Merge #10502: scripted-diff: Remove BOOST_FOREACH, Q_FOREACH and PAIRTYPE
[bitcoinplatinum.git] / src / net.cpp
blob73f020273bfd444c54768800a458cb3ccbd35dfb
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2016 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #if defined(HAVE_CONFIG_H)
7 #include "config/bitcoin-config.h"
8 #endif
10 #include "net.h"
12 #include "addrman.h"
13 #include "chainparams.h"
14 #include "clientversion.h"
15 #include "consensus/consensus.h"
16 #include "crypto/common.h"
17 #include "crypto/sha256.h"
18 #include "hash.h"
19 #include "primitives/transaction.h"
20 #include "netbase.h"
21 #include "scheduler.h"
22 #include "ui_interface.h"
23 #include "utilstrencodings.h"
25 #ifdef WIN32
26 #include <string.h>
27 #else
28 #include <fcntl.h>
29 #endif
31 #ifdef USE_UPNP
32 #include <miniupnpc/miniupnpc.h>
33 #include <miniupnpc/miniwget.h>
34 #include <miniupnpc/upnpcommands.h>
35 #include <miniupnpc/upnperrors.h>
36 #endif
39 #include <math.h>
41 // Dump addresses to peers.dat and banlist.dat every 15 minutes (900s)
42 #define DUMP_ADDRESSES_INTERVAL 900
44 // We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
45 #define FEELER_SLEEP_WINDOW 1
47 #if !defined(HAVE_MSG_NOSIGNAL)
48 #define MSG_NOSIGNAL 0
49 #endif
51 // MSG_DONTWAIT is not available on some platforms, if it doesn't exist define it as 0
52 #if !defined(HAVE_MSG_DONTWAIT)
53 #define MSG_DONTWAIT 0
54 #endif
56 // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h.
57 // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version.
58 #ifdef WIN32
59 #ifndef PROTECTION_LEVEL_UNRESTRICTED
60 #define PROTECTION_LEVEL_UNRESTRICTED 10
61 #endif
62 #ifndef IPV6_PROTECTION_LEVEL
63 #define IPV6_PROTECTION_LEVEL 23
64 #endif
65 #endif
67 const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
69 static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
70 static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
72 // Global state variables
74 bool fDiscover = true;
75 bool fListen = true;
76 bool fRelayTxes = true;
77 CCriticalSection cs_mapLocalHost;
78 std::map<CNetAddr, LocalServiceInfo> mapLocalHost;
79 static bool vfLimited[NET_MAX] = {};
80 std::string strSubVersion;
82 limitedmap<uint256, int64_t> mapAlreadyAskedFor(MAX_INV_SZ);
84 // Signals for message handling
85 static CNodeSignals g_signals;
86 CNodeSignals& GetNodeSignals() { return g_signals; }
88 void CConnman::AddOneShot(const std::string& strDest)
90 LOCK(cs_vOneShots);
91 vOneShots.push_back(strDest);
94 unsigned short GetListenPort()
96 return (unsigned short)(GetArg("-port", Params().GetDefaultPort()));
99 // find 'best' local address for a particular peer
100 bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
102 if (!fListen)
103 return false;
105 int nBestScore = -1;
106 int nBestReachability = -1;
108 LOCK(cs_mapLocalHost);
109 for (std::map<CNetAddr, LocalServiceInfo>::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++)
111 int nScore = (*it).second.nScore;
112 int nReachability = (*it).first.GetReachabilityFrom(paddrPeer);
113 if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
115 addr = CService((*it).first, (*it).second.nPort);
116 nBestReachability = nReachability;
117 nBestScore = nScore;
121 return nBestScore >= 0;
124 //! Convert the pnSeeds6 array into usable address objects.
125 static std::vector<CAddress> convertSeed6(const std::vector<SeedSpec6> &vSeedsIn)
127 // It'll only connect to one or two seed nodes because once it connects,
128 // it'll get a pile of addresses with newer timestamps.
129 // Seed nodes are given a random 'last seen time' of between one and two
130 // weeks ago.
131 const int64_t nOneWeek = 7*24*60*60;
132 std::vector<CAddress> vSeedsOut;
133 vSeedsOut.reserve(vSeedsIn.size());
134 for (std::vector<SeedSpec6>::const_iterator i(vSeedsIn.begin()); i != vSeedsIn.end(); ++i)
136 struct in6_addr ip;
137 memcpy(&ip, i->addr, sizeof(ip));
138 CAddress addr(CService(ip, i->port), NODE_NETWORK);
139 addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek;
140 vSeedsOut.push_back(addr);
142 return vSeedsOut;
145 // get best local address for a particular peer as a CAddress
146 // Otherwise, return the unroutable 0.0.0.0 but filled in with
147 // the normal parameters, since the IP may be changed to a useful
148 // one by discovery.
149 CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices)
151 CAddress ret(CService(CNetAddr(),GetListenPort()), nLocalServices);
152 CService addr;
153 if (GetLocal(addr, paddrPeer))
155 ret = CAddress(addr, nLocalServices);
157 ret.nTime = GetAdjustedTime();
158 return ret;
161 int GetnScore(const CService& addr)
163 LOCK(cs_mapLocalHost);
164 if (mapLocalHost.count(addr) == LOCAL_NONE)
165 return 0;
166 return mapLocalHost[addr].nScore;
169 // Is our peer's addrLocal potentially useful as an external IP source?
170 bool IsPeerAddrLocalGood(CNode *pnode)
172 CService addrLocal = pnode->GetAddrLocal();
173 return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
174 !IsLimited(addrLocal.GetNetwork());
177 // pushes our own address to a peer
178 void AdvertiseLocal(CNode *pnode)
180 if (fListen && pnode->fSuccessfullyConnected)
182 CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
183 // If discovery is enabled, sometimes give our peer the address it
184 // tells us that it sees us as in case it has a better idea of our
185 // address than we do.
186 if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
187 GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0))
189 addrLocal.SetIP(pnode->GetAddrLocal());
191 if (addrLocal.IsRoutable())
193 LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString());
194 FastRandomContext insecure_rand;
195 pnode->PushAddress(addrLocal, insecure_rand);
200 // learn a new local address
201 bool AddLocal(const CService& addr, int nScore)
203 if (!addr.IsRoutable())
204 return false;
206 if (!fDiscover && nScore < LOCAL_MANUAL)
207 return false;
209 if (IsLimited(addr))
210 return false;
212 LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
215 LOCK(cs_mapLocalHost);
216 bool fAlready = mapLocalHost.count(addr) > 0;
217 LocalServiceInfo &info = mapLocalHost[addr];
218 if (!fAlready || nScore >= info.nScore) {
219 info.nScore = nScore + (fAlready ? 1 : 0);
220 info.nPort = addr.GetPort();
224 return true;
227 bool AddLocal(const CNetAddr &addr, int nScore)
229 return AddLocal(CService(addr, GetListenPort()), nScore);
232 bool RemoveLocal(const CService& addr)
234 LOCK(cs_mapLocalHost);
235 LogPrintf("RemoveLocal(%s)\n", addr.ToString());
236 mapLocalHost.erase(addr);
237 return true;
240 /** Make a particular network entirely off-limits (no automatic connects to it) */
241 void SetLimited(enum Network net, bool fLimited)
243 if (net == NET_UNROUTABLE)
244 return;
245 LOCK(cs_mapLocalHost);
246 vfLimited[net] = fLimited;
249 bool IsLimited(enum Network net)
251 LOCK(cs_mapLocalHost);
252 return vfLimited[net];
255 bool IsLimited(const CNetAddr &addr)
257 return IsLimited(addr.GetNetwork());
260 /** vote for a local address */
261 bool SeenLocal(const CService& addr)
264 LOCK(cs_mapLocalHost);
265 if (mapLocalHost.count(addr) == 0)
266 return false;
267 mapLocalHost[addr].nScore++;
269 return true;
273 /** check whether a given address is potentially local */
274 bool IsLocal(const CService& addr)
276 LOCK(cs_mapLocalHost);
277 return mapLocalHost.count(addr) > 0;
280 /** check whether a given network is one we can probably connect to */
281 bool IsReachable(enum Network net)
283 LOCK(cs_mapLocalHost);
284 return !vfLimited[net];
287 /** check whether a given address is in a network we can probably connect to */
288 bool IsReachable(const CNetAddr& addr)
290 enum Network net = addr.GetNetwork();
291 return IsReachable(net);
295 CNode* CConnman::FindNode(const CNetAddr& ip)
297 LOCK(cs_vNodes);
298 for (CNode* pnode : vNodes)
299 if ((CNetAddr)pnode->addr == ip)
300 return (pnode);
301 return NULL;
304 CNode* CConnman::FindNode(const CSubNet& subNet)
306 LOCK(cs_vNodes);
307 for (CNode* pnode : vNodes)
308 if (subNet.Match((CNetAddr)pnode->addr))
309 return (pnode);
310 return NULL;
313 CNode* CConnman::FindNode(const std::string& addrName)
315 LOCK(cs_vNodes);
316 for (CNode* pnode : vNodes) {
317 if (pnode->GetAddrName() == addrName) {
318 return (pnode);
321 return NULL;
324 CNode* CConnman::FindNode(const CService& addr)
326 LOCK(cs_vNodes);
327 for (CNode* pnode : vNodes)
328 if ((CService)pnode->addr == addr)
329 return (pnode);
330 return NULL;
333 bool CConnman::CheckIncomingNonce(uint64_t nonce)
335 LOCK(cs_vNodes);
336 for (CNode* pnode : vNodes) {
337 if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce)
338 return false;
340 return true;
343 /** Get the bind address for a socket as CAddress */
344 static CAddress GetBindAddress(SOCKET sock)
346 CAddress addr_bind;
347 struct sockaddr_storage sockaddr_bind;
348 socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
349 if (sock != INVALID_SOCKET) {
350 if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
351 addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
352 } else {
353 LogPrint(BCLog::NET, "Warning: getsockname failed\n");
356 return addr_bind;
359 CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure)
361 if (pszDest == NULL) {
362 if (IsLocal(addrConnect))
363 return NULL;
365 // Look for an existing connection
366 CNode* pnode = FindNode((CService)addrConnect);
367 if (pnode)
369 LogPrintf("Failed to open new connection, already connected\n");
370 return NULL;
374 /// debug print
375 LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
376 pszDest ? pszDest : addrConnect.ToString(),
377 pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
379 // Connect
380 SOCKET hSocket;
381 bool proxyConnectionFailed = false;
382 if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed) :
383 ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed))
385 if (!IsSelectableSocket(hSocket)) {
386 LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n");
387 CloseSocket(hSocket);
388 return NULL;
391 if (pszDest && addrConnect.IsValid()) {
392 // It is possible that we already have a connection to the IP/port pszDest resolved to.
393 // In that case, drop the connection that was just created, and return the existing CNode instead.
394 // Also store the name we used to connect in that CNode, so that future FindNode() calls to that
395 // name catch this early.
396 LOCK(cs_vNodes);
397 CNode* pnode = FindNode((CService)addrConnect);
398 if (pnode)
400 pnode->MaybeSetAddrName(std::string(pszDest));
401 CloseSocket(hSocket);
402 LogPrintf("Failed to open new connection, already connected\n");
403 return NULL;
407 addrman.Attempt(addrConnect, fCountFailure);
409 // Add node
410 NodeId id = GetNewNodeId();
411 uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
412 CAddress addr_bind = GetBindAddress(hSocket);
413 CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", false);
414 pnode->nServicesExpected = ServiceFlags(addrConnect.nServices & nRelevantServices);
415 pnode->AddRef();
417 return pnode;
418 } else if (!proxyConnectionFailed) {
419 // If connecting to the node failed, and failure is not caused by a problem connecting to
420 // the proxy, mark this as an attempt.
421 addrman.Attempt(addrConnect, fCountFailure);
424 return NULL;
427 void CConnman::DumpBanlist()
429 SweepBanned(); // clean unused entries (if bantime has expired)
431 if (!BannedSetIsDirty())
432 return;
434 int64_t nStart = GetTimeMillis();
436 CBanDB bandb;
437 banmap_t banmap;
438 GetBanned(banmap);
439 if (bandb.Write(banmap)) {
440 SetBannedSetDirty(false);
443 LogPrint(BCLog::NET, "Flushed %d banned node ips/subnets to banlist.dat %dms\n",
444 banmap.size(), GetTimeMillis() - nStart);
447 void CNode::CloseSocketDisconnect()
449 fDisconnect = true;
450 LOCK(cs_hSocket);
451 if (hSocket != INVALID_SOCKET)
453 LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
454 CloseSocket(hSocket);
458 void CConnman::ClearBanned()
461 LOCK(cs_setBanned);
462 setBanned.clear();
463 setBannedIsDirty = true;
465 DumpBanlist(); //store banlist to disk
466 if(clientInterface)
467 clientInterface->BannedListChanged();
470 bool CConnman::IsBanned(CNetAddr ip)
472 LOCK(cs_setBanned);
473 for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end(); it++)
475 CSubNet subNet = (*it).first;
476 CBanEntry banEntry = (*it).second;
478 if (subNet.Match(ip) && GetTime() < banEntry.nBanUntil) {
479 return true;
482 return false;
485 bool CConnman::IsBanned(CSubNet subnet)
487 LOCK(cs_setBanned);
488 banmap_t::iterator i = setBanned.find(subnet);
489 if (i != setBanned.end())
491 CBanEntry banEntry = (*i).second;
492 if (GetTime() < banEntry.nBanUntil) {
493 return true;
496 return false;
499 void CConnman::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
500 CSubNet subNet(addr);
501 Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch);
504 void CConnman::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
505 CBanEntry banEntry(GetTime());
506 banEntry.banReason = banReason;
507 if (bantimeoffset <= 0)
509 bantimeoffset = GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME);
510 sinceUnixEpoch = false;
512 banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset;
515 LOCK(cs_setBanned);
516 if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) {
517 setBanned[subNet] = banEntry;
518 setBannedIsDirty = true;
520 else
521 return;
523 if(clientInterface)
524 clientInterface->BannedListChanged();
526 LOCK(cs_vNodes);
527 for (CNode* pnode : vNodes) {
528 if (subNet.Match((CNetAddr)pnode->addr))
529 pnode->fDisconnect = true;
532 if(banReason == BanReasonManuallyAdded)
533 DumpBanlist(); //store banlist to disk immediately if user requested ban
536 bool CConnman::Unban(const CNetAddr &addr) {
537 CSubNet subNet(addr);
538 return Unban(subNet);
541 bool CConnman::Unban(const CSubNet &subNet) {
543 LOCK(cs_setBanned);
544 if (!setBanned.erase(subNet))
545 return false;
546 setBannedIsDirty = true;
548 if(clientInterface)
549 clientInterface->BannedListChanged();
550 DumpBanlist(); //store banlist to disk immediately
551 return true;
554 void CConnman::GetBanned(banmap_t &banMap)
556 LOCK(cs_setBanned);
557 // Sweep the banlist so expired bans are not returned
558 SweepBanned();
559 banMap = setBanned; //create a thread safe copy
562 void CConnman::SetBanned(const banmap_t &banMap)
564 LOCK(cs_setBanned);
565 setBanned = banMap;
566 setBannedIsDirty = true;
569 void CConnman::SweepBanned()
571 int64_t now = GetTime();
573 LOCK(cs_setBanned);
574 banmap_t::iterator it = setBanned.begin();
575 while(it != setBanned.end())
577 CSubNet subNet = (*it).first;
578 CBanEntry banEntry = (*it).second;
579 if(now > banEntry.nBanUntil)
581 setBanned.erase(it++);
582 setBannedIsDirty = true;
583 LogPrint(BCLog::NET, "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString());
585 else
586 ++it;
590 bool CConnman::BannedSetIsDirty()
592 LOCK(cs_setBanned);
593 return setBannedIsDirty;
596 void CConnman::SetBannedSetDirty(bool dirty)
598 LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag
599 setBannedIsDirty = dirty;
603 bool CConnman::IsWhitelistedRange(const CNetAddr &addr) {
604 LOCK(cs_vWhitelistedRange);
605 for (const CSubNet& subnet : vWhitelistedRange) {
606 if (subnet.Match(addr))
607 return true;
609 return false;
612 void CConnman::AddWhitelistedRange(const CSubNet &subnet) {
613 LOCK(cs_vWhitelistedRange);
614 vWhitelistedRange.push_back(subnet);
618 std::string CNode::GetAddrName() const {
619 LOCK(cs_addrName);
620 return addrName;
623 void CNode::MaybeSetAddrName(const std::string& addrNameIn) {
624 LOCK(cs_addrName);
625 if (addrName.empty()) {
626 addrName = addrNameIn;
630 CService CNode::GetAddrLocal() const {
631 LOCK(cs_addrLocal);
632 return addrLocal;
635 void CNode::SetAddrLocal(const CService& addrLocalIn) {
636 LOCK(cs_addrLocal);
637 if (addrLocal.IsValid()) {
638 error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString());
639 } else {
640 addrLocal = addrLocalIn;
644 #undef X
645 #define X(name) stats.name = name
646 void CNode::copyStats(CNodeStats &stats)
648 stats.nodeid = this->GetId();
649 X(nServices);
650 X(addr);
651 X(addrBind);
653 LOCK(cs_filter);
654 X(fRelayTxes);
656 X(nLastSend);
657 X(nLastRecv);
658 X(nTimeConnected);
659 X(nTimeOffset);
660 stats.addrName = GetAddrName();
661 X(nVersion);
663 LOCK(cs_SubVer);
664 X(cleanSubVer);
666 X(fInbound);
667 X(fAddnode);
668 X(nStartingHeight);
670 LOCK(cs_vSend);
671 X(mapSendBytesPerMsgCmd);
672 X(nSendBytes);
675 LOCK(cs_vRecv);
676 X(mapRecvBytesPerMsgCmd);
677 X(nRecvBytes);
679 X(fWhitelisted);
681 // It is common for nodes with good ping times to suddenly become lagged,
682 // due to a new block arriving or other large transfer.
683 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
684 // since pingtime does not update until the ping is complete, which might take a while.
685 // So, if a ping is taking an unusually long time in flight,
686 // the caller can immediately detect that this is happening.
687 int64_t nPingUsecWait = 0;
688 if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
689 nPingUsecWait = GetTimeMicros() - nPingUsecStart;
692 // Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :)
693 stats.dPingTime = (((double)nPingUsecTime) / 1e6);
694 stats.dMinPing = (((double)nMinPingUsecTime) / 1e6);
695 stats.dPingWait = (((double)nPingUsecWait) / 1e6);
697 // Leave string empty if addrLocal invalid (not filled in yet)
698 CService addrLocalUnlocked = GetAddrLocal();
699 stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
701 #undef X
703 bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete)
705 complete = false;
706 int64_t nTimeMicros = GetTimeMicros();
707 LOCK(cs_vRecv);
708 nLastRecv = nTimeMicros / 1000000;
709 nRecvBytes += nBytes;
710 while (nBytes > 0) {
712 // get current incomplete message, or create a new one
713 if (vRecvMsg.empty() ||
714 vRecvMsg.back().complete())
715 vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, INIT_PROTO_VERSION));
717 CNetMessage& msg = vRecvMsg.back();
719 // absorb network data
720 int handled;
721 if (!msg.in_data)
722 handled = msg.readHeader(pch, nBytes);
723 else
724 handled = msg.readData(pch, nBytes);
726 if (handled < 0)
727 return false;
729 if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
730 LogPrint(BCLog::NET, "Oversized message from peer=%i, disconnecting\n", GetId());
731 return false;
734 pch += handled;
735 nBytes -= handled;
737 if (msg.complete()) {
739 //store received bytes per message command
740 //to prevent a memory DOS, only allow valid commands
741 mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand);
742 if (i == mapRecvBytesPerMsgCmd.end())
743 i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
744 assert(i != mapRecvBytesPerMsgCmd.end());
745 i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
747 msg.nTime = nTimeMicros;
748 complete = true;
752 return true;
755 void CNode::SetSendVersion(int nVersionIn)
757 // Send version may only be changed in the version message, and
758 // only one version message is allowed per session. We can therefore
759 // treat this value as const and even atomic as long as it's only used
760 // once a version message has been successfully processed. Any attempt to
761 // set this twice is an error.
762 if (nSendVersion != 0) {
763 error("Send version already set for node: %i. Refusing to change from %i to %i", id, nSendVersion, nVersionIn);
764 } else {
765 nSendVersion = nVersionIn;
769 int CNode::GetSendVersion() const
771 // The send version should always be explicitly set to
772 // INIT_PROTO_VERSION rather than using this value until SetSendVersion
773 // has been called.
774 if (nSendVersion == 0) {
775 error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION);
776 return INIT_PROTO_VERSION;
778 return nSendVersion;
782 int CNetMessage::readHeader(const char *pch, unsigned int nBytes)
784 // copy data to temporary parsing buffer
785 unsigned int nRemaining = 24 - nHdrPos;
786 unsigned int nCopy = std::min(nRemaining, nBytes);
788 memcpy(&hdrbuf[nHdrPos], pch, nCopy);
789 nHdrPos += nCopy;
791 // if header incomplete, exit
792 if (nHdrPos < 24)
793 return nCopy;
795 // deserialize to CMessageHeader
796 try {
797 hdrbuf >> hdr;
799 catch (const std::exception&) {
800 return -1;
803 // reject messages larger than MAX_SIZE
804 if (hdr.nMessageSize > MAX_SIZE)
805 return -1;
807 // switch state to reading message data
808 in_data = true;
810 return nCopy;
813 int CNetMessage::readData(const char *pch, unsigned int nBytes)
815 unsigned int nRemaining = hdr.nMessageSize - nDataPos;
816 unsigned int nCopy = std::min(nRemaining, nBytes);
818 if (vRecv.size() < nDataPos + nCopy) {
819 // Allocate up to 256 KiB ahead, but never more than the total message size.
820 vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
823 hasher.Write((const unsigned char*)pch, nCopy);
824 memcpy(&vRecv[nDataPos], pch, nCopy);
825 nDataPos += nCopy;
827 return nCopy;
830 const uint256& CNetMessage::GetMessageHash() const
832 assert(complete());
833 if (data_hash.IsNull())
834 hasher.Finalize(data_hash.begin());
835 return data_hash;
846 // requires LOCK(cs_vSend)
847 size_t CConnman::SocketSendData(CNode *pnode) const
849 auto it = pnode->vSendMsg.begin();
850 size_t nSentSize = 0;
852 while (it != pnode->vSendMsg.end()) {
853 const auto &data = *it;
854 assert(data.size() > pnode->nSendOffset);
855 int nBytes = 0;
857 LOCK(pnode->cs_hSocket);
858 if (pnode->hSocket == INVALID_SOCKET)
859 break;
860 nBytes = send(pnode->hSocket, reinterpret_cast<const char*>(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
862 if (nBytes > 0) {
863 pnode->nLastSend = GetSystemTimeInSeconds();
864 pnode->nSendBytes += nBytes;
865 pnode->nSendOffset += nBytes;
866 nSentSize += nBytes;
867 if (pnode->nSendOffset == data.size()) {
868 pnode->nSendOffset = 0;
869 pnode->nSendSize -= data.size();
870 pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize;
871 it++;
872 } else {
873 // could not send full message; stop sending more
874 break;
876 } else {
877 if (nBytes < 0) {
878 // error
879 int nErr = WSAGetLastError();
880 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
882 LogPrintf("socket send error %s\n", NetworkErrorString(nErr));
883 pnode->CloseSocketDisconnect();
886 // couldn't send anything at all
887 break;
891 if (it == pnode->vSendMsg.end()) {
892 assert(pnode->nSendOffset == 0);
893 assert(pnode->nSendSize == 0);
895 pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
896 return nSentSize;
899 struct NodeEvictionCandidate
901 NodeId id;
902 int64_t nTimeConnected;
903 int64_t nMinPingUsecTime;
904 int64_t nLastBlockTime;
905 int64_t nLastTXTime;
906 bool fRelevantServices;
907 bool fRelayTxes;
908 bool fBloomFilter;
909 CAddress addr;
910 uint64_t nKeyedNetGroup;
913 static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
915 return a.nMinPingUsecTime > b.nMinPingUsecTime;
918 static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
920 return a.nTimeConnected > b.nTimeConnected;
923 static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
924 return a.nKeyedNetGroup < b.nKeyedNetGroup;
927 static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
929 // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
930 if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime;
931 if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
932 return a.nTimeConnected > b.nTimeConnected;
935 static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
937 // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
938 if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime;
939 if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes;
940 if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
941 return a.nTimeConnected > b.nTimeConnected;
944 /** Try to find a connection to evict when the node is full.
945 * Extreme care must be taken to avoid opening the node to attacker
946 * triggered network partitioning.
947 * The strategy used here is to protect a small number of peers
948 * for each of several distinct characteristics which are difficult
949 * to forge. In order to partition a node the attacker must be
950 * simultaneously better at all of them than honest peers.
952 bool CConnman::AttemptToEvictConnection()
954 std::vector<NodeEvictionCandidate> vEvictionCandidates;
956 LOCK(cs_vNodes);
958 for (CNode *node : vNodes) {
959 if (node->fWhitelisted)
960 continue;
961 if (!node->fInbound)
962 continue;
963 if (node->fDisconnect)
964 continue;
965 NodeEvictionCandidate candidate = {node->GetId(), node->nTimeConnected, node->nMinPingUsecTime,
966 node->nLastBlockTime, node->nLastTXTime,
967 (node->nServices & nRelevantServices) == nRelevantServices,
968 node->fRelayTxes, node->pfilter != NULL, node->addr, node->nKeyedNetGroup};
969 vEvictionCandidates.push_back(candidate);
973 if (vEvictionCandidates.empty()) return false;
975 // Protect connections with certain characteristics
977 // Deterministically select 4 peers to protect by netgroup.
978 // An attacker cannot predict which netgroups will be protected
979 std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNetGroupKeyed);
980 vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
982 if (vEvictionCandidates.empty()) return false;
984 // Protect the 8 nodes with the lowest minimum ping time.
985 // An attacker cannot manipulate this metric without physically moving nodes closer to the target.
986 std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime);
987 vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
989 if (vEvictionCandidates.empty()) return false;
991 // Protect 4 nodes that most recently sent us transactions.
992 // An attacker cannot manipulate this metric without performing useful work.
993 std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeTXTime);
994 vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
996 if (vEvictionCandidates.empty()) return false;
998 // Protect 4 nodes that most recently sent us blocks.
999 // An attacker cannot manipulate this metric without performing useful work.
1000 std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeBlockTime);
1001 vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
1003 if (vEvictionCandidates.empty()) return false;
1005 // Protect the half of the remaining nodes which have been connected the longest.
1006 // This replicates the non-eviction implicit behavior, and precludes attacks that start later.
1007 std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected);
1008 vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast<int>(vEvictionCandidates.size() / 2), vEvictionCandidates.end());
1010 if (vEvictionCandidates.empty()) return false;
1012 // Identify the network group with the most connections and youngest member.
1013 // (vEvictionCandidates is already sorted by reverse connect time)
1014 uint64_t naMostConnections;
1015 unsigned int nMostConnections = 0;
1016 int64_t nMostConnectionsTime = 0;
1017 std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
1018 for (const NodeEvictionCandidate &node : vEvictionCandidates) {
1019 mapNetGroupNodes[node.nKeyedNetGroup].push_back(node);
1020 int64_t grouptime = mapNetGroupNodes[node.nKeyedNetGroup][0].nTimeConnected;
1021 size_t groupsize = mapNetGroupNodes[node.nKeyedNetGroup].size();
1023 if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) {
1024 nMostConnections = groupsize;
1025 nMostConnectionsTime = grouptime;
1026 naMostConnections = node.nKeyedNetGroup;
1030 // Reduce to the network group with the most connections
1031 vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
1033 // Disconnect from the network group with the most connections
1034 NodeId evicted = vEvictionCandidates.front().id;
1035 LOCK(cs_vNodes);
1036 for(std::vector<CNode*>::const_iterator it(vNodes.begin()); it != vNodes.end(); ++it) {
1037 if ((*it)->GetId() == evicted) {
1038 (*it)->fDisconnect = true;
1039 return true;
1042 return false;
1045 void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1046 struct sockaddr_storage sockaddr;
1047 socklen_t len = sizeof(sockaddr);
1048 SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
1049 CAddress addr;
1050 int nInbound = 0;
1051 int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler);
1053 if (hSocket != INVALID_SOCKET) {
1054 if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
1055 LogPrintf("Warning: Unknown socket family\n");
1059 bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr);
1061 LOCK(cs_vNodes);
1062 for (CNode* pnode : vNodes)
1063 if (pnode->fInbound)
1064 nInbound++;
1067 if (hSocket == INVALID_SOCKET)
1069 int nErr = WSAGetLastError();
1070 if (nErr != WSAEWOULDBLOCK)
1071 LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1072 return;
1075 if (!fNetworkActive) {
1076 LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString());
1077 CloseSocket(hSocket);
1078 return;
1081 if (!IsSelectableSocket(hSocket))
1083 LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString());
1084 CloseSocket(hSocket);
1085 return;
1088 // According to the internet TCP_NODELAY is not carried into accepted sockets
1089 // on all platforms. Set it again here just to be sure.
1090 SetSocketNoDelay(hSocket);
1092 if (IsBanned(addr) && !whitelisted)
1094 LogPrintf("connection from %s dropped (banned)\n", addr.ToString());
1095 CloseSocket(hSocket);
1096 return;
1099 if (nInbound >= nMaxInbound)
1101 if (!AttemptToEvictConnection()) {
1102 // No connection to evict, disconnect the new connection
1103 LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1104 CloseSocket(hSocket);
1105 return;
1109 NodeId id = GetNewNodeId();
1110 uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1111 CAddress addr_bind = GetBindAddress(hSocket);
1113 CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true);
1114 pnode->AddRef();
1115 pnode->fWhitelisted = whitelisted;
1116 GetNodeSignals().InitializeNode(pnode, *this);
1118 LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString());
1121 LOCK(cs_vNodes);
1122 vNodes.push_back(pnode);
1126 void CConnman::ThreadSocketHandler()
1128 unsigned int nPrevNodeCount = 0;
1129 while (!interruptNet)
1132 // Disconnect nodes
1135 LOCK(cs_vNodes);
1136 // Disconnect unused nodes
1137 std::vector<CNode*> vNodesCopy = vNodes;
1138 for (CNode* pnode : vNodesCopy)
1140 if (pnode->fDisconnect)
1142 // remove from vNodes
1143 vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end());
1145 // release outbound grant (if any)
1146 pnode->grantOutbound.Release();
1148 // close socket and cleanup
1149 pnode->CloseSocketDisconnect();
1151 // hold in disconnected pool until all refs are released
1152 pnode->Release();
1153 vNodesDisconnected.push_back(pnode);
1158 // Delete disconnected nodes
1159 std::list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
1160 for (CNode* pnode : vNodesDisconnectedCopy)
1162 // wait until threads are done using it
1163 if (pnode->GetRefCount() <= 0) {
1164 bool fDelete = false;
1166 TRY_LOCK(pnode->cs_inventory, lockInv);
1167 if (lockInv) {
1168 TRY_LOCK(pnode->cs_vSend, lockSend);
1169 if (lockSend) {
1170 fDelete = true;
1174 if (fDelete) {
1175 vNodesDisconnected.remove(pnode);
1176 DeleteNode(pnode);
1181 size_t vNodesSize;
1183 LOCK(cs_vNodes);
1184 vNodesSize = vNodes.size();
1186 if(vNodesSize != nPrevNodeCount) {
1187 nPrevNodeCount = vNodesSize;
1188 if(clientInterface)
1189 clientInterface->NotifyNumConnectionsChanged(nPrevNodeCount);
1193 // Find which sockets have data to receive
1195 struct timeval timeout;
1196 timeout.tv_sec = 0;
1197 timeout.tv_usec = 50000; // frequency to poll pnode->vSend
1199 fd_set fdsetRecv;
1200 fd_set fdsetSend;
1201 fd_set fdsetError;
1202 FD_ZERO(&fdsetRecv);
1203 FD_ZERO(&fdsetSend);
1204 FD_ZERO(&fdsetError);
1205 SOCKET hSocketMax = 0;
1206 bool have_fds = false;
1208 for (const ListenSocket& hListenSocket : vhListenSocket) {
1209 FD_SET(hListenSocket.socket, &fdsetRecv);
1210 hSocketMax = std::max(hSocketMax, hListenSocket.socket);
1211 have_fds = true;
1215 LOCK(cs_vNodes);
1216 for (CNode* pnode : vNodes)
1218 // Implement the following logic:
1219 // * If there is data to send, select() for sending data. As this only
1220 // happens when optimistic write failed, we choose to first drain the
1221 // write buffer in this case before receiving more. This avoids
1222 // needlessly queueing received data, if the remote peer is not themselves
1223 // receiving data. This means properly utilizing TCP flow control signalling.
1224 // * Otherwise, if there is space left in the receive buffer, select() for
1225 // receiving data.
1226 // * Hand off all complete messages to the processor, to be handled without
1227 // blocking here.
1229 bool select_recv = !pnode->fPauseRecv;
1230 bool select_send;
1232 LOCK(pnode->cs_vSend);
1233 select_send = !pnode->vSendMsg.empty();
1236 LOCK(pnode->cs_hSocket);
1237 if (pnode->hSocket == INVALID_SOCKET)
1238 continue;
1240 FD_SET(pnode->hSocket, &fdsetError);
1241 hSocketMax = std::max(hSocketMax, pnode->hSocket);
1242 have_fds = true;
1244 if (select_send) {
1245 FD_SET(pnode->hSocket, &fdsetSend);
1246 continue;
1248 if (select_recv) {
1249 FD_SET(pnode->hSocket, &fdsetRecv);
1254 int nSelect = select(have_fds ? hSocketMax + 1 : 0,
1255 &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
1256 if (interruptNet)
1257 return;
1259 if (nSelect == SOCKET_ERROR)
1261 if (have_fds)
1263 int nErr = WSAGetLastError();
1264 LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
1265 for (unsigned int i = 0; i <= hSocketMax; i++)
1266 FD_SET(i, &fdsetRecv);
1268 FD_ZERO(&fdsetSend);
1269 FD_ZERO(&fdsetError);
1270 if (!interruptNet.sleep_for(std::chrono::milliseconds(timeout.tv_usec/1000)))
1271 return;
1275 // Accept new connections
1277 for (const ListenSocket& hListenSocket : vhListenSocket)
1279 if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv))
1281 AcceptConnection(hListenSocket);
1286 // Service each socket
1288 std::vector<CNode*> vNodesCopy;
1290 LOCK(cs_vNodes);
1291 vNodesCopy = vNodes;
1292 for (CNode* pnode : vNodesCopy)
1293 pnode->AddRef();
1295 for (CNode* pnode : vNodesCopy)
1297 if (interruptNet)
1298 return;
1301 // Receive
1303 bool recvSet = false;
1304 bool sendSet = false;
1305 bool errorSet = false;
1307 LOCK(pnode->cs_hSocket);
1308 if (pnode->hSocket == INVALID_SOCKET)
1309 continue;
1310 recvSet = FD_ISSET(pnode->hSocket, &fdsetRecv);
1311 sendSet = FD_ISSET(pnode->hSocket, &fdsetSend);
1312 errorSet = FD_ISSET(pnode->hSocket, &fdsetError);
1314 if (recvSet || errorSet)
1316 // typical socket buffer is 8K-64K
1317 char pchBuf[0x10000];
1318 int nBytes = 0;
1320 LOCK(pnode->cs_hSocket);
1321 if (pnode->hSocket == INVALID_SOCKET)
1322 continue;
1323 nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
1325 if (nBytes > 0)
1327 bool notify = false;
1328 if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify))
1329 pnode->CloseSocketDisconnect();
1330 RecordBytesRecv(nBytes);
1331 if (notify) {
1332 size_t nSizeAdded = 0;
1333 auto it(pnode->vRecvMsg.begin());
1334 for (; it != pnode->vRecvMsg.end(); ++it) {
1335 if (!it->complete())
1336 break;
1337 nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE;
1340 LOCK(pnode->cs_vProcessMsg);
1341 pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
1342 pnode->nProcessQueueSize += nSizeAdded;
1343 pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
1345 WakeMessageHandler();
1348 else if (nBytes == 0)
1350 // socket closed gracefully
1351 if (!pnode->fDisconnect) {
1352 LogPrint(BCLog::NET, "socket closed\n");
1354 pnode->CloseSocketDisconnect();
1356 else if (nBytes < 0)
1358 // error
1359 int nErr = WSAGetLastError();
1360 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
1362 if (!pnode->fDisconnect)
1363 LogPrintf("socket recv error %s\n", NetworkErrorString(nErr));
1364 pnode->CloseSocketDisconnect();
1370 // Send
1372 if (sendSet)
1374 LOCK(pnode->cs_vSend);
1375 size_t nBytes = SocketSendData(pnode);
1376 if (nBytes) {
1377 RecordBytesSent(nBytes);
1382 // Inactivity checking
1384 int64_t nTime = GetSystemTimeInSeconds();
1385 if (nTime - pnode->nTimeConnected > 60)
1387 if (pnode->nLastRecv == 0 || pnode->nLastSend == 0)
1389 LogPrint(BCLog::NET, "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId());
1390 pnode->fDisconnect = true;
1392 else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL)
1394 LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend);
1395 pnode->fDisconnect = true;
1397 else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60))
1399 LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv);
1400 pnode->fDisconnect = true;
1402 else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros())
1404 LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart));
1405 pnode->fDisconnect = true;
1407 else if (!pnode->fSuccessfullyConnected)
1409 LogPrintf("version handshake timeout from %d\n", pnode->GetId());
1410 pnode->fDisconnect = true;
1415 LOCK(cs_vNodes);
1416 for (CNode* pnode : vNodesCopy)
1417 pnode->Release();
1422 void CConnman::WakeMessageHandler()
1425 std::lock_guard<std::mutex> lock(mutexMsgProc);
1426 fMsgProcWake = true;
1428 condMsgProc.notify_one();
1436 #ifdef USE_UPNP
1437 void ThreadMapPort()
1439 std::string port = strprintf("%u", GetListenPort());
1440 const char * multicastif = 0;
1441 const char * minissdpdpath = 0;
1442 struct UPNPDev * devlist = 0;
1443 char lanaddr[64];
1445 #ifndef UPNPDISCOVER_SUCCESS
1446 /* miniupnpc 1.5 */
1447 devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0);
1448 #elif MINIUPNPC_API_VERSION < 14
1449 /* miniupnpc 1.6 */
1450 int error = 0;
1451 devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
1452 #else
1453 /* miniupnpc 1.9.20150730 */
1454 int error = 0;
1455 devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
1456 #endif
1458 struct UPNPUrls urls;
1459 struct IGDdatas data;
1460 int r;
1462 r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
1463 if (r == 1)
1465 if (fDiscover) {
1466 char externalIPAddress[40];
1467 r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress);
1468 if(r != UPNPCOMMAND_SUCCESS)
1469 LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
1470 else
1472 if(externalIPAddress[0])
1474 CNetAddr resolved;
1475 if(LookupHost(externalIPAddress, resolved, false)) {
1476 LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str());
1477 AddLocal(resolved, LOCAL_UPNP);
1480 else
1481 LogPrintf("UPnP: GetExternalIPAddress failed.\n");
1485 std::string strDesc = "Bitcoin " + FormatFullVersion();
1487 try {
1488 while (true) {
1489 #ifndef UPNPDISCOVER_SUCCESS
1490 /* miniupnpc 1.5 */
1491 r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
1492 port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0);
1493 #else
1494 /* miniupnpc 1.6 */
1495 r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
1496 port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0");
1497 #endif
1499 if(r!=UPNPCOMMAND_SUCCESS)
1500 LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n",
1501 port, port, lanaddr, r, strupnperror(r));
1502 else
1503 LogPrintf("UPnP Port Mapping successful.\n");
1505 MilliSleep(20*60*1000); // Refresh every 20 minutes
1508 catch (const boost::thread_interrupted&)
1510 r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0);
1511 LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
1512 freeUPNPDevlist(devlist); devlist = 0;
1513 FreeUPNPUrls(&urls);
1514 throw;
1516 } else {
1517 LogPrintf("No valid UPnP IGDs found\n");
1518 freeUPNPDevlist(devlist); devlist = 0;
1519 if (r != 0)
1520 FreeUPNPUrls(&urls);
1524 void MapPort(bool fUseUPnP)
1526 static boost::thread* upnp_thread = NULL;
1528 if (fUseUPnP)
1530 if (upnp_thread) {
1531 upnp_thread->interrupt();
1532 upnp_thread->join();
1533 delete upnp_thread;
1535 upnp_thread = new boost::thread(boost::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort));
1537 else if (upnp_thread) {
1538 upnp_thread->interrupt();
1539 upnp_thread->join();
1540 delete upnp_thread;
1541 upnp_thread = NULL;
1545 #else
1546 void MapPort(bool)
1548 // Intentionally left blank.
1550 #endif
1557 static std::string GetDNSHost(const CDNSSeedData& data, ServiceFlags* requiredServiceBits)
1559 //use default host for non-filter-capable seeds or if we use the default service bits (NODE_NETWORK)
1560 if (!data.supportsServiceBitsFiltering || *requiredServiceBits == NODE_NETWORK) {
1561 *requiredServiceBits = NODE_NETWORK;
1562 return data.host;
1565 // See chainparams.cpp, most dnsseeds only support one or two possible servicebits hostnames
1566 return strprintf("x%x.%s", *requiredServiceBits, data.host);
1570 void CConnman::ThreadDNSAddressSeed()
1572 // goal: only query DNS seeds if address need is acute
1573 // Avoiding DNS seeds when we don't need them improves user privacy by
1574 // creating fewer identifying DNS requests, reduces trust by giving seeds
1575 // less influence on the network topology, and reduces traffic to the seeds.
1576 if ((addrman.size() > 0) &&
1577 (!GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) {
1578 if (!interruptNet.sleep_for(std::chrono::seconds(11)))
1579 return;
1581 LOCK(cs_vNodes);
1582 int nRelevant = 0;
1583 for (auto pnode : vNodes) {
1584 nRelevant += pnode->fSuccessfullyConnected && ((pnode->nServices & nRelevantServices) == nRelevantServices);
1586 if (nRelevant >= 2) {
1587 LogPrintf("P2P peers available. Skipped DNS seeding.\n");
1588 return;
1592 const std::vector<CDNSSeedData> &vSeeds = Params().DNSSeeds();
1593 int found = 0;
1595 LogPrintf("Loading addresses from DNS seeds (could take a while)\n");
1597 for (const CDNSSeedData &seed : vSeeds) {
1598 if (interruptNet) {
1599 return;
1601 if (HaveNameProxy()) {
1602 AddOneShot(seed.host);
1603 } else {
1604 std::vector<CNetAddr> vIPs;
1605 std::vector<CAddress> vAdd;
1606 ServiceFlags requiredServiceBits = nRelevantServices;
1607 if (LookupHost(GetDNSHost(seed, &requiredServiceBits).c_str(), vIPs, 0, true))
1609 for (const CNetAddr& ip : vIPs)
1611 int nOneDay = 24*3600;
1612 CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits);
1613 addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old
1614 vAdd.push_back(addr);
1615 found++;
1618 if (interruptNet) {
1619 return;
1621 // TODO: The seed name resolve may fail, yielding an IP of [::], which results in
1622 // addrman assigning the same source to results from different seeds.
1623 // This should switch to a hard-coded stable dummy IP for each seed name, so that the
1624 // resolve is not required at all.
1625 if (!vIPs.empty()) {
1626 CService seedSource;
1627 Lookup(seed.name.c_str(), seedSource, 0, true);
1628 addrman.Add(vAdd, seedSource);
1633 LogPrintf("%d addresses found from DNS seeds\n", found);
1647 void CConnman::DumpAddresses()
1649 int64_t nStart = GetTimeMillis();
1651 CAddrDB adb;
1652 adb.Write(addrman);
1654 LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
1655 addrman.size(), GetTimeMillis() - nStart);
1658 void CConnman::DumpData()
1660 DumpAddresses();
1661 DumpBanlist();
1664 void CConnman::ProcessOneShot()
1666 std::string strDest;
1668 LOCK(cs_vOneShots);
1669 if (vOneShots.empty())
1670 return;
1671 strDest = vOneShots.front();
1672 vOneShots.pop_front();
1674 CAddress addr;
1675 CSemaphoreGrant grant(*semOutbound, true);
1676 if (grant) {
1677 if (!OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true))
1678 AddOneShot(strDest);
1682 void CConnman::ThreadOpenConnections()
1684 // Connect to specific addresses
1685 if (gArgs.IsArgSet("-connect") && gArgs.GetArgs("-connect").size() > 0)
1687 for (int64_t nLoop = 0;; nLoop++)
1689 ProcessOneShot();
1690 for (const std::string& strAddr : gArgs.GetArgs("-connect"))
1692 CAddress addr(CService(), NODE_NONE);
1693 OpenNetworkConnection(addr, false, NULL, strAddr.c_str());
1694 for (int i = 0; i < 10 && i < nLoop; i++)
1696 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
1697 return;
1700 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
1701 return;
1705 // Initiate network connections
1706 int64_t nStart = GetTime();
1708 // Minimum time before next feeler connection (in microseconds).
1709 int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL);
1710 while (!interruptNet)
1712 ProcessOneShot();
1714 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
1715 return;
1717 CSemaphoreGrant grant(*semOutbound);
1718 if (interruptNet)
1719 return;
1721 // Add seed nodes if DNS seeds are all down (an infrastructure attack?).
1722 if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
1723 static bool done = false;
1724 if (!done) {
1725 LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n");
1726 CNetAddr local;
1727 LookupHost("127.0.0.1", local, false);
1728 addrman.Add(convertSeed6(Params().FixedSeeds()), local);
1729 done = true;
1734 // Choose an address to connect to based on most recently seen
1736 CAddress addrConnect;
1738 // Only connect out to one peer per network group (/16 for IPv4).
1739 // Do this here so we don't have to critsect vNodes inside mapAddresses critsect.
1740 int nOutbound = 0;
1741 int nOutboundRelevant = 0;
1742 std::set<std::vector<unsigned char> > setConnected;
1744 LOCK(cs_vNodes);
1745 for (CNode* pnode : vNodes) {
1746 if (!pnode->fInbound && !pnode->fAddnode) {
1748 // Count the peers that have all relevant services
1749 if (pnode->fSuccessfullyConnected && !pnode->fFeeler && ((pnode->nServices & nRelevantServices) == nRelevantServices)) {
1750 nOutboundRelevant++;
1752 // Netgroups for inbound and addnode peers are not excluded because our goal here
1753 // is to not use multiple of our limited outbound slots on a single netgroup
1754 // but inbound and addnode peers do not use our outbound slots. Inbound peers
1755 // also have the added issue that they're attacker controlled and could be used
1756 // to prevent us from connecting to particular hosts if we used them here.
1757 setConnected.insert(pnode->addr.GetGroup());
1758 nOutbound++;
1763 // Feeler Connections
1765 // Design goals:
1766 // * Increase the number of connectable addresses in the tried table.
1768 // Method:
1769 // * Choose a random address from new and attempt to connect to it if we can connect
1770 // successfully it is added to tried.
1771 // * Start attempting feeler connections only after node finishes making outbound
1772 // connections.
1773 // * Only make a feeler connection once every few minutes.
1775 bool fFeeler = false;
1776 if (nOutbound >= nMaxOutbound) {
1777 int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds).
1778 if (nTime > nNextFeeler) {
1779 nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
1780 fFeeler = true;
1781 } else {
1782 continue;
1786 int64_t nANow = GetAdjustedTime();
1787 int nTries = 0;
1788 while (!interruptNet)
1790 CAddrInfo addr = addrman.Select(fFeeler);
1792 // if we selected an invalid address, restart
1793 if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr))
1794 break;
1796 // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
1797 // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
1798 // already-connected network ranges, ...) before trying new addrman addresses.
1799 nTries++;
1800 if (nTries > 100)
1801 break;
1803 if (IsLimited(addr))
1804 continue;
1806 // only connect to full nodes
1807 if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES)
1808 continue;
1810 // only consider very recently tried nodes after 30 failed attempts
1811 if (nANow - addr.nLastTry < 600 && nTries < 30)
1812 continue;
1814 // only consider nodes missing relevant services after 40 failed attempts and only if less than half the outbound are up.
1815 ServiceFlags nRequiredServices = nRelevantServices;
1816 if (nTries >= 40 && nOutbound < (nMaxOutbound >> 1)) {
1817 nRequiredServices = REQUIRED_SERVICES;
1820 if ((addr.nServices & nRequiredServices) != nRequiredServices) {
1821 continue;
1824 // do not allow non-default ports, unless after 50 invalid addresses selected already
1825 if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50)
1826 continue;
1828 addrConnect = addr;
1830 // regardless of the services assumed to be available, only require the minimum if half or more outbound have relevant services
1831 if (nOutboundRelevant >= (nMaxOutbound >> 1)) {
1832 addrConnect.nServices = REQUIRED_SERVICES;
1833 } else {
1834 addrConnect.nServices = nRequiredServices;
1836 break;
1839 if (addrConnect.IsValid()) {
1841 if (fFeeler) {
1842 // Add small amount of random noise before connection to avoid synchronization.
1843 int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
1844 if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep)))
1845 return;
1846 LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString());
1849 OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, NULL, false, fFeeler);
1854 std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo()
1856 std::vector<AddedNodeInfo> ret;
1858 std::list<std::string> lAddresses(0);
1860 LOCK(cs_vAddedNodes);
1861 ret.reserve(vAddedNodes.size());
1862 for (const std::string& strAddNode : vAddedNodes)
1863 lAddresses.push_back(strAddNode);
1867 // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
1868 std::map<CService, bool> mapConnected;
1869 std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
1871 LOCK(cs_vNodes);
1872 for (const CNode* pnode : vNodes) {
1873 if (pnode->addr.IsValid()) {
1874 mapConnected[pnode->addr] = pnode->fInbound;
1876 std::string addrName = pnode->GetAddrName();
1877 if (!addrName.empty()) {
1878 mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast<const CService&>(pnode->addr));
1883 for (const std::string& strAddNode : lAddresses) {
1884 CService service(LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort()));
1885 if (service.IsValid()) {
1886 // strAddNode is an IP:port
1887 auto it = mapConnected.find(service);
1888 if (it != mapConnected.end()) {
1889 ret.push_back(AddedNodeInfo{strAddNode, service, true, it->second});
1890 } else {
1891 ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false});
1893 } else {
1894 // strAddNode is a name
1895 auto it = mapConnectedByName.find(strAddNode);
1896 if (it != mapConnectedByName.end()) {
1897 ret.push_back(AddedNodeInfo{strAddNode, it->second.second, true, it->second.first});
1898 } else {
1899 ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false});
1904 return ret;
1907 void CConnman::ThreadOpenAddedConnections()
1910 LOCK(cs_vAddedNodes);
1911 if (gArgs.IsArgSet("-addnode"))
1912 vAddedNodes = gArgs.GetArgs("-addnode");
1915 while (true)
1917 CSemaphoreGrant grant(*semAddnode);
1918 std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
1919 bool tried = false;
1920 for (const AddedNodeInfo& info : vInfo) {
1921 if (!info.fConnected) {
1922 if (!grant.TryAcquire()) {
1923 // If we've used up our semaphore and need a new one, lets not wait here since while we are waiting
1924 // the addednodeinfo state might change.
1925 break;
1927 // If strAddedNode is an IP/port, decode it immediately, so
1928 // OpenNetworkConnection can detect existing connections to that IP/port.
1929 tried = true;
1930 CService service(LookupNumeric(info.strAddedNode.c_str(), Params().GetDefaultPort()));
1931 OpenNetworkConnection(CAddress(service, NODE_NONE), false, &grant, info.strAddedNode.c_str(), false, false, true);
1932 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
1933 return;
1936 // Retry every 60 seconds if a connection was attempted, otherwise two seconds
1937 if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
1938 return;
1942 // if successful, this moves the passed grant to the constructed node
1943 bool CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool fAddnode)
1946 // Initiate outbound network connection
1948 if (interruptNet) {
1949 return false;
1951 if (!fNetworkActive) {
1952 return false;
1954 if (!pszDest) {
1955 if (IsLocal(addrConnect) ||
1956 FindNode((CNetAddr)addrConnect) || IsBanned(addrConnect) ||
1957 FindNode(addrConnect.ToStringIPPort()))
1958 return false;
1959 } else if (FindNode(std::string(pszDest)))
1960 return false;
1962 CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure);
1964 if (!pnode)
1965 return false;
1966 if (grantOutbound)
1967 grantOutbound->MoveTo(pnode->grantOutbound);
1968 if (fOneShot)
1969 pnode->fOneShot = true;
1970 if (fFeeler)
1971 pnode->fFeeler = true;
1972 if (fAddnode)
1973 pnode->fAddnode = true;
1975 GetNodeSignals().InitializeNode(pnode, *this);
1977 LOCK(cs_vNodes);
1978 vNodes.push_back(pnode);
1981 return true;
1984 void CConnman::ThreadMessageHandler()
1986 while (!flagInterruptMsgProc)
1988 std::vector<CNode*> vNodesCopy;
1990 LOCK(cs_vNodes);
1991 vNodesCopy = vNodes;
1992 for (CNode* pnode : vNodesCopy) {
1993 pnode->AddRef();
1997 bool fMoreWork = false;
1999 for (CNode* pnode : vNodesCopy)
2001 if (pnode->fDisconnect)
2002 continue;
2004 // Receive messages
2005 bool fMoreNodeWork = GetNodeSignals().ProcessMessages(pnode, *this, flagInterruptMsgProc);
2006 fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
2007 if (flagInterruptMsgProc)
2008 return;
2010 // Send messages
2012 LOCK(pnode->cs_sendProcessing);
2013 GetNodeSignals().SendMessages(pnode, *this, flagInterruptMsgProc);
2015 if (flagInterruptMsgProc)
2016 return;
2020 LOCK(cs_vNodes);
2021 for (CNode* pnode : vNodesCopy)
2022 pnode->Release();
2025 std::unique_lock<std::mutex> lock(mutexMsgProc);
2026 if (!fMoreWork) {
2027 condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this] { return fMsgProcWake; });
2029 fMsgProcWake = false;
2038 bool CConnman::BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted)
2040 strError = "";
2041 int nOne = 1;
2043 // Create socket for listening for incoming connections
2044 struct sockaddr_storage sockaddr;
2045 socklen_t len = sizeof(sockaddr);
2046 if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
2048 strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString());
2049 LogPrintf("%s\n", strError);
2050 return false;
2053 SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
2054 if (hListenSocket == INVALID_SOCKET)
2056 strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError()));
2057 LogPrintf("%s\n", strError);
2058 return false;
2060 if (!IsSelectableSocket(hListenSocket))
2062 strError = "Error: Couldn't create a listenable socket for incoming connections";
2063 LogPrintf("%s\n", strError);
2064 return false;
2068 #ifndef WIN32
2069 #ifdef SO_NOSIGPIPE
2070 // Different way of disabling SIGPIPE on BSD
2071 setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int));
2072 #endif
2073 // Allow binding if the port is still in TIME_WAIT state after
2074 // the program was closed and restarted.
2075 setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int));
2076 // Disable Nagle's algorithm
2077 setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int));
2078 #else
2079 setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int));
2080 setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int));
2081 #endif
2083 // Set to non-blocking, incoming connections will also inherit this
2084 if (!SetSocketNonBlocking(hListenSocket, true)) {
2085 strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));
2086 LogPrintf("%s\n", strError);
2087 return false;
2090 // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
2091 // and enable it by default or not. Try to enable it, if possible.
2092 if (addrBind.IsIPv6()) {
2093 #ifdef IPV6_V6ONLY
2094 #ifdef WIN32
2095 setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int));
2096 #else
2097 setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int));
2098 #endif
2099 #endif
2100 #ifdef WIN32
2101 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
2102 setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int));
2103 #endif
2106 if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
2108 int nErr = WSAGetLastError();
2109 if (nErr == WSAEADDRINUSE)
2110 strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME));
2111 else
2112 strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
2113 LogPrintf("%s\n", strError);
2114 CloseSocket(hListenSocket);
2115 return false;
2117 LogPrintf("Bound to %s\n", addrBind.ToString());
2119 // Listen for incoming connections
2120 if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR)
2122 strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
2123 LogPrintf("%s\n", strError);
2124 CloseSocket(hListenSocket);
2125 return false;
2128 vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted));
2130 if (addrBind.IsRoutable() && fDiscover && !fWhitelisted)
2131 AddLocal(addrBind, LOCAL_BIND);
2133 return true;
2136 void Discover(boost::thread_group& threadGroup)
2138 if (!fDiscover)
2139 return;
2141 #ifdef WIN32
2142 // Get local host IP
2143 char pszHostName[256] = "";
2144 if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
2146 std::vector<CNetAddr> vaddr;
2147 if (LookupHost(pszHostName, vaddr, 0, true))
2149 for (const CNetAddr &addr : vaddr)
2151 if (AddLocal(addr, LOCAL_IF))
2152 LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
2156 #else
2157 // Get local host ip
2158 struct ifaddrs* myaddrs;
2159 if (getifaddrs(&myaddrs) == 0)
2161 for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next)
2163 if (ifa->ifa_addr == NULL) continue;
2164 if ((ifa->ifa_flags & IFF_UP) == 0) continue;
2165 if (strcmp(ifa->ifa_name, "lo") == 0) continue;
2166 if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
2167 if (ifa->ifa_addr->sa_family == AF_INET)
2169 struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
2170 CNetAddr addr(s4->sin_addr);
2171 if (AddLocal(addr, LOCAL_IF))
2172 LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
2174 else if (ifa->ifa_addr->sa_family == AF_INET6)
2176 struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
2177 CNetAddr addr(s6->sin6_addr);
2178 if (AddLocal(addr, LOCAL_IF))
2179 LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
2182 freeifaddrs(myaddrs);
2184 #endif
2187 void CConnman::SetNetworkActive(bool active)
2189 LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active);
2191 if (!active) {
2192 fNetworkActive = false;
2194 LOCK(cs_vNodes);
2195 // Close sockets to all nodes
2196 for (CNode* pnode : vNodes) {
2197 pnode->CloseSocketDisconnect();
2199 } else {
2200 fNetworkActive = true;
2203 uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
2206 CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In) : nSeed0(nSeed0In), nSeed1(nSeed1In)
2208 fNetworkActive = true;
2209 setBannedIsDirty = false;
2210 fAddressesInitialized = false;
2211 nLastNodeId = 0;
2212 nSendBufferMaxSize = 0;
2213 nReceiveFloodSize = 0;
2214 semOutbound = NULL;
2215 semAddnode = NULL;
2216 nMaxConnections = 0;
2217 nMaxOutbound = 0;
2218 nMaxAddnode = 0;
2219 nBestHeight = 0;
2220 clientInterface = NULL;
2221 flagInterruptMsgProc = false;
2224 NodeId CConnman::GetNewNodeId()
2226 return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
2229 bool CConnman::Start(CScheduler& scheduler, std::string& strNodeError, Options connOptions)
2231 nTotalBytesRecv = 0;
2232 nTotalBytesSent = 0;
2233 nMaxOutboundTotalBytesSentInCycle = 0;
2234 nMaxOutboundCycleStartTime = 0;
2236 nRelevantServices = connOptions.nRelevantServices;
2237 nLocalServices = connOptions.nLocalServices;
2238 nMaxConnections = connOptions.nMaxConnections;
2239 nMaxOutbound = std::min((connOptions.nMaxOutbound), nMaxConnections);
2240 nMaxAddnode = connOptions.nMaxAddnode;
2241 nMaxFeeler = connOptions.nMaxFeeler;
2243 nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
2244 nReceiveFloodSize = connOptions.nReceiveFloodSize;
2246 nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
2247 nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe;
2249 SetBestHeight(connOptions.nBestHeight);
2251 for (const auto& strDest : connOptions.vSeedNodes) {
2252 AddOneShot(strDest);
2255 clientInterface = connOptions.uiInterface;
2256 if (clientInterface) {
2257 clientInterface->InitMessage(_("Loading P2P addresses..."));
2259 // Load addresses from peers.dat
2260 int64_t nStart = GetTimeMillis();
2262 CAddrDB adb;
2263 if (adb.Read(addrman))
2264 LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart);
2265 else {
2266 addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it
2267 LogPrintf("Invalid or missing peers.dat; recreating\n");
2268 DumpAddresses();
2271 if (clientInterface)
2272 clientInterface->InitMessage(_("Loading banlist..."));
2273 // Load addresses from banlist.dat
2274 nStart = GetTimeMillis();
2275 CBanDB bandb;
2276 banmap_t banmap;
2277 if (bandb.Read(banmap)) {
2278 SetBanned(banmap); // thread save setter
2279 SetBannedSetDirty(false); // no need to write down, just read data
2280 SweepBanned(); // sweep out unused entries
2282 LogPrint(BCLog::NET, "Loaded %d banned node ips/subnets from banlist.dat %dms\n",
2283 banmap.size(), GetTimeMillis() - nStart);
2284 } else {
2285 LogPrintf("Invalid or missing banlist.dat; recreating\n");
2286 SetBannedSetDirty(true); // force write
2287 DumpBanlist();
2290 uiInterface.InitMessage(_("Starting network threads..."));
2292 fAddressesInitialized = true;
2294 if (semOutbound == NULL) {
2295 // initialize semaphore
2296 semOutbound = new CSemaphore(std::min((nMaxOutbound + nMaxFeeler), nMaxConnections));
2298 if (semAddnode == NULL) {
2299 // initialize semaphore
2300 semAddnode = new CSemaphore(nMaxAddnode);
2304 // Start threads
2306 InterruptSocks5(false);
2307 interruptNet.reset();
2308 flagInterruptMsgProc = false;
2311 std::unique_lock<std::mutex> lock(mutexMsgProc);
2312 fMsgProcWake = false;
2315 // Send and receive from sockets, accept connections
2316 threadSocketHandler = std::thread(&TraceThread<std::function<void()> >, "net", std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
2318 if (!GetBoolArg("-dnsseed", true))
2319 LogPrintf("DNS seeding disabled\n");
2320 else
2321 threadDNSAddressSeed = std::thread(&TraceThread<std::function<void()> >, "dnsseed", std::function<void()>(std::bind(&CConnman::ThreadDNSAddressSeed, this)));
2323 // Initiate outbound connections from -addnode
2324 threadOpenAddedConnections = std::thread(&TraceThread<std::function<void()> >, "addcon", std::function<void()>(std::bind(&CConnman::ThreadOpenAddedConnections, this)));
2326 // Initiate outbound connections unless connect=0
2327 if (!gArgs.IsArgSet("-connect") || gArgs.GetArgs("-connect").size() != 1 || gArgs.GetArgs("-connect")[0] != "0")
2328 threadOpenConnections = std::thread(&TraceThread<std::function<void()> >, "opencon", std::function<void()>(std::bind(&CConnman::ThreadOpenConnections, this)));
2330 // Process messages
2331 threadMessageHandler = std::thread(&TraceThread<std::function<void()> >, "msghand", std::function<void()>(std::bind(&CConnman::ThreadMessageHandler, this)));
2333 // Dump network addresses
2334 scheduler.scheduleEvery(std::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL * 1000);
2336 return true;
2339 class CNetCleanup
2341 public:
2342 CNetCleanup() {}
2344 ~CNetCleanup()
2346 #ifdef WIN32
2347 // Shutdown Windows Sockets
2348 WSACleanup();
2349 #endif
2352 instance_of_cnetcleanup;
2354 void CConnman::Interrupt()
2357 std::lock_guard<std::mutex> lock(mutexMsgProc);
2358 flagInterruptMsgProc = true;
2360 condMsgProc.notify_all();
2362 interruptNet();
2363 InterruptSocks5(true);
2365 if (semOutbound) {
2366 for (int i=0; i<(nMaxOutbound + nMaxFeeler); i++) {
2367 semOutbound->post();
2371 if (semAddnode) {
2372 for (int i=0; i<nMaxAddnode; i++) {
2373 semAddnode->post();
2378 void CConnman::Stop()
2380 if (threadMessageHandler.joinable())
2381 threadMessageHandler.join();
2382 if (threadOpenConnections.joinable())
2383 threadOpenConnections.join();
2384 if (threadOpenAddedConnections.joinable())
2385 threadOpenAddedConnections.join();
2386 if (threadDNSAddressSeed.joinable())
2387 threadDNSAddressSeed.join();
2388 if (threadSocketHandler.joinable())
2389 threadSocketHandler.join();
2391 if (fAddressesInitialized)
2393 DumpData();
2394 fAddressesInitialized = false;
2397 // Close sockets
2398 for (CNode* pnode : vNodes)
2399 pnode->CloseSocketDisconnect();
2400 for (ListenSocket& hListenSocket : vhListenSocket)
2401 if (hListenSocket.socket != INVALID_SOCKET)
2402 if (!CloseSocket(hListenSocket.socket))
2403 LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError()));
2405 // clean up some globals (to help leak detection)
2406 for (CNode *pnode : vNodes) {
2407 DeleteNode(pnode);
2409 for (CNode *pnode : vNodesDisconnected) {
2410 DeleteNode(pnode);
2412 vNodes.clear();
2413 vNodesDisconnected.clear();
2414 vhListenSocket.clear();
2415 delete semOutbound;
2416 semOutbound = NULL;
2417 delete semAddnode;
2418 semAddnode = NULL;
2421 void CConnman::DeleteNode(CNode* pnode)
2423 assert(pnode);
2424 bool fUpdateConnectionTime = false;
2425 GetNodeSignals().FinalizeNode(pnode->GetId(), fUpdateConnectionTime);
2426 if(fUpdateConnectionTime)
2427 addrman.Connected(pnode->addr);
2428 delete pnode;
2431 CConnman::~CConnman()
2433 Interrupt();
2434 Stop();
2437 size_t CConnman::GetAddressCount() const
2439 return addrman.size();
2442 void CConnman::SetServices(const CService &addr, ServiceFlags nServices)
2444 addrman.SetServices(addr, nServices);
2447 void CConnman::MarkAddressGood(const CAddress& addr)
2449 addrman.Good(addr);
2452 void CConnman::AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty)
2454 addrman.Add(vAddr, addrFrom, nTimePenalty);
2457 std::vector<CAddress> CConnman::GetAddresses()
2459 return addrman.GetAddr();
2462 bool CConnman::AddNode(const std::string& strNode)
2464 LOCK(cs_vAddedNodes);
2465 for(std::vector<std::string>::const_iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
2466 if (strNode == *it)
2467 return false;
2470 vAddedNodes.push_back(strNode);
2471 return true;
2474 bool CConnman::RemoveAddedNode(const std::string& strNode)
2476 LOCK(cs_vAddedNodes);
2477 for(std::vector<std::string>::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
2478 if (strNode == *it) {
2479 vAddedNodes.erase(it);
2480 return true;
2483 return false;
2486 size_t CConnman::GetNodeCount(NumConnections flags)
2488 LOCK(cs_vNodes);
2489 if (flags == CConnman::CONNECTIONS_ALL) // Shortcut if we want total
2490 return vNodes.size();
2492 int nNum = 0;
2493 for(std::vector<CNode*>::const_iterator it = vNodes.begin(); it != vNodes.end(); ++it)
2494 if (flags & ((*it)->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT))
2495 nNum++;
2497 return nNum;
2500 void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats)
2502 vstats.clear();
2503 LOCK(cs_vNodes);
2504 vstats.reserve(vNodes.size());
2505 for(std::vector<CNode*>::iterator it = vNodes.begin(); it != vNodes.end(); ++it) {
2506 CNode* pnode = *it;
2507 vstats.emplace_back();
2508 pnode->copyStats(vstats.back());
2512 bool CConnman::DisconnectNode(const std::string& strNode)
2514 LOCK(cs_vNodes);
2515 if (CNode* pnode = FindNode(strNode)) {
2516 pnode->fDisconnect = true;
2517 return true;
2519 return false;
2521 bool CConnman::DisconnectNode(NodeId id)
2523 LOCK(cs_vNodes);
2524 for(CNode* pnode : vNodes) {
2525 if (id == pnode->GetId()) {
2526 pnode->fDisconnect = true;
2527 return true;
2530 return false;
2533 void CConnman::RecordBytesRecv(uint64_t bytes)
2535 LOCK(cs_totalBytesRecv);
2536 nTotalBytesRecv += bytes;
2539 void CConnman::RecordBytesSent(uint64_t bytes)
2541 LOCK(cs_totalBytesSent);
2542 nTotalBytesSent += bytes;
2544 uint64_t now = GetTime();
2545 if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now)
2547 // timeframe expired, reset cycle
2548 nMaxOutboundCycleStartTime = now;
2549 nMaxOutboundTotalBytesSentInCycle = 0;
2552 // TODO, exclude whitebind peers
2553 nMaxOutboundTotalBytesSentInCycle += bytes;
2556 void CConnman::SetMaxOutboundTarget(uint64_t limit)
2558 LOCK(cs_totalBytesSent);
2559 nMaxOutboundLimit = limit;
2562 uint64_t CConnman::GetMaxOutboundTarget()
2564 LOCK(cs_totalBytesSent);
2565 return nMaxOutboundLimit;
2568 uint64_t CConnman::GetMaxOutboundTimeframe()
2570 LOCK(cs_totalBytesSent);
2571 return nMaxOutboundTimeframe;
2574 uint64_t CConnman::GetMaxOutboundTimeLeftInCycle()
2576 LOCK(cs_totalBytesSent);
2577 if (nMaxOutboundLimit == 0)
2578 return 0;
2580 if (nMaxOutboundCycleStartTime == 0)
2581 return nMaxOutboundTimeframe;
2583 uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
2584 uint64_t now = GetTime();
2585 return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
2588 void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe)
2590 LOCK(cs_totalBytesSent);
2591 if (nMaxOutboundTimeframe != timeframe)
2593 // reset measure-cycle in case of changing
2594 // the timeframe
2595 nMaxOutboundCycleStartTime = GetTime();
2597 nMaxOutboundTimeframe = timeframe;
2600 bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit)
2602 LOCK(cs_totalBytesSent);
2603 if (nMaxOutboundLimit == 0)
2604 return false;
2606 if (historicalBlockServingLimit)
2608 // keep a large enough buffer to at least relay each block once
2609 uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
2610 uint64_t buffer = timeLeftInCycle / 600 * MAX_BLOCK_SERIALIZED_SIZE;
2611 if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
2612 return true;
2614 else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
2615 return true;
2617 return false;
2620 uint64_t CConnman::GetOutboundTargetBytesLeft()
2622 LOCK(cs_totalBytesSent);
2623 if (nMaxOutboundLimit == 0)
2624 return 0;
2626 return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
2629 uint64_t CConnman::GetTotalBytesRecv()
2631 LOCK(cs_totalBytesRecv);
2632 return nTotalBytesRecv;
2635 uint64_t CConnman::GetTotalBytesSent()
2637 LOCK(cs_totalBytesSent);
2638 return nTotalBytesSent;
2641 ServiceFlags CConnman::GetLocalServices() const
2643 return nLocalServices;
2646 void CConnman::SetBestHeight(int height)
2648 nBestHeight.store(height, std::memory_order_release);
2651 int CConnman::GetBestHeight() const
2653 return nBestHeight.load(std::memory_order_acquire);
2656 unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
2657 unsigned int CConnman::GetSendBufferSize() const{ return nSendBufferMaxSize; }
2659 CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string& addrNameIn, bool fInboundIn) :
2660 nTimeConnected(GetSystemTimeInSeconds()),
2661 addr(addrIn),
2662 addrBind(addrBindIn),
2663 fInbound(fInboundIn),
2664 nKeyedNetGroup(nKeyedNetGroupIn),
2665 addrKnown(5000, 0.001),
2666 filterInventoryKnown(50000, 0.000001),
2667 id(idIn),
2668 nLocalHostNonce(nLocalHostNonceIn),
2669 nLocalServices(nLocalServicesIn),
2670 nMyStartingHeight(nMyStartingHeightIn),
2671 nSendVersion(0)
2673 nServices = NODE_NONE;
2674 nServicesExpected = NODE_NONE;
2675 hSocket = hSocketIn;
2676 nRecvVersion = INIT_PROTO_VERSION;
2677 nLastSend = 0;
2678 nLastRecv = 0;
2679 nSendBytes = 0;
2680 nRecvBytes = 0;
2681 nTimeOffset = 0;
2682 addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
2683 nVersion = 0;
2684 strSubVer = "";
2685 fWhitelisted = false;
2686 fOneShot = false;
2687 fAddnode = false;
2688 fClient = false; // set by version message
2689 fFeeler = false;
2690 fSuccessfullyConnected = false;
2691 fDisconnect = false;
2692 nRefCount = 0;
2693 nSendSize = 0;
2694 nSendOffset = 0;
2695 hashContinue = uint256();
2696 nStartingHeight = -1;
2697 filterInventoryKnown.reset();
2698 fSendMempool = false;
2699 fGetAddr = false;
2700 nNextLocalAddrSend = 0;
2701 nNextAddrSend = 0;
2702 nNextInvSend = 0;
2703 fRelayTxes = false;
2704 fSentAddr = false;
2705 pfilter = new CBloomFilter();
2706 timeLastMempoolReq = 0;
2707 nLastBlockTime = 0;
2708 nLastTXTime = 0;
2709 nPingNonceSent = 0;
2710 nPingUsecStart = 0;
2711 nPingUsecTime = 0;
2712 fPingQueued = false;
2713 nMinPingUsecTime = std::numeric_limits<int64_t>::max();
2714 minFeeFilter = 0;
2715 lastSentFeeFilter = 0;
2716 nextSendTimeFeeFilter = 0;
2717 fPauseRecv = false;
2718 fPauseSend = false;
2719 nProcessQueueSize = 0;
2721 for (const std::string &msg : getAllNetMessageTypes())
2722 mapRecvBytesPerMsgCmd[msg] = 0;
2723 mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
2725 if (fLogIPs) {
2726 LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id);
2727 } else {
2728 LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
2732 CNode::~CNode()
2734 CloseSocket(hSocket);
2736 if (pfilter)
2737 delete pfilter;
2740 void CNode::AskFor(const CInv& inv)
2742 if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ)
2743 return;
2744 // a peer may not have multiple non-responded queue positions for a single inv item
2745 if (!setAskFor.insert(inv.hash).second)
2746 return;
2748 // We're using mapAskFor as a priority queue,
2749 // the key is the earliest time the request can be sent
2750 int64_t nRequestTime;
2751 limitedmap<uint256, int64_t>::const_iterator it = mapAlreadyAskedFor.find(inv.hash);
2752 if (it != mapAlreadyAskedFor.end())
2753 nRequestTime = it->second;
2754 else
2755 nRequestTime = 0;
2756 LogPrint(BCLog::NET, "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id);
2758 // Make sure not to reuse time indexes to keep things in the same order
2759 int64_t nNow = GetTimeMicros() - 1000000;
2760 static int64_t nLastTime;
2761 ++nLastTime;
2762 nNow = std::max(nNow, nLastTime);
2763 nLastTime = nNow;
2765 // Each retry is 2 minutes after the last
2766 nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow);
2767 if (it != mapAlreadyAskedFor.end())
2768 mapAlreadyAskedFor.update(it, nRequestTime);
2769 else
2770 mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime));
2771 mapAskFor.insert(std::make_pair(nRequestTime, inv));
2774 bool CConnman::NodeFullyConnected(const CNode* pnode)
2776 return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
2779 void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
2781 size_t nMessageSize = msg.data.size();
2782 size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE;
2783 LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command.c_str()), nMessageSize, pnode->GetId());
2785 std::vector<unsigned char> serializedHeader;
2786 serializedHeader.reserve(CMessageHeader::HEADER_SIZE);
2787 uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize);
2788 CMessageHeader hdr(Params().MessageStart(), msg.command.c_str(), nMessageSize);
2789 memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
2791 CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr};
2793 size_t nBytesSent = 0;
2795 LOCK(pnode->cs_vSend);
2796 bool optimisticSend(pnode->vSendMsg.empty());
2798 //log total amount of bytes per command
2799 pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize;
2800 pnode->nSendSize += nTotalSize;
2802 if (pnode->nSendSize > nSendBufferMaxSize)
2803 pnode->fPauseSend = true;
2804 pnode->vSendMsg.push_back(std::move(serializedHeader));
2805 if (nMessageSize)
2806 pnode->vSendMsg.push_back(std::move(msg.data));
2808 // If write queue empty, attempt "optimistic write"
2809 if (optimisticSend == true)
2810 nBytesSent = SocketSendData(pnode);
2812 if (nBytesSent)
2813 RecordBytesSent(nBytesSent);
2816 bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
2818 CNode* found = nullptr;
2819 LOCK(cs_vNodes);
2820 for (auto&& pnode : vNodes) {
2821 if(pnode->GetId() == id) {
2822 found = pnode;
2823 break;
2826 return found != nullptr && NodeFullyConnected(found) && func(found);
2829 int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) {
2830 return nNow + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
2833 CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
2835 return CSipHasher(nSeed0, nSeed1).Write(id);
2838 uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad) const
2840 std::vector<unsigned char> vchNetGroup(ad.GetGroup());
2842 return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(&vchNetGroup[0], vchNetGroup.size()).Finalize();