file ms.gmo was initially added on branch binutils-2_18-branch.
[binutils.git] / gas / config / tc-ns32k.c
bloba1e69554706d087e61ac92afa1c7566a1f3d5adb
1 /* ns32k.c -- Assemble on the National Semiconductor 32k series
2 Copyright 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /*#define SHOW_NUM 1*//* Uncomment for debugging. */
25 #include "as.h"
26 #include "opcode/ns32k.h"
28 #include "obstack.h"
30 /* Macros. */
31 #define IIF_ENTRIES 13 /* Number of entries in iif. */
32 #define PRIVATE_SIZE 256 /* Size of my garbage memory. */
33 #define MAX_ARGS 4
34 #define DEFAULT -1 /* addr_mode returns this value when
35 plain constant or label is
36 encountered. */
38 #define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
39 iif.iifP[ptr].type = a1; \
40 iif.iifP[ptr].size = c1; \
41 iif.iifP[ptr].object = e1; \
42 iif.iifP[ptr].object_adjust = g1; \
43 iif.iifP[ptr].pcrel = i1; \
44 iif.iifP[ptr].pcrel_adjust = k1; \
45 iif.iifP[ptr].im_disp = m1; \
46 iif.iifP[ptr].relax_substate = o1; \
47 iif.iifP[ptr].bit_fixP = q1; \
48 iif.iifP[ptr].addr_mode = s1; \
49 iif.iifP[ptr].bsr = u1;
51 #ifdef SEQUENT_COMPATABILITY
52 #define LINE_COMMENT_CHARS "|"
53 #define ABSOLUTE_PREFIX '@'
54 #define IMMEDIATE_PREFIX '#'
55 #endif
57 #ifndef LINE_COMMENT_CHARS
58 #define LINE_COMMENT_CHARS "#"
59 #endif
61 const char comment_chars[] = "#";
62 const char line_comment_chars[] = LINE_COMMENT_CHARS;
63 const char line_separator_chars[] = ";";
64 static int default_disp_size = 4; /* Displacement size for external refs. */
66 #if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
67 #define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined. */
68 #endif
70 struct addr_mode
72 signed char mode; /* Addressing mode of operand (0-31). */
73 signed char scaled_mode; /* Mode combined with scaled mode. */
74 char scaled_reg; /* Register used in scaled+1 (1-8). */
75 char float_flag; /* Set if R0..R7 was F0..F7 ie a
76 floating-point-register. */
77 char am_size; /* Estimated max size of general addr-mode
78 parts. */
79 char im_disp; /* If im_disp==1 we have a displacement. */
80 char pcrel; /* 1 if pcrel, this is really redundant info. */
81 char disp_suffix[2]; /* Length of displacement(s), 0=undefined. */
82 char *disp[2]; /* Pointer(s) at displacement(s)
83 or immediates(s) (ascii). */
84 char index_byte; /* Index byte. */
86 typedef struct addr_mode addr_modeS;
88 char *freeptr, *freeptr_static; /* Points at some number of free bytes. */
89 struct hash_control *inst_hash_handle;
91 struct ns32k_opcode *desc; /* Pointer at description of instruction. */
92 addr_modeS addr_modeP;
93 const char EXP_CHARS[] = "eE";
94 const char FLT_CHARS[] = "fd"; /* We don't want to support lowercase,
95 do we? */
97 /* UPPERCASE denotes live names when an instruction is built, IIF is
98 used as an intermediate form to store the actual parts of the
99 instruction. A ns32k machine instruction can be divided into a
100 couple of sub PARTs. When an instruction is assembled the
101 appropriate PART get an assignment. When an IIF has been completed
102 it is converted to a FRAGment as specified in AS.H. */
104 /* Internal structs. */
105 struct ns32k_option
107 char *pattern;
108 unsigned long or;
109 unsigned long and;
112 typedef struct
114 int type; /* How to interpret object. */
115 int size; /* Estimated max size of object. */
116 unsigned long object; /* Binary data. */
117 int object_adjust; /* Number added to object. */
118 int pcrel; /* True if object is pcrel. */
119 int pcrel_adjust; /* Length in bytes from the instruction
120 start to the displacement. */
121 int im_disp; /* True if the object is a displacement. */
122 relax_substateT relax_substate;/*Initial relaxsubstate. */
123 bit_fixS *bit_fixP; /* Pointer at bit_fix struct. */
124 int addr_mode; /* What addrmode do we associate with this
125 iif-entry. */
126 char bsr; /* Sequent hack. */
127 } iif_entryT; /* Internal Instruction Format. */
129 struct int_ins_form
131 int instr_size; /* Max size of instruction in bytes. */
132 iif_entryT iifP[IIF_ENTRIES + 1];
135 struct int_ins_form iif;
136 expressionS exprP;
137 char *input_line_pointer;
139 /* Description of the PARTs in IIF
140 object[n]:
141 0 total length in bytes of entries in iif
142 1 opcode
143 2 index_byte_a
144 3 index_byte_b
145 4 disp_a_1
146 5 disp_a_2
147 6 disp_b_1
148 7 disp_b_2
149 8 imm_a
150 9 imm_b
151 10 implied1
152 11 implied2
154 For every entry there is a datalength in bytes. This is stored in size[n].
155 0, the objectlength is not explicitly given by the instruction
156 and the operand is undefined. This is a case for relaxation.
157 Reserve 4 bytes for the final object.
159 1, the entry contains one byte
160 2, the entry contains two bytes
161 3, the entry contains three bytes
162 4, the entry contains four bytes
165 Furthermore, every entry has a data type identifier in type[n].
167 0, the entry is void, ignore it.
168 1, the entry is a binary number.
169 2, the entry is a pointer at an expression.
170 Where expression may be as simple as a single '1',
171 and as complicated as foo-bar+12,
172 foo and bar may be undefined but suffixed by :{b|w|d} to
173 control the length of the object.
175 3, the entry is a pointer at a bignum struct
177 The low-order-byte corresponds to low physical memory.
178 Obviously a FRAGment must be created for each valid disp in PART whose
179 datalength is undefined (to bad) .
180 The case where just the expression is undefined is less severe and is
181 handled by fix. Here the number of bytes in the objectfile is known.
182 With this representation we simplify the assembly and separates the
183 machine dependent/independent parts in a more clean way (said OE). */
185 struct ns32k_option opt1[] = /* restore, exit. */
187 {"r0", 0x80, 0xff},
188 {"r1", 0x40, 0xff},
189 {"r2", 0x20, 0xff},
190 {"r3", 0x10, 0xff},
191 {"r4", 0x08, 0xff},
192 {"r5", 0x04, 0xff},
193 {"r6", 0x02, 0xff},
194 {"r7", 0x01, 0xff},
195 {0, 0x00, 0xff}
197 struct ns32k_option opt2[] = /* save, enter. */
199 {"r0", 0x01, 0xff},
200 {"r1", 0x02, 0xff},
201 {"r2", 0x04, 0xff},
202 {"r3", 0x08, 0xff},
203 {"r4", 0x10, 0xff},
204 {"r5", 0x20, 0xff},
205 {"r6", 0x40, 0xff},
206 {"r7", 0x80, 0xff},
207 {0, 0x00, 0xff}
209 struct ns32k_option opt3[] = /* setcfg. */
211 {"c", 0x8, 0xff},
212 {"m", 0x4, 0xff},
213 {"f", 0x2, 0xff},
214 {"i", 0x1, 0xff},
215 {0, 0x0, 0xff}
217 struct ns32k_option opt4[] = /* cinv. */
219 {"a", 0x4, 0xff},
220 {"i", 0x2, 0xff},
221 {"d", 0x1, 0xff},
222 {0, 0x0, 0xff}
224 struct ns32k_option opt5[] = /* String inst. */
226 {"b", 0x2, 0xff},
227 {"u", 0xc, 0xff},
228 {"w", 0x4, 0xff},
229 {0, 0x0, 0xff}
231 struct ns32k_option opt6[] = /* Plain reg ext,cvtp etc. */
233 {"r0", 0x00, 0xff},
234 {"r1", 0x01, 0xff},
235 {"r2", 0x02, 0xff},
236 {"r3", 0x03, 0xff},
237 {"r4", 0x04, 0xff},
238 {"r5", 0x05, 0xff},
239 {"r6", 0x06, 0xff},
240 {"r7", 0x07, 0xff},
241 {0, 0x00, 0xff}
244 #if !defined(NS32032) && !defined(NS32532)
245 #define NS32532
246 #endif
248 struct ns32k_option cpureg_532[] = /* lpr spr. */
250 {"us", 0x0, 0xff},
251 {"dcr", 0x1, 0xff},
252 {"bpc", 0x2, 0xff},
253 {"dsr", 0x3, 0xff},
254 {"car", 0x4, 0xff},
255 {"fp", 0x8, 0xff},
256 {"sp", 0x9, 0xff},
257 {"sb", 0xa, 0xff},
258 {"usp", 0xb, 0xff},
259 {"cfg", 0xc, 0xff},
260 {"psr", 0xd, 0xff},
261 {"intbase", 0xe, 0xff},
262 {"mod", 0xf, 0xff},
263 {0, 0x00, 0xff}
265 struct ns32k_option mmureg_532[] = /* lmr smr. */
267 {"mcr", 0x9, 0xff},
268 {"msr", 0xa, 0xff},
269 {"tear", 0xb, 0xff},
270 {"ptb0", 0xc, 0xff},
271 {"ptb1", 0xd, 0xff},
272 {"ivar0", 0xe, 0xff},
273 {"ivar1", 0xf, 0xff},
274 {0, 0x0, 0xff}
277 struct ns32k_option cpureg_032[] = /* lpr spr. */
279 {"upsr", 0x0, 0xff},
280 {"fp", 0x8, 0xff},
281 {"sp", 0x9, 0xff},
282 {"sb", 0xa, 0xff},
283 {"psr", 0xd, 0xff},
284 {"intbase", 0xe, 0xff},
285 {"mod", 0xf, 0xff},
286 {0, 0x0, 0xff}
288 struct ns32k_option mmureg_032[] = /* lmr smr. */
290 {"bpr0", 0x0, 0xff},
291 {"bpr1", 0x1, 0xff},
292 {"pf0", 0x4, 0xff},
293 {"pf1", 0x5, 0xff},
294 {"sc", 0x8, 0xff},
295 {"msr", 0xa, 0xff},
296 {"bcnt", 0xb, 0xff},
297 {"ptb0", 0xc, 0xff},
298 {"ptb1", 0xd, 0xff},
299 {"eia", 0xf, 0xff},
300 {0, 0x0, 0xff}
303 #if defined(NS32532)
304 struct ns32k_option *cpureg = cpureg_532;
305 struct ns32k_option *mmureg = mmureg_532;
306 #else
307 struct ns32k_option *cpureg = cpureg_032;
308 struct ns32k_option *mmureg = mmureg_032;
309 #endif
312 const pseudo_typeS md_pseudo_table[] =
313 { /* So far empty. */
314 {0, 0, 0}
317 #define IND(x,y) (((x)<<2)+(y))
319 /* Those are index's to relax groups in md_relax_table ie it must be
320 multiplied by 4 to point at a group start. Viz IND(x,y) Se function
321 relax_segment in write.c for more info. */
323 #define BRANCH 1
324 #define PCREL 2
326 /* Those are index's to entries in a relax group. */
328 #define BYTE 0
329 #define WORD 1
330 #define DOUBLE 2
331 #define UNDEF 3
332 /* Those limits are calculated from the displacement start in memory.
333 The ns32k uses the beginning of the instruction as displacement
334 base. This type of displacements could be handled here by moving
335 the limit window up or down. I choose to use an internal
336 displacement base-adjust as there are other routines that must
337 consider this. Also, as we have two various offset-adjusts in the
338 ns32k (acb versus br/brs/jsr/bcond), two set of limits would have
339 had to be used. Now we dont have to think about that. */
341 const relax_typeS md_relax_table[] =
343 {1, 1, 0, 0},
344 {1, 1, 0, 0},
345 {1, 1, 0, 0},
346 {1, 1, 0, 0},
348 {(63), (-64), 1, IND (BRANCH, WORD)},
349 {(8192), (-8192), 2, IND (BRANCH, DOUBLE)},
350 {0, 0, 4, 0},
351 {1, 1, 0, 0}
354 /* Array used to test if mode contains displacements.
355 Value is true if mode contains displacement. */
357 char disp_test[] =
358 {0, 0, 0, 0, 0, 0, 0, 0,
359 1, 1, 1, 1, 1, 1, 1, 1,
360 1, 1, 1, 0, 0, 1, 1, 0,
361 1, 1, 1, 1, 1, 1, 1, 1};
363 /* Array used to calculate max size of displacements. */
365 char disp_size[] =
366 {4, 1, 2, 0, 4};
368 /* Parse a general operand into an addressingmode struct
370 In: pointer at operand in ascii form
371 pointer at addr_mode struct for result
372 the level of recursion. (always 0 or 1)
374 Out: data in addr_mode struct. */
376 static int
377 addr_mode (char *operand,
378 addr_modeS *addr_modeP,
379 int recursive_level)
381 char *str;
382 int i;
383 int strl;
384 int mode;
385 int j;
387 mode = DEFAULT; /* Default. */
388 addr_modeP->scaled_mode = 0; /* Why not. */
389 addr_modeP->scaled_reg = 0; /* If 0, not scaled index. */
390 addr_modeP->float_flag = 0;
391 addr_modeP->am_size = 0;
392 addr_modeP->im_disp = 0;
393 addr_modeP->pcrel = 0; /* Not set in this function. */
394 addr_modeP->disp_suffix[0] = 0;
395 addr_modeP->disp_suffix[1] = 0;
396 addr_modeP->disp[0] = NULL;
397 addr_modeP->disp[1] = NULL;
398 str = operand;
400 if (str[0] == 0)
401 return 0;
403 strl = strlen (str);
405 switch (str[0])
407 /* The following three case statements controls the mode-chars
408 this is the place to ed if you want to change them. */
409 #ifdef ABSOLUTE_PREFIX
410 case ABSOLUTE_PREFIX:
411 if (str[strl - 1] == ']')
412 break;
413 addr_modeP->mode = 21; /* absolute */
414 addr_modeP->disp[0] = str + 1;
415 return -1;
416 #endif
417 #ifdef IMMEDIATE_PREFIX
418 case IMMEDIATE_PREFIX:
419 if (str[strl - 1] == ']')
420 break;
421 addr_modeP->mode = 20; /* immediate */
422 addr_modeP->disp[0] = str + 1;
423 return -1;
424 #endif
425 case '.':
426 if (str[strl - 1] != ']')
428 switch (str[1])
430 case '-':
431 case '+':
432 if (str[2] != '\000')
434 addr_modeP->mode = 27; /* pc-relative */
435 addr_modeP->disp[0] = str + 2;
436 return -1;
438 default:
439 as_bad (_("Invalid syntax in PC-relative addressing mode"));
440 return 0;
443 break;
444 case 'e':
445 if (str[strl - 1] != ']')
447 if ((!strncmp (str, "ext(", 4)) && strl > 7)
448 { /* external */
449 addr_modeP->disp[0] = str + 4;
450 i = 0;
451 j = 2;
453 { /* disp[0]'s termination point. */
454 j += 1;
455 if (str[j] == '(')
456 i++;
457 if (str[j] == ')')
458 i--;
460 while (j < strl && i != 0);
461 if (i != 0 || !(str[j + 1] == '-' || str[j + 1] == '+'))
463 as_bad (_("Invalid syntax in External addressing mode"));
464 return (0);
466 str[j] = '\000'; /* null terminate disp[0] */
467 addr_modeP->disp[1] = str + j + 2;
468 addr_modeP->mode = 22;
469 return -1;
472 break;
474 default:
478 strl = strlen (str);
480 switch (strl)
482 case 2:
483 switch (str[0])
485 case 'f':
486 addr_modeP->float_flag = 1;
487 /* Drop through. */
488 case 'r':
489 if (str[1] >= '0' && str[1] < '8')
491 addr_modeP->mode = str[1] - '0';
492 return -1;
494 break;
495 default:
496 break;
498 /* Drop through. */
500 case 3:
501 if (!strncmp (str, "tos", 3))
503 addr_modeP->mode = 23; /* TopOfStack */
504 return -1;
506 break;
508 default:
509 break;
512 if (strl > 4)
514 if (str[strl - 1] == ')')
516 if (str[strl - 2] == ')')
518 if (!strncmp (&str[strl - 5], "(fp", 3))
519 mode = 16; /* Memory Relative. */
520 else if (!strncmp (&str[strl - 5], "(sp", 3))
521 mode = 17;
522 else if (!strncmp (&str[strl - 5], "(sb", 3))
523 mode = 18;
525 if (mode != DEFAULT)
527 /* Memory relative. */
528 addr_modeP->mode = mode;
529 j = strl - 5; /* Temp for end of disp[0]. */
530 i = 0;
534 strl -= 1;
535 if (str[strl] == ')')
536 i++;
537 if (str[strl] == '(')
538 i--;
540 while (strl > -1 && i != 0);
542 if (i != 0)
544 as_bad (_("Invalid syntax in Memory Relative addressing mode"));
545 return (0);
548 addr_modeP->disp[1] = str;
549 addr_modeP->disp[0] = str + strl + 1;
550 str[j] = '\000'; /* Null terminate disp[0] . */
551 str[strl] = '\000'; /* Null terminate disp[1]. */
553 return -1;
557 switch (str[strl - 3])
559 case 'r':
560 case 'R':
561 if (str[strl - 2] >= '0'
562 && str[strl - 2] < '8'
563 && str[strl - 4] == '(')
565 addr_modeP->mode = str[strl - 2] - '0' + 8;
566 addr_modeP->disp[0] = str;
567 str[strl - 4] = 0;
568 return -1; /* reg rel */
570 /* Drop through. */
572 default:
573 if (!strncmp (&str[strl - 4], "(fp", 3))
574 mode = 24;
575 else if (!strncmp (&str[strl - 4], "(sp", 3))
576 mode = 25;
577 else if (!strncmp (&str[strl - 4], "(sb", 3))
578 mode = 26;
579 else if (!strncmp (&str[strl - 4], "(pc", 3))
580 mode = 27;
582 if (mode != DEFAULT)
584 addr_modeP->mode = mode;
585 addr_modeP->disp[0] = str;
586 str[strl - 4] = '\0';
588 return -1; /* Memory space. */
593 /* No trailing ')' do we have a ']' ? */
594 if (str[strl - 1] == ']')
596 switch (str[strl - 2])
598 case 'b':
599 mode = 28;
600 break;
601 case 'w':
602 mode = 29;
603 break;
604 case 'd':
605 mode = 30;
606 break;
607 case 'q':
608 mode = 31;
609 break;
610 default:
611 as_bad (_("Invalid scaled-indexed mode, use (b,w,d,q)"));
613 if (str[strl - 3] != ':' || str[strl - 6] != '['
614 || str[strl - 5] == 'r' || str[strl - 4] < '0'
615 || str[strl - 4] > '7')
616 as_bad (_("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}"));
617 } /* Scaled index. */
619 if (recursive_level > 0)
621 as_bad (_("Scaled-indexed addressing mode combined with scaled-index"));
622 return 0;
625 addr_modeP->am_size += 1; /* scaled index byte. */
626 j = str[strl - 4] - '0'; /* store temporary. */
627 str[strl - 6] = '\000'; /* nullterminate for recursive call. */
628 i = addr_mode (str, addr_modeP, 1);
630 if (!i || addr_modeP->mode == 20)
632 as_bad (_("Invalid or illegal addressing mode combined with scaled-index"));
633 return 0;
636 addr_modeP->scaled_mode = addr_modeP->mode; /* Store the inferior mode. */
637 addr_modeP->mode = mode;
638 addr_modeP->scaled_reg = j + 1;
640 return -1;
644 addr_modeP->mode = DEFAULT; /* Default to whatever. */
645 addr_modeP->disp[0] = str;
647 return -1;
650 static void
651 evaluate_expr (expressionS *resultP, char *ptr)
653 char *tmp_line;
655 tmp_line = input_line_pointer;
656 input_line_pointer = ptr;
657 expression (resultP);
658 input_line_pointer = tmp_line;
661 /* ptr points at string addr_modeP points at struct with result This
662 routine calls addr_mode to determine the general addr.mode of the
663 operand. When this is ready it parses the displacements for size
664 specifying suffixes and determines size of immediate mode via
665 ns32k-opcode. Also builds index bytes if needed. */
667 static int
668 get_addr_mode (char *ptr, addr_modeS *addr_modeP)
670 int tmp;
672 addr_mode (ptr, addr_modeP, 0);
674 if (addr_modeP->mode == DEFAULT || addr_modeP->scaled_mode == -1)
676 /* Resolve ambiguous operands, this shouldn't be necessary if
677 one uses standard NSC operand syntax. But the sequent
678 compiler doesn't!!! This finds a proper addressing mode
679 if it is implicitly stated. See ns32k-opcode.h. */
680 (void) evaluate_expr (&exprP, ptr); /* This call takes time Sigh! */
682 if (addr_modeP->mode == DEFAULT)
684 if (exprP.X_add_symbol || exprP.X_op_symbol)
685 addr_modeP->mode = desc->default_model; /* We have a label. */
686 else
687 addr_modeP->mode = desc->default_modec; /* We have a constant. */
689 else
691 if (exprP.X_add_symbol || exprP.X_op_symbol)
692 addr_modeP->scaled_mode = desc->default_model;
693 else
694 addr_modeP->scaled_mode = desc->default_modec;
697 /* Must put this mess down in addr_mode to handle the scaled
698 case better. */
701 /* It appears as the sequent compiler wants an absolute when we have
702 a label without @. Constants becomes immediates besides the addr
703 case. Think it does so with local labels too, not optimum, pcrel
704 is better. When I have time I will make gas check this and
705 select pcrel when possible Actually that is trivial. */
706 if ((tmp = addr_modeP->scaled_reg))
707 { /* Build indexbyte. */
708 tmp--; /* Remember regnumber comes incremented for
709 flagpurpose. */
710 tmp |= addr_modeP->scaled_mode << 3;
711 addr_modeP->index_byte = (char) tmp;
712 addr_modeP->am_size += 1;
715 assert (addr_modeP->mode >= 0);
716 if (disp_test[(unsigned int) addr_modeP->mode])
718 char c;
719 char suffix;
720 char suffix_sub;
721 int i;
722 char *toP;
723 char *fromP;
725 /* There was a displacement, probe for length specifying suffix. */
726 addr_modeP->pcrel = 0;
728 assert(addr_modeP->mode >= 0);
729 if (disp_test[(unsigned int) addr_modeP->mode])
731 /* There is a displacement. */
732 if (addr_modeP->mode == 27 || addr_modeP->scaled_mode == 27)
733 /* Do we have pcrel. mode. */
734 addr_modeP->pcrel = 1;
736 addr_modeP->im_disp = 1;
738 for (i = 0; i < 2; i++)
740 suffix_sub = suffix = 0;
742 if ((toP = addr_modeP->disp[i]))
744 /* Suffix of expression, the largest size rules. */
745 fromP = toP;
747 while ((c = *fromP++))
749 *toP++ = c;
750 if (c == ':')
752 switch (*fromP)
754 case '\0':
755 as_warn (_("Premature end of suffix -- Defaulting to d"));
756 suffix = 4;
757 continue;
758 case 'b':
759 suffix_sub = 1;
760 break;
761 case 'w':
762 suffix_sub = 2;
763 break;
764 case 'd':
765 suffix_sub = 4;
766 break;
767 default:
768 as_warn (_("Bad suffix after ':' use {b|w|d} Defaulting to d"));
769 suffix = 4;
772 fromP ++;
773 toP --; /* So we write over the ':' */
775 if (suffix < suffix_sub)
776 suffix = suffix_sub;
780 *toP = '\0'; /* Terminate properly. */
781 addr_modeP->disp_suffix[i] = suffix;
782 addr_modeP->am_size += suffix ? suffix : 4;
787 else
789 if (addr_modeP->mode == 20)
791 /* Look in ns32k_opcode for size. */
792 addr_modeP->disp_suffix[0] = addr_modeP->am_size = desc->im_size;
793 addr_modeP->im_disp = 0;
797 return addr_modeP->mode;
800 /* Read an optionlist. */
802 static void
803 optlist (char *str, /* The string to extract options from. */
804 struct ns32k_option *optionP, /* How to search the string. */
805 unsigned long *default_map) /* Default pattern and output. */
807 int i, j, k, strlen1, strlen2;
808 char *patternP, *strP;
810 strlen1 = strlen (str);
812 if (strlen1 < 1)
813 as_fatal (_("Very short instr to option, ie you can't do it on a NULLstr"));
815 for (i = 0; optionP[i].pattern != 0; i++)
817 strlen2 = strlen (optionP[i].pattern);
819 for (j = 0; j < strlen1; j++)
821 patternP = optionP[i].pattern;
822 strP = &str[j];
824 for (k = 0; k < strlen2; k++)
826 if (*(strP++) != *(patternP++))
827 break;
830 if (k == strlen2)
831 { /* match */
832 *default_map |= optionP[i].or;
833 *default_map &= optionP[i].and;
839 /* Search struct for symbols.
840 This function is used to get the short integer form of reg names in
841 the instructions lmr, smr, lpr, spr return true if str is found in
842 list. */
844 static int
845 list_search (char *str, /* The string to match. */
846 struct ns32k_option *optionP, /* List to search. */
847 unsigned long *default_map) /* Default pattern and output. */
849 int i;
851 for (i = 0; optionP[i].pattern != 0; i++)
853 if (!strncmp (optionP[i].pattern, str, 20))
855 /* Use strncmp to be safe. */
856 *default_map |= optionP[i].or;
857 *default_map &= optionP[i].and;
859 return -1;
863 as_bad (_("No such entry in list. (cpu/mmu register)"));
864 return 0;
867 /* Create a bit_fixS in obstack 'notes'.
868 This struct is used to profile the normal fix. If the bit_fixP is a
869 valid pointer (not NULL) the bit_fix data will be used to format
870 the fix. */
872 static bit_fixS *
873 bit_fix_new (int size, /* Length of bitfield. */
874 int offset, /* Bit offset to bitfield. */
875 long min, /* Signextended min for bitfield. */
876 long max, /* Signextended max for bitfield. */
877 long add, /* Add mask, used for huffman prefix. */
878 long base_type, /* 0 or 1, if 1 it's exploded to opcode ptr. */
879 long base_adj)
881 bit_fixS *bit_fixP;
883 bit_fixP = (bit_fixS *) obstack_alloc (&notes, sizeof (bit_fixS));
885 bit_fixP->fx_bit_size = size;
886 bit_fixP->fx_bit_offset = offset;
887 bit_fixP->fx_bit_base = base_type;
888 bit_fixP->fx_bit_base_adj = base_adj;
889 bit_fixP->fx_bit_max = max;
890 bit_fixP->fx_bit_min = min;
891 bit_fixP->fx_bit_add = add;
893 return bit_fixP;
896 /* Convert operands to iif-format and adds bitfields to the opcode.
897 Operands are parsed in such an order that the opcode is updated from
898 its most significant bit, that is when the operand need to alter the
899 opcode.
900 Be careful not to put to objects in the same iif-slot. */
902 static void
903 encode_operand (int argc,
904 char **argv,
905 const char *operandsP,
906 const char *suffixP,
907 char im_size ATTRIBUTE_UNUSED,
908 char opcode_bit_ptr)
910 int i, j;
911 char d;
912 int pcrel, b, loop, pcrel_adjust;
913 unsigned long tmp;
915 for (loop = 0; loop < argc; loop++)
917 /* What operand are we supposed to work on. */
918 i = operandsP[loop << 1] - '1';
919 if (i > 3)
920 as_fatal (_("Internal consistency error. check ns32k-opcode.h"));
922 pcrel = 0;
923 pcrel_adjust = 0;
924 tmp = 0;
926 switch ((d = operandsP[(loop << 1) + 1]))
928 case 'f': /* Operand of sfsr turns out to be a nasty
929 specialcase. */
930 opcode_bit_ptr -= 5;
931 case 'Z': /* Float not immediate. */
932 case 'F': /* 32 bit float general form. */
933 case 'L': /* 64 bit float. */
934 case 'I': /* Integer not immediate. */
935 case 'B': /* Byte */
936 case 'W': /* Word */
937 case 'D': /* Double-word. */
938 case 'A': /* Double-word gen-address-form ie no regs
939 allowed. */
940 get_addr_mode (argv[i], &addr_modeP);
942 if ((addr_modeP.mode == 20) &&
943 (d == 'I' || d == 'Z' || d == 'A'))
944 as_fatal (d == 'A'? _("Address of immediate operand"):
945 _("Invalid immediate write operand."));
947 if (opcode_bit_ptr == desc->opcode_size)
948 b = 4;
949 else
950 b = 6;
952 for (j = b; j < (b + 2); j++)
954 if (addr_modeP.disp[j - b])
956 IIF (j,
958 addr_modeP.disp_suffix[j - b],
959 (unsigned long) addr_modeP.disp[j - b],
961 addr_modeP.pcrel,
962 iif.instr_size,
963 addr_modeP.im_disp,
964 IND (BRANCH, BYTE),
965 NULL,
966 (addr_modeP.scaled_reg ? addr_modeP.scaled_mode
967 : addr_modeP.mode),
972 opcode_bit_ptr -= 5;
973 iif.iifP[1].object |= ((long) addr_modeP.mode) << opcode_bit_ptr;
975 if (addr_modeP.scaled_reg)
977 j = b / 2;
978 IIF (j, 1, 1, (unsigned long) addr_modeP.index_byte,
979 0, 0, 0, 0, 0, NULL, -1, 0);
981 break;
983 case 'b': /* Multiple instruction disp. */
984 freeptr++; /* OVE:this is an useful hack. */
985 sprintf (freeptr, "((%s-1)*%d)", argv[i], desc->im_size);
986 argv[i] = freeptr;
987 pcrel -= 1; /* Make pcrel 0 in spite of what case 'p':
988 wants. */
989 /* fall thru */
990 case 'p': /* Displacement - pc relative addressing. */
991 pcrel += 1;
992 /* fall thru */
993 case 'd': /* Displacement. */
994 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
995 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
996 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 0);
997 break;
998 case 'H': /* Sequent-hack: the linker wants a bit set
999 when bsr. */
1000 pcrel = 1;
1001 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
1002 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
1003 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 1);
1004 break;
1005 case 'q': /* quick */
1006 opcode_bit_ptr -= 4;
1007 IIF (11, 2, 42, (unsigned long) argv[i], 0, 0, 0, 0, 0,
1008 bit_fix_new (4, opcode_bit_ptr, -8, 7, 0, 1, 0), -1, 0);
1009 break;
1010 case 'r': /* Register number (3 bits). */
1011 list_search (argv[i], opt6, &tmp);
1012 opcode_bit_ptr -= 3;
1013 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1014 break;
1015 case 'O': /* Setcfg instruction optionslist. */
1016 optlist (argv[i], opt3, &tmp);
1017 opcode_bit_ptr -= 4;
1018 iif.iifP[1].object |= tmp << 15;
1019 break;
1020 case 'C': /* Cinv instruction optionslist. */
1021 optlist (argv[i], opt4, &tmp);
1022 opcode_bit_ptr -= 4;
1023 iif.iifP[1].object |= tmp << 15; /* Insert the regtype in opcode. */
1024 break;
1025 case 'S': /* String instruction options list. */
1026 optlist (argv[i], opt5, &tmp);
1027 opcode_bit_ptr -= 4;
1028 iif.iifP[1].object |= tmp << 15;
1029 break;
1030 case 'u':
1031 case 'U': /* Register list. */
1032 IIF (10, 1, 1, 0, 0, 0, 0, 0, 0, NULL, -1, 0);
1033 switch (operandsP[(i << 1) + 1])
1035 case 'u': /* Restore, exit. */
1036 optlist (argv[i], opt1, &iif.iifP[10].object);
1037 break;
1038 case 'U': /* Save, enter. */
1039 optlist (argv[i], opt2, &iif.iifP[10].object);
1040 break;
1042 iif.instr_size += 1;
1043 break;
1044 case 'M': /* MMU register. */
1045 list_search (argv[i], mmureg, &tmp);
1046 opcode_bit_ptr -= 4;
1047 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1048 break;
1049 case 'P': /* CPU register. */
1050 list_search (argv[i], cpureg, &tmp);
1051 opcode_bit_ptr -= 4;
1052 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1053 break;
1054 case 'g': /* Inss exts. */
1055 iif.instr_size += 1; /* 1 byte is allocated after the opcode. */
1056 IIF (10, 2, 1,
1057 (unsigned long) argv[i], /* i always 2 here. */
1058 0, 0, 0, 0, 0,
1059 bit_fix_new (3, 5, 0, 7, 0, 0, 0), /* A bit_fix is targeted to
1060 the byte. */
1061 -1, 0);
1062 break;
1063 case 'G':
1064 IIF (11, 2, 42,
1065 (unsigned long) argv[i], /* i always 3 here. */
1066 0, 0, 0, 0, 0,
1067 bit_fix_new (5, 0, 1, 32, -1, 0, -1), -1, 0);
1068 break;
1069 case 'i':
1070 iif.instr_size += 1;
1071 b = 2 + i; /* Put the extension byte after opcode. */
1072 IIF (b, 2, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0);
1073 break;
1074 default:
1075 as_fatal (_("Bad opcode-table-option, check in file ns32k-opcode.h"));
1080 /* in: instruction line
1081 out: internal structure of instruction
1082 that has been prepared for direct conversion to fragment(s) and
1083 fixes in a systematical fashion
1084 Return-value = recursive_level. */
1085 /* Build iif of one assembly text line. */
1087 static int
1088 parse (const char *line, int recursive_level)
1090 const char *lineptr;
1091 char c, suffix_separator;
1092 int i;
1093 unsigned int argc;
1094 int arg_type;
1095 char sqr, sep;
1096 char suffix[MAX_ARGS], *argv[MAX_ARGS]; /* No more than 4 operands. */
1098 if (recursive_level <= 0)
1100 /* Called from md_assemble. */
1101 for (lineptr = line; (*lineptr) != '\0' && (*lineptr) != ' '; lineptr++)
1102 continue;
1104 c = *lineptr;
1105 *(char *) lineptr = '\0';
1107 if (!(desc = (struct ns32k_opcode *) hash_find (inst_hash_handle, line)))
1108 as_fatal (_("No such opcode"));
1110 *(char *) lineptr = c;
1112 else
1113 lineptr = line;
1115 argc = 0;
1117 if (*desc->operands)
1119 if (*lineptr++ != '\0')
1121 sqr = '[';
1122 sep = ',';
1124 while (*lineptr != '\0')
1126 if (desc->operands[argc << 1])
1128 suffix[argc] = 0;
1129 arg_type = desc->operands[(argc << 1) + 1];
1131 switch (arg_type)
1133 case 'd':
1134 case 'b':
1135 case 'p':
1136 case 'H':
1137 /* The operand is supposed to be a displacement. */
1138 /* Hackwarning: do not forget to update the 4
1139 cases above when editing ns32k-opcode.h. */
1140 suffix_separator = ':';
1141 break;
1142 default:
1143 /* If this char occurs we loose. */
1144 suffix_separator = '\255';
1145 break;
1148 suffix[argc] = 0; /* 0 when no ':' is encountered. */
1149 argv[argc] = freeptr;
1150 *freeptr = '\0';
1152 while ((c = *lineptr) != '\0' && c != sep)
1154 if (c == sqr)
1156 if (sqr == '[')
1158 sqr = ']';
1159 sep = '\0';
1161 else
1163 sqr = '[';
1164 sep = ',';
1168 if (c == suffix_separator)
1170 /* ':' - label/suffix separator. */
1171 switch (lineptr[1])
1173 case 'b':
1174 suffix[argc] = 1;
1175 break;
1176 case 'w':
1177 suffix[argc] = 2;
1178 break;
1179 case 'd':
1180 suffix[argc] = 4;
1181 break;
1182 default:
1183 as_warn (_("Bad suffix, defaulting to d"));
1184 suffix[argc] = 4;
1185 if (lineptr[1] == '\0' || lineptr[1] == sep)
1187 lineptr += 1;
1188 continue;
1190 break;
1193 lineptr += 2;
1194 continue;
1197 *freeptr++ = c;
1198 lineptr++;
1201 *freeptr++ = '\0';
1202 argc += 1;
1204 if (*lineptr == '\0')
1205 continue;
1207 lineptr += 1;
1209 else
1210 as_fatal (_("Too many operands passed to instruction"));
1215 if (argc != strlen (desc->operands) / 2)
1217 if (strlen (desc->default_args))
1219 /* We can apply default, don't goof. */
1220 if (parse (desc->default_args, 1) != 1)
1221 /* Check error in default. */
1222 as_fatal (_("Wrong numbers of operands in default, check ns32k-opcodes.h"));
1224 else
1225 as_fatal (_("Wrong number of operands"));
1228 for (i = 0; i < IIF_ENTRIES; i++)
1229 /* Mark all entries as void. */
1230 iif.iifP[i].type = 0;
1232 /* Build opcode iif-entry. */
1233 iif.instr_size = desc->opcode_size / 8;
1234 IIF (1, 1, iif.instr_size, desc->opcode_seed, 0, 0, 0, 0, 0, 0, -1, 0);
1236 /* This call encodes operands to iif format. */
1237 if (argc)
1238 encode_operand (argc, argv, &desc->operands[0],
1239 &suffix[0], desc->im_size, desc->opcode_size);
1241 return recursive_level;
1244 /* This functionality should really be in the bfd library. */
1246 static bfd_reloc_code_real_type
1247 reloc (int size, int pcrel, int type)
1249 int length, index;
1250 bfd_reloc_code_real_type relocs[] =
1252 BFD_RELOC_NS32K_IMM_8,
1253 BFD_RELOC_NS32K_IMM_16,
1254 BFD_RELOC_NS32K_IMM_32,
1255 BFD_RELOC_NS32K_IMM_8_PCREL,
1256 BFD_RELOC_NS32K_IMM_16_PCREL,
1257 BFD_RELOC_NS32K_IMM_32_PCREL,
1259 /* ns32k displacements. */
1260 BFD_RELOC_NS32K_DISP_8,
1261 BFD_RELOC_NS32K_DISP_16,
1262 BFD_RELOC_NS32K_DISP_32,
1263 BFD_RELOC_NS32K_DISP_8_PCREL,
1264 BFD_RELOC_NS32K_DISP_16_PCREL,
1265 BFD_RELOC_NS32K_DISP_32_PCREL,
1267 /* Normal 2's complement. */
1268 BFD_RELOC_8,
1269 BFD_RELOC_16,
1270 BFD_RELOC_32,
1271 BFD_RELOC_8_PCREL,
1272 BFD_RELOC_16_PCREL,
1273 BFD_RELOC_32_PCREL
1276 switch (size)
1278 case 1:
1279 length = 0;
1280 break;
1281 case 2:
1282 length = 1;
1283 break;
1284 case 4:
1285 length = 2;
1286 break;
1287 default:
1288 length = -1;
1289 break;
1292 index = length + 3 * pcrel + 6 * type;
1294 if (index >= 0 && (unsigned int) index < sizeof (relocs) / sizeof (relocs[0]))
1295 return relocs[index];
1297 if (pcrel)
1298 as_bad (_("Can not do %d byte pc-relative relocation for storage type %d"),
1299 size, type);
1300 else
1301 as_bad (_("Can not do %d byte relocation for storage type %d"),
1302 size, type);
1304 return BFD_RELOC_NONE;
1308 static void
1309 fix_new_ns32k (fragS *frag, /* Which frag? */
1310 int where, /* Where in that frag? */
1311 int size, /* 1, 2 or 4 usually. */
1312 symbolS *add_symbol, /* X_add_symbol. */
1313 long offset, /* X_add_number. */
1314 int pcrel, /* True if PC-relative relocation. */
1315 char im_disp, /* True if the value to write is a
1316 displacement. */
1317 bit_fixS *bit_fixP, /* Pointer at struct of bit_fix's, ignored if
1318 NULL. */
1319 char bsr, /* Sequent-linker-hack: 1 when relocobject is
1320 a bsr. */
1321 fragS *opcode_frag,
1322 unsigned int opcode_offset)
1324 fixS *fixP = fix_new (frag, where, size, add_symbol,
1325 offset, pcrel,
1326 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
1329 fix_opcode_frag (fixP) = opcode_frag;
1330 fix_opcode_offset (fixP) = opcode_offset;
1331 fix_im_disp (fixP) = im_disp;
1332 fix_bsr (fixP) = bsr;
1333 fix_bit_fixP (fixP) = bit_fixP;
1334 /* We have a MD overflow check for displacements. */
1335 fixP->fx_no_overflow = (im_disp != 0);
1338 static void
1339 fix_new_ns32k_exp (fragS *frag, /* Which frag? */
1340 int where, /* Where in that frag? */
1341 int size, /* 1, 2 or 4 usually. */
1342 expressionS *exp, /* Expression. */
1343 int pcrel, /* True if PC-relative relocation. */
1344 char im_disp, /* True if the value to write is a
1345 displacement. */
1346 bit_fixS *bit_fixP, /* Pointer at struct of bit_fix's, ignored if
1347 NULL. */
1348 char bsr, /* Sequent-linker-hack: 1 when relocobject is
1349 a bsr. */
1350 fragS *opcode_frag,
1351 unsigned int opcode_offset)
1353 fixS *fixP = fix_new_exp (frag, where, size, exp, pcrel,
1354 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
1357 fix_opcode_frag (fixP) = opcode_frag;
1358 fix_opcode_offset (fixP) = opcode_offset;
1359 fix_im_disp (fixP) = im_disp;
1360 fix_bsr (fixP) = bsr;
1361 fix_bit_fixP (fixP) = bit_fixP;
1362 /* We have a MD overflow check for displacements. */
1363 fixP->fx_no_overflow = (im_disp != 0);
1366 /* Convert number to chars in correct order. */
1368 void
1369 md_number_to_chars (char *buf, valueT value, int nbytes)
1371 number_to_chars_littleendian (buf, value, nbytes);
1374 /* This is a variant of md_numbers_to_chars. The reason for its'
1375 existence is the fact that ns32k uses Huffman coded
1376 displacements. This implies that the bit order is reversed in
1377 displacements and that they are prefixed with a size-tag.
1379 binary: msb -> lsb
1380 0xxxxxxx byte
1381 10xxxxxx xxxxxxxx word
1382 11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx double word
1384 This must be taken care of and we do it here! */
1386 static void
1387 md_number_to_disp (char *buf, long val, int n)
1389 switch (n)
1391 case 1:
1392 if (val < -64 || val > 63)
1393 as_bad (_("value of %ld out of byte displacement range."), val);
1394 val &= 0x7f;
1395 #ifdef SHOW_NUM
1396 printf ("%x ", val & 0xff);
1397 #endif
1398 *buf++ = val;
1399 break;
1401 case 2:
1402 if (val < -8192 || val > 8191)
1403 as_bad (_("value of %ld out of word displacement range."), val);
1404 val &= 0x3fff;
1405 val |= 0x8000;
1406 #ifdef SHOW_NUM
1407 printf ("%x ", val >> 8 & 0xff);
1408 #endif
1409 *buf++ = (val >> 8);
1410 #ifdef SHOW_NUM
1411 printf ("%x ", val & 0xff);
1412 #endif
1413 *buf++ = val;
1414 break;
1416 case 4:
1417 if (val < -0x20000000 || val >= 0x20000000)
1418 as_bad (_("value of %ld out of double word displacement range."), val);
1419 val |= 0xc0000000;
1420 #ifdef SHOW_NUM
1421 printf ("%x ", val >> 24 & 0xff);
1422 #endif
1423 *buf++ = (val >> 24);
1424 #ifdef SHOW_NUM
1425 printf ("%x ", val >> 16 & 0xff);
1426 #endif
1427 *buf++ = (val >> 16);
1428 #ifdef SHOW_NUM
1429 printf ("%x ", val >> 8 & 0xff);
1430 #endif
1431 *buf++ = (val >> 8);
1432 #ifdef SHOW_NUM
1433 printf ("%x ", val & 0xff);
1434 #endif
1435 *buf++ = val;
1436 break;
1438 default:
1439 as_fatal (_("Internal logic error. line %d, file \"%s\""),
1440 __LINE__, __FILE__);
1444 static void
1445 md_number_to_imm (char *buf, long val, int n)
1447 switch (n)
1449 case 1:
1450 #ifdef SHOW_NUM
1451 printf ("%x ", val & 0xff);
1452 #endif
1453 *buf++ = val;
1454 break;
1456 case 2:
1457 #ifdef SHOW_NUM
1458 printf ("%x ", val >> 8 & 0xff);
1459 #endif
1460 *buf++ = (val >> 8);
1461 #ifdef SHOW_NUM
1462 printf ("%x ", val & 0xff);
1463 #endif
1464 *buf++ = val;
1465 break;
1467 case 4:
1468 #ifdef SHOW_NUM
1469 printf ("%x ", val >> 24 & 0xff);
1470 #endif
1471 *buf++ = (val >> 24);
1472 #ifdef SHOW_NUM
1473 printf ("%x ", val >> 16 & 0xff);
1474 #endif
1475 *buf++ = (val >> 16);
1476 #ifdef SHOW_NUM
1477 printf ("%x ", val >> 8 & 0xff);
1478 #endif
1479 *buf++ = (val >> 8);
1480 #ifdef SHOW_NUM
1481 printf ("%x ", val & 0xff);
1482 #endif
1483 *buf++ = val;
1484 break;
1486 default:
1487 as_fatal (_("Internal logic error. line %d, file \"%s\""),
1488 __LINE__, __FILE__);
1492 /* Fast bitfiddling support. */
1493 /* Mask used to zero bitfield before oring in the true field. */
1495 static unsigned long l_mask[] =
1497 0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
1498 0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
1499 0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
1500 0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
1501 0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
1502 0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
1503 0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
1504 0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
1506 static unsigned long r_mask[] =
1508 0x00000000, 0x00000001, 0x00000003, 0x00000007,
1509 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
1510 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
1511 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
1512 0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
1513 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
1514 0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
1515 0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
1517 #define MASK_BITS 31
1518 /* Insert bitfield described by field_ptr and val at buf
1519 This routine is written for modification of the first 4 bytes pointed
1520 to by buf, to yield speed.
1521 The ifdef stuff is for selection between a ns32k-dependent routine
1522 and a general version. (My advice: use the general version!). */
1524 static void
1525 md_number_to_field (char *buf, long val, bit_fixS *field_ptr)
1527 unsigned long object;
1528 unsigned long mask;
1529 /* Define ENDIAN on a ns32k machine. */
1530 #ifdef ENDIAN
1531 unsigned long *mem_ptr;
1532 #else
1533 char *mem_ptr;
1534 #endif
1536 if (field_ptr->fx_bit_min <= val && val <= field_ptr->fx_bit_max)
1538 #ifdef ENDIAN
1539 if (field_ptr->fx_bit_base)
1540 /* Override buf. */
1541 mem_ptr = (unsigned long *) field_ptr->fx_bit_base;
1542 else
1543 mem_ptr = (unsigned long *) buf;
1545 mem_ptr = ((unsigned long *)
1546 ((char *) mem_ptr + field_ptr->fx_bit_base_adj));
1547 #else
1548 if (field_ptr->fx_bit_base)
1549 mem_ptr = (char *) field_ptr->fx_bit_base;
1550 else
1551 mem_ptr = buf;
1553 mem_ptr += field_ptr->fx_bit_base_adj;
1554 #endif
1555 #ifdef ENDIAN
1556 /* We have a nice ns32k machine with lowbyte at low-physical mem. */
1557 object = *mem_ptr; /* get some bytes */
1558 #else /* OVE Goof! the machine is a m68k or dito. */
1559 /* That takes more byte fiddling. */
1560 object = 0;
1561 object |= mem_ptr[3] & 0xff;
1562 object <<= 8;
1563 object |= mem_ptr[2] & 0xff;
1564 object <<= 8;
1565 object |= mem_ptr[1] & 0xff;
1566 object <<= 8;
1567 object |= mem_ptr[0] & 0xff;
1568 #endif
1569 mask = 0;
1570 mask |= (r_mask[field_ptr->fx_bit_offset]);
1571 mask |= (l_mask[field_ptr->fx_bit_offset + field_ptr->fx_bit_size]);
1572 object &= mask;
1573 val += field_ptr->fx_bit_add;
1574 object |= ((val << field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
1575 #ifdef ENDIAN
1576 *mem_ptr = object;
1577 #else
1578 mem_ptr[0] = (char) object;
1579 object >>= 8;
1580 mem_ptr[1] = (char) object;
1581 object >>= 8;
1582 mem_ptr[2] = (char) object;
1583 object >>= 8;
1584 mem_ptr[3] = (char) object;
1585 #endif
1587 else
1588 as_bad (_("Bit field out of range"));
1591 /* Convert iif to fragments. From this point we start to dribble with
1592 functions in other files than this one.(Except hash.c) So, if it's
1593 possible to make an iif for an other CPU, you don't need to know
1594 what frags, relax, obstacks, etc is in order to port this
1595 assembler. You only need to know if it's possible to reduce your
1596 cpu-instruction to iif-format (takes some work) and adopt the other
1597 md_? parts according to given instructions Note that iif was
1598 invented for the clean ns32k`s architecture. */
1600 /* GAS for the ns32k has a problem. PC relative displacements are
1601 relative to the address of the opcode, not the address of the
1602 operand. We used to keep track of the offset between the operand
1603 and the opcode in pcrel_adjust for each frag and each fix. However,
1604 we get into trouble where there are two or more pc-relative
1605 operands and the size of the first one can't be determined. Then in
1606 the relax phase, the size of the first operand will change and
1607 pcrel_adjust will no longer be correct. The current solution is
1608 keep a pointer to the frag with the opcode in it and the offset in
1609 that frag for each frag and each fix. Then, when needed, we can
1610 always figure out how far it is between the opcode and the pcrel
1611 object. See also md_pcrel_adjust and md_fix_pcrel_adjust. For
1612 objects not part of an instruction, the pointer to the opcode frag
1613 is always zero. */
1615 static void
1616 convert_iif (void)
1618 int i;
1619 bit_fixS *j;
1620 fragS *inst_frag;
1621 unsigned int inst_offset;
1622 char *inst_opcode;
1623 char *memP;
1624 int l;
1625 int k;
1626 char type;
1627 char size = 0;
1629 frag_grow (iif.instr_size); /* This is important. */
1630 memP = frag_more (0);
1631 inst_opcode = memP;
1632 inst_offset = (memP - frag_now->fr_literal);
1633 inst_frag = frag_now;
1635 for (i = 0; i < IIF_ENTRIES; i++)
1637 if ((type = iif.iifP[i].type))
1639 /* The object exist, so handle it. */
1640 switch (size = iif.iifP[i].size)
1642 case 42:
1643 size = 0;
1644 /* It's a bitfix that operates on an existing object. */
1645 if (iif.iifP[i].bit_fixP->fx_bit_base)
1646 /* Expand fx_bit_base to point at opcode. */
1647 iif.iifP[i].bit_fixP->fx_bit_base = (long) inst_opcode;
1648 /* Fall through. */
1650 case 8: /* bignum or doublefloat. */
1651 case 1:
1652 case 2:
1653 case 3:
1654 case 4:
1655 /* The final size in objectmemory is known. */
1656 memP = frag_more (size);
1657 j = iif.iifP[i].bit_fixP;
1659 switch (type)
1661 case 1: /* The object is pure binary. */
1662 if (j)
1663 md_number_to_field (memP, exprP.X_add_number, j);
1665 else if (iif.iifP[i].pcrel)
1666 fix_new_ns32k (frag_now,
1667 (long) (memP - frag_now->fr_literal),
1668 size,
1670 iif.iifP[i].object,
1671 iif.iifP[i].pcrel,
1672 iif.iifP[i].im_disp,
1674 iif.iifP[i].bsr, /* Sequent hack. */
1675 inst_frag, inst_offset);
1676 else
1678 /* Good, just put them bytes out. */
1679 switch (iif.iifP[i].im_disp)
1681 case 0:
1682 md_number_to_chars (memP, iif.iifP[i].object, size);
1683 break;
1684 case 1:
1685 md_number_to_disp (memP, iif.iifP[i].object, size);
1686 break;
1687 default:
1688 as_fatal (_("iif convert internal pcrel/binary"));
1691 break;
1693 case 2:
1694 /* The object is a pointer at an expression, so
1695 unpack it, note that bignums may result from the
1696 expression. */
1697 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1698 if (exprP.X_op == O_big || size == 8)
1700 if ((k = exprP.X_add_number) > 0)
1702 /* We have a bignum ie a quad. This can only
1703 happens in a long suffixed instruction. */
1704 if (k * 2 > size)
1705 as_bad (_("Bignum too big for long"));
1707 if (k == 3)
1708 memP += 2;
1710 for (l = 0; k > 0; k--, l += 2)
1711 md_number_to_chars (memP + l,
1712 generic_bignum[l >> 1],
1713 sizeof (LITTLENUM_TYPE));
1715 else
1717 /* flonum. */
1718 LITTLENUM_TYPE words[4];
1720 switch (size)
1722 case 4:
1723 gen_to_words (words, 2, 8);
1724 md_number_to_imm (memP, (long) words[0],
1725 sizeof (LITTLENUM_TYPE));
1726 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1727 (long) words[1],
1728 sizeof (LITTLENUM_TYPE));
1729 break;
1730 case 8:
1731 gen_to_words (words, 4, 11);
1732 md_number_to_imm (memP, (long) words[0],
1733 sizeof (LITTLENUM_TYPE));
1734 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1735 (long) words[1],
1736 sizeof (LITTLENUM_TYPE));
1737 md_number_to_imm ((memP + 2
1738 * sizeof (LITTLENUM_TYPE)),
1739 (long) words[2],
1740 sizeof (LITTLENUM_TYPE));
1741 md_number_to_imm ((memP + 3
1742 * sizeof (LITTLENUM_TYPE)),
1743 (long) words[3],
1744 sizeof (LITTLENUM_TYPE));
1745 break;
1748 break;
1750 if (exprP.X_add_symbol ||
1751 exprP.X_op_symbol ||
1752 iif.iifP[i].pcrel)
1754 /* The expression was undefined due to an
1755 undefined label. Create a fix so we can fix
1756 the object later. */
1757 exprP.X_add_number += iif.iifP[i].object_adjust;
1758 fix_new_ns32k_exp (frag_now,
1759 (long) (memP - frag_now->fr_literal),
1760 size,
1761 &exprP,
1762 iif.iifP[i].pcrel,
1763 iif.iifP[i].im_disp,
1765 iif.iifP[i].bsr,
1766 inst_frag, inst_offset);
1768 else if (j)
1769 md_number_to_field (memP, exprP.X_add_number, j);
1770 else
1772 /* Good, just put them bytes out. */
1773 switch (iif.iifP[i].im_disp)
1775 case 0:
1776 md_number_to_imm (memP, exprP.X_add_number, size);
1777 break;
1778 case 1:
1779 md_number_to_disp (memP, exprP.X_add_number, size);
1780 break;
1781 default:
1782 as_fatal (_("iif convert internal pcrel/pointer"));
1785 break;
1786 default:
1787 as_fatal (_("Internal logic error in iif.iifP[n].type"));
1789 break;
1791 case 0:
1792 /* Too bad, the object may be undefined as far as its
1793 final nsize in object memory is concerned. The size
1794 of the object in objectmemory is not explicitly
1795 given. If the object is defined its length can be
1796 determined and a fix can replace the frag. */
1798 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1800 if ((exprP.X_add_symbol || exprP.X_op_symbol) &&
1801 !iif.iifP[i].pcrel)
1803 /* Size is unknown until link time so have to default. */
1804 size = default_disp_size; /* Normally 4 bytes. */
1805 memP = frag_more (size);
1806 fix_new_ns32k_exp (frag_now,
1807 (long) (memP - frag_now->fr_literal),
1808 size,
1809 &exprP,
1810 0, /* never iif.iifP[i].pcrel, */
1811 1, /* always iif.iifP[i].im_disp */
1812 (bit_fixS *) 0, 0,
1813 inst_frag,
1814 inst_offset);
1815 break; /* Exit this absolute hack. */
1818 if (exprP.X_add_symbol || exprP.X_op_symbol)
1820 /* Frag it. */
1821 if (exprP.X_op_symbol)
1822 /* We cant relax this case. */
1823 as_fatal (_("Can't relax difference"));
1824 else
1826 /* Size is not important. This gets fixed by
1827 relax, but we assume 0 in what follows. */
1828 memP = frag_more (4); /* Max size. */
1829 size = 0;
1832 fragS *old_frag = frag_now;
1833 frag_variant (rs_machine_dependent,
1834 4, /* Max size. */
1835 0, /* Size. */
1836 IND (BRANCH, UNDEF), /* Expecting
1837 the worst. */
1838 exprP.X_add_symbol,
1839 exprP.X_add_number,
1840 inst_opcode);
1841 frag_opcode_frag (old_frag) = inst_frag;
1842 frag_opcode_offset (old_frag) = inst_offset;
1843 frag_bsr (old_frag) = iif.iifP[i].bsr;
1847 else
1849 /* This duplicates code in md_number_to_disp. */
1850 if (-64 <= exprP.X_add_number && exprP.X_add_number <= 63)
1851 size = 1;
1852 else
1854 if (-8192 <= exprP.X_add_number
1855 && exprP.X_add_number <= 8191)
1856 size = 2;
1857 else
1859 if (-0x20000000 <= exprP.X_add_number
1860 && exprP.X_add_number<=0x1fffffff)
1861 size = 4;
1862 else
1864 as_bad (_("Displacement too large for :d"));
1865 size = 4;
1870 memP = frag_more (size);
1871 md_number_to_disp (memP, exprP.X_add_number, size);
1874 break;
1876 default:
1877 as_fatal (_("Internal logic error in iif.iifP[].type"));
1883 void
1884 md_assemble (char *line)
1886 freeptr = freeptr_static;
1887 parse (line, 0); /* Explode line to more fix form in iif. */
1888 convert_iif (); /* Convert iif to frags, fix's etc. */
1889 #ifdef SHOW_NUM
1890 printf (" \t\t\t%s\n", line);
1891 #endif
1894 void
1895 md_begin (void)
1897 /* Build a hashtable of the instructions. */
1898 const struct ns32k_opcode *ptr;
1899 const char *stat;
1900 const struct ns32k_opcode *endop;
1902 inst_hash_handle = hash_new ();
1904 endop = ns32k_opcodes + sizeof (ns32k_opcodes) / sizeof (ns32k_opcodes[0]);
1905 for (ptr = ns32k_opcodes; ptr < endop; ptr++)
1907 if ((stat = hash_insert (inst_hash_handle, ptr->name, (char *) ptr)))
1908 /* Fatal. */
1909 as_fatal (_("Can't hash %s: %s"), ptr->name, stat);
1912 /* Some private space please! */
1913 freeptr_static = (char *) malloc (PRIVATE_SIZE);
1916 /* Must be equal to MAX_PRECISON in atof-ieee.c. */
1917 #define MAX_LITTLENUMS 6
1919 /* Turn the string pointed to by litP into a floating point constant
1920 of type TYPE, and emit the appropriate bytes. The number of
1921 LITTLENUMS emitted is stored in *SIZEP. An error message is
1922 returned, or NULL on OK. */
1924 char *
1925 md_atof (int type, char *litP, int *sizeP)
1927 int prec;
1928 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1929 LITTLENUM_TYPE *wordP;
1930 char *t;
1932 switch (type)
1934 case 'f':
1935 prec = 2;
1936 break;
1938 case 'd':
1939 prec = 4;
1940 break;
1941 default:
1942 *sizeP = 0;
1943 return _("Bad call to MD_ATOF()");
1946 t = atof_ieee (input_line_pointer, type, words);
1947 if (t)
1948 input_line_pointer = t;
1950 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1952 for (wordP = words + prec; prec--;)
1954 md_number_to_chars (litP, (long) (*--wordP), sizeof (LITTLENUM_TYPE));
1955 litP += sizeof (LITTLENUM_TYPE);
1958 return 0;
1962 md_pcrel_adjust (fragS *fragP)
1964 fragS *opcode_frag;
1965 addressT opcode_address;
1966 unsigned int offset;
1968 opcode_frag = frag_opcode_frag (fragP);
1969 if (opcode_frag == 0)
1970 return 0;
1972 offset = frag_opcode_offset (fragP);
1973 opcode_address = offset + opcode_frag->fr_address;
1975 return fragP->fr_address + fragP->fr_fix - opcode_address;
1978 static int
1979 md_fix_pcrel_adjust (fixS *fixP)
1981 fragS *opcode_frag;
1982 addressT opcode_address;
1983 unsigned int offset;
1985 opcode_frag = fix_opcode_frag (fixP);
1986 if (opcode_frag == 0)
1987 return 0;
1989 offset = fix_opcode_offset (fixP);
1990 opcode_address = offset + opcode_frag->fr_address;
1992 return fixP->fx_where + fixP->fx_frag->fr_address - opcode_address;
1995 /* Apply a fixS (fixup of an instruction or data that we didn't have
1996 enough info to complete immediately) to the data in a frag.
1998 On the ns32k, everything is in a different format, so we have broken
1999 out separate functions for each kind of thing we could be fixing.
2000 They all get called from here. */
2002 void
2003 md_apply_fix (fixS *fixP, valueT * valP, segT seg ATTRIBUTE_UNUSED)
2005 long val = * (long *) valP;
2006 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2008 if (fix_bit_fixP (fixP))
2009 /* Bitfields to fix, sigh. */
2010 md_number_to_field (buf, val, fix_bit_fixP (fixP));
2011 else switch (fix_im_disp (fixP))
2013 case 0:
2014 /* Immediate field. */
2015 md_number_to_imm (buf, val, fixP->fx_size);
2016 break;
2018 case 1:
2019 /* Displacement field. */
2020 /* Calculate offset. */
2021 md_number_to_disp (buf,
2022 (fixP->fx_pcrel ? val + md_fix_pcrel_adjust (fixP)
2023 : val), fixP->fx_size);
2024 break;
2026 case 2:
2027 /* Pointer in a data object. */
2028 md_number_to_chars (buf, val, fixP->fx_size);
2029 break;
2032 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
2033 fixP->fx_done = 1;
2036 /* Convert a relaxed displacement to ditto in final output. */
2038 void
2039 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
2040 segT sec ATTRIBUTE_UNUSED,
2041 fragS *fragP)
2043 long disp;
2044 long ext = 0;
2045 /* Address in gas core of the place to store the displacement. */
2046 char *buffer_address = fragP->fr_fix + fragP->fr_literal;
2047 /* Address in object code of the displacement. */
2048 int object_address;
2050 switch (fragP->fr_subtype)
2052 case IND (BRANCH, BYTE):
2053 ext = 1;
2054 break;
2055 case IND (BRANCH, WORD):
2056 ext = 2;
2057 break;
2058 case IND (BRANCH, DOUBLE):
2059 ext = 4;
2060 break;
2063 if (ext == 0)
2064 return;
2066 know (fragP->fr_symbol);
2068 object_address = fragP->fr_fix + fragP->fr_address;
2070 /* The displacement of the address, from current location. */
2071 disp = (S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset) - object_address;
2072 disp += md_pcrel_adjust (fragP);
2074 md_number_to_disp (buffer_address, (long) disp, (int) ext);
2075 fragP->fr_fix += ext;
2078 /* This function returns the estimated size a variable object will occupy,
2079 one can say that we tries to guess the size of the objects before we
2080 actually know it. */
2083 md_estimate_size_before_relax (fragS *fragP, segT segment)
2085 if (fragP->fr_subtype == IND (BRANCH, UNDEF))
2087 if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
2089 /* We don't relax symbols defined in another segment. The
2090 thing to do is to assume the object will occupy 4 bytes. */
2091 fix_new_ns32k (fragP,
2092 (int) (fragP->fr_fix),
2094 fragP->fr_symbol,
2095 fragP->fr_offset,
2099 frag_bsr(fragP), /* Sequent hack. */
2100 frag_opcode_frag (fragP),
2101 frag_opcode_offset (fragP));
2102 fragP->fr_fix += 4;
2103 frag_wane (fragP);
2104 return 4;
2107 /* Relaxable case. Set up the initial guess for the variable
2108 part of the frag. */
2109 fragP->fr_subtype = IND (BRANCH, BYTE);
2112 if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
2113 abort ();
2115 /* Return the size of the variable part of the frag. */
2116 return md_relax_table[fragP->fr_subtype].rlx_length;
2119 int md_short_jump_size = 3;
2120 int md_long_jump_size = 5;
2122 void
2123 md_create_short_jump (char *ptr,
2124 addressT from_addr,
2125 addressT to_addr,
2126 fragS *frag ATTRIBUTE_UNUSED,
2127 symbolS *to_symbol ATTRIBUTE_UNUSED)
2129 valueT offset;
2131 offset = to_addr - from_addr;
2132 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2133 md_number_to_disp (ptr + 1, (valueT) offset, 2);
2136 void
2137 md_create_long_jump (char *ptr,
2138 addressT from_addr,
2139 addressT to_addr,
2140 fragS *frag ATTRIBUTE_UNUSED,
2141 symbolS *to_symbol ATTRIBUTE_UNUSED)
2143 valueT offset;
2145 offset = to_addr - from_addr;
2146 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2147 md_number_to_disp (ptr + 1, (valueT) offset, 4);
2150 const char *md_shortopts = "m:";
2152 struct option md_longopts[] =
2154 #define OPTION_DISP_SIZE (OPTION_MD_BASE)
2155 {"disp-size-default", required_argument , NULL, OPTION_DISP_SIZE},
2156 {NULL, no_argument, NULL, 0}
2159 size_t md_longopts_size = sizeof (md_longopts);
2162 md_parse_option (int c, char *arg)
2164 switch (c)
2166 case 'm':
2167 if (!strcmp (arg, "32032"))
2169 cpureg = cpureg_032;
2170 mmureg = mmureg_032;
2172 else if (!strcmp (arg, "32532"))
2174 cpureg = cpureg_532;
2175 mmureg = mmureg_532;
2177 else
2179 as_warn (_("invalid architecture option -m%s, ignored"), arg);
2180 return 0;
2182 break;
2183 case OPTION_DISP_SIZE:
2185 int size = atoi(arg);
2186 switch (size)
2188 case 1: case 2: case 4:
2189 default_disp_size = size;
2190 break;
2191 default:
2192 as_warn (_("invalid default displacement size \"%s\". Defaulting to %d."),
2193 arg, default_disp_size);
2195 break;
2198 default:
2199 return 0;
2202 return 1;
2205 void
2206 md_show_usage (FILE *stream)
2208 fprintf (stream, _("\
2209 NS32K options:\n\
2210 -m32032 | -m32532 select variant of NS32K architecture\n\
2211 --disp-size-default=<1|2|4>\n"));
2214 /* This is TC_CONS_FIX_NEW, called by emit_expr in read.c. */
2216 void
2217 cons_fix_new_ns32k (fragS *frag, /* Which frag? */
2218 int where, /* Where in that frag? */
2219 int size, /* 1, 2 or 4 usually. */
2220 expressionS *exp) /* Expression. */
2222 fix_new_ns32k_exp (frag, where, size, exp,
2223 0, 2, 0, 0, 0, 0);
2226 /* We have no need to default values of symbols. */
2228 symbolS *
2229 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2231 return 0;
2234 /* Round up a section size to the appropriate boundary. */
2236 valueT
2237 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
2239 return size; /* Byte alignment is fine. */
2242 /* Exactly what point is a PC-relative offset relative TO? On the
2243 ns32k, they're relative to the start of the instruction. */
2245 long
2246 md_pcrel_from (fixS *fixP)
2248 long res;
2250 res = fixP->fx_where + fixP->fx_frag->fr_address;
2251 #ifdef SEQUENT_COMPATABILITY
2252 if (frag_bsr (fixP->fx_frag))
2253 res += 0x12 /* FOO Kludge alert! */
2254 #endif
2255 return res;
2258 arelent *
2259 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2261 arelent *rel;
2262 bfd_reloc_code_real_type code;
2264 code = reloc (fixp->fx_size, fixp->fx_pcrel, fix_im_disp (fixp));
2266 rel = xmalloc (sizeof (arelent));
2267 rel->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
2268 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2269 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2270 if (fixp->fx_pcrel)
2271 rel->addend = fixp->fx_addnumber;
2272 else
2273 rel->addend = 0;
2275 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
2276 if (!rel->howto)
2278 const char *name;
2280 name = S_GET_NAME (fixp->fx_addsy);
2281 if (name == NULL)
2282 name = _("<unknown>");
2283 as_fatal (_("Cannot find relocation type for symbol %s, code %d"),
2284 name, (int) code);
2287 return rel;