2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
29 struct bfd_link_info
*info
;
30 struct bfd_elf_version_tree
*verdefs
;
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd
*, Elf_Internal_Sym
*));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd
*, carsym
*));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd
*, struct bfd_link_info
*));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd
*, struct bfd_link_info
*));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd
*, struct bfd_link_info
*, const char *,
43 Elf_Internal_Sym
*, asection
**, bfd_vma
*,
44 struct elf_link_hash_entry
**, boolean
*, boolean
*,
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
48 const char *, Elf_Internal_Sym
*, asection
**, bfd_vma
*,
49 boolean
*, boolean
, boolean
));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry
*, PTR
));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd
*, struct bfd_link_info
*));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry
*, struct elf_info_failed
*));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry
*, PTR
));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry
*, PTR
));
60 static boolean elf_link_find_version_dependencies
61 PARAMS ((struct elf_link_hash_entry
*, PTR
));
62 static boolean elf_link_assign_sym_version
63 PARAMS ((struct elf_link_hash_entry
*, PTR
));
64 static boolean elf_collect_hash_codes
65 PARAMS ((struct elf_link_hash_entry
*, PTR
));
66 static boolean elf_link_read_relocs_from_section
67 PARAMS ((bfd
*, Elf_Internal_Shdr
*, PTR
, Elf_Internal_Rela
*));
68 static size_t compute_bucket_count
69 PARAMS ((struct bfd_link_info
*));
70 static void elf_link_output_relocs
71 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, Elf_Internal_Rela
*));
72 static boolean elf_link_size_reloc_section
73 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
74 static void elf_link_adjust_relocs
75 PARAMS ((bfd
*, Elf_Internal_Shdr
*, unsigned int,
76 struct elf_link_hash_entry
**));
77 static int elf_link_sort_cmp1
78 PARAMS ((const void *, const void *));
79 static int elf_link_sort_cmp2
80 PARAMS ((const void *, const void *));
81 static size_t elf_link_sort_relocs
82 PARAMS ((bfd
*, struct bfd_link_info
*, asection
**));
83 static boolean elf_section_ignore_discarded_relocs
84 PARAMS ((asection
*));
86 /* Given an ELF BFD, add symbols to the global hash table as
90 elf_bfd_link_add_symbols (abfd
, info
)
92 struct bfd_link_info
*info
;
94 switch (bfd_get_format (abfd
))
97 return elf_link_add_object_symbols (abfd
, info
);
99 return elf_link_add_archive_symbols (abfd
, info
);
101 bfd_set_error (bfd_error_wrong_format
);
106 /* Return true iff this is a non-common, definition of a non-function symbol. */
108 is_global_data_symbol_definition (abfd
, sym
)
109 bfd
* abfd ATTRIBUTE_UNUSED
;
110 Elf_Internal_Sym
* sym
;
112 /* Local symbols do not count, but target specific ones might. */
113 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
114 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
117 /* Function symbols do not count. */
118 if (ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)
121 /* If the section is undefined, then so is the symbol. */
122 if (sym
->st_shndx
== SHN_UNDEF
)
125 /* If the symbol is defined in the common section, then
126 it is a common definition and so does not count. */
127 if (sym
->st_shndx
== SHN_COMMON
)
130 /* If the symbol is in a target specific section then we
131 must rely upon the backend to tell us what it is. */
132 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
133 /* FIXME - this function is not coded yet:
135 return _bfd_is_global_symbol_definition (abfd, sym);
137 Instead for now assume that the definition is not global,
138 Even if this is wrong, at least the linker will behave
139 in the same way that it used to do. */
145 /* Search the symbol table of the archive element of the archive ABFD
146 whose archive map contains a mention of SYMDEF, and determine if
147 the symbol is defined in this element. */
149 elf_link_is_defined_archive_symbol (abfd
, symdef
)
153 Elf_Internal_Shdr
* hdr
;
154 Elf_External_Sym
* esym
;
155 Elf_External_Sym
* esymend
;
156 Elf_External_Sym
* buf
= NULL
;
157 bfd_size_type symcount
;
158 bfd_size_type extsymcount
;
159 bfd_size_type extsymoff
;
160 boolean result
= false;
164 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
165 if (abfd
== (bfd
*) NULL
)
168 if (! bfd_check_format (abfd
, bfd_object
))
171 /* If we have already included the element containing this symbol in the
172 link then we do not need to include it again. Just claim that any symbol
173 it contains is not a definition, so that our caller will not decide to
174 (re)include this element. */
175 if (abfd
->archive_pass
)
178 /* Select the appropriate symbol table. */
179 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
180 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
182 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
184 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
186 /* The sh_info field of the symtab header tells us where the
187 external symbols start. We don't care about the local symbols. */
188 if (elf_bad_symtab (abfd
))
190 extsymcount
= symcount
;
195 extsymcount
= symcount
- hdr
->sh_info
;
196 extsymoff
= hdr
->sh_info
;
199 amt
= extsymcount
* sizeof (Elf_External_Sym
);
200 buf
= (Elf_External_Sym
*) bfd_malloc (amt
);
201 if (buf
== NULL
&& extsymcount
!= 0)
204 /* Read in the symbol table.
205 FIXME: This ought to be cached somewhere. */
206 pos
= hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym
);
207 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
208 || bfd_bread ((PTR
) buf
, amt
, abfd
) != amt
)
214 /* Scan the symbol table looking for SYMDEF. */
215 esymend
= buf
+ extsymcount
;
220 Elf_Internal_Sym sym
;
223 elf_swap_symbol_in (abfd
, esym
, & sym
);
225 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
, sym
.st_name
);
226 if (name
== (const char *) NULL
)
229 if (strcmp (name
, symdef
->name
) == 0)
231 result
= is_global_data_symbol_definition (abfd
, & sym
);
241 /* Add symbols from an ELF archive file to the linker hash table. We
242 don't use _bfd_generic_link_add_archive_symbols because of a
243 problem which arises on UnixWare. The UnixWare libc.so is an
244 archive which includes an entry libc.so.1 which defines a bunch of
245 symbols. The libc.so archive also includes a number of other
246 object files, which also define symbols, some of which are the same
247 as those defined in libc.so.1. Correct linking requires that we
248 consider each object file in turn, and include it if it defines any
249 symbols we need. _bfd_generic_link_add_archive_symbols does not do
250 this; it looks through the list of undefined symbols, and includes
251 any object file which defines them. When this algorithm is used on
252 UnixWare, it winds up pulling in libc.so.1 early and defining a
253 bunch of symbols. This means that some of the other objects in the
254 archive are not included in the link, which is incorrect since they
255 precede libc.so.1 in the archive.
257 Fortunately, ELF archive handling is simpler than that done by
258 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
259 oddities. In ELF, if we find a symbol in the archive map, and the
260 symbol is currently undefined, we know that we must pull in that
263 Unfortunately, we do have to make multiple passes over the symbol
264 table until nothing further is resolved. */
267 elf_link_add_archive_symbols (abfd
, info
)
269 struct bfd_link_info
*info
;
272 boolean
*defined
= NULL
;
273 boolean
*included
= NULL
;
278 if (! bfd_has_map (abfd
))
280 /* An empty archive is a special case. */
281 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
283 bfd_set_error (bfd_error_no_armap
);
287 /* Keep track of all symbols we know to be already defined, and all
288 files we know to be already included. This is to speed up the
289 second and subsequent passes. */
290 c
= bfd_ardata (abfd
)->symdef_count
;
294 amt
*= sizeof (boolean
);
295 defined
= (boolean
*) bfd_malloc (amt
);
296 included
= (boolean
*) bfd_malloc (amt
);
297 if (defined
== (boolean
*) NULL
|| included
== (boolean
*) NULL
)
299 memset (defined
, 0, (size_t) amt
);
300 memset (included
, 0, (size_t) amt
);
302 symdefs
= bfd_ardata (abfd
)->symdefs
;
315 symdefend
= symdef
+ c
;
316 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
318 struct elf_link_hash_entry
*h
;
320 struct bfd_link_hash_entry
*undefs_tail
;
323 if (defined
[i
] || included
[i
])
325 if (symdef
->file_offset
== last
)
331 h
= elf_link_hash_lookup (elf_hash_table (info
), symdef
->name
,
332 false, false, false);
338 /* If this is a default version (the name contains @@),
339 look up the symbol again without the version. The
340 effect is that references to the symbol without the
341 version will be matched by the default symbol in the
344 p
= strchr (symdef
->name
, ELF_VER_CHR
);
345 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
348 copy
= bfd_alloc (abfd
, (bfd_size_type
) (p
- symdef
->name
+ 1));
351 memcpy (copy
, symdef
->name
, (size_t) (p
- symdef
->name
));
352 copy
[p
- symdef
->name
] = '\0';
354 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
355 false, false, false);
357 bfd_release (abfd
, copy
);
363 if (h
->root
.type
== bfd_link_hash_common
)
365 /* We currently have a common symbol. The archive map contains
366 a reference to this symbol, so we may want to include it. We
367 only want to include it however, if this archive element
368 contains a definition of the symbol, not just another common
371 Unfortunately some archivers (including GNU ar) will put
372 declarations of common symbols into their archive maps, as
373 well as real definitions, so we cannot just go by the archive
374 map alone. Instead we must read in the element's symbol
375 table and check that to see what kind of symbol definition
377 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
380 else if (h
->root
.type
!= bfd_link_hash_undefined
)
382 if (h
->root
.type
!= bfd_link_hash_undefweak
)
387 /* We need to include this archive member. */
388 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
389 if (element
== (bfd
*) NULL
)
392 if (! bfd_check_format (element
, bfd_object
))
395 /* Doublecheck that we have not included this object
396 already--it should be impossible, but there may be
397 something wrong with the archive. */
398 if (element
->archive_pass
!= 0)
400 bfd_set_error (bfd_error_bad_value
);
403 element
->archive_pass
= 1;
405 undefs_tail
= info
->hash
->undefs_tail
;
407 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
410 if (! elf_link_add_object_symbols (element
, info
))
413 /* If there are any new undefined symbols, we need to make
414 another pass through the archive in order to see whether
415 they can be defined. FIXME: This isn't perfect, because
416 common symbols wind up on undefs_tail and because an
417 undefined symbol which is defined later on in this pass
418 does not require another pass. This isn't a bug, but it
419 does make the code less efficient than it could be. */
420 if (undefs_tail
!= info
->hash
->undefs_tail
)
423 /* Look backward to mark all symbols from this object file
424 which we have already seen in this pass. */
428 included
[mark
] = true;
433 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
435 /* We mark subsequent symbols from this object file as we go
436 on through the loop. */
437 last
= symdef
->file_offset
;
448 if (defined
!= (boolean
*) NULL
)
450 if (included
!= (boolean
*) NULL
)
455 /* This function is called when we want to define a new symbol. It
456 handles the various cases which arise when we find a definition in
457 a dynamic object, or when there is already a definition in a
458 dynamic object. The new symbol is described by NAME, SYM, PSEC,
459 and PVALUE. We set SYM_HASH to the hash table entry. We set
460 OVERRIDE if the old symbol is overriding a new definition. We set
461 TYPE_CHANGE_OK if it is OK for the type to change. We set
462 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
463 change, we mean that we shouldn't warn if the type or size does
464 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
468 elf_merge_symbol (abfd
, info
, name
, sym
, psec
, pvalue
, sym_hash
,
469 override
, type_change_ok
, size_change_ok
, dt_needed
)
471 struct bfd_link_info
*info
;
473 Elf_Internal_Sym
*sym
;
476 struct elf_link_hash_entry
**sym_hash
;
478 boolean
*type_change_ok
;
479 boolean
*size_change_ok
;
483 struct elf_link_hash_entry
*h
;
486 boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
491 bind
= ELF_ST_BIND (sym
->st_info
);
493 if (! bfd_is_und_section (sec
))
494 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, false, false);
496 h
= ((struct elf_link_hash_entry
*)
497 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, false, false));
502 /* This code is for coping with dynamic objects, and is only useful
503 if we are doing an ELF link. */
504 if (info
->hash
->creator
!= abfd
->xvec
)
507 /* For merging, we only care about real symbols. */
509 while (h
->root
.type
== bfd_link_hash_indirect
510 || h
->root
.type
== bfd_link_hash_warning
)
511 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
513 /* If we just created the symbol, mark it as being an ELF symbol.
514 Other than that, there is nothing to do--there is no merge issue
515 with a newly defined symbol--so we just return. */
517 if (h
->root
.type
== bfd_link_hash_new
)
519 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
523 /* OLDBFD is a BFD associated with the existing symbol. */
525 switch (h
->root
.type
)
531 case bfd_link_hash_undefined
:
532 case bfd_link_hash_undefweak
:
533 oldbfd
= h
->root
.u
.undef
.abfd
;
536 case bfd_link_hash_defined
:
537 case bfd_link_hash_defweak
:
538 oldbfd
= h
->root
.u
.def
.section
->owner
;
541 case bfd_link_hash_common
:
542 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
546 /* In cases involving weak versioned symbols, we may wind up trying
547 to merge a symbol with itself. Catch that here, to avoid the
548 confusion that results if we try to override a symbol with
549 itself. The additional tests catch cases like
550 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
551 dynamic object, which we do want to handle here. */
553 && ((abfd
->flags
& DYNAMIC
) == 0
554 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0))
557 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
558 respectively, is from a dynamic object. */
560 if ((abfd
->flags
& DYNAMIC
) != 0)
566 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
571 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
572 indices used by MIPS ELF. */
573 switch (h
->root
.type
)
579 case bfd_link_hash_defined
:
580 case bfd_link_hash_defweak
:
581 hsec
= h
->root
.u
.def
.section
;
584 case bfd_link_hash_common
:
585 hsec
= h
->root
.u
.c
.p
->section
;
592 olddyn
= (hsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
595 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
596 respectively, appear to be a definition rather than reference. */
598 if (bfd_is_und_section (sec
) || bfd_is_com_section (sec
))
603 if (h
->root
.type
== bfd_link_hash_undefined
604 || h
->root
.type
== bfd_link_hash_undefweak
605 || h
->root
.type
== bfd_link_hash_common
)
610 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
611 symbol, respectively, appears to be a common symbol in a dynamic
612 object. If a symbol appears in an uninitialized section, and is
613 not weak, and is not a function, then it may be a common symbol
614 which was resolved when the dynamic object was created. We want
615 to treat such symbols specially, because they raise special
616 considerations when setting the symbol size: if the symbol
617 appears as a common symbol in a regular object, and the size in
618 the regular object is larger, we must make sure that we use the
619 larger size. This problematic case can always be avoided in C,
620 but it must be handled correctly when using Fortran shared
623 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
624 likewise for OLDDYNCOMMON and OLDDEF.
626 Note that this test is just a heuristic, and that it is quite
627 possible to have an uninitialized symbol in a shared object which
628 is really a definition, rather than a common symbol. This could
629 lead to some minor confusion when the symbol really is a common
630 symbol in some regular object. However, I think it will be
635 && (sec
->flags
& SEC_ALLOC
) != 0
636 && (sec
->flags
& SEC_LOAD
) == 0
639 && ELF_ST_TYPE (sym
->st_info
) != STT_FUNC
)
642 newdyncommon
= false;
646 && h
->root
.type
== bfd_link_hash_defined
647 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
648 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
649 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
651 && h
->type
!= STT_FUNC
)
654 olddyncommon
= false;
656 /* It's OK to change the type if either the existing symbol or the
657 new symbol is weak unless it comes from a DT_NEEDED entry of
658 a shared object, in which case, the DT_NEEDED entry may not be
659 required at the run time. */
661 if ((! dt_needed
&& h
->root
.type
== bfd_link_hash_defweak
)
662 || h
->root
.type
== bfd_link_hash_undefweak
664 *type_change_ok
= true;
666 /* It's OK to change the size if either the existing symbol or the
667 new symbol is weak, or if the old symbol is undefined. */
670 || h
->root
.type
== bfd_link_hash_undefined
)
671 *size_change_ok
= true;
673 /* If both the old and the new symbols look like common symbols in a
674 dynamic object, set the size of the symbol to the larger of the
679 && sym
->st_size
!= h
->size
)
681 /* Since we think we have two common symbols, issue a multiple
682 common warning if desired. Note that we only warn if the
683 size is different. If the size is the same, we simply let
684 the old symbol override the new one as normally happens with
685 symbols defined in dynamic objects. */
687 if (! ((*info
->callbacks
->multiple_common
)
688 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
689 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
692 if (sym
->st_size
> h
->size
)
693 h
->size
= sym
->st_size
;
695 *size_change_ok
= true;
698 /* If we are looking at a dynamic object, and we have found a
699 definition, we need to see if the symbol was already defined by
700 some other object. If so, we want to use the existing
701 definition, and we do not want to report a multiple symbol
702 definition error; we do this by clobbering *PSEC to be
705 We treat a common symbol as a definition if the symbol in the
706 shared library is a function, since common symbols always
707 represent variables; this can cause confusion in principle, but
708 any such confusion would seem to indicate an erroneous program or
709 shared library. We also permit a common symbol in a regular
710 object to override a weak symbol in a shared object.
712 We prefer a non-weak definition in a shared library to a weak
713 definition in the executable unless it comes from a DT_NEEDED
714 entry of a shared object, in which case, the DT_NEEDED entry
715 may not be required at the run time. */
720 || (h
->root
.type
== bfd_link_hash_common
722 || ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)))
723 && (h
->root
.type
!= bfd_link_hash_defweak
725 || bind
== STB_WEAK
))
729 newdyncommon
= false;
731 *psec
= sec
= bfd_und_section_ptr
;
732 *size_change_ok
= true;
734 /* If we get here when the old symbol is a common symbol, then
735 we are explicitly letting it override a weak symbol or
736 function in a dynamic object, and we don't want to warn about
737 a type change. If the old symbol is a defined symbol, a type
738 change warning may still be appropriate. */
740 if (h
->root
.type
== bfd_link_hash_common
)
741 *type_change_ok
= true;
744 /* Handle the special case of an old common symbol merging with a
745 new symbol which looks like a common symbol in a shared object.
746 We change *PSEC and *PVALUE to make the new symbol look like a
747 common symbol, and let _bfd_generic_link_add_one_symbol will do
751 && h
->root
.type
== bfd_link_hash_common
)
755 newdyncommon
= false;
756 *pvalue
= sym
->st_size
;
757 *psec
= sec
= bfd_com_section_ptr
;
758 *size_change_ok
= true;
761 /* If the old symbol is from a dynamic object, and the new symbol is
762 a definition which is not from a dynamic object, then the new
763 symbol overrides the old symbol. Symbols from regular files
764 always take precedence over symbols from dynamic objects, even if
765 they are defined after the dynamic object in the link.
767 As above, we again permit a common symbol in a regular object to
768 override a definition in a shared object if the shared object
769 symbol is a function or is weak.
771 As above, we permit a non-weak definition in a shared object to
772 override a weak definition in a regular object. */
776 || (bfd_is_com_section (sec
)
777 && (h
->root
.type
== bfd_link_hash_defweak
778 || h
->type
== STT_FUNC
)))
781 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
783 || h
->root
.type
== bfd_link_hash_defweak
))
785 /* Change the hash table entry to undefined, and let
786 _bfd_generic_link_add_one_symbol do the right thing with the
789 h
->root
.type
= bfd_link_hash_undefined
;
790 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
791 *size_change_ok
= true;
794 olddyncommon
= false;
796 /* We again permit a type change when a common symbol may be
797 overriding a function. */
799 if (bfd_is_com_section (sec
))
800 *type_change_ok
= true;
802 /* This union may have been set to be non-NULL when this symbol
803 was seen in a dynamic object. We must force the union to be
804 NULL, so that it is correct for a regular symbol. */
806 h
->verinfo
.vertree
= NULL
;
808 /* In this special case, if H is the target of an indirection,
809 we want the caller to frob with H rather than with the
810 indirect symbol. That will permit the caller to redefine the
811 target of the indirection, rather than the indirect symbol
812 itself. FIXME: This will break the -y option if we store a
813 symbol with a different name. */
817 /* Handle the special case of a new common symbol merging with an
818 old symbol that looks like it might be a common symbol defined in
819 a shared object. Note that we have already handled the case in
820 which a new common symbol should simply override the definition
821 in the shared library. */
824 && bfd_is_com_section (sec
)
827 /* It would be best if we could set the hash table entry to a
828 common symbol, but we don't know what to use for the section
830 if (! ((*info
->callbacks
->multiple_common
)
831 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
832 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
835 /* If the predumed common symbol in the dynamic object is
836 larger, pretend that the new symbol has its size. */
838 if (h
->size
> *pvalue
)
841 /* FIXME: We no longer know the alignment required by the symbol
842 in the dynamic object, so we just wind up using the one from
843 the regular object. */
846 olddyncommon
= false;
848 h
->root
.type
= bfd_link_hash_undefined
;
849 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
851 *size_change_ok
= true;
852 *type_change_ok
= true;
854 h
->verinfo
.vertree
= NULL
;
857 /* Handle the special case of a weak definition in a regular object
858 followed by a non-weak definition in a shared object. In this
859 case, we prefer the definition in the shared object unless it
860 comes from a DT_NEEDED entry of a shared object, in which case,
861 the DT_NEEDED entry may not be required at the run time. */
864 && h
->root
.type
== bfd_link_hash_defweak
869 /* To make this work we have to frob the flags so that the rest
870 of the code does not think we are using the regular
872 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
873 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
874 else if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
875 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
876 h
->elf_link_hash_flags
&= ~ (ELF_LINK_HASH_DEF_REGULAR
877 | ELF_LINK_HASH_DEF_DYNAMIC
);
879 /* If H is the target of an indirection, we want the caller to
880 use H rather than the indirect symbol. Otherwise if we are
881 defining a new indirect symbol we will wind up attaching it
882 to the entry we are overriding. */
886 /* Handle the special case of a non-weak definition in a shared
887 object followed by a weak definition in a regular object. In
888 this case we prefer to definition in the shared object. To make
889 this work we have to tell the caller to not treat the new symbol
893 && h
->root
.type
!= bfd_link_hash_defweak
902 /* This function is called to create an indirect symbol from the
903 default for the symbol with the default version if needed. The
904 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
905 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
906 indicates if it comes from a DT_NEEDED entry of a shared object. */
909 elf_add_default_symbol (abfd
, info
, h
, name
, sym
, sec
, value
,
910 dynsym
, override
, dt_needed
)
912 struct bfd_link_info
*info
;
913 struct elf_link_hash_entry
*h
;
915 Elf_Internal_Sym
*sym
;
922 boolean type_change_ok
;
923 boolean size_change_ok
;
925 struct elf_link_hash_entry
*hi
;
926 struct elf_backend_data
*bed
;
931 /* If this symbol has a version, and it is the default version, we
932 create an indirect symbol from the default name to the fully
933 decorated name. This will cause external references which do not
934 specify a version to be bound to this version of the symbol. */
935 p
= strchr (name
, ELF_VER_CHR
);
936 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
941 /* We are overridden by an old defition. We need to check if we
942 need to crreate the indirect symbol from the default name. */
943 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, true,
945 BFD_ASSERT (hi
!= NULL
);
948 while (hi
->root
.type
== bfd_link_hash_indirect
949 || hi
->root
.type
== bfd_link_hash_warning
)
951 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
957 bed
= get_elf_backend_data (abfd
);
958 collect
= bed
->collect
;
959 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
961 shortname
= bfd_hash_allocate (&info
->hash
->table
,
962 (size_t) (p
- name
+ 1));
963 if (shortname
== NULL
)
965 strncpy (shortname
, name
, (size_t) (p
- name
));
966 shortname
[p
- name
] = '\0';
968 /* We are going to create a new symbol. Merge it with any existing
969 symbol with this name. For the purposes of the merge, act as
970 though we were defining the symbol we just defined, although we
971 actually going to define an indirect symbol. */
972 type_change_ok
= false;
973 size_change_ok
= false;
974 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, sec
, value
,
975 &hi
, &override
, &type_change_ok
,
976 &size_change_ok
, dt_needed
))
981 if (! (_bfd_generic_link_add_one_symbol
982 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
983 (bfd_vma
) 0, name
, false, collect
,
984 (struct bfd_link_hash_entry
**) &hi
)))
989 /* In this case the symbol named SHORTNAME is overriding the
990 indirect symbol we want to add. We were planning on making
991 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
992 is the name without a version. NAME is the fully versioned
993 name, and it is the default version.
995 Overriding means that we already saw a definition for the
996 symbol SHORTNAME in a regular object, and it is overriding
997 the symbol defined in the dynamic object.
999 When this happens, we actually want to change NAME, the
1000 symbol we just added, to refer to SHORTNAME. This will cause
1001 references to NAME in the shared object to become references
1002 to SHORTNAME in the regular object. This is what we expect
1003 when we override a function in a shared object: that the
1004 references in the shared object will be mapped to the
1005 definition in the regular object. */
1007 while (hi
->root
.type
== bfd_link_hash_indirect
1008 || hi
->root
.type
== bfd_link_hash_warning
)
1009 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1011 h
->root
.type
= bfd_link_hash_indirect
;
1012 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1013 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
1015 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_DEF_DYNAMIC
;
1016 hi
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
1017 if (hi
->elf_link_hash_flags
1018 & (ELF_LINK_HASH_REF_REGULAR
1019 | ELF_LINK_HASH_DEF_REGULAR
))
1021 if (! _bfd_elf_link_record_dynamic_symbol (info
, hi
))
1026 /* Now set HI to H, so that the following code will set the
1027 other fields correctly. */
1031 /* If there is a duplicate definition somewhere, then HI may not
1032 point to an indirect symbol. We will have reported an error to
1033 the user in that case. */
1035 if (hi
->root
.type
== bfd_link_hash_indirect
)
1037 struct elf_link_hash_entry
*ht
;
1039 /* If the symbol became indirect, then we assume that we have
1040 not seen a definition before. */
1041 BFD_ASSERT ((hi
->elf_link_hash_flags
1042 & (ELF_LINK_HASH_DEF_DYNAMIC
1043 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1045 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1046 (*bed
->elf_backend_copy_indirect_symbol
) (ht
, hi
);
1048 /* See if the new flags lead us to realize that the symbol must
1055 || ((hi
->elf_link_hash_flags
1056 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1061 if ((hi
->elf_link_hash_flags
1062 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1068 /* We also need to define an indirection from the nondefault version
1071 shortname
= bfd_hash_allocate (&info
->hash
->table
, strlen (name
));
1072 if (shortname
== NULL
)
1074 strncpy (shortname
, name
, (size_t) (p
- name
));
1075 strcpy (shortname
+ (p
- name
), p
+ 1);
1077 /* Once again, merge with any existing symbol. */
1078 type_change_ok
= false;
1079 size_change_ok
= false;
1080 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, sec
, value
,
1081 &hi
, &override
, &type_change_ok
,
1082 &size_change_ok
, dt_needed
))
1087 /* Here SHORTNAME is a versioned name, so we don't expect to see
1088 the type of override we do in the case above. */
1089 (*_bfd_error_handler
)
1090 (_("%s: warning: unexpected redefinition of `%s'"),
1091 bfd_archive_filename (abfd
), shortname
);
1095 if (! (_bfd_generic_link_add_one_symbol
1096 (info
, abfd
, shortname
, BSF_INDIRECT
,
1097 bfd_ind_section_ptr
, (bfd_vma
) 0, name
, false,
1098 collect
, (struct bfd_link_hash_entry
**) &hi
)))
1101 /* If there is a duplicate definition somewhere, then HI may not
1102 point to an indirect symbol. We will have reported an error
1103 to the user in that case. */
1105 if (hi
->root
.type
== bfd_link_hash_indirect
)
1107 /* If the symbol became indirect, then we assume that we have
1108 not seen a definition before. */
1109 BFD_ASSERT ((hi
->elf_link_hash_flags
1110 & (ELF_LINK_HASH_DEF_DYNAMIC
1111 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1113 (*bed
->elf_backend_copy_indirect_symbol
) (h
, hi
);
1115 /* See if the new flags lead us to realize that the symbol
1122 || ((hi
->elf_link_hash_flags
1123 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1128 if ((hi
->elf_link_hash_flags
1129 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1139 /* Add symbols from an ELF object file to the linker hash table. */
1142 elf_link_add_object_symbols (abfd
, info
)
1144 struct bfd_link_info
*info
;
1146 boolean (*add_symbol_hook
) PARAMS ((bfd
*, struct bfd_link_info
*,
1147 const Elf_Internal_Sym
*,
1148 const char **, flagword
*,
1149 asection
**, bfd_vma
*));
1150 boolean (*check_relocs
) PARAMS ((bfd
*, struct bfd_link_info
*,
1151 asection
*, const Elf_Internal_Rela
*));
1153 Elf_Internal_Shdr
*hdr
;
1154 bfd_size_type symcount
;
1155 bfd_size_type extsymcount
;
1156 bfd_size_type extsymoff
;
1157 Elf_External_Sym
*buf
= NULL
;
1158 struct elf_link_hash_entry
**sym_hash
;
1160 Elf_External_Versym
*extversym
= NULL
;
1161 Elf_External_Versym
*ever
;
1162 Elf_External_Dyn
*dynbuf
= NULL
;
1163 struct elf_link_hash_entry
*weaks
;
1164 Elf_External_Sym
*esym
;
1165 Elf_External_Sym
*esymend
;
1166 struct elf_backend_data
*bed
;
1168 struct elf_link_hash_table
* hash_table
;
1172 hash_table
= elf_hash_table (info
);
1174 bed
= get_elf_backend_data (abfd
);
1175 add_symbol_hook
= bed
->elf_add_symbol_hook
;
1176 collect
= bed
->collect
;
1178 if ((abfd
->flags
& DYNAMIC
) == 0)
1184 /* You can't use -r against a dynamic object. Also, there's no
1185 hope of using a dynamic object which does not exactly match
1186 the format of the output file. */
1187 if (info
->relocateable
|| info
->hash
->creator
!= abfd
->xvec
)
1189 bfd_set_error (bfd_error_invalid_operation
);
1194 /* As a GNU extension, any input sections which are named
1195 .gnu.warning.SYMBOL are treated as warning symbols for the given
1196 symbol. This differs from .gnu.warning sections, which generate
1197 warnings when they are included in an output file. */
1202 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1206 name
= bfd_get_section_name (abfd
, s
);
1207 if (strncmp (name
, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1212 name
+= sizeof ".gnu.warning." - 1;
1214 /* If this is a shared object, then look up the symbol
1215 in the hash table. If it is there, and it is already
1216 been defined, then we will not be using the entry
1217 from this shared object, so we don't need to warn.
1218 FIXME: If we see the definition in a regular object
1219 later on, we will warn, but we shouldn't. The only
1220 fix is to keep track of what warnings we are supposed
1221 to emit, and then handle them all at the end of the
1223 if (dynamic
&& abfd
->xvec
== info
->hash
->creator
)
1225 struct elf_link_hash_entry
*h
;
1227 h
= elf_link_hash_lookup (hash_table
, name
,
1228 false, false, true);
1230 /* FIXME: What about bfd_link_hash_common? */
1232 && (h
->root
.type
== bfd_link_hash_defined
1233 || h
->root
.type
== bfd_link_hash_defweak
))
1235 /* We don't want to issue this warning. Clobber
1236 the section size so that the warning does not
1237 get copied into the output file. */
1243 sz
= bfd_section_size (abfd
, s
);
1244 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
1248 if (! bfd_get_section_contents (abfd
, s
, msg
, (file_ptr
) 0, sz
))
1253 if (! (_bfd_generic_link_add_one_symbol
1254 (info
, abfd
, name
, BSF_WARNING
, s
, (bfd_vma
) 0, msg
,
1255 false, collect
, (struct bfd_link_hash_entry
**) NULL
)))
1258 if (! info
->relocateable
)
1260 /* Clobber the section size so that the warning does
1261 not get copied into the output file. */
1268 /* If this is a dynamic object, we always link against the .dynsym
1269 symbol table, not the .symtab symbol table. The dynamic linker
1270 will only see the .dynsym symbol table, so there is no reason to
1271 look at .symtab for a dynamic object. */
1273 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
1274 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1276 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1280 /* Read in any version definitions. */
1282 if (! _bfd_elf_slurp_version_tables (abfd
))
1285 /* Read in the symbol versions, but don't bother to convert them
1286 to internal format. */
1287 if (elf_dynversym (abfd
) != 0)
1289 Elf_Internal_Shdr
*versymhdr
;
1291 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
1292 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
1293 if (extversym
== NULL
)
1295 amt
= versymhdr
->sh_size
;
1296 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
1297 || bfd_bread ((PTR
) extversym
, amt
, abfd
) != amt
)
1302 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
1304 /* The sh_info field of the symtab header tells us where the
1305 external symbols start. We don't care about the local symbols at
1307 if (elf_bad_symtab (abfd
))
1309 extsymcount
= symcount
;
1314 extsymcount
= symcount
- hdr
->sh_info
;
1315 extsymoff
= hdr
->sh_info
;
1318 amt
= extsymcount
* sizeof (Elf_External_Sym
);
1319 buf
= (Elf_External_Sym
*) bfd_malloc (amt
);
1320 if (buf
== NULL
&& extsymcount
!= 0)
1323 /* We store a pointer to the hash table entry for each external
1325 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
1326 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
1327 if (sym_hash
== NULL
)
1329 elf_sym_hashes (abfd
) = sym_hash
;
1335 /* If we are creating a shared library, create all the dynamic
1336 sections immediately. We need to attach them to something,
1337 so we attach them to this BFD, provided it is the right
1338 format. FIXME: If there are no input BFD's of the same
1339 format as the output, we can't make a shared library. */
1341 && is_elf_hash_table (info
)
1342 && ! hash_table
->dynamic_sections_created
1343 && abfd
->xvec
== info
->hash
->creator
)
1345 if (! elf_link_create_dynamic_sections (abfd
, info
))
1349 else if (! is_elf_hash_table (info
))
1356 bfd_size_type oldsize
;
1357 bfd_size_type strindex
;
1359 /* Find the name to use in a DT_NEEDED entry that refers to this
1360 object. If the object has a DT_SONAME entry, we use it.
1361 Otherwise, if the generic linker stuck something in
1362 elf_dt_name, we use that. Otherwise, we just use the file
1363 name. If the generic linker put a null string into
1364 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1365 there is a DT_SONAME entry. */
1367 name
= bfd_get_filename (abfd
);
1368 if (elf_dt_name (abfd
) != NULL
)
1370 name
= elf_dt_name (abfd
);
1373 if (elf_dt_soname (abfd
) != NULL
)
1379 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1382 Elf_External_Dyn
*extdyn
;
1383 Elf_External_Dyn
*extdynend
;
1385 unsigned long shlink
;
1389 dynbuf
= (Elf_External_Dyn
*) bfd_malloc (s
->_raw_size
);
1393 if (! bfd_get_section_contents (abfd
, s
, (PTR
) dynbuf
,
1394 (file_ptr
) 0, s
->_raw_size
))
1397 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1400 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1403 /* The shared libraries distributed with hpux11 have a bogus
1404 sh_link field for the ".dynamic" section. This code detects
1405 when SHLINK refers to a section that is not a string table
1406 and tries to find the string table for the ".dynsym" section
1408 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[shlink
];
1409 if (shdr
->sh_type
!= SHT_STRTAB
)
1411 asection
*ds
= bfd_get_section_by_name (abfd
, ".dynsym");
1412 int elfdsec
= _bfd_elf_section_from_bfd_section (abfd
, ds
);
1415 shlink
= elf_elfsections (abfd
)[elfdsec
]->sh_link
;
1420 extdynend
= extdyn
+ s
->_raw_size
/ sizeof (Elf_External_Dyn
);
1423 for (; extdyn
< extdynend
; extdyn
++)
1425 Elf_Internal_Dyn dyn
;
1427 elf_swap_dyn_in (abfd
, extdyn
, &dyn
);
1428 if (dyn
.d_tag
== DT_SONAME
)
1430 unsigned int tagv
= dyn
.d_un
.d_val
;
1431 name
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1435 if (dyn
.d_tag
== DT_NEEDED
)
1437 struct bfd_link_needed_list
*n
, **pn
;
1439 unsigned int tagv
= dyn
.d_un
.d_val
;
1441 amt
= sizeof (struct bfd_link_needed_list
);
1442 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1443 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1444 if (n
== NULL
|| fnm
== NULL
)
1446 anm
= bfd_alloc (abfd
, (bfd_size_type
) strlen (fnm
) + 1);
1453 for (pn
= & hash_table
->needed
;
1459 if (dyn
.d_tag
== DT_RUNPATH
)
1461 struct bfd_link_needed_list
*n
, **pn
;
1463 unsigned int tagv
= dyn
.d_un
.d_val
;
1465 /* When we see DT_RPATH before DT_RUNPATH, we have
1466 to clear runpath. Do _NOT_ bfd_release, as that
1467 frees all more recently bfd_alloc'd blocks as
1469 if (rpath
&& hash_table
->runpath
)
1470 hash_table
->runpath
= NULL
;
1472 amt
= sizeof (struct bfd_link_needed_list
);
1473 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1474 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1475 if (n
== NULL
|| fnm
== NULL
)
1477 anm
= bfd_alloc (abfd
, (bfd_size_type
) strlen (fnm
) + 1);
1484 for (pn
= & hash_table
->runpath
;
1492 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1493 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
1495 struct bfd_link_needed_list
*n
, **pn
;
1497 unsigned int tagv
= dyn
.d_un
.d_val
;
1499 amt
= sizeof (struct bfd_link_needed_list
);
1500 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1501 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1502 if (n
== NULL
|| fnm
== NULL
)
1504 anm
= bfd_alloc (abfd
, (bfd_size_type
) strlen (fnm
) + 1);
1511 for (pn
= & hash_table
->runpath
;
1524 /* We do not want to include any of the sections in a dynamic
1525 object in the output file. We hack by simply clobbering the
1526 list of sections in the BFD. This could be handled more
1527 cleanly by, say, a new section flag; the existing
1528 SEC_NEVER_LOAD flag is not the one we want, because that one
1529 still implies that the section takes up space in the output
1531 abfd
->sections
= NULL
;
1532 abfd
->section_count
= 0;
1534 /* If this is the first dynamic object found in the link, create
1535 the special sections required for dynamic linking. */
1536 if (! hash_table
->dynamic_sections_created
)
1537 if (! elf_link_create_dynamic_sections (abfd
, info
))
1542 /* Add a DT_NEEDED entry for this dynamic object. */
1543 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
1544 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, name
, false);
1545 if (strindex
== (bfd_size_type
) -1)
1548 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
1551 Elf_External_Dyn
*dyncon
, *dynconend
;
1553 /* The hash table size did not change, which means that
1554 the dynamic object name was already entered. If we
1555 have already included this dynamic object in the
1556 link, just ignore it. There is no reason to include
1557 a particular dynamic object more than once. */
1558 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
1559 BFD_ASSERT (sdyn
!= NULL
);
1561 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
1562 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
1564 for (; dyncon
< dynconend
; dyncon
++)
1566 Elf_Internal_Dyn dyn
;
1568 elf_swap_dyn_in (hash_table
->dynobj
, dyncon
, & dyn
);
1569 if (dyn
.d_tag
== DT_NEEDED
1570 && dyn
.d_un
.d_val
== strindex
)
1574 if (extversym
!= NULL
)
1576 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
1582 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
1586 /* Save the SONAME, if there is one, because sometimes the
1587 linker emulation code will need to know it. */
1589 name
= basename (bfd_get_filename (abfd
));
1590 elf_dt_name (abfd
) = name
;
1593 pos
= hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym
);
1594 amt
= extsymcount
* sizeof (Elf_External_Sym
);
1595 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
1596 || bfd_bread ((PTR
) buf
, amt
, abfd
) != amt
)
1601 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
1602 esymend
= buf
+ extsymcount
;
1605 esym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
1607 Elf_Internal_Sym sym
;
1613 struct elf_link_hash_entry
*h
;
1615 boolean size_change_ok
, type_change_ok
;
1616 boolean new_weakdef
;
1617 unsigned int old_alignment
;
1622 elf_swap_symbol_in (abfd
, esym
, &sym
);
1624 flags
= BSF_NO_FLAGS
;
1626 value
= sym
.st_value
;
1629 bind
= ELF_ST_BIND (sym
.st_info
);
1630 if (bind
== STB_LOCAL
)
1632 /* This should be impossible, since ELF requires that all
1633 global symbols follow all local symbols, and that sh_info
1634 point to the first global symbol. Unfortunatealy, Irix 5
1638 else if (bind
== STB_GLOBAL
)
1640 if (sym
.st_shndx
!= SHN_UNDEF
1641 && sym
.st_shndx
!= SHN_COMMON
)
1644 else if (bind
== STB_WEAK
)
1648 /* Leave it up to the processor backend. */
1651 if (sym
.st_shndx
== SHN_UNDEF
)
1652 sec
= bfd_und_section_ptr
;
1653 else if (sym
.st_shndx
> 0 && sym
.st_shndx
< SHN_LORESERVE
)
1655 sec
= section_from_elf_index (abfd
, sym
.st_shndx
);
1657 sec
= bfd_abs_section_ptr
;
1658 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
1661 else if (sym
.st_shndx
== SHN_ABS
)
1662 sec
= bfd_abs_section_ptr
;
1663 else if (sym
.st_shndx
== SHN_COMMON
)
1665 sec
= bfd_com_section_ptr
;
1666 /* What ELF calls the size we call the value. What ELF
1667 calls the value we call the alignment. */
1668 value
= sym
.st_size
;
1672 /* Leave it up to the processor backend. */
1675 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
, sym
.st_name
);
1676 if (name
== (const char *) NULL
)
1679 if (add_symbol_hook
)
1681 if (! (*add_symbol_hook
) (abfd
, info
, &sym
, &name
, &flags
, &sec
,
1685 /* The hook function sets the name to NULL if this symbol
1686 should be skipped for some reason. */
1687 if (name
== (const char *) NULL
)
1691 /* Sanity check that all possibilities were handled. */
1692 if (sec
== (asection
*) NULL
)
1694 bfd_set_error (bfd_error_bad_value
);
1698 if (bfd_is_und_section (sec
)
1699 || bfd_is_com_section (sec
))
1704 size_change_ok
= false;
1705 type_change_ok
= get_elf_backend_data (abfd
)->type_change_ok
;
1707 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1709 Elf_Internal_Versym iver
;
1710 unsigned int vernum
= 0;
1714 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
1715 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
1717 /* If this is a hidden symbol, or if it is not version
1718 1, we append the version name to the symbol name.
1719 However, we do not modify a non-hidden absolute
1720 symbol, because it might be the version symbol
1721 itself. FIXME: What if it isn't? */
1722 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
1723 || (vernum
> 1 && ! bfd_is_abs_section (sec
)))
1726 unsigned int namelen
;
1727 bfd_size_type newlen
;
1730 if (sym
.st_shndx
!= SHN_UNDEF
)
1732 if (vernum
> elf_tdata (abfd
)->dynverdef_hdr
.sh_info
)
1734 (*_bfd_error_handler
)
1735 (_("%s: %s: invalid version %u (max %d)"),
1736 bfd_archive_filename (abfd
), name
, vernum
,
1737 elf_tdata (abfd
)->dynverdef_hdr
.sh_info
);
1738 bfd_set_error (bfd_error_bad_value
);
1741 else if (vernum
> 1)
1743 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1749 /* We cannot simply test for the number of
1750 entries in the VERNEED section since the
1751 numbers for the needed versions do not start
1753 Elf_Internal_Verneed
*t
;
1756 for (t
= elf_tdata (abfd
)->verref
;
1760 Elf_Internal_Vernaux
*a
;
1762 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1764 if (a
->vna_other
== vernum
)
1766 verstr
= a
->vna_nodename
;
1775 (*_bfd_error_handler
)
1776 (_("%s: %s: invalid needed version %d"),
1777 bfd_archive_filename (abfd
), name
, vernum
);
1778 bfd_set_error (bfd_error_bad_value
);
1783 namelen
= strlen (name
);
1784 newlen
= namelen
+ strlen (verstr
) + 2;
1785 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
1788 newname
= (char *) bfd_alloc (abfd
, newlen
);
1789 if (newname
== NULL
)
1791 strcpy (newname
, name
);
1792 p
= newname
+ namelen
;
1794 /* If this is a defined non-hidden version symbol,
1795 we add another @ to the name. This indicates the
1796 default version of the symbol. */
1797 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
1798 && sym
.st_shndx
!= SHN_UNDEF
)
1806 if (! elf_merge_symbol (abfd
, info
, name
, &sym
, &sec
, &value
,
1807 sym_hash
, &override
, &type_change_ok
,
1808 &size_change_ok
, dt_needed
))
1815 while (h
->root
.type
== bfd_link_hash_indirect
1816 || h
->root
.type
== bfd_link_hash_warning
)
1817 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1819 /* Remember the old alignment if this is a common symbol, so
1820 that we don't reduce the alignment later on. We can't
1821 check later, because _bfd_generic_link_add_one_symbol
1822 will set a default for the alignment which we want to
1824 if (h
->root
.type
== bfd_link_hash_common
)
1825 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1827 if (elf_tdata (abfd
)->verdef
!= NULL
1831 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
1834 if (! (_bfd_generic_link_add_one_symbol
1835 (info
, abfd
, name
, flags
, sec
, value
, (const char *) NULL
,
1836 false, collect
, (struct bfd_link_hash_entry
**) sym_hash
)))
1840 while (h
->root
.type
== bfd_link_hash_indirect
1841 || h
->root
.type
== bfd_link_hash_warning
)
1842 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1845 new_weakdef
= false;
1848 && (flags
& BSF_WEAK
) != 0
1849 && ELF_ST_TYPE (sym
.st_info
) != STT_FUNC
1850 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
1851 && h
->weakdef
== NULL
)
1853 /* Keep a list of all weak defined non function symbols from
1854 a dynamic object, using the weakdef field. Later in this
1855 function we will set the weakdef field to the correct
1856 value. We only put non-function symbols from dynamic
1857 objects on this list, because that happens to be the only
1858 time we need to know the normal symbol corresponding to a
1859 weak symbol, and the information is time consuming to
1860 figure out. If the weakdef field is not already NULL,
1861 then this symbol was already defined by some previous
1862 dynamic object, and we will be using that previous
1863 definition anyhow. */
1870 /* Set the alignment of a common symbol. */
1871 if (sym
.st_shndx
== SHN_COMMON
1872 && h
->root
.type
== bfd_link_hash_common
)
1876 align
= bfd_log2 (sym
.st_value
);
1877 if (align
> old_alignment
1878 /* Permit an alignment power of zero if an alignment of one
1879 is specified and no other alignments have been specified. */
1880 || (sym
.st_value
== 1 && old_alignment
== 0))
1881 h
->root
.u
.c
.p
->alignment_power
= align
;
1884 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1890 /* Remember the symbol size and type. */
1891 if (sym
.st_size
!= 0
1892 && (definition
|| h
->size
== 0))
1894 if (h
->size
!= 0 && h
->size
!= sym
.st_size
&& ! size_change_ok
)
1895 (*_bfd_error_handler
)
1896 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1897 name
, (unsigned long) h
->size
, (unsigned long) sym
.st_size
,
1898 bfd_archive_filename (abfd
));
1900 h
->size
= sym
.st_size
;
1903 /* If this is a common symbol, then we always want H->SIZE
1904 to be the size of the common symbol. The code just above
1905 won't fix the size if a common symbol becomes larger. We
1906 don't warn about a size change here, because that is
1907 covered by --warn-common. */
1908 if (h
->root
.type
== bfd_link_hash_common
)
1909 h
->size
= h
->root
.u
.c
.size
;
1911 if (ELF_ST_TYPE (sym
.st_info
) != STT_NOTYPE
1912 && (definition
|| h
->type
== STT_NOTYPE
))
1914 if (h
->type
!= STT_NOTYPE
1915 && h
->type
!= ELF_ST_TYPE (sym
.st_info
)
1916 && ! type_change_ok
)
1917 (*_bfd_error_handler
)
1918 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1919 name
, h
->type
, ELF_ST_TYPE (sym
.st_info
),
1920 bfd_archive_filename (abfd
));
1922 h
->type
= ELF_ST_TYPE (sym
.st_info
);
1925 /* If st_other has a processor-specific meaning, specific code
1926 might be needed here. */
1927 if (sym
.st_other
!= 0)
1929 /* Combine visibilities, using the most constraining one. */
1930 unsigned char hvis
= ELF_ST_VISIBILITY (h
->other
);
1931 unsigned char symvis
= ELF_ST_VISIBILITY (sym
.st_other
);
1933 if (symvis
&& (hvis
> symvis
|| hvis
== 0))
1934 h
->other
= sym
.st_other
;
1936 /* If neither has visibility, use the st_other of the
1937 definition. This is an arbitrary choice, since the
1938 other bits have no general meaning. */
1939 if (!symvis
&& !hvis
1940 && (definition
|| h
->other
== 0))
1941 h
->other
= sym
.st_other
;
1944 /* Set a flag in the hash table entry indicating the type of
1945 reference or definition we just found. Keep a count of
1946 the number of dynamic symbols we find. A dynamic symbol
1947 is one which is referenced or defined by both a regular
1948 object and a shared object. */
1949 old_flags
= h
->elf_link_hash_flags
;
1955 new_flag
= ELF_LINK_HASH_REF_REGULAR
;
1956 if (bind
!= STB_WEAK
)
1957 new_flag
|= ELF_LINK_HASH_REF_REGULAR_NONWEAK
;
1960 new_flag
= ELF_LINK_HASH_DEF_REGULAR
;
1962 || (old_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
1963 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0)
1969 new_flag
= ELF_LINK_HASH_REF_DYNAMIC
;
1971 new_flag
= ELF_LINK_HASH_DEF_DYNAMIC
;
1972 if ((old_flags
& (ELF_LINK_HASH_DEF_REGULAR
1973 | ELF_LINK_HASH_REF_REGULAR
)) != 0
1974 || (h
->weakdef
!= NULL
1976 && h
->weakdef
->dynindx
!= -1))
1980 h
->elf_link_hash_flags
|= new_flag
;
1982 /* Check to see if we need to add an indirect symbol for
1983 the default name. */
1984 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
1985 if (! elf_add_default_symbol (abfd
, info
, h
, name
, &sym
,
1986 &sec
, &value
, &dynsym
,
1987 override
, dt_needed
))
1990 if (dynsym
&& h
->dynindx
== -1)
1992 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
1994 if (h
->weakdef
!= NULL
1996 && h
->weakdef
->dynindx
== -1)
1998 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2002 else if (dynsym
&& h
->dynindx
!= -1)
2003 /* If the symbol already has a dynamic index, but
2004 visibility says it should not be visible, turn it into
2006 switch (ELF_ST_VISIBILITY (h
->other
))
2010 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
2011 (*bed
->elf_backend_hide_symbol
) (info
, h
);
2012 _bfd_elf_strtab_delref (hash_table
->dynstr
,
2017 if (dt_needed
&& definition
2018 && (h
->elf_link_hash_flags
2019 & ELF_LINK_HASH_REF_REGULAR
) != 0)
2021 bfd_size_type oldsize
;
2022 bfd_size_type strindex
;
2024 if (! is_elf_hash_table (info
))
2027 /* The symbol from a DT_NEEDED object is referenced from
2028 the regular object to create a dynamic executable. We
2029 have to make sure there is a DT_NEEDED entry for it. */
2032 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
2033 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
,
2034 elf_dt_soname (abfd
), false);
2035 if (strindex
== (bfd_size_type
) -1)
2038 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
2041 Elf_External_Dyn
*dyncon
, *dynconend
;
2043 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
,
2045 BFD_ASSERT (sdyn
!= NULL
);
2047 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
2048 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
2050 for (; dyncon
< dynconend
; dyncon
++)
2052 Elf_Internal_Dyn dyn
;
2054 elf_swap_dyn_in (hash_table
->dynobj
,
2056 BFD_ASSERT (dyn
.d_tag
!= DT_NEEDED
||
2057 dyn
.d_un
.d_val
!= strindex
);
2061 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
2067 /* Now set the weakdefs field correctly for all the weak defined
2068 symbols we found. The only way to do this is to search all the
2069 symbols. Since we only need the information for non functions in
2070 dynamic objects, that's the only time we actually put anything on
2071 the list WEAKS. We need this information so that if a regular
2072 object refers to a symbol defined weakly in a dynamic object, the
2073 real symbol in the dynamic object is also put in the dynamic
2074 symbols; we also must arrange for both symbols to point to the
2075 same memory location. We could handle the general case of symbol
2076 aliasing, but a general symbol alias can only be generated in
2077 assembler code, handling it correctly would be very time
2078 consuming, and other ELF linkers don't handle general aliasing
2080 while (weaks
!= NULL
)
2082 struct elf_link_hash_entry
*hlook
;
2085 struct elf_link_hash_entry
**hpp
;
2086 struct elf_link_hash_entry
**hppend
;
2089 weaks
= hlook
->weakdef
;
2090 hlook
->weakdef
= NULL
;
2092 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
2093 || hlook
->root
.type
== bfd_link_hash_defweak
2094 || hlook
->root
.type
== bfd_link_hash_common
2095 || hlook
->root
.type
== bfd_link_hash_indirect
);
2096 slook
= hlook
->root
.u
.def
.section
;
2097 vlook
= hlook
->root
.u
.def
.value
;
2099 hpp
= elf_sym_hashes (abfd
);
2100 hppend
= hpp
+ extsymcount
;
2101 for (; hpp
< hppend
; hpp
++)
2103 struct elf_link_hash_entry
*h
;
2106 if (h
!= NULL
&& h
!= hlook
2107 && h
->root
.type
== bfd_link_hash_defined
2108 && h
->root
.u
.def
.section
== slook
2109 && h
->root
.u
.def
.value
== vlook
)
2113 /* If the weak definition is in the list of dynamic
2114 symbols, make sure the real definition is put there
2116 if (hlook
->dynindx
!= -1
2117 && h
->dynindx
== -1)
2119 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2123 /* If the real definition is in the list of dynamic
2124 symbols, make sure the weak definition is put there
2125 as well. If we don't do this, then the dynamic
2126 loader might not merge the entries for the real
2127 definition and the weak definition. */
2128 if (h
->dynindx
!= -1
2129 && hlook
->dynindx
== -1)
2131 if (! _bfd_elf_link_record_dynamic_symbol (info
, hlook
))
2146 if (extversym
!= NULL
)
2152 /* If this object is the same format as the output object, and it is
2153 not a shared library, then let the backend look through the
2156 This is required to build global offset table entries and to
2157 arrange for dynamic relocs. It is not required for the
2158 particular common case of linking non PIC code, even when linking
2159 against shared libraries, but unfortunately there is no way of
2160 knowing whether an object file has been compiled PIC or not.
2161 Looking through the relocs is not particularly time consuming.
2162 The problem is that we must either (1) keep the relocs in memory,
2163 which causes the linker to require additional runtime memory or
2164 (2) read the relocs twice from the input file, which wastes time.
2165 This would be a good case for using mmap.
2167 I have no idea how to handle linking PIC code into a file of a
2168 different format. It probably can't be done. */
2169 check_relocs
= get_elf_backend_data (abfd
)->check_relocs
;
2171 && abfd
->xvec
== info
->hash
->creator
2172 && check_relocs
!= NULL
)
2176 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2178 Elf_Internal_Rela
*internal_relocs
;
2181 if ((o
->flags
& SEC_RELOC
) == 0
2182 || o
->reloc_count
== 0
2183 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2184 && (o
->flags
& SEC_DEBUGGING
) != 0)
2185 || bfd_is_abs_section (o
->output_section
))
2188 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
2189 (abfd
, o
, (PTR
) NULL
,
2190 (Elf_Internal_Rela
*) NULL
,
2191 info
->keep_memory
));
2192 if (internal_relocs
== NULL
)
2195 ok
= (*check_relocs
) (abfd
, info
, o
, internal_relocs
);
2197 if (! info
->keep_memory
)
2198 free (internal_relocs
);
2205 /* If this is a non-traditional, non-relocateable link, try to
2206 optimize the handling of the .stab/.stabstr sections. */
2208 && ! info
->relocateable
2209 && ! info
->traditional_format
2210 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
2211 && is_elf_hash_table (info
)
2212 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
2214 asection
*stab
, *stabstr
;
2216 stab
= bfd_get_section_by_name (abfd
, ".stab");
2219 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
2221 if (stabstr
!= NULL
)
2223 struct bfd_elf_section_data
*secdata
;
2225 secdata
= elf_section_data (stab
);
2226 if (! _bfd_link_section_stabs (abfd
,
2227 & hash_table
->stab_info
,
2229 &secdata
->stab_info
))
2235 if (! info
->relocateable
&& ! dynamic
2236 && is_elf_hash_table (info
))
2240 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
2241 if ((s
->flags
& SEC_MERGE
)
2242 && ! _bfd_merge_section (abfd
, & hash_table
->merge_info
, s
,
2243 & elf_section_data (s
)->merge_info
))
2254 if (extversym
!= NULL
)
2259 /* Create some sections which will be filled in with dynamic linking
2260 information. ABFD is an input file which requires dynamic sections
2261 to be created. The dynamic sections take up virtual memory space
2262 when the final executable is run, so we need to create them before
2263 addresses are assigned to the output sections. We work out the
2264 actual contents and size of these sections later. */
2267 elf_link_create_dynamic_sections (abfd
, info
)
2269 struct bfd_link_info
*info
;
2272 register asection
*s
;
2273 struct elf_link_hash_entry
*h
;
2274 struct elf_backend_data
*bed
;
2276 if (! is_elf_hash_table (info
))
2279 if (elf_hash_table (info
)->dynamic_sections_created
)
2282 /* Make sure that all dynamic sections use the same input BFD. */
2283 if (elf_hash_table (info
)->dynobj
== NULL
)
2284 elf_hash_table (info
)->dynobj
= abfd
;
2286 abfd
= elf_hash_table (info
)->dynobj
;
2288 /* Note that we set the SEC_IN_MEMORY flag for all of these
2290 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
2291 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
2293 /* A dynamically linked executable has a .interp section, but a
2294 shared library does not. */
2297 s
= bfd_make_section (abfd
, ".interp");
2299 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2303 /* Create sections to hold version informations. These are removed
2304 if they are not needed. */
2305 s
= bfd_make_section (abfd
, ".gnu.version_d");
2307 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2308 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2311 s
= bfd_make_section (abfd
, ".gnu.version");
2313 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2314 || ! bfd_set_section_alignment (abfd
, s
, 1))
2317 s
= bfd_make_section (abfd
, ".gnu.version_r");
2319 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2320 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2323 s
= bfd_make_section (abfd
, ".dynsym");
2325 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2326 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2329 s
= bfd_make_section (abfd
, ".dynstr");
2331 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2334 /* Create a strtab to hold the dynamic symbol names. */
2335 if (elf_hash_table (info
)->dynstr
== NULL
)
2337 elf_hash_table (info
)->dynstr
= _bfd_elf_strtab_init ();
2338 if (elf_hash_table (info
)->dynstr
== NULL
)
2342 s
= bfd_make_section (abfd
, ".dynamic");
2344 || ! bfd_set_section_flags (abfd
, s
, flags
)
2345 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2348 /* The special symbol _DYNAMIC is always set to the start of the
2349 .dynamic section. This call occurs before we have processed the
2350 symbols for any dynamic object, so we don't have to worry about
2351 overriding a dynamic definition. We could set _DYNAMIC in a
2352 linker script, but we only want to define it if we are, in fact,
2353 creating a .dynamic section. We don't want to define it if there
2354 is no .dynamic section, since on some ELF platforms the start up
2355 code examines it to decide how to initialize the process. */
2357 if (! (_bfd_generic_link_add_one_symbol
2358 (info
, abfd
, "_DYNAMIC", BSF_GLOBAL
, s
, (bfd_vma
) 0,
2359 (const char *) NULL
, false, get_elf_backend_data (abfd
)->collect
,
2360 (struct bfd_link_hash_entry
**) &h
)))
2362 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2363 h
->type
= STT_OBJECT
;
2366 && ! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2369 bed
= get_elf_backend_data (abfd
);
2371 s
= bfd_make_section (abfd
, ".hash");
2373 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2374 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2376 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
2378 /* Let the backend create the rest of the sections. This lets the
2379 backend set the right flags. The backend will normally create
2380 the .got and .plt sections. */
2381 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
2384 elf_hash_table (info
)->dynamic_sections_created
= true;
2389 /* Add an entry to the .dynamic table. */
2392 elf_add_dynamic_entry (info
, tag
, val
)
2393 struct bfd_link_info
*info
;
2397 Elf_Internal_Dyn dyn
;
2400 bfd_size_type newsize
;
2401 bfd_byte
*newcontents
;
2403 if (! is_elf_hash_table (info
))
2406 dynobj
= elf_hash_table (info
)->dynobj
;
2408 s
= bfd_get_section_by_name (dynobj
, ".dynamic");
2409 BFD_ASSERT (s
!= NULL
);
2411 newsize
= s
->_raw_size
+ sizeof (Elf_External_Dyn
);
2412 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
2413 if (newcontents
== NULL
)
2417 dyn
.d_un
.d_val
= val
;
2418 elf_swap_dyn_out (dynobj
, &dyn
,
2419 (Elf_External_Dyn
*) (newcontents
+ s
->_raw_size
));
2421 s
->_raw_size
= newsize
;
2422 s
->contents
= newcontents
;
2427 /* Record a new local dynamic symbol. */
2430 elf_link_record_local_dynamic_symbol (info
, input_bfd
, input_indx
)
2431 struct bfd_link_info
*info
;
2435 struct elf_link_local_dynamic_entry
*entry
;
2436 struct elf_link_hash_table
*eht
;
2437 struct elf_strtab_hash
*dynstr
;
2438 Elf_External_Sym esym
;
2439 unsigned long dynstr_index
;
2444 if (! is_elf_hash_table (info
))
2447 /* See if the entry exists already. */
2448 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
2449 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
2452 entry
= (struct elf_link_local_dynamic_entry
*)
2453 bfd_alloc (input_bfd
, (bfd_size_type
) sizeof (*entry
));
2457 /* Go find the symbol, so that we can find it's name. */
2458 amt
= sizeof (Elf_External_Sym
);
2459 pos
= elf_tdata (input_bfd
)->symtab_hdr
.sh_offset
+ input_indx
* amt
;
2460 if (bfd_seek (input_bfd
, pos
, SEEK_SET
) != 0
2461 || bfd_bread (&esym
, amt
, input_bfd
) != amt
)
2463 elf_swap_symbol_in (input_bfd
, &esym
, &entry
->isym
);
2465 name
= (bfd_elf_string_from_elf_section
2466 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
2467 entry
->isym
.st_name
));
2469 dynstr
= elf_hash_table (info
)->dynstr
;
2472 /* Create a strtab to hold the dynamic symbol names. */
2473 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
2478 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, false);
2479 if (dynstr_index
== (unsigned long) -1)
2481 entry
->isym
.st_name
= dynstr_index
;
2483 eht
= elf_hash_table (info
);
2485 entry
->next
= eht
->dynlocal
;
2486 eht
->dynlocal
= entry
;
2487 entry
->input_bfd
= input_bfd
;
2488 entry
->input_indx
= input_indx
;
2491 /* Whatever binding the symbol had before, it's now local. */
2493 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
2495 /* The dynindx will be set at the end of size_dynamic_sections. */
2500 /* Read and swap the relocs from the section indicated by SHDR. This
2501 may be either a REL or a RELA section. The relocations are
2502 translated into RELA relocations and stored in INTERNAL_RELOCS,
2503 which should have already been allocated to contain enough space.
2504 The EXTERNAL_RELOCS are a buffer where the external form of the
2505 relocations should be stored.
2507 Returns false if something goes wrong. */
2510 elf_link_read_relocs_from_section (abfd
, shdr
, external_relocs
,
2513 Elf_Internal_Shdr
*shdr
;
2514 PTR external_relocs
;
2515 Elf_Internal_Rela
*internal_relocs
;
2517 struct elf_backend_data
*bed
;
2520 /* If there aren't any relocations, that's OK. */
2524 /* Position ourselves at the start of the section. */
2525 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2528 /* Read the relocations. */
2529 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2532 bed
= get_elf_backend_data (abfd
);
2534 /* Convert the external relocations to the internal format. */
2535 if (shdr
->sh_entsize
== sizeof (Elf_External_Rel
))
2537 Elf_External_Rel
*erel
;
2538 Elf_External_Rel
*erelend
;
2539 Elf_Internal_Rela
*irela
;
2540 Elf_Internal_Rel
*irel
;
2542 erel
= (Elf_External_Rel
*) external_relocs
;
2543 erelend
= erel
+ NUM_SHDR_ENTRIES (shdr
);
2544 irela
= internal_relocs
;
2545 amt
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
2546 irel
= bfd_alloc (abfd
, amt
);
2547 for (; erel
< erelend
; erel
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2551 if (bed
->s
->swap_reloc_in
)
2552 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
2554 elf_swap_reloc_in (abfd
, erel
, irel
);
2556 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; ++i
)
2558 irela
[i
].r_offset
= irel
[i
].r_offset
;
2559 irela
[i
].r_info
= irel
[i
].r_info
;
2560 irela
[i
].r_addend
= 0;
2566 Elf_External_Rela
*erela
;
2567 Elf_External_Rela
*erelaend
;
2568 Elf_Internal_Rela
*irela
;
2570 BFD_ASSERT (shdr
->sh_entsize
== sizeof (Elf_External_Rela
));
2572 erela
= (Elf_External_Rela
*) external_relocs
;
2573 erelaend
= erela
+ NUM_SHDR_ENTRIES (shdr
);
2574 irela
= internal_relocs
;
2575 for (; erela
< erelaend
; erela
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2577 if (bed
->s
->swap_reloca_in
)
2578 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
2580 elf_swap_reloca_in (abfd
, erela
, irela
);
2587 /* Read and swap the relocs for a section O. They may have been
2588 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2589 not NULL, they are used as buffers to read into. They are known to
2590 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2591 the return value is allocated using either malloc or bfd_alloc,
2592 according to the KEEP_MEMORY argument. If O has two relocation
2593 sections (both REL and RELA relocations), then the REL_HDR
2594 relocations will appear first in INTERNAL_RELOCS, followed by the
2595 REL_HDR2 relocations. */
2598 NAME(_bfd_elf
,link_read_relocs
) (abfd
, o
, external_relocs
, internal_relocs
,
2602 PTR external_relocs
;
2603 Elf_Internal_Rela
*internal_relocs
;
2604 boolean keep_memory
;
2606 Elf_Internal_Shdr
*rel_hdr
;
2608 Elf_Internal_Rela
*alloc2
= NULL
;
2609 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2611 if (elf_section_data (o
)->relocs
!= NULL
)
2612 return elf_section_data (o
)->relocs
;
2614 if (o
->reloc_count
== 0)
2617 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2619 if (internal_relocs
== NULL
)
2623 size
= o
->reloc_count
;
2624 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2626 internal_relocs
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2628 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2629 if (internal_relocs
== NULL
)
2633 if (external_relocs
== NULL
)
2635 bfd_size_type size
= rel_hdr
->sh_size
;
2637 if (elf_section_data (o
)->rel_hdr2
)
2638 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2639 alloc1
= (PTR
) bfd_malloc (size
);
2642 external_relocs
= alloc1
;
2645 if (!elf_link_read_relocs_from_section (abfd
, rel_hdr
,
2649 if (!elf_link_read_relocs_from_section
2651 elf_section_data (o
)->rel_hdr2
,
2652 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2653 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2654 * bed
->s
->int_rels_per_ext_rel
)))
2657 /* Cache the results for next time, if we can. */
2659 elf_section_data (o
)->relocs
= internal_relocs
;
2664 /* Don't free alloc2, since if it was allocated we are passing it
2665 back (under the name of internal_relocs). */
2667 return internal_relocs
;
2677 /* Record an assignment to a symbol made by a linker script. We need
2678 this in case some dynamic object refers to this symbol. */
2681 NAME(bfd_elf
,record_link_assignment
) (output_bfd
, info
, name
, provide
)
2682 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2683 struct bfd_link_info
*info
;
2687 struct elf_link_hash_entry
*h
;
2689 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2692 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, true, false);
2696 if (h
->root
.type
== bfd_link_hash_new
)
2697 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
2699 /* If this symbol is being provided by the linker script, and it is
2700 currently defined by a dynamic object, but not by a regular
2701 object, then mark it as undefined so that the generic linker will
2702 force the correct value. */
2704 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2705 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2706 h
->root
.type
= bfd_link_hash_undefined
;
2708 /* If this symbol is not being provided by the linker script, and it is
2709 currently defined by a dynamic object, but not by a regular object,
2710 then clear out any version information because the symbol will not be
2711 associated with the dynamic object any more. */
2713 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2714 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2715 h
->verinfo
.verdef
= NULL
;
2717 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2719 /* When possible, keep the original type of the symbol. */
2720 if (h
->type
== STT_NOTYPE
)
2721 h
->type
= STT_OBJECT
;
2723 if (((h
->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
2724 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0
2726 && h
->dynindx
== -1)
2728 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2731 /* If this is a weak defined symbol, and we know a corresponding
2732 real symbol from the same dynamic object, make sure the real
2733 symbol is also made into a dynamic symbol. */
2734 if (h
->weakdef
!= NULL
2735 && h
->weakdef
->dynindx
== -1)
2737 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2745 /* This structure is used to pass information to
2746 elf_link_assign_sym_version. */
2748 struct elf_assign_sym_version_info
2752 /* General link information. */
2753 struct bfd_link_info
*info
;
2755 struct bfd_elf_version_tree
*verdefs
;
2756 /* Whether we had a failure. */
2760 /* This structure is used to pass information to
2761 elf_link_find_version_dependencies. */
2763 struct elf_find_verdep_info
2767 /* General link information. */
2768 struct bfd_link_info
*info
;
2769 /* The number of dependencies. */
2771 /* Whether we had a failure. */
2775 /* Array used to determine the number of hash table buckets to use
2776 based on the number of symbols there are. If there are fewer than
2777 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2778 fewer than 37 we use 17 buckets, and so forth. We never use more
2779 than 32771 buckets. */
2781 static const size_t elf_buckets
[] =
2783 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2787 /* Compute bucket count for hashing table. We do not use a static set
2788 of possible tables sizes anymore. Instead we determine for all
2789 possible reasonable sizes of the table the outcome (i.e., the
2790 number of collisions etc) and choose the best solution. The
2791 weighting functions are not too simple to allow the table to grow
2792 without bounds. Instead one of the weighting factors is the size.
2793 Therefore the result is always a good payoff between few collisions
2794 (= short chain lengths) and table size. */
2796 compute_bucket_count (info
)
2797 struct bfd_link_info
*info
;
2799 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
2800 size_t best_size
= 0;
2801 unsigned long int *hashcodes
;
2802 unsigned long int *hashcodesp
;
2803 unsigned long int i
;
2806 /* Compute the hash values for all exported symbols. At the same
2807 time store the values in an array so that we could use them for
2810 amt
*= sizeof (unsigned long int);
2811 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
2812 if (hashcodes
== NULL
)
2814 hashcodesp
= hashcodes
;
2816 /* Put all hash values in HASHCODES. */
2817 elf_link_hash_traverse (elf_hash_table (info
),
2818 elf_collect_hash_codes
, &hashcodesp
);
2820 /* We have a problem here. The following code to optimize the table
2821 size requires an integer type with more the 32 bits. If
2822 BFD_HOST_U_64_BIT is set we know about such a type. */
2823 #ifdef BFD_HOST_U_64_BIT
2824 if (info
->optimize
== true)
2826 unsigned long int nsyms
= hashcodesp
- hashcodes
;
2829 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
2830 unsigned long int *counts
;
2832 /* Possible optimization parameters: if we have NSYMS symbols we say
2833 that the hashing table must at least have NSYMS/4 and at most
2835 minsize
= nsyms
/ 4;
2838 best_size
= maxsize
= nsyms
* 2;
2840 /* Create array where we count the collisions in. We must use bfd_malloc
2841 since the size could be large. */
2843 amt
*= sizeof (unsigned long int);
2844 counts
= (unsigned long int *) bfd_malloc (amt
);
2851 /* Compute the "optimal" size for the hash table. The criteria is a
2852 minimal chain length. The minor criteria is (of course) the size
2854 for (i
= minsize
; i
< maxsize
; ++i
)
2856 /* Walk through the array of hashcodes and count the collisions. */
2857 BFD_HOST_U_64_BIT max
;
2858 unsigned long int j
;
2859 unsigned long int fact
;
2861 memset (counts
, '\0', i
* sizeof (unsigned long int));
2863 /* Determine how often each hash bucket is used. */
2864 for (j
= 0; j
< nsyms
; ++j
)
2865 ++counts
[hashcodes
[j
] % i
];
2867 /* For the weight function we need some information about the
2868 pagesize on the target. This is information need not be 100%
2869 accurate. Since this information is not available (so far) we
2870 define it here to a reasonable default value. If it is crucial
2871 to have a better value some day simply define this value. */
2872 # ifndef BFD_TARGET_PAGESIZE
2873 # define BFD_TARGET_PAGESIZE (4096)
2876 /* We in any case need 2 + NSYMS entries for the size values and
2878 max
= (2 + nsyms
) * (ARCH_SIZE
/ 8);
2881 /* Variant 1: optimize for short chains. We add the squares
2882 of all the chain lengths (which favous many small chain
2883 over a few long chains). */
2884 for (j
= 0; j
< i
; ++j
)
2885 max
+= counts
[j
] * counts
[j
];
2887 /* This adds penalties for the overall size of the table. */
2888 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2891 /* Variant 2: Optimize a lot more for small table. Here we
2892 also add squares of the size but we also add penalties for
2893 empty slots (the +1 term). */
2894 for (j
= 0; j
< i
; ++j
)
2895 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
2897 /* The overall size of the table is considered, but not as
2898 strong as in variant 1, where it is squared. */
2899 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2903 /* Compare with current best results. */
2904 if (max
< best_chlen
)
2914 #endif /* defined (BFD_HOST_U_64_BIT) */
2916 /* This is the fallback solution if no 64bit type is available or if we
2917 are not supposed to spend much time on optimizations. We select the
2918 bucket count using a fixed set of numbers. */
2919 for (i
= 0; elf_buckets
[i
] != 0; i
++)
2921 best_size
= elf_buckets
[i
];
2922 if (dynsymcount
< elf_buckets
[i
+ 1])
2927 /* Free the arrays we needed. */
2933 /* Set up the sizes and contents of the ELF dynamic sections. This is
2934 called by the ELF linker emulation before_allocation routine. We
2935 must set the sizes of the sections before the linker sets the
2936 addresses of the various sections. */
2939 NAME(bfd_elf
,size_dynamic_sections
) (output_bfd
, soname
, rpath
,
2941 auxiliary_filters
, info
, sinterpptr
,
2946 const char *filter_shlib
;
2947 const char * const *auxiliary_filters
;
2948 struct bfd_link_info
*info
;
2949 asection
**sinterpptr
;
2950 struct bfd_elf_version_tree
*verdefs
;
2952 bfd_size_type soname_indx
;
2954 struct elf_backend_data
*bed
;
2955 struct elf_assign_sym_version_info asvinfo
;
2959 soname_indx
= (bfd_size_type
) -1;
2961 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2964 if (! is_elf_hash_table (info
))
2967 /* Any syms created from now on start with -1 in
2968 got.refcount/offset and plt.refcount/offset. */
2969 elf_hash_table (info
)->init_refcount
= -1;
2971 /* The backend may have to create some sections regardless of whether
2972 we're dynamic or not. */
2973 bed
= get_elf_backend_data (output_bfd
);
2974 if (bed
->elf_backend_always_size_sections
2975 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
2978 dynobj
= elf_hash_table (info
)->dynobj
;
2980 /* If there were no dynamic objects in the link, there is nothing to
2985 if (elf_hash_table (info
)->dynamic_sections_created
)
2987 struct elf_info_failed eif
;
2988 struct elf_link_hash_entry
*h
;
2991 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
2992 BFD_ASSERT (*sinterpptr
!= NULL
|| info
->shared
);
2996 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
2998 if (soname_indx
== (bfd_size_type
) -1
2999 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SONAME
,
3006 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMBOLIC
,
3009 info
->flags
|= DF_SYMBOLIC
;
3016 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
3018 if (info
->new_dtags
)
3019 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
3020 if (indx
== (bfd_size_type
) -1
3021 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RPATH
, indx
)
3023 && ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RUNPATH
,
3028 if (filter_shlib
!= NULL
)
3032 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3033 filter_shlib
, true);
3034 if (indx
== (bfd_size_type
) -1
3035 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FILTER
, indx
))
3039 if (auxiliary_filters
!= NULL
)
3041 const char * const *p
;
3043 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
3047 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3049 if (indx
== (bfd_size_type
) -1
3050 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_AUXILIARY
,
3057 eif
.verdefs
= verdefs
;
3060 /* If we are supposed to export all symbols into the dynamic symbol
3061 table (this is not the normal case), then do so. */
3062 if (info
->export_dynamic
)
3064 elf_link_hash_traverse (elf_hash_table (info
), elf_export_symbol
,
3070 /* Attach all the symbols to their version information. */
3071 asvinfo
.output_bfd
= output_bfd
;
3072 asvinfo
.info
= info
;
3073 asvinfo
.verdefs
= verdefs
;
3074 asvinfo
.failed
= false;
3076 elf_link_hash_traverse (elf_hash_table (info
),
3077 elf_link_assign_sym_version
,
3082 /* Find all symbols which were defined in a dynamic object and make
3083 the backend pick a reasonable value for them. */
3084 elf_link_hash_traverse (elf_hash_table (info
),
3085 elf_adjust_dynamic_symbol
,
3090 /* Add some entries to the .dynamic section. We fill in some of the
3091 values later, in elf_bfd_final_link, but we must add the entries
3092 now so that we know the final size of the .dynamic section. */
3094 /* If there are initialization and/or finalization functions to
3095 call then add the corresponding DT_INIT/DT_FINI entries. */
3096 h
= (info
->init_function
3097 ? elf_link_hash_lookup (elf_hash_table (info
),
3098 info
->init_function
, false,
3102 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3103 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3105 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_INIT
, (bfd_vma
) 0))
3108 h
= (info
->fini_function
3109 ? elf_link_hash_lookup (elf_hash_table (info
),
3110 info
->fini_function
, false,
3114 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3115 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3117 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FINI
, (bfd_vma
) 0))
3121 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
3122 /* If .dynstr is excluded from the link, we don't want any of
3123 these tags. Strictly, we should be checking each section
3124 individually; This quick check covers for the case where
3125 someone does a /DISCARD/ : { *(*) }. */
3126 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
3128 bfd_size_type strsize
;
3130 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3131 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_HASH
, (bfd_vma
) 0)
3132 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRTAB
, (bfd_vma
) 0)
3133 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMTAB
, (bfd_vma
) 0)
3134 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRSZ
, strsize
)
3135 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMENT
,
3136 (bfd_vma
) sizeof (Elf_External_Sym
)))
3141 /* The backend must work out the sizes of all the other dynamic
3143 if (bed
->elf_backend_size_dynamic_sections
3144 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
3147 if (elf_hash_table (info
)->dynamic_sections_created
)
3149 bfd_size_type dynsymcount
;
3151 size_t bucketcount
= 0;
3152 size_t hash_entry_size
;
3153 unsigned int dtagcount
;
3155 /* Set up the version definition section. */
3156 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3157 BFD_ASSERT (s
!= NULL
);
3159 /* We may have created additional version definitions if we are
3160 just linking a regular application. */
3161 verdefs
= asvinfo
.verdefs
;
3163 if (verdefs
== NULL
)
3164 _bfd_strip_section_from_output (info
, s
);
3169 struct bfd_elf_version_tree
*t
;
3171 Elf_Internal_Verdef def
;
3172 Elf_Internal_Verdaux defaux
;
3177 /* Make space for the base version. */
3178 size
+= sizeof (Elf_External_Verdef
);
3179 size
+= sizeof (Elf_External_Verdaux
);
3182 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3184 struct bfd_elf_version_deps
*n
;
3186 size
+= sizeof (Elf_External_Verdef
);
3187 size
+= sizeof (Elf_External_Verdaux
);
3190 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3191 size
+= sizeof (Elf_External_Verdaux
);
3194 s
->_raw_size
= size
;
3195 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3196 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3199 /* Fill in the version definition section. */
3203 def
.vd_version
= VER_DEF_CURRENT
;
3204 def
.vd_flags
= VER_FLG_BASE
;
3207 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3208 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3209 + sizeof (Elf_External_Verdaux
));
3211 if (soname_indx
!= (bfd_size_type
) -1)
3213 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3215 def
.vd_hash
= bfd_elf_hash (soname
);
3216 defaux
.vda_name
= soname_indx
;
3223 name
= basename (output_bfd
->filename
);
3224 def
.vd_hash
= bfd_elf_hash (name
);
3225 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3227 if (indx
== (bfd_size_type
) -1)
3229 defaux
.vda_name
= indx
;
3231 defaux
.vda_next
= 0;
3233 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3234 (Elf_External_Verdef
*) p
);
3235 p
+= sizeof (Elf_External_Verdef
);
3236 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3237 (Elf_External_Verdaux
*) p
);
3238 p
+= sizeof (Elf_External_Verdaux
);
3240 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3243 struct bfd_elf_version_deps
*n
;
3244 struct elf_link_hash_entry
*h
;
3247 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3250 /* Add a symbol representing this version. */
3252 if (! (_bfd_generic_link_add_one_symbol
3253 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
3254 (bfd_vma
) 0, (const char *) NULL
, false,
3255 get_elf_backend_data (dynobj
)->collect
,
3256 (struct bfd_link_hash_entry
**) &h
)))
3258 h
->elf_link_hash_flags
&= ~ ELF_LINK_NON_ELF
;
3259 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3260 h
->type
= STT_OBJECT
;
3261 h
->verinfo
.vertree
= t
;
3263 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
3266 def
.vd_version
= VER_DEF_CURRENT
;
3268 if (t
->globals
== NULL
&& t
->locals
== NULL
&& ! t
->used
)
3269 def
.vd_flags
|= VER_FLG_WEAK
;
3270 def
.vd_ndx
= t
->vernum
+ 1;
3271 def
.vd_cnt
= cdeps
+ 1;
3272 def
.vd_hash
= bfd_elf_hash (t
->name
);
3273 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3274 if (t
->next
!= NULL
)
3275 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3276 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
3280 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3281 (Elf_External_Verdef
*) p
);
3282 p
+= sizeof (Elf_External_Verdef
);
3284 defaux
.vda_name
= h
->dynstr_index
;
3285 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3287 if (t
->deps
== NULL
)
3288 defaux
.vda_next
= 0;
3290 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3291 t
->name_indx
= defaux
.vda_name
;
3293 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3294 (Elf_External_Verdaux
*) p
);
3295 p
+= sizeof (Elf_External_Verdaux
);
3297 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3299 if (n
->version_needed
== NULL
)
3301 /* This can happen if there was an error in the
3303 defaux
.vda_name
= 0;
3307 defaux
.vda_name
= n
->version_needed
->name_indx
;
3308 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3311 if (n
->next
== NULL
)
3312 defaux
.vda_next
= 0;
3314 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3316 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3317 (Elf_External_Verdaux
*) p
);
3318 p
+= sizeof (Elf_External_Verdaux
);
3322 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEF
, (bfd_vma
) 0)
3323 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEFNUM
,
3327 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
3330 if (info
->new_dtags
&& info
->flags
)
3332 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS
, info
->flags
))
3339 info
->flags_1
&= ~ (DF_1_INITFIRST
3342 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS_1
,
3347 /* Work out the size of the version reference section. */
3349 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3350 BFD_ASSERT (s
!= NULL
);
3352 struct elf_find_verdep_info sinfo
;
3354 sinfo
.output_bfd
= output_bfd
;
3356 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
3357 if (sinfo
.vers
== 0)
3359 sinfo
.failed
= false;
3361 elf_link_hash_traverse (elf_hash_table (info
),
3362 elf_link_find_version_dependencies
,
3365 if (elf_tdata (output_bfd
)->verref
== NULL
)
3366 _bfd_strip_section_from_output (info
, s
);
3369 Elf_Internal_Verneed
*t
;
3374 /* Build the version definition section. */
3377 for (t
= elf_tdata (output_bfd
)->verref
;
3381 Elf_Internal_Vernaux
*a
;
3383 size
+= sizeof (Elf_External_Verneed
);
3385 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3386 size
+= sizeof (Elf_External_Vernaux
);
3389 s
->_raw_size
= size
;
3390 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3391 if (s
->contents
== NULL
)
3395 for (t
= elf_tdata (output_bfd
)->verref
;
3400 Elf_Internal_Vernaux
*a
;
3404 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3407 t
->vn_version
= VER_NEED_CURRENT
;
3409 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3410 elf_dt_name (t
->vn_bfd
) != NULL
3411 ? elf_dt_name (t
->vn_bfd
)
3412 : basename (t
->vn_bfd
->filename
),
3414 if (indx
== (bfd_size_type
) -1)
3417 t
->vn_aux
= sizeof (Elf_External_Verneed
);
3418 if (t
->vn_nextref
== NULL
)
3421 t
->vn_next
= (sizeof (Elf_External_Verneed
)
3422 + caux
* sizeof (Elf_External_Vernaux
));
3424 _bfd_elf_swap_verneed_out (output_bfd
, t
,
3425 (Elf_External_Verneed
*) p
);
3426 p
+= sizeof (Elf_External_Verneed
);
3428 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3430 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
3431 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3432 a
->vna_nodename
, false);
3433 if (indx
== (bfd_size_type
) -1)
3436 if (a
->vna_nextptr
== NULL
)
3439 a
->vna_next
= sizeof (Elf_External_Vernaux
);
3441 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
3442 (Elf_External_Vernaux
*) p
);
3443 p
+= sizeof (Elf_External_Vernaux
);
3447 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEED
,
3449 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEEDNUM
,
3453 elf_tdata (output_bfd
)->cverrefs
= crefs
;
3457 /* Assign dynsym indicies. In a shared library we generate a
3458 section symbol for each output section, which come first.
3459 Next come all of the back-end allocated local dynamic syms,
3460 followed by the rest of the global symbols. */
3462 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3464 /* Work out the size of the symbol version section. */
3465 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
3466 BFD_ASSERT (s
!= NULL
);
3467 if (dynsymcount
== 0
3468 || (verdefs
== NULL
&& elf_tdata (output_bfd
)->verref
== NULL
))
3470 _bfd_strip_section_from_output (info
, s
);
3471 /* The DYNSYMCOUNT might have changed if we were going to
3472 output a dynamic symbol table entry for S. */
3473 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3477 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Versym
);
3478 s
->contents
= (bfd_byte
*) bfd_zalloc (output_bfd
, s
->_raw_size
);
3479 if (s
->contents
== NULL
)
3482 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERSYM
, (bfd_vma
) 0))
3486 /* Set the size of the .dynsym and .hash sections. We counted
3487 the number of dynamic symbols in elf_link_add_object_symbols.
3488 We will build the contents of .dynsym and .hash when we build
3489 the final symbol table, because until then we do not know the
3490 correct value to give the symbols. We built the .dynstr
3491 section as we went along in elf_link_add_object_symbols. */
3492 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
3493 BFD_ASSERT (s
!= NULL
);
3494 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Sym
);
3495 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3496 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3499 if (dynsymcount
!= 0)
3501 Elf_Internal_Sym isym
;
3503 /* The first entry in .dynsym is a dummy symbol. */
3510 elf_swap_symbol_out (output_bfd
, &isym
,
3511 (PTR
) (Elf_External_Sym
*) s
->contents
);
3514 /* Compute the size of the hashing table. As a side effect this
3515 computes the hash values for all the names we export. */
3516 bucketcount
= compute_bucket_count (info
);
3518 s
= bfd_get_section_by_name (dynobj
, ".hash");
3519 BFD_ASSERT (s
!= NULL
);
3520 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
3521 s
->_raw_size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
3522 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3523 if (s
->contents
== NULL
)
3525 memset (s
->contents
, 0, (size_t) s
->_raw_size
);
3527 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) bucketcount
,
3529 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) dynsymcount
,
3530 s
->contents
+ hash_entry_size
);
3532 elf_hash_table (info
)->bucketcount
= bucketcount
;
3534 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
3535 BFD_ASSERT (s
!= NULL
);
3537 elf_finalize_dynstr (output_bfd
, info
);
3539 s
->_raw_size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3541 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
3542 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NULL
, (bfd_vma
) 0))
3549 /* This function is used to adjust offsets into .dynstr for
3550 dynamic symbols. This is called via elf_link_hash_traverse. */
3552 static boolean elf_adjust_dynstr_offsets
3553 PARAMS ((struct elf_link_hash_entry
*, PTR
));
3556 elf_adjust_dynstr_offsets (h
, data
)
3557 struct elf_link_hash_entry
*h
;
3560 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3562 if (h
->dynindx
!= -1)
3563 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3567 /* Assign string offsets in .dynstr, update all structures referencing
3571 elf_finalize_dynstr (output_bfd
, info
)
3573 struct bfd_link_info
*info
;
3575 struct elf_link_local_dynamic_entry
*entry
;
3576 struct elf_strtab_hash
*dynstr
= elf_hash_table (info
)->dynstr
;
3577 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
3580 Elf_External_Dyn
*dyncon
, *dynconend
;
3582 _bfd_elf_strtab_finalize (dynstr
);
3583 size
= _bfd_elf_strtab_size (dynstr
);
3585 /* Update all .dynamic entries referencing .dynstr strings. */
3586 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3587 BFD_ASSERT (sdyn
!= NULL
);
3589 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
3590 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
3592 for (; dyncon
< dynconend
; dyncon
++)
3594 Elf_Internal_Dyn dyn
;
3596 elf_swap_dyn_in (dynobj
, dyncon
, & dyn
);
3600 dyn
.d_un
.d_val
= size
;
3601 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3609 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3610 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3617 /* Now update local dynamic symbols. */
3618 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
3619 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3620 entry
->isym
.st_name
);
3622 /* And the rest of dynamic symbols. */
3623 elf_link_hash_traverse (elf_hash_table (info
),
3624 elf_adjust_dynstr_offsets
, dynstr
);
3626 /* Adjust version definitions. */
3627 if (elf_tdata (output_bfd
)->cverdefs
)
3632 Elf_Internal_Verdef def
;
3633 Elf_Internal_Verdaux defaux
;
3635 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3636 p
= (bfd_byte
*) s
->contents
;
3639 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3641 p
+= sizeof (Elf_External_Verdef
);
3642 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3644 _bfd_elf_swap_verdaux_in (output_bfd
,
3645 (Elf_External_Verdaux
*) p
, &defaux
);
3646 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3648 _bfd_elf_swap_verdaux_out (output_bfd
,
3649 &defaux
, (Elf_External_Verdaux
*) p
);
3650 p
+= sizeof (Elf_External_Verdaux
);
3653 while (def
.vd_next
);
3656 /* Adjust version references. */
3657 if (elf_tdata (output_bfd
)->verref
)
3662 Elf_Internal_Verneed need
;
3663 Elf_Internal_Vernaux needaux
;
3665 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3666 p
= (bfd_byte
*) s
->contents
;
3669 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3671 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3672 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3673 (Elf_External_Verneed
*) p
);
3674 p
+= sizeof (Elf_External_Verneed
);
3675 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3677 _bfd_elf_swap_vernaux_in (output_bfd
,
3678 (Elf_External_Vernaux
*) p
, &needaux
);
3679 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3681 _bfd_elf_swap_vernaux_out (output_bfd
,
3683 (Elf_External_Vernaux
*) p
);
3684 p
+= sizeof (Elf_External_Vernaux
);
3687 while (need
.vn_next
);
3693 /* Fix up the flags for a symbol. This handles various cases which
3694 can only be fixed after all the input files are seen. This is
3695 currently called by both adjust_dynamic_symbol and
3696 assign_sym_version, which is unnecessary but perhaps more robust in
3697 the face of future changes. */
3700 elf_fix_symbol_flags (h
, eif
)
3701 struct elf_link_hash_entry
*h
;
3702 struct elf_info_failed
*eif
;
3704 /* If this symbol was mentioned in a non-ELF file, try to set
3705 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3706 permit a non-ELF file to correctly refer to a symbol defined in
3707 an ELF dynamic object. */
3708 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_ELF
) != 0)
3710 while (h
->root
.type
== bfd_link_hash_indirect
)
3711 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3713 if (h
->root
.type
!= bfd_link_hash_defined
3714 && h
->root
.type
!= bfd_link_hash_defweak
)
3715 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3716 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3719 if (h
->root
.u
.def
.section
->owner
!= NULL
3720 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3721 == bfd_target_elf_flavour
))
3722 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3723 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3725 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3728 if (h
->dynindx
== -1
3729 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3730 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0))
3732 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
3741 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3742 was first seen in a non-ELF file. Fortunately, if the symbol
3743 was first seen in an ELF file, we're probably OK unless the
3744 symbol was defined in a non-ELF file. Catch that case here.
3745 FIXME: We're still in trouble if the symbol was first seen in
3746 a dynamic object, and then later in a non-ELF regular object. */
3747 if ((h
->root
.type
== bfd_link_hash_defined
3748 || h
->root
.type
== bfd_link_hash_defweak
)
3749 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3750 && (h
->root
.u
.def
.section
->owner
!= NULL
3751 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3752 != bfd_target_elf_flavour
)
3753 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
3754 && (h
->elf_link_hash_flags
3755 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)))
3756 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3759 /* If this is a final link, and the symbol was defined as a common
3760 symbol in a regular object file, and there was no definition in
3761 any dynamic object, then the linker will have allocated space for
3762 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3763 flag will not have been set. */
3764 if (h
->root
.type
== bfd_link_hash_defined
3765 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3766 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
3767 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3768 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
3769 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3771 /* If -Bsymbolic was used (which means to bind references to global
3772 symbols to the definition within the shared object), and this
3773 symbol was defined in a regular object, then it actually doesn't
3774 need a PLT entry, and we can accomplish that by forcing it local.
3775 Likewise, if the symbol has hidden or internal visibility.
3776 FIXME: It might be that we also do not need a PLT for other
3777 non-hidden visibilities, but we would have to tell that to the
3778 backend specifically; we can't just clear PLT-related data here. */
3779 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
3780 && eif
->info
->shared
3781 && is_elf_hash_table (eif
->info
)
3782 && (eif
->info
->symbolic
3783 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3784 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3785 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3787 struct elf_backend_data
*bed
;
3789 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3790 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3791 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3793 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
3794 _bfd_elf_strtab_delref (elf_hash_table (eif
->info
)->dynstr
,
3797 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
);
3800 /* If this is a weak defined symbol in a dynamic object, and we know
3801 the real definition in the dynamic object, copy interesting flags
3802 over to the real definition. */
3803 if (h
->weakdef
!= NULL
)
3805 struct elf_link_hash_entry
*weakdef
;
3807 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
3808 || h
->root
.type
== bfd_link_hash_defweak
);
3809 weakdef
= h
->weakdef
;
3810 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
3811 || weakdef
->root
.type
== bfd_link_hash_defweak
);
3812 BFD_ASSERT (weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
);
3814 /* If the real definition is defined by a regular object file,
3815 don't do anything special. See the longer description in
3816 elf_adjust_dynamic_symbol, below. */
3817 if ((weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3821 struct elf_backend_data
*bed
;
3823 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3824 (*bed
->elf_backend_copy_indirect_symbol
) (weakdef
, h
);
3831 /* Make the backend pick a good value for a dynamic symbol. This is
3832 called via elf_link_hash_traverse, and also calls itself
3836 elf_adjust_dynamic_symbol (h
, data
)
3837 struct elf_link_hash_entry
*h
;
3840 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3842 struct elf_backend_data
*bed
;
3844 /* Ignore indirect symbols. These are added by the versioning code. */
3845 if (h
->root
.type
== bfd_link_hash_indirect
)
3848 if (! is_elf_hash_table (eif
->info
))
3851 /* Fix the symbol flags. */
3852 if (! elf_fix_symbol_flags (h
, eif
))
3855 /* If this symbol does not require a PLT entry, and it is not
3856 defined by a dynamic object, or is not referenced by a regular
3857 object, ignore it. We do have to handle a weak defined symbol,
3858 even if no regular object refers to it, if we decided to add it
3859 to the dynamic symbol table. FIXME: Do we normally need to worry
3860 about symbols which are defined by one dynamic object and
3861 referenced by another one? */
3862 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0
3863 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
3864 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3865 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
3866 && (h
->weakdef
== NULL
|| h
->weakdef
->dynindx
== -1))))
3868 h
->plt
.offset
= (bfd_vma
) -1;
3872 /* If we've already adjusted this symbol, don't do it again. This
3873 can happen via a recursive call. */
3874 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DYNAMIC_ADJUSTED
) != 0)
3877 /* Don't look at this symbol again. Note that we must set this
3878 after checking the above conditions, because we may look at a
3879 symbol once, decide not to do anything, and then get called
3880 recursively later after REF_REGULAR is set below. */
3881 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DYNAMIC_ADJUSTED
;
3883 /* If this is a weak definition, and we know a real definition, and
3884 the real symbol is not itself defined by a regular object file,
3885 then get a good value for the real definition. We handle the
3886 real symbol first, for the convenience of the backend routine.
3888 Note that there is a confusing case here. If the real definition
3889 is defined by a regular object file, we don't get the real symbol
3890 from the dynamic object, but we do get the weak symbol. If the
3891 processor backend uses a COPY reloc, then if some routine in the
3892 dynamic object changes the real symbol, we will not see that
3893 change in the corresponding weak symbol. This is the way other
3894 ELF linkers work as well, and seems to be a result of the shared
3897 I will clarify this issue. Most SVR4 shared libraries define the
3898 variable _timezone and define timezone as a weak synonym. The
3899 tzset call changes _timezone. If you write
3900 extern int timezone;
3902 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3903 you might expect that, since timezone is a synonym for _timezone,
3904 the same number will print both times. However, if the processor
3905 backend uses a COPY reloc, then actually timezone will be copied
3906 into your process image, and, since you define _timezone
3907 yourself, _timezone will not. Thus timezone and _timezone will
3908 wind up at different memory locations. The tzset call will set
3909 _timezone, leaving timezone unchanged. */
3911 if (h
->weakdef
!= NULL
)
3913 /* If we get to this point, we know there is an implicit
3914 reference by a regular object file via the weak symbol H.
3915 FIXME: Is this really true? What if the traversal finds
3916 H->WEAKDEF before it finds H? */
3917 h
->weakdef
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
3919 if (! elf_adjust_dynamic_symbol (h
->weakdef
, (PTR
) eif
))
3923 /* If a symbol has no type and no size and does not require a PLT
3924 entry, then we are probably about to do the wrong thing here: we
3925 are probably going to create a COPY reloc for an empty object.
3926 This case can arise when a shared object is built with assembly
3927 code, and the assembly code fails to set the symbol type. */
3929 && h
->type
== STT_NOTYPE
3930 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
3931 (*_bfd_error_handler
)
3932 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3933 h
->root
.root
.string
);
3935 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
3936 bed
= get_elf_backend_data (dynobj
);
3937 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
3946 /* This routine is used to export all defined symbols into the dynamic
3947 symbol table. It is called via elf_link_hash_traverse. */
3950 elf_export_symbol (h
, data
)
3951 struct elf_link_hash_entry
*h
;
3954 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3956 /* Ignore indirect symbols. These are added by the versioning code. */
3957 if (h
->root
.type
== bfd_link_hash_indirect
)
3960 if (h
->dynindx
== -1
3961 && (h
->elf_link_hash_flags
3962 & (ELF_LINK_HASH_DEF_REGULAR
| ELF_LINK_HASH_REF_REGULAR
)) != 0)
3964 struct bfd_elf_version_tree
*t
;
3965 struct bfd_elf_version_expr
*d
;
3967 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
3969 if (t
->globals
!= NULL
)
3971 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3973 if ((*d
->match
) (d
, h
->root
.root
.string
))
3978 if (t
->locals
!= NULL
)
3980 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
3982 if ((*d
->match
) (d
, h
->root
.root
.string
))
3991 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
4002 /* Look through the symbols which are defined in other shared
4003 libraries and referenced here. Update the list of version
4004 dependencies. This will be put into the .gnu.version_r section.
4005 This function is called via elf_link_hash_traverse. */
4008 elf_link_find_version_dependencies (h
, data
)
4009 struct elf_link_hash_entry
*h
;
4012 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
4013 Elf_Internal_Verneed
*t
;
4014 Elf_Internal_Vernaux
*a
;
4017 /* We only care about symbols defined in shared objects with version
4019 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
4020 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
4022 || h
->verinfo
.verdef
== NULL
)
4025 /* See if we already know about this version. */
4026 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
4028 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
4031 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4032 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
4038 /* This is a new version. Add it to tree we are building. */
4043 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4046 rinfo
->failed
= true;
4050 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
4051 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
4052 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
4056 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4058 /* Note that we are copying a string pointer here, and testing it
4059 above. If bfd_elf_string_from_elf_section is ever changed to
4060 discard the string data when low in memory, this will have to be
4062 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
4064 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
4065 a
->vna_nextptr
= t
->vn_auxptr
;
4067 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
4070 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
4077 /* Figure out appropriate versions for all the symbols. We may not
4078 have the version number script until we have read all of the input
4079 files, so until that point we don't know which symbols should be
4080 local. This function is called via elf_link_hash_traverse. */
4083 elf_link_assign_sym_version (h
, data
)
4084 struct elf_link_hash_entry
*h
;
4087 struct elf_assign_sym_version_info
*sinfo
;
4088 struct bfd_link_info
*info
;
4089 struct elf_backend_data
*bed
;
4090 struct elf_info_failed eif
;
4094 sinfo
= (struct elf_assign_sym_version_info
*) data
;
4097 /* Fix the symbol flags. */
4100 if (! elf_fix_symbol_flags (h
, &eif
))
4103 sinfo
->failed
= true;
4107 /* We only need version numbers for symbols defined in regular
4109 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
4112 bed
= get_elf_backend_data (sinfo
->output_bfd
);
4113 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4114 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
4116 struct bfd_elf_version_tree
*t
;
4121 /* There are two consecutive ELF_VER_CHR characters if this is
4122 not a hidden symbol. */
4124 if (*p
== ELF_VER_CHR
)
4130 /* If there is no version string, we can just return out. */
4134 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4138 /* Look for the version. If we find it, it is no longer weak. */
4139 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4141 if (strcmp (t
->name
, p
) == 0)
4145 struct bfd_elf_version_expr
*d
;
4147 len
= p
- h
->root
.root
.string
;
4148 alc
= bfd_alloc (sinfo
->output_bfd
, (bfd_size_type
) len
);
4151 strncpy (alc
, h
->root
.root
.string
, len
- 1);
4152 alc
[len
- 1] = '\0';
4153 if (alc
[len
- 2] == ELF_VER_CHR
)
4154 alc
[len
- 2] = '\0';
4156 h
->verinfo
.vertree
= t
;
4160 if (t
->globals
!= NULL
)
4162 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4163 if ((*d
->match
) (d
, alc
))
4167 /* See if there is anything to force this symbol to
4169 if (d
== NULL
&& t
->locals
!= NULL
)
4171 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4173 if ((*d
->match
) (d
, alc
))
4175 if (h
->dynindx
!= -1
4177 && ! info
->export_dynamic
)
4179 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4180 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4181 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4190 bfd_release (sinfo
->output_bfd
, alc
);
4195 /* If we are building an application, we need to create a
4196 version node for this version. */
4197 if (t
== NULL
&& ! info
->shared
)
4199 struct bfd_elf_version_tree
**pp
;
4202 /* If we aren't going to export this symbol, we don't need
4203 to worry about it. */
4204 if (h
->dynindx
== -1)
4208 t
= ((struct bfd_elf_version_tree
*)
4209 bfd_alloc (sinfo
->output_bfd
, amt
));
4212 sinfo
->failed
= true;
4221 t
->name_indx
= (unsigned int) -1;
4225 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
4227 t
->vernum
= version_index
;
4231 h
->verinfo
.vertree
= t
;
4235 /* We could not find the version for a symbol when
4236 generating a shared archive. Return an error. */
4237 (*_bfd_error_handler
)
4238 (_("%s: undefined versioned symbol name %s"),
4239 bfd_get_filename (sinfo
->output_bfd
), h
->root
.root
.string
);
4240 bfd_set_error (bfd_error_bad_value
);
4241 sinfo
->failed
= true;
4246 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4249 /* If we don't have a version for this symbol, see if we can find
4251 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
4253 struct bfd_elf_version_tree
*t
;
4254 struct bfd_elf_version_tree
*deflt
;
4255 struct bfd_elf_version_expr
*d
;
4257 /* See if can find what version this symbol is in. If the
4258 symbol is supposed to be local, then don't actually register
4261 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4263 if (t
->globals
!= NULL
)
4265 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4267 if ((*d
->match
) (d
, h
->root
.root
.string
))
4269 h
->verinfo
.vertree
= t
;
4278 if (t
->locals
!= NULL
)
4280 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4282 if (d
->pattern
[0] == '*' && d
->pattern
[1] == '\0')
4284 else if ((*d
->match
) (d
, h
->root
.root
.string
))
4286 h
->verinfo
.vertree
= t
;
4287 if (h
->dynindx
!= -1
4289 && ! info
->export_dynamic
)
4291 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4292 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4293 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4305 if (deflt
!= NULL
&& h
->verinfo
.vertree
== NULL
)
4307 h
->verinfo
.vertree
= deflt
;
4308 if (h
->dynindx
!= -1
4310 && ! info
->export_dynamic
)
4312 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4313 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4314 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
4323 /* Final phase of ELF linker. */
4325 /* A structure we use to avoid passing large numbers of arguments. */
4327 struct elf_final_link_info
4329 /* General link information. */
4330 struct bfd_link_info
*info
;
4333 /* Symbol string table. */
4334 struct bfd_strtab_hash
*symstrtab
;
4335 /* .dynsym section. */
4336 asection
*dynsym_sec
;
4337 /* .hash section. */
4339 /* symbol version section (.gnu.version). */
4340 asection
*symver_sec
;
4341 /* Buffer large enough to hold contents of any section. */
4343 /* Buffer large enough to hold external relocs of any section. */
4344 PTR external_relocs
;
4345 /* Buffer large enough to hold internal relocs of any section. */
4346 Elf_Internal_Rela
*internal_relocs
;
4347 /* Buffer large enough to hold external local symbols of any input
4349 Elf_External_Sym
*external_syms
;
4350 /* Buffer large enough to hold internal local symbols of any input
4352 Elf_Internal_Sym
*internal_syms
;
4353 /* Array large enough to hold a symbol index for each local symbol
4354 of any input BFD. */
4356 /* Array large enough to hold a section pointer for each local
4357 symbol of any input BFD. */
4358 asection
**sections
;
4359 /* Buffer to hold swapped out symbols. */
4360 Elf_External_Sym
*symbuf
;
4361 /* Number of swapped out symbols in buffer. */
4362 size_t symbuf_count
;
4363 /* Number of symbols which fit in symbuf. */
4367 static boolean elf_link_output_sym
4368 PARAMS ((struct elf_final_link_info
*, const char *,
4369 Elf_Internal_Sym
*, asection
*));
4370 static boolean elf_link_flush_output_syms
4371 PARAMS ((struct elf_final_link_info
*));
4372 static boolean elf_link_output_extsym
4373 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4374 static boolean elf_link_sec_merge_syms
4375 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4376 static boolean elf_link_input_bfd
4377 PARAMS ((struct elf_final_link_info
*, bfd
*));
4378 static boolean elf_reloc_link_order
4379 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
4380 struct bfd_link_order
*));
4382 /* This struct is used to pass information to elf_link_output_extsym. */
4384 struct elf_outext_info
4388 struct elf_final_link_info
*finfo
;
4391 /* Compute the size of, and allocate space for, REL_HDR which is the
4392 section header for a section containing relocations for O. */
4395 elf_link_size_reloc_section (abfd
, rel_hdr
, o
)
4397 Elf_Internal_Shdr
*rel_hdr
;
4400 bfd_size_type reloc_count
;
4401 bfd_size_type num_rel_hashes
;
4403 /* Figure out how many relocations there will be. */
4404 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
4405 reloc_count
= elf_section_data (o
)->rel_count
;
4407 reloc_count
= elf_section_data (o
)->rel_count2
;
4409 num_rel_hashes
= o
->reloc_count
;
4410 if (num_rel_hashes
< reloc_count
)
4411 num_rel_hashes
= reloc_count
;
4413 /* That allows us to calculate the size of the section. */
4414 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
4416 /* The contents field must last into write_object_contents, so we
4417 allocate it with bfd_alloc rather than malloc. Also since we
4418 cannot be sure that the contents will actually be filled in,
4419 we zero the allocated space. */
4420 rel_hdr
->contents
= (PTR
) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
4421 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
4424 /* We only allocate one set of hash entries, so we only do it the
4425 first time we are called. */
4426 if (elf_section_data (o
)->rel_hashes
== NULL
4429 struct elf_link_hash_entry
**p
;
4431 p
= ((struct elf_link_hash_entry
**)
4432 bfd_zmalloc (num_rel_hashes
4433 * sizeof (struct elf_link_hash_entry
*)));
4437 elf_section_data (o
)->rel_hashes
= p
;
4443 /* When performing a relocateable link, the input relocations are
4444 preserved. But, if they reference global symbols, the indices
4445 referenced must be updated. Update all the relocations in
4446 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4449 elf_link_adjust_relocs (abfd
, rel_hdr
, count
, rel_hash
)
4451 Elf_Internal_Shdr
*rel_hdr
;
4453 struct elf_link_hash_entry
**rel_hash
;
4456 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4457 Elf_Internal_Rel
*irel
;
4458 Elf_Internal_Rela
*irela
;
4459 bfd_size_type amt
= sizeof (Elf_Internal_Rel
) * bed
->s
->int_rels_per_ext_rel
;
4461 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (amt
);
4464 (*_bfd_error_handler
) (_("Error: out of memory"));
4468 amt
= sizeof (Elf_Internal_Rela
) * bed
->s
->int_rels_per_ext_rel
;
4469 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (amt
);
4472 (*_bfd_error_handler
) (_("Error: out of memory"));
4476 for (i
= 0; i
< count
; i
++, rel_hash
++)
4478 if (*rel_hash
== NULL
)
4481 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
4483 if (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
4485 Elf_External_Rel
*erel
;
4488 erel
= (Elf_External_Rel
*) rel_hdr
->contents
+ i
;
4489 if (bed
->s
->swap_reloc_in
)
4490 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
4492 elf_swap_reloc_in (abfd
, erel
, irel
);
4494 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4495 irel
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4496 ELF_R_TYPE (irel
[j
].r_info
));
4498 if (bed
->s
->swap_reloc_out
)
4499 (*bed
->s
->swap_reloc_out
) (abfd
, irel
, (bfd_byte
*) erel
);
4501 elf_swap_reloc_out (abfd
, irel
, erel
);
4505 Elf_External_Rela
*erela
;
4508 BFD_ASSERT (rel_hdr
->sh_entsize
4509 == sizeof (Elf_External_Rela
));
4511 erela
= (Elf_External_Rela
*) rel_hdr
->contents
+ i
;
4512 if (bed
->s
->swap_reloca_in
)
4513 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
4515 elf_swap_reloca_in (abfd
, erela
, irela
);
4517 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4518 irela
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4519 ELF_R_TYPE (irela
[j
].r_info
));
4521 if (bed
->s
->swap_reloca_out
)
4522 (*bed
->s
->swap_reloca_out
) (abfd
, irela
, (bfd_byte
*) erela
);
4524 elf_swap_reloca_out (abfd
, irela
, erela
);
4532 struct elf_link_sort_rela
{
4534 enum elf_reloc_type_class type
;
4536 Elf_Internal_Rel rel
;
4537 Elf_Internal_Rela rela
;
4542 elf_link_sort_cmp1 (A
, B
)
4546 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4547 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4548 int relativea
, relativeb
;
4550 relativea
= a
->type
== reloc_class_relative
;
4551 relativeb
= b
->type
== reloc_class_relative
;
4553 if (relativea
< relativeb
)
4555 if (relativea
> relativeb
)
4557 if (ELF_R_SYM (a
->u
.rel
.r_info
) < ELF_R_SYM (b
->u
.rel
.r_info
))
4559 if (ELF_R_SYM (a
->u
.rel
.r_info
) > ELF_R_SYM (b
->u
.rel
.r_info
))
4561 if (a
->u
.rel
.r_offset
< b
->u
.rel
.r_offset
)
4563 if (a
->u
.rel
.r_offset
> b
->u
.rel
.r_offset
)
4569 elf_link_sort_cmp2 (A
, B
)
4573 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4574 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4577 if (a
->offset
< b
->offset
)
4579 if (a
->offset
> b
->offset
)
4581 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
4582 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
4587 if (a
->u
.rel
.r_offset
< b
->u
.rel
.r_offset
)
4589 if (a
->u
.rel
.r_offset
> b
->u
.rel
.r_offset
)
4595 elf_link_sort_relocs (abfd
, info
, psec
)
4597 struct bfd_link_info
*info
;
4600 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
4601 asection
*reldyn
, *o
;
4602 boolean rel
= false;
4603 bfd_size_type count
, size
;
4605 struct elf_link_sort_rela
*rela
;
4606 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4608 reldyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
4609 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4611 reldyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
4612 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4615 count
= reldyn
->_raw_size
/ sizeof (Elf_External_Rel
);
4618 count
= reldyn
->_raw_size
/ sizeof (Elf_External_Rela
);
4621 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4622 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4623 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4624 && o
->output_section
== reldyn
)
4625 size
+= o
->_raw_size
;
4627 if (size
!= reldyn
->_raw_size
)
4630 rela
= (struct elf_link_sort_rela
*) bfd_zmalloc (sizeof (*rela
) * count
);
4633 (*info
->callbacks
->warning
)
4634 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0,
4639 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4640 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4641 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4642 && o
->output_section
== reldyn
)
4646 Elf_External_Rel
*erel
, *erelend
;
4647 struct elf_link_sort_rela
*s
;
4649 erel
= (Elf_External_Rel
*) o
->contents
;
4650 erelend
= (Elf_External_Rel
*) (o
->contents
+ o
->_raw_size
);
4651 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rel
);
4652 for (; erel
< erelend
; erel
++, s
++)
4654 if (bed
->s
->swap_reloc_in
)
4655 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, &s
->u
.rel
);
4657 elf_swap_reloc_in (abfd
, erel
, &s
->u
.rel
);
4659 s
->type
= (*bed
->elf_backend_reloc_type_class
) (&s
->u
.rela
);
4664 Elf_External_Rela
*erela
, *erelaend
;
4665 struct elf_link_sort_rela
*s
;
4667 erela
= (Elf_External_Rela
*) o
->contents
;
4668 erelaend
= (Elf_External_Rela
*) (o
->contents
+ o
->_raw_size
);
4669 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rela
);
4670 for (; erela
< erelaend
; erela
++, s
++)
4672 if (bed
->s
->swap_reloca_in
)
4673 (*bed
->s
->swap_reloca_in
) (dynobj
, (bfd_byte
*) erela
,
4676 elf_swap_reloca_in (dynobj
, erela
, &s
->u
.rela
);
4678 s
->type
= (*bed
->elf_backend_reloc_type_class
) (&s
->u
.rela
);
4683 qsort (rela
, (size_t) count
, sizeof (*rela
), elf_link_sort_cmp1
);
4684 for (ret
= 0; ret
< count
&& rela
[ret
].type
== reloc_class_relative
; ret
++)
4686 for (i
= ret
, j
= ret
; i
< count
; i
++)
4688 if (ELF_R_SYM (rela
[i
].u
.rel
.r_info
) != ELF_R_SYM (rela
[j
].u
.rel
.r_info
))
4690 rela
[i
].offset
= rela
[j
].u
.rel
.r_offset
;
4692 qsort (rela
+ ret
, (size_t) count
- ret
, sizeof (*rela
), elf_link_sort_cmp2
);
4694 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4695 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4696 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4697 && o
->output_section
== reldyn
)
4701 Elf_External_Rel
*erel
, *erelend
;
4702 struct elf_link_sort_rela
*s
;
4704 erel
= (Elf_External_Rel
*) o
->contents
;
4705 erelend
= (Elf_External_Rel
*) (o
->contents
+ o
->_raw_size
);
4706 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rel
);
4707 for (; erel
< erelend
; erel
++, s
++)
4709 if (bed
->s
->swap_reloc_out
)
4710 (*bed
->s
->swap_reloc_out
) (abfd
, &s
->u
.rel
,
4713 elf_swap_reloc_out (abfd
, &s
->u
.rel
, erel
);
4718 Elf_External_Rela
*erela
, *erelaend
;
4719 struct elf_link_sort_rela
*s
;
4721 erela
= (Elf_External_Rela
*) o
->contents
;
4722 erelaend
= (Elf_External_Rela
*) (o
->contents
+ o
->_raw_size
);
4723 s
= rela
+ o
->output_offset
/ sizeof (Elf_External_Rela
);
4724 for (; erela
< erelaend
; erela
++, s
++)
4726 if (bed
->s
->swap_reloca_out
)
4727 (*bed
->s
->swap_reloca_out
) (dynobj
, &s
->u
.rela
,
4728 (bfd_byte
*) erela
);
4730 elf_swap_reloca_out (dynobj
, &s
->u
.rela
, erela
);
4740 /* Do the final step of an ELF link. */
4743 elf_bfd_final_link (abfd
, info
)
4745 struct bfd_link_info
*info
;
4748 boolean emit_relocs
;
4750 struct elf_final_link_info finfo
;
4751 register asection
*o
;
4752 register struct bfd_link_order
*p
;
4754 bfd_size_type max_contents_size
;
4755 bfd_size_type max_external_reloc_size
;
4756 bfd_size_type max_internal_reloc_count
;
4757 bfd_size_type max_sym_count
;
4759 Elf_Internal_Sym elfsym
;
4761 Elf_Internal_Shdr
*symtab_hdr
;
4762 Elf_Internal_Shdr
*symstrtab_hdr
;
4763 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4764 struct elf_outext_info eoinfo
;
4766 size_t relativecount
= 0;
4767 asection
*reldyn
= 0;
4770 if (! is_elf_hash_table (info
))
4774 abfd
->flags
|= DYNAMIC
;
4776 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
4777 dynobj
= elf_hash_table (info
)->dynobj
;
4779 emit_relocs
= (info
->relocateable
4780 || info
->emitrelocations
4781 || bed
->elf_backend_emit_relocs
);
4784 finfo
.output_bfd
= abfd
;
4785 finfo
.symstrtab
= elf_stringtab_init ();
4786 if (finfo
.symstrtab
== NULL
)
4791 finfo
.dynsym_sec
= NULL
;
4792 finfo
.hash_sec
= NULL
;
4793 finfo
.symver_sec
= NULL
;
4797 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
4798 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
4799 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
&& finfo
.hash_sec
!= NULL
);
4800 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
4801 /* Note that it is OK if symver_sec is NULL. */
4804 finfo
.contents
= NULL
;
4805 finfo
.external_relocs
= NULL
;
4806 finfo
.internal_relocs
= NULL
;
4807 finfo
.external_syms
= NULL
;
4808 finfo
.internal_syms
= NULL
;
4809 finfo
.indices
= NULL
;
4810 finfo
.sections
= NULL
;
4811 finfo
.symbuf
= NULL
;
4812 finfo
.symbuf_count
= 0;
4814 /* Count up the number of relocations we will output for each output
4815 section, so that we know the sizes of the reloc sections. We
4816 also figure out some maximum sizes. */
4817 max_contents_size
= 0;
4818 max_external_reloc_size
= 0;
4819 max_internal_reloc_count
= 0;
4822 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4826 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
4828 if (p
->type
== bfd_section_reloc_link_order
4829 || p
->type
== bfd_symbol_reloc_link_order
)
4831 else if (p
->type
== bfd_indirect_link_order
)
4835 sec
= p
->u
.indirect
.section
;
4837 /* Mark all sections which are to be included in the
4838 link. This will normally be every section. We need
4839 to do this so that we can identify any sections which
4840 the linker has decided to not include. */
4841 sec
->linker_mark
= true;
4843 if (sec
->flags
& SEC_MERGE
)
4846 if (info
->relocateable
|| info
->emitrelocations
)
4847 o
->reloc_count
+= sec
->reloc_count
;
4848 else if (bed
->elf_backend_count_relocs
)
4850 Elf_Internal_Rela
* relocs
;
4852 relocs
= (NAME(_bfd_elf
,link_read_relocs
)
4853 (abfd
, sec
, (PTR
) NULL
,
4854 (Elf_Internal_Rela
*) NULL
, info
->keep_memory
));
4856 o
->reloc_count
+= (*bed
->elf_backend_count_relocs
)
4859 if (!info
->keep_memory
)
4863 if (sec
->_raw_size
> max_contents_size
)
4864 max_contents_size
= sec
->_raw_size
;
4865 if (sec
->_cooked_size
> max_contents_size
)
4866 max_contents_size
= sec
->_cooked_size
;
4868 /* We are interested in just local symbols, not all
4870 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
4871 && (sec
->owner
->flags
& DYNAMIC
) == 0)
4875 if (elf_bad_symtab (sec
->owner
))
4876 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
4877 / sizeof (Elf_External_Sym
));
4879 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
4881 if (sym_count
> max_sym_count
)
4882 max_sym_count
= sym_count
;
4884 if ((sec
->flags
& SEC_RELOC
) != 0)
4888 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
4889 if (ext_size
> max_external_reloc_size
)
4890 max_external_reloc_size
= ext_size
;
4891 if (sec
->reloc_count
> max_internal_reloc_count
)
4892 max_internal_reloc_count
= sec
->reloc_count
;
4898 if (o
->reloc_count
> 0)
4899 o
->flags
|= SEC_RELOC
;
4902 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4903 set it (this is probably a bug) and if it is set
4904 assign_section_numbers will create a reloc section. */
4905 o
->flags
&=~ SEC_RELOC
;
4908 /* If the SEC_ALLOC flag is not set, force the section VMA to
4909 zero. This is done in elf_fake_sections as well, but forcing
4910 the VMA to 0 here will ensure that relocs against these
4911 sections are handled correctly. */
4912 if ((o
->flags
& SEC_ALLOC
) == 0
4913 && ! o
->user_set_vma
)
4917 if (! info
->relocateable
&& merged
)
4918 elf_link_hash_traverse (elf_hash_table (info
),
4919 elf_link_sec_merge_syms
, (PTR
) abfd
);
4921 /* Figure out the file positions for everything but the symbol table
4922 and the relocs. We set symcount to force assign_section_numbers
4923 to create a symbol table. */
4924 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
4925 BFD_ASSERT (! abfd
->output_has_begun
);
4926 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
4929 /* Figure out how many relocations we will have in each section.
4930 Just using RELOC_COUNT isn't good enough since that doesn't
4931 maintain a separate value for REL vs. RELA relocations. */
4933 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
4934 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
4936 asection
*output_section
;
4938 if (! o
->linker_mark
)
4940 /* This section was omitted from the link. */
4944 output_section
= o
->output_section
;
4946 if (output_section
!= NULL
4947 && (o
->flags
& SEC_RELOC
) != 0)
4949 struct bfd_elf_section_data
*esdi
4950 = elf_section_data (o
);
4951 struct bfd_elf_section_data
*esdo
4952 = elf_section_data (output_section
);
4953 unsigned int *rel_count
;
4954 unsigned int *rel_count2
;
4956 /* We must be careful to add the relocation froms the
4957 input section to the right output count. */
4958 if (esdi
->rel_hdr
.sh_entsize
== esdo
->rel_hdr
.sh_entsize
)
4960 rel_count
= &esdo
->rel_count
;
4961 rel_count2
= &esdo
->rel_count2
;
4965 rel_count
= &esdo
->rel_count2
;
4966 rel_count2
= &esdo
->rel_count
;
4969 *rel_count
+= NUM_SHDR_ENTRIES (& esdi
->rel_hdr
);
4971 *rel_count2
+= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
4972 output_section
->flags
|= SEC_RELOC
;
4976 /* That created the reloc sections. Set their sizes, and assign
4977 them file positions, and allocate some buffers. */
4978 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4980 if ((o
->flags
& SEC_RELOC
) != 0)
4982 if (!elf_link_size_reloc_section (abfd
,
4983 &elf_section_data (o
)->rel_hdr
,
4987 if (elf_section_data (o
)->rel_hdr2
4988 && !elf_link_size_reloc_section (abfd
,
4989 elf_section_data (o
)->rel_hdr2
,
4994 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4995 to count upwards while actually outputting the relocations. */
4996 elf_section_data (o
)->rel_count
= 0;
4997 elf_section_data (o
)->rel_count2
= 0;
5000 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5002 /* We have now assigned file positions for all the sections except
5003 .symtab and .strtab. We start the .symtab section at the current
5004 file position, and write directly to it. We build the .strtab
5005 section in memory. */
5006 bfd_get_symcount (abfd
) = 0;
5007 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5008 /* sh_name is set in prep_headers. */
5009 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5010 symtab_hdr
->sh_flags
= 0;
5011 symtab_hdr
->sh_addr
= 0;
5012 symtab_hdr
->sh_size
= 0;
5013 symtab_hdr
->sh_entsize
= sizeof (Elf_External_Sym
);
5014 /* sh_link is set in assign_section_numbers. */
5015 /* sh_info is set below. */
5016 /* sh_offset is set just below. */
5017 symtab_hdr
->sh_addralign
= bed
->s
->file_align
;
5019 off
= elf_tdata (abfd
)->next_file_pos
;
5020 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, true);
5022 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5023 incorrect. We do not yet know the size of the .symtab section.
5024 We correct next_file_pos below, after we do know the size. */
5026 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5027 continuously seeking to the right position in the file. */
5028 if (! info
->keep_memory
|| max_sym_count
< 20)
5029 finfo
.symbuf_size
= 20;
5031 finfo
.symbuf_size
= max_sym_count
;
5032 amt
= finfo
.symbuf_size
;
5033 amt
*= sizeof (Elf_External_Sym
);
5034 finfo
.symbuf
= (Elf_External_Sym
*) bfd_malloc (amt
);
5035 if (finfo
.symbuf
== NULL
)
5038 /* Start writing out the symbol table. The first symbol is always a
5040 if (info
->strip
!= strip_all
5043 elfsym
.st_value
= 0;
5046 elfsym
.st_other
= 0;
5047 elfsym
.st_shndx
= SHN_UNDEF
;
5048 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5049 &elfsym
, bfd_und_section_ptr
))
5054 /* Some standard ELF linkers do this, but we don't because it causes
5055 bootstrap comparison failures. */
5056 /* Output a file symbol for the output file as the second symbol.
5057 We output this even if we are discarding local symbols, although
5058 I'm not sure if this is correct. */
5059 elfsym
.st_value
= 0;
5061 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5062 elfsym
.st_other
= 0;
5063 elfsym
.st_shndx
= SHN_ABS
;
5064 if (! elf_link_output_sym (&finfo
, bfd_get_filename (abfd
),
5065 &elfsym
, bfd_abs_section_ptr
))
5069 /* Output a symbol for each section. We output these even if we are
5070 discarding local symbols, since they are used for relocs. These
5071 symbols have no names. We store the index of each one in the
5072 index field of the section, so that we can find it again when
5073 outputting relocs. */
5074 if (info
->strip
!= strip_all
5078 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5079 elfsym
.st_other
= 0;
5080 for (i
= 1; i
< elf_elfheader (abfd
)->e_shnum
; i
++)
5082 o
= section_from_elf_index (abfd
, i
);
5084 o
->target_index
= bfd_get_symcount (abfd
);
5085 elfsym
.st_shndx
= i
;
5086 if (info
->relocateable
|| o
== NULL
)
5087 elfsym
.st_value
= 0;
5089 elfsym
.st_value
= o
->vma
;
5090 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5096 /* Allocate some memory to hold information read in from the input
5098 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
5099 finfo
.external_relocs
= (PTR
) bfd_malloc (max_external_reloc_size
);
5100 finfo
.internal_relocs
= ((Elf_Internal_Rela
*)
5101 bfd_malloc (max_internal_reloc_count
5102 * sizeof (Elf_Internal_Rela
)
5103 * bed
->s
->int_rels_per_ext_rel
));
5104 finfo
.external_syms
= ((Elf_External_Sym
*)
5105 bfd_malloc (max_sym_count
5106 * sizeof (Elf_External_Sym
)));
5107 finfo
.internal_syms
= ((Elf_Internal_Sym
*)
5108 bfd_malloc (max_sym_count
5109 * sizeof (Elf_Internal_Sym
)));
5110 finfo
.indices
= (long *) bfd_malloc (max_sym_count
* sizeof (long));
5111 finfo
.sections
= ((asection
**)
5112 bfd_malloc (max_sym_count
* sizeof (asection
*)));
5113 if ((finfo
.contents
== NULL
&& max_contents_size
!= 0)
5114 || (finfo
.external_relocs
== NULL
&& max_external_reloc_size
!= 0)
5115 || (finfo
.internal_relocs
== NULL
&& max_internal_reloc_count
!= 0)
5116 || (finfo
.external_syms
== NULL
&& max_sym_count
!= 0)
5117 || (finfo
.internal_syms
== NULL
&& max_sym_count
!= 0)
5118 || (finfo
.indices
== NULL
&& max_sym_count
!= 0)
5119 || (finfo
.sections
== NULL
&& max_sym_count
!= 0))
5122 /* Since ELF permits relocations to be against local symbols, we
5123 must have the local symbols available when we do the relocations.
5124 Since we would rather only read the local symbols once, and we
5125 would rather not keep them in memory, we handle all the
5126 relocations for a single input file at the same time.
5128 Unfortunately, there is no way to know the total number of local
5129 symbols until we have seen all of them, and the local symbol
5130 indices precede the global symbol indices. This means that when
5131 we are generating relocateable output, and we see a reloc against
5132 a global symbol, we can not know the symbol index until we have
5133 finished examining all the local symbols to see which ones we are
5134 going to output. To deal with this, we keep the relocations in
5135 memory, and don't output them until the end of the link. This is
5136 an unfortunate waste of memory, but I don't see a good way around
5137 it. Fortunately, it only happens when performing a relocateable
5138 link, which is not the common case. FIXME: If keep_memory is set
5139 we could write the relocs out and then read them again; I don't
5140 know how bad the memory loss will be. */
5142 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
5143 sub
->output_has_begun
= false;
5144 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5146 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
5148 if (p
->type
== bfd_indirect_link_order
5149 && (bfd_get_flavour (p
->u
.indirect
.section
->owner
)
5150 == bfd_target_elf_flavour
))
5152 sub
= p
->u
.indirect
.section
->owner
;
5153 if (! sub
->output_has_begun
)
5155 if (! elf_link_input_bfd (&finfo
, sub
))
5157 sub
->output_has_begun
= true;
5160 else if (p
->type
== bfd_section_reloc_link_order
5161 || p
->type
== bfd_symbol_reloc_link_order
)
5163 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
5168 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
5174 /* That wrote out all the local symbols. Finish up the symbol table
5175 with the global symbols. Even if we want to strip everything we
5176 can, we still need to deal with those global symbols that got
5177 converted to local in a version script. */
5181 /* Output any global symbols that got converted to local in a
5182 version script. We do this in a separate step since ELF
5183 requires all local symbols to appear prior to any global
5184 symbols. FIXME: We should only do this if some global
5185 symbols were, in fact, converted to become local. FIXME:
5186 Will this work correctly with the Irix 5 linker? */
5187 eoinfo
.failed
= false;
5188 eoinfo
.finfo
= &finfo
;
5189 eoinfo
.localsyms
= true;
5190 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5196 /* The sh_info field records the index of the first non local symbol. */
5197 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
5200 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
5202 Elf_Internal_Sym sym
;
5203 Elf_External_Sym
*dynsym
=
5204 (Elf_External_Sym
*) finfo
.dynsym_sec
->contents
;
5205 long last_local
= 0;
5207 /* Write out the section symbols for the output sections. */
5214 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5217 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5220 indx
= elf_section_data (s
)->this_idx
;
5221 BFD_ASSERT (indx
> 0);
5222 sym
.st_shndx
= indx
;
5223 sym
.st_value
= s
->vma
;
5225 elf_swap_symbol_out (abfd
, &sym
,
5226 dynsym
+ elf_section_data (s
)->dynindx
);
5229 last_local
= bfd_count_sections (abfd
);
5232 /* Write out the local dynsyms. */
5233 if (elf_hash_table (info
)->dynlocal
)
5235 struct elf_link_local_dynamic_entry
*e
;
5236 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
5240 sym
.st_size
= e
->isym
.st_size
;
5241 sym
.st_other
= e
->isym
.st_other
;
5243 /* Copy the internal symbol as is.
5244 Note that we saved a word of storage and overwrote
5245 the original st_name with the dynstr_index. */
5248 if (e
->isym
.st_shndx
> 0 && e
->isym
.st_shndx
< SHN_LORESERVE
)
5250 s
= bfd_section_from_elf_index (e
->input_bfd
,
5254 elf_section_data (s
->output_section
)->this_idx
;
5255 sym
.st_value
= (s
->output_section
->vma
5257 + e
->isym
.st_value
);
5260 if (last_local
< e
->dynindx
)
5261 last_local
= e
->dynindx
;
5263 elf_swap_symbol_out (abfd
, &sym
, dynsym
+ e
->dynindx
);
5267 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
5271 /* We get the global symbols from the hash table. */
5272 eoinfo
.failed
= false;
5273 eoinfo
.localsyms
= false;
5274 eoinfo
.finfo
= &finfo
;
5275 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5280 /* If backend needs to output some symbols not present in the hash
5281 table, do it now. */
5282 if (bed
->elf_backend_output_arch_syms
)
5284 typedef boolean (*out_sym_func
) PARAMS ((PTR
, const char *,
5288 if (! ((*bed
->elf_backend_output_arch_syms
)
5289 (abfd
, info
, (PTR
) &finfo
, (out_sym_func
) elf_link_output_sym
)))
5293 /* Flush all symbols to the file. */
5294 if (! elf_link_flush_output_syms (&finfo
))
5297 /* Now we know the size of the symtab section. */
5298 off
+= symtab_hdr
->sh_size
;
5300 /* Finish up and write out the symbol string table (.strtab)
5302 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5303 /* sh_name was set in prep_headers. */
5304 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5305 symstrtab_hdr
->sh_flags
= 0;
5306 symstrtab_hdr
->sh_addr
= 0;
5307 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
5308 symstrtab_hdr
->sh_entsize
= 0;
5309 symstrtab_hdr
->sh_link
= 0;
5310 symstrtab_hdr
->sh_info
= 0;
5311 /* sh_offset is set just below. */
5312 symstrtab_hdr
->sh_addralign
= 1;
5314 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, true);
5315 elf_tdata (abfd
)->next_file_pos
= off
;
5317 if (bfd_get_symcount (abfd
) > 0)
5319 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
5320 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
5324 /* Adjust the relocs to have the correct symbol indices. */
5325 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5327 if ((o
->flags
& SEC_RELOC
) == 0)
5330 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
5331 elf_section_data (o
)->rel_count
,
5332 elf_section_data (o
)->rel_hashes
);
5333 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
5334 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
5335 elf_section_data (o
)->rel_count2
,
5336 (elf_section_data (o
)->rel_hashes
5337 + elf_section_data (o
)->rel_count
));
5339 /* Set the reloc_count field to 0 to prevent write_relocs from
5340 trying to swap the relocs out itself. */
5344 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
5345 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
5347 /* If we are linking against a dynamic object, or generating a
5348 shared library, finish up the dynamic linking information. */
5351 Elf_External_Dyn
*dyncon
, *dynconend
;
5353 /* Fix up .dynamic entries. */
5354 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
5355 BFD_ASSERT (o
!= NULL
);
5357 dyncon
= (Elf_External_Dyn
*) o
->contents
;
5358 dynconend
= (Elf_External_Dyn
*) (o
->contents
+ o
->_raw_size
);
5359 for (; dyncon
< dynconend
; dyncon
++)
5361 Elf_Internal_Dyn dyn
;
5365 elf_swap_dyn_in (dynobj
, dyncon
, &dyn
);
5372 if (relativecount
> 0 && dyncon
+ 1 < dynconend
)
5374 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
5376 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
5377 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
5380 if (dyn
.d_tag
!= DT_NULL
)
5382 dyn
.d_un
.d_val
= relativecount
;
5383 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5389 name
= info
->init_function
;
5392 name
= info
->fini_function
;
5395 struct elf_link_hash_entry
*h
;
5397 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
5398 false, false, true);
5400 && (h
->root
.type
== bfd_link_hash_defined
5401 || h
->root
.type
== bfd_link_hash_defweak
))
5403 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
5404 o
= h
->root
.u
.def
.section
;
5405 if (o
->output_section
!= NULL
)
5406 dyn
.d_un
.d_val
+= (o
->output_section
->vma
5407 + o
->output_offset
);
5410 /* The symbol is imported from another shared
5411 library and does not apply to this one. */
5415 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5430 name
= ".gnu.version_d";
5433 name
= ".gnu.version_r";
5436 name
= ".gnu.version";
5438 o
= bfd_get_section_by_name (abfd
, name
);
5439 BFD_ASSERT (o
!= NULL
);
5440 dyn
.d_un
.d_ptr
= o
->vma
;
5441 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5448 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
5453 for (i
= 1; i
< elf_elfheader (abfd
)->e_shnum
; i
++)
5455 Elf_Internal_Shdr
*hdr
;
5457 hdr
= elf_elfsections (abfd
)[i
];
5458 if (hdr
->sh_type
== type
5459 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
5461 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
5462 dyn
.d_un
.d_val
+= hdr
->sh_size
;
5465 if (dyn
.d_un
.d_val
== 0
5466 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
5467 dyn
.d_un
.d_val
= hdr
->sh_addr
;
5471 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5477 /* If we have created any dynamic sections, then output them. */
5480 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
5483 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
5485 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
5486 || o
->_raw_size
== 0
5487 || o
->output_section
== bfd_abs_section_ptr
)
5489 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
5491 /* At this point, we are only interested in sections
5492 created by elf_link_create_dynamic_sections. */
5495 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
5497 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
5499 if (! bfd_set_section_contents (abfd
, o
->output_section
,
5501 (file_ptr
) o
->output_offset
,
5507 /* The contents of the .dynstr section are actually in a
5509 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
5510 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
5511 || ! _bfd_elf_strtab_emit (abfd
,
5512 elf_hash_table (info
)->dynstr
))
5518 /* If we have optimized stabs strings, output them. */
5519 if (elf_hash_table (info
)->stab_info
!= NULL
)
5521 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
5525 if (finfo
.symstrtab
!= NULL
)
5526 _bfd_stringtab_free (finfo
.symstrtab
);
5527 if (finfo
.contents
!= NULL
)
5528 free (finfo
.contents
);
5529 if (finfo
.external_relocs
!= NULL
)
5530 free (finfo
.external_relocs
);
5531 if (finfo
.internal_relocs
!= NULL
)
5532 free (finfo
.internal_relocs
);
5533 if (finfo
.external_syms
!= NULL
)
5534 free (finfo
.external_syms
);
5535 if (finfo
.internal_syms
!= NULL
)
5536 free (finfo
.internal_syms
);
5537 if (finfo
.indices
!= NULL
)
5538 free (finfo
.indices
);
5539 if (finfo
.sections
!= NULL
)
5540 free (finfo
.sections
);
5541 if (finfo
.symbuf
!= NULL
)
5542 free (finfo
.symbuf
);
5543 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5545 if ((o
->flags
& SEC_RELOC
) != 0
5546 && elf_section_data (o
)->rel_hashes
!= NULL
)
5547 free (elf_section_data (o
)->rel_hashes
);
5550 elf_tdata (abfd
)->linker
= true;
5555 if (finfo
.symstrtab
!= NULL
)
5556 _bfd_stringtab_free (finfo
.symstrtab
);
5557 if (finfo
.contents
!= NULL
)
5558 free (finfo
.contents
);
5559 if (finfo
.external_relocs
!= NULL
)
5560 free (finfo
.external_relocs
);
5561 if (finfo
.internal_relocs
!= NULL
)
5562 free (finfo
.internal_relocs
);
5563 if (finfo
.external_syms
!= NULL
)
5564 free (finfo
.external_syms
);
5565 if (finfo
.internal_syms
!= NULL
)
5566 free (finfo
.internal_syms
);
5567 if (finfo
.indices
!= NULL
)
5568 free (finfo
.indices
);
5569 if (finfo
.sections
!= NULL
)
5570 free (finfo
.sections
);
5571 if (finfo
.symbuf
!= NULL
)
5572 free (finfo
.symbuf
);
5573 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5575 if ((o
->flags
& SEC_RELOC
) != 0
5576 && elf_section_data (o
)->rel_hashes
!= NULL
)
5577 free (elf_section_data (o
)->rel_hashes
);
5583 /* Add a symbol to the output symbol table. */
5586 elf_link_output_sym (finfo
, name
, elfsym
, input_sec
)
5587 struct elf_final_link_info
*finfo
;
5589 Elf_Internal_Sym
*elfsym
;
5590 asection
*input_sec
;
5592 boolean (*output_symbol_hook
) PARAMS ((bfd
*,
5593 struct bfd_link_info
*info
,
5598 output_symbol_hook
= get_elf_backend_data (finfo
->output_bfd
)->
5599 elf_backend_link_output_symbol_hook
;
5600 if (output_symbol_hook
!= NULL
)
5602 if (! ((*output_symbol_hook
)
5603 (finfo
->output_bfd
, finfo
->info
, name
, elfsym
, input_sec
)))
5607 if (name
== (const char *) NULL
|| *name
== '\0')
5608 elfsym
->st_name
= 0;
5609 else if (input_sec
->flags
& SEC_EXCLUDE
)
5610 elfsym
->st_name
= 0;
5613 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
5615 if (elfsym
->st_name
== (unsigned long) -1)
5619 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
5621 if (! elf_link_flush_output_syms (finfo
))
5625 elf_swap_symbol_out (finfo
->output_bfd
, elfsym
,
5626 (PTR
) (finfo
->symbuf
+ finfo
->symbuf_count
));
5627 ++finfo
->symbuf_count
;
5629 ++ bfd_get_symcount (finfo
->output_bfd
);
5634 /* Flush the output symbols to the file. */
5637 elf_link_flush_output_syms (finfo
)
5638 struct elf_final_link_info
*finfo
;
5640 if (finfo
->symbuf_count
> 0)
5642 Elf_Internal_Shdr
*symtab
;
5646 symtab
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
5647 pos
= symtab
->sh_offset
+ symtab
->sh_size
;
5648 amt
= finfo
->symbuf_count
* sizeof (Elf_External_Sym
);
5649 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
5650 || bfd_bwrite ((PTR
) finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
5653 symtab
->sh_size
+= finfo
->symbuf_count
* sizeof (Elf_External_Sym
);
5655 finfo
->symbuf_count
= 0;
5661 /* Adjust all external symbols pointing into SEC_MERGE sections
5662 to reflect the object merging within the sections. */
5665 elf_link_sec_merge_syms (h
, data
)
5666 struct elf_link_hash_entry
*h
;
5671 if ((h
->root
.type
== bfd_link_hash_defined
5672 || h
->root
.type
== bfd_link_hash_defweak
)
5673 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
5674 && elf_section_data (sec
)->merge_info
)
5676 bfd
*output_bfd
= (bfd
*) data
;
5678 h
->root
.u
.def
.value
=
5679 _bfd_merged_section_offset (output_bfd
,
5680 &h
->root
.u
.def
.section
,
5681 elf_section_data (sec
)->merge_info
,
5682 h
->root
.u
.def
.value
, (bfd_vma
) 0);
5688 /* Add an external symbol to the symbol table. This is called from
5689 the hash table traversal routine. When generating a shared object,
5690 we go through the symbol table twice. The first time we output
5691 anything that might have been forced to local scope in a version
5692 script. The second time we output the symbols that are still
5696 elf_link_output_extsym (h
, data
)
5697 struct elf_link_hash_entry
*h
;
5700 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
5701 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
5703 Elf_Internal_Sym sym
;
5704 asection
*input_sec
;
5706 /* Decide whether to output this symbol in this pass. */
5707 if (eoinfo
->localsyms
)
5709 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
5714 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5718 /* If we are not creating a shared library, and this symbol is
5719 referenced by a shared library but is not defined anywhere, then
5720 warn that it is undefined. If we do not do this, the runtime
5721 linker will complain that the symbol is undefined when the
5722 program is run. We don't have to worry about symbols that are
5723 referenced by regular files, because we will already have issued
5724 warnings for them. */
5725 if (! finfo
->info
->relocateable
5726 && ! finfo
->info
->allow_shlib_undefined
5727 && ! finfo
->info
->shared
5728 && h
->root
.type
== bfd_link_hash_undefined
5729 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0
5730 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
5732 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
5733 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
5734 (asection
*) NULL
, (bfd_vma
) 0, true)))
5736 eoinfo
->failed
= true;
5741 /* We don't want to output symbols that have never been mentioned by
5742 a regular file, or that we have been told to strip. However, if
5743 h->indx is set to -2, the symbol is used by a reloc and we must
5747 else if (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
5748 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
5749 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
5750 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
5752 else if (finfo
->info
->strip
== strip_all
5753 || (finfo
->info
->strip
== strip_some
5754 && bfd_hash_lookup (finfo
->info
->keep_hash
,
5755 h
->root
.root
.string
,
5756 false, false) == NULL
))
5761 /* If we're stripping it, and it's not a dynamic symbol, there's
5762 nothing else to do unless it is a forced local symbol. */
5765 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
5769 sym
.st_size
= h
->size
;
5770 sym
.st_other
= h
->other
;
5771 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5772 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
5773 else if (h
->root
.type
== bfd_link_hash_undefweak
5774 || h
->root
.type
== bfd_link_hash_defweak
)
5775 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
5777 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
5779 switch (h
->root
.type
)
5782 case bfd_link_hash_new
:
5786 case bfd_link_hash_undefined
:
5787 input_sec
= bfd_und_section_ptr
;
5788 sym
.st_shndx
= SHN_UNDEF
;
5791 case bfd_link_hash_undefweak
:
5792 input_sec
= bfd_und_section_ptr
;
5793 sym
.st_shndx
= SHN_UNDEF
;
5796 case bfd_link_hash_defined
:
5797 case bfd_link_hash_defweak
:
5799 input_sec
= h
->root
.u
.def
.section
;
5800 if (input_sec
->output_section
!= NULL
)
5803 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
5804 input_sec
->output_section
);
5805 if (sym
.st_shndx
== (unsigned short) -1)
5807 (*_bfd_error_handler
)
5808 (_("%s: could not find output section %s for input section %s"),
5809 bfd_get_filename (finfo
->output_bfd
),
5810 input_sec
->output_section
->name
,
5812 eoinfo
->failed
= true;
5816 /* ELF symbols in relocateable files are section relative,
5817 but in nonrelocateable files they are virtual
5819 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
5820 if (! finfo
->info
->relocateable
)
5821 sym
.st_value
+= input_sec
->output_section
->vma
;
5825 BFD_ASSERT (input_sec
->owner
== NULL
5826 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
5827 sym
.st_shndx
= SHN_UNDEF
;
5828 input_sec
= bfd_und_section_ptr
;
5833 case bfd_link_hash_common
:
5834 input_sec
= h
->root
.u
.c
.p
->section
;
5835 sym
.st_shndx
= SHN_COMMON
;
5836 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
5839 case bfd_link_hash_indirect
:
5840 /* These symbols are created by symbol versioning. They point
5841 to the decorated version of the name. For example, if the
5842 symbol foo@@GNU_1.2 is the default, which should be used when
5843 foo is used with no version, then we add an indirect symbol
5844 foo which points to foo@@GNU_1.2. We ignore these symbols,
5845 since the indirected symbol is already in the hash table. */
5848 case bfd_link_hash_warning
:
5849 /* We can't represent these symbols in ELF, although a warning
5850 symbol may have come from a .gnu.warning.SYMBOL section. We
5851 just put the target symbol in the hash table. If the target
5852 symbol does not really exist, don't do anything. */
5853 if (h
->root
.u
.i
.link
->type
== bfd_link_hash_new
)
5855 return (elf_link_output_extsym
5856 ((struct elf_link_hash_entry
*) h
->root
.u
.i
.link
, data
));
5859 /* Give the processor backend a chance to tweak the symbol value,
5860 and also to finish up anything that needs to be done for this
5862 if ((h
->dynindx
!= -1
5863 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5864 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
5866 struct elf_backend_data
*bed
;
5868 bed
= get_elf_backend_data (finfo
->output_bfd
);
5869 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
5870 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
5872 eoinfo
->failed
= true;
5877 /* If we are marking the symbol as undefined, and there are no
5878 non-weak references to this symbol from a regular object, then
5879 mark the symbol as weak undefined; if there are non-weak
5880 references, mark the symbol as strong. We can't do this earlier,
5881 because it might not be marked as undefined until the
5882 finish_dynamic_symbol routine gets through with it. */
5883 if (sym
.st_shndx
== SHN_UNDEF
5884 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
5885 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
5886 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
5890 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
) != 0)
5891 bindtype
= STB_GLOBAL
;
5893 bindtype
= STB_WEAK
;
5894 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
5897 /* If a symbol is not defined locally, we clear the visibility
5899 if (! finfo
->info
->relocateable
5900 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
5901 sym
.st_other
^= ELF_ST_VISIBILITY (sym
.st_other
);
5903 /* If this symbol should be put in the .dynsym section, then put it
5904 there now. We have already know the symbol index. We also fill
5905 in the entry in the .hash section. */
5906 if (h
->dynindx
!= -1
5907 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
5911 size_t hash_entry_size
;
5912 bfd_byte
*bucketpos
;
5914 Elf_External_Sym
*esym
;
5916 sym
.st_name
= h
->dynstr_index
;
5917 esym
= (Elf_External_Sym
*) finfo
->dynsym_sec
->contents
+ h
->dynindx
;
5918 elf_swap_symbol_out (finfo
->output_bfd
, &sym
, (PTR
) esym
);
5920 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
5921 bucket
= h
->elf_hash_value
% bucketcount
;
5923 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
5924 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
5925 + (bucket
+ 2) * hash_entry_size
);
5926 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
5927 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, (bfd_vma
) h
->dynindx
,
5929 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
5930 ((bfd_byte
*) finfo
->hash_sec
->contents
5931 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
5933 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
5935 Elf_Internal_Versym iversym
;
5936 Elf_External_Versym
*eversym
;
5938 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
5940 if (h
->verinfo
.verdef
== NULL
)
5941 iversym
.vs_vers
= 0;
5943 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
5947 if (h
->verinfo
.vertree
== NULL
)
5948 iversym
.vs_vers
= 1;
5950 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
5953 if ((h
->elf_link_hash_flags
& ELF_LINK_HIDDEN
) != 0)
5954 iversym
.vs_vers
|= VERSYM_HIDDEN
;
5956 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
5957 eversym
+= h
->dynindx
;
5958 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
5962 /* If we're stripping it, then it was just a dynamic symbol, and
5963 there's nothing else to do. */
5967 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
5969 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
))
5971 eoinfo
->failed
= true;
5978 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5979 originated from the section given by INPUT_REL_HDR) to the
5983 elf_link_output_relocs (output_bfd
, input_section
, input_rel_hdr
,
5986 asection
*input_section
;
5987 Elf_Internal_Shdr
*input_rel_hdr
;
5988 Elf_Internal_Rela
*internal_relocs
;
5990 Elf_Internal_Rela
*irela
;
5991 Elf_Internal_Rela
*irelaend
;
5992 Elf_Internal_Shdr
*output_rel_hdr
;
5993 asection
*output_section
;
5994 unsigned int *rel_countp
= NULL
;
5995 struct elf_backend_data
*bed
;
5998 output_section
= input_section
->output_section
;
5999 output_rel_hdr
= NULL
;
6001 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
6002 == input_rel_hdr
->sh_entsize
)
6004 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
6005 rel_countp
= &elf_section_data (output_section
)->rel_count
;
6007 else if (elf_section_data (output_section
)->rel_hdr2
6008 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
6009 == input_rel_hdr
->sh_entsize
))
6011 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
6012 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
6015 BFD_ASSERT (output_rel_hdr
!= NULL
);
6017 bed
= get_elf_backend_data (output_bfd
);
6018 irela
= internal_relocs
;
6019 irelaend
= irela
+ NUM_SHDR_ENTRIES (input_rel_hdr
)
6020 * bed
->s
->int_rels_per_ext_rel
;
6022 if (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
6024 Elf_External_Rel
*erel
;
6025 Elf_Internal_Rel
*irel
;
6027 amt
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
6028 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (amt
);
6031 (*_bfd_error_handler
) (_("Error: out of memory"));
6035 erel
= ((Elf_External_Rel
*) output_rel_hdr
->contents
+ *rel_countp
);
6036 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erel
++)
6040 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6042 irel
[i
].r_offset
= irela
[i
].r_offset
;
6043 irel
[i
].r_info
= irela
[i
].r_info
;
6044 BFD_ASSERT (irela
[i
].r_addend
== 0);
6047 if (bed
->s
->swap_reloc_out
)
6048 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (PTR
) erel
);
6050 elf_swap_reloc_out (output_bfd
, irel
, erel
);
6057 Elf_External_Rela
*erela
;
6059 BFD_ASSERT (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rela
));
6061 erela
= ((Elf_External_Rela
*) output_rel_hdr
->contents
+ *rel_countp
);
6062 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erela
++)
6063 if (bed
->s
->swap_reloca_out
)
6064 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (PTR
) erela
);
6066 elf_swap_reloca_out (output_bfd
, irela
, erela
);
6069 /* Bump the counter, so that we know where to add the next set of
6071 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
6074 /* Link an input file into the linker output file. This function
6075 handles all the sections and relocations of the input file at once.
6076 This is so that we only have to read the local symbols once, and
6077 don't have to keep them in memory. */
6080 elf_link_input_bfd (finfo
, input_bfd
)
6081 struct elf_final_link_info
*finfo
;
6084 boolean (*relocate_section
) PARAMS ((bfd
*, struct bfd_link_info
*,
6085 bfd
*, asection
*, bfd_byte
*,
6086 Elf_Internal_Rela
*,
6087 Elf_Internal_Sym
*, asection
**));
6089 Elf_Internal_Shdr
*symtab_hdr
;
6092 Elf_External_Sym
*external_syms
;
6093 Elf_External_Sym
*esym
;
6094 Elf_External_Sym
*esymend
;
6095 Elf_Internal_Sym
*isym
;
6097 asection
**ppsection
;
6099 struct elf_backend_data
*bed
;
6100 boolean emit_relocs
;
6101 struct elf_link_hash_entry
**sym_hashes
;
6103 output_bfd
= finfo
->output_bfd
;
6104 bed
= get_elf_backend_data (output_bfd
);
6105 relocate_section
= bed
->elf_backend_relocate_section
;
6107 /* If this is a dynamic object, we don't want to do anything here:
6108 we don't want the local symbols, and we don't want the section
6110 if ((input_bfd
->flags
& DYNAMIC
) != 0)
6113 emit_relocs
= (finfo
->info
->relocateable
6114 || finfo
->info
->emitrelocations
6115 || bed
->elf_backend_emit_relocs
);
6117 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6118 if (elf_bad_symtab (input_bfd
))
6120 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
6125 locsymcount
= symtab_hdr
->sh_info
;
6126 extsymoff
= symtab_hdr
->sh_info
;
6129 /* Read the local symbols. */
6130 if (symtab_hdr
->contents
!= NULL
)
6131 external_syms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
6132 else if (locsymcount
== 0)
6133 external_syms
= NULL
;
6136 bfd_size_type amt
= locsymcount
* sizeof (Elf_External_Sym
);
6137 external_syms
= finfo
->external_syms
;
6138 if (bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
6139 || bfd_bread (external_syms
, amt
, input_bfd
) != amt
)
6143 /* Swap in the local symbols and write out the ones which we know
6144 are going into the output file. */
6145 esym
= external_syms
;
6146 esymend
= esym
+ locsymcount
;
6147 isym
= finfo
->internal_syms
;
6148 pindex
= finfo
->indices
;
6149 ppsection
= finfo
->sections
;
6150 for (; esym
< esymend
; esym
++, isym
++, pindex
++, ppsection
++)
6154 Elf_Internal_Sym osym
;
6156 elf_swap_symbol_in (input_bfd
, esym
, isym
);
6159 if (elf_bad_symtab (input_bfd
))
6161 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
6168 if (isym
->st_shndx
== SHN_UNDEF
)
6169 isec
= bfd_und_section_ptr
;
6170 else if (isym
->st_shndx
> 0 && isym
->st_shndx
< SHN_LORESERVE
)
6172 isec
= section_from_elf_index (input_bfd
, isym
->st_shndx
);
6173 if (isec
&& elf_section_data (isec
)->merge_info
6174 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
6176 _bfd_merged_section_offset (output_bfd
, &isec
,
6177 elf_section_data (isec
)->merge_info
,
6178 isym
->st_value
, (bfd_vma
) 0);
6180 else if (isym
->st_shndx
== SHN_ABS
)
6181 isec
= bfd_abs_section_ptr
;
6182 else if (isym
->st_shndx
== SHN_COMMON
)
6183 isec
= bfd_com_section_ptr
;
6192 /* Don't output the first, undefined, symbol. */
6193 if (esym
== external_syms
)
6196 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6198 /* We never output section symbols. Instead, we use the
6199 section symbol of the corresponding section in the output
6204 /* If we are stripping all symbols, we don't want to output this
6206 if (finfo
->info
->strip
== strip_all
)
6209 /* If we are discarding all local symbols, we don't want to
6210 output this one. If we are generating a relocateable output
6211 file, then some of the local symbols may be required by
6212 relocs; we output them below as we discover that they are
6214 if (finfo
->info
->discard
== discard_all
)
6217 /* If this symbol is defined in a section which we are
6218 discarding, we don't need to keep it, but note that
6219 linker_mark is only reliable for sections that have contents.
6220 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6221 as well as linker_mark. */
6222 if (isym
->st_shndx
> 0
6223 && isym
->st_shndx
< SHN_LORESERVE
6225 && ((! isec
->linker_mark
&& (isec
->flags
& SEC_HAS_CONTENTS
) != 0)
6226 || (! finfo
->info
->relocateable
6227 && (isec
->flags
& SEC_EXCLUDE
) != 0)))
6230 /* Get the name of the symbol. */
6231 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
6236 /* See if we are discarding symbols with this name. */
6237 if ((finfo
->info
->strip
== strip_some
6238 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, false, false)
6240 || (((finfo
->info
->discard
== discard_sec_merge
6241 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocateable
)
6242 || finfo
->info
->discard
== discard_l
)
6243 && bfd_is_local_label_name (input_bfd
, name
)))
6246 /* If we get here, we are going to output this symbol. */
6250 /* Adjust the section index for the output file. */
6251 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
6252 isec
->output_section
);
6253 if (osym
.st_shndx
== (unsigned short) -1)
6256 *pindex
= bfd_get_symcount (output_bfd
);
6258 /* ELF symbols in relocateable files are section relative, but
6259 in executable files they are virtual addresses. Note that
6260 this code assumes that all ELF sections have an associated
6261 BFD section with a reasonable value for output_offset; below
6262 we assume that they also have a reasonable value for
6263 output_section. Any special sections must be set up to meet
6264 these requirements. */
6265 osym
.st_value
+= isec
->output_offset
;
6266 if (! finfo
->info
->relocateable
)
6267 osym
.st_value
+= isec
->output_section
->vma
;
6269 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
))
6273 /* Relocate the contents of each section. */
6274 sym_hashes
= elf_sym_hashes (input_bfd
);
6275 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
6279 if (! o
->linker_mark
)
6281 /* This section was omitted from the link. */
6285 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
6286 || (o
->_raw_size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
6289 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
6291 /* Section was created by elf_link_create_dynamic_sections
6296 /* Get the contents of the section. They have been cached by a
6297 relaxation routine. Note that o is a section in an input
6298 file, so the contents field will not have been set by any of
6299 the routines which work on output files. */
6300 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
6301 contents
= elf_section_data (o
)->this_hdr
.contents
;
6304 contents
= finfo
->contents
;
6305 if (! bfd_get_section_contents (input_bfd
, o
, contents
,
6306 (file_ptr
) 0, o
->_raw_size
))
6310 if ((o
->flags
& SEC_RELOC
) != 0)
6312 Elf_Internal_Rela
*internal_relocs
;
6314 /* Get the swapped relocs. */
6315 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
6316 (input_bfd
, o
, finfo
->external_relocs
,
6317 finfo
->internal_relocs
, false));
6318 if (internal_relocs
== NULL
6319 && o
->reloc_count
> 0)
6322 /* Run through the relocs looking for any against symbols
6323 from discarded sections and section symbols from
6324 removed link-once sections. Complain about relocs
6325 against discarded sections. Zero relocs against removed
6326 link-once sections. We should really complain if
6327 anything in the final link tries to use it, but
6328 DWARF-based exception handling might have an entry in
6329 .eh_frame to describe a routine in the linkonce section,
6330 and it turns out to be hard to remove the .eh_frame
6331 entry too. FIXME. */
6332 if (!finfo
->info
->relocateable
6333 && !elf_section_ignore_discarded_relocs (o
))
6335 Elf_Internal_Rela
*rel
, *relend
;
6337 rel
= internal_relocs
;
6338 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6339 for ( ; rel
< relend
; rel
++)
6341 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
6343 if (r_symndx
>= locsymcount
6344 || (elf_bad_symtab (input_bfd
)
6345 && finfo
->sections
[r_symndx
] == NULL
))
6347 struct elf_link_hash_entry
*h
;
6349 h
= sym_hashes
[r_symndx
- extsymoff
];
6350 while (h
->root
.type
== bfd_link_hash_indirect
6351 || h
->root
.type
== bfd_link_hash_warning
)
6352 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6354 /* Complain if the definition comes from a
6355 discarded section. */
6356 if ((h
->root
.type
== bfd_link_hash_defined
6357 || h
->root
.type
== bfd_link_hash_defweak
)
6358 && ! bfd_is_abs_section (h
->root
.u
.def
.section
)
6359 && bfd_is_abs_section (h
->root
.u
.def
.section
6361 && elf_section_data (h
->root
.u
.def
.section
)->merge_info
6364 #if BFD_VERSION_DATE < 20031005
6365 if ((o
->flags
& SEC_DEBUGGING
) != 0)
6367 #if BFD_VERSION_DATE > 20021005
6368 (*finfo
->info
->callbacks
->warning
)
6370 _("warning: relocation against removed section; zeroing"),
6371 NULL
, input_bfd
, o
, rel
->r_offset
);
6373 BFD_ASSERT (r_symndx
!= 0);
6374 memset (rel
, 0, sizeof (*rel
));
6379 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
6380 (finfo
->info
, h
->root
.root
.string
,
6381 input_bfd
, o
, rel
->r_offset
,
6389 asection
*sec
= finfo
->sections
[r_symndx
];
6392 && ! bfd_is_abs_section (sec
)
6393 && bfd_is_abs_section (sec
->output_section
)
6394 && elf_section_data (sec
)->merge_info
== NULL
)
6396 #if BFD_VERSION_DATE < 20031005
6397 if ((o
->flags
& SEC_DEBUGGING
) != 0
6398 || (sec
->flags
& SEC_LINK_ONCE
) != 0)
6400 #if BFD_VERSION_DATE > 20021005
6401 (*finfo
->info
->callbacks
->warning
)
6403 _("warning: relocation against removed section"),
6404 NULL
, input_bfd
, o
, rel
->r_offset
);
6406 BFD_ASSERT (r_symndx
!= 0);
6408 = ELF_R_INFO (0, ELF_R_TYPE (rel
->r_info
));
6416 = _("local symbols in discarded section %s");
6418 = strlen (sec
->name
) + strlen (msg
) - 1;
6419 char *buf
= (char *) bfd_malloc (amt
);
6422 sprintf (buf
, msg
, sec
->name
);
6424 buf
= (char *) sec
->name
;
6425 ok
= (*finfo
->info
->callbacks
6426 ->undefined_symbol
) (finfo
->info
, buf
,
6430 if (buf
!= sec
->name
)
6440 /* Relocate the section by invoking a back end routine.
6442 The back end routine is responsible for adjusting the
6443 section contents as necessary, and (if using Rela relocs
6444 and generating a relocateable output file) adjusting the
6445 reloc addend as necessary.
6447 The back end routine does not have to worry about setting
6448 the reloc address or the reloc symbol index.
6450 The back end routine is given a pointer to the swapped in
6451 internal symbols, and can access the hash table entries
6452 for the external symbols via elf_sym_hashes (input_bfd).
6454 When generating relocateable output, the back end routine
6455 must handle STB_LOCAL/STT_SECTION symbols specially. The
6456 output symbol is going to be a section symbol
6457 corresponding to the output section, which will require
6458 the addend to be adjusted. */
6460 if (! (*relocate_section
) (output_bfd
, finfo
->info
,
6461 input_bfd
, o
, contents
,
6463 finfo
->internal_syms
,
6469 Elf_Internal_Rela
*irela
;
6470 Elf_Internal_Rela
*irelaend
;
6471 struct elf_link_hash_entry
**rel_hash
;
6472 Elf_Internal_Shdr
*input_rel_hdr
;
6473 unsigned int next_erel
;
6474 void (*reloc_emitter
) PARAMS ((bfd
*, asection
*,
6475 Elf_Internal_Shdr
*,
6476 Elf_Internal_Rela
*));
6478 /* Adjust the reloc addresses and symbol indices. */
6480 irela
= internal_relocs
;
6481 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6482 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
6483 + elf_section_data (o
->output_section
)->rel_count
6484 + elf_section_data (o
->output_section
)->rel_count2
);
6485 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
6487 unsigned long r_symndx
;
6490 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
6496 irela
->r_offset
+= o
->output_offset
;
6498 /* Relocs in an executable have to be virtual addresses. */
6499 if (finfo
->info
->emitrelocations
)
6500 irela
->r_offset
+= o
->output_section
->vma
;
6502 r_symndx
= ELF_R_SYM (irela
->r_info
);
6507 if (r_symndx
>= locsymcount
6508 || (elf_bad_symtab (input_bfd
)
6509 && finfo
->sections
[r_symndx
] == NULL
))
6511 struct elf_link_hash_entry
*rh
;
6514 /* This is a reloc against a global symbol. We
6515 have not yet output all the local symbols, so
6516 we do not know the symbol index of any global
6517 symbol. We set the rel_hash entry for this
6518 reloc to point to the global hash table entry
6519 for this symbol. The symbol index is then
6520 set at the end of elf_bfd_final_link. */
6521 indx
= r_symndx
- extsymoff
;
6522 rh
= elf_sym_hashes (input_bfd
)[indx
];
6523 while (rh
->root
.type
== bfd_link_hash_indirect
6524 || rh
->root
.type
== bfd_link_hash_warning
)
6525 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
6527 /* Setting the index to -2 tells
6528 elf_link_output_extsym that this symbol is
6530 BFD_ASSERT (rh
->indx
< 0);
6538 /* This is a reloc against a local symbol. */
6541 isym
= finfo
->internal_syms
+ r_symndx
;
6542 sec
= finfo
->sections
[r_symndx
];
6543 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6545 /* I suppose the backend ought to fill in the
6546 section of any STT_SECTION symbol against a
6547 processor specific section. If we have
6548 discarded a section, the output_section will
6549 be the absolute section. */
6551 && (bfd_is_abs_section (sec
)
6552 || (sec
->output_section
!= NULL
6553 && bfd_is_abs_section (sec
->output_section
))))
6555 else if (sec
== NULL
|| sec
->owner
== NULL
)
6557 bfd_set_error (bfd_error_bad_value
);
6562 r_symndx
= sec
->output_section
->target_index
;
6563 BFD_ASSERT (r_symndx
!= 0);
6568 if (finfo
->indices
[r_symndx
] == -1)
6570 unsigned long shlink
;
6574 if (finfo
->info
->strip
== strip_all
)
6576 /* You can't do ld -r -s. */
6577 bfd_set_error (bfd_error_invalid_operation
);
6581 /* This symbol was skipped earlier, but
6582 since it is needed by a reloc, we
6583 must output it now. */
6584 shlink
= symtab_hdr
->sh_link
;
6585 name
= (bfd_elf_string_from_elf_section
6586 (input_bfd
, shlink
, isym
->st_name
));
6590 osec
= sec
->output_section
;
6592 _bfd_elf_section_from_bfd_section (output_bfd
,
6594 if (isym
->st_shndx
== (unsigned short) -1)
6597 isym
->st_value
+= sec
->output_offset
;
6598 if (! finfo
->info
->relocateable
)
6599 isym
->st_value
+= osec
->vma
;
6601 finfo
->indices
[r_symndx
]
6602 = bfd_get_symcount (output_bfd
);
6604 if (! elf_link_output_sym (finfo
, name
, isym
, sec
))
6608 r_symndx
= finfo
->indices
[r_symndx
];
6611 irela
->r_info
= ELF_R_INFO (r_symndx
,
6612 ELF_R_TYPE (irela
->r_info
));
6615 /* Swap out the relocs. */
6616 if (bed
->elf_backend_emit_relocs
6617 && !(finfo
->info
->relocateable
6618 || finfo
->info
->emitrelocations
))
6619 reloc_emitter
= bed
->elf_backend_emit_relocs
;
6621 reloc_emitter
= elf_link_output_relocs
;
6623 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
6624 (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr
, internal_relocs
);
6626 input_rel_hdr
= elf_section_data (o
)->rel_hdr2
;
6629 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
6630 * bed
->s
->int_rels_per_ext_rel
);
6631 reloc_emitter (output_bfd
, o
, input_rel_hdr
, internal_relocs
);
6637 /* Write out the modified section contents. */
6638 if (bed
->elf_backend_write_section
6639 && (*bed
->elf_backend_write_section
) (output_bfd
, o
, contents
))
6641 /* Section written out. */
6643 else if (elf_section_data (o
)->stab_info
)
6645 if (! (_bfd_write_section_stabs
6646 (output_bfd
, &elf_hash_table (finfo
->info
)->stab_info
,
6647 o
, &elf_section_data (o
)->stab_info
, contents
)))
6650 else if (elf_section_data (o
)->merge_info
)
6652 if (! (_bfd_write_merged_section
6653 (output_bfd
, o
, elf_section_data (o
)->merge_info
)))
6658 bfd_size_type sec_size
;
6660 sec_size
= (o
->_cooked_size
!= 0 ? o
->_cooked_size
: o
->_raw_size
);
6661 if (! (o
->flags
& SEC_EXCLUDE
)
6662 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
6664 (file_ptr
) o
->output_offset
,
6673 /* Generate a reloc when linking an ELF file. This is a reloc
6674 requested by the linker, and does come from any input file. This
6675 is used to build constructor and destructor tables when linking
6679 elf_reloc_link_order (output_bfd
, info
, output_section
, link_order
)
6681 struct bfd_link_info
*info
;
6682 asection
*output_section
;
6683 struct bfd_link_order
*link_order
;
6685 reloc_howto_type
*howto
;
6689 struct elf_link_hash_entry
**rel_hash_ptr
;
6690 Elf_Internal_Shdr
*rel_hdr
;
6691 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
6693 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
6696 bfd_set_error (bfd_error_bad_value
);
6700 addend
= link_order
->u
.reloc
.p
->addend
;
6702 /* Figure out the symbol index. */
6703 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
6704 + elf_section_data (output_section
)->rel_count
6705 + elf_section_data (output_section
)->rel_count2
);
6706 if (link_order
->type
== bfd_section_reloc_link_order
)
6708 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
6709 BFD_ASSERT (indx
!= 0);
6710 *rel_hash_ptr
= NULL
;
6714 struct elf_link_hash_entry
*h
;
6716 /* Treat a reloc against a defined symbol as though it were
6717 actually against the section. */
6718 h
= ((struct elf_link_hash_entry
*)
6719 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
6720 link_order
->u
.reloc
.p
->u
.name
,
6721 false, false, true));
6723 && (h
->root
.type
== bfd_link_hash_defined
6724 || h
->root
.type
== bfd_link_hash_defweak
))
6728 section
= h
->root
.u
.def
.section
;
6729 indx
= section
->output_section
->target_index
;
6730 *rel_hash_ptr
= NULL
;
6731 /* It seems that we ought to add the symbol value to the
6732 addend here, but in practice it has already been added
6733 because it was passed to constructor_callback. */
6734 addend
+= section
->output_section
->vma
+ section
->output_offset
;
6738 /* Setting the index to -2 tells elf_link_output_extsym that
6739 this symbol is used by a reloc. */
6746 if (! ((*info
->callbacks
->unattached_reloc
)
6747 (info
, link_order
->u
.reloc
.p
->u
.name
, (bfd
*) NULL
,
6748 (asection
*) NULL
, (bfd_vma
) 0)))
6754 /* If this is an inplace reloc, we must write the addend into the
6756 if (howto
->partial_inplace
&& addend
!= 0)
6759 bfd_reloc_status_type rstat
;
6762 const char *sym_name
;
6764 size
= bfd_get_reloc_size (howto
);
6765 buf
= (bfd_byte
*) bfd_zmalloc (size
);
6766 if (buf
== (bfd_byte
*) NULL
)
6768 rstat
= _bfd_relocate_contents (howto
, output_bfd
, (bfd_vma
) addend
, buf
);
6775 case bfd_reloc_outofrange
:
6778 case bfd_reloc_overflow
:
6779 if (link_order
->type
== bfd_section_reloc_link_order
)
6780 sym_name
= bfd_section_name (output_bfd
,
6781 link_order
->u
.reloc
.p
->u
.section
);
6783 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
6784 if (! ((*info
->callbacks
->reloc_overflow
)
6785 (info
, sym_name
, howto
->name
, addend
,
6786 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
6793 ok
= bfd_set_section_contents (output_bfd
, output_section
, (PTR
) buf
,
6794 (file_ptr
) link_order
->offset
, size
);
6800 /* The address of a reloc is relative to the section in a
6801 relocateable file, and is a virtual address in an executable
6803 offset
= link_order
->offset
;
6804 if (! info
->relocateable
)
6805 offset
+= output_section
->vma
;
6807 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
6809 if (rel_hdr
->sh_type
== SHT_REL
)
6812 Elf_Internal_Rel
*irel
;
6813 Elf_External_Rel
*erel
;
6816 size
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rel
);
6817 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (size
);
6821 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6822 irel
[i
].r_offset
= offset
;
6823 irel
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
6825 erel
= ((Elf_External_Rel
*) rel_hdr
->contents
6826 + elf_section_data (output_section
)->rel_count
);
6828 if (bed
->s
->swap_reloc_out
)
6829 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (bfd_byte
*) erel
);
6831 elf_swap_reloc_out (output_bfd
, irel
, erel
);
6838 Elf_Internal_Rela
*irela
;
6839 Elf_External_Rela
*erela
;
6842 size
= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
6843 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (size
);
6847 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6848 irela
[i
].r_offset
= offset
;
6849 irela
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
6850 irela
[0].r_addend
= addend
;
6852 erela
= ((Elf_External_Rela
*) rel_hdr
->contents
6853 + elf_section_data (output_section
)->rel_count
);
6855 if (bed
->s
->swap_reloca_out
)
6856 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (bfd_byte
*) erela
);
6858 elf_swap_reloca_out (output_bfd
, irela
, erela
);
6861 ++elf_section_data (output_section
)->rel_count
;
6866 /* Allocate a pointer to live in a linker created section. */
6869 elf_create_pointer_linker_section (abfd
, info
, lsect
, h
, rel
)
6871 struct bfd_link_info
*info
;
6872 elf_linker_section_t
*lsect
;
6873 struct elf_link_hash_entry
*h
;
6874 const Elf_Internal_Rela
*rel
;
6876 elf_linker_section_pointers_t
**ptr_linker_section_ptr
= NULL
;
6877 elf_linker_section_pointers_t
*linker_section_ptr
;
6878 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
6881 BFD_ASSERT (lsect
!= NULL
);
6883 /* Is this a global symbol? */
6886 /* Has this symbol already been allocated? If so, our work is done. */
6887 if (_bfd_elf_find_pointer_linker_section (h
->linker_section_pointer
,
6892 ptr_linker_section_ptr
= &h
->linker_section_pointer
;
6893 /* Make sure this symbol is output as a dynamic symbol. */
6894 if (h
->dynindx
== -1)
6896 if (! elf_link_record_dynamic_symbol (info
, h
))
6900 if (lsect
->rel_section
)
6901 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
6905 /* Allocation of a pointer to a local symbol. */
6906 elf_linker_section_pointers_t
**ptr
= elf_local_ptr_offsets (abfd
);
6908 /* Allocate a table to hold the local symbols if first time. */
6911 unsigned int num_symbols
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
6912 register unsigned int i
;
6915 amt
*= sizeof (elf_linker_section_pointers_t
*);
6916 ptr
= (elf_linker_section_pointers_t
**) bfd_alloc (abfd
, amt
);
6921 elf_local_ptr_offsets (abfd
) = ptr
;
6922 for (i
= 0; i
< num_symbols
; i
++)
6923 ptr
[i
] = (elf_linker_section_pointers_t
*) 0;
6926 /* Has this symbol already been allocated? If so, our work is done. */
6927 if (_bfd_elf_find_pointer_linker_section (ptr
[r_symndx
],
6932 ptr_linker_section_ptr
= &ptr
[r_symndx
];
6936 /* If we are generating a shared object, we need to
6937 output a R_<xxx>_RELATIVE reloc so that the
6938 dynamic linker can adjust this GOT entry. */
6939 BFD_ASSERT (lsect
->rel_section
!= NULL
);
6940 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
6944 /* Allocate space for a pointer in the linker section, and allocate
6945 a new pointer record from internal memory. */
6946 BFD_ASSERT (ptr_linker_section_ptr
!= NULL
);
6947 amt
= sizeof (elf_linker_section_pointers_t
);
6948 linker_section_ptr
= (elf_linker_section_pointers_t
*) bfd_alloc (abfd
, amt
);
6950 if (!linker_section_ptr
)
6953 linker_section_ptr
->next
= *ptr_linker_section_ptr
;
6954 linker_section_ptr
->addend
= rel
->r_addend
;
6955 linker_section_ptr
->which
= lsect
->which
;
6956 linker_section_ptr
->written_address_p
= false;
6957 *ptr_linker_section_ptr
= linker_section_ptr
;
6960 if (lsect
->hole_size
&& lsect
->hole_offset
< lsect
->max_hole_offset
)
6962 linker_section_ptr
->offset
= (lsect
->section
->_raw_size
6963 - lsect
->hole_size
+ (ARCH_SIZE
/ 8));
6964 lsect
->hole_offset
+= ARCH_SIZE
/ 8;
6965 lsect
->sym_offset
+= ARCH_SIZE
/ 8;
6966 if (lsect
->sym_hash
)
6968 /* Bump up symbol value if needed. */
6969 lsect
->sym_hash
->root
.u
.def
.value
+= ARCH_SIZE
/ 8;
6971 fprintf (stderr
, "Bump up %s by %ld, current value = %ld\n",
6972 lsect
->sym_hash
->root
.root
.string
,
6973 (long) ARCH_SIZE
/ 8,
6974 (long) lsect
->sym_hash
->root
.u
.def
.value
);
6980 linker_section_ptr
->offset
= lsect
->section
->_raw_size
;
6982 lsect
->section
->_raw_size
+= ARCH_SIZE
/ 8;
6986 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6987 lsect
->name
, (long) linker_section_ptr
->offset
,
6988 (long) lsect
->section
->_raw_size
);
6995 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6998 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7001 /* Fill in the address for a pointer generated in a linker section. */
7004 elf_finish_pointer_linker_section (output_bfd
, input_bfd
, info
, lsect
, h
,
7005 relocation
, rel
, relative_reloc
)
7008 struct bfd_link_info
*info
;
7009 elf_linker_section_t
*lsect
;
7010 struct elf_link_hash_entry
*h
;
7012 const Elf_Internal_Rela
*rel
;
7015 elf_linker_section_pointers_t
*linker_section_ptr
;
7017 BFD_ASSERT (lsect
!= NULL
);
7021 /* Handle global symbol. */
7022 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7023 (h
->linker_section_pointer
,
7027 BFD_ASSERT (linker_section_ptr
!= NULL
);
7029 if (! elf_hash_table (info
)->dynamic_sections_created
7032 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
7034 /* This is actually a static link, or it is a
7035 -Bsymbolic link and the symbol is defined
7036 locally. We must initialize this entry in the
7039 When doing a dynamic link, we create a .rela.<xxx>
7040 relocation entry to initialize the value. This
7041 is done in the finish_dynamic_symbol routine. */
7042 if (!linker_section_ptr
->written_address_p
)
7044 linker_section_ptr
->written_address_p
= true;
7045 bfd_put_ptr (output_bfd
,
7046 relocation
+ linker_section_ptr
->addend
,
7047 (lsect
->section
->contents
7048 + linker_section_ptr
->offset
));
7054 /* Handle local symbol. */
7055 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
7056 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
) != NULL
);
7057 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
)[r_symndx
] != NULL
);
7058 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7059 (elf_local_ptr_offsets (input_bfd
)[r_symndx
],
7063 BFD_ASSERT (linker_section_ptr
!= NULL
);
7065 /* Write out pointer if it hasn't been rewritten out before. */
7066 if (!linker_section_ptr
->written_address_p
)
7068 linker_section_ptr
->written_address_p
= true;
7069 bfd_put_ptr (output_bfd
, relocation
+ linker_section_ptr
->addend
,
7070 lsect
->section
->contents
+ linker_section_ptr
->offset
);
7074 asection
*srel
= lsect
->rel_section
;
7075 Elf_Internal_Rela
*outrel
;
7076 Elf_External_Rela
*erel
;
7077 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
7081 amt
= sizeof (Elf_Internal_Rela
) * bed
->s
->int_rels_per_ext_rel
;
7082 outrel
= (Elf_Internal_Rela
*) bfd_zmalloc (amt
);
7085 (*_bfd_error_handler
) (_("Error: out of memory"));
7089 /* We need to generate a relative reloc for the dynamic
7093 srel
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
7095 lsect
->rel_section
= srel
;
7098 BFD_ASSERT (srel
!= NULL
);
7100 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7101 outrel
[i
].r_offset
= (lsect
->section
->output_section
->vma
7102 + lsect
->section
->output_offset
7103 + linker_section_ptr
->offset
);
7104 outrel
[0].r_info
= ELF_R_INFO (0, relative_reloc
);
7105 outrel
[0].r_addend
= 0;
7106 erel
= (Elf_External_Rela
*) lsect
->section
->contents
;
7107 erel
+= elf_section_data (lsect
->section
)->rel_count
;
7108 elf_swap_reloca_out (output_bfd
, outrel
, erel
);
7109 ++elf_section_data (lsect
->section
)->rel_count
;
7116 relocation
= (lsect
->section
->output_offset
7117 + linker_section_ptr
->offset
7118 - lsect
->hole_offset
7119 - lsect
->sym_offset
);
7123 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7124 lsect
->name
, (long) relocation
, (long) relocation
);
7127 /* Subtract out the addend, because it will get added back in by the normal
7129 return relocation
- linker_section_ptr
->addend
;
7132 /* Garbage collect unused sections. */
7134 static boolean elf_gc_mark
7135 PARAMS ((struct bfd_link_info
*info
, asection
*sec
,
7136 asection
* (*gc_mark_hook
)
7137 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7138 struct elf_link_hash_entry
*, Elf_Internal_Sym
*))));
7140 static boolean elf_gc_sweep
7141 PARAMS ((struct bfd_link_info
*info
,
7142 boolean (*gc_sweep_hook
)
7143 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
7144 const Elf_Internal_Rela
*relocs
))));
7146 static boolean elf_gc_sweep_symbol
7147 PARAMS ((struct elf_link_hash_entry
*h
, PTR idxptr
));
7149 static boolean elf_gc_allocate_got_offsets
7150 PARAMS ((struct elf_link_hash_entry
*h
, PTR offarg
));
7152 static boolean elf_gc_propagate_vtable_entries_used
7153 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
7155 static boolean elf_gc_smash_unused_vtentry_relocs
7156 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
7158 /* The mark phase of garbage collection. For a given section, mark
7159 it and any sections in this section's group, and all the sections
7160 which define symbols to which it refers. */
7163 elf_gc_mark (info
, sec
, gc_mark_hook
)
7164 struct bfd_link_info
*info
;
7166 asection
* (*gc_mark_hook
)
7167 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7168 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
7171 asection
*group_sec
;
7175 /* Mark all the sections in the group. */
7176 group_sec
= elf_section_data (sec
)->next_in_group
;
7177 if (group_sec
&& !group_sec
->gc_mark
)
7178 if (!elf_gc_mark (info
, group_sec
, gc_mark_hook
))
7181 /* Look through the section relocs. */
7183 if ((sec
->flags
& SEC_RELOC
) != 0 && sec
->reloc_count
> 0)
7185 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
7186 Elf_Internal_Shdr
*symtab_hdr
;
7187 struct elf_link_hash_entry
**sym_hashes
;
7190 Elf_External_Sym
*locsyms
, *freesyms
= NULL
;
7191 bfd
*input_bfd
= sec
->owner
;
7192 struct elf_backend_data
*bed
= get_elf_backend_data (input_bfd
);
7194 /* GCFIXME: how to arrange so that relocs and symbols are not
7195 reread continually? */
7197 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
7198 sym_hashes
= elf_sym_hashes (input_bfd
);
7200 /* Read the local symbols. */
7201 if (elf_bad_symtab (input_bfd
))
7203 nlocsyms
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7207 extsymoff
= nlocsyms
= symtab_hdr
->sh_info
;
7208 if (symtab_hdr
->contents
)
7209 locsyms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
7210 else if (nlocsyms
== 0)
7214 bfd_size_type amt
= nlocsyms
* sizeof (Elf_External_Sym
);
7215 locsyms
= freesyms
= bfd_malloc (amt
);
7216 if (freesyms
== NULL
7217 || bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
7218 || bfd_bread (locsyms
, amt
, input_bfd
) != amt
)
7225 /* Read the relocations. */
7226 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7227 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
7228 info
->keep_memory
));
7229 if (relstart
== NULL
)
7234 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7236 for (rel
= relstart
; rel
< relend
; rel
++)
7238 unsigned long r_symndx
;
7240 struct elf_link_hash_entry
*h
;
7243 r_symndx
= ELF_R_SYM (rel
->r_info
);
7247 if (elf_bad_symtab (sec
->owner
))
7249 elf_swap_symbol_in (input_bfd
, &locsyms
[r_symndx
], &s
);
7250 if (ELF_ST_BIND (s
.st_info
) == STB_LOCAL
)
7251 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, NULL
, &s
);
7254 h
= sym_hashes
[r_symndx
- extsymoff
];
7255 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, h
, NULL
);
7258 else if (r_symndx
>= nlocsyms
)
7260 h
= sym_hashes
[r_symndx
- extsymoff
];
7261 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, h
, NULL
);
7265 elf_swap_symbol_in (input_bfd
, &locsyms
[r_symndx
], &s
);
7266 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, NULL
, &s
);
7269 if (rsec
&& !rsec
->gc_mark
)
7270 if (!elf_gc_mark (info
, rsec
, gc_mark_hook
))
7278 if (!info
->keep_memory
)
7288 /* The sweep phase of garbage collection. Remove all garbage sections. */
7291 elf_gc_sweep (info
, gc_sweep_hook
)
7292 struct bfd_link_info
*info
;
7293 boolean (*gc_sweep_hook
)
7294 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
7295 const Elf_Internal_Rela
*relocs
));
7299 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7303 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
7306 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7308 /* Keep special sections. Keep .debug sections. */
7309 if ((o
->flags
& SEC_LINKER_CREATED
)
7310 || (o
->flags
& SEC_DEBUGGING
))
7316 /* Skip sweeping sections already excluded. */
7317 if (o
->flags
& SEC_EXCLUDE
)
7320 /* Since this is early in the link process, it is simple
7321 to remove a section from the output. */
7322 o
->flags
|= SEC_EXCLUDE
;
7324 /* But we also have to update some of the relocation
7325 info we collected before. */
7327 && (o
->flags
& SEC_RELOC
) && o
->reloc_count
> 0)
7329 Elf_Internal_Rela
*internal_relocs
;
7332 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
7333 (o
->owner
, o
, NULL
, NULL
, info
->keep_memory
));
7334 if (internal_relocs
== NULL
)
7337 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
7339 if (!info
->keep_memory
)
7340 free (internal_relocs
);
7348 /* Remove the symbols that were in the swept sections from the dynamic
7349 symbol table. GCFIXME: Anyone know how to get them out of the
7350 static symbol table as well? */
7354 elf_link_hash_traverse (elf_hash_table (info
),
7355 elf_gc_sweep_symbol
,
7358 elf_hash_table (info
)->dynsymcount
= i
;
7364 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7367 elf_gc_sweep_symbol (h
, idxptr
)
7368 struct elf_link_hash_entry
*h
;
7371 int *idx
= (int *) idxptr
;
7373 if (h
->dynindx
!= -1
7374 && ((h
->root
.type
!= bfd_link_hash_defined
7375 && h
->root
.type
!= bfd_link_hash_defweak
)
7376 || h
->root
.u
.def
.section
->gc_mark
))
7377 h
->dynindx
= (*idx
)++;
7382 /* Propogate collected vtable information. This is called through
7383 elf_link_hash_traverse. */
7386 elf_gc_propagate_vtable_entries_used (h
, okp
)
7387 struct elf_link_hash_entry
*h
;
7390 /* Those that are not vtables. */
7391 if (h
->vtable_parent
== NULL
)
7394 /* Those vtables that do not have parents, we cannot merge. */
7395 if (h
->vtable_parent
== (struct elf_link_hash_entry
*) -1)
7398 /* If we've already been done, exit. */
7399 if (h
->vtable_entries_used
&& h
->vtable_entries_used
[-1])
7402 /* Make sure the parent's table is up to date. */
7403 elf_gc_propagate_vtable_entries_used (h
->vtable_parent
, okp
);
7405 if (h
->vtable_entries_used
== NULL
)
7407 /* None of this table's entries were referenced. Re-use the
7409 h
->vtable_entries_used
= h
->vtable_parent
->vtable_entries_used
;
7410 h
->vtable_entries_size
= h
->vtable_parent
->vtable_entries_size
;
7417 /* Or the parent's entries into ours. */
7418 cu
= h
->vtable_entries_used
;
7420 pu
= h
->vtable_parent
->vtable_entries_used
;
7423 asection
*sec
= h
->root
.u
.def
.section
;
7424 struct elf_backend_data
*bed
= get_elf_backend_data (sec
->owner
);
7425 int file_align
= bed
->s
->file_align
;
7427 n
= h
->vtable_parent
->vtable_entries_size
/ file_align
;
7442 elf_gc_smash_unused_vtentry_relocs (h
, okp
)
7443 struct elf_link_hash_entry
*h
;
7447 bfd_vma hstart
, hend
;
7448 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
7449 struct elf_backend_data
*bed
;
7452 /* Take care of both those symbols that do not describe vtables as
7453 well as those that are not loaded. */
7454 if (h
->vtable_parent
== NULL
)
7457 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
7458 || h
->root
.type
== bfd_link_hash_defweak
);
7460 sec
= h
->root
.u
.def
.section
;
7461 hstart
= h
->root
.u
.def
.value
;
7462 hend
= hstart
+ h
->size
;
7464 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7465 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, true));
7467 return *(boolean
*) okp
= false;
7468 bed
= get_elf_backend_data (sec
->owner
);
7469 file_align
= bed
->s
->file_align
;
7471 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7473 for (rel
= relstart
; rel
< relend
; ++rel
)
7474 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
7476 /* If the entry is in use, do nothing. */
7477 if (h
->vtable_entries_used
7478 && (rel
->r_offset
- hstart
) < h
->vtable_entries_size
)
7480 bfd_vma entry
= (rel
->r_offset
- hstart
) / file_align
;
7481 if (h
->vtable_entries_used
[entry
])
7484 /* Otherwise, kill it. */
7485 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
7491 /* Do mark and sweep of unused sections. */
7494 elf_gc_sections (abfd
, info
)
7496 struct bfd_link_info
*info
;
7500 asection
* (*gc_mark_hook
)
7501 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7502 struct elf_link_hash_entry
*h
, Elf_Internal_Sym
*));
7504 if (!get_elf_backend_data (abfd
)->can_gc_sections
7505 || info
->relocateable
|| info
->emitrelocations
7506 || elf_hash_table (info
)->dynamic_sections_created
)
7509 /* Apply transitive closure to the vtable entry usage info. */
7510 elf_link_hash_traverse (elf_hash_table (info
),
7511 elf_gc_propagate_vtable_entries_used
,
7516 /* Kill the vtable relocations that were not used. */
7517 elf_link_hash_traverse (elf_hash_table (info
),
7518 elf_gc_smash_unused_vtentry_relocs
,
7523 /* Grovel through relocs to find out who stays ... */
7525 gc_mark_hook
= get_elf_backend_data (abfd
)->gc_mark_hook
;
7526 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7530 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
7533 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7535 if (o
->flags
& SEC_KEEP
)
7536 if (!elf_gc_mark (info
, o
, gc_mark_hook
))
7541 /* ... and mark SEC_EXCLUDE for those that go. */
7542 if (!elf_gc_sweep (info
, get_elf_backend_data (abfd
)->gc_sweep_hook
))
7548 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7551 elf_gc_record_vtinherit (abfd
, sec
, h
, offset
)
7554 struct elf_link_hash_entry
*h
;
7557 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
7558 struct elf_link_hash_entry
**search
, *child
;
7559 bfd_size_type extsymcount
;
7561 /* The sh_info field of the symtab header tells us where the
7562 external symbols start. We don't care about the local symbols at
7564 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/sizeof (Elf_External_Sym
);
7565 if (!elf_bad_symtab (abfd
))
7566 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
7568 sym_hashes
= elf_sym_hashes (abfd
);
7569 sym_hashes_end
= sym_hashes
+ extsymcount
;
7571 /* Hunt down the child symbol, which is in this section at the same
7572 offset as the relocation. */
7573 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
7575 if ((child
= *search
) != NULL
7576 && (child
->root
.type
== bfd_link_hash_defined
7577 || child
->root
.type
== bfd_link_hash_defweak
)
7578 && child
->root
.u
.def
.section
== sec
7579 && child
->root
.u
.def
.value
== offset
)
7583 (*_bfd_error_handler
) ("%s: %s+%lu: No symbol found for INHERIT",
7584 bfd_archive_filename (abfd
), sec
->name
,
7585 (unsigned long) offset
);
7586 bfd_set_error (bfd_error_invalid_operation
);
7592 /* This *should* only be the absolute section. It could potentially
7593 be that someone has defined a non-global vtable though, which
7594 would be bad. It isn't worth paging in the local symbols to be
7595 sure though; that case should simply be handled by the assembler. */
7597 child
->vtable_parent
= (struct elf_link_hash_entry
*) -1;
7600 child
->vtable_parent
= h
;
7605 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7608 elf_gc_record_vtentry (abfd
, sec
, h
, addend
)
7609 bfd
*abfd ATTRIBUTE_UNUSED
;
7610 asection
*sec ATTRIBUTE_UNUSED
;
7611 struct elf_link_hash_entry
*h
;
7614 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7615 int file_align
= bed
->s
->file_align
;
7617 if (addend
>= h
->vtable_entries_size
)
7620 boolean
*ptr
= h
->vtable_entries_used
;
7622 /* While the symbol is undefined, we have to be prepared to handle
7624 if (h
->root
.type
== bfd_link_hash_undefined
)
7631 /* Oops! We've got a reference past the defined end of
7632 the table. This is probably a bug -- shall we warn? */
7637 /* Allocate one extra entry for use as a "done" flag for the
7638 consolidation pass. */
7639 bytes
= (size
/ file_align
+ 1) * sizeof (boolean
);
7643 ptr
= bfd_realloc (ptr
- 1, (bfd_size_type
) bytes
);
7649 oldbytes
= ((h
->vtable_entries_size
/ file_align
+ 1)
7650 * sizeof (boolean
));
7651 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
7655 ptr
= bfd_zmalloc ((bfd_size_type
) bytes
);
7660 /* And arrange for that done flag to be at index -1. */
7661 h
->vtable_entries_used
= ptr
+ 1;
7662 h
->vtable_entries_size
= size
;
7665 h
->vtable_entries_used
[addend
/ file_align
] = true;
7670 /* And an accompanying bit to work out final got entry offsets once
7671 we're done. Should be called from final_link. */
7674 elf_gc_common_finalize_got_offsets (abfd
, info
)
7676 struct bfd_link_info
*info
;
7679 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7682 /* The GOT offset is relative to the .got section, but the GOT header is
7683 put into the .got.plt section, if the backend uses it. */
7684 if (bed
->want_got_plt
)
7687 gotoff
= bed
->got_header_size
;
7689 /* Do the local .got entries first. */
7690 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
7692 bfd_signed_vma
*local_got
;
7693 bfd_size_type j
, locsymcount
;
7694 Elf_Internal_Shdr
*symtab_hdr
;
7696 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
7699 local_got
= elf_local_got_refcounts (i
);
7703 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
7704 if (elf_bad_symtab (i
))
7705 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7707 locsymcount
= symtab_hdr
->sh_info
;
7709 for (j
= 0; j
< locsymcount
; ++j
)
7711 if (local_got
[j
] > 0)
7713 local_got
[j
] = gotoff
;
7714 gotoff
+= ARCH_SIZE
/ 8;
7717 local_got
[j
] = (bfd_vma
) -1;
7721 /* Then the global .got entries. .plt refcounts are handled by
7722 adjust_dynamic_symbol */
7723 elf_link_hash_traverse (elf_hash_table (info
),
7724 elf_gc_allocate_got_offsets
,
7729 /* We need a special top-level link routine to convert got reference counts
7730 to real got offsets. */
7733 elf_gc_allocate_got_offsets (h
, offarg
)
7734 struct elf_link_hash_entry
*h
;
7737 bfd_vma
*off
= (bfd_vma
*) offarg
;
7739 if (h
->got
.refcount
> 0)
7741 h
->got
.offset
= off
[0];
7742 off
[0] += ARCH_SIZE
/ 8;
7745 h
->got
.offset
= (bfd_vma
) -1;
7750 /* Many folk need no more in the way of final link than this, once
7751 got entry reference counting is enabled. */
7754 elf_gc_common_final_link (abfd
, info
)
7756 struct bfd_link_info
*info
;
7758 if (!elf_gc_common_finalize_got_offsets (abfd
, info
))
7761 /* Invoke the regular ELF backend linker to do all the work. */
7762 return elf_bfd_final_link (abfd
, info
);
7765 /* This function will be called though elf_link_hash_traverse to store
7766 all hash value of the exported symbols in an array. */
7769 elf_collect_hash_codes (h
, data
)
7770 struct elf_link_hash_entry
*h
;
7773 unsigned long **valuep
= (unsigned long **) data
;
7779 /* Ignore indirect symbols. These are added by the versioning code. */
7780 if (h
->dynindx
== -1)
7783 name
= h
->root
.root
.string
;
7784 p
= strchr (name
, ELF_VER_CHR
);
7787 alc
= bfd_malloc ((bfd_size_type
) (p
- name
+ 1));
7788 memcpy (alc
, name
, (size_t) (p
- name
));
7789 alc
[p
- name
] = '\0';
7793 /* Compute the hash value. */
7794 ha
= bfd_elf_hash (name
);
7796 /* Store the found hash value in the array given as the argument. */
7799 /* And store it in the struct so that we can put it in the hash table
7801 h
->elf_hash_value
= ha
;
7810 elf_reloc_symbol_deleted_p (offset
, cookie
)
7814 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*)cookie
;
7816 if (rcookie
->bad_symtab
)
7817 rcookie
->rel
= rcookie
->rels
;
7819 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
7821 unsigned long r_symndx
= ELF_R_SYM (rcookie
->rel
->r_info
);
7822 Elf_Internal_Sym isym
;
7824 if (! rcookie
->bad_symtab
)
7825 if (rcookie
->rel
->r_offset
> offset
)
7827 if (rcookie
->rel
->r_offset
!= offset
)
7830 if (rcookie
->locsyms
&& r_symndx
< rcookie
->locsymcount
)
7831 elf_swap_symbol_in (rcookie
->abfd
,
7832 (Elf_External_Sym
*) rcookie
->locsyms
+ r_symndx
,
7835 if (r_symndx
>= rcookie
->locsymcount
7836 || (rcookie
->locsyms
7837 && ELF_ST_BIND (isym
.st_info
) != STB_LOCAL
))
7839 struct elf_link_hash_entry
*h
;
7841 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
7843 while (h
->root
.type
== bfd_link_hash_indirect
7844 || h
->root
.type
== bfd_link_hash_warning
)
7845 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7847 if ((h
->root
.type
== bfd_link_hash_defined
7848 || h
->root
.type
== bfd_link_hash_defweak
)
7849 && ! bfd_is_abs_section (h
->root
.u
.def
.section
)
7850 && bfd_is_abs_section (h
->root
.u
.def
.section
7856 else if (rcookie
->locsyms
)
7858 /* It's not a relocation against a global symbol,
7859 but it could be a relocation against a local
7860 symbol for a discarded section. */
7863 /* Need to: get the symbol; get the section. */
7864 if (isym
.st_shndx
> 0 && isym
.st_shndx
< SHN_LORESERVE
)
7866 isec
= section_from_elf_index (rcookie
->abfd
, isym
.st_shndx
);
7868 && ! bfd_is_abs_section (isec
)
7869 && bfd_is_abs_section (isec
->output_section
))
7878 /* Discard unneeded references to discarded sections.
7879 Returns true if any section's size was changed. */
7880 /* This function assumes that the relocations are in sorted order,
7881 which is true for all known assemblers. */
7884 elf_bfd_discard_info (info
)
7885 struct bfd_link_info
*info
;
7887 struct elf_reloc_cookie cookie
;
7889 Elf_Internal_Shdr
*symtab_hdr
;
7890 Elf_External_Sym
*freesyms
;
7891 struct elf_backend_data
*bed
;
7893 boolean ret
= false;
7895 if (info
->relocateable
7896 || info
->traditional_format
7897 || info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
7898 || ! is_elf_hash_table (info
)
7899 || info
->strip
== strip_all
7900 || info
->strip
== strip_debugger
)
7902 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
7904 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
7907 bed
= get_elf_backend_data (abfd
);
7909 if ((abfd
->flags
& DYNAMIC
) != 0)
7912 o
= bfd_get_section_by_name (abfd
, ".stab");
7913 if (! o
&& ! bed
->elf_backend_discard_info
)
7916 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7919 cookie
.sym_hashes
= elf_sym_hashes (abfd
);
7920 cookie
.bad_symtab
= elf_bad_symtab (abfd
);
7921 if (cookie
.bad_symtab
)
7923 cookie
.locsymcount
=
7924 symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7925 cookie
.extsymoff
= 0;
7929 cookie
.locsymcount
= symtab_hdr
->sh_info
;
7930 cookie
.extsymoff
= symtab_hdr
->sh_info
;
7934 if (symtab_hdr
->contents
)
7935 cookie
.locsyms
= (void *) symtab_hdr
->contents
;
7936 else if (cookie
.locsymcount
== 0)
7937 cookie
.locsyms
= NULL
;
7940 bfd_size_type amt
= cookie
.locsymcount
* sizeof (Elf_External_Sym
);
7941 cookie
.locsyms
= bfd_malloc (amt
);
7942 if (cookie
.locsyms
== NULL
7943 || bfd_seek (abfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
7944 || bfd_bread (cookie
.locsyms
, amt
, abfd
) != amt
)
7946 /* Something is very wrong - but we can still do our job for
7947 global symbols, so don't give up. */
7949 free (cookie
.locsyms
);
7950 cookie
.locsyms
= NULL
;
7954 freesyms
= cookie
.locsyms
;
7960 cookie
.rels
= (NAME(_bfd_elf
,link_read_relocs
)
7961 (abfd
, o
, (PTR
) NULL
,
7962 (Elf_Internal_Rela
*) NULL
,
7963 info
->keep_memory
));
7966 cookie
.rel
= cookie
.rels
;
7968 cookie
.rels
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7969 if (_bfd_discard_section_stabs (abfd
, o
,
7970 elf_section_data (o
)->stab_info
,
7971 elf_reloc_symbol_deleted_p
,
7974 if (! info
->keep_memory
)
7979 if (bed
->elf_backend_discard_info
)
7981 if (bed
->elf_backend_discard_info (abfd
, &cookie
, info
))
7992 elf_section_ignore_discarded_relocs (sec
)
7995 if (strcmp (sec
->name
, ".stab") == 0)
7997 else if ((get_elf_backend_data (sec
->owner
)
7998 ->elf_backend_ignore_discarded_relocs
!= NULL
)
7999 && (*get_elf_backend_data (sec
->owner
)
8000 ->elf_backend_ignore_discarded_relocs
) (sec
))