1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
34 #define XTENSA_NO_NOP_REMOVAL 0
36 /* Local helper functions. */
38 static bfd_boolean
add_extra_plt_sections (bfd
*, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*, bfd_vma
*);
47 /* Local functions to handle Xtensa configurability. */
49 static bfd_boolean
is_indirect_call_opcode (xtensa_opcode
);
50 static bfd_boolean
is_direct_call_opcode (xtensa_opcode
);
51 static bfd_boolean
is_windowed_call_opcode (xtensa_opcode
);
52 static xtensa_opcode
get_const16_opcode (void);
53 static xtensa_opcode
get_l32r_opcode (void);
54 static bfd_vma
l32r_offset (bfd_vma
, bfd_vma
);
55 static int get_relocation_opnd (xtensa_opcode
, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
59 static bfd_boolean is_l32r_relocation
60 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
61 static bfd_boolean
is_alt_relocation (int);
62 static bfd_boolean
is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte
*, bfd_size_type
, bfd_size_type
, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
71 static bfd_boolean
check_branch_target_aligned_address (bfd_vma
, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
75 /* Functions for link-time code simplifications. */
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte
*, bfd_vma
, bfd_vma
, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte
*, bfd_vma
, Elf_Internal_Rela
*, char **);
81 static xtensa_opcode
swap_callx_for_call_opcode (xtensa_opcode
);
82 static xtensa_opcode
get_expanded_call_opcode (bfd_byte
*, int, bfd_boolean
*);
84 /* Access to internal relocations, section contents and symbols. */
86 static Elf_Internal_Rela
*retrieve_internal_relocs
87 (bfd
*, asection
*, bfd_boolean
);
88 static void pin_internal_relocs (asection
*, Elf_Internal_Rela
*);
89 static void release_internal_relocs (asection
*, Elf_Internal_Rela
*);
90 static bfd_byte
*retrieve_contents (bfd
*, asection
*, bfd_boolean
);
91 static void pin_contents (asection
*, bfd_byte
*);
92 static void release_contents (asection
*, bfd_byte
*);
93 static Elf_Internal_Sym
*retrieve_local_syms (bfd
*);
95 /* Miscellaneous utility functions. */
97 static asection
*elf_xtensa_get_plt_section (bfd
*, int);
98 static asection
*elf_xtensa_get_gotplt_section (bfd
*, int);
99 static asection
*get_elf_r_symndx_section (bfd
*, unsigned long);
100 static struct elf_link_hash_entry
*get_elf_r_symndx_hash_entry
101 (bfd
*, unsigned long);
102 static bfd_vma
get_elf_r_symndx_offset (bfd
*, unsigned long);
103 static bfd_boolean
is_reloc_sym_weak (bfd
*, Elf_Internal_Rela
*);
104 static bfd_boolean
pcrel_reloc_fits (xtensa_opcode
, int, bfd_vma
, bfd_vma
);
105 static bfd_boolean
xtensa_is_property_section (asection
*);
106 static bfd_boolean
xtensa_is_littable_section (asection
*);
107 static int internal_reloc_compare (const void *, const void *);
108 static int internal_reloc_matches (const void *, const void *);
109 extern char *xtensa_get_property_section_name (asection
*, const char *);
110 static flagword
xtensa_get_property_predef_flags (asection
*);
112 /* Other functions called directly by the linker. */
114 typedef void (*deps_callback_t
)
115 (asection
*, bfd_vma
, asection
*, bfd_vma
, void *);
116 extern bfd_boolean xtensa_callback_required_dependence
117 (bfd
*, asection
*, struct bfd_link_info
*, deps_callback_t
, void *);
120 /* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
125 int elf32xtensa_size_opt
;
128 /* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
132 typedef struct xtensa_relax_info_struct xtensa_relax_info
;
135 /* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
139 needed. It is OK if this count is an overestimate, e.g., some
140 relocations may be removed by GC. */
142 static int plt_reloc_count
= 0;
145 /* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
150 xtensa_isa xtensa_default_isa
;
153 /* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
157 static bfd_boolean relaxing_section
= FALSE
;
159 /* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
162 int elf32xtensa_no_literal_movement
= 1;
165 static reloc_howto_type elf_howto_table
[] =
167 HOWTO (R_XTENSA_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
168 bfd_elf_xtensa_reloc
, "R_XTENSA_NONE",
169 FALSE
, 0x00000000, 0x00000000, FALSE
),
170 HOWTO (R_XTENSA_32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
171 bfd_elf_xtensa_reloc
, "R_XTENSA_32",
172 TRUE
, 0xffffffff, 0xffffffff, FALSE
),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
179 NULL
, "R_XTENSA_RTLD",
180 FALSE
, 0x00000000, 0x00000000, FALSE
),
181 HOWTO (R_XTENSA_GLOB_DAT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
182 bfd_elf_generic_reloc
, "R_XTENSA_GLOB_DAT",
183 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
184 HOWTO (R_XTENSA_JMP_SLOT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
185 bfd_elf_generic_reloc
, "R_XTENSA_JMP_SLOT",
186 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
187 HOWTO (R_XTENSA_RELATIVE
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
188 bfd_elf_generic_reloc
, "R_XTENSA_RELATIVE",
189 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
190 HOWTO (R_XTENSA_PLT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
191 bfd_elf_xtensa_reloc
, "R_XTENSA_PLT",
192 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
194 HOWTO (R_XTENSA_OP0
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
195 bfd_elf_xtensa_reloc
, "R_XTENSA_OP0",
196 FALSE
, 0x00000000, 0x00000000, TRUE
),
197 HOWTO (R_XTENSA_OP1
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
198 bfd_elf_xtensa_reloc
, "R_XTENSA_OP1",
199 FALSE
, 0x00000000, 0x00000000, TRUE
),
200 HOWTO (R_XTENSA_OP2
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
201 bfd_elf_xtensa_reloc
, "R_XTENSA_OP2",
202 FALSE
, 0x00000000, 0x00000000, TRUE
),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
205 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_EXPAND",
206 FALSE
, 0x00000000, 0x00000000, FALSE
),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
209 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE
, 0x00000000, 0x00000000, TRUE
),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
215 NULL
, "R_XTENSA_GNU_VTINHERIT",
216 FALSE
, 0x00000000, 0x00000000, FALSE
),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
219 _bfd_elf_rel_vtable_reloc_fn
, "R_XTENSA_GNU_VTENTRY",
220 FALSE
, 0x00000000, 0x00000000, FALSE
),
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
224 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF8",
225 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
226 HOWTO (R_XTENSA_DIFF16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
227 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF16",
228 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
229 HOWTO (R_XTENSA_DIFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
230 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF32",
231 FALSE
, 0xffffffff, 0xffffffff, FALSE
),
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
235 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_OP",
236 FALSE
, 0x00000000, 0x00000000, TRUE
),
237 HOWTO (R_XTENSA_SLOT1_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
238 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_OP",
239 FALSE
, 0x00000000, 0x00000000, TRUE
),
240 HOWTO (R_XTENSA_SLOT2_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
241 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_OP",
242 FALSE
, 0x00000000, 0x00000000, TRUE
),
243 HOWTO (R_XTENSA_SLOT3_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
244 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_OP",
245 FALSE
, 0x00000000, 0x00000000, TRUE
),
246 HOWTO (R_XTENSA_SLOT4_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
247 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_OP",
248 FALSE
, 0x00000000, 0x00000000, TRUE
),
249 HOWTO (R_XTENSA_SLOT5_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
250 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_OP",
251 FALSE
, 0x00000000, 0x00000000, TRUE
),
252 HOWTO (R_XTENSA_SLOT6_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
253 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_OP",
254 FALSE
, 0x00000000, 0x00000000, TRUE
),
255 HOWTO (R_XTENSA_SLOT7_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
256 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_OP",
257 FALSE
, 0x00000000, 0x00000000, TRUE
),
258 HOWTO (R_XTENSA_SLOT8_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
259 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_OP",
260 FALSE
, 0x00000000, 0x00000000, TRUE
),
261 HOWTO (R_XTENSA_SLOT9_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
262 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_OP",
263 FALSE
, 0x00000000, 0x00000000, TRUE
),
264 HOWTO (R_XTENSA_SLOT10_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
265 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_OP",
266 FALSE
, 0x00000000, 0x00000000, TRUE
),
267 HOWTO (R_XTENSA_SLOT11_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
268 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_OP",
269 FALSE
, 0x00000000, 0x00000000, TRUE
),
270 HOWTO (R_XTENSA_SLOT12_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
271 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_OP",
272 FALSE
, 0x00000000, 0x00000000, TRUE
),
273 HOWTO (R_XTENSA_SLOT13_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
274 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_OP",
275 FALSE
, 0x00000000, 0x00000000, TRUE
),
276 HOWTO (R_XTENSA_SLOT14_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
277 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_OP",
278 FALSE
, 0x00000000, 0x00000000, TRUE
),
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
282 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_ALT",
283 FALSE
, 0x00000000, 0x00000000, TRUE
),
284 HOWTO (R_XTENSA_SLOT1_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
285 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_ALT",
286 FALSE
, 0x00000000, 0x00000000, TRUE
),
287 HOWTO (R_XTENSA_SLOT2_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
288 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_ALT",
289 FALSE
, 0x00000000, 0x00000000, TRUE
),
290 HOWTO (R_XTENSA_SLOT3_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
291 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_ALT",
292 FALSE
, 0x00000000, 0x00000000, TRUE
),
293 HOWTO (R_XTENSA_SLOT4_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
294 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_ALT",
295 FALSE
, 0x00000000, 0x00000000, TRUE
),
296 HOWTO (R_XTENSA_SLOT5_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
297 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_ALT",
298 FALSE
, 0x00000000, 0x00000000, TRUE
),
299 HOWTO (R_XTENSA_SLOT6_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
300 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_ALT",
301 FALSE
, 0x00000000, 0x00000000, TRUE
),
302 HOWTO (R_XTENSA_SLOT7_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
303 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_ALT",
304 FALSE
, 0x00000000, 0x00000000, TRUE
),
305 HOWTO (R_XTENSA_SLOT8_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
306 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_ALT",
307 FALSE
, 0x00000000, 0x00000000, TRUE
),
308 HOWTO (R_XTENSA_SLOT9_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
309 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_ALT",
310 FALSE
, 0x00000000, 0x00000000, TRUE
),
311 HOWTO (R_XTENSA_SLOT10_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
312 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_ALT",
313 FALSE
, 0x00000000, 0x00000000, TRUE
),
314 HOWTO (R_XTENSA_SLOT11_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
315 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_ALT",
316 FALSE
, 0x00000000, 0x00000000, TRUE
),
317 HOWTO (R_XTENSA_SLOT12_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
318 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_ALT",
319 FALSE
, 0x00000000, 0x00000000, TRUE
),
320 HOWTO (R_XTENSA_SLOT13_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
321 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_ALT",
322 FALSE
, 0x00000000, 0x00000000, TRUE
),
323 HOWTO (R_XTENSA_SLOT14_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
324 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_ALT",
325 FALSE
, 0x00000000, 0x00000000, TRUE
)
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
335 static reloc_howto_type
*
336 elf_xtensa_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
337 bfd_reloc_code_real_type code
)
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table
[(unsigned) R_XTENSA_NONE
];
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table
[(unsigned) R_XTENSA_32
];
349 case BFD_RELOC_XTENSA_DIFF8
:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF8
];
353 case BFD_RELOC_XTENSA_DIFF16
:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF16
];
357 case BFD_RELOC_XTENSA_DIFF32
:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF32
];
361 case BFD_RELOC_XTENSA_RTLD
:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table
[(unsigned) R_XTENSA_RTLD
];
365 case BFD_RELOC_XTENSA_GLOB_DAT
:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table
[(unsigned) R_XTENSA_GLOB_DAT
];
369 case BFD_RELOC_XTENSA_JMP_SLOT
:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table
[(unsigned) R_XTENSA_JMP_SLOT
];
373 case BFD_RELOC_XTENSA_RELATIVE
:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table
[(unsigned) R_XTENSA_RELATIVE
];
377 case BFD_RELOC_XTENSA_PLT
:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table
[(unsigned) R_XTENSA_PLT
];
381 case BFD_RELOC_XTENSA_OP0
:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table
[(unsigned) R_XTENSA_OP0
];
385 case BFD_RELOC_XTENSA_OP1
:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table
[(unsigned) R_XTENSA_OP1
];
389 case BFD_RELOC_XTENSA_OP2
:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table
[(unsigned) R_XTENSA_OP2
];
393 case BFD_RELOC_XTENSA_ASM_EXPAND
:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_EXPAND
];
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY
:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_SIMPLIFY
];
401 case BFD_RELOC_VTABLE_INHERIT
:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTINHERIT
];
405 case BFD_RELOC_VTABLE_ENTRY
:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTENTRY
];
410 if (code
>= BFD_RELOC_XTENSA_SLOT0_OP
411 && code
<= BFD_RELOC_XTENSA_SLOT14_OP
)
413 unsigned n
= (R_XTENSA_SLOT0_OP
+
414 (code
- BFD_RELOC_XTENSA_SLOT0_OP
));
415 return &elf_howto_table
[n
];
418 if (code
>= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code
<= BFD_RELOC_XTENSA_SLOT14_ALT
)
421 unsigned n
= (R_XTENSA_SLOT0_ALT
+
422 (code
- BFD_RELOC_XTENSA_SLOT0_ALT
));
423 return &elf_howto_table
[n
];
434 /* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
438 elf_xtensa_info_to_howto_rela (bfd
*abfd ATTRIBUTE_UNUSED
,
440 Elf_Internal_Rela
*dst
)
442 unsigned int r_type
= ELF32_R_TYPE (dst
->r_info
);
444 BFD_ASSERT (r_type
< (unsigned int) R_XTENSA_max
);
445 cache_ptr
->howto
= &elf_howto_table
[r_type
];
449 /* Functions for the Xtensa ELF linker. */
451 /* The name of the dynamic interpreter. This is put in the .interp
454 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
456 /* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
460 #define PLT_ENTRY_SIZE 16
462 /* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
472 #define PLT_ENTRIES_PER_CHUNK 254
474 /* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
479 static const bfd_byte elf_xtensa_be_plt_entry
[PLT_ENTRY_SIZE
] =
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
489 static const bfd_byte elf_xtensa_le_plt_entry
[PLT_ENTRY_SIZE
] =
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
500 static inline bfd_boolean
501 xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
502 struct bfd_link_info
*info
)
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
510 return _bfd_elf_dynamic_symbol_p (h
, info
, 0);
515 property_table_compare (const void *ap
, const void *bp
)
517 const property_table_entry
*a
= (const property_table_entry
*) ap
;
518 const property_table_entry
*b
= (const property_table_entry
*) bp
;
520 if (a
->address
== b
->address
)
522 if (a
->size
!= b
->size
)
523 return (a
->size
- b
->size
);
525 if ((a
->flags
& XTENSA_PROP_ALIGN
) != (b
->flags
& XTENSA_PROP_ALIGN
))
526 return ((b
->flags
& XTENSA_PROP_ALIGN
)
527 - (a
->flags
& XTENSA_PROP_ALIGN
));
529 if ((a
->flags
& XTENSA_PROP_ALIGN
)
530 && (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
531 != GET_XTENSA_PROP_ALIGNMENT (b
->flags
)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
533 - GET_XTENSA_PROP_ALIGNMENT (b
->flags
));
535 if ((a
->flags
& XTENSA_PROP_UNREACHABLE
)
536 != (b
->flags
& XTENSA_PROP_UNREACHABLE
))
537 return ((b
->flags
& XTENSA_PROP_UNREACHABLE
)
538 - (a
->flags
& XTENSA_PROP_UNREACHABLE
));
540 return (a
->flags
- b
->flags
);
543 return (a
->address
- b
->address
);
548 property_table_matches (const void *ap
, const void *bp
)
550 const property_table_entry
*a
= (const property_table_entry
*) ap
;
551 const property_table_entry
*b
= (const property_table_entry
*) bp
;
553 /* Check if one entry overlaps with the other. */
554 if ((b
->address
>= a
->address
&& b
->address
< (a
->address
+ a
->size
))
555 || (a
->address
>= b
->address
&& a
->address
< (b
->address
+ b
->size
)))
558 return (a
->address
- b
->address
);
562 /* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
567 xtensa_read_table_entries (bfd
*abfd
,
569 property_table_entry
**table_p
,
570 const char *sec_name
,
571 bfd_boolean output_addr
)
573 asection
*table_section
;
574 char *table_section_name
;
575 bfd_size_type table_size
= 0;
576 bfd_byte
*table_data
;
577 property_table_entry
*blocks
;
578 int blk
, block_count
;
579 bfd_size_type num_records
;
580 Elf_Internal_Rela
*internal_relocs
;
581 bfd_vma section_addr
;
582 flagword predef_flags
;
583 bfd_size_type table_entry_size
;
586 || !(section
->flags
& SEC_ALLOC
)
587 || (section
->flags
& SEC_DEBUGGING
))
593 table_section_name
= xtensa_get_property_section_name (section
, sec_name
);
594 table_section
= bfd_get_section_by_name (abfd
, table_section_name
);
595 free (table_section_name
);
597 table_size
= table_section
->size
;
605 predef_flags
= xtensa_get_property_predef_flags (table_section
);
606 table_entry_size
= 12;
608 table_entry_size
-= 4;
610 num_records
= table_size
/ table_entry_size
;
611 table_data
= retrieve_contents (abfd
, table_section
, TRUE
);
612 blocks
= (property_table_entry
*)
613 bfd_malloc (num_records
* sizeof (property_table_entry
));
617 section_addr
= section
->output_section
->vma
+ section
->output_offset
;
619 section_addr
= section
->vma
;
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs
= retrieve_internal_relocs (abfd
, table_section
, TRUE
);
624 if (internal_relocs
&& !table_section
->reloc_done
)
628 for (i
= 0; i
< table_section
->reloc_count
; i
++)
630 Elf_Internal_Rela
*rel
= &internal_relocs
[i
];
631 unsigned long r_symndx
;
633 if (ELF32_R_TYPE (rel
->r_info
) == R_XTENSA_NONE
)
636 BFD_ASSERT (ELF32_R_TYPE (rel
->r_info
) == R_XTENSA_32
);
637 r_symndx
= ELF32_R_SYM (rel
->r_info
);
639 if (get_elf_r_symndx_section (abfd
, r_symndx
) == section
)
641 bfd_vma sym_off
= get_elf_r_symndx_offset (abfd
, r_symndx
);
642 BFD_ASSERT (sym_off
== 0);
643 BFD_ASSERT (rel
->r_addend
== 0);
644 blocks
[block_count
].address
=
645 (section_addr
+ sym_off
+ rel
->r_addend
646 + bfd_get_32 (abfd
, table_data
+ rel
->r_offset
));
647 blocks
[block_count
].size
=
648 bfd_get_32 (abfd
, table_data
+ rel
->r_offset
+ 4);
650 blocks
[block_count
].flags
= predef_flags
;
652 blocks
[block_count
].flags
=
653 bfd_get_32 (abfd
, table_data
+ rel
->r_offset
+ 8);
660 /* The file has already been relocated and the addresses are
661 already in the table. */
663 bfd_size_type section_limit
= bfd_get_section_limit (abfd
, section
);
665 for (off
= 0; off
< table_size
; off
+= table_entry_size
)
667 bfd_vma address
= bfd_get_32 (abfd
, table_data
+ off
);
669 if (address
>= section_addr
670 && address
< section_addr
+ section_limit
)
672 blocks
[block_count
].address
= address
;
673 blocks
[block_count
].size
=
674 bfd_get_32 (abfd
, table_data
+ off
+ 4);
676 blocks
[block_count
].flags
= predef_flags
;
678 blocks
[block_count
].flags
=
679 bfd_get_32 (abfd
, table_data
+ off
+ 8);
685 release_contents (table_section
, table_data
);
686 release_internal_relocs (table_section
, internal_relocs
);
690 /* Now sort them into address order for easy reference. */
691 qsort (blocks
, block_count
, sizeof (property_table_entry
),
692 property_table_compare
);
694 /* Check that the table contents are valid. Problems may occur,
695 for example, if an unrelocated object file is stripped. */
696 for (blk
= 1; blk
< block_count
; blk
++)
698 /* The only circumstance where two entries may legitimately
699 have the same address is when one of them is a zero-size
700 placeholder to mark a place where fill can be inserted.
701 The zero-size entry should come first. */
702 if (blocks
[blk
- 1].address
== blocks
[blk
].address
&&
703 blocks
[blk
- 1].size
!= 0)
705 (*_bfd_error_handler
) (_("%B(%A): invalid property table"),
707 bfd_set_error (bfd_error_bad_value
);
719 static property_table_entry
*
720 elf_xtensa_find_property_entry (property_table_entry
*property_table
,
721 int property_table_size
,
724 property_table_entry entry
;
725 property_table_entry
*rv
;
727 if (property_table_size
== 0)
730 entry
.address
= addr
;
734 rv
= bsearch (&entry
, property_table
, property_table_size
,
735 sizeof (property_table_entry
), property_table_matches
);
741 elf_xtensa_in_literal_pool (property_table_entry
*lit_table
,
745 if (elf_xtensa_find_property_entry (lit_table
, lit_table_size
, addr
))
752 /* Look through the relocs for a section during the first phase, and
753 calculate needed space in the dynamic reloc sections. */
756 elf_xtensa_check_relocs (bfd
*abfd
,
757 struct bfd_link_info
*info
,
759 const Elf_Internal_Rela
*relocs
)
761 Elf_Internal_Shdr
*symtab_hdr
;
762 struct elf_link_hash_entry
**sym_hashes
;
763 const Elf_Internal_Rela
*rel
;
764 const Elf_Internal_Rela
*rel_end
;
766 if (info
->relocatable
)
769 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
770 sym_hashes
= elf_sym_hashes (abfd
);
772 rel_end
= relocs
+ sec
->reloc_count
;
773 for (rel
= relocs
; rel
< rel_end
; rel
++)
776 unsigned long r_symndx
;
777 struct elf_link_hash_entry
*h
;
779 r_symndx
= ELF32_R_SYM (rel
->r_info
);
780 r_type
= ELF32_R_TYPE (rel
->r_info
);
782 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
784 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
789 if (r_symndx
< symtab_hdr
->sh_info
)
793 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
794 while (h
->root
.type
== bfd_link_hash_indirect
795 || h
->root
.type
== bfd_link_hash_warning
)
796 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
805 if ((sec
->flags
& SEC_ALLOC
) != 0)
807 if (h
->got
.refcount
<= 0)
810 h
->got
.refcount
+= 1;
815 /* If this relocation is against a local symbol, then it's
816 exactly the same as a normal local GOT entry. */
820 if ((sec
->flags
& SEC_ALLOC
) != 0)
822 if (h
->plt
.refcount
<= 0)
828 h
->plt
.refcount
+= 1;
830 /* Keep track of the total PLT relocation count even if we
831 don't yet know whether the dynamic sections will be
833 plt_reloc_count
+= 1;
835 if (elf_hash_table (info
)->dynamic_sections_created
)
837 if (!add_extra_plt_sections (elf_hash_table (info
)->dynobj
,
845 if ((sec
->flags
& SEC_ALLOC
) != 0)
847 bfd_signed_vma
*local_got_refcounts
;
849 /* This is a global offset table entry for a local symbol. */
850 local_got_refcounts
= elf_local_got_refcounts (abfd
);
851 if (local_got_refcounts
== NULL
)
855 size
= symtab_hdr
->sh_info
;
856 size
*= sizeof (bfd_signed_vma
);
857 local_got_refcounts
=
858 (bfd_signed_vma
*) bfd_zalloc (abfd
, size
);
859 if (local_got_refcounts
== NULL
)
861 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
863 local_got_refcounts
[r_symndx
] += 1;
870 case R_XTENSA_SLOT0_OP
:
871 case R_XTENSA_SLOT1_OP
:
872 case R_XTENSA_SLOT2_OP
:
873 case R_XTENSA_SLOT3_OP
:
874 case R_XTENSA_SLOT4_OP
:
875 case R_XTENSA_SLOT5_OP
:
876 case R_XTENSA_SLOT6_OP
:
877 case R_XTENSA_SLOT7_OP
:
878 case R_XTENSA_SLOT8_OP
:
879 case R_XTENSA_SLOT9_OP
:
880 case R_XTENSA_SLOT10_OP
:
881 case R_XTENSA_SLOT11_OP
:
882 case R_XTENSA_SLOT12_OP
:
883 case R_XTENSA_SLOT13_OP
:
884 case R_XTENSA_SLOT14_OP
:
885 case R_XTENSA_SLOT0_ALT
:
886 case R_XTENSA_SLOT1_ALT
:
887 case R_XTENSA_SLOT2_ALT
:
888 case R_XTENSA_SLOT3_ALT
:
889 case R_XTENSA_SLOT4_ALT
:
890 case R_XTENSA_SLOT5_ALT
:
891 case R_XTENSA_SLOT6_ALT
:
892 case R_XTENSA_SLOT7_ALT
:
893 case R_XTENSA_SLOT8_ALT
:
894 case R_XTENSA_SLOT9_ALT
:
895 case R_XTENSA_SLOT10_ALT
:
896 case R_XTENSA_SLOT11_ALT
:
897 case R_XTENSA_SLOT12_ALT
:
898 case R_XTENSA_SLOT13_ALT
:
899 case R_XTENSA_SLOT14_ALT
:
900 case R_XTENSA_ASM_EXPAND
:
901 case R_XTENSA_ASM_SIMPLIFY
:
903 case R_XTENSA_DIFF16
:
904 case R_XTENSA_DIFF32
:
905 /* Nothing to do for these. */
908 case R_XTENSA_GNU_VTINHERIT
:
909 /* This relocation describes the C++ object vtable hierarchy.
910 Reconstruct it for later use during GC. */
911 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
915 case R_XTENSA_GNU_VTENTRY
:
916 /* This relocation describes which C++ vtable entries are actually
917 used. Record for later use during GC. */
918 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
932 elf_xtensa_make_sym_local (struct bfd_link_info
*info
,
933 struct elf_link_hash_entry
*h
)
937 if (h
->plt
.refcount
> 0)
939 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
940 if (h
->got
.refcount
< 0)
942 h
->got
.refcount
+= h
->plt
.refcount
;
948 /* Don't need any dynamic relocations at all. */
956 elf_xtensa_hide_symbol (struct bfd_link_info
*info
,
957 struct elf_link_hash_entry
*h
,
958 bfd_boolean force_local
)
960 /* For a shared link, move the plt refcount to the got refcount to leave
961 space for RELATIVE relocs. */
962 elf_xtensa_make_sym_local (info
, h
);
964 _bfd_elf_link_hash_hide_symbol (info
, h
, force_local
);
968 /* Return the section that should be marked against GC for a given
972 elf_xtensa_gc_mark_hook (asection
*sec
,
973 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
974 Elf_Internal_Rela
*rel
,
975 struct elf_link_hash_entry
*h
,
976 Elf_Internal_Sym
*sym
)
980 switch (ELF32_R_TYPE (rel
->r_info
))
982 case R_XTENSA_GNU_VTINHERIT
:
983 case R_XTENSA_GNU_VTENTRY
:
987 switch (h
->root
.type
)
989 case bfd_link_hash_defined
:
990 case bfd_link_hash_defweak
:
991 return h
->root
.u
.def
.section
;
993 case bfd_link_hash_common
:
994 return h
->root
.u
.c
.p
->section
;
1002 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
1008 /* Update the GOT & PLT entry reference counts
1009 for the section being removed. */
1012 elf_xtensa_gc_sweep_hook (bfd
*abfd
,
1013 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1015 const Elf_Internal_Rela
*relocs
)
1017 Elf_Internal_Shdr
*symtab_hdr
;
1018 struct elf_link_hash_entry
**sym_hashes
;
1019 bfd_signed_vma
*local_got_refcounts
;
1020 const Elf_Internal_Rela
*rel
, *relend
;
1022 if ((sec
->flags
& SEC_ALLOC
) == 0)
1025 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1026 sym_hashes
= elf_sym_hashes (abfd
);
1027 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1029 relend
= relocs
+ sec
->reloc_count
;
1030 for (rel
= relocs
; rel
< relend
; rel
++)
1032 unsigned long r_symndx
;
1033 unsigned int r_type
;
1034 struct elf_link_hash_entry
*h
= NULL
;
1036 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1037 if (r_symndx
>= symtab_hdr
->sh_info
)
1039 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1040 while (h
->root
.type
== bfd_link_hash_indirect
1041 || h
->root
.type
== bfd_link_hash_warning
)
1042 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1045 r_type
= ELF32_R_TYPE (rel
->r_info
);
1051 if (h
->got
.refcount
> 0)
1058 if (h
->plt
.refcount
> 0)
1063 if (local_got_refcounts
[r_symndx
] > 0)
1064 local_got_refcounts
[r_symndx
] -= 1;
1076 /* Create all the dynamic sections. */
1079 elf_xtensa_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
1081 flagword flags
, noalloc_flags
;
1084 /* First do all the standard stuff. */
1085 if (! _bfd_elf_create_dynamic_sections (dynobj
, info
))
1088 /* Create any extra PLT sections in case check_relocs has already
1089 been called on all the non-dynamic input files. */
1090 if (!add_extra_plt_sections (dynobj
, plt_reloc_count
))
1093 noalloc_flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1094 | SEC_LINKER_CREATED
| SEC_READONLY
);
1095 flags
= noalloc_flags
| SEC_ALLOC
| SEC_LOAD
;
1097 /* Mark the ".got.plt" section READONLY. */
1098 s
= bfd_get_section_by_name (dynobj
, ".got.plt");
1100 || ! bfd_set_section_flags (dynobj
, s
, flags
))
1103 /* Create ".rela.got". */
1104 s
= bfd_make_section_with_flags (dynobj
, ".rela.got", flags
);
1106 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1109 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1110 s
= bfd_make_section_with_flags (dynobj
, ".got.loc", flags
);
1112 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1115 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1116 s
= bfd_make_section_with_flags (dynobj
, ".xt.lit.plt",
1119 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1127 add_extra_plt_sections (bfd
*dynobj
, int count
)
1131 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1132 ".got.plt" sections. */
1133 for (chunk
= count
/ PLT_ENTRIES_PER_CHUNK
; chunk
> 0; chunk
--)
1139 /* Stop when we find a section has already been created. */
1140 if (elf_xtensa_get_plt_section (dynobj
, chunk
))
1143 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1144 | SEC_LINKER_CREATED
| SEC_READONLY
);
1146 sname
= (char *) bfd_malloc (10);
1147 sprintf (sname
, ".plt.%u", chunk
);
1148 s
= bfd_make_section_with_flags (dynobj
, sname
,
1151 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1154 sname
= (char *) bfd_malloc (14);
1155 sprintf (sname
, ".got.plt.%u", chunk
);
1156 s
= bfd_make_section_with_flags (dynobj
, sname
, flags
);
1158 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1166 /* Adjust a symbol defined by a dynamic object and referenced by a
1167 regular object. The current definition is in some section of the
1168 dynamic object, but we're not including those sections. We have to
1169 change the definition to something the rest of the link can
1173 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1174 struct elf_link_hash_entry
*h
)
1176 /* If this is a weak symbol, and there is a real definition, the
1177 processor independent code will have arranged for us to see the
1178 real definition first, and we can just use the same value. */
1181 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1182 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1183 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1184 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1188 /* This is a reference to a symbol defined by a dynamic object. The
1189 reference must go through the GOT, so there's no need for COPY relocs,
1197 elf_xtensa_fix_refcounts (struct elf_link_hash_entry
*h
, void *arg
)
1199 struct bfd_link_info
*info
= (struct bfd_link_info
*) arg
;
1201 if (h
->root
.type
== bfd_link_hash_warning
)
1202 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1204 if (! xtensa_elf_dynamic_symbol_p (h
, info
))
1205 elf_xtensa_make_sym_local (info
, h
);
1212 elf_xtensa_allocate_plt_size (struct elf_link_hash_entry
*h
, void *arg
)
1214 asection
*srelplt
= (asection
*) arg
;
1216 if (h
->root
.type
== bfd_link_hash_warning
)
1217 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1219 if (h
->plt
.refcount
> 0)
1220 srelplt
->size
+= (h
->plt
.refcount
* sizeof (Elf32_External_Rela
));
1227 elf_xtensa_allocate_got_size (struct elf_link_hash_entry
*h
, void *arg
)
1229 asection
*srelgot
= (asection
*) arg
;
1231 if (h
->root
.type
== bfd_link_hash_warning
)
1232 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1234 if (h
->got
.refcount
> 0)
1235 srelgot
->size
+= (h
->got
.refcount
* sizeof (Elf32_External_Rela
));
1242 elf_xtensa_allocate_local_got_size (struct bfd_link_info
*info
,
1247 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
1249 bfd_signed_vma
*local_got_refcounts
;
1250 bfd_size_type j
, cnt
;
1251 Elf_Internal_Shdr
*symtab_hdr
;
1253 local_got_refcounts
= elf_local_got_refcounts (i
);
1254 if (!local_got_refcounts
)
1257 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
1258 cnt
= symtab_hdr
->sh_info
;
1260 for (j
= 0; j
< cnt
; ++j
)
1262 if (local_got_refcounts
[j
] > 0)
1263 srelgot
->size
+= (local_got_refcounts
[j
]
1264 * sizeof (Elf32_External_Rela
));
1270 /* Set the sizes of the dynamic sections. */
1273 elf_xtensa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1274 struct bfd_link_info
*info
)
1277 asection
*s
, *srelplt
, *splt
, *sgotplt
, *srelgot
, *spltlittbl
, *sgotloc
;
1278 bfd_boolean relplt
, relgot
;
1279 int plt_entries
, plt_chunks
, chunk
;
1285 dynobj
= elf_hash_table (info
)->dynobj
;
1289 if (elf_hash_table (info
)->dynamic_sections_created
)
1291 /* Set the contents of the .interp section to the interpreter. */
1292 if (info
->executable
)
1294 s
= bfd_get_section_by_name (dynobj
, ".interp");
1297 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1298 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1301 /* Allocate room for one word in ".got". */
1302 s
= bfd_get_section_by_name (dynobj
, ".got");
1307 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1308 elf_link_hash_traverse (elf_hash_table (info
),
1309 elf_xtensa_fix_refcounts
,
1312 /* Allocate space in ".rela.got" for literals that reference
1314 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1315 if (srelgot
== NULL
)
1317 elf_link_hash_traverse (elf_hash_table (info
),
1318 elf_xtensa_allocate_got_size
,
1321 /* If we are generating a shared object, we also need space in
1322 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1323 reference local symbols. */
1325 elf_xtensa_allocate_local_got_size (info
, srelgot
);
1327 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1328 srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1329 if (srelplt
== NULL
)
1331 elf_link_hash_traverse (elf_hash_table (info
),
1332 elf_xtensa_allocate_plt_size
,
1335 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1336 each PLT entry, we need the PLT code plus a 4-byte literal.
1337 For each chunk of ".plt", we also need two more 4-byte
1338 literals, two corresponding entries in ".rela.got", and an
1339 8-byte entry in ".xt.lit.plt". */
1340 spltlittbl
= bfd_get_section_by_name (dynobj
, ".xt.lit.plt");
1341 if (spltlittbl
== NULL
)
1344 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
1346 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
1348 /* Iterate over all the PLT chunks, including any extra sections
1349 created earlier because the initial count of PLT relocations
1350 was an overestimate. */
1352 (splt
= elf_xtensa_get_plt_section (dynobj
, chunk
)) != NULL
;
1357 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
1358 if (sgotplt
== NULL
)
1361 if (chunk
< plt_chunks
- 1)
1362 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
1363 else if (chunk
== plt_chunks
- 1)
1364 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
1368 if (chunk_entries
!= 0)
1370 sgotplt
->size
= 4 * (chunk_entries
+ 2);
1371 splt
->size
= PLT_ENTRY_SIZE
* chunk_entries
;
1372 srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
1373 spltlittbl
->size
+= 8;
1382 /* Allocate space in ".got.loc" to match the total size of all the
1384 sgotloc
= bfd_get_section_by_name (dynobj
, ".got.loc");
1385 if (sgotloc
== NULL
)
1387 sgotloc
->size
= spltlittbl
->size
;
1388 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
1390 if (abfd
->flags
& DYNAMIC
)
1392 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1394 if (! elf_discarded_section (s
)
1395 && xtensa_is_littable_section (s
)
1397 sgotloc
->size
+= s
->size
;
1402 /* Allocate memory for dynamic sections. */
1405 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1409 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1412 /* It's OK to base decisions on the section name, because none
1413 of the dynobj section names depend upon the input files. */
1414 name
= bfd_get_section_name (dynobj
, s
);
1416 if (strncmp (name
, ".rela", 5) == 0)
1420 if (strcmp (name
, ".rela.plt") == 0)
1422 else if (strcmp (name
, ".rela.got") == 0)
1425 /* We use the reloc_count field as a counter if we need
1426 to copy relocs into the output file. */
1430 else if (strncmp (name
, ".plt.", 5) != 0
1431 && strncmp (name
, ".got.plt.", 9) != 0
1432 && strcmp (name
, ".got") != 0
1433 && strcmp (name
, ".plt") != 0
1434 && strcmp (name
, ".got.plt") != 0
1435 && strcmp (name
, ".xt.lit.plt") != 0
1436 && strcmp (name
, ".got.loc") != 0)
1438 /* It's not one of our sections, so don't allocate space. */
1444 /* If we don't need this section, strip it from the output
1445 file. We must create the ".plt*" and ".got.plt*"
1446 sections in create_dynamic_sections and/or check_relocs
1447 based on a conservative estimate of the PLT relocation
1448 count, because the sections must be created before the
1449 linker maps input sections to output sections. The
1450 linker does that before size_dynamic_sections, where we
1451 compute the exact size of the PLT, so there may be more
1452 of these sections than are actually needed. */
1453 s
->flags
|= SEC_EXCLUDE
;
1455 else if ((s
->flags
& SEC_HAS_CONTENTS
) != 0)
1457 /* Allocate memory for the section contents. */
1458 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1459 if (s
->contents
== NULL
)
1464 if (elf_hash_table (info
)->dynamic_sections_created
)
1466 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1467 known until finish_dynamic_sections, but we need to get the relocs
1468 in place before they are sorted. */
1469 if (srelgot
== NULL
)
1471 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
1473 Elf_Internal_Rela irela
;
1477 irela
.r_info
= ELF32_R_INFO (0, R_XTENSA_RTLD
);
1480 loc
= (srelgot
->contents
1481 + srelgot
->reloc_count
* sizeof (Elf32_External_Rela
));
1482 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
1483 bfd_elf32_swap_reloca_out (output_bfd
, &irela
,
1484 loc
+ sizeof (Elf32_External_Rela
));
1485 srelgot
->reloc_count
+= 2;
1488 /* Add some entries to the .dynamic section. We fill in the
1489 values later, in elf_xtensa_finish_dynamic_sections, but we
1490 must add the entries now so that we get the correct size for
1491 the .dynamic section. The DT_DEBUG entry is filled in by the
1492 dynamic linker and used by the debugger. */
1493 #define add_dynamic_entry(TAG, VAL) \
1494 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1498 if (!add_dynamic_entry (DT_DEBUG
, 0))
1504 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1505 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1506 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1507 || !add_dynamic_entry (DT_JMPREL
, 0))
1513 if (!add_dynamic_entry (DT_RELA
, 0)
1514 || !add_dynamic_entry (DT_RELASZ
, 0)
1515 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
1519 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF
, 0)
1520 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ
, 0))
1523 #undef add_dynamic_entry
1529 /* Remove any PT_LOAD segments with no allocated sections. Prior to
1530 binutils 2.13, this function used to remove the non-SEC_ALLOC
1531 sections from PT_LOAD segments, but that task has now been moved
1532 into elf.c. We still need this function to remove any empty
1533 segments that result, but there's nothing Xtensa-specific about
1534 this and it probably ought to be moved into elf.c as well. */
1537 elf_xtensa_modify_segment_map (bfd
*abfd
,
1538 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
1540 struct elf_segment_map
**m_p
;
1542 m_p
= &elf_tdata (abfd
)->segment_map
;
1545 if ((*m_p
)->p_type
== PT_LOAD
&& (*m_p
)->count
== 0)
1546 *m_p
= (*m_p
)->next
;
1548 m_p
= &(*m_p
)->next
;
1554 /* Perform the specified relocation. The instruction at (contents + address)
1555 is modified to set one operand to represent the value in "relocation". The
1556 operand position is determined by the relocation type recorded in the
1559 #define CALL_SEGMENT_BITS (30)
1560 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1562 static bfd_reloc_status_type
1563 elf_xtensa_do_reloc (reloc_howto_type
*howto
,
1565 asection
*input_section
,
1569 bfd_boolean is_weak_undef
,
1570 char **error_message
)
1573 xtensa_opcode opcode
;
1574 xtensa_isa isa
= xtensa_default_isa
;
1575 static xtensa_insnbuf ibuff
= NULL
;
1576 static xtensa_insnbuf sbuff
= NULL
;
1577 bfd_vma self_address
= 0;
1578 bfd_size_type input_size
;
1584 ibuff
= xtensa_insnbuf_alloc (isa
);
1585 sbuff
= xtensa_insnbuf_alloc (isa
);
1588 input_size
= bfd_get_section_limit (abfd
, input_section
);
1590 switch (howto
->type
)
1593 case R_XTENSA_DIFF8
:
1594 case R_XTENSA_DIFF16
:
1595 case R_XTENSA_DIFF32
:
1596 return bfd_reloc_ok
;
1598 case R_XTENSA_ASM_EXPAND
:
1601 /* Check for windowed CALL across a 1GB boundary. */
1602 xtensa_opcode opcode
=
1603 get_expanded_call_opcode (contents
+ address
,
1604 input_size
- address
, 0);
1605 if (is_windowed_call_opcode (opcode
))
1607 self_address
= (input_section
->output_section
->vma
1608 + input_section
->output_offset
1610 if ((self_address
>> CALL_SEGMENT_BITS
)
1611 != (relocation
>> CALL_SEGMENT_BITS
))
1613 *error_message
= "windowed longcall crosses 1GB boundary; "
1615 return bfd_reloc_dangerous
;
1619 return bfd_reloc_ok
;
1621 case R_XTENSA_ASM_SIMPLIFY
:
1623 /* Convert the L32R/CALLX to CALL. */
1624 bfd_reloc_status_type retval
=
1625 elf_xtensa_do_asm_simplify (contents
, address
, input_size
,
1627 if (retval
!= bfd_reloc_ok
)
1628 return bfd_reloc_dangerous
;
1630 /* The CALL needs to be relocated. Continue below for that part. */
1632 howto
= &elf_howto_table
[(unsigned) R_XTENSA_SLOT0_OP
];
1640 x
= bfd_get_32 (abfd
, contents
+ address
);
1642 bfd_put_32 (abfd
, x
, contents
+ address
);
1644 return bfd_reloc_ok
;
1647 /* Only instruction slot-specific relocations handled below.... */
1648 slot
= get_relocation_slot (howto
->type
);
1649 if (slot
== XTENSA_UNDEFINED
)
1651 *error_message
= "unexpected relocation";
1652 return bfd_reloc_dangerous
;
1655 /* Read the instruction into a buffer and decode the opcode. */
1656 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ address
,
1657 input_size
- address
);
1658 fmt
= xtensa_format_decode (isa
, ibuff
);
1659 if (fmt
== XTENSA_UNDEFINED
)
1661 *error_message
= "cannot decode instruction format";
1662 return bfd_reloc_dangerous
;
1665 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1667 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
1668 if (opcode
== XTENSA_UNDEFINED
)
1670 *error_message
= "cannot decode instruction opcode";
1671 return bfd_reloc_dangerous
;
1674 /* Check for opcode-specific "alternate" relocations. */
1675 if (is_alt_relocation (howto
->type
))
1677 if (opcode
== get_l32r_opcode ())
1679 /* Handle the special-case of non-PC-relative L32R instructions. */
1680 bfd
*output_bfd
= input_section
->output_section
->owner
;
1681 asection
*lit4_sec
= bfd_get_section_by_name (output_bfd
, ".lit4");
1684 *error_message
= "relocation references missing .lit4 section";
1685 return bfd_reloc_dangerous
;
1687 self_address
= ((lit4_sec
->vma
& ~0xfff)
1688 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1689 newval
= relocation
;
1692 else if (opcode
== get_const16_opcode ())
1694 /* ALT used for high 16 bits. */
1695 newval
= relocation
>> 16;
1700 /* No other "alternate" relocations currently defined. */
1701 *error_message
= "unexpected relocation";
1702 return bfd_reloc_dangerous
;
1705 else /* Not an "alternate" relocation.... */
1707 if (opcode
== get_const16_opcode ())
1709 newval
= relocation
& 0xffff;
1714 /* ...normal PC-relative relocation.... */
1716 /* Determine which operand is being relocated. */
1717 opnd
= get_relocation_opnd (opcode
, howto
->type
);
1718 if (opnd
== XTENSA_UNDEFINED
)
1720 *error_message
= "unexpected relocation";
1721 return bfd_reloc_dangerous
;
1724 if (!howto
->pc_relative
)
1726 *error_message
= "expected PC-relative relocation";
1727 return bfd_reloc_dangerous
;
1730 /* Calculate the PC address for this instruction. */
1731 self_address
= (input_section
->output_section
->vma
1732 + input_section
->output_offset
1735 newval
= relocation
;
1739 /* Apply the relocation. */
1740 if (xtensa_operand_do_reloc (isa
, opcode
, opnd
, &newval
, self_address
)
1741 || xtensa_operand_encode (isa
, opcode
, opnd
, &newval
)
1742 || xtensa_operand_set_field (isa
, opcode
, opnd
, fmt
, slot
,
1745 const char *opname
= xtensa_opcode_name (isa
, opcode
);
1748 msg
= "cannot encode";
1749 if (is_direct_call_opcode (opcode
))
1751 if ((relocation
& 0x3) != 0)
1752 msg
= "misaligned call target";
1754 msg
= "call target out of range";
1756 else if (opcode
== get_l32r_opcode ())
1758 if ((relocation
& 0x3) != 0)
1759 msg
= "misaligned literal target";
1760 else if (is_alt_relocation (howto
->type
))
1761 msg
= "literal target out of range (too many literals)";
1762 else if (self_address
> relocation
)
1763 msg
= "literal target out of range (try using text-section-literals)";
1765 msg
= "literal placed after use";
1768 *error_message
= vsprint_msg (opname
, ": %s", strlen (msg
) + 2, msg
);
1769 return bfd_reloc_dangerous
;
1772 /* Check for calls across 1GB boundaries. */
1773 if (is_direct_call_opcode (opcode
)
1774 && is_windowed_call_opcode (opcode
))
1776 if ((self_address
>> CALL_SEGMENT_BITS
)
1777 != (relocation
>> CALL_SEGMENT_BITS
))
1780 "windowed call crosses 1GB boundary; return may fail";
1781 return bfd_reloc_dangerous
;
1785 /* Write the modified instruction back out of the buffer. */
1786 xtensa_format_set_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1787 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ address
,
1788 input_size
- address
);
1789 return bfd_reloc_ok
;
1794 vsprint_msg (const char *origmsg
, const char *fmt
, int arglen
, ...)
1796 /* To reduce the size of the memory leak,
1797 we only use a single message buffer. */
1798 static bfd_size_type alloc_size
= 0;
1799 static char *message
= NULL
;
1800 bfd_size_type orig_len
, len
= 0;
1801 bfd_boolean is_append
;
1803 VA_OPEN (ap
, arglen
);
1804 VA_FIXEDARG (ap
, const char *, origmsg
);
1806 is_append
= (origmsg
== message
);
1808 orig_len
= strlen (origmsg
);
1809 len
= orig_len
+ strlen (fmt
) + arglen
+ 20;
1810 if (len
> alloc_size
)
1812 message
= (char *) bfd_realloc (message
, len
);
1816 memcpy (message
, origmsg
, orig_len
);
1817 vsprintf (message
+ orig_len
, fmt
, ap
);
1823 /* This function is registered as the "special_function" in the
1824 Xtensa howto for handling simplify operations.
1825 bfd_perform_relocation / bfd_install_relocation use it to
1826 perform (install) the specified relocation. Since this replaces the code
1827 in bfd_perform_relocation, it is basically an Xtensa-specific,
1828 stripped-down version of bfd_perform_relocation. */
1830 static bfd_reloc_status_type
1831 bfd_elf_xtensa_reloc (bfd
*abfd
,
1832 arelent
*reloc_entry
,
1835 asection
*input_section
,
1837 char **error_message
)
1840 bfd_reloc_status_type flag
;
1841 bfd_size_type octets
= reloc_entry
->address
* bfd_octets_per_byte (abfd
);
1842 bfd_vma output_base
= 0;
1843 reloc_howto_type
*howto
= reloc_entry
->howto
;
1844 asection
*reloc_target_output_section
;
1845 bfd_boolean is_weak_undef
;
1847 if (!xtensa_default_isa
)
1848 xtensa_default_isa
= xtensa_isa_init (0, 0);
1850 /* ELF relocs are against symbols. If we are producing relocatable
1851 output, and the reloc is against an external symbol, the resulting
1852 reloc will also be against the same symbol. In such a case, we
1853 don't want to change anything about the way the reloc is handled,
1854 since it will all be done at final link time. This test is similar
1855 to what bfd_elf_generic_reloc does except that it lets relocs with
1856 howto->partial_inplace go through even if the addend is non-zero.
1857 (The real problem is that partial_inplace is set for XTENSA_32
1858 relocs to begin with, but that's a long story and there's little we
1859 can do about it now....) */
1861 if (output_bfd
&& (symbol
->flags
& BSF_SECTION_SYM
) == 0)
1863 reloc_entry
->address
+= input_section
->output_offset
;
1864 return bfd_reloc_ok
;
1867 /* Is the address of the relocation really within the section? */
1868 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1869 return bfd_reloc_outofrange
;
1871 /* Work out which section the relocation is targeted at and the
1872 initial relocation command value. */
1874 /* Get symbol value. (Common symbols are special.) */
1875 if (bfd_is_com_section (symbol
->section
))
1878 relocation
= symbol
->value
;
1880 reloc_target_output_section
= symbol
->section
->output_section
;
1882 /* Convert input-section-relative symbol value to absolute. */
1883 if ((output_bfd
&& !howto
->partial_inplace
)
1884 || reloc_target_output_section
== NULL
)
1887 output_base
= reloc_target_output_section
->vma
;
1889 relocation
+= output_base
+ symbol
->section
->output_offset
;
1891 /* Add in supplied addend. */
1892 relocation
+= reloc_entry
->addend
;
1894 /* Here the variable relocation holds the final address of the
1895 symbol we are relocating against, plus any addend. */
1898 if (!howto
->partial_inplace
)
1900 /* This is a partial relocation, and we want to apply the relocation
1901 to the reloc entry rather than the raw data. Everything except
1902 relocations against section symbols has already been handled
1905 BFD_ASSERT (symbol
->flags
& BSF_SECTION_SYM
);
1906 reloc_entry
->addend
= relocation
;
1907 reloc_entry
->address
+= input_section
->output_offset
;
1908 return bfd_reloc_ok
;
1912 reloc_entry
->address
+= input_section
->output_offset
;
1913 reloc_entry
->addend
= 0;
1917 is_weak_undef
= (bfd_is_und_section (symbol
->section
)
1918 && (symbol
->flags
& BSF_WEAK
) != 0);
1919 flag
= elf_xtensa_do_reloc (howto
, abfd
, input_section
, relocation
,
1920 (bfd_byte
*) data
, (bfd_vma
) octets
,
1921 is_weak_undef
, error_message
);
1923 if (flag
== bfd_reloc_dangerous
)
1925 /* Add the symbol name to the error message. */
1926 if (! *error_message
)
1927 *error_message
= "";
1928 *error_message
= vsprint_msg (*error_message
, ": (%s + 0x%lx)",
1929 strlen (symbol
->name
) + 17,
1931 (unsigned long) reloc_entry
->addend
);
1938 /* Set up an entry in the procedure linkage table. */
1941 elf_xtensa_create_plt_entry (bfd
*dynobj
,
1943 unsigned reloc_index
)
1945 asection
*splt
, *sgotplt
;
1946 bfd_vma plt_base
, got_base
;
1947 bfd_vma code_offset
, lit_offset
;
1950 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
1951 splt
= elf_xtensa_get_plt_section (dynobj
, chunk
);
1952 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
1953 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
1955 plt_base
= splt
->output_section
->vma
+ splt
->output_offset
;
1956 got_base
= sgotplt
->output_section
->vma
+ sgotplt
->output_offset
;
1958 lit_offset
= 8 + (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * 4;
1959 code_offset
= (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * PLT_ENTRY_SIZE
;
1961 /* Fill in the literal entry. This is the offset of the dynamic
1962 relocation entry. */
1963 bfd_put_32 (output_bfd
, reloc_index
* sizeof (Elf32_External_Rela
),
1964 sgotplt
->contents
+ lit_offset
);
1966 /* Fill in the entry in the procedure linkage table. */
1967 memcpy (splt
->contents
+ code_offset
,
1968 (bfd_big_endian (output_bfd
)
1969 ? elf_xtensa_be_plt_entry
1970 : elf_xtensa_le_plt_entry
),
1972 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 0,
1973 plt_base
+ code_offset
+ 3),
1974 splt
->contents
+ code_offset
+ 4);
1975 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 4,
1976 plt_base
+ code_offset
+ 6),
1977 splt
->contents
+ code_offset
+ 7);
1978 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ lit_offset
,
1979 plt_base
+ code_offset
+ 9),
1980 splt
->contents
+ code_offset
+ 10);
1982 return plt_base
+ code_offset
;
1986 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1987 both relocatable and final links. */
1990 elf_xtensa_relocate_section (bfd
*output_bfd
,
1991 struct bfd_link_info
*info
,
1993 asection
*input_section
,
1995 Elf_Internal_Rela
*relocs
,
1996 Elf_Internal_Sym
*local_syms
,
1997 asection
**local_sections
)
1999 Elf_Internal_Shdr
*symtab_hdr
;
2000 Elf_Internal_Rela
*rel
;
2001 Elf_Internal_Rela
*relend
;
2002 struct elf_link_hash_entry
**sym_hashes
;
2003 asection
*srelgot
, *srelplt
;
2005 property_table_entry
*lit_table
= 0;
2007 char *error_message
= NULL
;
2008 bfd_size_type input_size
;
2010 if (!xtensa_default_isa
)
2011 xtensa_default_isa
= xtensa_isa_init (0, 0);
2013 dynobj
= elf_hash_table (info
)->dynobj
;
2014 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2015 sym_hashes
= elf_sym_hashes (input_bfd
);
2021 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");;
2022 srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2025 if (elf_hash_table (info
)->dynamic_sections_created
)
2027 ltblsize
= xtensa_read_table_entries (input_bfd
, input_section
,
2028 &lit_table
, XTENSA_LIT_SEC_NAME
,
2034 input_size
= bfd_get_section_limit (input_bfd
, input_section
);
2037 relend
= relocs
+ input_section
->reloc_count
;
2038 for (; rel
< relend
; rel
++)
2041 reloc_howto_type
*howto
;
2042 unsigned long r_symndx
;
2043 struct elf_link_hash_entry
*h
;
2044 Elf_Internal_Sym
*sym
;
2047 bfd_reloc_status_type r
;
2048 bfd_boolean is_weak_undef
;
2049 bfd_boolean unresolved_reloc
;
2052 r_type
= ELF32_R_TYPE (rel
->r_info
);
2053 if (r_type
== (int) R_XTENSA_GNU_VTINHERIT
2054 || r_type
== (int) R_XTENSA_GNU_VTENTRY
)
2057 if (r_type
< 0 || r_type
>= (int) R_XTENSA_max
)
2059 bfd_set_error (bfd_error_bad_value
);
2062 howto
= &elf_howto_table
[r_type
];
2064 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2066 if (info
->relocatable
)
2068 /* This is a relocatable link.
2069 1) If the reloc is against a section symbol, adjust
2070 according to the output section.
2071 2) If there is a new target for this relocation,
2072 the new target will be in the same output section.
2073 We adjust the relocation by the output section
2076 if (relaxing_section
)
2078 /* Check if this references a section in another input file. */
2079 if (!do_fix_for_relocatable_link (rel
, input_bfd
, input_section
,
2082 r_type
= ELF32_R_TYPE (rel
->r_info
);
2085 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
2087 char *error_message
= NULL
;
2088 /* Convert ASM_SIMPLIFY into the simpler relocation
2089 so that they never escape a relaxing link. */
2090 r
= contract_asm_expansion (contents
, input_size
, rel
,
2092 if (r
!= bfd_reloc_ok
)
2094 if (!((*info
->callbacks
->reloc_dangerous
)
2095 (info
, error_message
, input_bfd
, input_section
,
2099 r_type
= ELF32_R_TYPE (rel
->r_info
);
2102 /* This is a relocatable link, so we don't have to change
2103 anything unless the reloc is against a section symbol,
2104 in which case we have to adjust according to where the
2105 section symbol winds up in the output section. */
2106 if (r_symndx
< symtab_hdr
->sh_info
)
2108 sym
= local_syms
+ r_symndx
;
2109 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2111 sec
= local_sections
[r_symndx
];
2112 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
2116 /* If there is an addend with a partial_inplace howto,
2117 then move the addend to the contents. This is a hack
2118 to work around problems with DWARF in relocatable links
2119 with some previous version of BFD. Now we can't easily get
2120 rid of the hack without breaking backward compatibility.... */
2123 howto
= &elf_howto_table
[r_type
];
2124 if (howto
->partial_inplace
)
2126 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2127 rel
->r_addend
, contents
,
2128 rel
->r_offset
, FALSE
,
2130 if (r
!= bfd_reloc_ok
)
2132 if (!((*info
->callbacks
->reloc_dangerous
)
2133 (info
, error_message
, input_bfd
, input_section
,
2141 /* Done with work for relocatable link; continue with next reloc. */
2145 /* This is a final link. */
2150 is_weak_undef
= FALSE
;
2151 unresolved_reloc
= FALSE
;
2154 if (howto
->partial_inplace
)
2156 /* Because R_XTENSA_32 was made partial_inplace to fix some
2157 problems with DWARF info in partial links, there may be
2158 an addend stored in the contents. Take it out of there
2159 and move it back into the addend field of the reloc. */
2160 rel
->r_addend
+= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2161 bfd_put_32 (input_bfd
, 0, contents
+ rel
->r_offset
);
2164 if (r_symndx
< symtab_hdr
->sh_info
)
2166 sym
= local_syms
+ r_symndx
;
2167 sec
= local_sections
[r_symndx
];
2168 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2172 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2173 r_symndx
, symtab_hdr
, sym_hashes
,
2175 unresolved_reloc
, warned
);
2178 && !unresolved_reloc
2179 && h
->root
.type
== bfd_link_hash_undefweak
)
2180 is_weak_undef
= TRUE
;
2183 if (relaxing_section
)
2185 /* Check if this references a section in another input file. */
2186 do_fix_for_final_link (rel
, input_bfd
, input_section
, contents
,
2189 /* Update some already cached values. */
2190 r_type
= ELF32_R_TYPE (rel
->r_info
);
2191 howto
= &elf_howto_table
[r_type
];
2194 /* Sanity check the address. */
2195 if (rel
->r_offset
>= input_size
2196 && ELF32_R_TYPE (rel
->r_info
) != R_XTENSA_NONE
)
2198 (*_bfd_error_handler
)
2199 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2200 input_bfd
, input_section
, rel
->r_offset
, input_size
);
2201 bfd_set_error (bfd_error_bad_value
);
2205 /* Generate dynamic relocations. */
2206 if (elf_hash_table (info
)->dynamic_sections_created
)
2208 bfd_boolean dynamic_symbol
= xtensa_elf_dynamic_symbol_p (h
, info
);
2210 if (dynamic_symbol
&& is_operand_relocation (r_type
))
2212 /* This is an error. The symbol's real value won't be known
2213 until runtime and it's likely to be out of range anyway. */
2214 const char *name
= h
->root
.root
.string
;
2215 error_message
= vsprint_msg ("invalid relocation for dynamic "
2217 strlen (name
) + 2, name
);
2218 if (!((*info
->callbacks
->reloc_dangerous
)
2219 (info
, error_message
, input_bfd
, input_section
,
2223 else if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
2224 && (input_section
->flags
& SEC_ALLOC
) != 0
2225 && (dynamic_symbol
|| info
->shared
))
2227 Elf_Internal_Rela outrel
;
2231 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
2236 BFD_ASSERT (srel
!= NULL
);
2239 _bfd_elf_section_offset (output_bfd
, info
,
2240 input_section
, rel
->r_offset
);
2242 if ((outrel
.r_offset
| 1) == (bfd_vma
) -1)
2243 memset (&outrel
, 0, sizeof outrel
);
2246 outrel
.r_offset
+= (input_section
->output_section
->vma
2247 + input_section
->output_offset
);
2249 /* Complain if the relocation is in a read-only section
2250 and not in a literal pool. */
2251 if ((input_section
->flags
& SEC_READONLY
) != 0
2252 && !elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2256 _("dynamic relocation in read-only section");
2257 if (!((*info
->callbacks
->reloc_dangerous
)
2258 (info
, error_message
, input_bfd
, input_section
,
2265 outrel
.r_addend
= rel
->r_addend
;
2268 if (r_type
== R_XTENSA_32
)
2271 ELF32_R_INFO (h
->dynindx
, R_XTENSA_GLOB_DAT
);
2274 else /* r_type == R_XTENSA_PLT */
2277 ELF32_R_INFO (h
->dynindx
, R_XTENSA_JMP_SLOT
);
2279 /* Create the PLT entry and set the initial
2280 contents of the literal entry to the address of
2283 elf_xtensa_create_plt_entry (dynobj
, output_bfd
,
2286 unresolved_reloc
= FALSE
;
2290 /* Generate a RELATIVE relocation. */
2291 outrel
.r_info
= ELF32_R_INFO (0, R_XTENSA_RELATIVE
);
2292 outrel
.r_addend
= 0;
2296 loc
= (srel
->contents
2297 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2298 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2299 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2304 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2305 because such sections are not SEC_ALLOC and thus ld.so will
2306 not process them. */
2307 if (unresolved_reloc
2308 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2310 (*_bfd_error_handler
)
2311 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2314 (long) rel
->r_offset
,
2316 h
->root
.root
.string
);
2318 /* There's no point in calling bfd_perform_relocation here.
2319 Just go directly to our "special function". */
2320 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2321 relocation
+ rel
->r_addend
,
2322 contents
, rel
->r_offset
, is_weak_undef
,
2325 if (r
!= bfd_reloc_ok
&& !warned
)
2329 BFD_ASSERT (r
== bfd_reloc_dangerous
|| r
== bfd_reloc_other
);
2330 BFD_ASSERT (error_message
!= NULL
);
2333 name
= h
->root
.root
.string
;
2336 name
= bfd_elf_string_from_elf_section
2337 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
);
2338 if (name
&& *name
== '\0')
2339 name
= bfd_section_name (input_bfd
, sec
);
2343 if (rel
->r_addend
== 0)
2344 error_message
= vsprint_msg (error_message
, ": %s",
2345 strlen (name
) + 2, name
);
2347 error_message
= vsprint_msg (error_message
, ": (%s+0x%x)",
2349 name
, (int)rel
->r_addend
);
2352 if (!((*info
->callbacks
->reloc_dangerous
)
2353 (info
, error_message
, input_bfd
, input_section
,
2362 input_section
->reloc_done
= TRUE
;
2368 /* Finish up dynamic symbol handling. There's not much to do here since
2369 the PLT and GOT entries are all set up by relocate_section. */
2372 elf_xtensa_finish_dynamic_symbol (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2373 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2374 struct elf_link_hash_entry
*h
,
2375 Elf_Internal_Sym
*sym
)
2380 /* Mark the symbol as undefined, rather than as defined in
2381 the .plt section. Leave the value alone. */
2382 sym
->st_shndx
= SHN_UNDEF
;
2385 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2386 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2387 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
2388 sym
->st_shndx
= SHN_ABS
;
2394 /* Combine adjacent literal table entries in the output. Adjacent
2395 entries within each input section may have been removed during
2396 relaxation, but we repeat the process here, even though it's too late
2397 to shrink the output section, because it's important to minimize the
2398 number of literal table entries to reduce the start-up work for the
2399 runtime linker. Returns the number of remaining table entries or -1
2403 elf_xtensa_combine_prop_entries (bfd
*output_bfd
,
2408 property_table_entry
*table
;
2409 bfd_size_type section_size
, sgotloc_size
;
2413 section_size
= sxtlit
->size
;
2414 BFD_ASSERT (section_size
% 8 == 0);
2415 num
= section_size
/ 8;
2417 sgotloc_size
= sgotloc
->size
;
2418 if (sgotloc_size
!= section_size
)
2420 (*_bfd_error_handler
)
2421 (_("internal inconsistency in size of .got.loc section"));
2425 table
= bfd_malloc (num
* sizeof (property_table_entry
));
2429 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2430 propagates to the output section, where it doesn't really apply and
2431 where it breaks the following call to bfd_malloc_and_get_section. */
2432 sxtlit
->flags
&= ~SEC_IN_MEMORY
;
2434 if (!bfd_malloc_and_get_section (output_bfd
, sxtlit
, &contents
))
2442 /* There should never be any relocations left at this point, so this
2443 is quite a bit easier than what is done during relaxation. */
2445 /* Copy the raw contents into a property table array and sort it. */
2447 for (n
= 0; n
< num
; n
++)
2449 table
[n
].address
= bfd_get_32 (output_bfd
, &contents
[offset
]);
2450 table
[n
].size
= bfd_get_32 (output_bfd
, &contents
[offset
+ 4]);
2453 qsort (table
, num
, sizeof (property_table_entry
), property_table_compare
);
2455 for (n
= 0; n
< num
; n
++)
2457 bfd_boolean remove
= FALSE
;
2459 if (table
[n
].size
== 0)
2462 (table
[n
-1].address
+ table
[n
-1].size
== table
[n
].address
))
2464 table
[n
-1].size
+= table
[n
].size
;
2470 for (m
= n
; m
< num
- 1; m
++)
2472 table
[m
].address
= table
[m
+1].address
;
2473 table
[m
].size
= table
[m
+1].size
;
2481 /* Copy the data back to the raw contents. */
2483 for (n
= 0; n
< num
; n
++)
2485 bfd_put_32 (output_bfd
, table
[n
].address
, &contents
[offset
]);
2486 bfd_put_32 (output_bfd
, table
[n
].size
, &contents
[offset
+ 4]);
2490 /* Clear the removed bytes. */
2491 if ((bfd_size_type
) (num
* 8) < section_size
)
2492 memset (&contents
[num
* 8], 0, section_size
- num
* 8);
2494 if (! bfd_set_section_contents (output_bfd
, sxtlit
, contents
, 0,
2498 /* Copy the contents to ".got.loc". */
2499 memcpy (sgotloc
->contents
, contents
, section_size
);
2507 /* Finish up the dynamic sections. */
2510 elf_xtensa_finish_dynamic_sections (bfd
*output_bfd
,
2511 struct bfd_link_info
*info
)
2514 asection
*sdyn
, *srelplt
, *sgot
, *sxtlit
, *sgotloc
;
2515 Elf32_External_Dyn
*dyncon
, *dynconend
;
2516 int num_xtlit_entries
;
2518 if (! elf_hash_table (info
)->dynamic_sections_created
)
2521 dynobj
= elf_hash_table (info
)->dynobj
;
2522 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2523 BFD_ASSERT (sdyn
!= NULL
);
2525 /* Set the first entry in the global offset table to the address of
2526 the dynamic section. */
2527 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2530 BFD_ASSERT (sgot
->size
== 4);
2532 bfd_put_32 (output_bfd
, 0, sgot
->contents
);
2534 bfd_put_32 (output_bfd
,
2535 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2539 srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2540 if (srelplt
&& srelplt
->size
!= 0)
2542 asection
*sgotplt
, *srelgot
, *spltlittbl
;
2543 int chunk
, plt_chunks
, plt_entries
;
2544 Elf_Internal_Rela irela
;
2546 unsigned rtld_reloc
;
2548 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");;
2549 BFD_ASSERT (srelgot
!= NULL
);
2551 spltlittbl
= bfd_get_section_by_name (dynobj
, ".xt.lit.plt");
2552 BFD_ASSERT (spltlittbl
!= NULL
);
2554 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2555 of them follow immediately after.... */
2556 for (rtld_reloc
= 0; rtld_reloc
< srelgot
->reloc_count
; rtld_reloc
++)
2558 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
2559 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2560 if (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
)
2563 BFD_ASSERT (rtld_reloc
< srelgot
->reloc_count
);
2565 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
2567 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
2569 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
2571 int chunk_entries
= 0;
2573 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
2574 BFD_ASSERT (sgotplt
!= NULL
);
2576 /* Emit special RTLD relocations for the first two entries in
2577 each chunk of the .got.plt section. */
2579 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
2580 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2581 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
2582 irela
.r_offset
= (sgotplt
->output_section
->vma
2583 + sgotplt
->output_offset
);
2584 irela
.r_addend
= 1; /* tell rtld to set value to resolver function */
2585 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
2587 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
2589 /* Next literal immediately follows the first. */
2590 loc
+= sizeof (Elf32_External_Rela
);
2591 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
2592 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
2593 irela
.r_offset
= (sgotplt
->output_section
->vma
2594 + sgotplt
->output_offset
+ 4);
2595 /* Tell rtld to set value to object's link map. */
2597 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
2599 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
2601 /* Fill in the literal table. */
2602 if (chunk
< plt_chunks
- 1)
2603 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
2605 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
2607 BFD_ASSERT ((unsigned) (chunk
+ 1) * 8 <= spltlittbl
->size
);
2608 bfd_put_32 (output_bfd
,
2609 sgotplt
->output_section
->vma
+ sgotplt
->output_offset
,
2610 spltlittbl
->contents
+ (chunk
* 8) + 0);
2611 bfd_put_32 (output_bfd
,
2612 8 + (chunk_entries
* 4),
2613 spltlittbl
->contents
+ (chunk
* 8) + 4);
2616 /* All the dynamic relocations have been emitted at this point.
2617 Make sure the relocation sections are the correct size. */
2618 if (srelgot
->size
!= (sizeof (Elf32_External_Rela
)
2619 * srelgot
->reloc_count
)
2620 || srelplt
->size
!= (sizeof (Elf32_External_Rela
)
2621 * srelplt
->reloc_count
))
2624 /* The .xt.lit.plt section has just been modified. This must
2625 happen before the code below which combines adjacent literal
2626 table entries, and the .xt.lit.plt contents have to be forced to
2628 if (! bfd_set_section_contents (output_bfd
,
2629 spltlittbl
->output_section
,
2630 spltlittbl
->contents
,
2631 spltlittbl
->output_offset
,
2634 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2635 spltlittbl
->flags
&= ~SEC_HAS_CONTENTS
;
2638 /* Combine adjacent literal table entries. */
2639 BFD_ASSERT (! info
->relocatable
);
2640 sxtlit
= bfd_get_section_by_name (output_bfd
, ".xt.lit");
2641 sgotloc
= bfd_get_section_by_name (dynobj
, ".got.loc");
2642 BFD_ASSERT (sxtlit
&& sgotloc
);
2644 elf_xtensa_combine_prop_entries (output_bfd
, sxtlit
, sgotloc
);
2645 if (num_xtlit_entries
< 0)
2648 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
2649 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2650 for (; dyncon
< dynconend
; dyncon
++)
2652 Elf_Internal_Dyn dyn
;
2656 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2663 case DT_XTENSA_GOT_LOC_SZ
:
2664 dyn
.d_un
.d_val
= num_xtlit_entries
;
2667 case DT_XTENSA_GOT_LOC_OFF
:
2676 s
= bfd_get_section_by_name (output_bfd
, name
);
2678 dyn
.d_un
.d_ptr
= s
->vma
;
2682 s
= bfd_get_section_by_name (output_bfd
, ".rela.plt");
2684 dyn
.d_un
.d_val
= s
->size
;
2688 /* Adjust RELASZ to not include JMPREL. This matches what
2689 glibc expects and what is done for several other ELF
2690 targets (e.g., i386, alpha), but the "correct" behavior
2691 seems to be unresolved. Since the linker script arranges
2692 for .rela.plt to follow all other relocation sections, we
2693 don't have to worry about changing the DT_RELA entry. */
2694 s
= bfd_get_section_by_name (output_bfd
, ".rela.plt");
2696 dyn
.d_un
.d_val
-= s
->size
;
2700 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2707 /* Functions for dealing with the e_flags field. */
2709 /* Merge backend specific data from an object file to the output
2710 object file when linking. */
2713 elf_xtensa_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
2715 unsigned out_mach
, in_mach
;
2716 flagword out_flag
, in_flag
;
2718 /* Check if we have the same endianess. */
2719 if (!_bfd_generic_verify_endian_match (ibfd
, obfd
))
2722 /* Don't even pretend to support mixed-format linking. */
2723 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2724 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2727 out_flag
= elf_elfheader (obfd
)->e_flags
;
2728 in_flag
= elf_elfheader (ibfd
)->e_flags
;
2730 out_mach
= out_flag
& EF_XTENSA_MACH
;
2731 in_mach
= in_flag
& EF_XTENSA_MACH
;
2732 if (out_mach
!= in_mach
)
2734 (*_bfd_error_handler
)
2735 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2736 ibfd
, out_mach
, in_mach
);
2737 bfd_set_error (bfd_error_wrong_format
);
2741 if (! elf_flags_init (obfd
))
2743 elf_flags_init (obfd
) = TRUE
;
2744 elf_elfheader (obfd
)->e_flags
= in_flag
;
2746 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2747 && bfd_get_arch_info (obfd
)->the_default
)
2748 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
2749 bfd_get_mach (ibfd
));
2754 if ((out_flag
& EF_XTENSA_XT_INSN
) != (in_flag
& EF_XTENSA_XT_INSN
))
2755 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_INSN
);
2757 if ((out_flag
& EF_XTENSA_XT_LIT
) != (in_flag
& EF_XTENSA_XT_LIT
))
2758 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_LIT
);
2765 elf_xtensa_set_private_flags (bfd
*abfd
, flagword flags
)
2767 BFD_ASSERT (!elf_flags_init (abfd
)
2768 || elf_elfheader (abfd
)->e_flags
== flags
);
2770 elf_elfheader (abfd
)->e_flags
|= flags
;
2771 elf_flags_init (abfd
) = TRUE
;
2778 elf_xtensa_print_private_bfd_data (bfd
*abfd
, void *farg
)
2780 FILE *f
= (FILE *) farg
;
2781 flagword e_flags
= elf_elfheader (abfd
)->e_flags
;
2783 fprintf (f
, "\nXtensa header:\n");
2784 if ((e_flags
& EF_XTENSA_MACH
) == E_XTENSA_MACH
)
2785 fprintf (f
, "\nMachine = Base\n");
2787 fprintf (f
, "\nMachine Id = 0x%x\n", e_flags
& EF_XTENSA_MACH
);
2789 fprintf (f
, "Insn tables = %s\n",
2790 (e_flags
& EF_XTENSA_XT_INSN
) ? "true" : "false");
2792 fprintf (f
, "Literal tables = %s\n",
2793 (e_flags
& EF_XTENSA_XT_LIT
) ? "true" : "false");
2795 return _bfd_elf_print_private_bfd_data (abfd
, farg
);
2799 /* Set the right machine number for an Xtensa ELF file. */
2802 elf_xtensa_object_p (bfd
*abfd
)
2805 unsigned long arch
= elf_elfheader (abfd
)->e_flags
& EF_XTENSA_MACH
;
2810 mach
= bfd_mach_xtensa
;
2816 (void) bfd_default_set_arch_mach (abfd
, bfd_arch_xtensa
, mach
);
2821 /* The final processing done just before writing out an Xtensa ELF object
2822 file. This gets the Xtensa architecture right based on the machine
2826 elf_xtensa_final_write_processing (bfd
*abfd
,
2827 bfd_boolean linker ATTRIBUTE_UNUSED
)
2832 switch (mach
= bfd_get_mach (abfd
))
2834 case bfd_mach_xtensa
:
2835 val
= E_XTENSA_MACH
;
2841 elf_elfheader (abfd
)->e_flags
&= (~ EF_XTENSA_MACH
);
2842 elf_elfheader (abfd
)->e_flags
|= val
;
2846 static enum elf_reloc_type_class
2847 elf_xtensa_reloc_type_class (const Elf_Internal_Rela
*rela
)
2849 switch ((int) ELF32_R_TYPE (rela
->r_info
))
2851 case R_XTENSA_RELATIVE
:
2852 return reloc_class_relative
;
2853 case R_XTENSA_JMP_SLOT
:
2854 return reloc_class_plt
;
2856 return reloc_class_normal
;
2862 elf_xtensa_discard_info_for_section (bfd
*abfd
,
2863 struct elf_reloc_cookie
*cookie
,
2864 struct bfd_link_info
*info
,
2868 bfd_vma section_size
;
2869 bfd_vma offset
, actual_offset
;
2870 size_t removed_bytes
= 0;
2872 section_size
= sec
->size
;
2873 if (section_size
== 0 || section_size
% 8 != 0)
2876 if (sec
->output_section
2877 && bfd_is_abs_section (sec
->output_section
))
2880 contents
= retrieve_contents (abfd
, sec
, info
->keep_memory
);
2884 cookie
->rels
= retrieve_internal_relocs (abfd
, sec
, info
->keep_memory
);
2887 release_contents (sec
, contents
);
2891 cookie
->rel
= cookie
->rels
;
2892 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
2894 for (offset
= 0; offset
< section_size
; offset
+= 8)
2896 actual_offset
= offset
- removed_bytes
;
2898 /* The ...symbol_deleted_p function will skip over relocs but it
2899 won't adjust their offsets, so do that here. */
2900 while (cookie
->rel
< cookie
->relend
2901 && cookie
->rel
->r_offset
< offset
)
2903 cookie
->rel
->r_offset
-= removed_bytes
;
2907 while (cookie
->rel
< cookie
->relend
2908 && cookie
->rel
->r_offset
== offset
)
2910 if (bfd_elf_reloc_symbol_deleted_p (offset
, cookie
))
2912 /* Remove the table entry. (If the reloc type is NONE, then
2913 the entry has already been merged with another and deleted
2914 during relaxation.) */
2915 if (ELF32_R_TYPE (cookie
->rel
->r_info
) != R_XTENSA_NONE
)
2917 /* Shift the contents up. */
2918 if (offset
+ 8 < section_size
)
2919 memmove (&contents
[actual_offset
],
2920 &contents
[actual_offset
+8],
2921 section_size
- offset
- 8);
2925 /* Remove this relocation. */
2926 cookie
->rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
2929 /* Adjust the relocation offset for previous removals. This
2930 should not be done before calling ...symbol_deleted_p
2931 because it might mess up the offset comparisons there.
2932 Make sure the offset doesn't underflow in the case where
2933 the first entry is removed. */
2934 if (cookie
->rel
->r_offset
>= removed_bytes
)
2935 cookie
->rel
->r_offset
-= removed_bytes
;
2937 cookie
->rel
->r_offset
= 0;
2943 if (removed_bytes
!= 0)
2945 /* Adjust any remaining relocs (shouldn't be any). */
2946 for (; cookie
->rel
< cookie
->relend
; cookie
->rel
++)
2948 if (cookie
->rel
->r_offset
>= removed_bytes
)
2949 cookie
->rel
->r_offset
-= removed_bytes
;
2951 cookie
->rel
->r_offset
= 0;
2954 /* Clear the removed bytes. */
2955 memset (&contents
[section_size
- removed_bytes
], 0, removed_bytes
);
2957 pin_contents (sec
, contents
);
2958 pin_internal_relocs (sec
, cookie
->rels
);
2961 sec
->size
= section_size
- removed_bytes
;
2963 if (xtensa_is_littable_section (sec
))
2965 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
2969 bfd_get_section_by_name (dynobj
, ".got.loc");
2971 sgotloc
->size
-= removed_bytes
;
2977 release_contents (sec
, contents
);
2978 release_internal_relocs (sec
, cookie
->rels
);
2981 return (removed_bytes
!= 0);
2986 elf_xtensa_discard_info (bfd
*abfd
,
2987 struct elf_reloc_cookie
*cookie
,
2988 struct bfd_link_info
*info
)
2991 bfd_boolean changed
= FALSE
;
2993 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2995 if (xtensa_is_property_section (sec
))
2997 if (elf_xtensa_discard_info_for_section (abfd
, cookie
, info
, sec
))
3007 elf_xtensa_ignore_discarded_relocs (asection
*sec
)
3009 return xtensa_is_property_section (sec
);
3013 /* Support for core dump NOTE sections. */
3016 elf_xtensa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
3021 /* The size for Xtensa is variable, so don't try to recognize the format
3022 based on the size. Just assume this is GNU/Linux. */
3025 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
3028 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
3032 size
= note
->descsz
- offset
- 4;
3034 /* Make a ".reg/999" section. */
3035 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
3036 size
, note
->descpos
+ offset
);
3041 elf_xtensa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
3043 switch (note
->descsz
)
3048 case 128: /* GNU/Linux elf_prpsinfo */
3049 elf_tdata (abfd
)->core_program
3050 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 32, 16);
3051 elf_tdata (abfd
)->core_command
3052 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 48, 80);
3055 /* Note that for some reason, a spurious space is tacked
3056 onto the end of the args in some (at least one anyway)
3057 implementations, so strip it off if it exists. */
3060 char *command
= elf_tdata (abfd
)->core_command
;
3061 int n
= strlen (command
);
3063 if (0 < n
&& command
[n
- 1] == ' ')
3064 command
[n
- 1] = '\0';
3071 /* Generic Xtensa configurability stuff. */
3073 static xtensa_opcode callx0_op
= XTENSA_UNDEFINED
;
3074 static xtensa_opcode callx4_op
= XTENSA_UNDEFINED
;
3075 static xtensa_opcode callx8_op
= XTENSA_UNDEFINED
;
3076 static xtensa_opcode callx12_op
= XTENSA_UNDEFINED
;
3077 static xtensa_opcode call0_op
= XTENSA_UNDEFINED
;
3078 static xtensa_opcode call4_op
= XTENSA_UNDEFINED
;
3079 static xtensa_opcode call8_op
= XTENSA_UNDEFINED
;
3080 static xtensa_opcode call12_op
= XTENSA_UNDEFINED
;
3083 init_call_opcodes (void)
3085 if (callx0_op
== XTENSA_UNDEFINED
)
3087 callx0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx0");
3088 callx4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx4");
3089 callx8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx8");
3090 callx12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx12");
3091 call0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call0");
3092 call4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call4");
3093 call8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call8");
3094 call12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call12");
3100 is_indirect_call_opcode (xtensa_opcode opcode
)
3102 init_call_opcodes ();
3103 return (opcode
== callx0_op
3104 || opcode
== callx4_op
3105 || opcode
== callx8_op
3106 || opcode
== callx12_op
);
3111 is_direct_call_opcode (xtensa_opcode opcode
)
3113 init_call_opcodes ();
3114 return (opcode
== call0_op
3115 || opcode
== call4_op
3116 || opcode
== call8_op
3117 || opcode
== call12_op
);
3122 is_windowed_call_opcode (xtensa_opcode opcode
)
3124 init_call_opcodes ();
3125 return (opcode
== call4_op
3126 || opcode
== call8_op
3127 || opcode
== call12_op
3128 || opcode
== callx4_op
3129 || opcode
== callx8_op
3130 || opcode
== callx12_op
);
3134 static xtensa_opcode
3135 get_const16_opcode (void)
3137 static bfd_boolean done_lookup
= FALSE
;
3138 static xtensa_opcode const16_opcode
= XTENSA_UNDEFINED
;
3141 const16_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "const16");
3144 return const16_opcode
;
3148 static xtensa_opcode
3149 get_l32r_opcode (void)
3151 static xtensa_opcode l32r_opcode
= XTENSA_UNDEFINED
;
3152 static bfd_boolean done_lookup
= FALSE
;
3156 l32r_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "l32r");
3164 l32r_offset (bfd_vma addr
, bfd_vma pc
)
3168 offset
= addr
- ((pc
+3) & -4);
3169 BFD_ASSERT ((offset
& ((1 << 2) - 1)) == 0);
3170 offset
= (signed int) offset
>> 2;
3171 BFD_ASSERT ((signed int) offset
>> 16 == -1);
3177 get_relocation_opnd (xtensa_opcode opcode
, int r_type
)
3179 xtensa_isa isa
= xtensa_default_isa
;
3180 int last_immed
, last_opnd
, opi
;
3182 if (opcode
== XTENSA_UNDEFINED
)
3183 return XTENSA_UNDEFINED
;
3185 /* Find the last visible PC-relative immediate operand for the opcode.
3186 If there are no PC-relative immediates, then choose the last visible
3187 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3188 last_immed
= XTENSA_UNDEFINED
;
3189 last_opnd
= xtensa_opcode_num_operands (isa
, opcode
);
3190 for (opi
= last_opnd
- 1; opi
>= 0; opi
--)
3192 if (xtensa_operand_is_visible (isa
, opcode
, opi
) == 0)
3194 if (xtensa_operand_is_PCrelative (isa
, opcode
, opi
) == 1)
3199 if (last_immed
== XTENSA_UNDEFINED
3200 && xtensa_operand_is_register (isa
, opcode
, opi
) == 0)
3204 return XTENSA_UNDEFINED
;
3206 /* If the operand number was specified in an old-style relocation,
3207 check for consistency with the operand computed above. */
3208 if (r_type
>= R_XTENSA_OP0
&& r_type
<= R_XTENSA_OP2
)
3210 int reloc_opnd
= r_type
- R_XTENSA_OP0
;
3211 if (reloc_opnd
!= last_immed
)
3212 return XTENSA_UNDEFINED
;
3220 get_relocation_slot (int r_type
)
3230 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3231 return r_type
- R_XTENSA_SLOT0_OP
;
3232 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3233 return r_type
- R_XTENSA_SLOT0_ALT
;
3237 return XTENSA_UNDEFINED
;
3241 /* Get the opcode for a relocation. */
3243 static xtensa_opcode
3244 get_relocation_opcode (bfd
*abfd
,
3247 Elf_Internal_Rela
*irel
)
3249 static xtensa_insnbuf ibuff
= NULL
;
3250 static xtensa_insnbuf sbuff
= NULL
;
3251 xtensa_isa isa
= xtensa_default_isa
;
3255 if (contents
== NULL
)
3256 return XTENSA_UNDEFINED
;
3258 if (bfd_get_section_limit (abfd
, sec
) <= irel
->r_offset
)
3259 return XTENSA_UNDEFINED
;
3263 ibuff
= xtensa_insnbuf_alloc (isa
);
3264 sbuff
= xtensa_insnbuf_alloc (isa
);
3267 /* Decode the instruction. */
3268 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[irel
->r_offset
],
3269 sec
->size
- irel
->r_offset
);
3270 fmt
= xtensa_format_decode (isa
, ibuff
);
3271 slot
= get_relocation_slot (ELF32_R_TYPE (irel
->r_info
));
3272 if (slot
== XTENSA_UNDEFINED
)
3273 return XTENSA_UNDEFINED
;
3274 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
3275 return xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
3280 is_l32r_relocation (bfd
*abfd
,
3283 Elf_Internal_Rela
*irel
)
3285 xtensa_opcode opcode
;
3286 if (!is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
3288 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
3289 return (opcode
== get_l32r_opcode ());
3293 static bfd_size_type
3294 get_asm_simplify_size (bfd_byte
*contents
,
3295 bfd_size_type content_len
,
3296 bfd_size_type offset
)
3298 bfd_size_type insnlen
, size
= 0;
3300 /* Decode the size of the next two instructions. */
3301 insnlen
= insn_decode_len (contents
, content_len
, offset
);
3307 insnlen
= insn_decode_len (contents
, content_len
, offset
+ size
);
3317 is_alt_relocation (int r_type
)
3319 return (r_type
>= R_XTENSA_SLOT0_ALT
3320 && r_type
<= R_XTENSA_SLOT14_ALT
);
3325 is_operand_relocation (int r_type
)
3335 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3337 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3346 #define MIN_INSN_LENGTH 2
3348 /* Return 0 if it fails to decode. */
3351 insn_decode_len (bfd_byte
*contents
,
3352 bfd_size_type content_len
,
3353 bfd_size_type offset
)
3356 xtensa_isa isa
= xtensa_default_isa
;
3358 static xtensa_insnbuf ibuff
= NULL
;
3360 if (offset
+ MIN_INSN_LENGTH
> content_len
)
3364 ibuff
= xtensa_insnbuf_alloc (isa
);
3365 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[offset
],
3366 content_len
- offset
);
3367 fmt
= xtensa_format_decode (isa
, ibuff
);
3368 if (fmt
== XTENSA_UNDEFINED
)
3370 insn_len
= xtensa_format_length (isa
, fmt
);
3371 if (insn_len
== XTENSA_UNDEFINED
)
3377 /* Decode the opcode for a single slot instruction.
3378 Return 0 if it fails to decode or the instruction is multi-slot. */
3381 insn_decode_opcode (bfd_byte
*contents
,
3382 bfd_size_type content_len
,
3383 bfd_size_type offset
,
3386 xtensa_isa isa
= xtensa_default_isa
;
3388 static xtensa_insnbuf insnbuf
= NULL
;
3389 static xtensa_insnbuf slotbuf
= NULL
;
3391 if (offset
+ MIN_INSN_LENGTH
> content_len
)
3392 return XTENSA_UNDEFINED
;
3394 if (insnbuf
== NULL
)
3396 insnbuf
= xtensa_insnbuf_alloc (isa
);
3397 slotbuf
= xtensa_insnbuf_alloc (isa
);
3400 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3401 content_len
- offset
);
3402 fmt
= xtensa_format_decode (isa
, insnbuf
);
3403 if (fmt
== XTENSA_UNDEFINED
)
3404 return XTENSA_UNDEFINED
;
3406 if (slot
>= xtensa_format_num_slots (isa
, fmt
))
3407 return XTENSA_UNDEFINED
;
3409 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
3410 return xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
3414 /* The offset is the offset in the contents.
3415 The address is the address of that offset. */
3418 check_branch_target_aligned (bfd_byte
*contents
,
3419 bfd_size_type content_length
,
3423 bfd_size_type insn_len
= insn_decode_len (contents
, content_length
, offset
);
3426 return check_branch_target_aligned_address (address
, insn_len
);
3431 check_loop_aligned (bfd_byte
*contents
,
3432 bfd_size_type content_length
,
3436 bfd_size_type loop_len
, insn_len
;
3437 xtensa_opcode opcode
=
3438 insn_decode_opcode (contents
, content_length
, offset
, 0);
3439 BFD_ASSERT (opcode
!= XTENSA_UNDEFINED
);
3440 if (opcode
!= XTENSA_UNDEFINED
)
3442 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
));
3443 if (!xtensa_opcode_is_loop (xtensa_default_isa
, opcode
))
3446 loop_len
= insn_decode_len (contents
, content_length
, offset
);
3447 BFD_ASSERT (loop_len
!= 0);
3451 insn_len
= insn_decode_len (contents
, content_length
, offset
+ loop_len
);
3452 BFD_ASSERT (insn_len
!= 0);
3456 return check_branch_target_aligned_address (address
+ loop_len
, insn_len
);
3461 check_branch_target_aligned_address (bfd_vma addr
, int len
)
3464 return (addr
% 8 == 0);
3465 return ((addr
>> 2) == ((addr
+ len
- 1) >> 2));
3469 /* Instruction widening and narrowing. */
3471 /* When FLIX is available we need to access certain instructions only
3472 when they are 16-bit or 24-bit instructions. This table caches
3473 information about such instructions by walking through all the
3474 opcodes and finding the smallest single-slot format into which each
3477 static xtensa_format
*op_single_fmt_table
= NULL
;
3481 init_op_single_format_table (void)
3483 xtensa_isa isa
= xtensa_default_isa
;
3484 xtensa_insnbuf ibuf
;
3485 xtensa_opcode opcode
;
3489 if (op_single_fmt_table
)
3492 ibuf
= xtensa_insnbuf_alloc (isa
);
3493 num_opcodes
= xtensa_isa_num_opcodes (isa
);
3495 op_single_fmt_table
= (xtensa_format
*)
3496 bfd_malloc (sizeof (xtensa_format
) * num_opcodes
);
3497 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
3499 op_single_fmt_table
[opcode
] = XTENSA_UNDEFINED
;
3500 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
3502 if (xtensa_format_num_slots (isa
, fmt
) == 1
3503 && xtensa_opcode_encode (isa
, fmt
, 0, ibuf
, opcode
) == 0)
3505 xtensa_opcode old_fmt
= op_single_fmt_table
[opcode
];
3506 int fmt_length
= xtensa_format_length (isa
, fmt
);
3507 if (old_fmt
== XTENSA_UNDEFINED
3508 || fmt_length
< xtensa_format_length (isa
, old_fmt
))
3509 op_single_fmt_table
[opcode
] = fmt
;
3513 xtensa_insnbuf_free (isa
, ibuf
);
3517 static xtensa_format
3518 get_single_format (xtensa_opcode opcode
)
3520 init_op_single_format_table ();
3521 return op_single_fmt_table
[opcode
];
3525 /* For the set of narrowable instructions we do NOT include the
3526 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3527 involved during linker relaxation that may require these to
3528 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3529 requires special case code to ensure it only works when op1 == op2. */
3537 struct string_pair narrowable
[] =
3540 { "addi", "addi.n" },
3541 { "addmi", "addi.n" },
3542 { "l32i", "l32i.n" },
3543 { "movi", "movi.n" },
3545 { "retw", "retw.n" },
3546 { "s32i", "s32i.n" },
3547 { "or", "mov.n" } /* special case only when op1 == op2 */
3550 struct string_pair widenable
[] =
3553 { "addi", "addi.n" },
3554 { "addmi", "addi.n" },
3555 { "beqz", "beqz.n" },
3556 { "bnez", "bnez.n" },
3557 { "l32i", "l32i.n" },
3558 { "movi", "movi.n" },
3560 { "retw", "retw.n" },
3561 { "s32i", "s32i.n" },
3562 { "or", "mov.n" } /* special case only when op1 == op2 */
3566 /* Attempt to narrow an instruction. Return true if the narrowing is
3567 valid. If the do_it parameter is non-zero, then perform the action
3568 in-place directly into the contents. Otherwise, do not modify the
3569 contents. The set of valid narrowing are specified by a string table
3570 but require some special case operand checks in some cases. */
3573 narrow_instruction (bfd_byte
*contents
,
3574 bfd_size_type content_length
,
3575 bfd_size_type offset
,
3578 xtensa_opcode opcode
;
3579 bfd_size_type insn_len
, opi
;
3580 xtensa_isa isa
= xtensa_default_isa
;
3581 xtensa_format fmt
, o_fmt
;
3583 static xtensa_insnbuf insnbuf
= NULL
;
3584 static xtensa_insnbuf slotbuf
= NULL
;
3585 static xtensa_insnbuf o_insnbuf
= NULL
;
3586 static xtensa_insnbuf o_slotbuf
= NULL
;
3588 if (insnbuf
== NULL
)
3590 insnbuf
= xtensa_insnbuf_alloc (isa
);
3591 slotbuf
= xtensa_insnbuf_alloc (isa
);
3592 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
3593 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
3596 BFD_ASSERT (offset
< content_length
);
3598 if (content_length
< 2)
3601 /* We will hand-code a few of these for a little while.
3602 These have all been specified in the assembler aleady. */
3603 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3604 content_length
- offset
);
3605 fmt
= xtensa_format_decode (isa
, insnbuf
);
3606 if (xtensa_format_num_slots (isa
, fmt
) != 1)
3609 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
3612 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3613 if (opcode
== XTENSA_UNDEFINED
)
3615 insn_len
= xtensa_format_length (isa
, fmt
);
3616 if (insn_len
> content_length
)
3619 for (opi
= 0; opi
< (sizeof (narrowable
)/sizeof (struct string_pair
)); ++opi
)
3621 bfd_boolean is_or
= (strcmp ("or", narrowable
[opi
].wide
) == 0);
3623 if (opcode
== xtensa_opcode_lookup (isa
, narrowable
[opi
].wide
))
3625 uint32 value
, newval
;
3626 int i
, operand_count
, o_operand_count
;
3627 xtensa_opcode o_opcode
;
3629 /* Address does not matter in this case. We might need to
3630 fix it to handle branches/jumps. */
3631 bfd_vma self_address
= 0;
3633 o_opcode
= xtensa_opcode_lookup (isa
, narrowable
[opi
].narrow
);
3634 if (o_opcode
== XTENSA_UNDEFINED
)
3636 o_fmt
= get_single_format (o_opcode
);
3637 if (o_fmt
== XTENSA_UNDEFINED
)
3640 if (xtensa_format_length (isa
, fmt
) != 3
3641 || xtensa_format_length (isa
, o_fmt
) != 2)
3644 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
3645 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
3646 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
3648 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
3653 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
3658 uint32 rawval0
, rawval1
, rawval2
;
3660 if (o_operand_count
+ 1 != operand_count
)
3662 if (xtensa_operand_get_field (isa
, opcode
, 0,
3663 fmt
, 0, slotbuf
, &rawval0
) != 0)
3665 if (xtensa_operand_get_field (isa
, opcode
, 1,
3666 fmt
, 0, slotbuf
, &rawval1
) != 0)
3668 if (xtensa_operand_get_field (isa
, opcode
, 2,
3669 fmt
, 0, slotbuf
, &rawval2
) != 0)
3672 if (rawval1
!= rawval2
)
3674 if (rawval0
== rawval1
) /* it is a nop */
3678 for (i
= 0; i
< o_operand_count
; ++i
)
3680 if (xtensa_operand_get_field (isa
, opcode
, i
, fmt
, 0,
3682 || xtensa_operand_decode (isa
, opcode
, i
, &value
))
3685 /* PC-relative branches need adjustment, but
3686 the PC-rel operand will always have a relocation. */
3688 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
3690 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
3691 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
3696 if (xtensa_format_set_slot (isa
, o_fmt
, 0,
3697 o_insnbuf
, o_slotbuf
) != 0)
3701 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
3702 content_length
- offset
);
3710 /* Attempt to widen an instruction. Return true if the widening is
3711 valid. If the do_it parameter is non-zero, then the action should
3712 be performed inplace into the contents. Otherwise, do not modify
3713 the contents. The set of valid widenings are specified by a string
3714 table but require some special case operand checks in some
3718 widen_instruction (bfd_byte
*contents
,
3719 bfd_size_type content_length
,
3720 bfd_size_type offset
,
3723 xtensa_opcode opcode
;
3724 bfd_size_type insn_len
, opi
;
3725 xtensa_isa isa
= xtensa_default_isa
;
3726 xtensa_format fmt
, o_fmt
;
3728 static xtensa_insnbuf insnbuf
= NULL
;
3729 static xtensa_insnbuf slotbuf
= NULL
;
3730 static xtensa_insnbuf o_insnbuf
= NULL
;
3731 static xtensa_insnbuf o_slotbuf
= NULL
;
3733 if (insnbuf
== NULL
)
3735 insnbuf
= xtensa_insnbuf_alloc (isa
);
3736 slotbuf
= xtensa_insnbuf_alloc (isa
);
3737 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
3738 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
3741 BFD_ASSERT (offset
< content_length
);
3743 if (content_length
< 2)
3746 /* We will hand code a few of these for a little while.
3747 These have all been specified in the assembler aleady. */
3748 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
3749 content_length
- offset
);
3750 fmt
= xtensa_format_decode (isa
, insnbuf
);
3751 if (xtensa_format_num_slots (isa
, fmt
) != 1)
3754 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
3757 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3758 if (opcode
== XTENSA_UNDEFINED
)
3760 insn_len
= xtensa_format_length (isa
, fmt
);
3761 if (insn_len
> content_length
)
3764 for (opi
= 0; opi
< (sizeof (widenable
)/sizeof (struct string_pair
)); ++opi
)
3766 bfd_boolean is_or
= (strcmp ("or", widenable
[opi
].wide
) == 0);
3767 bfd_boolean is_branch
= (strcmp ("beqz", widenable
[opi
].wide
) == 0
3768 || strcmp ("bnez", widenable
[opi
].wide
) == 0);
3770 if (opcode
== xtensa_opcode_lookup (isa
, widenable
[opi
].narrow
))
3772 uint32 value
, newval
;
3773 int i
, operand_count
, o_operand_count
, check_operand_count
;
3774 xtensa_opcode o_opcode
;
3776 /* Address does not matter in this case. We might need to fix it
3777 to handle branches/jumps. */
3778 bfd_vma self_address
= 0;
3780 o_opcode
= xtensa_opcode_lookup (isa
, widenable
[opi
].wide
);
3781 if (o_opcode
== XTENSA_UNDEFINED
)
3783 o_fmt
= get_single_format (o_opcode
);
3784 if (o_fmt
== XTENSA_UNDEFINED
)
3787 if (xtensa_format_length (isa
, fmt
) != 2
3788 || xtensa_format_length (isa
, o_fmt
) != 3)
3791 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
3792 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
3793 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
3794 check_operand_count
= o_operand_count
;
3796 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
3801 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
3806 uint32 rawval0
, rawval1
;
3808 if (o_operand_count
!= operand_count
+ 1)
3810 if (xtensa_operand_get_field (isa
, opcode
, 0,
3811 fmt
, 0, slotbuf
, &rawval0
) != 0)
3813 if (xtensa_operand_get_field (isa
, opcode
, 1,
3814 fmt
, 0, slotbuf
, &rawval1
) != 0)
3816 if (rawval0
== rawval1
) /* it is a nop */
3820 check_operand_count
--;
3822 for (i
= 0; i
< check_operand_count
; ++i
)
3825 if (is_or
&& i
== o_operand_count
- 1)
3827 if (xtensa_operand_get_field (isa
, opcode
, new_i
, fmt
, 0,
3829 || xtensa_operand_decode (isa
, opcode
, new_i
, &value
))
3832 /* PC-relative branches need adjustment, but
3833 the PC-rel operand will always have a relocation. */
3835 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
3837 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
3838 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
3843 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
3847 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
3848 content_length
- offset
);
3856 /* Code for transforming CALLs at link-time. */
3858 static bfd_reloc_status_type
3859 elf_xtensa_do_asm_simplify (bfd_byte
*contents
,
3861 bfd_vma content_length
,
3862 char **error_message
)
3864 static xtensa_insnbuf insnbuf
= NULL
;
3865 static xtensa_insnbuf slotbuf
= NULL
;
3866 xtensa_format core_format
= XTENSA_UNDEFINED
;
3867 xtensa_opcode opcode
;
3868 xtensa_opcode direct_call_opcode
;
3869 xtensa_isa isa
= xtensa_default_isa
;
3870 bfd_byte
*chbuf
= contents
+ address
;
3873 if (insnbuf
== NULL
)
3875 insnbuf
= xtensa_insnbuf_alloc (isa
);
3876 slotbuf
= xtensa_insnbuf_alloc (isa
);
3879 if (content_length
< address
)
3881 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
3882 return bfd_reloc_other
;
3885 opcode
= get_expanded_call_opcode (chbuf
, content_length
- address
, 0);
3886 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
3887 if (direct_call_opcode
== XTENSA_UNDEFINED
)
3889 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
3890 return bfd_reloc_other
;
3893 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3894 core_format
= xtensa_format_lookup (isa
, "x24");
3895 opcode
= xtensa_opcode_lookup (isa
, "or");
3896 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, opcode
);
3897 for (opn
= 0; opn
< 3; opn
++)
3900 xtensa_operand_encode (isa
, opcode
, opn
, ®no
);
3901 xtensa_operand_set_field (isa
, opcode
, opn
, core_format
, 0,
3904 xtensa_format_encode (isa
, core_format
, insnbuf
);
3905 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
3906 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
, content_length
- address
);
3908 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3909 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, direct_call_opcode
);
3910 xtensa_operand_set_field (isa
, opcode
, 0, core_format
, 0, slotbuf
, 0);
3912 xtensa_format_encode (isa
, core_format
, insnbuf
);
3913 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
3914 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
+ 3,
3915 content_length
- address
- 3);
3917 return bfd_reloc_ok
;
3921 static bfd_reloc_status_type
3922 contract_asm_expansion (bfd_byte
*contents
,
3923 bfd_vma content_length
,
3924 Elf_Internal_Rela
*irel
,
3925 char **error_message
)
3927 bfd_reloc_status_type retval
=
3928 elf_xtensa_do_asm_simplify (contents
, irel
->r_offset
, content_length
,
3931 if (retval
!= bfd_reloc_ok
)
3932 return bfd_reloc_dangerous
;
3934 /* Update the irel->r_offset field so that the right immediate and
3935 the right instruction are modified during the relocation. */
3936 irel
->r_offset
+= 3;
3937 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
), R_XTENSA_SLOT0_OP
);
3938 return bfd_reloc_ok
;
3942 static xtensa_opcode
3943 swap_callx_for_call_opcode (xtensa_opcode opcode
)
3945 init_call_opcodes ();
3947 if (opcode
== callx0_op
) return call0_op
;
3948 if (opcode
== callx4_op
) return call4_op
;
3949 if (opcode
== callx8_op
) return call8_op
;
3950 if (opcode
== callx12_op
) return call12_op
;
3952 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3953 return XTENSA_UNDEFINED
;
3957 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3958 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3959 If not, return XTENSA_UNDEFINED. */
3961 #define L32R_TARGET_REG_OPERAND 0
3962 #define CONST16_TARGET_REG_OPERAND 0
3963 #define CALLN_SOURCE_OPERAND 0
3965 static xtensa_opcode
3966 get_expanded_call_opcode (bfd_byte
*buf
, int bufsize
, bfd_boolean
*p_uses_l32r
)
3968 static xtensa_insnbuf insnbuf
= NULL
;
3969 static xtensa_insnbuf slotbuf
= NULL
;
3971 xtensa_opcode opcode
;
3972 xtensa_isa isa
= xtensa_default_isa
;
3973 uint32 regno
, const16_regno
, call_regno
;
3976 if (insnbuf
== NULL
)
3978 insnbuf
= xtensa_insnbuf_alloc (isa
);
3979 slotbuf
= xtensa_insnbuf_alloc (isa
);
3982 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
, bufsize
);
3983 fmt
= xtensa_format_decode (isa
, insnbuf
);
3984 if (fmt
== XTENSA_UNDEFINED
3985 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
3986 return XTENSA_UNDEFINED
;
3988 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
3989 if (opcode
== XTENSA_UNDEFINED
)
3990 return XTENSA_UNDEFINED
;
3992 if (opcode
== get_l32r_opcode ())
3995 *p_uses_l32r
= TRUE
;
3996 if (xtensa_operand_get_field (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
3997 fmt
, 0, slotbuf
, ®no
)
3998 || xtensa_operand_decode (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4000 return XTENSA_UNDEFINED
;
4002 else if (opcode
== get_const16_opcode ())
4005 *p_uses_l32r
= FALSE
;
4006 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4007 fmt
, 0, slotbuf
, ®no
)
4008 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4010 return XTENSA_UNDEFINED
;
4012 /* Check that the next instruction is also CONST16. */
4013 offset
+= xtensa_format_length (isa
, fmt
);
4014 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4015 fmt
= xtensa_format_decode (isa
, insnbuf
);
4016 if (fmt
== XTENSA_UNDEFINED
4017 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4018 return XTENSA_UNDEFINED
;
4019 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4020 if (opcode
!= get_const16_opcode ())
4021 return XTENSA_UNDEFINED
;
4023 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4024 fmt
, 0, slotbuf
, &const16_regno
)
4025 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4027 || const16_regno
!= regno
)
4028 return XTENSA_UNDEFINED
;
4031 return XTENSA_UNDEFINED
;
4033 /* Next instruction should be an CALLXn with operand 0 == regno. */
4034 offset
+= xtensa_format_length (isa
, fmt
);
4035 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4036 fmt
= xtensa_format_decode (isa
, insnbuf
);
4037 if (fmt
== XTENSA_UNDEFINED
4038 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4039 return XTENSA_UNDEFINED
;
4040 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4041 if (opcode
== XTENSA_UNDEFINED
4042 || !is_indirect_call_opcode (opcode
))
4043 return XTENSA_UNDEFINED
;
4045 if (xtensa_operand_get_field (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4046 fmt
, 0, slotbuf
, &call_regno
)
4047 || xtensa_operand_decode (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4049 return XTENSA_UNDEFINED
;
4051 if (call_regno
!= regno
)
4052 return XTENSA_UNDEFINED
;
4058 /* Data structures used during relaxation. */
4060 /* r_reloc: relocation values. */
4062 /* Through the relaxation process, we need to keep track of the values
4063 that will result from evaluating relocations. The standard ELF
4064 relocation structure is not sufficient for this purpose because we're
4065 operating on multiple input files at once, so we need to know which
4066 input file a relocation refers to. The r_reloc structure thus
4067 records both the input file (bfd) and ELF relocation.
4069 For efficiency, an r_reloc also contains a "target_offset" field to
4070 cache the target-section-relative offset value that is represented by
4073 The r_reloc also contains a virtual offset that allows multiple
4074 inserted literals to be placed at the same "address" with
4075 different offsets. */
4077 typedef struct r_reloc_struct r_reloc
;
4079 struct r_reloc_struct
4082 Elf_Internal_Rela rela
;
4083 bfd_vma target_offset
;
4084 bfd_vma virtual_offset
;
4088 /* The r_reloc structure is included by value in literal_value, but not
4089 every literal_value has an associated relocation -- some are simple
4090 constants. In such cases, we set all the fields in the r_reloc
4091 struct to zero. The r_reloc_is_const function should be used to
4092 detect this case. */
4095 r_reloc_is_const (const r_reloc
*r_rel
)
4097 return (r_rel
->abfd
== NULL
);
4102 r_reloc_get_target_offset (const r_reloc
*r_rel
)
4104 bfd_vma target_offset
;
4105 unsigned long r_symndx
;
4107 BFD_ASSERT (!r_reloc_is_const (r_rel
));
4108 r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4109 target_offset
= get_elf_r_symndx_offset (r_rel
->abfd
, r_symndx
);
4110 return (target_offset
+ r_rel
->rela
.r_addend
);
4114 static struct elf_link_hash_entry
*
4115 r_reloc_get_hash_entry (const r_reloc
*r_rel
)
4117 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4118 return get_elf_r_symndx_hash_entry (r_rel
->abfd
, r_symndx
);
4123 r_reloc_get_section (const r_reloc
*r_rel
)
4125 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4126 return get_elf_r_symndx_section (r_rel
->abfd
, r_symndx
);
4131 r_reloc_is_defined (const r_reloc
*r_rel
)
4137 sec
= r_reloc_get_section (r_rel
);
4138 if (sec
== bfd_abs_section_ptr
4139 || sec
== bfd_com_section_ptr
4140 || sec
== bfd_und_section_ptr
)
4147 r_reloc_init (r_reloc
*r_rel
,
4149 Elf_Internal_Rela
*irel
,
4151 bfd_size_type content_length
)
4154 reloc_howto_type
*howto
;
4158 r_rel
->rela
= *irel
;
4160 r_rel
->target_offset
= r_reloc_get_target_offset (r_rel
);
4161 r_rel
->virtual_offset
= 0;
4162 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
4163 howto
= &elf_howto_table
[r_type
];
4164 if (howto
->partial_inplace
)
4166 bfd_vma inplace_val
;
4167 BFD_ASSERT (r_rel
->rela
.r_offset
< content_length
);
4169 inplace_val
= bfd_get_32 (abfd
, &contents
[r_rel
->rela
.r_offset
]);
4170 r_rel
->target_offset
+= inplace_val
;
4174 memset (r_rel
, 0, sizeof (r_reloc
));
4181 print_r_reloc (FILE *fp
, const r_reloc
*r_rel
)
4183 if (r_reloc_is_defined (r_rel
))
4185 asection
*sec
= r_reloc_get_section (r_rel
);
4186 fprintf (fp
, " %s(%s + ", sec
->owner
->filename
, sec
->name
);
4188 else if (r_reloc_get_hash_entry (r_rel
))
4189 fprintf (fp
, " %s + ", r_reloc_get_hash_entry (r_rel
)->root
.root
.string
);
4191 fprintf (fp
, " ?? + ");
4193 fprintf_vma (fp
, r_rel
->target_offset
);
4194 if (r_rel
->virtual_offset
)
4196 fprintf (fp
, " + ");
4197 fprintf_vma (fp
, r_rel
->virtual_offset
);
4206 /* source_reloc: relocations that reference literals. */
4208 /* To determine whether literals can be coalesced, we need to first
4209 record all the relocations that reference the literals. The
4210 source_reloc structure below is used for this purpose. The
4211 source_reloc entries are kept in a per-literal-section array, sorted
4212 by offset within the literal section (i.e., target offset).
4214 The source_sec and r_rel.rela.r_offset fields identify the source of
4215 the relocation. The r_rel field records the relocation value, i.e.,
4216 the offset of the literal being referenced. The opnd field is needed
4217 to determine the range of the immediate field to which the relocation
4218 applies, so we can determine whether another literal with the same
4219 value is within range. The is_null field is true when the relocation
4220 is being removed (e.g., when an L32R is being removed due to a CALLX
4221 that is converted to a direct CALL). */
4223 typedef struct source_reloc_struct source_reloc
;
4225 struct source_reloc_struct
4227 asection
*source_sec
;
4229 xtensa_opcode opcode
;
4231 bfd_boolean is_null
;
4232 bfd_boolean is_abs_literal
;
4237 init_source_reloc (source_reloc
*reloc
,
4238 asection
*source_sec
,
4239 const r_reloc
*r_rel
,
4240 xtensa_opcode opcode
,
4242 bfd_boolean is_abs_literal
)
4244 reloc
->source_sec
= source_sec
;
4245 reloc
->r_rel
= *r_rel
;
4246 reloc
->opcode
= opcode
;
4248 reloc
->is_null
= FALSE
;
4249 reloc
->is_abs_literal
= is_abs_literal
;
4253 /* Find the source_reloc for a particular source offset and relocation
4254 type. Note that the array is sorted by _target_ offset, so this is
4255 just a linear search. */
4257 static source_reloc
*
4258 find_source_reloc (source_reloc
*src_relocs
,
4261 Elf_Internal_Rela
*irel
)
4265 for (i
= 0; i
< src_count
; i
++)
4267 if (src_relocs
[i
].source_sec
== sec
4268 && src_relocs
[i
].r_rel
.rela
.r_offset
== irel
->r_offset
4269 && (ELF32_R_TYPE (src_relocs
[i
].r_rel
.rela
.r_info
)
4270 == ELF32_R_TYPE (irel
->r_info
)))
4271 return &src_relocs
[i
];
4279 source_reloc_compare (const void *ap
, const void *bp
)
4281 const source_reloc
*a
= (const source_reloc
*) ap
;
4282 const source_reloc
*b
= (const source_reloc
*) bp
;
4284 if (a
->r_rel
.target_offset
!= b
->r_rel
.target_offset
)
4285 return (a
->r_rel
.target_offset
- b
->r_rel
.target_offset
);
4287 /* We don't need to sort on these criteria for correctness,
4288 but enforcing a more strict ordering prevents unstable qsort
4289 from behaving differently with different implementations.
4290 Without the code below we get correct but different results
4291 on Solaris 2.7 and 2.8. We would like to always produce the
4292 same results no matter the host. */
4294 if ((!a
->is_null
) - (!b
->is_null
))
4295 return ((!a
->is_null
) - (!b
->is_null
));
4296 return internal_reloc_compare (&a
->r_rel
.rela
, &b
->r_rel
.rela
);
4300 /* Literal values and value hash tables. */
4302 /* Literals with the same value can be coalesced. The literal_value
4303 structure records the value of a literal: the "r_rel" field holds the
4304 information from the relocation on the literal (if there is one) and
4305 the "value" field holds the contents of the literal word itself.
4307 The value_map structure records a literal value along with the
4308 location of a literal holding that value. The value_map hash table
4309 is indexed by the literal value, so that we can quickly check if a
4310 particular literal value has been seen before and is thus a candidate
4313 typedef struct literal_value_struct literal_value
;
4314 typedef struct value_map_struct value_map
;
4315 typedef struct value_map_hash_table_struct value_map_hash_table
;
4317 struct literal_value_struct
4320 unsigned long value
;
4321 bfd_boolean is_abs_literal
;
4324 struct value_map_struct
4326 literal_value val
; /* The literal value. */
4327 r_reloc loc
; /* Location of the literal. */
4331 struct value_map_hash_table_struct
4333 unsigned bucket_count
;
4334 value_map
**buckets
;
4336 bfd_boolean has_last_loc
;
4342 init_literal_value (literal_value
*lit
,
4343 const r_reloc
*r_rel
,
4344 unsigned long value
,
4345 bfd_boolean is_abs_literal
)
4347 lit
->r_rel
= *r_rel
;
4349 lit
->is_abs_literal
= is_abs_literal
;
4354 literal_value_equal (const literal_value
*src1
,
4355 const literal_value
*src2
,
4356 bfd_boolean final_static_link
)
4358 struct elf_link_hash_entry
*h1
, *h2
;
4360 if (r_reloc_is_const (&src1
->r_rel
) != r_reloc_is_const (&src2
->r_rel
))
4363 if (r_reloc_is_const (&src1
->r_rel
))
4364 return (src1
->value
== src2
->value
);
4366 if (ELF32_R_TYPE (src1
->r_rel
.rela
.r_info
)
4367 != ELF32_R_TYPE (src2
->r_rel
.rela
.r_info
))
4370 if (src1
->r_rel
.target_offset
!= src2
->r_rel
.target_offset
)
4373 if (src1
->r_rel
.virtual_offset
!= src2
->r_rel
.virtual_offset
)
4376 if (src1
->value
!= src2
->value
)
4379 /* Now check for the same section (if defined) or the same elf_hash
4380 (if undefined or weak). */
4381 h1
= r_reloc_get_hash_entry (&src1
->r_rel
);
4382 h2
= r_reloc_get_hash_entry (&src2
->r_rel
);
4383 if (r_reloc_is_defined (&src1
->r_rel
)
4384 && (final_static_link
4385 || ((!h1
|| h1
->root
.type
!= bfd_link_hash_defweak
)
4386 && (!h2
|| h2
->root
.type
!= bfd_link_hash_defweak
))))
4388 if (r_reloc_get_section (&src1
->r_rel
)
4389 != r_reloc_get_section (&src2
->r_rel
))
4394 /* Require that the hash entries (i.e., symbols) be identical. */
4395 if (h1
!= h2
|| h1
== 0)
4399 if (src1
->is_abs_literal
!= src2
->is_abs_literal
)
4406 /* Must be power of 2. */
4407 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4409 static value_map_hash_table
*
4410 value_map_hash_table_init (void)
4412 value_map_hash_table
*values
;
4414 values
= (value_map_hash_table
*)
4415 bfd_zmalloc (sizeof (value_map_hash_table
));
4416 values
->bucket_count
= INITIAL_HASH_RELOC_BUCKET_COUNT
;
4418 values
->buckets
= (value_map
**)
4419 bfd_zmalloc (sizeof (value_map
*) * values
->bucket_count
);
4420 if (values
->buckets
== NULL
)
4425 values
->has_last_loc
= FALSE
;
4432 value_map_hash_table_delete (value_map_hash_table
*table
)
4434 free (table
->buckets
);
4440 hash_bfd_vma (bfd_vma val
)
4442 return (val
>> 2) + (val
>> 10);
4447 literal_value_hash (const literal_value
*src
)
4451 hash_val
= hash_bfd_vma (src
->value
);
4452 if (!r_reloc_is_const (&src
->r_rel
))
4456 hash_val
+= hash_bfd_vma (src
->is_abs_literal
* 1000);
4457 hash_val
+= hash_bfd_vma (src
->r_rel
.target_offset
);
4458 hash_val
+= hash_bfd_vma (src
->r_rel
.virtual_offset
);
4460 /* Now check for the same section and the same elf_hash. */
4461 if (r_reloc_is_defined (&src
->r_rel
))
4462 sec_or_hash
= r_reloc_get_section (&src
->r_rel
);
4464 sec_or_hash
= r_reloc_get_hash_entry (&src
->r_rel
);
4465 hash_val
+= hash_bfd_vma ((bfd_vma
) (size_t) sec_or_hash
);
4471 /* Check if the specified literal_value has been seen before. */
4474 value_map_get_cached_value (value_map_hash_table
*map
,
4475 const literal_value
*val
,
4476 bfd_boolean final_static_link
)
4482 idx
= literal_value_hash (val
);
4483 idx
= idx
& (map
->bucket_count
- 1);
4484 bucket
= map
->buckets
[idx
];
4485 for (map_e
= bucket
; map_e
; map_e
= map_e
->next
)
4487 if (literal_value_equal (&map_e
->val
, val
, final_static_link
))
4494 /* Record a new literal value. It is illegal to call this if VALUE
4495 already has an entry here. */
4498 add_value_map (value_map_hash_table
*map
,
4499 const literal_value
*val
,
4501 bfd_boolean final_static_link
)
4503 value_map
**bucket_p
;
4506 value_map
*val_e
= (value_map
*) bfd_zmalloc (sizeof (value_map
));
4509 bfd_set_error (bfd_error_no_memory
);
4513 BFD_ASSERT (!value_map_get_cached_value (map
, val
, final_static_link
));
4517 idx
= literal_value_hash (val
);
4518 idx
= idx
& (map
->bucket_count
- 1);
4519 bucket_p
= &map
->buckets
[idx
];
4521 val_e
->next
= *bucket_p
;
4524 /* FIXME: Consider resizing the hash table if we get too many entries. */
4530 /* Lists of text actions (ta_) for narrowing, widening, longcall
4531 conversion, space fill, code & literal removal, etc. */
4533 /* The following text actions are generated:
4535 "ta_remove_insn" remove an instruction or instructions
4536 "ta_remove_longcall" convert longcall to call
4537 "ta_convert_longcall" convert longcall to nop/call
4538 "ta_narrow_insn" narrow a wide instruction
4539 "ta_widen" widen a narrow instruction
4540 "ta_fill" add fill or remove fill
4541 removed < 0 is a fill; branches to the fill address will be
4542 changed to address + fill size (e.g., address - removed)
4543 removed >= 0 branches to the fill address will stay unchanged
4544 "ta_remove_literal" remove a literal; this action is
4545 indicated when a literal is removed
4547 "ta_add_literal" insert a new literal; this action is
4548 indicated when a literal has been moved.
4549 It may use a virtual_offset because
4550 multiple literals can be placed at the
4553 For each of these text actions, we also record the number of bytes
4554 removed by performing the text action. In the case of a "ta_widen"
4555 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4557 typedef struct text_action_struct text_action
;
4558 typedef struct text_action_list_struct text_action_list
;
4559 typedef enum text_action_enum_t text_action_t
;
4561 enum text_action_enum_t
4564 ta_remove_insn
, /* removed = -size */
4565 ta_remove_longcall
, /* removed = -size */
4566 ta_convert_longcall
, /* removed = 0 */
4567 ta_narrow_insn
, /* removed = -1 */
4568 ta_widen_insn
, /* removed = +1 */
4569 ta_fill
, /* removed = +size */
4575 /* Structure for a text action record. */
4576 struct text_action_struct
4578 text_action_t action
;
4579 asection
*sec
; /* Optional */
4581 bfd_vma virtual_offset
; /* Zero except for adding literals. */
4583 literal_value value
; /* Only valid when adding literals. */
4589 /* List of all of the actions taken on a text section. */
4590 struct text_action_list_struct
4596 static text_action
*
4597 find_fill_action (text_action_list
*l
, asection
*sec
, bfd_vma offset
)
4601 /* It is not necessary to fill at the end of a section. */
4602 if (sec
->size
== offset
)
4605 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
4607 text_action
*t
= *m_p
;
4608 /* When the action is another fill at the same address,
4609 just increase the size. */
4610 if (t
->offset
== offset
&& t
->action
== ta_fill
)
4618 compute_removed_action_diff (const text_action
*ta
,
4622 int removable_space
)
4625 int current_removed
= 0;
4628 current_removed
= ta
->removed_bytes
;
4630 BFD_ASSERT (ta
== NULL
|| ta
->offset
== offset
);
4631 BFD_ASSERT (ta
== NULL
|| ta
->action
== ta_fill
);
4633 /* It is not necessary to fill at the end of a section. Clean this up. */
4634 if (sec
->size
== offset
)
4635 new_removed
= removable_space
- 0;
4639 int added
= -removed
- current_removed
;
4640 /* Ignore multiples of the section alignment. */
4641 added
= ((1 << sec
->alignment_power
) - 1) & added
;
4642 new_removed
= (-added
);
4644 /* Modify for removable. */
4645 space
= removable_space
- new_removed
;
4646 new_removed
= (removable_space
4647 - (((1 << sec
->alignment_power
) - 1) & space
));
4649 return (new_removed
- current_removed
);
4654 adjust_fill_action (text_action
*ta
, int fill_diff
)
4656 ta
->removed_bytes
+= fill_diff
;
4660 /* Add a modification action to the text. For the case of adding or
4661 removing space, modify any current fill and assume that
4662 "unreachable_space" bytes can be freely contracted. Note that a
4663 negative removed value is a fill. */
4666 text_action_add (text_action_list
*l
,
4667 text_action_t action
,
4675 /* It is not necessary to fill at the end of a section. */
4676 if (action
== ta_fill
&& sec
->size
== offset
)
4679 /* It is not necessary to fill 0 bytes. */
4680 if (action
== ta_fill
&& removed
== 0)
4683 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
4685 text_action
*t
= *m_p
;
4686 /* When the action is another fill at the same address,
4687 just increase the size. */
4688 if (t
->offset
== offset
&& t
->action
== ta_fill
&& action
== ta_fill
)
4690 t
->removed_bytes
+= removed
;
4695 /* Create a new record and fill it up. */
4696 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
4697 ta
->action
= action
;
4699 ta
->offset
= offset
;
4700 ta
->removed_bytes
= removed
;
4707 text_action_add_literal (text_action_list
*l
,
4708 text_action_t action
,
4710 const literal_value
*value
,
4715 asection
*sec
= r_reloc_get_section (loc
);
4716 bfd_vma offset
= loc
->target_offset
;
4717 bfd_vma virtual_offset
= loc
->virtual_offset
;
4719 BFD_ASSERT (action
== ta_add_literal
);
4721 for (m_p
= &l
->head
; *m_p
!= NULL
; m_p
= &(*m_p
)->next
)
4723 if ((*m_p
)->offset
> offset
4724 && ((*m_p
)->offset
!= offset
4725 || (*m_p
)->virtual_offset
> virtual_offset
))
4729 /* Create a new record and fill it up. */
4730 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
4731 ta
->action
= action
;
4733 ta
->offset
= offset
;
4734 ta
->virtual_offset
= virtual_offset
;
4736 ta
->removed_bytes
= removed
;
4743 offset_with_removed_text (text_action_list
*action_list
, bfd_vma offset
)
4748 for (r
= action_list
->head
; r
&& r
->offset
<= offset
; r
= r
->next
)
4750 if (r
->offset
< offset
4751 || (r
->action
== ta_fill
&& r
->removed_bytes
< 0))
4752 removed
+= r
->removed_bytes
;
4755 return (offset
- removed
);
4760 offset_with_removed_text_before_fill (text_action_list
*action_list
,
4766 for (r
= action_list
->head
; r
&& r
->offset
< offset
; r
= r
->next
)
4767 removed
+= r
->removed_bytes
;
4769 return (offset
- removed
);
4773 /* The find_insn_action routine will only find non-fill actions. */
4775 static text_action
*
4776 find_insn_action (text_action_list
*action_list
, bfd_vma offset
)
4779 for (t
= action_list
->head
; t
; t
= t
->next
)
4781 if (t
->offset
== offset
)
4788 case ta_remove_insn
:
4789 case ta_remove_longcall
:
4790 case ta_convert_longcall
:
4791 case ta_narrow_insn
:
4794 case ta_remove_literal
:
4795 case ta_add_literal
:
4808 print_action_list (FILE *fp
, text_action_list
*action_list
)
4812 fprintf (fp
, "Text Action\n");
4813 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
4815 const char *t
= "unknown";
4818 case ta_remove_insn
:
4819 t
= "remove_insn"; break;
4820 case ta_remove_longcall
:
4821 t
= "remove_longcall"; break;
4822 case ta_convert_longcall
:
4823 t
= "remove_longcall"; break;
4824 case ta_narrow_insn
:
4825 t
= "narrow_insn"; break;
4827 t
= "widen_insn"; break;
4832 case ta_remove_literal
:
4833 t
= "remove_literal"; break;
4834 case ta_add_literal
:
4835 t
= "add_literal"; break;
4838 fprintf (fp
, "%s: %s[0x%lx] \"%s\" %d\n",
4839 r
->sec
->owner
->filename
,
4840 r
->sec
->name
, r
->offset
, t
, r
->removed_bytes
);
4847 /* Lists of literals being coalesced or removed. */
4849 /* In the usual case, the literal identified by "from" is being
4850 coalesced with another literal identified by "to". If the literal is
4851 unused and is being removed altogether, "to.abfd" will be NULL.
4852 The removed_literal entries are kept on a per-section list, sorted
4853 by the "from" offset field. */
4855 typedef struct removed_literal_struct removed_literal
;
4856 typedef struct removed_literal_list_struct removed_literal_list
;
4858 struct removed_literal_struct
4862 removed_literal
*next
;
4865 struct removed_literal_list_struct
4867 removed_literal
*head
;
4868 removed_literal
*tail
;
4872 /* Record that the literal at "from" is being removed. If "to" is not
4873 NULL, the "from" literal is being coalesced with the "to" literal. */
4876 add_removed_literal (removed_literal_list
*removed_list
,
4877 const r_reloc
*from
,
4880 removed_literal
*r
, *new_r
, *next_r
;
4882 new_r
= (removed_literal
*) bfd_zmalloc (sizeof (removed_literal
));
4884 new_r
->from
= *from
;
4888 new_r
->to
.abfd
= NULL
;
4891 r
= removed_list
->head
;
4894 removed_list
->head
= new_r
;
4895 removed_list
->tail
= new_r
;
4897 /* Special check for common case of append. */
4898 else if (removed_list
->tail
->from
.target_offset
< from
->target_offset
)
4900 removed_list
->tail
->next
= new_r
;
4901 removed_list
->tail
= new_r
;
4905 while (r
->from
.target_offset
< from
->target_offset
&& r
->next
)
4911 new_r
->next
= next_r
;
4913 removed_list
->tail
= new_r
;
4918 /* Check if the list of removed literals contains an entry for the
4919 given address. Return the entry if found. */
4921 static removed_literal
*
4922 find_removed_literal (removed_literal_list
*removed_list
, bfd_vma addr
)
4924 removed_literal
*r
= removed_list
->head
;
4925 while (r
&& r
->from
.target_offset
< addr
)
4927 if (r
&& r
->from
.target_offset
== addr
)
4936 print_removed_literals (FILE *fp
, removed_literal_list
*removed_list
)
4939 r
= removed_list
->head
;
4941 fprintf (fp
, "Removed Literals\n");
4942 for (; r
!= NULL
; r
= r
->next
)
4944 print_r_reloc (fp
, &r
->from
);
4945 fprintf (fp
, " => ");
4946 if (r
->to
.abfd
== NULL
)
4947 fprintf (fp
, "REMOVED");
4949 print_r_reloc (fp
, &r
->to
);
4957 /* Per-section data for relaxation. */
4959 typedef struct reloc_bfd_fix_struct reloc_bfd_fix
;
4961 struct xtensa_relax_info_struct
4963 bfd_boolean is_relaxable_literal_section
;
4964 bfd_boolean is_relaxable_asm_section
;
4965 int visited
; /* Number of times visited. */
4967 source_reloc
*src_relocs
; /* Array[src_count]. */
4969 int src_next
; /* Next src_relocs entry to assign. */
4971 removed_literal_list removed_list
;
4972 text_action_list action_list
;
4974 reloc_bfd_fix
*fix_list
;
4975 reloc_bfd_fix
*fix_array
;
4976 unsigned fix_array_count
;
4978 /* Support for expanding the reloc array that is stored
4979 in the section structure. If the relocations have been
4980 reallocated, the newly allocated relocations will be referenced
4981 here along with the actual size allocated. The relocation
4982 count will always be found in the section structure. */
4983 Elf_Internal_Rela
*allocated_relocs
;
4984 unsigned relocs_count
;
4985 unsigned allocated_relocs_count
;
4988 struct elf_xtensa_section_data
4990 struct bfd_elf_section_data elf
;
4991 xtensa_relax_info relax_info
;
4996 elf_xtensa_new_section_hook (bfd
*abfd
, asection
*sec
)
4998 struct elf_xtensa_section_data
*sdata
;
4999 bfd_size_type amt
= sizeof (*sdata
);
5001 sdata
= (struct elf_xtensa_section_data
*) bfd_zalloc (abfd
, amt
);
5004 sec
->used_by_bfd
= (void *) sdata
;
5006 return _bfd_elf_new_section_hook (abfd
, sec
);
5010 static xtensa_relax_info
*
5011 get_xtensa_relax_info (asection
*sec
)
5013 struct elf_xtensa_section_data
*section_data
;
5015 /* No info available if no section or if it is an output section. */
5016 if (!sec
|| sec
== sec
->output_section
)
5019 section_data
= (struct elf_xtensa_section_data
*) elf_section_data (sec
);
5020 return §ion_data
->relax_info
;
5025 init_xtensa_relax_info (asection
*sec
)
5027 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5029 relax_info
->is_relaxable_literal_section
= FALSE
;
5030 relax_info
->is_relaxable_asm_section
= FALSE
;
5031 relax_info
->visited
= 0;
5033 relax_info
->src_relocs
= NULL
;
5034 relax_info
->src_count
= 0;
5035 relax_info
->src_next
= 0;
5037 relax_info
->removed_list
.head
= NULL
;
5038 relax_info
->removed_list
.tail
= NULL
;
5040 relax_info
->action_list
.head
= NULL
;
5042 relax_info
->fix_list
= NULL
;
5043 relax_info
->fix_array
= NULL
;
5044 relax_info
->fix_array_count
= 0;
5046 relax_info
->allocated_relocs
= NULL
;
5047 relax_info
->relocs_count
= 0;
5048 relax_info
->allocated_relocs_count
= 0;
5052 /* Coalescing literals may require a relocation to refer to a section in
5053 a different input file, but the standard relocation information
5054 cannot express that. Instead, the reloc_bfd_fix structures are used
5055 to "fix" the relocations that refer to sections in other input files.
5056 These structures are kept on per-section lists. The "src_type" field
5057 records the relocation type in case there are multiple relocations on
5058 the same location. FIXME: This is ugly; an alternative might be to
5059 add new symbols with the "owner" field to some other input file. */
5061 struct reloc_bfd_fix_struct
5065 unsigned src_type
; /* Relocation type. */
5068 asection
*target_sec
;
5069 bfd_vma target_offset
;
5070 bfd_boolean translated
;
5072 reloc_bfd_fix
*next
;
5076 static reloc_bfd_fix
*
5077 reloc_bfd_fix_init (asection
*src_sec
,
5081 asection
*target_sec
,
5082 bfd_vma target_offset
,
5083 bfd_boolean translated
)
5087 fix
= (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
));
5088 fix
->src_sec
= src_sec
;
5089 fix
->src_offset
= src_offset
;
5090 fix
->src_type
= src_type
;
5091 fix
->target_abfd
= target_abfd
;
5092 fix
->target_sec
= target_sec
;
5093 fix
->target_offset
= target_offset
;
5094 fix
->translated
= translated
;
5101 add_fix (asection
*src_sec
, reloc_bfd_fix
*fix
)
5103 xtensa_relax_info
*relax_info
;
5105 relax_info
= get_xtensa_relax_info (src_sec
);
5106 fix
->next
= relax_info
->fix_list
;
5107 relax_info
->fix_list
= fix
;
5112 fix_compare (const void *ap
, const void *bp
)
5114 const reloc_bfd_fix
*a
= (const reloc_bfd_fix
*) ap
;
5115 const reloc_bfd_fix
*b
= (const reloc_bfd_fix
*) bp
;
5117 if (a
->src_offset
!= b
->src_offset
)
5118 return (a
->src_offset
- b
->src_offset
);
5119 return (a
->src_type
- b
->src_type
);
5124 cache_fix_array (asection
*sec
)
5126 unsigned i
, count
= 0;
5128 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5130 if (relax_info
== NULL
)
5132 if (relax_info
->fix_list
== NULL
)
5135 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
5138 relax_info
->fix_array
=
5139 (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
) * count
);
5140 relax_info
->fix_array_count
= count
;
5142 r
= relax_info
->fix_list
;
5143 for (i
= 0; i
< count
; i
++, r
= r
->next
)
5145 relax_info
->fix_array
[count
- 1 - i
] = *r
;
5146 relax_info
->fix_array
[count
- 1 - i
].next
= NULL
;
5149 qsort (relax_info
->fix_array
, relax_info
->fix_array_count
,
5150 sizeof (reloc_bfd_fix
), fix_compare
);
5154 static reloc_bfd_fix
*
5155 get_bfd_fix (asection
*sec
, bfd_vma offset
, unsigned type
)
5157 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5161 if (relax_info
== NULL
)
5163 if (relax_info
->fix_list
== NULL
)
5166 if (relax_info
->fix_array
== NULL
)
5167 cache_fix_array (sec
);
5169 key
.src_offset
= offset
;
5170 key
.src_type
= type
;
5171 rv
= bsearch (&key
, relax_info
->fix_array
, relax_info
->fix_array_count
,
5172 sizeof (reloc_bfd_fix
), fix_compare
);
5177 /* Section caching. */
5179 typedef struct section_cache_struct section_cache_t
;
5181 struct section_cache_struct
5185 bfd_byte
*contents
; /* Cache of the section contents. */
5186 bfd_size_type content_length
;
5188 property_table_entry
*ptbl
; /* Cache of the section property table. */
5191 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
5192 unsigned reloc_count
;
5197 init_section_cache (section_cache_t
*sec_cache
)
5199 memset (sec_cache
, 0, sizeof (*sec_cache
));
5204 clear_section_cache (section_cache_t
*sec_cache
)
5208 release_contents (sec_cache
->sec
, sec_cache
->contents
);
5209 release_internal_relocs (sec_cache
->sec
, sec_cache
->relocs
);
5210 if (sec_cache
->ptbl
)
5211 free (sec_cache
->ptbl
);
5212 memset (sec_cache
, 0, sizeof (sec_cache
));
5218 section_cache_section (section_cache_t
*sec_cache
,
5220 struct bfd_link_info
*link_info
)
5223 property_table_entry
*prop_table
= NULL
;
5225 bfd_byte
*contents
= NULL
;
5226 Elf_Internal_Rela
*internal_relocs
= NULL
;
5227 bfd_size_type sec_size
;
5231 if (sec
== sec_cache
->sec
)
5235 sec_size
= bfd_get_section_limit (abfd
, sec
);
5237 /* Get the contents. */
5238 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
5239 if (contents
== NULL
&& sec_size
!= 0)
5242 /* Get the relocations. */
5243 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
5244 link_info
->keep_memory
);
5246 /* Get the entry table. */
5247 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
5248 XTENSA_PROP_SEC_NAME
, FALSE
);
5252 /* Fill in the new section cache. */
5253 clear_section_cache (sec_cache
);
5254 memset (sec_cache
, 0, sizeof (sec_cache
));
5256 sec_cache
->sec
= sec
;
5257 sec_cache
->contents
= contents
;
5258 sec_cache
->content_length
= sec_size
;
5259 sec_cache
->relocs
= internal_relocs
;
5260 sec_cache
->reloc_count
= sec
->reloc_count
;
5261 sec_cache
->pte_count
= ptblsize
;
5262 sec_cache
->ptbl
= prop_table
;
5267 release_contents (sec
, contents
);
5268 release_internal_relocs (sec
, internal_relocs
);
5275 /* Extended basic blocks. */
5277 /* An ebb_struct represents an Extended Basic Block. Within this
5278 range, we guarantee that all instructions are decodable, the
5279 property table entries are contiguous, and no property table
5280 specifies a segment that cannot have instructions moved. This
5281 structure contains caches of the contents, property table and
5282 relocations for the specified section for easy use. The range is
5283 specified by ranges of indices for the byte offset, property table
5284 offsets and relocation offsets. These must be consistent. */
5286 typedef struct ebb_struct ebb_t
;
5292 bfd_byte
*contents
; /* Cache of the section contents. */
5293 bfd_size_type content_length
;
5295 property_table_entry
*ptbl
; /* Cache of the section property table. */
5298 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
5299 unsigned reloc_count
;
5301 bfd_vma start_offset
; /* Offset in section. */
5302 unsigned start_ptbl_idx
; /* Offset in the property table. */
5303 unsigned start_reloc_idx
; /* Offset in the relocations. */
5306 unsigned end_ptbl_idx
;
5307 unsigned end_reloc_idx
;
5309 bfd_boolean ends_section
; /* Is this the last ebb in a section? */
5311 /* The unreachable property table at the end of this set of blocks;
5312 NULL if the end is not an unreachable block. */
5313 property_table_entry
*ends_unreachable
;
5317 enum ebb_target_enum
5320 EBB_DESIRE_TGT_ALIGN
,
5321 EBB_REQUIRE_TGT_ALIGN
,
5322 EBB_REQUIRE_LOOP_ALIGN
,
5327 /* proposed_action_struct is similar to the text_action_struct except
5328 that is represents a potential transformation, not one that will
5329 occur. We build a list of these for an extended basic block
5330 and use them to compute the actual actions desired. We must be
5331 careful that the entire set of actual actions we perform do not
5332 break any relocations that would fit if the actions were not
5335 typedef struct proposed_action_struct proposed_action
;
5337 struct proposed_action_struct
5339 enum ebb_target_enum align_type
; /* for the target alignment */
5340 bfd_vma alignment_pow
;
5341 text_action_t action
;
5344 bfd_boolean do_action
; /* If false, then we will not perform the action. */
5348 /* The ebb_constraint_struct keeps a set of proposed actions for an
5349 extended basic block. */
5351 typedef struct ebb_constraint_struct ebb_constraint
;
5353 struct ebb_constraint_struct
5356 bfd_boolean start_movable
;
5358 /* Bytes of extra space at the beginning if movable. */
5359 int start_extra_space
;
5361 enum ebb_target_enum start_align
;
5363 bfd_boolean end_movable
;
5365 /* Bytes of extra space at the end if movable. */
5366 int end_extra_space
;
5368 unsigned action_count
;
5369 unsigned action_allocated
;
5371 /* Array of proposed actions. */
5372 proposed_action
*actions
;
5374 /* Action alignments -- one for each proposed action. */
5375 enum ebb_target_enum
*action_aligns
;
5380 init_ebb_constraint (ebb_constraint
*c
)
5382 memset (c
, 0, sizeof (ebb_constraint
));
5387 free_ebb_constraint (ebb_constraint
*c
)
5395 init_ebb (ebb_t
*ebb
,
5398 bfd_size_type content_length
,
5399 property_table_entry
*prop_table
,
5401 Elf_Internal_Rela
*internal_relocs
,
5402 unsigned reloc_count
)
5404 memset (ebb
, 0, sizeof (ebb_t
));
5406 ebb
->contents
= contents
;
5407 ebb
->content_length
= content_length
;
5408 ebb
->ptbl
= prop_table
;
5409 ebb
->pte_count
= ptblsize
;
5410 ebb
->relocs
= internal_relocs
;
5411 ebb
->reloc_count
= reloc_count
;
5412 ebb
->start_offset
= 0;
5413 ebb
->end_offset
= ebb
->content_length
- 1;
5414 ebb
->start_ptbl_idx
= 0;
5415 ebb
->end_ptbl_idx
= ptblsize
;
5416 ebb
->start_reloc_idx
= 0;
5417 ebb
->end_reloc_idx
= reloc_count
;
5421 /* Extend the ebb to all decodable contiguous sections. The algorithm
5422 for building a basic block around an instruction is to push it
5423 forward until we hit the end of a section, an unreachable block or
5424 a block that cannot be transformed. Then we push it backwards
5425 searching for similar conditions. */
5427 static bfd_boolean
extend_ebb_bounds_forward (ebb_t
*);
5428 static bfd_boolean
extend_ebb_bounds_backward (ebb_t
*);
5429 static bfd_size_type insn_block_decodable_len
5430 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_size_type
);
5433 extend_ebb_bounds (ebb_t
*ebb
)
5435 if (!extend_ebb_bounds_forward (ebb
))
5437 if (!extend_ebb_bounds_backward (ebb
))
5444 extend_ebb_bounds_forward (ebb_t
*ebb
)
5446 property_table_entry
*the_entry
, *new_entry
;
5448 the_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
5450 /* Stop when (1) we cannot decode an instruction, (2) we are at
5451 the end of the property tables, (3) we hit a non-contiguous property
5452 table entry, (4) we hit a NO_TRANSFORM region. */
5457 bfd_size_type insn_block_len
;
5459 entry_end
= the_entry
->address
- ebb
->sec
->vma
+ the_entry
->size
;
5461 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
5463 entry_end
- ebb
->end_offset
);
5464 if (insn_block_len
!= (entry_end
- ebb
->end_offset
))
5466 (*_bfd_error_handler
)
5467 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5468 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
5471 ebb
->end_offset
+= insn_block_len
;
5473 if (ebb
->end_offset
== ebb
->sec
->size
)
5474 ebb
->ends_section
= TRUE
;
5476 /* Update the reloc counter. */
5477 while (ebb
->end_reloc_idx
+ 1 < ebb
->reloc_count
5478 && (ebb
->relocs
[ebb
->end_reloc_idx
+ 1].r_offset
5481 ebb
->end_reloc_idx
++;
5484 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
5487 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
5488 if (((new_entry
->flags
& XTENSA_PROP_INSN
) == 0)
5489 || ((new_entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) != 0)
5490 || ((the_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
5493 if (the_entry
->address
+ the_entry
->size
!= new_entry
->address
)
5496 the_entry
= new_entry
;
5497 ebb
->end_ptbl_idx
++;
5500 /* Quick check for an unreachable or end of file just at the end. */
5501 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
5503 if (ebb
->end_offset
== ebb
->content_length
)
5504 ebb
->ends_section
= TRUE
;
5508 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
5509 if ((new_entry
->flags
& XTENSA_PROP_UNREACHABLE
) != 0
5510 && the_entry
->address
+ the_entry
->size
== new_entry
->address
)
5511 ebb
->ends_unreachable
= new_entry
;
5514 /* Any other ending requires exact alignment. */
5520 extend_ebb_bounds_backward (ebb_t
*ebb
)
5522 property_table_entry
*the_entry
, *new_entry
;
5524 the_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
5526 /* Stop when (1) we cannot decode the instructions in the current entry.
5527 (2) we are at the beginning of the property tables, (3) we hit a
5528 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5532 bfd_vma block_begin
;
5533 bfd_size_type insn_block_len
;
5535 block_begin
= the_entry
->address
- ebb
->sec
->vma
;
5537 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
5539 ebb
->start_offset
- block_begin
);
5540 if (insn_block_len
!= ebb
->start_offset
- block_begin
)
5542 (*_bfd_error_handler
)
5543 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5544 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
5547 ebb
->start_offset
-= insn_block_len
;
5549 /* Update the reloc counter. */
5550 while (ebb
->start_reloc_idx
> 0
5551 && (ebb
->relocs
[ebb
->start_reloc_idx
- 1].r_offset
5552 >= ebb
->start_offset
))
5554 ebb
->start_reloc_idx
--;
5557 if (ebb
->start_ptbl_idx
== 0)
5560 new_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
- 1];
5561 if ((new_entry
->flags
& XTENSA_PROP_INSN
) == 0
5562 || ((new_entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) != 0)
5563 || ((new_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
5565 if (new_entry
->address
+ new_entry
->size
!= the_entry
->address
)
5568 the_entry
= new_entry
;
5569 ebb
->start_ptbl_idx
--;
5575 static bfd_size_type
5576 insn_block_decodable_len (bfd_byte
*contents
,
5577 bfd_size_type content_len
,
5578 bfd_vma block_offset
,
5579 bfd_size_type block_len
)
5581 bfd_vma offset
= block_offset
;
5583 while (offset
< block_offset
+ block_len
)
5585 bfd_size_type insn_len
= 0;
5587 insn_len
= insn_decode_len (contents
, content_len
, offset
);
5589 return (offset
- block_offset
);
5592 return (offset
- block_offset
);
5597 ebb_propose_action (ebb_constraint
*c
,
5598 enum ebb_target_enum align_type
,
5599 bfd_vma alignment_pow
,
5600 text_action_t action
,
5603 bfd_boolean do_action
)
5605 proposed_action
*act
;
5607 if (c
->action_allocated
<= c
->action_count
)
5609 unsigned new_allocated
, i
;
5610 proposed_action
*new_actions
;
5612 new_allocated
= (c
->action_count
+ 2) * 2;
5613 new_actions
= (proposed_action
*)
5614 bfd_zmalloc (sizeof (proposed_action
) * new_allocated
);
5616 for (i
= 0; i
< c
->action_count
; i
++)
5617 new_actions
[i
] = c
->actions
[i
];
5620 c
->actions
= new_actions
;
5621 c
->action_allocated
= new_allocated
;
5624 act
= &c
->actions
[c
->action_count
];
5625 act
->align_type
= align_type
;
5626 act
->alignment_pow
= alignment_pow
;
5627 act
->action
= action
;
5628 act
->offset
= offset
;
5629 act
->removed_bytes
= removed_bytes
;
5630 act
->do_action
= do_action
;
5636 /* Access to internal relocations, section contents and symbols. */
5638 /* During relaxation, we need to modify relocations, section contents,
5639 and symbol definitions, and we need to keep the original values from
5640 being reloaded from the input files, i.e., we need to "pin" the
5641 modified values in memory. We also want to continue to observe the
5642 setting of the "keep-memory" flag. The following functions wrap the
5643 standard BFD functions to take care of this for us. */
5645 static Elf_Internal_Rela
*
5646 retrieve_internal_relocs (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
5648 Elf_Internal_Rela
*internal_relocs
;
5650 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
5653 internal_relocs
= elf_section_data (sec
)->relocs
;
5654 if (internal_relocs
== NULL
)
5655 internal_relocs
= (_bfd_elf_link_read_relocs
5656 (abfd
, sec
, NULL
, NULL
, keep_memory
));
5657 return internal_relocs
;
5662 pin_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
5664 elf_section_data (sec
)->relocs
= internal_relocs
;
5669 release_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
5672 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5673 free (internal_relocs
);
5678 retrieve_contents (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
5681 bfd_size_type sec_size
;
5683 sec_size
= bfd_get_section_limit (abfd
, sec
);
5684 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5686 if (contents
== NULL
&& sec_size
!= 0)
5688 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5695 elf_section_data (sec
)->this_hdr
.contents
= contents
;
5702 pin_contents (asection
*sec
, bfd_byte
*contents
)
5704 elf_section_data (sec
)->this_hdr
.contents
= contents
;
5709 release_contents (asection
*sec
, bfd_byte
*contents
)
5711 if (contents
&& elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5716 static Elf_Internal_Sym
*
5717 retrieve_local_syms (bfd
*input_bfd
)
5719 Elf_Internal_Shdr
*symtab_hdr
;
5720 Elf_Internal_Sym
*isymbuf
;
5723 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5724 locsymcount
= symtab_hdr
->sh_info
;
5726 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5727 if (isymbuf
== NULL
&& locsymcount
!= 0)
5728 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
5731 /* Save the symbols for this input file so they won't be read again. */
5732 if (isymbuf
&& isymbuf
!= (Elf_Internal_Sym
*) symtab_hdr
->contents
)
5733 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
5739 /* Code for link-time relaxation. */
5741 /* Initialization for relaxation: */
5742 static bfd_boolean
analyze_relocations (struct bfd_link_info
*);
5743 static bfd_boolean find_relaxable_sections
5744 (bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*);
5745 static bfd_boolean collect_source_relocs
5746 (bfd
*, asection
*, struct bfd_link_info
*);
5747 static bfd_boolean is_resolvable_asm_expansion
5748 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, struct bfd_link_info
*,
5750 static Elf_Internal_Rela
*find_associated_l32r_irel
5751 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Rela
*);
5752 static bfd_boolean compute_text_actions
5753 (bfd
*, asection
*, struct bfd_link_info
*);
5754 static bfd_boolean
compute_ebb_proposed_actions (ebb_constraint
*);
5755 static bfd_boolean
compute_ebb_actions (ebb_constraint
*);
5756 static bfd_boolean check_section_ebb_pcrels_fit
5757 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, const ebb_constraint
*);
5758 static bfd_boolean
check_section_ebb_reduces (const ebb_constraint
*);
5759 static void text_action_add_proposed
5760 (text_action_list
*, const ebb_constraint
*, asection
*);
5761 static int compute_fill_extra_space (property_table_entry
*);
5764 static bfd_boolean compute_removed_literals
5765 (bfd
*, asection
*, struct bfd_link_info
*, value_map_hash_table
*);
5766 static Elf_Internal_Rela
*get_irel_at_offset
5767 (asection
*, Elf_Internal_Rela
*, bfd_vma
);
5768 static bfd_boolean is_removable_literal
5769 (const source_reloc
*, int, const source_reloc
*, int);
5770 static bfd_boolean remove_dead_literal
5771 (bfd
*, asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
5772 Elf_Internal_Rela
*, source_reloc
*, property_table_entry
*, int);
5773 static bfd_boolean identify_literal_placement
5774 (bfd
*, asection
*, bfd_byte
*, struct bfd_link_info
*,
5775 value_map_hash_table
*, bfd_boolean
*, Elf_Internal_Rela
*, int,
5776 source_reloc
*, property_table_entry
*, int, section_cache_t
*,
5778 static bfd_boolean
relocations_reach (source_reloc
*, int, const r_reloc
*);
5779 static bfd_boolean coalesce_shared_literal
5780 (asection
*, source_reloc
*, property_table_entry
*, int, value_map
*);
5781 static bfd_boolean move_shared_literal
5782 (asection
*, struct bfd_link_info
*, source_reloc
*, property_table_entry
*,
5783 int, const r_reloc
*, const literal_value
*, section_cache_t
*);
5786 static bfd_boolean
relax_section (bfd
*, asection
*, struct bfd_link_info
*);
5787 static bfd_boolean
translate_section_fixes (asection
*);
5788 static bfd_boolean
translate_reloc_bfd_fix (reloc_bfd_fix
*);
5789 static void translate_reloc (const r_reloc
*, r_reloc
*);
5790 static void shrink_dynamic_reloc_sections
5791 (struct bfd_link_info
*, bfd
*, asection
*, Elf_Internal_Rela
*);
5792 static bfd_boolean move_literal
5793 (bfd
*, struct bfd_link_info
*, asection
*, bfd_vma
, bfd_byte
*,
5794 xtensa_relax_info
*, Elf_Internal_Rela
**, const literal_value
*);
5795 static bfd_boolean relax_property_section
5796 (bfd
*, asection
*, struct bfd_link_info
*);
5799 static bfd_boolean
relax_section_symbols (bfd
*, asection
*);
5803 elf_xtensa_relax_section (bfd
*abfd
,
5805 struct bfd_link_info
*link_info
,
5808 static value_map_hash_table
*values
= NULL
;
5809 static bfd_boolean relocations_analyzed
= FALSE
;
5810 xtensa_relax_info
*relax_info
;
5812 if (!relocations_analyzed
)
5814 /* Do some overall initialization for relaxation. */
5815 values
= value_map_hash_table_init ();
5818 relaxing_section
= TRUE
;
5819 if (!analyze_relocations (link_info
))
5821 relocations_analyzed
= TRUE
;
5825 /* Don't mess with linker-created sections. */
5826 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
5829 relax_info
= get_xtensa_relax_info (sec
);
5830 BFD_ASSERT (relax_info
!= NULL
);
5832 switch (relax_info
->visited
)
5835 /* Note: It would be nice to fold this pass into
5836 analyze_relocations, but it is important for this step that the
5837 sections be examined in link order. */
5838 if (!compute_removed_literals (abfd
, sec
, link_info
, values
))
5845 value_map_hash_table_delete (values
);
5847 if (!relax_section (abfd
, sec
, link_info
))
5853 if (!relax_section_symbols (abfd
, sec
))
5858 relax_info
->visited
++;
5863 /* Initialization for relaxation. */
5865 /* This function is called once at the start of relaxation. It scans
5866 all the input sections and marks the ones that are relaxable (i.e.,
5867 literal sections with L32R relocations against them), and then
5868 collects source_reloc information for all the relocations against
5869 those relaxable sections. During this process, it also detects
5870 longcalls, i.e., calls relaxed by the assembler into indirect
5871 calls, that can be optimized back into direct calls. Within each
5872 extended basic block (ebb) containing an optimized longcall, it
5873 computes a set of "text actions" that can be performed to remove
5874 the L32R associated with the longcall while optionally preserving
5875 branch target alignments. */
5878 analyze_relocations (struct bfd_link_info
*link_info
)
5882 bfd_boolean is_relaxable
= FALSE
;
5884 /* Initialize the per-section relaxation info. */
5885 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5886 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5888 init_xtensa_relax_info (sec
);
5891 /* Mark relaxable sections (and count relocations against each one). */
5892 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5893 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5895 if (!find_relaxable_sections (abfd
, sec
, link_info
, &is_relaxable
))
5899 /* Bail out if there are no relaxable sections. */
5903 /* Allocate space for source_relocs. */
5904 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5905 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5907 xtensa_relax_info
*relax_info
;
5909 relax_info
= get_xtensa_relax_info (sec
);
5910 if (relax_info
->is_relaxable_literal_section
5911 || relax_info
->is_relaxable_asm_section
)
5913 relax_info
->src_relocs
= (source_reloc
*)
5914 bfd_malloc (relax_info
->src_count
* sizeof (source_reloc
));
5918 /* Collect info on relocations against each relaxable section. */
5919 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5920 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5922 if (!collect_source_relocs (abfd
, sec
, link_info
))
5926 /* Compute the text actions. */
5927 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
5928 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5930 if (!compute_text_actions (abfd
, sec
, link_info
))
5938 /* Find all the sections that might be relaxed. The motivation for
5939 this pass is that collect_source_relocs() needs to record _all_ the
5940 relocations that target each relaxable section. That is expensive
5941 and unnecessary unless the target section is actually going to be
5942 relaxed. This pass identifies all such sections by checking if
5943 they have L32Rs pointing to them. In the process, the total number
5944 of relocations targeting each section is also counted so that we
5945 know how much space to allocate for source_relocs against each
5946 relaxable literal section. */
5949 find_relaxable_sections (bfd
*abfd
,
5951 struct bfd_link_info
*link_info
,
5952 bfd_boolean
*is_relaxable_p
)
5954 Elf_Internal_Rela
*internal_relocs
;
5956 bfd_boolean ok
= TRUE
;
5958 xtensa_relax_info
*source_relax_info
;
5960 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
5961 link_info
->keep_memory
);
5962 if (internal_relocs
== NULL
)
5965 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
5966 if (contents
== NULL
&& sec
->size
!= 0)
5972 source_relax_info
= get_xtensa_relax_info (sec
);
5973 for (i
= 0; i
< sec
->reloc_count
; i
++)
5975 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
5977 asection
*target_sec
;
5978 xtensa_relax_info
*target_relax_info
;
5980 /* If this section has not already been marked as "relaxable", and
5981 if it contains any ASM_EXPAND relocations (marking expanded
5982 longcalls) that can be optimized into direct calls, then mark
5983 the section as "relaxable". */
5984 if (source_relax_info
5985 && !source_relax_info
->is_relaxable_asm_section
5986 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_EXPAND
)
5988 bfd_boolean is_reachable
= FALSE
;
5989 if (is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
,
5990 link_info
, &is_reachable
)
5993 source_relax_info
->is_relaxable_asm_section
= TRUE
;
5994 *is_relaxable_p
= TRUE
;
5998 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
5999 bfd_get_section_limit (abfd
, sec
));
6001 target_sec
= r_reloc_get_section (&r_rel
);
6002 target_relax_info
= get_xtensa_relax_info (target_sec
);
6003 if (!target_relax_info
)
6006 /* Count PC-relative operand relocations against the target section.
6007 Note: The conditions tested here must match the conditions under
6008 which init_source_reloc is called in collect_source_relocs(). */
6009 if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
))
6010 && (!is_alt_relocation (ELF32_R_TYPE (irel
->r_info
))
6011 || is_l32r_relocation (abfd
, sec
, contents
, irel
)))
6012 target_relax_info
->src_count
++;
6014 if (is_l32r_relocation (abfd
, sec
, contents
, irel
)
6015 && r_reloc_is_defined (&r_rel
))
6017 /* Mark the target section as relaxable. */
6018 target_relax_info
->is_relaxable_literal_section
= TRUE
;
6019 *is_relaxable_p
= TRUE
;
6024 release_contents (sec
, contents
);
6025 release_internal_relocs (sec
, internal_relocs
);
6030 /* Record _all_ the relocations that point to relaxable sections, and
6031 get rid of ASM_EXPAND relocs by either converting them to
6032 ASM_SIMPLIFY or by removing them. */
6035 collect_source_relocs (bfd
*abfd
,
6037 struct bfd_link_info
*link_info
)
6039 Elf_Internal_Rela
*internal_relocs
;
6041 bfd_boolean ok
= TRUE
;
6043 bfd_size_type sec_size
;
6045 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6046 link_info
->keep_memory
);
6047 if (internal_relocs
== NULL
)
6050 sec_size
= bfd_get_section_limit (abfd
, sec
);
6051 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6052 if (contents
== NULL
&& sec_size
!= 0)
6058 /* Record relocations against relaxable literal sections. */
6059 for (i
= 0; i
< sec
->reloc_count
; i
++)
6061 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6063 asection
*target_sec
;
6064 xtensa_relax_info
*target_relax_info
;
6066 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
6068 target_sec
= r_reloc_get_section (&r_rel
);
6069 target_relax_info
= get_xtensa_relax_info (target_sec
);
6071 if (target_relax_info
6072 && (target_relax_info
->is_relaxable_literal_section
6073 || target_relax_info
->is_relaxable_asm_section
))
6075 xtensa_opcode opcode
= XTENSA_UNDEFINED
;
6077 bfd_boolean is_abs_literal
= FALSE
;
6079 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
6081 /* None of the current alternate relocs are PC-relative,
6082 and only PC-relative relocs matter here. However, we
6083 still need to record the opcode for literal
6085 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6086 if (opcode
== get_l32r_opcode ())
6088 is_abs_literal
= TRUE
;
6092 opcode
= XTENSA_UNDEFINED
;
6094 else if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
6096 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6097 opnd
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
6100 if (opcode
!= XTENSA_UNDEFINED
)
6102 int src_next
= target_relax_info
->src_next
++;
6103 source_reloc
*s_reloc
= &target_relax_info
->src_relocs
[src_next
];
6105 init_source_reloc (s_reloc
, sec
, &r_rel
, opcode
, opnd
,
6111 /* Now get rid of ASM_EXPAND relocations. At this point, the
6112 src_relocs array for the target literal section may still be
6113 incomplete, but it must at least contain the entries for the L32R
6114 relocations associated with ASM_EXPANDs because they were just
6115 added in the preceding loop over the relocations. */
6117 for (i
= 0; i
< sec
->reloc_count
; i
++)
6119 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6120 bfd_boolean is_reachable
;
6122 if (!is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
, link_info
,
6128 Elf_Internal_Rela
*l32r_irel
;
6130 asection
*target_sec
;
6131 xtensa_relax_info
*target_relax_info
;
6133 /* Mark the source_reloc for the L32R so that it will be
6134 removed in compute_removed_literals(), along with the
6135 associated literal. */
6136 l32r_irel
= find_associated_l32r_irel (abfd
, sec
, contents
,
6137 irel
, internal_relocs
);
6138 if (l32r_irel
== NULL
)
6141 r_reloc_init (&r_rel
, abfd
, l32r_irel
, contents
, sec_size
);
6143 target_sec
= r_reloc_get_section (&r_rel
);
6144 target_relax_info
= get_xtensa_relax_info (target_sec
);
6146 if (target_relax_info
6147 && (target_relax_info
->is_relaxable_literal_section
6148 || target_relax_info
->is_relaxable_asm_section
))
6150 source_reloc
*s_reloc
;
6152 /* Search the source_relocs for the entry corresponding to
6153 the l32r_irel. Note: The src_relocs array is not yet
6154 sorted, but it wouldn't matter anyway because we're
6155 searching by source offset instead of target offset. */
6156 s_reloc
= find_source_reloc (target_relax_info
->src_relocs
,
6157 target_relax_info
->src_next
,
6159 BFD_ASSERT (s_reloc
);
6160 s_reloc
->is_null
= TRUE
;
6163 /* Convert this reloc to ASM_SIMPLIFY. */
6164 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
),
6165 R_XTENSA_ASM_SIMPLIFY
);
6166 l32r_irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
6168 pin_internal_relocs (sec
, internal_relocs
);
6172 /* It is resolvable but doesn't reach. We resolve now
6173 by eliminating the relocation -- the call will remain
6174 expanded into L32R/CALLX. */
6175 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
6176 pin_internal_relocs (sec
, internal_relocs
);
6181 release_contents (sec
, contents
);
6182 release_internal_relocs (sec
, internal_relocs
);
6187 /* Return TRUE if the asm expansion can be resolved. Generally it can
6188 be resolved on a final link or when a partial link locates it in the
6189 same section as the target. Set "is_reachable" flag if the target of
6190 the call is within the range of a direct call, given the current VMA
6191 for this section and the target section. */
6194 is_resolvable_asm_expansion (bfd
*abfd
,
6197 Elf_Internal_Rela
*irel
,
6198 struct bfd_link_info
*link_info
,
6199 bfd_boolean
*is_reachable_p
)
6201 asection
*target_sec
;
6202 bfd_vma target_offset
;
6204 xtensa_opcode opcode
, direct_call_opcode
;
6205 bfd_vma self_address
;
6206 bfd_vma dest_address
;
6207 bfd_boolean uses_l32r
;
6208 bfd_size_type sec_size
;
6210 *is_reachable_p
= FALSE
;
6212 if (contents
== NULL
)
6215 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_EXPAND
)
6218 sec_size
= bfd_get_section_limit (abfd
, sec
);
6219 opcode
= get_expanded_call_opcode (contents
+ irel
->r_offset
,
6220 sec_size
- irel
->r_offset
, &uses_l32r
);
6221 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6225 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
6226 if (direct_call_opcode
== XTENSA_UNDEFINED
)
6229 /* Check and see that the target resolves. */
6230 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
6231 if (!r_reloc_is_defined (&r_rel
))
6234 target_sec
= r_reloc_get_section (&r_rel
);
6235 target_offset
= r_rel
.target_offset
;
6237 /* If the target is in a shared library, then it doesn't reach. This
6238 isn't supposed to come up because the compiler should never generate
6239 non-PIC calls on systems that use shared libraries, but the linker
6240 shouldn't crash regardless. */
6241 if (!target_sec
->output_section
)
6244 /* For relocatable sections, we can only simplify when the output
6245 section of the target is the same as the output section of the
6247 if (link_info
->relocatable
6248 && (target_sec
->output_section
!= sec
->output_section
6249 || is_reloc_sym_weak (abfd
, irel
)))
6252 self_address
= (sec
->output_section
->vma
6253 + sec
->output_offset
+ irel
->r_offset
+ 3);
6254 dest_address
= (target_sec
->output_section
->vma
6255 + target_sec
->output_offset
+ target_offset
);
6257 *is_reachable_p
= pcrel_reloc_fits (direct_call_opcode
, 0,
6258 self_address
, dest_address
);
6260 if ((self_address
>> CALL_SEGMENT_BITS
) !=
6261 (dest_address
>> CALL_SEGMENT_BITS
))
6268 static Elf_Internal_Rela
*
6269 find_associated_l32r_irel (bfd
*abfd
,
6272 Elf_Internal_Rela
*other_irel
,
6273 Elf_Internal_Rela
*internal_relocs
)
6277 for (i
= 0; i
< sec
->reloc_count
; i
++)
6279 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6281 if (irel
== other_irel
)
6283 if (irel
->r_offset
!= other_irel
->r_offset
)
6285 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
6293 /* The compute_text_actions function will build a list of potential
6294 transformation actions for code in the extended basic block of each
6295 longcall that is optimized to a direct call. From this list we
6296 generate a set of actions to actually perform that optimizes for
6297 space and, if not using size_opt, maintains branch target
6300 These actions to be performed are placed on a per-section list.
6301 The actual changes are performed by relax_section() in the second
6305 compute_text_actions (bfd
*abfd
,
6307 struct bfd_link_info
*link_info
)
6309 xtensa_relax_info
*relax_info
;
6311 Elf_Internal_Rela
*internal_relocs
;
6312 bfd_boolean ok
= TRUE
;
6314 property_table_entry
*prop_table
= 0;
6316 bfd_size_type sec_size
;
6317 static bfd_boolean no_insn_move
= FALSE
;
6322 /* Do nothing if the section contains no optimized longcalls. */
6323 relax_info
= get_xtensa_relax_info (sec
);
6324 BFD_ASSERT (relax_info
);
6325 if (!relax_info
->is_relaxable_asm_section
)
6328 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6329 link_info
->keep_memory
);
6331 if (internal_relocs
)
6332 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
6333 internal_reloc_compare
);
6335 sec_size
= bfd_get_section_limit (abfd
, sec
);
6336 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6337 if (contents
== NULL
&& sec_size
!= 0)
6343 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
6344 XTENSA_PROP_SEC_NAME
, FALSE
);
6351 for (i
= 0; i
< sec
->reloc_count
; i
++)
6353 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6355 property_table_entry
*the_entry
;
6358 ebb_constraint ebb_table
;
6359 bfd_size_type simplify_size
;
6361 if (irel
&& ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_SIMPLIFY
)
6363 r_offset
= irel
->r_offset
;
6365 simplify_size
= get_asm_simplify_size (contents
, sec_size
, r_offset
);
6366 if (simplify_size
== 0)
6368 (*_bfd_error_handler
)
6369 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6370 sec
->owner
, sec
, r_offset
);
6374 /* If the instruction table is not around, then don't do this
6376 the_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
6377 sec
->vma
+ irel
->r_offset
);
6378 if (the_entry
== NULL
|| XTENSA_NO_NOP_REMOVAL
)
6380 text_action_add (&relax_info
->action_list
,
6381 ta_convert_longcall
, sec
, r_offset
,
6386 /* If the next longcall happens to be at the same address as an
6387 unreachable section of size 0, then skip forward. */
6388 ptbl_idx
= the_entry
- prop_table
;
6389 while ((the_entry
->flags
& XTENSA_PROP_UNREACHABLE
)
6390 && the_entry
->size
== 0
6391 && ptbl_idx
+ 1 < ptblsize
6392 && (prop_table
[ptbl_idx
+ 1].address
6393 == prop_table
[ptbl_idx
].address
))
6399 if (the_entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
)
6400 /* NO_REORDER is OK */
6403 init_ebb_constraint (&ebb_table
);
6404 ebb
= &ebb_table
.ebb
;
6405 init_ebb (ebb
, sec
, contents
, sec_size
, prop_table
, ptblsize
,
6406 internal_relocs
, sec
->reloc_count
);
6407 ebb
->start_offset
= r_offset
+ simplify_size
;
6408 ebb
->end_offset
= r_offset
+ simplify_size
;
6409 ebb
->start_ptbl_idx
= ptbl_idx
;
6410 ebb
->end_ptbl_idx
= ptbl_idx
;
6411 ebb
->start_reloc_idx
= i
;
6412 ebb
->end_reloc_idx
= i
;
6414 if (!extend_ebb_bounds (ebb
)
6415 || !compute_ebb_proposed_actions (&ebb_table
)
6416 || !compute_ebb_actions (&ebb_table
)
6417 || !check_section_ebb_pcrels_fit (abfd
, sec
, contents
,
6418 internal_relocs
, &ebb_table
)
6419 || !check_section_ebb_reduces (&ebb_table
))
6421 /* If anything goes wrong or we get unlucky and something does
6422 not fit, with our plan because of expansion between
6423 critical branches, just convert to a NOP. */
6425 text_action_add (&relax_info
->action_list
,
6426 ta_convert_longcall
, sec
, r_offset
, 0);
6427 i
= ebb_table
.ebb
.end_reloc_idx
;
6428 free_ebb_constraint (&ebb_table
);
6432 text_action_add_proposed (&relax_info
->action_list
, &ebb_table
, sec
);
6434 /* Update the index so we do not go looking at the relocations
6435 we have already processed. */
6436 i
= ebb_table
.ebb
.end_reloc_idx
;
6437 free_ebb_constraint (&ebb_table
);
6441 if (relax_info
->action_list
.head
)
6442 print_action_list (stderr
, &relax_info
->action_list
);
6446 release_contents (sec
, contents
);
6447 release_internal_relocs (sec
, internal_relocs
);
6455 /* Find all of the possible actions for an extended basic block. */
6458 compute_ebb_proposed_actions (ebb_constraint
*ebb_table
)
6460 const ebb_t
*ebb
= &ebb_table
->ebb
;
6461 unsigned rel_idx
= ebb
->start_reloc_idx
;
6462 property_table_entry
*entry
, *start_entry
, *end_entry
;
6464 start_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
6465 end_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
6467 for (entry
= start_entry
; entry
<= end_entry
; entry
++)
6469 bfd_vma offset
, start_offset
, end_offset
;
6470 bfd_size_type insn_len
;
6472 start_offset
= entry
->address
- ebb
->sec
->vma
;
6473 end_offset
= entry
->address
+ entry
->size
- ebb
->sec
->vma
;
6475 if (entry
== start_entry
)
6476 start_offset
= ebb
->start_offset
;
6477 if (entry
== end_entry
)
6478 end_offset
= ebb
->end_offset
;
6479 offset
= start_offset
;
6481 if (offset
== entry
->address
- ebb
->sec
->vma
6482 && (entry
->flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) != 0)
6484 enum ebb_target_enum align_type
= EBB_DESIRE_TGT_ALIGN
;
6485 BFD_ASSERT (offset
!= end_offset
);
6486 if (offset
== end_offset
)
6489 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
6492 /* Propose no actions for a section with an undecodable offset. */
6495 (*_bfd_error_handler
)
6496 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6497 ebb
->sec
->owner
, ebb
->sec
, offset
);
6500 if (check_branch_target_aligned_address (offset
, insn_len
))
6501 align_type
= EBB_REQUIRE_TGT_ALIGN
;
6503 ebb_propose_action (ebb_table
, align_type
, 0,
6504 ta_none
, offset
, 0, TRUE
);
6507 while (offset
!= end_offset
)
6509 Elf_Internal_Rela
*irel
;
6510 xtensa_opcode opcode
;
6512 while (rel_idx
< ebb
->end_reloc_idx
6513 && (ebb
->relocs
[rel_idx
].r_offset
< offset
6514 || (ebb
->relocs
[rel_idx
].r_offset
== offset
6515 && (ELF32_R_TYPE (ebb
->relocs
[rel_idx
].r_info
)
6516 != R_XTENSA_ASM_SIMPLIFY
))))
6519 /* Check for longcall. */
6520 irel
= &ebb
->relocs
[rel_idx
];
6521 if (irel
->r_offset
== offset
6522 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
)
6524 bfd_size_type simplify_size
;
6526 simplify_size
= get_asm_simplify_size (ebb
->contents
,
6527 ebb
->content_length
,
6529 if (simplify_size
== 0)
6531 (*_bfd_error_handler
)
6532 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6533 ebb
->sec
->owner
, ebb
->sec
, offset
);
6537 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6538 ta_convert_longcall
, offset
, 0, TRUE
);
6540 offset
+= simplify_size
;
6544 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
6546 /* If the instruction is undecodable, then report an error. */
6549 (*_bfd_error_handler
)
6550 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6551 ebb
->sec
->owner
, ebb
->sec
, offset
);
6555 if ((entry
->flags
& XTENSA_PROP_INSN_NO_DENSITY
) == 0
6556 && (entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) == 0
6557 && narrow_instruction (ebb
->contents
, ebb
->content_length
,
6560 /* Add an instruction narrow action. */
6561 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6562 ta_narrow_insn
, offset
, 0, FALSE
);
6566 if ((entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
) == 0
6567 && widen_instruction (ebb
->contents
, ebb
->content_length
,
6570 /* Add an instruction widen action. */
6571 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6572 ta_widen_insn
, offset
, 0, FALSE
);
6576 opcode
= insn_decode_opcode (ebb
->contents
, ebb
->content_length
,
6578 if (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
))
6580 /* Check for branch targets. */
6581 ebb_propose_action (ebb_table
, EBB_REQUIRE_LOOP_ALIGN
, 0,
6582 ta_none
, offset
, 0, TRUE
);
6591 if (ebb
->ends_unreachable
)
6593 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
6594 ta_fill
, ebb
->end_offset
, 0, TRUE
);
6601 /* After all of the information has collected about the
6602 transformations possible in an EBB, compute the appropriate actions
6603 here in compute_ebb_actions. We still must check later to make
6604 sure that the actions do not break any relocations. The algorithm
6605 used here is pretty greedy. Basically, it removes as many no-ops
6606 as possible so that the end of the EBB has the same alignment
6607 characteristics as the original. First, it uses narrowing, then
6608 fill space at the end of the EBB, and finally widenings. If that
6609 does not work, it tries again with one fewer no-op removed. The
6610 optimization will only be performed if all of the branch targets
6611 that were aligned before transformation are also aligned after the
6614 When the size_opt flag is set, ignore the branch target alignments,
6615 narrow all wide instructions, and remove all no-ops unless the end
6616 of the EBB prevents it. */
6619 compute_ebb_actions (ebb_constraint
*ebb_table
)
6623 int removed_bytes
= 0;
6624 ebb_t
*ebb
= &ebb_table
->ebb
;
6625 unsigned seg_idx_start
= 0;
6626 unsigned seg_idx_end
= 0;
6628 /* We perform this like the assembler relaxation algorithm: Start by
6629 assuming all instructions are narrow and all no-ops removed; then
6632 /* For each segment of this that has a solid constraint, check to
6633 see if there are any combinations that will keep the constraint.
6635 for (seg_idx_end
= 0; seg_idx_end
< ebb_table
->action_count
; seg_idx_end
++)
6637 bfd_boolean requires_text_end_align
= FALSE
;
6638 unsigned longcall_count
= 0;
6639 unsigned longcall_convert_count
= 0;
6640 unsigned narrowable_count
= 0;
6641 unsigned narrowable_convert_count
= 0;
6642 unsigned widenable_count
= 0;
6643 unsigned widenable_convert_count
= 0;
6645 proposed_action
*action
= NULL
;
6646 int align
= (1 << ebb_table
->ebb
.sec
->alignment_power
);
6648 seg_idx_start
= seg_idx_end
;
6650 for (i
= seg_idx_start
; i
< ebb_table
->action_count
; i
++)
6652 action
= &ebb_table
->actions
[i
];
6653 if (action
->action
== ta_convert_longcall
)
6655 if (action
->action
== ta_narrow_insn
)
6657 if (action
->action
== ta_widen_insn
)
6659 if (action
->action
== ta_fill
)
6661 if (action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
6663 if (action
->align_type
== EBB_REQUIRE_TGT_ALIGN
6664 && !elf32xtensa_size_opt
)
6669 if (seg_idx_end
== ebb_table
->action_count
&& !ebb
->ends_unreachable
)
6670 requires_text_end_align
= TRUE
;
6672 if (elf32xtensa_size_opt
&& !requires_text_end_align
6673 && action
->align_type
!= EBB_REQUIRE_LOOP_ALIGN
6674 && action
->align_type
!= EBB_REQUIRE_TGT_ALIGN
)
6676 longcall_convert_count
= longcall_count
;
6677 narrowable_convert_count
= narrowable_count
;
6678 widenable_convert_count
= 0;
6682 /* There is a constraint. Convert the max number of longcalls. */
6683 narrowable_convert_count
= 0;
6684 longcall_convert_count
= 0;
6685 widenable_convert_count
= 0;
6687 for (j
= 0; j
< longcall_count
; j
++)
6689 int removed
= (longcall_count
- j
) * 3 & (align
- 1);
6690 unsigned desire_narrow
= (align
- removed
) & (align
- 1);
6691 unsigned desire_widen
= removed
;
6692 if (desire_narrow
<= narrowable_count
)
6694 narrowable_convert_count
= desire_narrow
;
6695 narrowable_convert_count
+=
6696 (align
* ((narrowable_count
- narrowable_convert_count
)
6698 longcall_convert_count
= (longcall_count
- j
);
6699 widenable_convert_count
= 0;
6702 if (desire_widen
<= widenable_count
&& !elf32xtensa_size_opt
)
6704 narrowable_convert_count
= 0;
6705 longcall_convert_count
= longcall_count
- j
;
6706 widenable_convert_count
= desire_widen
;
6712 /* Now the number of conversions are saved. Do them. */
6713 for (i
= seg_idx_start
; i
< seg_idx_end
; i
++)
6715 action
= &ebb_table
->actions
[i
];
6716 switch (action
->action
)
6718 case ta_convert_longcall
:
6719 if (longcall_convert_count
!= 0)
6721 action
->action
= ta_remove_longcall
;
6722 action
->do_action
= TRUE
;
6723 action
->removed_bytes
+= 3;
6724 longcall_convert_count
--;
6727 case ta_narrow_insn
:
6728 if (narrowable_convert_count
!= 0)
6730 action
->do_action
= TRUE
;
6731 action
->removed_bytes
+= 1;
6732 narrowable_convert_count
--;
6736 if (widenable_convert_count
!= 0)
6738 action
->do_action
= TRUE
;
6739 action
->removed_bytes
-= 1;
6740 widenable_convert_count
--;
6749 /* Now we move on to some local opts. Try to remove each of the
6750 remaining longcalls. */
6752 if (ebb_table
->ebb
.ends_section
|| ebb_table
->ebb
.ends_unreachable
)
6755 for (i
= 0; i
< ebb_table
->action_count
; i
++)
6757 int old_removed_bytes
= removed_bytes
;
6758 proposed_action
*action
= &ebb_table
->actions
[i
];
6760 if (action
->do_action
&& action
->action
== ta_convert_longcall
)
6762 bfd_boolean bad_alignment
= FALSE
;
6764 for (j
= i
+ 1; j
< ebb_table
->action_count
; j
++)
6766 proposed_action
*new_action
= &ebb_table
->actions
[j
];
6767 bfd_vma offset
= new_action
->offset
;
6768 if (new_action
->align_type
== EBB_REQUIRE_TGT_ALIGN
)
6770 if (!check_branch_target_aligned
6771 (ebb_table
->ebb
.contents
,
6772 ebb_table
->ebb
.content_length
,
6773 offset
, offset
- removed_bytes
))
6775 bad_alignment
= TRUE
;
6779 if (new_action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
6781 if (!check_loop_aligned (ebb_table
->ebb
.contents
,
6782 ebb_table
->ebb
.content_length
,
6784 offset
- removed_bytes
))
6786 bad_alignment
= TRUE
;
6790 if (new_action
->action
== ta_narrow_insn
6791 && !new_action
->do_action
6792 && ebb_table
->ebb
.sec
->alignment_power
== 2)
6794 /* Narrow an instruction and we are done. */
6795 new_action
->do_action
= TRUE
;
6796 new_action
->removed_bytes
+= 1;
6797 bad_alignment
= FALSE
;
6800 if (new_action
->action
== ta_widen_insn
6801 && new_action
->do_action
6802 && ebb_table
->ebb
.sec
->alignment_power
== 2)
6804 /* Narrow an instruction and we are done. */
6805 new_action
->do_action
= FALSE
;
6806 new_action
->removed_bytes
+= 1;
6807 bad_alignment
= FALSE
;
6813 action
->removed_bytes
+= 3;
6814 action
->action
= ta_remove_longcall
;
6815 action
->do_action
= TRUE
;
6818 removed_bytes
= old_removed_bytes
;
6819 if (action
->do_action
)
6820 removed_bytes
+= action
->removed_bytes
;
6825 for (i
= 0; i
< ebb_table
->action_count
; ++i
)
6827 proposed_action
*action
= &ebb_table
->actions
[i
];
6828 if (action
->do_action
)
6829 removed_bytes
+= action
->removed_bytes
;
6832 if ((removed_bytes
% (1 << ebb_table
->ebb
.sec
->alignment_power
)) != 0
6833 && ebb
->ends_unreachable
)
6835 proposed_action
*action
;
6839 BFD_ASSERT (ebb_table
->action_count
!= 0);
6840 action
= &ebb_table
->actions
[ebb_table
->action_count
- 1];
6841 BFD_ASSERT (action
->action
== ta_fill
);
6842 BFD_ASSERT (ebb
->ends_unreachable
->flags
& XTENSA_PROP_UNREACHABLE
);
6844 extra_space
= compute_fill_extra_space (ebb
->ends_unreachable
);
6845 br
= action
->removed_bytes
+ removed_bytes
+ extra_space
;
6846 br
= br
& ((1 << ebb
->sec
->alignment_power
) - 1);
6848 action
->removed_bytes
= extra_space
- br
;
6854 /* Use check_section_ebb_pcrels_fit to make sure that all of the
6855 relocations in a section will fit if a proposed set of actions
6859 check_section_ebb_pcrels_fit (bfd
*abfd
,
6862 Elf_Internal_Rela
*internal_relocs
,
6863 const ebb_constraint
*constraint
)
6866 Elf_Internal_Rela
*irel
;
6867 xtensa_relax_info
*relax_info
;
6869 relax_info
= get_xtensa_relax_info (sec
);
6871 for (i
= 0; i
< sec
->reloc_count
; i
++)
6874 bfd_vma orig_self_offset
, orig_target_offset
;
6875 bfd_vma self_offset
, target_offset
;
6877 reloc_howto_type
*howto
;
6878 int self_removed_bytes
, target_removed_bytes
;
6880 irel
= &internal_relocs
[i
];
6881 r_type
= ELF32_R_TYPE (irel
->r_info
);
6883 howto
= &elf_howto_table
[r_type
];
6884 /* We maintain the required invariant: PC-relative relocations
6885 that fit before linking must fit after linking. Thus we only
6886 need to deal with relocations to the same section that are
6888 if (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
6889 || !howto
->pc_relative
)
6892 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
6893 bfd_get_section_limit (abfd
, sec
));
6895 if (r_reloc_get_section (&r_rel
) != sec
)
6898 orig_self_offset
= irel
->r_offset
;
6899 orig_target_offset
= r_rel
.target_offset
;
6901 self_offset
= orig_self_offset
;
6902 target_offset
= orig_target_offset
;
6906 self_offset
= offset_with_removed_text (&relax_info
->action_list
,
6908 target_offset
= offset_with_removed_text (&relax_info
->action_list
,
6909 orig_target_offset
);
6912 self_removed_bytes
= 0;
6913 target_removed_bytes
= 0;
6915 for (j
= 0; j
< constraint
->action_count
; ++j
)
6917 proposed_action
*action
= &constraint
->actions
[j
];
6918 bfd_vma offset
= action
->offset
;
6919 int removed_bytes
= action
->removed_bytes
;
6920 if (offset
< orig_self_offset
6921 || (offset
== orig_self_offset
&& action
->action
== ta_fill
6922 && action
->removed_bytes
< 0))
6923 self_removed_bytes
+= removed_bytes
;
6924 if (offset
< orig_target_offset
6925 || (offset
== orig_target_offset
&& action
->action
== ta_fill
6926 && action
->removed_bytes
< 0))
6927 target_removed_bytes
+= removed_bytes
;
6929 self_offset
-= self_removed_bytes
;
6930 target_offset
-= target_removed_bytes
;
6932 /* Try to encode it. Get the operand and check. */
6933 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
6935 /* None of the current alternate relocs are PC-relative,
6936 and only PC-relative relocs matter here. */
6940 xtensa_opcode opcode
;
6943 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6944 if (opcode
== XTENSA_UNDEFINED
)
6947 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
6948 if (opnum
== XTENSA_UNDEFINED
)
6951 if (!pcrel_reloc_fits (opcode
, opnum
, self_offset
, target_offset
))
6961 check_section_ebb_reduces (const ebb_constraint
*constraint
)
6966 for (i
= 0; i
< constraint
->action_count
; i
++)
6968 const proposed_action
*action
= &constraint
->actions
[i
];
6969 if (action
->do_action
)
6970 removed
+= action
->removed_bytes
;
6980 text_action_add_proposed (text_action_list
*l
,
6981 const ebb_constraint
*ebb_table
,
6986 for (i
= 0; i
< ebb_table
->action_count
; i
++)
6988 proposed_action
*action
= &ebb_table
->actions
[i
];
6990 if (!action
->do_action
)
6992 switch (action
->action
)
6994 case ta_remove_insn
:
6995 case ta_remove_longcall
:
6996 case ta_convert_longcall
:
6997 case ta_narrow_insn
:
7000 case ta_remove_literal
:
7001 text_action_add (l
, action
->action
, sec
, action
->offset
,
7002 action
->removed_bytes
);
7015 compute_fill_extra_space (property_table_entry
*entry
)
7017 int fill_extra_space
;
7022 if ((entry
->flags
& XTENSA_PROP_UNREACHABLE
) == 0)
7025 fill_extra_space
= entry
->size
;
7026 if ((entry
->flags
& XTENSA_PROP_ALIGN
) != 0)
7028 /* Fill bytes for alignment:
7029 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7030 int pow
= GET_XTENSA_PROP_ALIGNMENT (entry
->flags
);
7031 int nsm
= (1 << pow
) - 1;
7032 bfd_vma addr
= entry
->address
+ entry
->size
;
7033 bfd_vma align_fill
= nsm
- ((addr
+ nsm
) & nsm
);
7034 fill_extra_space
+= align_fill
;
7036 return fill_extra_space
;
7040 /* First relaxation pass. */
7042 /* If the section contains relaxable literals, check each literal to
7043 see if it has the same value as another literal that has already
7044 been seen, either in the current section or a previous one. If so,
7045 add an entry to the per-section list of removed literals. The
7046 actual changes are deferred until the next pass. */
7049 compute_removed_literals (bfd
*abfd
,
7051 struct bfd_link_info
*link_info
,
7052 value_map_hash_table
*values
)
7054 xtensa_relax_info
*relax_info
;
7056 Elf_Internal_Rela
*internal_relocs
;
7057 source_reloc
*src_relocs
, *rel
;
7058 bfd_boolean ok
= TRUE
;
7059 property_table_entry
*prop_table
= NULL
;
7062 bfd_boolean last_loc_is_prev
= FALSE
;
7063 bfd_vma last_target_offset
= 0;
7064 section_cache_t target_sec_cache
;
7065 bfd_size_type sec_size
;
7067 init_section_cache (&target_sec_cache
);
7069 /* Do nothing if it is not a relaxable literal section. */
7070 relax_info
= get_xtensa_relax_info (sec
);
7071 BFD_ASSERT (relax_info
);
7072 if (!relax_info
->is_relaxable_literal_section
)
7075 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7076 link_info
->keep_memory
);
7078 sec_size
= bfd_get_section_limit (abfd
, sec
);
7079 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7080 if (contents
== NULL
&& sec_size
!= 0)
7086 /* Sort the source_relocs by target offset. */
7087 src_relocs
= relax_info
->src_relocs
;
7088 qsort (src_relocs
, relax_info
->src_count
,
7089 sizeof (source_reloc
), source_reloc_compare
);
7090 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
7091 internal_reloc_compare
);
7093 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
7094 XTENSA_PROP_SEC_NAME
, FALSE
);
7102 for (i
= 0; i
< relax_info
->src_count
; i
++)
7104 Elf_Internal_Rela
*irel
= NULL
;
7106 rel
= &src_relocs
[i
];
7107 if (get_l32r_opcode () != rel
->opcode
)
7109 irel
= get_irel_at_offset (sec
, internal_relocs
,
7110 rel
->r_rel
.target_offset
);
7112 /* If the relocation on this is not a simple R_XTENSA_32 or
7113 R_XTENSA_PLT then do not consider it. This may happen when
7114 the difference of two symbols is used in a literal. */
7115 if (irel
&& (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_32
7116 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_PLT
))
7119 /* If the target_offset for this relocation is the same as the
7120 previous relocation, then we've already considered whether the
7121 literal can be coalesced. Skip to the next one.... */
7122 if (i
!= 0 && prev_i
!= -1
7123 && src_relocs
[i
-1].r_rel
.target_offset
== rel
->r_rel
.target_offset
)
7127 if (last_loc_is_prev
&&
7128 last_target_offset
+ 4 != rel
->r_rel
.target_offset
)
7129 last_loc_is_prev
= FALSE
;
7131 /* Check if the relocation was from an L32R that is being removed
7132 because a CALLX was converted to a direct CALL, and check if
7133 there are no other relocations to the literal. */
7134 if (is_removable_literal (rel
, i
, src_relocs
, relax_info
->src_count
))
7136 if (!remove_dead_literal (abfd
, sec
, link_info
, internal_relocs
,
7137 irel
, rel
, prop_table
, ptblsize
))
7142 last_target_offset
= rel
->r_rel
.target_offset
;
7146 if (!identify_literal_placement (abfd
, sec
, contents
, link_info
,
7148 &last_loc_is_prev
, irel
,
7149 relax_info
->src_count
- i
, rel
,
7150 prop_table
, ptblsize
,
7151 &target_sec_cache
, rel
->is_abs_literal
))
7156 last_target_offset
= rel
->r_rel
.target_offset
;
7160 print_removed_literals (stderr
, &relax_info
->removed_list
);
7161 print_action_list (stderr
, &relax_info
->action_list
);
7165 if (prop_table
) free (prop_table
);
7166 clear_section_cache (&target_sec_cache
);
7168 release_contents (sec
, contents
);
7169 release_internal_relocs (sec
, internal_relocs
);
7174 static Elf_Internal_Rela
*
7175 get_irel_at_offset (asection
*sec
,
7176 Elf_Internal_Rela
*internal_relocs
,
7180 Elf_Internal_Rela
*irel
;
7182 Elf_Internal_Rela key
;
7184 if (!internal_relocs
)
7187 key
.r_offset
= offset
;
7188 irel
= bsearch (&key
, internal_relocs
, sec
->reloc_count
,
7189 sizeof (Elf_Internal_Rela
), internal_reloc_matches
);
7193 /* bsearch does not guarantee which will be returned if there are
7194 multiple matches. We need the first that is not an alignment. */
7195 i
= irel
- internal_relocs
;
7198 if (internal_relocs
[i
-1].r_offset
!= offset
)
7202 for ( ; i
< sec
->reloc_count
; i
++)
7204 irel
= &internal_relocs
[i
];
7205 r_type
= ELF32_R_TYPE (irel
->r_info
);
7206 if (irel
->r_offset
== offset
&& r_type
!= R_XTENSA_NONE
)
7215 is_removable_literal (const source_reloc
*rel
,
7217 const source_reloc
*src_relocs
,
7220 const source_reloc
*curr_rel
;
7224 for (++i
; i
< src_count
; ++i
)
7226 curr_rel
= &src_relocs
[i
];
7227 /* If all others have the same target offset.... */
7228 if (curr_rel
->r_rel
.target_offset
!= rel
->r_rel
.target_offset
)
7231 if (!curr_rel
->is_null
7232 && !xtensa_is_property_section (curr_rel
->source_sec
)
7233 && !(curr_rel
->source_sec
->flags
& SEC_DEBUGGING
))
7241 remove_dead_literal (bfd
*abfd
,
7243 struct bfd_link_info
*link_info
,
7244 Elf_Internal_Rela
*internal_relocs
,
7245 Elf_Internal_Rela
*irel
,
7247 property_table_entry
*prop_table
,
7250 property_table_entry
*entry
;
7251 xtensa_relax_info
*relax_info
;
7253 relax_info
= get_xtensa_relax_info (sec
);
7257 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7258 sec
->vma
+ rel
->r_rel
.target_offset
);
7260 /* Mark the unused literal so that it will be removed. */
7261 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, NULL
);
7263 text_action_add (&relax_info
->action_list
,
7264 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7266 /* If the section is 4-byte aligned, do not add fill. */
7267 if (sec
->alignment_power
> 2)
7269 int fill_extra_space
;
7270 bfd_vma entry_sec_offset
;
7272 property_table_entry
*the_add_entry
;
7276 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
7278 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
7280 /* If the literal range is at the end of the section,
7282 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7284 fill_extra_space
= compute_fill_extra_space (the_add_entry
);
7286 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7287 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7288 -4, fill_extra_space
);
7290 adjust_fill_action (fa
, removed_diff
);
7292 text_action_add (&relax_info
->action_list
,
7293 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7296 /* Zero out the relocation on this literal location. */
7299 if (elf_hash_table (link_info
)->dynamic_sections_created
)
7300 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
7302 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7303 pin_internal_relocs (sec
, internal_relocs
);
7306 /* Do not modify "last_loc_is_prev". */
7312 identify_literal_placement (bfd
*abfd
,
7315 struct bfd_link_info
*link_info
,
7316 value_map_hash_table
*values
,
7317 bfd_boolean
*last_loc_is_prev_p
,
7318 Elf_Internal_Rela
*irel
,
7319 int remaining_src_rels
,
7321 property_table_entry
*prop_table
,
7323 section_cache_t
*target_sec_cache
,
7324 bfd_boolean is_abs_literal
)
7328 xtensa_relax_info
*relax_info
;
7329 bfd_boolean literal_placed
= FALSE
;
7331 unsigned long value
;
7332 bfd_boolean final_static_link
;
7333 bfd_size_type sec_size
;
7335 relax_info
= get_xtensa_relax_info (sec
);
7339 sec_size
= bfd_get_section_limit (abfd
, sec
);
7342 (!link_info
->relocatable
7343 && !elf_hash_table (link_info
)->dynamic_sections_created
);
7345 /* The placement algorithm first checks to see if the literal is
7346 already in the value map. If so and the value map is reachable
7347 from all uses, then the literal is moved to that location. If
7348 not, then we identify the last location where a fresh literal was
7349 placed. If the literal can be safely moved there, then we do so.
7350 If not, then we assume that the literal is not to move and leave
7351 the literal where it is, marking it as the last literal
7354 /* Find the literal value. */
7356 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7359 BFD_ASSERT (rel
->r_rel
.target_offset
< sec_size
);
7360 value
= bfd_get_32 (abfd
, contents
+ rel
->r_rel
.target_offset
);
7362 init_literal_value (&val
, &r_rel
, value
, is_abs_literal
);
7364 /* Check if we've seen another literal with the same value that
7365 is in the same output section. */
7366 val_map
= value_map_get_cached_value (values
, &val
, final_static_link
);
7369 && (r_reloc_get_section (&val_map
->loc
)->output_section
7370 == sec
->output_section
)
7371 && relocations_reach (rel
, remaining_src_rels
, &val_map
->loc
)
7372 && coalesce_shared_literal (sec
, rel
, prop_table
, ptblsize
, val_map
))
7374 /* No change to last_loc_is_prev. */
7375 literal_placed
= TRUE
;
7378 /* For relocatable links, do not try to move literals. To do it
7379 correctly might increase the number of relocations in an input
7380 section making the default relocatable linking fail. */
7381 if (!link_info
->relocatable
&& !literal_placed
7382 && values
->has_last_loc
&& !(*last_loc_is_prev_p
))
7384 asection
*target_sec
= r_reloc_get_section (&values
->last_loc
);
7385 if (target_sec
&& target_sec
->output_section
== sec
->output_section
)
7387 /* Increment the virtual offset. */
7388 r_reloc try_loc
= values
->last_loc
;
7389 try_loc
.virtual_offset
+= 4;
7391 /* There is a last loc that was in the same output section. */
7392 if (relocations_reach (rel
, remaining_src_rels
, &try_loc
)
7393 && move_shared_literal (sec
, link_info
, rel
,
7394 prop_table
, ptblsize
,
7395 &try_loc
, &val
, target_sec_cache
))
7397 values
->last_loc
.virtual_offset
+= 4;
7398 literal_placed
= TRUE
;
7400 val_map
= add_value_map (values
, &val
, &try_loc
,
7403 val_map
->loc
= try_loc
;
7408 if (!literal_placed
)
7410 /* Nothing worked, leave the literal alone but update the last loc. */
7411 values
->has_last_loc
= TRUE
;
7412 values
->last_loc
= rel
->r_rel
;
7414 val_map
= add_value_map (values
, &val
, &rel
->r_rel
, final_static_link
);
7416 val_map
->loc
= rel
->r_rel
;
7417 *last_loc_is_prev_p
= TRUE
;
7424 /* Check if the original relocations (presumably on L32R instructions)
7425 identified by reloc[0..N] can be changed to reference the literal
7426 identified by r_rel. If r_rel is out of range for any of the
7427 original relocations, then we don't want to coalesce the original
7428 literal with the one at r_rel. We only check reloc[0..N], where the
7429 offsets are all the same as for reloc[0] (i.e., they're all
7430 referencing the same literal) and where N is also bounded by the
7431 number of remaining entries in the "reloc" array. The "reloc" array
7432 is sorted by target offset so we know all the entries for the same
7433 literal will be contiguous. */
7436 relocations_reach (source_reloc
*reloc
,
7437 int remaining_relocs
,
7438 const r_reloc
*r_rel
)
7440 bfd_vma from_offset
, source_address
, dest_address
;
7444 if (!r_reloc_is_defined (r_rel
))
7447 sec
= r_reloc_get_section (r_rel
);
7448 from_offset
= reloc
[0].r_rel
.target_offset
;
7450 for (i
= 0; i
< remaining_relocs
; i
++)
7452 if (reloc
[i
].r_rel
.target_offset
!= from_offset
)
7455 /* Ignore relocations that have been removed. */
7456 if (reloc
[i
].is_null
)
7459 /* The original and new output section for these must be the same
7460 in order to coalesce. */
7461 if (r_reloc_get_section (&reloc
[i
].r_rel
)->output_section
7462 != sec
->output_section
)
7465 /* Absolute literals in the same output section can always be
7467 if (reloc
[i
].is_abs_literal
)
7470 /* A literal with no PC-relative relocations can be moved anywhere. */
7471 if (reloc
[i
].opnd
!= -1)
7473 /* Otherwise, check to see that it fits. */
7474 source_address
= (reloc
[i
].source_sec
->output_section
->vma
7475 + reloc
[i
].source_sec
->output_offset
7476 + reloc
[i
].r_rel
.rela
.r_offset
);
7477 dest_address
= (sec
->output_section
->vma
7478 + sec
->output_offset
7479 + r_rel
->target_offset
);
7481 if (!pcrel_reloc_fits (reloc
[i
].opcode
, reloc
[i
].opnd
,
7482 source_address
, dest_address
))
7491 /* Move a literal to another literal location because it is
7492 the same as the other literal value. */
7495 coalesce_shared_literal (asection
*sec
,
7497 property_table_entry
*prop_table
,
7501 property_table_entry
*entry
;
7503 property_table_entry
*the_add_entry
;
7505 xtensa_relax_info
*relax_info
;
7507 relax_info
= get_xtensa_relax_info (sec
);
7511 entry
= elf_xtensa_find_property_entry
7512 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
7513 if (entry
&& (entry
->flags
& XTENSA_PROP_INSN_NO_TRANSFORM
))
7516 /* Mark that the literal will be coalesced. */
7517 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, &val_map
->loc
);
7519 text_action_add (&relax_info
->action_list
,
7520 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7522 /* If the section is 4-byte aligned, do not add fill. */
7523 if (sec
->alignment_power
> 2)
7525 int fill_extra_space
;
7526 bfd_vma entry_sec_offset
;
7529 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
7531 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
7533 /* If the literal range is at the end of the section,
7535 fill_extra_space
= 0;
7536 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7538 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7539 fill_extra_space
= the_add_entry
->size
;
7541 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7542 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7543 -4, fill_extra_space
);
7545 adjust_fill_action (fa
, removed_diff
);
7547 text_action_add (&relax_info
->action_list
,
7548 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7555 /* Move a literal to another location. This may actually increase the
7556 total amount of space used because of alignments so we need to do
7557 this carefully. Also, it may make a branch go out of range. */
7560 move_shared_literal (asection
*sec
,
7561 struct bfd_link_info
*link_info
,
7563 property_table_entry
*prop_table
,
7565 const r_reloc
*target_loc
,
7566 const literal_value
*lit_value
,
7567 section_cache_t
*target_sec_cache
)
7569 property_table_entry
*the_add_entry
, *src_entry
, *target_entry
= NULL
;
7570 text_action
*fa
, *target_fa
;
7572 xtensa_relax_info
*relax_info
, *target_relax_info
;
7573 asection
*target_sec
;
7575 ebb_constraint ebb_table
;
7576 bfd_boolean relocs_fit
;
7578 /* If this routine always returns FALSE, the literals that cannot be
7579 coalesced will not be moved. */
7580 if (elf32xtensa_no_literal_movement
)
7583 relax_info
= get_xtensa_relax_info (sec
);
7587 target_sec
= r_reloc_get_section (target_loc
);
7588 target_relax_info
= get_xtensa_relax_info (target_sec
);
7590 /* Literals to undefined sections may not be moved because they
7591 must report an error. */
7592 if (bfd_is_und_section (target_sec
))
7595 src_entry
= elf_xtensa_find_property_entry
7596 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
7598 if (!section_cache_section (target_sec_cache
, target_sec
, link_info
))
7601 target_entry
= elf_xtensa_find_property_entry
7602 (target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
7603 target_sec
->vma
+ target_loc
->target_offset
);
7608 /* Make sure that we have not broken any branches. */
7611 init_ebb_constraint (&ebb_table
);
7612 ebb
= &ebb_table
.ebb
;
7613 init_ebb (ebb
, target_sec_cache
->sec
, target_sec_cache
->contents
,
7614 target_sec_cache
->content_length
,
7615 target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
7616 target_sec_cache
->relocs
, target_sec_cache
->reloc_count
);
7618 /* Propose to add 4 bytes + worst-case alignment size increase to
7620 ebb_propose_action (&ebb_table
, EBB_NO_ALIGN
, 0,
7621 ta_fill
, target_loc
->target_offset
,
7622 -4 - (1 << target_sec
->alignment_power
), TRUE
);
7624 /* Check all of the PC-relative relocations to make sure they still fit. */
7625 relocs_fit
= check_section_ebb_pcrels_fit (target_sec
->owner
, target_sec
,
7626 target_sec_cache
->contents
,
7627 target_sec_cache
->relocs
,
7633 text_action_add_literal (&target_relax_info
->action_list
,
7634 ta_add_literal
, target_loc
, lit_value
, -4);
7636 if (target_sec
->alignment_power
> 2 && target_entry
!= src_entry
)
7638 /* May need to add or remove some fill to maintain alignment. */
7639 int fill_extra_space
;
7640 bfd_vma entry_sec_offset
;
7643 target_entry
->address
- target_sec
->vma
+ target_entry
->size
;
7645 /* If the literal range is at the end of the section,
7647 fill_extra_space
= 0;
7649 elf_xtensa_find_property_entry (target_sec_cache
->ptbl
,
7650 target_sec_cache
->pte_count
,
7652 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7653 fill_extra_space
= the_add_entry
->size
;
7655 target_fa
= find_fill_action (&target_relax_info
->action_list
,
7656 target_sec
, entry_sec_offset
);
7657 removed_diff
= compute_removed_action_diff (target_fa
, target_sec
,
7658 entry_sec_offset
, 4,
7661 adjust_fill_action (target_fa
, removed_diff
);
7663 text_action_add (&target_relax_info
->action_list
,
7664 ta_fill
, target_sec
, entry_sec_offset
, removed_diff
);
7667 /* Mark that the literal will be moved to the new location. */
7668 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, target_loc
);
7670 /* Remove the literal. */
7671 text_action_add (&relax_info
->action_list
,
7672 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
7674 /* If the section is 4-byte aligned, do not add fill. */
7675 if (sec
->alignment_power
> 2 && target_entry
!= src_entry
)
7677 int fill_extra_space
;
7678 bfd_vma entry_sec_offset
;
7681 entry_sec_offset
= src_entry
->address
- sec
->vma
+ src_entry
->size
;
7683 entry_sec_offset
= rel
->r_rel
.target_offset
+4;
7685 /* If the literal range is at the end of the section,
7687 fill_extra_space
= 0;
7688 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7690 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
7691 fill_extra_space
= the_add_entry
->size
;
7693 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
7694 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
7695 -4, fill_extra_space
);
7697 adjust_fill_action (fa
, removed_diff
);
7699 text_action_add (&relax_info
->action_list
,
7700 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
7707 /* Second relaxation pass. */
7709 /* Modify all of the relocations to point to the right spot, and if this
7710 is a relaxable section, delete the unwanted literals and fix the
7714 relax_section (bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
)
7716 Elf_Internal_Rela
*internal_relocs
;
7717 xtensa_relax_info
*relax_info
;
7719 bfd_boolean ok
= TRUE
;
7721 bfd_boolean rv
= FALSE
;
7722 bfd_boolean virtual_action
;
7723 bfd_size_type sec_size
;
7725 sec_size
= bfd_get_section_limit (abfd
, sec
);
7726 relax_info
= get_xtensa_relax_info (sec
);
7727 BFD_ASSERT (relax_info
);
7729 /* First translate any of the fixes that have been added already. */
7730 translate_section_fixes (sec
);
7732 /* Handle property sections (e.g., literal tables) specially. */
7733 if (xtensa_is_property_section (sec
))
7735 BFD_ASSERT (!relax_info
->is_relaxable_literal_section
);
7736 return relax_property_section (abfd
, sec
, link_info
);
7739 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7740 link_info
->keep_memory
);
7741 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7742 if (contents
== NULL
&& sec_size
!= 0)
7748 if (internal_relocs
)
7750 for (i
= 0; i
< sec
->reloc_count
; i
++)
7752 Elf_Internal_Rela
*irel
;
7753 xtensa_relax_info
*target_relax_info
;
7754 bfd_vma source_offset
, old_source_offset
;
7757 asection
*target_sec
;
7759 /* Locally change the source address.
7760 Translate the target to the new target address.
7761 If it points to this section and has been removed,
7765 irel
= &internal_relocs
[i
];
7766 source_offset
= irel
->r_offset
;
7767 old_source_offset
= source_offset
;
7769 r_type
= ELF32_R_TYPE (irel
->r_info
);
7770 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7771 bfd_get_section_limit (abfd
, sec
));
7773 /* If this section could have changed then we may need to
7774 change the relocation's offset. */
7776 if (relax_info
->is_relaxable_literal_section
7777 || relax_info
->is_relaxable_asm_section
)
7779 if (r_type
!= R_XTENSA_NONE
7780 && find_removed_literal (&relax_info
->removed_list
,
7783 /* Remove this relocation. */
7784 if (elf_hash_table (link_info
)->dynamic_sections_created
)
7785 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
7786 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7787 irel
->r_offset
= offset_with_removed_text
7788 (&relax_info
->action_list
, irel
->r_offset
);
7789 pin_internal_relocs (sec
, internal_relocs
);
7793 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
7795 text_action
*action
=
7796 find_insn_action (&relax_info
->action_list
,
7798 if (action
&& (action
->action
== ta_convert_longcall
7799 || action
->action
== ta_remove_longcall
))
7801 bfd_reloc_status_type retval
;
7802 char *error_message
= NULL
;
7804 retval
= contract_asm_expansion (contents
, sec_size
,
7805 irel
, &error_message
);
7806 if (retval
!= bfd_reloc_ok
)
7808 (*link_info
->callbacks
->reloc_dangerous
)
7809 (link_info
, error_message
, abfd
, sec
,
7813 /* Update the action so that the code that moves
7814 the contents will do the right thing. */
7815 if (action
->action
== ta_remove_longcall
)
7816 action
->action
= ta_remove_insn
;
7818 action
->action
= ta_none
;
7819 /* Refresh the info in the r_rel. */
7820 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7821 r_type
= ELF32_R_TYPE (irel
->r_info
);
7825 source_offset
= offset_with_removed_text
7826 (&relax_info
->action_list
, irel
->r_offset
);
7827 irel
->r_offset
= source_offset
;
7830 /* If the target section could have changed then
7831 we may need to change the relocation's target offset. */
7833 target_sec
= r_reloc_get_section (&r_rel
);
7834 target_relax_info
= get_xtensa_relax_info (target_sec
);
7836 if (target_relax_info
7837 && (target_relax_info
->is_relaxable_literal_section
7838 || target_relax_info
->is_relaxable_asm_section
))
7842 bfd_vma addend_displacement
;
7844 translate_reloc (&r_rel
, &new_reloc
);
7846 if (r_type
== R_XTENSA_DIFF8
7847 || r_type
== R_XTENSA_DIFF16
7848 || r_type
== R_XTENSA_DIFF32
)
7850 bfd_vma diff_value
= 0, new_end_offset
, diff_mask
= 0;
7852 if (bfd_get_section_limit (abfd
, sec
) < old_source_offset
)
7854 (*link_info
->callbacks
->reloc_dangerous
)
7855 (link_info
, _("invalid relocation address"),
7856 abfd
, sec
, old_source_offset
);
7862 case R_XTENSA_DIFF8
:
7864 bfd_get_8 (abfd
, &contents
[old_source_offset
]);
7866 case R_XTENSA_DIFF16
:
7868 bfd_get_16 (abfd
, &contents
[old_source_offset
]);
7870 case R_XTENSA_DIFF32
:
7872 bfd_get_32 (abfd
, &contents
[old_source_offset
]);
7876 new_end_offset
= offset_with_removed_text
7877 (&target_relax_info
->action_list
,
7878 r_rel
.target_offset
+ diff_value
);
7879 diff_value
= new_end_offset
- new_reloc
.target_offset
;
7883 case R_XTENSA_DIFF8
:
7885 bfd_put_8 (abfd
, diff_value
,
7886 &contents
[old_source_offset
]);
7888 case R_XTENSA_DIFF16
:
7890 bfd_put_16 (abfd
, diff_value
,
7891 &contents
[old_source_offset
]);
7893 case R_XTENSA_DIFF32
:
7894 diff_mask
= 0xffffffff;
7895 bfd_put_32 (abfd
, diff_value
,
7896 &contents
[old_source_offset
]);
7900 /* Check for overflow. */
7901 if ((diff_value
& ~diff_mask
) != 0)
7903 (*link_info
->callbacks
->reloc_dangerous
)
7904 (link_info
, _("overflow after relaxation"),
7905 abfd
, sec
, old_source_offset
);
7909 pin_contents (sec
, contents
);
7912 /* FIXME: If the relocation still references a section in
7913 the same input file, the relocation should be modified
7914 directly instead of adding a "fix" record. */
7916 addend_displacement
=
7917 new_reloc
.target_offset
+ new_reloc
.virtual_offset
;
7919 fix
= reloc_bfd_fix_init (sec
, source_offset
, r_type
, 0,
7920 r_reloc_get_section (&new_reloc
),
7921 addend_displacement
, TRUE
);
7925 pin_internal_relocs (sec
, internal_relocs
);
7929 if ((relax_info
->is_relaxable_literal_section
7930 || relax_info
->is_relaxable_asm_section
)
7931 && relax_info
->action_list
.head
)
7933 /* Walk through the planned actions and build up a table
7934 of move, copy and fill records. Use the move, copy and
7935 fill records to perform the actions once. */
7937 bfd_size_type size
= sec
->size
;
7939 bfd_size_type final_size
, copy_size
, orig_insn_size
;
7940 bfd_byte
*scratch
= NULL
;
7941 bfd_byte
*dup_contents
= NULL
;
7942 bfd_size_type orig_size
= size
;
7943 bfd_vma orig_dot
= 0;
7944 bfd_vma orig_dot_copied
= 0; /* Byte copied already from
7945 orig dot in physical memory. */
7946 bfd_vma orig_dot_vo
= 0; /* Virtual offset from orig_dot. */
7947 bfd_vma dup_dot
= 0;
7949 text_action
*action
= relax_info
->action_list
.head
;
7951 final_size
= sec
->size
;
7952 for (action
= relax_info
->action_list
.head
; action
;
7953 action
= action
->next
)
7955 final_size
-= action
->removed_bytes
;
7958 scratch
= (bfd_byte
*) bfd_zmalloc (final_size
);
7959 dup_contents
= (bfd_byte
*) bfd_zmalloc (final_size
);
7961 /* The dot is the current fill location. */
7963 print_action_list (stderr
, &relax_info
->action_list
);
7966 for (action
= relax_info
->action_list
.head
; action
;
7967 action
= action
->next
)
7969 virtual_action
= FALSE
;
7970 if (action
->offset
> orig_dot
)
7972 orig_dot
+= orig_dot_copied
;
7973 orig_dot_copied
= 0;
7975 /* Out of the virtual world. */
7978 if (action
->offset
> orig_dot
)
7980 copy_size
= action
->offset
- orig_dot
;
7981 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
7982 orig_dot
+= copy_size
;
7983 dup_dot
+= copy_size
;
7984 BFD_ASSERT (action
->offset
== orig_dot
);
7986 else if (action
->offset
< orig_dot
)
7988 if (action
->action
== ta_fill
7989 && action
->offset
- action
->removed_bytes
== orig_dot
)
7991 /* This is OK because the fill only effects the dup_dot. */
7993 else if (action
->action
== ta_add_literal
)
7995 /* TBD. Might need to handle this. */
7998 if (action
->offset
== orig_dot
)
8000 if (action
->virtual_offset
> orig_dot_vo
)
8002 if (orig_dot_vo
== 0)
8004 /* Need to copy virtual_offset bytes. Probably four. */
8005 copy_size
= action
->virtual_offset
- orig_dot_vo
;
8006 memmove (&dup_contents
[dup_dot
],
8007 &contents
[orig_dot
], copy_size
);
8008 orig_dot_copied
= copy_size
;
8009 dup_dot
+= copy_size
;
8011 virtual_action
= TRUE
;
8014 BFD_ASSERT (action
->virtual_offset
<= orig_dot_vo
);
8016 switch (action
->action
)
8018 case ta_remove_literal
:
8019 case ta_remove_insn
:
8020 BFD_ASSERT (action
->removed_bytes
>= 0);
8021 orig_dot
+= action
->removed_bytes
;
8024 case ta_narrow_insn
:
8027 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
8028 BFD_ASSERT (action
->removed_bytes
== 1);
8029 rv
= narrow_instruction (scratch
, final_size
, 0, TRUE
);
8031 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
8032 orig_dot
+= orig_insn_size
;
8033 dup_dot
+= copy_size
;
8037 if (action
->removed_bytes
>= 0)
8038 orig_dot
+= action
->removed_bytes
;
8041 /* Already zeroed in dup_contents. Just bump the
8043 dup_dot
+= (-action
->removed_bytes
);
8048 BFD_ASSERT (action
->removed_bytes
== 0);
8051 case ta_convert_longcall
:
8052 case ta_remove_longcall
:
8053 /* These will be removed or converted before we get here. */
8060 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
8061 BFD_ASSERT (action
->removed_bytes
== -1);
8062 rv
= widen_instruction (scratch
, final_size
, 0, TRUE
);
8064 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
8065 orig_dot
+= orig_insn_size
;
8066 dup_dot
+= copy_size
;
8069 case ta_add_literal
:
8072 BFD_ASSERT (action
->removed_bytes
== -4);
8073 /* TBD -- place the literal value here and insert
8075 memset (&dup_contents
[dup_dot
], 0, 4);
8076 pin_internal_relocs (sec
, internal_relocs
);
8077 pin_contents (sec
, contents
);
8079 if (!move_literal (abfd
, link_info
, sec
, dup_dot
, dup_contents
,
8080 relax_info
, &internal_relocs
, &action
->value
))
8084 orig_dot_vo
+= copy_size
;
8086 orig_dot
+= orig_insn_size
;
8087 dup_dot
+= copy_size
;
8091 /* Not implemented yet. */
8096 size
-= action
->removed_bytes
;
8097 removed
+= action
->removed_bytes
;
8098 BFD_ASSERT (dup_dot
<= final_size
);
8099 BFD_ASSERT (orig_dot
<= orig_size
);
8102 orig_dot
+= orig_dot_copied
;
8103 orig_dot_copied
= 0;
8105 if (orig_dot
!= orig_size
)
8107 copy_size
= orig_size
- orig_dot
;
8108 BFD_ASSERT (orig_size
> orig_dot
);
8109 BFD_ASSERT (dup_dot
+ copy_size
== final_size
);
8110 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
8111 orig_dot
+= copy_size
;
8112 dup_dot
+= copy_size
;
8114 BFD_ASSERT (orig_size
== orig_dot
);
8115 BFD_ASSERT (final_size
== dup_dot
);
8117 /* Move the dup_contents back. */
8118 if (final_size
> orig_size
)
8120 /* Contents need to be reallocated. Swap the dup_contents into
8122 sec
->contents
= dup_contents
;
8124 contents
= dup_contents
;
8125 pin_contents (sec
, contents
);
8129 BFD_ASSERT (final_size
<= orig_size
);
8130 memset (contents
, 0, orig_size
);
8131 memcpy (contents
, dup_contents
, final_size
);
8132 free (dup_contents
);
8135 pin_contents (sec
, contents
);
8137 sec
->size
= final_size
;
8141 release_internal_relocs (sec
, internal_relocs
);
8142 release_contents (sec
, contents
);
8148 translate_section_fixes (asection
*sec
)
8150 xtensa_relax_info
*relax_info
;
8153 relax_info
= get_xtensa_relax_info (sec
);
8157 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
8158 if (!translate_reloc_bfd_fix (r
))
8165 /* Translate a fix given the mapping in the relax info for the target
8166 section. If it has already been translated, no work is required. */
8169 translate_reloc_bfd_fix (reloc_bfd_fix
*fix
)
8171 reloc_bfd_fix new_fix
;
8173 xtensa_relax_info
*relax_info
;
8174 removed_literal
*removed
;
8175 bfd_vma new_offset
, target_offset
;
8177 if (fix
->translated
)
8180 sec
= fix
->target_sec
;
8181 target_offset
= fix
->target_offset
;
8183 relax_info
= get_xtensa_relax_info (sec
);
8186 fix
->translated
= TRUE
;
8192 /* The fix does not need to be translated if the section cannot change. */
8193 if (!relax_info
->is_relaxable_literal_section
8194 && !relax_info
->is_relaxable_asm_section
)
8196 fix
->translated
= TRUE
;
8200 /* If the literal has been moved and this relocation was on an
8201 opcode, then the relocation should move to the new literal
8202 location. Otherwise, the relocation should move within the
8206 if (is_operand_relocation (fix
->src_type
))
8208 /* Check if the original relocation is against a literal being
8210 removed
= find_removed_literal (&relax_info
->removed_list
,
8218 /* The fact that there is still a relocation to this literal indicates
8219 that the literal is being coalesced, not simply removed. */
8220 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
8222 /* This was moved to some other address (possibly another section). */
8223 new_sec
= r_reloc_get_section (&removed
->to
);
8227 relax_info
= get_xtensa_relax_info (sec
);
8229 (!relax_info
->is_relaxable_literal_section
8230 && !relax_info
->is_relaxable_asm_section
))
8232 target_offset
= removed
->to
.target_offset
;
8233 new_fix
.target_sec
= new_sec
;
8234 new_fix
.target_offset
= target_offset
;
8235 new_fix
.translated
= TRUE
;
8240 target_offset
= removed
->to
.target_offset
;
8241 new_fix
.target_sec
= new_sec
;
8244 /* The target address may have been moved within its section. */
8245 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
8248 new_fix
.target_offset
= new_offset
;
8249 new_fix
.target_offset
= new_offset
;
8250 new_fix
.translated
= TRUE
;
8256 /* Fix up a relocation to take account of removed literals. */
8259 translate_reloc (const r_reloc
*orig_rel
, r_reloc
*new_rel
)
8262 xtensa_relax_info
*relax_info
;
8263 removed_literal
*removed
;
8264 bfd_vma new_offset
, target_offset
, removed_bytes
;
8266 *new_rel
= *orig_rel
;
8268 if (!r_reloc_is_defined (orig_rel
))
8270 sec
= r_reloc_get_section (orig_rel
);
8272 relax_info
= get_xtensa_relax_info (sec
);
8273 BFD_ASSERT (relax_info
);
8275 if (!relax_info
->is_relaxable_literal_section
8276 && !relax_info
->is_relaxable_asm_section
)
8279 target_offset
= orig_rel
->target_offset
;
8282 if (is_operand_relocation (ELF32_R_TYPE (orig_rel
->rela
.r_info
)))
8284 /* Check if the original relocation is against a literal being
8286 removed
= find_removed_literal (&relax_info
->removed_list
,
8289 if (removed
&& removed
->to
.abfd
)
8293 /* The fact that there is still a relocation to this literal indicates
8294 that the literal is being coalesced, not simply removed. */
8295 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
8297 /* This was moved to some other address
8298 (possibly in another section). */
8299 *new_rel
= removed
->to
;
8300 new_sec
= r_reloc_get_section (new_rel
);
8304 relax_info
= get_xtensa_relax_info (sec
);
8306 || (!relax_info
->is_relaxable_literal_section
8307 && !relax_info
->is_relaxable_asm_section
))
8310 target_offset
= new_rel
->target_offset
;
8313 /* ...and the target address may have been moved within its section. */
8314 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
8317 /* Modify the offset and addend. */
8318 removed_bytes
= target_offset
- new_offset
;
8319 new_rel
->target_offset
= new_offset
;
8320 new_rel
->rela
.r_addend
-= removed_bytes
;
8324 /* For dynamic links, there may be a dynamic relocation for each
8325 literal. The number of dynamic relocations must be computed in
8326 size_dynamic_sections, which occurs before relaxation. When a
8327 literal is removed, this function checks if there is a corresponding
8328 dynamic relocation and shrinks the size of the appropriate dynamic
8329 relocation section accordingly. At this point, the contents of the
8330 dynamic relocation sections have not yet been filled in, so there's
8331 nothing else that needs to be done. */
8334 shrink_dynamic_reloc_sections (struct bfd_link_info
*info
,
8336 asection
*input_section
,
8337 Elf_Internal_Rela
*rel
)
8339 Elf_Internal_Shdr
*symtab_hdr
;
8340 struct elf_link_hash_entry
**sym_hashes
;
8341 unsigned long r_symndx
;
8343 struct elf_link_hash_entry
*h
;
8344 bfd_boolean dynamic_symbol
;
8346 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8347 sym_hashes
= elf_sym_hashes (abfd
);
8349 r_type
= ELF32_R_TYPE (rel
->r_info
);
8350 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8352 if (r_symndx
< symtab_hdr
->sh_info
)
8355 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
8357 dynamic_symbol
= xtensa_elf_dynamic_symbol_p (h
, info
);
8359 if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
8360 && (input_section
->flags
& SEC_ALLOC
) != 0
8361 && (dynamic_symbol
|| info
->shared
))
8364 const char *srel_name
;
8366 bfd_boolean is_plt
= FALSE
;
8368 dynobj
= elf_hash_table (info
)->dynobj
;
8369 BFD_ASSERT (dynobj
!= NULL
);
8371 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
8373 srel_name
= ".rela.plt";
8377 srel_name
= ".rela.got";
8379 /* Reduce size of the .rela.* section by one reloc. */
8380 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
8381 BFD_ASSERT (srel
!= NULL
);
8382 BFD_ASSERT (srel
->size
>= sizeof (Elf32_External_Rela
));
8383 srel
->size
-= sizeof (Elf32_External_Rela
);
8387 asection
*splt
, *sgotplt
, *srelgot
;
8388 int reloc_index
, chunk
;
8390 /* Find the PLT reloc index of the entry being removed. This
8391 is computed from the size of ".rela.plt". It is needed to
8392 figure out which PLT chunk to resize. Usually "last index
8393 = size - 1" since the index starts at zero, but in this
8394 context, the size has just been decremented so there's no
8395 need to subtract one. */
8396 reloc_index
= srel
->size
/ sizeof (Elf32_External_Rela
);
8398 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
8399 splt
= elf_xtensa_get_plt_section (dynobj
, chunk
);
8400 sgotplt
= elf_xtensa_get_gotplt_section (dynobj
, chunk
);
8401 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
8403 /* Check if an entire PLT chunk has just been eliminated. */
8404 if (reloc_index
% PLT_ENTRIES_PER_CHUNK
== 0)
8406 /* The two magic GOT entries for that chunk can go away. */
8407 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
8408 BFD_ASSERT (srelgot
!= NULL
);
8409 srelgot
->reloc_count
-= 2;
8410 srelgot
->size
-= 2 * sizeof (Elf32_External_Rela
);
8413 /* There should be only one entry left (and it will be
8415 BFD_ASSERT (sgotplt
->size
== 4);
8416 BFD_ASSERT (splt
->size
== PLT_ENTRY_SIZE
);
8419 BFD_ASSERT (sgotplt
->size
>= 4);
8420 BFD_ASSERT (splt
->size
>= PLT_ENTRY_SIZE
);
8423 splt
->size
-= PLT_ENTRY_SIZE
;
8429 /* Take an r_rel and move it to another section. This usually
8430 requires extending the interal_relocation array and pinning it. If
8431 the original r_rel is from the same BFD, we can complete this here.
8432 Otherwise, we add a fix record to let the final link fix the
8433 appropriate address. Contents and internal relocations for the
8434 section must be pinned after calling this routine. */
8437 move_literal (bfd
*abfd
,
8438 struct bfd_link_info
*link_info
,
8442 xtensa_relax_info
*relax_info
,
8443 Elf_Internal_Rela
**internal_relocs_p
,
8444 const literal_value
*lit
)
8446 Elf_Internal_Rela
*new_relocs
= NULL
;
8447 size_t new_relocs_count
= 0;
8448 Elf_Internal_Rela this_rela
;
8449 const r_reloc
*r_rel
;
8451 r_rel
= &lit
->r_rel
;
8452 BFD_ASSERT (elf_section_data (sec
)->relocs
== *internal_relocs_p
);
8454 if (r_reloc_is_const (r_rel
))
8455 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
8460 asection
*target_sec
;
8464 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
8465 target_sec
= r_reloc_get_section (r_rel
);
8467 /* This is the difficult case. We have to create a fix up. */
8468 this_rela
.r_offset
= offset
;
8469 this_rela
.r_info
= ELF32_R_INFO (0, r_type
);
8470 this_rela
.r_addend
=
8471 r_rel
->target_offset
- r_reloc_get_target_offset (r_rel
);
8472 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
8474 /* Currently, we cannot move relocations during a relocatable link. */
8475 BFD_ASSERT (!link_info
->relocatable
);
8476 fix
= reloc_bfd_fix_init (sec
, offset
, r_type
, r_rel
->abfd
,
8477 r_reloc_get_section (r_rel
),
8478 r_rel
->target_offset
+ r_rel
->virtual_offset
,
8480 /* We also need to mark that relocations are needed here. */
8481 sec
->flags
|= SEC_RELOC
;
8483 translate_reloc_bfd_fix (fix
);
8484 /* This fix has not yet been translated. */
8487 /* Add the relocation. If we have already allocated our own
8488 space for the relocations and we have room for more, then use
8489 it. Otherwise, allocate new space and move the literals. */
8490 insert_at
= sec
->reloc_count
;
8491 for (i
= 0; i
< sec
->reloc_count
; ++i
)
8493 if (this_rela
.r_offset
< (*internal_relocs_p
)[i
].r_offset
)
8500 if (*internal_relocs_p
!= relax_info
->allocated_relocs
8501 || sec
->reloc_count
+ 1 > relax_info
->allocated_relocs_count
)
8503 BFD_ASSERT (relax_info
->allocated_relocs
== NULL
8504 || sec
->reloc_count
== relax_info
->relocs_count
);
8506 if (relax_info
->allocated_relocs_count
== 0)
8507 new_relocs_count
= (sec
->reloc_count
+ 2) * 2;
8509 new_relocs_count
= (relax_info
->allocated_relocs_count
+ 2) * 2;
8511 new_relocs
= (Elf_Internal_Rela
*)
8512 bfd_zmalloc (sizeof (Elf_Internal_Rela
) * (new_relocs_count
));
8516 /* We could handle this more quickly by finding the split point. */
8518 memcpy (new_relocs
, *internal_relocs_p
,
8519 insert_at
* sizeof (Elf_Internal_Rela
));
8521 new_relocs
[insert_at
] = this_rela
;
8523 if (insert_at
!= sec
->reloc_count
)
8524 memcpy (new_relocs
+ insert_at
+ 1,
8525 (*internal_relocs_p
) + insert_at
,
8526 (sec
->reloc_count
- insert_at
)
8527 * sizeof (Elf_Internal_Rela
));
8529 if (*internal_relocs_p
!= relax_info
->allocated_relocs
)
8531 /* The first time we re-allocate, we can only free the
8532 old relocs if they were allocated with bfd_malloc.
8533 This is not true when keep_memory is in effect. */
8534 if (!link_info
->keep_memory
)
8535 free (*internal_relocs_p
);
8538 free (*internal_relocs_p
);
8539 relax_info
->allocated_relocs
= new_relocs
;
8540 relax_info
->allocated_relocs_count
= new_relocs_count
;
8541 elf_section_data (sec
)->relocs
= new_relocs
;
8543 relax_info
->relocs_count
= sec
->reloc_count
;
8544 *internal_relocs_p
= new_relocs
;
8548 if (insert_at
!= sec
->reloc_count
)
8551 for (idx
= sec
->reloc_count
; idx
> insert_at
; idx
--)
8552 (*internal_relocs_p
)[idx
] = (*internal_relocs_p
)[idx
-1];
8554 (*internal_relocs_p
)[insert_at
] = this_rela
;
8556 if (relax_info
->allocated_relocs
)
8557 relax_info
->relocs_count
= sec
->reloc_count
;
8564 /* This is similar to relax_section except that when a target is moved,
8565 we shift addresses up. We also need to modify the size. This
8566 algorithm does NOT allow for relocations into the middle of the
8567 property sections. */
8570 relax_property_section (bfd
*abfd
,
8572 struct bfd_link_info
*link_info
)
8574 Elf_Internal_Rela
*internal_relocs
;
8577 bfd_boolean ok
= TRUE
;
8578 bfd_boolean is_full_prop_section
;
8579 size_t last_zfill_target_offset
= 0;
8580 asection
*last_zfill_target_sec
= NULL
;
8581 bfd_size_type sec_size
;
8583 sec_size
= bfd_get_section_limit (abfd
, sec
);
8584 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8585 link_info
->keep_memory
);
8586 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8587 if (contents
== NULL
&& sec_size
!= 0)
8593 is_full_prop_section
=
8594 ((strcmp (sec
->name
, XTENSA_PROP_SEC_NAME
) == 0)
8595 || (strncmp (sec
->name
, ".gnu.linkonce.prop.",
8596 sizeof ".gnu.linkonce.prop." - 1) == 0));
8598 if (internal_relocs
)
8600 for (i
= 0; i
< sec
->reloc_count
; i
++)
8602 Elf_Internal_Rela
*irel
;
8603 xtensa_relax_info
*target_relax_info
;
8605 asection
*target_sec
;
8607 bfd_byte
*size_p
, *flags_p
;
8609 /* Locally change the source address.
8610 Translate the target to the new target address.
8611 If it points to this section and has been removed, MOVE IT.
8612 Also, don't forget to modify the associated SIZE at
8615 irel
= &internal_relocs
[i
];
8616 r_type
= ELF32_R_TYPE (irel
->r_info
);
8617 if (r_type
== R_XTENSA_NONE
)
8620 /* Find the literal value. */
8621 r_reloc_init (&val
.r_rel
, abfd
, irel
, contents
, sec_size
);
8622 size_p
= &contents
[irel
->r_offset
+ 4];
8624 if (is_full_prop_section
)
8626 flags_p
= &contents
[irel
->r_offset
+ 8];
8627 BFD_ASSERT (irel
->r_offset
+ 12 <= sec_size
);
8630 BFD_ASSERT (irel
->r_offset
+ 8 <= sec_size
);
8632 target_sec
= r_reloc_get_section (&val
.r_rel
);
8633 target_relax_info
= get_xtensa_relax_info (target_sec
);
8635 if (target_relax_info
8636 && (target_relax_info
->is_relaxable_literal_section
8637 || target_relax_info
->is_relaxable_asm_section
))
8639 /* Translate the relocation's destination. */
8640 bfd_vma new_offset
, new_end_offset
;
8641 long old_size
, new_size
;
8643 new_offset
= offset_with_removed_text
8644 (&target_relax_info
->action_list
, val
.r_rel
.target_offset
);
8646 /* Assert that we are not out of bounds. */
8647 old_size
= bfd_get_32 (abfd
, size_p
);
8651 /* Only the first zero-sized unreachable entry is
8652 allowed to expand. In this case the new offset
8653 should be the offset before the fill and the new
8654 size is the expansion size. For other zero-sized
8655 entries the resulting size should be zero with an
8656 offset before or after the fill address depending
8657 on whether the expanding unreachable entry
8659 if (last_zfill_target_sec
8660 && last_zfill_target_sec
== target_sec
8661 && last_zfill_target_offset
== val
.r_rel
.target_offset
)
8662 new_end_offset
= new_offset
;
8665 new_end_offset
= new_offset
;
8666 new_offset
= offset_with_removed_text_before_fill
8667 (&target_relax_info
->action_list
,
8668 val
.r_rel
.target_offset
);
8670 /* If it is not unreachable and we have not yet
8671 seen an unreachable at this address, place it
8672 before the fill address. */
8674 || (bfd_get_32 (abfd
, flags_p
)
8675 & XTENSA_PROP_UNREACHABLE
) == 0)
8676 new_end_offset
= new_offset
;
8679 last_zfill_target_sec
= target_sec
;
8680 last_zfill_target_offset
= val
.r_rel
.target_offset
;
8686 new_end_offset
= offset_with_removed_text_before_fill
8687 (&target_relax_info
->action_list
,
8688 val
.r_rel
.target_offset
+ old_size
);
8691 new_size
= new_end_offset
- new_offset
;
8693 if (new_size
!= old_size
)
8695 bfd_put_32 (abfd
, new_size
, size_p
);
8696 pin_contents (sec
, contents
);
8699 if (new_offset
!= val
.r_rel
.target_offset
)
8701 bfd_vma diff
= new_offset
- val
.r_rel
.target_offset
;
8702 irel
->r_addend
+= diff
;
8703 pin_internal_relocs (sec
, internal_relocs
);
8709 /* Combine adjacent property table entries. This is also done in
8710 finish_dynamic_sections() but at that point it's too late to
8711 reclaim the space in the output section, so we do this twice. */
8713 if (internal_relocs
&& (!link_info
->relocatable
8714 || strcmp (sec
->name
, XTENSA_LIT_SEC_NAME
) == 0))
8716 Elf_Internal_Rela
*last_irel
= NULL
;
8717 int removed_bytes
= 0;
8718 bfd_vma offset
, last_irel_offset
;
8719 bfd_vma section_size
;
8720 bfd_size_type entry_size
;
8721 flagword predef_flags
;
8723 if (is_full_prop_section
)
8728 predef_flags
= xtensa_get_property_predef_flags (sec
);
8730 /* Walk over memory and irels at the same time.
8731 This REQUIRES that the internal_relocs be sorted by offset. */
8732 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
8733 internal_reloc_compare
);
8734 nexti
= 0; /* Index into internal_relocs. */
8736 pin_internal_relocs (sec
, internal_relocs
);
8737 pin_contents (sec
, contents
);
8739 last_irel_offset
= (bfd_vma
) -1;
8740 section_size
= sec
->size
;
8741 BFD_ASSERT (section_size
% entry_size
== 0);
8743 for (offset
= 0; offset
< section_size
; offset
+= entry_size
)
8745 Elf_Internal_Rela
*irel
, *next_irel
;
8746 bfd_vma bytes_to_remove
, size
, actual_offset
;
8747 bfd_boolean remove_this_irel
;
8753 /* Find the next two relocations (if there are that many left),
8754 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8755 the starting reloc index. After these two loops, "i"
8756 is the index of the first non-NONE reloc past that starting
8757 index, and "nexti" is the index for the next non-NONE reloc
8760 for (i
= nexti
; i
< sec
->reloc_count
; i
++)
8762 if (ELF32_R_TYPE (internal_relocs
[i
].r_info
) != R_XTENSA_NONE
)
8764 irel
= &internal_relocs
[i
];
8767 internal_relocs
[i
].r_offset
-= removed_bytes
;
8770 for (nexti
= i
+ 1; nexti
< sec
->reloc_count
; nexti
++)
8772 if (ELF32_R_TYPE (internal_relocs
[nexti
].r_info
)
8775 next_irel
= &internal_relocs
[nexti
];
8778 internal_relocs
[nexti
].r_offset
-= removed_bytes
;
8781 remove_this_irel
= FALSE
;
8782 bytes_to_remove
= 0;
8783 actual_offset
= offset
- removed_bytes
;
8784 size
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 4]);
8786 if (is_full_prop_section
)
8787 flags
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 8]);
8789 flags
= predef_flags
;
8791 /* Check that the irels are sorted by offset,
8792 with only one per address. */
8793 BFD_ASSERT (!irel
|| (int) irel
->r_offset
> (int) last_irel_offset
);
8794 BFD_ASSERT (!next_irel
|| next_irel
->r_offset
> irel
->r_offset
);
8796 /* Make sure there aren't relocs on the size or flag fields. */
8797 if ((irel
&& irel
->r_offset
== offset
+ 4)
8798 || (is_full_prop_section
8799 && irel
&& irel
->r_offset
== offset
+ 8))
8801 irel
->r_offset
-= removed_bytes
;
8802 last_irel_offset
= irel
->r_offset
;
8804 else if (next_irel
&& (next_irel
->r_offset
== offset
+ 4
8805 || (is_full_prop_section
8806 && next_irel
->r_offset
== offset
+ 8)))
8809 irel
->r_offset
-= removed_bytes
;
8810 next_irel
->r_offset
-= removed_bytes
;
8811 last_irel_offset
= next_irel
->r_offset
;
8813 else if (size
== 0 && (flags
& XTENSA_PROP_ALIGN
) == 0
8814 && (flags
& XTENSA_PROP_UNREACHABLE
) == 0)
8816 /* Always remove entries with zero size and no alignment. */
8817 bytes_to_remove
= entry_size
;
8818 if (irel
&& irel
->r_offset
== offset
)
8820 remove_this_irel
= TRUE
;
8822 irel
->r_offset
-= removed_bytes
;
8823 last_irel_offset
= irel
->r_offset
;
8826 else if (irel
&& irel
->r_offset
== offset
)
8828 if (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_32
)
8834 bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
+ 4]);
8835 bfd_vma old_address
=
8836 (last_irel
->r_addend
8837 + bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
]));
8838 bfd_vma new_address
=
8840 + bfd_get_32 (abfd
, &contents
[actual_offset
]));
8841 if (is_full_prop_section
)
8842 old_flags
= bfd_get_32
8843 (abfd
, &contents
[last_irel
->r_offset
+ 8]);
8845 old_flags
= predef_flags
;
8847 if ((ELF32_R_SYM (irel
->r_info
)
8848 == ELF32_R_SYM (last_irel
->r_info
))
8849 && old_address
+ old_size
== new_address
8850 && old_flags
== flags
8851 && (old_flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) == 0
8852 && (old_flags
& XTENSA_PROP_INSN_LOOP_TARGET
) == 0)
8854 /* Fix the old size. */
8855 bfd_put_32 (abfd
, old_size
+ size
,
8856 &contents
[last_irel
->r_offset
+ 4]);
8857 bytes_to_remove
= entry_size
;
8858 remove_this_irel
= TRUE
;
8867 irel
->r_offset
-= removed_bytes
;
8868 last_irel_offset
= irel
->r_offset
;
8871 if (remove_this_irel
)
8873 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
8874 irel
->r_offset
-= bytes_to_remove
;
8877 if (bytes_to_remove
!= 0)
8879 removed_bytes
+= bytes_to_remove
;
8880 if (offset
+ bytes_to_remove
< section_size
)
8881 memmove (&contents
[actual_offset
],
8882 &contents
[actual_offset
+ bytes_to_remove
],
8883 section_size
- offset
- bytes_to_remove
);
8889 /* Clear the removed bytes. */
8890 memset (&contents
[section_size
- removed_bytes
], 0, removed_bytes
);
8892 sec
->size
= section_size
- removed_bytes
;
8894 if (xtensa_is_littable_section (sec
))
8896 bfd
*dynobj
= elf_hash_table (link_info
)->dynobj
;
8900 bfd_get_section_by_name (dynobj
, ".got.loc");
8902 sgotloc
->size
-= removed_bytes
;
8909 release_internal_relocs (sec
, internal_relocs
);
8910 release_contents (sec
, contents
);
8915 /* Third relaxation pass. */
8917 /* Change symbol values to account for removed literals. */
8920 relax_section_symbols (bfd
*abfd
, asection
*sec
)
8922 xtensa_relax_info
*relax_info
;
8923 unsigned int sec_shndx
;
8924 Elf_Internal_Shdr
*symtab_hdr
;
8925 Elf_Internal_Sym
*isymbuf
;
8926 unsigned i
, num_syms
, num_locals
;
8928 relax_info
= get_xtensa_relax_info (sec
);
8929 BFD_ASSERT (relax_info
);
8931 if (!relax_info
->is_relaxable_literal_section
8932 && !relax_info
->is_relaxable_asm_section
)
8935 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
8937 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8938 isymbuf
= retrieve_local_syms (abfd
);
8940 num_syms
= symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
8941 num_locals
= symtab_hdr
->sh_info
;
8943 /* Adjust the local symbols defined in this section. */
8944 for (i
= 0; i
< num_locals
; i
++)
8946 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
8948 if (isym
->st_shndx
== sec_shndx
)
8950 bfd_vma new_address
= offset_with_removed_text
8951 (&relax_info
->action_list
, isym
->st_value
);
8952 bfd_vma new_size
= isym
->st_size
;
8954 if (ELF32_ST_TYPE (isym
->st_info
) == STT_FUNC
)
8956 bfd_vma new_end
= offset_with_removed_text
8957 (&relax_info
->action_list
, isym
->st_value
+ isym
->st_size
);
8958 new_size
= new_end
- new_address
;
8961 isym
->st_value
= new_address
;
8962 isym
->st_size
= new_size
;
8966 /* Now adjust the global symbols defined in this section. */
8967 for (i
= 0; i
< (num_syms
- num_locals
); i
++)
8969 struct elf_link_hash_entry
*sym_hash
;
8971 sym_hash
= elf_sym_hashes (abfd
)[i
];
8973 if (sym_hash
->root
.type
== bfd_link_hash_warning
)
8974 sym_hash
= (struct elf_link_hash_entry
*) sym_hash
->root
.u
.i
.link
;
8976 if ((sym_hash
->root
.type
== bfd_link_hash_defined
8977 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
8978 && sym_hash
->root
.u
.def
.section
== sec
)
8980 bfd_vma new_address
= offset_with_removed_text
8981 (&relax_info
->action_list
, sym_hash
->root
.u
.def
.value
);
8982 bfd_vma new_size
= sym_hash
->size
;
8984 if (sym_hash
->type
== STT_FUNC
)
8986 bfd_vma new_end
= offset_with_removed_text
8987 (&relax_info
->action_list
,
8988 sym_hash
->root
.u
.def
.value
+ sym_hash
->size
);
8989 new_size
= new_end
- new_address
;
8992 sym_hash
->root
.u
.def
.value
= new_address
;
8993 sym_hash
->size
= new_size
;
9001 /* "Fix" handling functions, called while performing relocations. */
9004 do_fix_for_relocatable_link (Elf_Internal_Rela
*rel
,
9006 asection
*input_section
,
9010 asection
*sec
, *old_sec
;
9012 int r_type
= ELF32_R_TYPE (rel
->r_info
);
9015 if (r_type
== R_XTENSA_NONE
)
9018 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
9022 r_reloc_init (&r_rel
, input_bfd
, rel
, contents
,
9023 bfd_get_section_limit (input_bfd
, input_section
));
9024 old_sec
= r_reloc_get_section (&r_rel
);
9025 old_offset
= r_rel
.target_offset
;
9027 if (!old_sec
|| !r_reloc_is_defined (&r_rel
))
9029 if (r_type
!= R_XTENSA_ASM_EXPAND
)
9031 (*_bfd_error_handler
)
9032 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9033 input_bfd
, input_section
, rel
->r_offset
,
9034 elf_howto_table
[r_type
].name
);
9037 /* Leave it be. Resolution will happen in a later stage. */
9041 sec
= fix
->target_sec
;
9042 rel
->r_addend
+= ((sec
->output_offset
+ fix
->target_offset
)
9043 - (old_sec
->output_offset
+ old_offset
));
9050 do_fix_for_final_link (Elf_Internal_Rela
*rel
,
9052 asection
*input_section
,
9054 bfd_vma
*relocationp
)
9057 int r_type
= ELF32_R_TYPE (rel
->r_info
);
9061 if (r_type
== R_XTENSA_NONE
)
9064 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
9068 sec
= fix
->target_sec
;
9070 fixup_diff
= rel
->r_addend
;
9071 if (elf_howto_table
[fix
->src_type
].partial_inplace
)
9073 bfd_vma inplace_val
;
9074 BFD_ASSERT (fix
->src_offset
9075 < bfd_get_section_limit (input_bfd
, input_section
));
9076 inplace_val
= bfd_get_32 (input_bfd
, &contents
[fix
->src_offset
]);
9077 fixup_diff
+= inplace_val
;
9080 *relocationp
= (sec
->output_section
->vma
9081 + sec
->output_offset
9082 + fix
->target_offset
- fixup_diff
);
9086 /* Miscellaneous utility functions.... */
9089 elf_xtensa_get_plt_section (bfd
*dynobj
, int chunk
)
9094 return bfd_get_section_by_name (dynobj
, ".plt");
9096 sprintf (plt_name
, ".plt.%u", chunk
);
9097 return bfd_get_section_by_name (dynobj
, plt_name
);
9102 elf_xtensa_get_gotplt_section (bfd
*dynobj
, int chunk
)
9107 return bfd_get_section_by_name (dynobj
, ".got.plt");
9109 sprintf (got_name
, ".got.plt.%u", chunk
);
9110 return bfd_get_section_by_name (dynobj
, got_name
);
9114 /* Get the input section for a given symbol index.
9116 . a section symbol, return the section;
9117 . a common symbol, return the common section;
9118 . an undefined symbol, return the undefined section;
9119 . an indirect symbol, follow the links;
9120 . an absolute value, return the absolute section. */
9123 get_elf_r_symndx_section (bfd
*abfd
, unsigned long r_symndx
)
9125 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9126 asection
*target_sec
= NULL
;
9127 if (r_symndx
< symtab_hdr
->sh_info
)
9129 Elf_Internal_Sym
*isymbuf
;
9130 unsigned int section_index
;
9132 isymbuf
= retrieve_local_syms (abfd
);
9133 section_index
= isymbuf
[r_symndx
].st_shndx
;
9135 if (section_index
== SHN_UNDEF
)
9136 target_sec
= bfd_und_section_ptr
;
9137 else if (section_index
> 0 && section_index
< SHN_LORESERVE
)
9138 target_sec
= bfd_section_from_elf_index (abfd
, section_index
);
9139 else if (section_index
== SHN_ABS
)
9140 target_sec
= bfd_abs_section_ptr
;
9141 else if (section_index
== SHN_COMMON
)
9142 target_sec
= bfd_com_section_ptr
;
9149 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
9150 struct elf_link_hash_entry
*h
= elf_sym_hashes (abfd
)[indx
];
9152 while (h
->root
.type
== bfd_link_hash_indirect
9153 || h
->root
.type
== bfd_link_hash_warning
)
9154 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9156 switch (h
->root
.type
)
9158 case bfd_link_hash_defined
:
9159 case bfd_link_hash_defweak
:
9160 target_sec
= h
->root
.u
.def
.section
;
9162 case bfd_link_hash_common
:
9163 target_sec
= bfd_com_section_ptr
;
9165 case bfd_link_hash_undefined
:
9166 case bfd_link_hash_undefweak
:
9167 target_sec
= bfd_und_section_ptr
;
9169 default: /* New indirect warning. */
9170 target_sec
= bfd_und_section_ptr
;
9178 static struct elf_link_hash_entry
*
9179 get_elf_r_symndx_hash_entry (bfd
*abfd
, unsigned long r_symndx
)
9182 struct elf_link_hash_entry
*h
;
9183 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9185 if (r_symndx
< symtab_hdr
->sh_info
)
9188 indx
= r_symndx
- symtab_hdr
->sh_info
;
9189 h
= elf_sym_hashes (abfd
)[indx
];
9190 while (h
->root
.type
== bfd_link_hash_indirect
9191 || h
->root
.type
== bfd_link_hash_warning
)
9192 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9197 /* Get the section-relative offset for a symbol number. */
9200 get_elf_r_symndx_offset (bfd
*abfd
, unsigned long r_symndx
)
9202 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9205 if (r_symndx
< symtab_hdr
->sh_info
)
9207 Elf_Internal_Sym
*isymbuf
;
9208 isymbuf
= retrieve_local_syms (abfd
);
9209 offset
= isymbuf
[r_symndx
].st_value
;
9213 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
9214 struct elf_link_hash_entry
*h
=
9215 elf_sym_hashes (abfd
)[indx
];
9217 while (h
->root
.type
== bfd_link_hash_indirect
9218 || h
->root
.type
== bfd_link_hash_warning
)
9219 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9220 if (h
->root
.type
== bfd_link_hash_defined
9221 || h
->root
.type
== bfd_link_hash_defweak
)
9222 offset
= h
->root
.u
.def
.value
;
9229 is_reloc_sym_weak (bfd
*abfd
, Elf_Internal_Rela
*rel
)
9231 unsigned long r_symndx
= ELF32_R_SYM (rel
->r_info
);
9232 struct elf_link_hash_entry
*h
;
9234 h
= get_elf_r_symndx_hash_entry (abfd
, r_symndx
);
9235 if (h
&& h
->root
.type
== bfd_link_hash_defweak
)
9242 pcrel_reloc_fits (xtensa_opcode opc
,
9244 bfd_vma self_address
,
9245 bfd_vma dest_address
)
9247 xtensa_isa isa
= xtensa_default_isa
;
9248 uint32 valp
= dest_address
;
9249 if (xtensa_operand_do_reloc (isa
, opc
, opnd
, &valp
, self_address
)
9250 || xtensa_operand_encode (isa
, opc
, opnd
, &valp
))
9256 static int linkonce_len
= sizeof (".gnu.linkonce.") - 1;
9257 static int insn_sec_len
= sizeof (XTENSA_INSN_SEC_NAME
) - 1;
9258 static int lit_sec_len
= sizeof (XTENSA_LIT_SEC_NAME
) - 1;
9259 static int prop_sec_len
= sizeof (XTENSA_PROP_SEC_NAME
) - 1;
9263 xtensa_is_property_section (asection
*sec
)
9265 if (strncmp (XTENSA_INSN_SEC_NAME
, sec
->name
, insn_sec_len
) == 0
9266 || strncmp (XTENSA_LIT_SEC_NAME
, sec
->name
, lit_sec_len
) == 0
9267 || strncmp (XTENSA_PROP_SEC_NAME
, sec
->name
, prop_sec_len
) == 0)
9270 if (strncmp (".gnu.linkonce.", sec
->name
, linkonce_len
) == 0
9271 && (strncmp (&sec
->name
[linkonce_len
], "x.", 2) == 0
9272 || strncmp (&sec
->name
[linkonce_len
], "p.", 2) == 0
9273 || strncmp (&sec
->name
[linkonce_len
], "prop.", 5) == 0))
9281 xtensa_is_littable_section (asection
*sec
)
9283 if (strncmp (XTENSA_LIT_SEC_NAME
, sec
->name
, lit_sec_len
) == 0)
9286 if (strncmp (".gnu.linkonce.", sec
->name
, linkonce_len
) == 0
9287 && sec
->name
[linkonce_len
] == 'p'
9288 && sec
->name
[linkonce_len
+ 1] == '.')
9296 internal_reloc_compare (const void *ap
, const void *bp
)
9298 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
9299 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
9301 if (a
->r_offset
!= b
->r_offset
)
9302 return (a
->r_offset
- b
->r_offset
);
9304 /* We don't need to sort on these criteria for correctness,
9305 but enforcing a more strict ordering prevents unstable qsort
9306 from behaving differently with different implementations.
9307 Without the code below we get correct but different results
9308 on Solaris 2.7 and 2.8. We would like to always produce the
9309 same results no matter the host. */
9311 if (a
->r_info
!= b
->r_info
)
9312 return (a
->r_info
- b
->r_info
);
9314 return (a
->r_addend
- b
->r_addend
);
9319 internal_reloc_matches (const void *ap
, const void *bp
)
9321 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
9322 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
9324 /* Check if one entry overlaps with the other; this shouldn't happen
9325 except when searching for a match. */
9326 return (a
->r_offset
- b
->r_offset
);
9331 xtensa_get_property_section_name (asection
*sec
, const char *base_name
)
9333 if (strncmp (sec
->name
, ".gnu.linkonce.", linkonce_len
) == 0)
9335 char *prop_sec_name
;
9337 char *linkonce_kind
= 0;
9339 if (strcmp (base_name
, XTENSA_INSN_SEC_NAME
) == 0)
9340 linkonce_kind
= "x.";
9341 else if (strcmp (base_name
, XTENSA_LIT_SEC_NAME
) == 0)
9342 linkonce_kind
= "p.";
9343 else if (strcmp (base_name
, XTENSA_PROP_SEC_NAME
) == 0)
9344 linkonce_kind
= "prop.";
9348 prop_sec_name
= (char *) bfd_malloc (strlen (sec
->name
)
9349 + strlen (linkonce_kind
) + 1);
9350 memcpy (prop_sec_name
, ".gnu.linkonce.", linkonce_len
);
9351 strcpy (prop_sec_name
+ linkonce_len
, linkonce_kind
);
9353 suffix
= sec
->name
+ linkonce_len
;
9354 /* For backward compatibility, replace "t." instead of inserting
9355 the new linkonce_kind (but not for "prop" sections). */
9356 if (strncmp (suffix
, "t.", 2) == 0 && linkonce_kind
[1] == '.')
9358 strcat (prop_sec_name
+ linkonce_len
, suffix
);
9360 return prop_sec_name
;
9363 return strdup (base_name
);
9368 xtensa_get_property_predef_flags (asection
*sec
)
9370 if (strcmp (sec
->name
, XTENSA_INSN_SEC_NAME
) == 0
9371 || strncmp (sec
->name
, ".gnu.linkonce.x.",
9372 sizeof ".gnu.linkonce.x." - 1) == 0)
9373 return (XTENSA_PROP_INSN
9374 | XTENSA_PROP_INSN_NO_TRANSFORM
9375 | XTENSA_PROP_INSN_NO_REORDER
);
9377 if (xtensa_is_littable_section (sec
))
9378 return (XTENSA_PROP_LITERAL
9379 | XTENSA_PROP_INSN_NO_TRANSFORM
9380 | XTENSA_PROP_INSN_NO_REORDER
);
9386 /* Other functions called directly by the linker. */
9389 xtensa_callback_required_dependence (bfd
*abfd
,
9391 struct bfd_link_info
*link_info
,
9392 deps_callback_t callback
,
9395 Elf_Internal_Rela
*internal_relocs
;
9398 bfd_boolean ok
= TRUE
;
9399 bfd_size_type sec_size
;
9401 sec_size
= bfd_get_section_limit (abfd
, sec
);
9403 /* ".plt*" sections have no explicit relocations but they contain L32R
9404 instructions that reference the corresponding ".got.plt*" sections. */
9405 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0
9406 && strncmp (sec
->name
, ".plt", 4) == 0)
9410 /* Find the corresponding ".got.plt*" section. */
9411 if (sec
->name
[4] == '\0')
9412 sgotplt
= bfd_get_section_by_name (sec
->owner
, ".got.plt");
9418 BFD_ASSERT (sec
->name
[4] == '.');
9419 chunk
= strtol (&sec
->name
[5], NULL
, 10);
9421 sprintf (got_name
, ".got.plt.%u", chunk
);
9422 sgotplt
= bfd_get_section_by_name (sec
->owner
, got_name
);
9424 BFD_ASSERT (sgotplt
);
9426 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9427 section referencing a literal at the very beginning of
9428 ".got.plt". This is very close to the real dependence, anyway. */
9429 (*callback
) (sec
, sec_size
, sgotplt
, 0, closure
);
9432 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
9433 link_info
->keep_memory
);
9434 if (internal_relocs
== NULL
9435 || sec
->reloc_count
== 0)
9438 /* Cache the contents for the duration of this scan. */
9439 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
9440 if (contents
== NULL
&& sec_size
!= 0)
9446 if (!xtensa_default_isa
)
9447 xtensa_default_isa
= xtensa_isa_init (0, 0);
9449 for (i
= 0; i
< sec
->reloc_count
; i
++)
9451 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
9452 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
9455 asection
*target_sec
;
9456 bfd_vma target_offset
;
9458 r_reloc_init (&l32r_rel
, abfd
, irel
, contents
, sec_size
);
9461 /* L32Rs must be local to the input file. */
9462 if (r_reloc_is_defined (&l32r_rel
))
9464 target_sec
= r_reloc_get_section (&l32r_rel
);
9465 target_offset
= l32r_rel
.target_offset
;
9467 (*callback
) (sec
, irel
->r_offset
, target_sec
, target_offset
,
9473 release_internal_relocs (sec
, internal_relocs
);
9474 release_contents (sec
, contents
);
9478 /* The default literal sections should always be marked as "code" (i.e.,
9479 SHF_EXECINSTR). This is particularly important for the Linux kernel
9480 module loader so that the literals are not placed after the text. */
9481 static const struct bfd_elf_special_section elf_xtensa_special_sections
[] =
9483 { ".fini.literal", 13, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9484 { ".init.literal", 13, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9485 { ".literal", 8, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
9486 { NULL
, 0, 0, 0, 0 }
9490 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9491 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9492 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9493 #define TARGET_BIG_NAME "elf32-xtensa-be"
9494 #define ELF_ARCH bfd_arch_xtensa
9496 #define ELF_MACHINE_CODE EM_XTENSA
9497 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9500 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9501 #else /* !XCHAL_HAVE_MMU */
9502 #define ELF_MAXPAGESIZE 1
9503 #endif /* !XCHAL_HAVE_MMU */
9504 #endif /* ELF_ARCH */
9506 #define elf_backend_can_gc_sections 1
9507 #define elf_backend_can_refcount 1
9508 #define elf_backend_plt_readonly 1
9509 #define elf_backend_got_header_size 4
9510 #define elf_backend_want_dynbss 0
9511 #define elf_backend_want_got_plt 1
9513 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9515 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9516 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9517 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9518 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9519 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9520 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9522 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9523 #define elf_backend_check_relocs elf_xtensa_check_relocs
9524 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9525 #define elf_backend_discard_info elf_xtensa_discard_info
9526 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9527 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9528 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9529 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9530 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9531 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9532 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9533 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9534 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9535 #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9536 #define elf_backend_object_p elf_xtensa_object_p
9537 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9538 #define elf_backend_relocate_section elf_xtensa_relocate_section
9539 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9540 #define elf_backend_special_sections elf_xtensa_special_sections
9542 #include "elf32-target.h"