Remove unused variable int64_t nEnd
[bitcoinplatinum.git] / src / checkqueue.h
blob408e278d216271daa09dc22ede258e53b45276ac
1 // Copyright (c) 2012-2015 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 #ifndef BITCOIN_CHECKQUEUE_H
6 #define BITCOIN_CHECKQUEUE_H
8 #include "sync.h"
10 #include <algorithm>
11 #include <vector>
13 #include <boost/thread/condition_variable.hpp>
14 #include <boost/thread/mutex.hpp>
16 template <typename T>
17 class CCheckQueueControl;
19 /**
20 * Queue for verifications that have to be performed.
21 * The verifications are represented by a type T, which must provide an
22 * operator(), returning a bool.
24 * One thread (the master) is assumed to push batches of verifications
25 * onto the queue, where they are processed by N-1 worker threads. When
26 * the master is done adding work, it temporarily joins the worker pool
27 * as an N'th worker, until all jobs are done.
29 template <typename T>
30 class CCheckQueue
32 private:
33 //! Mutex to protect the inner state
34 boost::mutex mutex;
36 //! Worker threads block on this when out of work
37 boost::condition_variable condWorker;
39 //! Master thread blocks on this when out of work
40 boost::condition_variable condMaster;
42 //! The queue of elements to be processed.
43 //! As the order of booleans doesn't matter, it is used as a LIFO (stack)
44 std::vector<T> queue;
46 //! The number of workers (including the master) that are idle.
47 int nIdle;
49 //! The total number of workers (including the master).
50 int nTotal;
52 //! The temporary evaluation result.
53 bool fAllOk;
55 /**
56 * Number of verifications that haven't completed yet.
57 * This includes elements that are no longer queued, but still in the
58 * worker's own batches.
60 unsigned int nTodo;
62 //! Whether we're shutting down.
63 bool fQuit;
65 //! The maximum number of elements to be processed in one batch
66 unsigned int nBatchSize;
68 /** Internal function that does bulk of the verification work. */
69 bool Loop(bool fMaster = false)
71 boost::condition_variable& cond = fMaster ? condMaster : condWorker;
72 std::vector<T> vChecks;
73 vChecks.reserve(nBatchSize);
74 unsigned int nNow = 0;
75 bool fOk = true;
76 do {
78 boost::unique_lock<boost::mutex> lock(mutex);
79 // first do the clean-up of the previous loop run (allowing us to do it in the same critsect)
80 if (nNow) {
81 fAllOk &= fOk;
82 nTodo -= nNow;
83 if (nTodo == 0 && !fMaster)
84 // We processed the last element; inform the master it can exit and return the result
85 condMaster.notify_one();
86 } else {
87 // first iteration
88 nTotal++;
90 // logically, the do loop starts here
91 while (queue.empty()) {
92 if ((fMaster || fQuit) && nTodo == 0) {
93 nTotal--;
94 bool fRet = fAllOk;
95 // reset the status for new work later
96 if (fMaster)
97 fAllOk = true;
98 // return the current status
99 return fRet;
101 nIdle++;
102 cond.wait(lock); // wait
103 nIdle--;
105 // Decide how many work units to process now.
106 // * Do not try to do everything at once, but aim for increasingly smaller batches so
107 // all workers finish approximately simultaneously.
108 // * Try to account for idle jobs which will instantly start helping.
109 // * Don't do batches smaller than 1 (duh), or larger than nBatchSize.
110 nNow = std::max(1U, std::min(nBatchSize, (unsigned int)queue.size() / (nTotal + nIdle + 1)));
111 vChecks.resize(nNow);
112 for (unsigned int i = 0; i < nNow; i++) {
113 // We want the lock on the mutex to be as short as possible, so swap jobs from the global
114 // queue to the local batch vector instead of copying.
115 vChecks[i].swap(queue.back());
116 queue.pop_back();
118 // Check whether we need to do work at all
119 fOk = fAllOk;
121 // execute work
122 for (T& check : vChecks)
123 if (fOk)
124 fOk = check();
125 vChecks.clear();
126 } while (true);
129 public:
130 //! Mutex to ensure only one concurrent CCheckQueueControl
131 boost::mutex ControlMutex;
133 //! Create a new check queue
134 CCheckQueue(unsigned int nBatchSizeIn) : nIdle(0), nTotal(0), fAllOk(true), nTodo(0), fQuit(false), nBatchSize(nBatchSizeIn) {}
136 //! Worker thread
137 void Thread()
139 Loop();
142 //! Wait until execution finishes, and return whether all evaluations were successful.
143 bool Wait()
145 return Loop(true);
148 //! Add a batch of checks to the queue
149 void Add(std::vector<T>& vChecks)
151 boost::unique_lock<boost::mutex> lock(mutex);
152 for (T& check : vChecks) {
153 queue.push_back(T());
154 check.swap(queue.back());
156 nTodo += vChecks.size();
157 if (vChecks.size() == 1)
158 condWorker.notify_one();
159 else if (vChecks.size() > 1)
160 condWorker.notify_all();
163 ~CCheckQueue()
169 /**
170 * RAII-style controller object for a CCheckQueue that guarantees the passed
171 * queue is finished before continuing.
173 template <typename T>
174 class CCheckQueueControl
176 private:
177 CCheckQueue<T> * const pqueue;
178 bool fDone;
180 public:
181 CCheckQueueControl() = delete;
182 CCheckQueueControl(const CCheckQueueControl&) = delete;
183 CCheckQueueControl& operator=(const CCheckQueueControl&) = delete;
184 explicit CCheckQueueControl(CCheckQueue<T> * const pqueueIn) : pqueue(pqueueIn), fDone(false)
186 // passed queue is supposed to be unused, or NULL
187 if (pqueue != NULL) {
188 ENTER_CRITICAL_SECTION(pqueue->ControlMutex);
192 bool Wait()
194 if (pqueue == NULL)
195 return true;
196 bool fRet = pqueue->Wait();
197 fDone = true;
198 return fRet;
201 void Add(std::vector<T>& vChecks)
203 if (pqueue != NULL)
204 pqueue->Add(vChecks);
207 ~CCheckQueueControl()
209 if (!fDone)
210 Wait();
211 if (pqueue != NULL) {
212 LEAVE_CRITICAL_SECTION(pqueue->ControlMutex);
217 #endif // BITCOIN_CHECKQUEUE_H