hash in self.nodes[0].getrawmempool())
258 test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
259 test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
261 # Mine tx2, and then try again
262 self.nodes[0].prioritisetransaction(tx2.hash, int(self.relayfee*COIN))
264 # Advance the time on the node so that we can test timelocks
265 self.nodes[0].setmocktime(cur_time+600)
266 self.nodes[0].generate(1)
267 assert(tx2.hash not in self.nodes[0].getrawmempool())
269 # Now that tx2 is not in the mempool, a sequence locked spend should
270 # succeed
271 tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
272 assert(tx3.hash in self.nodes[0].getrawmempool())
274 self.nodes[0].generate(1)
275 assert(tx3.hash not in self.nodes[0].getrawmempool())
277 # One more test, this time using height locks
278 tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True)
279 assert(tx4.hash in self.nodes[0].getrawmempool())
281 # Now try combining confirmed and unconfirmed inputs
282 tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True)
283 assert(tx5.hash not in self.nodes[0].getrawmempool())
285 utxos = self.nodes[0].listunspent()
286 tx5.vin.append(CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), nSequence=1))
287 tx5.vout[0].nValue += int(utxos[0]["amount"]*COIN)
288 raw_tx5 = self.nodes[0].signrawtransaction(ToHex(tx5))["hex"]
290 assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, raw_tx5)
292 # Test mempool-BIP68 consistency after reorg
294 # State of the transactions in the last blocks:
295 # ... -> [ tx2 ] -> [ tx3 ]
296 # tip-1 tip
297 # And currently tx4 is in the mempool.
299 # If we invalidate the tip, tx3 should get added to the mempool, causing
300 # tx4 to be removed (fails sequence-lock).
301 self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
302 assert(tx4.hash not in self.nodes[0].getrawmempool())
303 assert(tx3.hash in self.nodes[0].getrawmempool())
305 # Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in
306 # diagram above).
307 # This would cause tx2 to be added back to the mempool, which in turn causes
308 # tx3 to be removed.
309 tip = int(self.nodes[0].getblockhash(self.nodes[0].getblockcount()-1), 16)
310 height = self.nodes[0].getblockcount()
311 for i in range(2):
312 block = create_block(tip, create_coinbase(height), cur_time)
313 block.nVersion = 3
314 block.rehash()
315 block.solve()
316 tip = block.sha256
317 height += 1
318 self.nodes[0].submitblock(ToHex(block))
319 cur_time += 1
321 mempool = self.nodes[0].getrawmempool()
322 assert(tx3.hash not in mempool)
323 assert(tx2.hash in mempool)
325 # Reset the chain and get rid of the mocktimed-blocks
326 self.nodes[0].setmocktime(0)
327 self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height+1))
328 self.nodes[0].generate(10)
330 # Make sure that BIP68 isn't being used to validate blocks, prior to
331 # versionbits activation. If more blocks are mined prior to this test
332 # being run, then it's possible the test has activated the soft fork, and
333 # this test should be moved to run earlier, or deleted.
334 def test_bip68_not_consensus(self):
335 assert(get_bip9_status(self.nodes[0], 'csv')['status'] != 'active')
336 txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
338 tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
339 tx1.rehash()
341 # Make an anyone-can-spend transaction
342 tx2 = CTransaction()
343 tx2.nVersion = 1
344 tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
345 tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
347 # sign tx2
348 tx2_raw = self.nodes[0].signrawtransaction(ToHex(tx2))["hex"]
349 tx2 = FromHex(tx2, tx2_raw)
350 tx2.rehash()
352 self.nodes[0].sendrawtransaction(ToHex(tx2))
354 # Now make an invalid spend of tx2 according to BIP68
355 sequence_value = 100 # 100 block relative locktime
357 tx3 = CTransaction()
358 tx3.nVersion = 2
359 tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)]
360 tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))]
361 tx3.rehash()
363 assert_raises_jsonrpc(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx3))
365 # make a block that violates bip68; ensure that the tip updates
366 tip = int(self.nodes[0].getbestblockhash(), 16)
367 block = create_block(tip, create_coinbase(self.nodes[0].getblockcount()+1))
368 block.nVersion = 3
369 block.vtx.extend([tx1, tx2, tx3])
370 block.hashMerkleRoot = block.calc_merkle_root()
371 block.rehash()
372 block.solve()
374 self.nodes[0].submitblock(ToHex(block))
375 assert_equal(self.nodes[0].getbestblockhash(), block.hash)
377 def activateCSV(self):
378 # activation should happen at block height 432 (3 periods)
379 min_activation_height = 432
380 height = self.nodes[0].getblockcount()
381 assert(height < min_activation_height)
382 self.nodes[0].generate(min_activation_height-height)
383 assert(get_bip9_status(self.nodes[0], 'csv')['status'] == 'active')
384 sync_blocks(self.nodes)
386 # Use self.nodes[1] to test that version 2 transactions are standard.
387 def test_version2_relay(self):
388 inputs = [ ]
389 outputs = { self.nodes[1].getnewaddress() : 1.0 }
390 rawtx = self.nodes[1].createrawtransaction(inputs, outputs)
391 rawtxfund = self.nodes[1].fundrawtransaction(rawtx)['hex']
392 tx = FromHex(CTransaction(), rawtxfund)
393 tx.nVersion = 2
394 tx_signed = self.nodes[1].signrawtransaction(ToHex(tx))["hex"]
395 tx_id = self.nodes[1].sendrawtransaction(tx_signed)
397 if __name__ == '__main__':
398 BIP68Test().main()