Merge #10816: Properly forbid -salvagewallet and -zapwallettxes for multi wallet.
[bitcoinplatinum.git] / src / random.cpp
blob67efc7d945a5a6a093c86c61b39dc8742684e9e0
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2016 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #include "random.h"
8 #include "crypto/sha512.h"
9 #include "support/cleanse.h"
10 #ifdef WIN32
11 #include "compat.h" // for Windows API
12 #include <wincrypt.h>
13 #endif
14 #include "util.h" // for LogPrint()
15 #include "utilstrencodings.h" // for GetTime()
17 #include <stdlib.h>
18 #include <limits>
19 #include <chrono>
20 #include <thread>
22 #ifndef WIN32
23 #include <sys/time.h>
24 #endif
26 #ifdef HAVE_SYS_GETRANDOM
27 #include <sys/syscall.h>
28 #include <linux/random.h>
29 #endif
30 #ifdef HAVE_GETENTROPY
31 #include <unistd.h>
32 #endif
33 #ifdef HAVE_SYSCTL_ARND
34 #include <sys/sysctl.h>
35 #endif
37 #include <mutex>
39 #include <openssl/err.h>
40 #include <openssl/rand.h>
42 static void RandFailure()
44 LogPrintf("Failed to read randomness, aborting\n");
45 abort();
48 static inline int64_t GetPerformanceCounter()
50 // Read the hardware time stamp counter when available.
51 // See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
52 #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
53 return __rdtsc();
54 #elif !defined(_MSC_VER) && defined(__i386__)
55 uint64_t r = 0;
56 __asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair.
57 return r;
58 #elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__))
59 uint64_t r1 = 0, r2 = 0;
60 __asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx.
61 return (r2 << 32) | r1;
62 #else
63 // Fall back to using C++11 clock (usually microsecond or nanosecond precision)
64 return std::chrono::high_resolution_clock::now().time_since_epoch().count();
65 #endif
69 #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
70 static std::atomic<bool> hwrand_initialized{false};
71 static bool rdrand_supported = false;
72 static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000;
73 static void RDRandInit()
75 uint32_t eax, ecx, edx;
76 #if defined(__i386__) && ( defined(__PIC__) || defined(__PIE__))
77 // Avoid clobbering ebx, as that is used for PIC on x86.
78 uint32_t tmp;
79 __asm__ ("mov %%ebx, %1; cpuid; mov %1, %%ebx": "=a"(eax), "=g"(tmp), "=c"(ecx), "=d"(edx) : "a"(1));
80 #else
81 uint32_t ebx;
82 __asm__ ("cpuid": "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx) : "a"(1));
83 #endif
84 //! When calling cpuid function #1, ecx register will have this set if RDRAND is available.
85 if (ecx & CPUID_F1_ECX_RDRAND) {
86 LogPrintf("Using RdRand as entropy source\n");
87 rdrand_supported = true;
89 hwrand_initialized.store(true);
91 #else
92 static void RDRandInit() {}
93 #endif
95 static bool GetHWRand(unsigned char* ent32) {
96 #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
97 assert(hwrand_initialized.load(std::memory_order_relaxed));
98 if (rdrand_supported) {
99 uint8_t ok;
100 // Not all assemblers support the rdrand instruction, write it in hex.
101 #ifdef __i386__
102 for (int iter = 0; iter < 4; ++iter) {
103 uint32_t r1, r2;
104 __asm__ volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax
105 ".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx
106 "setc %2" :
107 "=a"(r1), "=d"(r2), "=q"(ok) :: "cc");
108 if (!ok) return false;
109 WriteLE32(ent32 + 8 * iter, r1);
110 WriteLE32(ent32 + 8 * iter + 4, r2);
112 #else
113 uint64_t r1, r2, r3, r4;
114 __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax
115 "0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx
116 "0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx
117 "0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx
118 "setc %4" :
119 "=a"(r1), "=b"(r2), "=c"(r3), "=d"(r4), "=q"(ok) :: "cc");
120 if (!ok) return false;
121 WriteLE64(ent32, r1);
122 WriteLE64(ent32 + 8, r2);
123 WriteLE64(ent32 + 16, r3);
124 WriteLE64(ent32 + 24, r4);
125 #endif
126 return true;
128 #endif
129 return false;
132 void RandAddSeed()
134 // Seed with CPU performance counter
135 int64_t nCounter = GetPerformanceCounter();
136 RAND_add(&nCounter, sizeof(nCounter), 1.5);
137 memory_cleanse((void*)&nCounter, sizeof(nCounter));
140 static void RandAddSeedPerfmon()
142 RandAddSeed();
144 #ifdef WIN32
145 // Don't need this on Linux, OpenSSL automatically uses /dev/urandom
146 // Seed with the entire set of perfmon data
148 // This can take up to 2 seconds, so only do it every 10 minutes
149 static int64_t nLastPerfmon;
150 if (GetTime() < nLastPerfmon + 10 * 60)
151 return;
152 nLastPerfmon = GetTime();
154 std::vector<unsigned char> vData(250000, 0);
155 long ret = 0;
156 unsigned long nSize = 0;
157 const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data
158 while (true) {
159 nSize = vData.size();
160 ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", NULL, NULL, vData.data(), &nSize);
161 if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize)
162 break;
163 vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially
165 RegCloseKey(HKEY_PERFORMANCE_DATA);
166 if (ret == ERROR_SUCCESS) {
167 RAND_add(vData.data(), nSize, nSize / 100.0);
168 memory_cleanse(vData.data(), nSize);
169 LogPrint(BCLog::RAND, "%s: %lu bytes\n", __func__, nSize);
170 } else {
171 static bool warned = false; // Warn only once
172 if (!warned) {
173 LogPrintf("%s: Warning: RegQueryValueExA(HKEY_PERFORMANCE_DATA) failed with code %i\n", __func__, ret);
174 warned = true;
177 #endif
180 #ifndef WIN32
181 /** Fallback: get 32 bytes of system entropy from /dev/urandom. The most
182 * compatible way to get cryptographic randomness on UNIX-ish platforms.
184 void GetDevURandom(unsigned char *ent32)
186 int f = open("/dev/urandom", O_RDONLY);
187 if (f == -1) {
188 RandFailure();
190 int have = 0;
191 do {
192 ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have);
193 if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) {
194 RandFailure();
196 have += n;
197 } while (have < NUM_OS_RANDOM_BYTES);
198 close(f);
200 #endif
202 /** Get 32 bytes of system entropy. */
203 void GetOSRand(unsigned char *ent32)
205 #if defined(WIN32)
206 HCRYPTPROV hProvider;
207 int ret = CryptAcquireContextW(&hProvider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
208 if (!ret) {
209 RandFailure();
211 ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32);
212 if (!ret) {
213 RandFailure();
215 CryptReleaseContext(hProvider, 0);
216 #elif defined(HAVE_SYS_GETRANDOM)
217 /* Linux. From the getrandom(2) man page:
218 * "If the urandom source has been initialized, reads of up to 256 bytes
219 * will always return as many bytes as requested and will not be
220 * interrupted by signals."
222 int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0);
223 if (rv != NUM_OS_RANDOM_BYTES) {
224 if (rv < 0 && errno == ENOSYS) {
225 /* Fallback for kernel <3.17: the return value will be -1 and errno
226 * ENOSYS if the syscall is not available, in that case fall back
227 * to /dev/urandom.
229 GetDevURandom(ent32);
230 } else {
231 RandFailure();
234 #elif defined(HAVE_GETENTROPY)
235 /* On OpenBSD this can return up to 256 bytes of entropy, will return an
236 * error if more are requested.
237 * The call cannot return less than the requested number of bytes.
239 if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
240 RandFailure();
242 #elif defined(HAVE_SYSCTL_ARND)
243 /* FreeBSD and similar. It is possible for the call to return less
244 * bytes than requested, so need to read in a loop.
246 static const int name[2] = {CTL_KERN, KERN_ARND};
247 int have = 0;
248 do {
249 size_t len = NUM_OS_RANDOM_BYTES - have;
250 if (sysctl(name, ARRAYLEN(name), ent32 + have, &len, NULL, 0) != 0) {
251 RandFailure();
253 have += len;
254 } while (have < NUM_OS_RANDOM_BYTES);
255 #else
256 /* Fall back to /dev/urandom if there is no specific method implemented to
257 * get system entropy for this OS.
259 GetDevURandom(ent32);
260 #endif
263 void GetRandBytes(unsigned char* buf, int num)
265 if (RAND_bytes(buf, num) != 1) {
266 RandFailure();
270 static void AddDataToRng(void* data, size_t len);
272 void RandAddSeedSleep()
274 int64_t nPerfCounter1 = GetPerformanceCounter();
275 std::this_thread::sleep_for(std::chrono::milliseconds(1));
276 int64_t nPerfCounter2 = GetPerformanceCounter();
278 // Combine with and update state
279 AddDataToRng(&nPerfCounter1, sizeof(nPerfCounter1));
280 AddDataToRng(&nPerfCounter2, sizeof(nPerfCounter2));
282 memory_cleanse(&nPerfCounter1, sizeof(nPerfCounter1));
283 memory_cleanse(&nPerfCounter2, sizeof(nPerfCounter2));
287 static std::mutex cs_rng_state;
288 static unsigned char rng_state[32] = {0};
289 static uint64_t rng_counter = 0;
291 static void AddDataToRng(void* data, size_t len) {
292 CSHA512 hasher;
293 hasher.Write((const unsigned char*)&len, sizeof(len));
294 hasher.Write((const unsigned char*)data, len);
295 unsigned char buf[64];
297 std::unique_lock<std::mutex> lock(cs_rng_state);
298 hasher.Write(rng_state, sizeof(rng_state));
299 hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter));
300 ++rng_counter;
301 hasher.Finalize(buf);
302 memcpy(rng_state, buf + 32, 32);
304 memory_cleanse(buf, 64);
307 void GetStrongRandBytes(unsigned char* out, int num)
309 assert(num <= 32);
310 CSHA512 hasher;
311 unsigned char buf[64];
313 // First source: OpenSSL's RNG
314 RandAddSeedPerfmon();
315 GetRandBytes(buf, 32);
316 hasher.Write(buf, 32);
318 // Second source: OS RNG
319 GetOSRand(buf);
320 hasher.Write(buf, 32);
322 // Third source: HW RNG, if available.
323 if (GetHWRand(buf)) {
324 hasher.Write(buf, 32);
327 // Combine with and update state
329 std::unique_lock<std::mutex> lock(cs_rng_state);
330 hasher.Write(rng_state, sizeof(rng_state));
331 hasher.Write((const unsigned char*)&rng_counter, sizeof(rng_counter));
332 ++rng_counter;
333 hasher.Finalize(buf);
334 memcpy(rng_state, buf + 32, 32);
337 // Produce output
338 memcpy(out, buf, num);
339 memory_cleanse(buf, 64);
342 uint64_t GetRand(uint64_t nMax)
344 if (nMax == 0)
345 return 0;
347 // The range of the random source must be a multiple of the modulus
348 // to give every possible output value an equal possibility
349 uint64_t nRange = (std::numeric_limits<uint64_t>::max() / nMax) * nMax;
350 uint64_t nRand = 0;
351 do {
352 GetRandBytes((unsigned char*)&nRand, sizeof(nRand));
353 } while (nRand >= nRange);
354 return (nRand % nMax);
357 int GetRandInt(int nMax)
359 return GetRand(nMax);
362 uint256 GetRandHash()
364 uint256 hash;
365 GetRandBytes((unsigned char*)&hash, sizeof(hash));
366 return hash;
369 void FastRandomContext::RandomSeed()
371 uint256 seed = GetRandHash();
372 rng.SetKey(seed.begin(), 32);
373 requires_seed = false;
376 uint256 FastRandomContext::rand256()
378 if (bytebuf_size < 32) {
379 FillByteBuffer();
381 uint256 ret;
382 memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32);
383 bytebuf_size -= 32;
384 return ret;
387 std::vector<unsigned char> FastRandomContext::randbytes(size_t len)
389 std::vector<unsigned char> ret(len);
390 if (len > 0) {
391 rng.Output(&ret[0], len);
393 return ret;
396 FastRandomContext::FastRandomContext(const uint256& seed) : requires_seed(false), bytebuf_size(0), bitbuf_size(0)
398 rng.SetKey(seed.begin(), 32);
401 bool Random_SanityCheck()
403 uint64_t start = GetPerformanceCounter();
405 /* This does not measure the quality of randomness, but it does test that
406 * OSRandom() overwrites all 32 bytes of the output given a maximum
407 * number of tries.
409 static const ssize_t MAX_TRIES = 1024;
410 uint8_t data[NUM_OS_RANDOM_BYTES];
411 bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */
412 int num_overwritten;
413 int tries = 0;
414 /* Loop until all bytes have been overwritten at least once, or max number tries reached */
415 do {
416 memset(data, 0, NUM_OS_RANDOM_BYTES);
417 GetOSRand(data);
418 for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
419 overwritten[x] |= (data[x] != 0);
422 num_overwritten = 0;
423 for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
424 if (overwritten[x]) {
425 num_overwritten += 1;
429 tries += 1;
430 } while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES);
431 if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */
433 // Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep.
434 std::this_thread::sleep_for(std::chrono::milliseconds(1));
435 uint64_t stop = GetPerformanceCounter();
436 if (stop == start) return false;
438 // We called GetPerformanceCounter. Use it as entropy.
439 RAND_add((const unsigned char*)&start, sizeof(start), 1);
440 RAND_add((const unsigned char*)&stop, sizeof(stop), 1);
442 return true;
445 FastRandomContext::FastRandomContext(bool fDeterministic) : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0)
447 if (!fDeterministic) {
448 return;
450 uint256 seed;
451 rng.SetKey(seed.begin(), 32);
454 void RandomInit()
456 RDRandInit();