1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
48 #include "descriptors.h"
50 #include "incremental.h"
56 // Layout_task_runner methods.
58 // Lay out the sections. This is called after all the input objects
62 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
64 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
69 // Now we know the final size of the output file and we know where
70 // each piece of information goes.
72 if (this->mapfile_
!= NULL
)
74 this->mapfile_
->print_discarded_sections(this->input_objects_
);
75 this->layout_
->print_to_mapfile(this->mapfile_
);
78 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
79 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
80 of
->set_is_temporary();
83 // Queue up the final set of tasks.
84 gold::queue_final_tasks(this->options_
, this->input_objects_
,
85 this->symtab_
, this->layout_
, workqueue
, of
);
90 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
91 : number_of_input_files_(number_of_input_files
),
92 script_options_(script_options
),
100 unattached_section_list_(),
101 special_output_list_(),
102 section_headers_(NULL
),
104 relro_segment_(NULL
),
105 symtab_section_(NULL
),
106 symtab_xindex_(NULL
),
107 dynsym_section_(NULL
),
108 dynsym_xindex_(NULL
),
109 dynamic_section_(NULL
),
111 eh_frame_section_(NULL
),
112 eh_frame_data_(NULL
),
113 added_eh_frame_data_(false),
114 eh_frame_hdr_section_(NULL
),
115 build_id_note_(NULL
),
119 output_file_size_(-1),
120 sections_are_attached_(false),
121 input_requires_executable_stack_(false),
122 input_with_gnu_stack_note_(false),
123 input_without_gnu_stack_note_(false),
124 has_static_tls_(false),
125 any_postprocessing_sections_(false),
126 resized_signatures_(false),
127 incremental_inputs_(NULL
)
129 // Make space for more than enough segments for a typical file.
130 // This is just for efficiency--it's OK if we wind up needing more.
131 this->segment_list_
.reserve(12);
133 // We expect two unattached Output_data objects: the file header and
134 // the segment headers.
135 this->special_output_list_
.reserve(2);
137 // Initialize structure needed for an incremental build.
138 if (parameters
->options().incremental())
139 this->incremental_inputs_
= new Incremental_inputs
;
142 // Hash a key we use to look up an output section mapping.
145 Layout::Hash_key::operator()(const Layout::Key
& k
) const
147 return k
.first
+ k
.second
.first
+ k
.second
.second
;
150 // Returns whether the given section is in the list of
151 // debug-sections-used-by-some-version-of-gdb. Currently,
152 // we've checked versions of gdb up to and including 6.7.1.
154 static const char* gdb_sections
[] =
156 // ".debug_aranges", // not used by gdb as of 6.7.1
162 // ".debug_pubnames", // not used by gdb as of 6.7.1
167 static const char* lines_only_debug_sections
[] =
169 // ".debug_aranges", // not used by gdb as of 6.7.1
175 // ".debug_pubnames", // not used by gdb as of 6.7.1
181 is_gdb_debug_section(const char* str
)
183 // We can do this faster: binary search or a hashtable. But why bother?
184 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
185 if (strcmp(str
, gdb_sections
[i
]) == 0)
191 is_lines_only_debug_section(const char* str
)
193 // We can do this faster: binary search or a hashtable. But why bother?
195 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
197 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
202 // Whether to include this section in the link.
204 template<int size
, bool big_endian
>
206 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
207 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
209 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
212 switch (shdr
.get_sh_type())
214 case elfcpp::SHT_NULL
:
215 case elfcpp::SHT_SYMTAB
:
216 case elfcpp::SHT_DYNSYM
:
217 case elfcpp::SHT_HASH
:
218 case elfcpp::SHT_DYNAMIC
:
219 case elfcpp::SHT_SYMTAB_SHNDX
:
222 case elfcpp::SHT_STRTAB
:
223 // Discard the sections which have special meanings in the ELF
224 // ABI. Keep others (e.g., .stabstr). We could also do this by
225 // checking the sh_link fields of the appropriate sections.
226 return (strcmp(name
, ".dynstr") != 0
227 && strcmp(name
, ".strtab") != 0
228 && strcmp(name
, ".shstrtab") != 0);
230 case elfcpp::SHT_RELA
:
231 case elfcpp::SHT_REL
:
232 case elfcpp::SHT_GROUP
:
233 // If we are emitting relocations these should be handled
235 gold_assert(!parameters
->options().relocatable()
236 && !parameters
->options().emit_relocs());
239 case elfcpp::SHT_PROGBITS
:
240 if (parameters
->options().strip_debug()
241 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
243 if (is_debug_info_section(name
))
246 if (parameters
->options().strip_debug_non_line()
247 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
249 // Debugging sections can only be recognized by name.
250 if (is_prefix_of(".debug", name
)
251 && !is_lines_only_debug_section(name
))
254 if (parameters
->options().strip_debug_gdb()
255 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
257 // Debugging sections can only be recognized by name.
258 if (is_prefix_of(".debug", name
)
259 && !is_gdb_debug_section(name
))
262 if (parameters
->options().strip_lto_sections()
263 && !parameters
->options().relocatable()
264 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
266 // Ignore LTO sections containing intermediate code.
267 if (is_prefix_of(".gnu.lto_", name
))
277 // Return an output section named NAME, or NULL if there is none.
280 Layout::find_output_section(const char* name
) const
282 for (Section_list::const_iterator p
= this->section_list_
.begin();
283 p
!= this->section_list_
.end();
285 if (strcmp((*p
)->name(), name
) == 0)
290 // Return an output segment of type TYPE, with segment flags SET set
291 // and segment flags CLEAR clear. Return NULL if there is none.
294 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
295 elfcpp::Elf_Word clear
) const
297 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
298 p
!= this->segment_list_
.end();
300 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
301 && ((*p
)->flags() & set
) == set
302 && ((*p
)->flags() & clear
) == 0)
307 // Return the output section to use for section NAME with type TYPE
308 // and section flags FLAGS. NAME must be canonicalized in the string
309 // pool, and NAME_KEY is the key.
312 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
313 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
315 elfcpp::Elf_Xword lookup_flags
= flags
;
317 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
318 // read-write with read-only sections. Some other ELF linkers do
319 // not do this. FIXME: Perhaps there should be an option
321 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
323 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
324 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
325 std::pair
<Section_name_map::iterator
, bool> ins(
326 this->section_name_map_
.insert(v
));
329 return ins
.first
->second
;
332 // This is the first time we've seen this name/type/flags
333 // combination. For compatibility with the GNU linker, we
334 // combine sections with contents and zero flags with sections
335 // with non-zero flags. This is a workaround for cases where
336 // assembler code forgets to set section flags. FIXME: Perhaps
337 // there should be an option to control this.
338 Output_section
* os
= NULL
;
340 if (type
== elfcpp::SHT_PROGBITS
)
344 Output_section
* same_name
= this->find_output_section(name
);
345 if (same_name
!= NULL
346 && same_name
->type() == elfcpp::SHT_PROGBITS
347 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
350 else if ((flags
& elfcpp::SHF_TLS
) == 0)
352 elfcpp::Elf_Xword zero_flags
= 0;
353 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
354 Section_name_map::iterator p
=
355 this->section_name_map_
.find(zero_key
);
356 if (p
!= this->section_name_map_
.end())
362 os
= this->make_output_section(name
, type
, flags
);
363 ins
.first
->second
= os
;
368 // Pick the output section to use for section NAME, in input file
369 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
370 // linker created section. IS_INPUT_SECTION is true if we are
371 // choosing an output section for an input section found in a input
372 // file. This will return NULL if the input section should be
376 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
377 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
378 bool is_input_section
)
380 // We should not see any input sections after we have attached
381 // sections to segments.
382 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
384 // Some flags in the input section should not be automatically
385 // copied to the output section.
386 flags
&= ~ (elfcpp::SHF_INFO_LINK
387 | elfcpp::SHF_LINK_ORDER
390 | elfcpp::SHF_STRINGS
);
392 if (this->script_options_
->saw_sections_clause())
394 // We are using a SECTIONS clause, so the output section is
395 // chosen based only on the name.
397 Script_sections
* ss
= this->script_options_
->script_sections();
398 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
399 Output_section
** output_section_slot
;
400 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
403 // The SECTIONS clause says to discard this input section.
407 // If this is an orphan section--one not mentioned in the linker
408 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
409 // default processing below.
411 if (output_section_slot
!= NULL
)
413 if (*output_section_slot
!= NULL
)
414 return *output_section_slot
;
416 // We don't put sections found in the linker script into
417 // SECTION_NAME_MAP_. That keeps us from getting confused
418 // if an orphan section is mapped to a section with the same
419 // name as one in the linker script.
421 name
= this->namepool_
.add(name
, false, NULL
);
423 Output_section
* os
= this->make_output_section(name
, type
, flags
);
424 os
->set_found_in_sections_clause();
425 *output_section_slot
= os
;
430 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
432 // Turn NAME from the name of the input section into the name of the
435 size_t len
= strlen(name
);
437 && !this->script_options_
->saw_sections_clause()
438 && !parameters
->options().relocatable())
439 name
= Layout::output_section_name(name
, &len
);
441 Stringpool::Key name_key
;
442 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
444 // Find or make the output section. The output section is selected
445 // based on the section name, type, and flags.
446 return this->get_output_section(name
, name_key
, type
, flags
);
449 // Return the output section to use for input section SHNDX, with name
450 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
451 // index of a relocation section which applies to this section, or 0
452 // if none, or -1U if more than one. RELOC_TYPE is the type of the
453 // relocation section if there is one. Set *OFF to the offset of this
454 // input section without the output section. Return NULL if the
455 // section should be discarded. Set *OFF to -1 if the section
456 // contents should not be written directly to the output file, but
457 // will instead receive special handling.
459 template<int size
, bool big_endian
>
461 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
462 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
463 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
467 if (!this->include_section(object
, name
, shdr
))
472 // In a relocatable link a grouped section must not be combined with
473 // any other sections.
474 if (parameters
->options().relocatable()
475 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
477 name
= this->namepool_
.add(name
, true, NULL
);
478 os
= this->make_output_section(name
, shdr
.get_sh_type(),
479 shdr
.get_sh_flags());
483 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
484 shdr
.get_sh_flags(), true);
489 // By default the GNU linker sorts input sections whose names match
490 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
491 // are sorted by name. This is used to implement constructor
492 // priority ordering. We are compatible.
493 if (!this->script_options_
->saw_sections_clause()
494 && (is_prefix_of(".ctors.", name
)
495 || is_prefix_of(".dtors.", name
)
496 || is_prefix_of(".init_array.", name
)
497 || is_prefix_of(".fini_array.", name
)))
498 os
->set_must_sort_attached_input_sections();
500 // FIXME: Handle SHF_LINK_ORDER somewhere.
502 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
503 this->script_options_
->saw_sections_clause());
508 // Handle a relocation section when doing a relocatable link.
510 template<int size
, bool big_endian
>
512 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
514 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
515 Output_section
* data_section
,
516 Relocatable_relocs
* rr
)
518 gold_assert(parameters
->options().relocatable()
519 || parameters
->options().emit_relocs());
521 int sh_type
= shdr
.get_sh_type();
524 if (sh_type
== elfcpp::SHT_REL
)
526 else if (sh_type
== elfcpp::SHT_RELA
)
530 name
+= data_section
->name();
532 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
537 os
->set_should_link_to_symtab();
538 os
->set_info_section(data_section
);
540 Output_section_data
* posd
;
541 if (sh_type
== elfcpp::SHT_REL
)
543 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
544 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
548 else if (sh_type
== elfcpp::SHT_RELA
)
550 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
551 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
558 os
->add_output_section_data(posd
);
559 rr
->set_output_data(posd
);
564 // Handle a group section when doing a relocatable link.
566 template<int size
, bool big_endian
>
568 Layout::layout_group(Symbol_table
* symtab
,
569 Sized_relobj
<size
, big_endian
>* object
,
571 const char* group_section_name
,
572 const char* signature
,
573 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
574 elfcpp::Elf_Word flags
,
575 std::vector
<unsigned int>* shndxes
)
577 gold_assert(parameters
->options().relocatable());
578 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
579 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
580 Output_section
* os
= this->make_output_section(group_section_name
,
582 shdr
.get_sh_flags());
584 // We need to find a symbol with the signature in the symbol table.
585 // If we don't find one now, we need to look again later.
586 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
588 os
->set_info_symndx(sym
);
591 // Reserve some space to minimize reallocations.
592 if (this->group_signatures_
.empty())
593 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
595 // We will wind up using a symbol whose name is the signature.
596 // So just put the signature in the symbol name pool to save it.
597 signature
= symtab
->canonicalize_name(signature
);
598 this->group_signatures_
.push_back(Group_signature(os
, signature
));
601 os
->set_should_link_to_symtab();
604 section_size_type entry_count
=
605 convert_to_section_size_type(shdr
.get_sh_size() / 4);
606 Output_section_data
* posd
=
607 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
609 os
->add_output_section_data(posd
);
612 // Special GNU handling of sections name .eh_frame. They will
613 // normally hold exception frame data as defined by the C++ ABI
614 // (http://codesourcery.com/cxx-abi/).
616 template<int size
, bool big_endian
>
618 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
619 const unsigned char* symbols
,
621 const unsigned char* symbol_names
,
622 off_t symbol_names_size
,
624 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
625 unsigned int reloc_shndx
, unsigned int reloc_type
,
628 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
629 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
631 const char* const name
= ".eh_frame";
632 Output_section
* os
= this->choose_output_section(object
,
634 elfcpp::SHT_PROGBITS
,
640 if (this->eh_frame_section_
== NULL
)
642 this->eh_frame_section_
= os
;
643 this->eh_frame_data_
= new Eh_frame();
645 if (parameters
->options().eh_frame_hdr())
647 Output_section
* hdr_os
=
648 this->choose_output_section(NULL
,
650 elfcpp::SHT_PROGBITS
,
656 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
657 this->eh_frame_data_
);
658 hdr_os
->add_output_section_data(hdr_posd
);
660 hdr_os
->set_after_input_sections();
662 if (!this->script_options_
->saw_phdrs_clause())
664 Output_segment
* hdr_oseg
;
665 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
667 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
670 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
675 gold_assert(this->eh_frame_section_
== os
);
677 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
686 os
->update_flags_for_input_section(shdr
.get_sh_flags());
688 // We found a .eh_frame section we are going to optimize, so now
689 // we can add the set of optimized sections to the output
690 // section. We need to postpone adding this until we've found a
691 // section we can optimize so that the .eh_frame section in
692 // crtbegin.o winds up at the start of the output section.
693 if (!this->added_eh_frame_data_
)
695 os
->add_output_section_data(this->eh_frame_data_
);
696 this->added_eh_frame_data_
= true;
702 // We couldn't handle this .eh_frame section for some reason.
703 // Add it as a normal section.
704 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
705 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
706 saw_sections_clause
);
712 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
713 // the output section.
716 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
717 elfcpp::Elf_Xword flags
,
718 Output_section_data
* posd
)
720 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
723 os
->add_output_section_data(posd
);
727 // Map section flags to segment flags.
730 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
732 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
733 if ((flags
& elfcpp::SHF_WRITE
) != 0)
735 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
740 // Sometimes we compress sections. This is typically done for
741 // sections that are not part of normal program execution (such as
742 // .debug_* sections), and where the readers of these sections know
743 // how to deal with compressed sections. (To make it easier for them,
744 // we will rename the ouput section in such cases from .foo to
745 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
746 // doesn't say for certain whether we'll compress -- it depends on
747 // commandline options as well -- just whether this section is a
748 // candidate for compression.
751 is_compressible_debug_section(const char* secname
)
753 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
756 // Make a new Output_section, and attach it to segments as
760 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
761 elfcpp::Elf_Xword flags
)
764 if ((flags
& elfcpp::SHF_ALLOC
) == 0
765 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
766 && is_compressible_debug_section(name
))
767 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
770 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
771 && parameters
->options().strip_debug_non_line()
772 && strcmp(".debug_abbrev", name
) == 0)
774 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
776 if (this->debug_info_
)
777 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
779 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
780 && parameters
->options().strip_debug_non_line()
781 && strcmp(".debug_info", name
) == 0)
783 os
= this->debug_info_
= new Output_reduced_debug_info_section(
785 if (this->debug_abbrev_
)
786 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
789 os
= new Output_section(name
, type
, flags
);
791 parameters
->target().new_output_section(os
);
793 this->section_list_
.push_back(os
);
795 // The GNU linker by default sorts some sections by priority, so we
796 // do the same. We need to know that this might happen before we
797 // attach any input sections.
798 if (!this->script_options_
->saw_sections_clause()
799 && (strcmp(name
, ".ctors") == 0
800 || strcmp(name
, ".dtors") == 0
801 || strcmp(name
, ".init_array") == 0
802 || strcmp(name
, ".fini_array") == 0))
803 os
->set_may_sort_attached_input_sections();
805 // With -z relro, we have to recognize the special sections by name.
806 // There is no other way.
807 if (!this->script_options_
->saw_sections_clause()
808 && parameters
->options().relro()
809 && type
== elfcpp::SHT_PROGBITS
810 && (flags
& elfcpp::SHF_ALLOC
) != 0
811 && (flags
& elfcpp::SHF_WRITE
) != 0)
813 if (strcmp(name
, ".data.rel.ro") == 0)
815 else if (strcmp(name
, ".data.rel.ro.local") == 0)
818 os
->set_is_relro_local();
822 // If we have already attached the sections to segments, then we
823 // need to attach this one now. This happens for sections created
824 // directly by the linker.
825 if (this->sections_are_attached_
)
826 this->attach_section_to_segment(os
);
831 // Attach output sections to segments. This is called after we have
832 // seen all the input sections.
835 Layout::attach_sections_to_segments()
837 for (Section_list::iterator p
= this->section_list_
.begin();
838 p
!= this->section_list_
.end();
840 this->attach_section_to_segment(*p
);
842 this->sections_are_attached_
= true;
845 // Attach an output section to a segment.
848 Layout::attach_section_to_segment(Output_section
* os
)
850 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
851 this->unattached_section_list_
.push_back(os
);
853 this->attach_allocated_section_to_segment(os
);
856 // Attach an allocated output section to a segment.
859 Layout::attach_allocated_section_to_segment(Output_section
* os
)
861 elfcpp::Elf_Xword flags
= os
->flags();
862 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
864 if (parameters
->options().relocatable())
867 // If we have a SECTIONS clause, we can't handle the attachment to
868 // segments until after we've seen all the sections.
869 if (this->script_options_
->saw_sections_clause())
872 gold_assert(!this->script_options_
->saw_phdrs_clause());
874 // This output section goes into a PT_LOAD segment.
876 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
878 // In general the only thing we really care about for PT_LOAD
879 // segments is whether or not they are writable, so that is how we
880 // search for them. Large data sections also go into their own
881 // PT_LOAD segment. People who need segments sorted on some other
882 // basis will have to use a linker script.
884 Segment_list::const_iterator p
;
885 for (p
= this->segment_list_
.begin();
886 p
!= this->segment_list_
.end();
889 if ((*p
)->type() != elfcpp::PT_LOAD
)
891 if (!parameters
->options().omagic()
892 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
894 // If -Tbss was specified, we need to separate the data and BSS
896 if (parameters
->options().user_set_Tbss())
898 if ((os
->type() == elfcpp::SHT_NOBITS
)
899 == (*p
)->has_any_data_sections())
902 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
905 (*p
)->add_output_section(os
, seg_flags
);
909 if (p
== this->segment_list_
.end())
911 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
913 if (os
->is_large_data_section())
914 oseg
->set_is_large_data_segment();
915 oseg
->add_output_section(os
, seg_flags
);
918 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
920 if (os
->type() == elfcpp::SHT_NOTE
)
922 // See if we already have an equivalent PT_NOTE segment.
923 for (p
= this->segment_list_
.begin();
924 p
!= segment_list_
.end();
927 if ((*p
)->type() == elfcpp::PT_NOTE
928 && (((*p
)->flags() & elfcpp::PF_W
)
929 == (seg_flags
& elfcpp::PF_W
)))
931 (*p
)->add_output_section(os
, seg_flags
);
936 if (p
== this->segment_list_
.end())
938 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
940 oseg
->add_output_section(os
, seg_flags
);
944 // If we see a loadable SHF_TLS section, we create a PT_TLS
945 // segment. There can only be one such segment.
946 if ((flags
& elfcpp::SHF_TLS
) != 0)
948 if (this->tls_segment_
== NULL
)
949 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
950 this->tls_segment_
->add_output_section(os
, seg_flags
);
953 // If -z relro is in effect, and we see a relro section, we create a
954 // PT_GNU_RELRO segment. There can only be one such segment.
955 if (os
->is_relro() && parameters
->options().relro())
957 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
958 if (this->relro_segment_
== NULL
)
959 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
960 this->relro_segment_
->add_output_section(os
, seg_flags
);
964 // Make an output section for a script.
967 Layout::make_output_section_for_script(const char* name
)
969 name
= this->namepool_
.add(name
, false, NULL
);
970 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
972 os
->set_found_in_sections_clause();
976 // Return the number of segments we expect to see.
979 Layout::expected_segment_count() const
981 size_t ret
= this->segment_list_
.size();
983 // If we didn't see a SECTIONS clause in a linker script, we should
984 // already have the complete list of segments. Otherwise we ask the
985 // SECTIONS clause how many segments it expects, and add in the ones
986 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
988 if (!this->script_options_
->saw_sections_clause())
992 const Script_sections
* ss
= this->script_options_
->script_sections();
993 return ret
+ ss
->expected_segment_count(this);
997 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
998 // is whether we saw a .note.GNU-stack section in the object file.
999 // GNU_STACK_FLAGS is the section flags. The flags give the
1000 // protection required for stack memory. We record this in an
1001 // executable as a PT_GNU_STACK segment. If an object file does not
1002 // have a .note.GNU-stack segment, we must assume that it is an old
1003 // object. On some targets that will force an executable stack.
1006 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1008 if (!seen_gnu_stack
)
1009 this->input_without_gnu_stack_note_
= true;
1012 this->input_with_gnu_stack_note_
= true;
1013 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1014 this->input_requires_executable_stack_
= true;
1018 // Create the dynamic sections which are needed before we read the
1022 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1024 if (parameters
->doing_static_link())
1027 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1028 elfcpp::SHT_DYNAMIC
,
1030 | elfcpp::SHF_WRITE
),
1032 this->dynamic_section_
->set_is_relro();
1034 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
1035 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1036 elfcpp::STV_HIDDEN
, 0, false, false);
1038 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1040 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1043 // For each output section whose name can be represented as C symbol,
1044 // define __start and __stop symbols for the section. This is a GNU
1048 Layout::define_section_symbols(Symbol_table
* symtab
)
1050 for (Section_list::const_iterator p
= this->section_list_
.begin();
1051 p
!= this->section_list_
.end();
1054 const char* const name
= (*p
)->name();
1055 if (name
[strspn(name
,
1057 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1058 "abcdefghijklmnopqrstuvwxyz"
1062 const std::string
name_string(name
);
1063 const std::string
start_name("__start_" + name_string
);
1064 const std::string
stop_name("__stop_" + name_string
);
1066 symtab
->define_in_output_data(start_name
.c_str(),
1073 elfcpp::STV_DEFAULT
,
1075 false, // offset_is_from_end
1076 true); // only_if_ref
1078 symtab
->define_in_output_data(stop_name
.c_str(),
1085 elfcpp::STV_DEFAULT
,
1087 true, // offset_is_from_end
1088 true); // only_if_ref
1093 // Define symbols for group signatures.
1096 Layout::define_group_signatures(Symbol_table
* symtab
)
1098 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1099 p
!= this->group_signatures_
.end();
1102 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1104 p
->section
->set_info_symndx(sym
);
1107 // Force the name of the group section to the group
1108 // signature, and use the group's section symbol as the
1109 // signature symbol.
1110 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1112 const char* name
= this->namepool_
.add(p
->signature
,
1114 p
->section
->set_name(name
);
1116 p
->section
->set_needs_symtab_index();
1117 p
->section
->set_info_section_symndx(p
->section
);
1121 this->group_signatures_
.clear();
1124 // Find the first read-only PT_LOAD segment, creating one if
1128 Layout::find_first_load_seg()
1130 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1131 p
!= this->segment_list_
.end();
1134 if ((*p
)->type() == elfcpp::PT_LOAD
1135 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1136 && (parameters
->options().omagic()
1137 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1141 gold_assert(!this->script_options_
->saw_phdrs_clause());
1143 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1148 // Finalize the layout. When this is called, we have created all the
1149 // output sections and all the output segments which are based on
1150 // input sections. We have several things to do, and we have to do
1151 // them in the right order, so that we get the right results correctly
1154 // 1) Finalize the list of output segments and create the segment
1157 // 2) Finalize the dynamic symbol table and associated sections.
1159 // 3) Determine the final file offset of all the output segments.
1161 // 4) Determine the final file offset of all the SHF_ALLOC output
1164 // 5) Create the symbol table sections and the section name table
1167 // 6) Finalize the symbol table: set symbol values to their final
1168 // value and make a final determination of which symbols are going
1169 // into the output symbol table.
1171 // 7) Create the section table header.
1173 // 8) Determine the final file offset of all the output sections which
1174 // are not SHF_ALLOC, including the section table header.
1176 // 9) Finalize the ELF file header.
1178 // This function returns the size of the output file.
1181 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1182 Target
* target
, const Task
* task
)
1184 target
->finalize_sections(this);
1186 this->count_local_symbols(task
, input_objects
);
1188 this->create_gold_note();
1189 this->create_executable_stack_info(target
);
1190 this->create_build_id();
1192 Output_segment
* phdr_seg
= NULL
;
1193 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1195 // There was a dynamic object in the link. We need to create
1196 // some information for the dynamic linker.
1198 // Create the PT_PHDR segment which will hold the program
1200 if (!this->script_options_
->saw_phdrs_clause())
1201 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1203 // Create the dynamic symbol table, including the hash table.
1204 Output_section
* dynstr
;
1205 std::vector
<Symbol
*> dynamic_symbols
;
1206 unsigned int local_dynamic_count
;
1207 Versions
versions(*this->script_options()->version_script_info(),
1209 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1210 &local_dynamic_count
, &dynamic_symbols
,
1213 // Create the .interp section to hold the name of the
1214 // interpreter, and put it in a PT_INTERP segment.
1215 if (!parameters
->options().shared())
1216 this->create_interp(target
);
1218 // Finish the .dynamic section to hold the dynamic data, and put
1219 // it in a PT_DYNAMIC segment.
1220 this->finish_dynamic_section(input_objects
, symtab
);
1222 // We should have added everything we need to the dynamic string
1224 this->dynpool_
.set_string_offsets();
1226 // Create the version sections. We can't do this until the
1227 // dynamic string table is complete.
1228 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1229 dynamic_symbols
, dynstr
);
1232 if (this->incremental_inputs_
)
1234 this->incremental_inputs_
->finalize();
1235 this->create_incremental_info_sections();
1238 // If there is a SECTIONS clause, put all the input sections into
1239 // the required order.
1240 Output_segment
* load_seg
;
1241 if (this->script_options_
->saw_sections_clause())
1242 load_seg
= this->set_section_addresses_from_script(symtab
);
1243 else if (parameters
->options().relocatable())
1246 load_seg
= this->find_first_load_seg();
1248 if (parameters
->options().oformat_enum()
1249 != General_options::OBJECT_FORMAT_ELF
)
1252 gold_assert(phdr_seg
== NULL
|| load_seg
!= NULL
);
1254 // Lay out the segment headers.
1255 Output_segment_headers
* segment_headers
;
1256 if (parameters
->options().relocatable())
1257 segment_headers
= NULL
;
1260 segment_headers
= new Output_segment_headers(this->segment_list_
);
1261 if (load_seg
!= NULL
)
1262 load_seg
->add_initial_output_data(segment_headers
);
1263 if (phdr_seg
!= NULL
)
1264 phdr_seg
->add_initial_output_data(segment_headers
);
1267 // Lay out the file header.
1268 Output_file_header
* file_header
;
1269 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
1270 parameters
->options().entry());
1271 if (load_seg
!= NULL
)
1272 load_seg
->add_initial_output_data(file_header
);
1274 this->special_output_list_
.push_back(file_header
);
1275 if (segment_headers
!= NULL
)
1276 this->special_output_list_
.push_back(segment_headers
);
1278 if (this->script_options_
->saw_phdrs_clause()
1279 && !parameters
->options().relocatable())
1281 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1282 // clause in a linker script.
1283 Script_sections
* ss
= this->script_options_
->script_sections();
1284 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1287 // We set the output section indexes in set_segment_offsets and
1288 // set_section_indexes.
1289 unsigned int shndx
= 1;
1291 // Set the file offsets of all the segments, and all the sections
1294 if (!parameters
->options().relocatable())
1295 off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
1297 off
= this->set_relocatable_section_offsets(file_header
, &shndx
);
1299 // Set the file offsets of all the non-data sections we've seen so
1300 // far which don't have to wait for the input sections. We need
1301 // this in order to finalize local symbols in non-allocated
1303 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1305 // Set the section indexes of all unallocated sections seen so far,
1306 // in case any of them are somehow referenced by a symbol.
1307 shndx
= this->set_section_indexes(shndx
);
1309 // Create the symbol table sections.
1310 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1311 if (!parameters
->doing_static_link())
1312 this->assign_local_dynsym_offsets(input_objects
);
1314 // Process any symbol assignments from a linker script. This must
1315 // be called after the symbol table has been finalized.
1316 this->script_options_
->finalize_symbols(symtab
, this);
1318 // Create the .shstrtab section.
1319 Output_section
* shstrtab_section
= this->create_shstrtab();
1321 // Set the file offsets of the rest of the non-data sections which
1322 // don't have to wait for the input sections.
1323 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1325 // Now that all sections have been created, set the section indexes
1326 // for any sections which haven't been done yet.
1327 shndx
= this->set_section_indexes(shndx
);
1329 // Create the section table header.
1330 this->create_shdrs(shstrtab_section
, &off
);
1332 // If there are no sections which require postprocessing, we can
1333 // handle the section names now, and avoid a resize later.
1334 if (!this->any_postprocessing_sections_
)
1335 off
= this->set_section_offsets(off
,
1336 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1338 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1340 // Now we know exactly where everything goes in the output file
1341 // (except for non-allocated sections which require postprocessing).
1342 Output_data::layout_complete();
1344 this->output_file_size_
= off
;
1349 // Create a note header following the format defined in the ELF ABI.
1350 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1351 // descriptor. ALLOCATE is true if the section should be allocated in
1352 // memory. This returns the new note section. It sets
1353 // *TRAILING_PADDING to the number of trailing zero bytes required.
1356 Layout::create_note(const char* name
, int note_type
,
1357 const char* section_name
, size_t descsz
,
1358 bool allocate
, size_t* trailing_padding
)
1360 // Authorities all agree that the values in a .note field should
1361 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1362 // they differ on what the alignment is for 64-bit binaries.
1363 // The GABI says unambiguously they take 8-byte alignment:
1364 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1365 // Other documentation says alignment should always be 4 bytes:
1366 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1367 // GNU ld and GNU readelf both support the latter (at least as of
1368 // version 2.16.91), and glibc always generates the latter for
1369 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1371 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1372 const int size
= parameters
->target().get_size();
1374 const int size
= 32;
1377 // The contents of the .note section.
1378 size_t namesz
= strlen(name
) + 1;
1379 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1380 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1382 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1384 unsigned char* buffer
= new unsigned char[notehdrsz
];
1385 memset(buffer
, 0, notehdrsz
);
1387 bool is_big_endian
= parameters
->target().is_big_endian();
1393 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1394 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1395 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1399 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1400 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1401 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1404 else if (size
== 64)
1408 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1409 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1410 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1414 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1415 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1416 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1422 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1424 const char *note_name
= this->namepool_
.add(section_name
, false, NULL
);
1425 elfcpp::Elf_Xword flags
= 0;
1427 flags
= elfcpp::SHF_ALLOC
;
1428 Output_section
* os
= this->make_output_section(note_name
,
1431 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1434 os
->add_output_section_data(posd
);
1436 *trailing_padding
= aligned_descsz
- descsz
;
1441 // For an executable or shared library, create a note to record the
1442 // version of gold used to create the binary.
1445 Layout::create_gold_note()
1447 if (parameters
->options().relocatable())
1450 std::string desc
= std::string("gold ") + gold::get_version_string();
1452 size_t trailing_padding
;
1453 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1454 ".note.gnu.gold-version", desc
.size(),
1455 false, &trailing_padding
);
1457 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1458 os
->add_output_section_data(posd
);
1460 if (trailing_padding
> 0)
1462 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1463 os
->add_output_section_data(posd
);
1467 // Record whether the stack should be executable. This can be set
1468 // from the command line using the -z execstack or -z noexecstack
1469 // options. Otherwise, if any input file has a .note.GNU-stack
1470 // section with the SHF_EXECINSTR flag set, the stack should be
1471 // executable. Otherwise, if at least one input file a
1472 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1473 // section, we use the target default for whether the stack should be
1474 // executable. Otherwise, we don't generate a stack note. When
1475 // generating a object file, we create a .note.GNU-stack section with
1476 // the appropriate marking. When generating an executable or shared
1477 // library, we create a PT_GNU_STACK segment.
1480 Layout::create_executable_stack_info(const Target
* target
)
1482 bool is_stack_executable
;
1483 if (parameters
->options().is_execstack_set())
1484 is_stack_executable
= parameters
->options().is_stack_executable();
1485 else if (!this->input_with_gnu_stack_note_
)
1489 if (this->input_requires_executable_stack_
)
1490 is_stack_executable
= true;
1491 else if (this->input_without_gnu_stack_note_
)
1492 is_stack_executable
= target
->is_default_stack_executable();
1494 is_stack_executable
= false;
1497 if (parameters
->options().relocatable())
1499 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1500 elfcpp::Elf_Xword flags
= 0;
1501 if (is_stack_executable
)
1502 flags
|= elfcpp::SHF_EXECINSTR
;
1503 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1507 if (this->script_options_
->saw_phdrs_clause())
1509 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1510 if (is_stack_executable
)
1511 flags
|= elfcpp::PF_X
;
1512 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1516 // If --build-id was used, set up the build ID note.
1519 Layout::create_build_id()
1521 if (!parameters
->options().user_set_build_id())
1524 const char* style
= parameters
->options().build_id();
1525 if (strcmp(style
, "none") == 0)
1528 // Set DESCSZ to the size of the note descriptor. When possible,
1529 // set DESC to the note descriptor contents.
1532 if (strcmp(style
, "md5") == 0)
1534 else if (strcmp(style
, "sha1") == 0)
1536 else if (strcmp(style
, "uuid") == 0)
1538 const size_t uuidsz
= 128 / 8;
1540 char buffer
[uuidsz
];
1541 memset(buffer
, 0, uuidsz
);
1543 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
1545 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1549 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1550 release_descriptor(descriptor
, true);
1552 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1553 else if (static_cast<size_t>(got
) != uuidsz
)
1554 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1558 desc
.assign(buffer
, uuidsz
);
1561 else if (strncmp(style
, "0x", 2) == 0)
1564 const char* p
= style
+ 2;
1567 if (hex_p(p
[0]) && hex_p(p
[1]))
1569 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1573 else if (*p
== '-' || *p
== ':')
1576 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1579 descsz
= desc
.size();
1582 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1585 size_t trailing_padding
;
1586 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1587 ".note.gnu.build-id", descsz
, true,
1592 // We know the value already, so we fill it in now.
1593 gold_assert(desc
.size() == descsz
);
1595 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1596 os
->add_output_section_data(posd
);
1598 if (trailing_padding
!= 0)
1600 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1601 os
->add_output_section_data(posd
);
1606 // We need to compute a checksum after we have completed the
1608 gold_assert(trailing_padding
== 0);
1609 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
1610 os
->add_output_section_data(this->build_id_note_
);
1611 os
->set_after_input_sections();
1615 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1616 // for the next run of incremental linking to check what has changed.
1619 Layout::create_incremental_info_sections()
1621 gold_assert(this->incremental_inputs_
!= NULL
);
1623 // Add the .gnu_incremental_inputs section.
1624 const char *incremental_inputs_name
=
1625 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
1626 Output_section
* inputs_os
=
1627 this->make_output_section(incremental_inputs_name
,
1628 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0);
1629 Output_section_data
* posd
=
1630 this->incremental_inputs_
->create_incremental_inputs_section_data();
1631 inputs_os
->add_output_section_data(posd
);
1633 // Add the .gnu_incremental_strtab section.
1634 const char *incremental_strtab_name
=
1635 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
1636 Output_section
* strtab_os
= this->make_output_section(incremental_strtab_name
,
1639 Output_data_strtab
* strtab_data
=
1640 new Output_data_strtab(this->incremental_inputs_
->get_stringpool());
1641 strtab_os
->add_output_section_data(strtab_data
);
1643 inputs_os
->set_link_section(strtab_data
);
1646 // Return whether SEG1 should be before SEG2 in the output file. This
1647 // is based entirely on the segment type and flags. When this is
1648 // called the segment addresses has normally not yet been set.
1651 Layout::segment_precedes(const Output_segment
* seg1
,
1652 const Output_segment
* seg2
)
1654 elfcpp::Elf_Word type1
= seg1
->type();
1655 elfcpp::Elf_Word type2
= seg2
->type();
1657 // The single PT_PHDR segment is required to precede any loadable
1658 // segment. We simply make it always first.
1659 if (type1
== elfcpp::PT_PHDR
)
1661 gold_assert(type2
!= elfcpp::PT_PHDR
);
1664 if (type2
== elfcpp::PT_PHDR
)
1667 // The single PT_INTERP segment is required to precede any loadable
1668 // segment. We simply make it always second.
1669 if (type1
== elfcpp::PT_INTERP
)
1671 gold_assert(type2
!= elfcpp::PT_INTERP
);
1674 if (type2
== elfcpp::PT_INTERP
)
1677 // We then put PT_LOAD segments before any other segments.
1678 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
1680 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
1683 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1684 // segment, because that is where the dynamic linker expects to find
1685 // it (this is just for efficiency; other positions would also work
1687 if (type1
== elfcpp::PT_TLS
1688 && type2
!= elfcpp::PT_TLS
1689 && type2
!= elfcpp::PT_GNU_RELRO
)
1691 if (type2
== elfcpp::PT_TLS
1692 && type1
!= elfcpp::PT_TLS
1693 && type1
!= elfcpp::PT_GNU_RELRO
)
1696 // We put the PT_GNU_RELRO segment last, because that is where the
1697 // dynamic linker expects to find it (as with PT_TLS, this is just
1699 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
1701 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
1704 const elfcpp::Elf_Word flags1
= seg1
->flags();
1705 const elfcpp::Elf_Word flags2
= seg2
->flags();
1707 // The order of non-PT_LOAD segments is unimportant. We simply sort
1708 // by the numeric segment type and flags values. There should not
1709 // be more than one segment with the same type and flags.
1710 if (type1
!= elfcpp::PT_LOAD
)
1713 return type1
< type2
;
1714 gold_assert(flags1
!= flags2
);
1715 return flags1
< flags2
;
1718 // If the addresses are set already, sort by load address.
1719 if (seg1
->are_addresses_set())
1721 if (!seg2
->are_addresses_set())
1724 unsigned int section_count1
= seg1
->output_section_count();
1725 unsigned int section_count2
= seg2
->output_section_count();
1726 if (section_count1
== 0 && section_count2
> 0)
1728 if (section_count1
> 0 && section_count2
== 0)
1731 uint64_t paddr1
= seg1
->first_section_load_address();
1732 uint64_t paddr2
= seg2
->first_section_load_address();
1733 if (paddr1
!= paddr2
)
1734 return paddr1
< paddr2
;
1736 else if (seg2
->are_addresses_set())
1739 // A segment which holds large data comes after a segment which does
1740 // not hold large data.
1741 if (seg1
->is_large_data_segment())
1743 if (!seg2
->is_large_data_segment())
1746 else if (seg2
->is_large_data_segment())
1749 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
1750 // segments come before writable segments. Then writable segments
1751 // with data come before writable segments without data. Then
1752 // executable segments come before non-executable segments. Then
1753 // the unlikely case of a non-readable segment comes before the
1754 // normal case of a readable segment. If there are multiple
1755 // segments with the same type and flags, we require that the
1756 // address be set, and we sort by virtual address and then physical
1758 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
1759 return (flags1
& elfcpp::PF_W
) == 0;
1760 if ((flags1
& elfcpp::PF_W
) != 0
1761 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
1762 return seg1
->has_any_data_sections();
1763 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
1764 return (flags1
& elfcpp::PF_X
) != 0;
1765 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
1766 return (flags1
& elfcpp::PF_R
) == 0;
1768 // We shouldn't get here--we shouldn't create segments which we
1769 // can't distinguish.
1773 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
1776 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
1778 uint64_t unsigned_off
= off
;
1779 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
1780 | (addr
& (abi_pagesize
- 1)));
1781 if (aligned_off
< unsigned_off
)
1782 aligned_off
+= abi_pagesize
;
1786 // Set the file offsets of all the segments, and all the sections they
1787 // contain. They have all been created. LOAD_SEG must be be laid out
1788 // first. Return the offset of the data to follow.
1791 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1792 unsigned int *pshndx
)
1794 // Sort them into the final order.
1795 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1796 Layout::Compare_segments());
1798 // Find the PT_LOAD segments, and set their addresses and offsets
1799 // and their section's addresses and offsets.
1801 if (parameters
->options().user_set_Ttext())
1802 addr
= parameters
->options().Ttext();
1803 else if (parameters
->options().shared())
1806 addr
= target
->default_text_segment_address();
1809 // If LOAD_SEG is NULL, then the file header and segment headers
1810 // will not be loadable. But they still need to be at offset 0 in
1811 // the file. Set their offsets now.
1812 if (load_seg
== NULL
)
1814 for (Data_list::iterator p
= this->special_output_list_
.begin();
1815 p
!= this->special_output_list_
.end();
1818 off
= align_address(off
, (*p
)->addralign());
1819 (*p
)->set_address_and_file_offset(0, off
);
1820 off
+= (*p
)->data_size();
1824 const bool check_sections
= parameters
->options().check_sections();
1825 Output_segment
* last_load_segment
= NULL
;
1827 bool was_readonly
= false;
1828 for (Segment_list::iterator p
= this->segment_list_
.begin();
1829 p
!= this->segment_list_
.end();
1832 if ((*p
)->type() == elfcpp::PT_LOAD
)
1834 if (load_seg
!= NULL
&& load_seg
!= *p
)
1838 bool are_addresses_set
= (*p
)->are_addresses_set();
1839 if (are_addresses_set
)
1841 // When it comes to setting file offsets, we care about
1842 // the physical address.
1843 addr
= (*p
)->paddr();
1845 else if (parameters
->options().user_set_Tdata()
1846 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1847 && (!parameters
->options().user_set_Tbss()
1848 || (*p
)->has_any_data_sections()))
1850 addr
= parameters
->options().Tdata();
1851 are_addresses_set
= true;
1853 else if (parameters
->options().user_set_Tbss()
1854 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1855 && !(*p
)->has_any_data_sections())
1857 addr
= parameters
->options().Tbss();
1858 are_addresses_set
= true;
1861 uint64_t orig_addr
= addr
;
1862 uint64_t orig_off
= off
;
1864 uint64_t aligned_addr
= 0;
1865 uint64_t abi_pagesize
= target
->abi_pagesize();
1866 uint64_t common_pagesize
= target
->common_pagesize();
1868 if (!parameters
->options().nmagic()
1869 && !parameters
->options().omagic())
1870 (*p
)->set_minimum_p_align(common_pagesize
);
1872 if (!are_addresses_set
)
1874 // If the last segment was readonly, and this one is
1875 // not, then skip the address forward one page,
1876 // maintaining the same position within the page. This
1877 // lets us store both segments overlapping on a single
1878 // page in the file, but the loader will put them on
1879 // different pages in memory.
1881 addr
= align_address(addr
, (*p
)->maximum_alignment());
1882 aligned_addr
= addr
;
1884 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1886 if ((addr
& (abi_pagesize
- 1)) != 0)
1887 addr
= addr
+ abi_pagesize
;
1890 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1893 if (!parameters
->options().nmagic()
1894 && !parameters
->options().omagic())
1895 off
= align_file_offset(off
, addr
, abi_pagesize
);
1897 unsigned int shndx_hold
= *pshndx
;
1898 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
1901 // Now that we know the size of this segment, we may be able
1902 // to save a page in memory, at the cost of wasting some
1903 // file space, by instead aligning to the start of a new
1904 // page. Here we use the real machine page size rather than
1905 // the ABI mandated page size.
1907 if (!are_addresses_set
&& aligned_addr
!= addr
)
1909 uint64_t first_off
= (common_pagesize
1911 & (common_pagesize
- 1)));
1912 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1915 && ((aligned_addr
& ~ (common_pagesize
- 1))
1916 != (new_addr
& ~ (common_pagesize
- 1)))
1917 && first_off
+ last_off
<= common_pagesize
)
1919 *pshndx
= shndx_hold
;
1920 addr
= align_address(aligned_addr
, common_pagesize
);
1921 addr
= align_address(addr
, (*p
)->maximum_alignment());
1922 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1923 off
= align_file_offset(off
, addr
, abi_pagesize
);
1924 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
1931 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1932 was_readonly
= true;
1934 // Implement --check-sections. We know that the segments
1935 // are sorted by LMA.
1936 if (check_sections
&& last_load_segment
!= NULL
)
1938 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
1939 if (last_load_segment
->paddr() + last_load_segment
->memsz()
1942 unsigned long long lb1
= last_load_segment
->paddr();
1943 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
1944 unsigned long long lb2
= (*p
)->paddr();
1945 unsigned long long le2
= lb2
+ (*p
)->memsz();
1946 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1947 "[0x%llx -> 0x%llx]"),
1948 lb1
, le1
, lb2
, le2
);
1951 last_load_segment
= *p
;
1955 // Handle the non-PT_LOAD segments, setting their offsets from their
1956 // section's offsets.
1957 for (Segment_list::iterator p
= this->segment_list_
.begin();
1958 p
!= this->segment_list_
.end();
1961 if ((*p
)->type() != elfcpp::PT_LOAD
)
1965 // Set the TLS offsets for each section in the PT_TLS segment.
1966 if (this->tls_segment_
!= NULL
)
1967 this->tls_segment_
->set_tls_offsets();
1972 // Set the offsets of all the allocated sections when doing a
1973 // relocatable link. This does the same jobs as set_segment_offsets,
1974 // only for a relocatable link.
1977 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
1978 unsigned int *pshndx
)
1982 file_header
->set_address_and_file_offset(0, 0);
1983 off
+= file_header
->data_size();
1985 for (Section_list::iterator p
= this->section_list_
.begin();
1986 p
!= this->section_list_
.end();
1989 // We skip unallocated sections here, except that group sections
1990 // have to come first.
1991 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
1992 && (*p
)->type() != elfcpp::SHT_GROUP
)
1995 off
= align_address(off
, (*p
)->addralign());
1997 // The linker script might have set the address.
1998 if (!(*p
)->is_address_valid())
1999 (*p
)->set_address(0);
2000 (*p
)->set_file_offset(off
);
2001 (*p
)->finalize_data_size();
2002 off
+= (*p
)->data_size();
2004 (*p
)->set_out_shndx(*pshndx
);
2011 // Set the file offset of all the sections not associated with a
2015 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2017 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2018 p
!= this->unattached_section_list_
.end();
2021 // The symtab section is handled in create_symtab_sections.
2022 if (*p
== this->symtab_section_
)
2025 // If we've already set the data size, don't set it again.
2026 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2029 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2030 && (*p
)->requires_postprocessing())
2032 (*p
)->create_postprocessing_buffer();
2033 this->any_postprocessing_sections_
= true;
2036 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2037 && (*p
)->after_input_sections())
2039 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2040 && (!(*p
)->after_input_sections()
2041 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2043 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2044 && (!(*p
)->after_input_sections()
2045 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2048 off
= align_address(off
, (*p
)->addralign());
2049 (*p
)->set_file_offset(off
);
2050 (*p
)->finalize_data_size();
2051 off
+= (*p
)->data_size();
2053 // At this point the name must be set.
2054 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2055 this->namepool_
.add((*p
)->name(), false, NULL
);
2060 // Set the section indexes of all the sections not associated with a
2064 Layout::set_section_indexes(unsigned int shndx
)
2066 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2067 p
!= this->unattached_section_list_
.end();
2070 if (!(*p
)->has_out_shndx())
2072 (*p
)->set_out_shndx(shndx
);
2079 // Set the section addresses according to the linker script. This is
2080 // only called when we see a SECTIONS clause. This returns the
2081 // program segment which should hold the file header and segment
2082 // headers, if any. It will return NULL if they should not be in a
2086 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2088 Script_sections
* ss
= this->script_options_
->script_sections();
2089 gold_assert(ss
->saw_sections_clause());
2091 // Place each orphaned output section in the script.
2092 for (Section_list::iterator p
= this->section_list_
.begin();
2093 p
!= this->section_list_
.end();
2096 if (!(*p
)->found_in_sections_clause())
2097 ss
->place_orphan(*p
);
2100 return this->script_options_
->set_section_addresses(symtab
, this);
2103 // Count the local symbols in the regular symbol table and the dynamic
2104 // symbol table, and build the respective string pools.
2107 Layout::count_local_symbols(const Task
* task
,
2108 const Input_objects
* input_objects
)
2110 // First, figure out an upper bound on the number of symbols we'll
2111 // be inserting into each pool. This helps us create the pools with
2112 // the right size, to avoid unnecessary hashtable resizing.
2113 unsigned int symbol_count
= 0;
2114 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2115 p
!= input_objects
->relobj_end();
2117 symbol_count
+= (*p
)->local_symbol_count();
2119 // Go from "upper bound" to "estimate." We overcount for two
2120 // reasons: we double-count symbols that occur in more than one
2121 // object file, and we count symbols that are dropped from the
2122 // output. Add it all together and assume we overcount by 100%.
2125 // We assume all symbols will go into both the sympool and dynpool.
2126 this->sympool_
.reserve(symbol_count
);
2127 this->dynpool_
.reserve(symbol_count
);
2129 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2130 p
!= input_objects
->relobj_end();
2133 Task_lock_obj
<Object
> tlo(task
, *p
);
2134 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2138 // Create the symbol table sections. Here we also set the final
2139 // values of the symbols. At this point all the loadable sections are
2140 // fully laid out. SHNUM is the number of sections so far.
2143 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2144 Symbol_table
* symtab
,
2150 if (parameters
->target().get_size() == 32)
2152 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2155 else if (parameters
->target().get_size() == 64)
2157 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2164 off
= align_address(off
, align
);
2165 off_t startoff
= off
;
2167 // Save space for the dummy symbol at the start of the section. We
2168 // never bother to write this out--it will just be left as zero.
2170 unsigned int local_symbol_index
= 1;
2172 // Add STT_SECTION symbols for each Output section which needs one.
2173 for (Section_list::iterator p
= this->section_list_
.begin();
2174 p
!= this->section_list_
.end();
2177 if (!(*p
)->needs_symtab_index())
2178 (*p
)->set_symtab_index(-1U);
2181 (*p
)->set_symtab_index(local_symbol_index
);
2182 ++local_symbol_index
;
2187 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2188 p
!= input_objects
->relobj_end();
2191 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2193 off
+= (index
- local_symbol_index
) * symsize
;
2194 local_symbol_index
= index
;
2197 unsigned int local_symcount
= local_symbol_index
;
2198 gold_assert(local_symcount
* symsize
== off
- startoff
);
2201 size_t dyn_global_index
;
2203 if (this->dynsym_section_
== NULL
)
2206 dyn_global_index
= 0;
2211 dyn_global_index
= this->dynsym_section_
->info();
2212 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2213 dynoff
= this->dynsym_section_
->offset() + locsize
;
2214 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2215 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2216 == this->dynsym_section_
->data_size() - locsize
);
2219 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2220 &this->sympool_
, &local_symcount
);
2222 if (!parameters
->options().strip_all())
2224 this->sympool_
.set_string_offsets();
2226 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2227 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2230 this->symtab_section_
= osymtab
;
2232 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2235 osymtab
->add_output_section_data(pos
);
2237 // We generate a .symtab_shndx section if we have more than
2238 // SHN_LORESERVE sections. Technically it is possible that we
2239 // don't need one, because it is possible that there are no
2240 // symbols in any of sections with indexes larger than
2241 // SHN_LORESERVE. That is probably unusual, though, and it is
2242 // easier to always create one than to compute section indexes
2243 // twice (once here, once when writing out the symbols).
2244 if (shnum
>= elfcpp::SHN_LORESERVE
)
2246 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2248 Output_section
* osymtab_xindex
=
2249 this->make_output_section(symtab_xindex_name
,
2250 elfcpp::SHT_SYMTAB_SHNDX
, 0);
2252 size_t symcount
= (off
- startoff
) / symsize
;
2253 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2255 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2257 osymtab_xindex
->set_link_section(osymtab
);
2258 osymtab_xindex
->set_addralign(4);
2259 osymtab_xindex
->set_entsize(4);
2261 osymtab_xindex
->set_after_input_sections();
2263 // This tells the driver code to wait until the symbol table
2264 // has written out before writing out the postprocessing
2265 // sections, including the .symtab_shndx section.
2266 this->any_postprocessing_sections_
= true;
2269 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2270 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2274 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2275 ostrtab
->add_output_section_data(pstr
);
2277 osymtab
->set_file_offset(startoff
);
2278 osymtab
->finalize_data_size();
2279 osymtab
->set_link_section(ostrtab
);
2280 osymtab
->set_info(local_symcount
);
2281 osymtab
->set_entsize(symsize
);
2287 // Create the .shstrtab section, which holds the names of the
2288 // sections. At the time this is called, we have created all the
2289 // output sections except .shstrtab itself.
2292 Layout::create_shstrtab()
2294 // FIXME: We don't need to create a .shstrtab section if we are
2295 // stripping everything.
2297 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2299 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
2301 // We can't write out this section until we've set all the section
2302 // names, and we don't set the names of compressed output sections
2303 // until relocations are complete.
2304 os
->set_after_input_sections();
2306 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2307 os
->add_output_section_data(posd
);
2312 // Create the section headers. SIZE is 32 or 64. OFF is the file
2316 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2318 Output_section_headers
* oshdrs
;
2319 oshdrs
= new Output_section_headers(this,
2320 &this->segment_list_
,
2321 &this->section_list_
,
2322 &this->unattached_section_list_
,
2325 off_t off
= align_address(*poff
, oshdrs
->addralign());
2326 oshdrs
->set_address_and_file_offset(0, off
);
2327 off
+= oshdrs
->data_size();
2329 this->section_headers_
= oshdrs
;
2332 // Count the allocated sections.
2335 Layout::allocated_output_section_count() const
2337 size_t section_count
= 0;
2338 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2339 p
!= this->segment_list_
.end();
2341 section_count
+= (*p
)->output_section_count();
2342 return section_count
;
2345 // Create the dynamic symbol table.
2348 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2349 Symbol_table
* symtab
,
2350 Output_section
**pdynstr
,
2351 unsigned int* plocal_dynamic_count
,
2352 std::vector
<Symbol
*>* pdynamic_symbols
,
2353 Versions
* pversions
)
2355 // Count all the symbols in the dynamic symbol table, and set the
2356 // dynamic symbol indexes.
2358 // Skip symbol 0, which is always all zeroes.
2359 unsigned int index
= 1;
2361 // Add STT_SECTION symbols for each Output section which needs one.
2362 for (Section_list::iterator p
= this->section_list_
.begin();
2363 p
!= this->section_list_
.end();
2366 if (!(*p
)->needs_dynsym_index())
2367 (*p
)->set_dynsym_index(-1U);
2370 (*p
)->set_dynsym_index(index
);
2375 // Count the local symbols that need to go in the dynamic symbol table,
2376 // and set the dynamic symbol indexes.
2377 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2378 p
!= input_objects
->relobj_end();
2381 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2385 unsigned int local_symcount
= index
;
2386 *plocal_dynamic_count
= local_symcount
;
2388 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2389 &this->dynpool_
, pversions
);
2393 const int size
= parameters
->target().get_size();
2396 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2399 else if (size
== 64)
2401 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2407 // Create the dynamic symbol table section.
2409 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2414 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2417 dynsym
->add_output_section_data(odata
);
2419 dynsym
->set_info(local_symcount
);
2420 dynsym
->set_entsize(symsize
);
2421 dynsym
->set_addralign(align
);
2423 this->dynsym_section_
= dynsym
;
2425 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2426 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2427 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2429 // If there are more than SHN_LORESERVE allocated sections, we
2430 // create a .dynsym_shndx section. It is possible that we don't
2431 // need one, because it is possible that there are no dynamic
2432 // symbols in any of the sections with indexes larger than
2433 // SHN_LORESERVE. This is probably unusual, though, and at this
2434 // time we don't know the actual section indexes so it is
2435 // inconvenient to check.
2436 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2438 Output_section
* dynsym_xindex
=
2439 this->choose_output_section(NULL
, ".dynsym_shndx",
2440 elfcpp::SHT_SYMTAB_SHNDX
,
2444 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2446 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2448 dynsym_xindex
->set_link_section(dynsym
);
2449 dynsym_xindex
->set_addralign(4);
2450 dynsym_xindex
->set_entsize(4);
2452 dynsym_xindex
->set_after_input_sections();
2454 // This tells the driver code to wait until the symbol table has
2455 // written out before writing out the postprocessing sections,
2456 // including the .dynsym_shndx section.
2457 this->any_postprocessing_sections_
= true;
2460 // Create the dynamic string table section.
2462 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2467 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2468 dynstr
->add_output_section_data(strdata
);
2470 dynsym
->set_link_section(dynstr
);
2471 this->dynamic_section_
->set_link_section(dynstr
);
2473 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2474 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2478 // Create the hash tables.
2480 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2481 || strcmp(parameters
->options().hash_style(), "both") == 0)
2483 unsigned char* phash
;
2484 unsigned int hashlen
;
2485 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2488 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2493 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2497 hashsec
->add_output_section_data(hashdata
);
2499 hashsec
->set_link_section(dynsym
);
2500 hashsec
->set_entsize(4);
2502 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2505 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2506 || strcmp(parameters
->options().hash_style(), "both") == 0)
2508 unsigned char* phash
;
2509 unsigned int hashlen
;
2510 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
2513 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
2514 elfcpp::SHT_GNU_HASH
,
2518 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2522 hashsec
->add_output_section_data(hashdata
);
2524 hashsec
->set_link_section(dynsym
);
2525 hashsec
->set_entsize(4);
2527 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
2531 // Assign offsets to each local portion of the dynamic symbol table.
2534 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
2536 Output_section
* dynsym
= this->dynsym_section_
;
2537 gold_assert(dynsym
!= NULL
);
2539 off_t off
= dynsym
->offset();
2541 // Skip the dummy symbol at the start of the section.
2542 off
+= dynsym
->entsize();
2544 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2545 p
!= input_objects
->relobj_end();
2548 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
2549 off
+= count
* dynsym
->entsize();
2553 // Create the version sections.
2556 Layout::create_version_sections(const Versions
* versions
,
2557 const Symbol_table
* symtab
,
2558 unsigned int local_symcount
,
2559 const std::vector
<Symbol
*>& dynamic_symbols
,
2560 const Output_section
* dynstr
)
2562 if (!versions
->any_defs() && !versions
->any_needs())
2565 switch (parameters
->size_and_endianness())
2567 #ifdef HAVE_TARGET_32_LITTLE
2568 case Parameters::TARGET_32_LITTLE
:
2569 this->sized_create_version_sections
<32, false>(versions
, symtab
,
2571 dynamic_symbols
, dynstr
);
2574 #ifdef HAVE_TARGET_32_BIG
2575 case Parameters::TARGET_32_BIG
:
2576 this->sized_create_version_sections
<32, true>(versions
, symtab
,
2578 dynamic_symbols
, dynstr
);
2581 #ifdef HAVE_TARGET_64_LITTLE
2582 case Parameters::TARGET_64_LITTLE
:
2583 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2585 dynamic_symbols
, dynstr
);
2588 #ifdef HAVE_TARGET_64_BIG
2589 case Parameters::TARGET_64_BIG
:
2590 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2592 dynamic_symbols
, dynstr
);
2600 // Create the version sections, sized version.
2602 template<int size
, bool big_endian
>
2604 Layout::sized_create_version_sections(
2605 const Versions
* versions
,
2606 const Symbol_table
* symtab
,
2607 unsigned int local_symcount
,
2608 const std::vector
<Symbol
*>& dynamic_symbols
,
2609 const Output_section
* dynstr
)
2611 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2612 elfcpp::SHT_GNU_versym
,
2616 unsigned char* vbuf
;
2618 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2623 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
2626 vsec
->add_output_section_data(vdata
);
2627 vsec
->set_entsize(2);
2628 vsec
->set_link_section(this->dynsym_section_
);
2630 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2631 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
2633 if (versions
->any_defs())
2635 Output_section
* vdsec
;
2636 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
2637 elfcpp::SHT_GNU_verdef
,
2641 unsigned char* vdbuf
;
2642 unsigned int vdsize
;
2643 unsigned int vdentries
;
2644 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
2645 &vdsize
, &vdentries
);
2647 Output_section_data
* vddata
=
2648 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
2650 vdsec
->add_output_section_data(vddata
);
2651 vdsec
->set_link_section(dynstr
);
2652 vdsec
->set_info(vdentries
);
2654 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
2655 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
2658 if (versions
->any_needs())
2660 Output_section
* vnsec
;
2661 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
2662 elfcpp::SHT_GNU_verneed
,
2666 unsigned char* vnbuf
;
2667 unsigned int vnsize
;
2668 unsigned int vnentries
;
2669 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
2673 Output_section_data
* vndata
=
2674 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
2676 vnsec
->add_output_section_data(vndata
);
2677 vnsec
->set_link_section(dynstr
);
2678 vnsec
->set_info(vnentries
);
2680 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
2681 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
2685 // Create the .interp section and PT_INTERP segment.
2688 Layout::create_interp(const Target
* target
)
2690 const char* interp
= parameters
->options().dynamic_linker();
2693 interp
= target
->dynamic_linker();
2694 gold_assert(interp
!= NULL
);
2697 size_t len
= strlen(interp
) + 1;
2699 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
2701 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
2702 elfcpp::SHT_PROGBITS
,
2705 osec
->add_output_section_data(odata
);
2707 if (!this->script_options_
->saw_phdrs_clause())
2709 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
2711 oseg
->add_output_section(osec
, elfcpp::PF_R
);
2715 // Finish the .dynamic section and PT_DYNAMIC segment.
2718 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
2719 const Symbol_table
* symtab
)
2721 if (!this->script_options_
->saw_phdrs_clause())
2723 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
2726 oseg
->add_output_section(this->dynamic_section_
,
2727 elfcpp::PF_R
| elfcpp::PF_W
);
2730 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2732 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
2733 p
!= input_objects
->dynobj_end();
2736 // FIXME: Handle --as-needed.
2737 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
2740 if (parameters
->options().shared())
2742 const char* soname
= parameters
->options().soname();
2744 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
2747 // FIXME: Support --init and --fini.
2748 Symbol
* sym
= symtab
->lookup("_init");
2749 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2750 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
2752 sym
= symtab
->lookup("_fini");
2753 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2754 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
2756 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2758 // Add a DT_RPATH entry if needed.
2759 const General_options::Dir_list
& rpath(parameters
->options().rpath());
2762 std::string rpath_val
;
2763 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
2767 if (rpath_val
.empty())
2768 rpath_val
= p
->name();
2771 // Eliminate duplicates.
2772 General_options::Dir_list::const_iterator q
;
2773 for (q
= rpath
.begin(); q
!= p
; ++q
)
2774 if (q
->name() == p
->name())
2779 rpath_val
+= p
->name();
2784 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
2785 if (parameters
->options().enable_new_dtags())
2786 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
2789 // Look for text segments that have dynamic relocations.
2790 bool have_textrel
= false;
2791 if (!this->script_options_
->saw_sections_clause())
2793 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2794 p
!= this->segment_list_
.end();
2797 if (((*p
)->flags() & elfcpp::PF_W
) == 0
2798 && (*p
)->dynamic_reloc_count() > 0)
2800 have_textrel
= true;
2807 // We don't know the section -> segment mapping, so we are
2808 // conservative and just look for readonly sections with
2809 // relocations. If those sections wind up in writable segments,
2810 // then we have created an unnecessary DT_TEXTREL entry.
2811 for (Section_list::const_iterator p
= this->section_list_
.begin();
2812 p
!= this->section_list_
.end();
2815 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
2816 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
2817 && ((*p
)->dynamic_reloc_count() > 0))
2819 have_textrel
= true;
2825 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2826 // post-link tools can easily modify these flags if desired.
2827 unsigned int flags
= 0;
2830 // Add a DT_TEXTREL for compatibility with older loaders.
2831 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
2832 flags
|= elfcpp::DF_TEXTREL
;
2834 if (parameters
->options().shared() && this->has_static_tls())
2835 flags
|= elfcpp::DF_STATIC_TLS
;
2836 if (parameters
->options().origin())
2837 flags
|= elfcpp::DF_ORIGIN
;
2838 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
2841 if (parameters
->options().initfirst())
2842 flags
|= elfcpp::DF_1_INITFIRST
;
2843 if (parameters
->options().interpose())
2844 flags
|= elfcpp::DF_1_INTERPOSE
;
2845 if (parameters
->options().loadfltr())
2846 flags
|= elfcpp::DF_1_LOADFLTR
;
2847 if (parameters
->options().nodefaultlib())
2848 flags
|= elfcpp::DF_1_NODEFLIB
;
2849 if (parameters
->options().nodelete())
2850 flags
|= elfcpp::DF_1_NODELETE
;
2851 if (parameters
->options().nodlopen())
2852 flags
|= elfcpp::DF_1_NOOPEN
;
2853 if (parameters
->options().nodump())
2854 flags
|= elfcpp::DF_1_NODUMP
;
2855 if (!parameters
->options().shared())
2856 flags
&= ~(elfcpp::DF_1_INITFIRST
2857 | elfcpp::DF_1_NODELETE
2858 | elfcpp::DF_1_NOOPEN
);
2859 if (parameters
->options().origin())
2860 flags
|= elfcpp::DF_1_ORIGIN
;
2862 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
2865 // The mapping of input section name prefixes to output section names.
2866 // In some cases one prefix is itself a prefix of another prefix; in
2867 // such a case the longer prefix must come first. These prefixes are
2868 // based on the GNU linker default ELF linker script.
2870 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2871 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
2873 MAPPING_INIT(".text.", ".text"),
2874 MAPPING_INIT(".ctors.", ".ctors"),
2875 MAPPING_INIT(".dtors.", ".dtors"),
2876 MAPPING_INIT(".rodata.", ".rodata"),
2877 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
2878 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
2879 MAPPING_INIT(".data.", ".data"),
2880 MAPPING_INIT(".bss.", ".bss"),
2881 MAPPING_INIT(".tdata.", ".tdata"),
2882 MAPPING_INIT(".tbss.", ".tbss"),
2883 MAPPING_INIT(".init_array.", ".init_array"),
2884 MAPPING_INIT(".fini_array.", ".fini_array"),
2885 MAPPING_INIT(".sdata.", ".sdata"),
2886 MAPPING_INIT(".sbss.", ".sbss"),
2887 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
2888 // differently depending on whether it is creating a shared library.
2889 MAPPING_INIT(".sdata2.", ".sdata"),
2890 MAPPING_INIT(".sbss2.", ".sbss"),
2891 MAPPING_INIT(".lrodata.", ".lrodata"),
2892 MAPPING_INIT(".ldata.", ".ldata"),
2893 MAPPING_INIT(".lbss.", ".lbss"),
2894 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
2895 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
2896 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
2897 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
2898 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
2899 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
2900 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
2901 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
2902 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
2903 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
2904 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
2905 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
2906 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
2907 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
2908 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
2909 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
2910 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
2911 MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
2912 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
2913 MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
2914 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
2918 const int Layout::section_name_mapping_count
=
2919 (sizeof(Layout::section_name_mapping
)
2920 / sizeof(Layout::section_name_mapping
[0]));
2922 // Choose the output section name to use given an input section name.
2923 // Set *PLEN to the length of the name. *PLEN is initialized to the
2927 Layout::output_section_name(const char* name
, size_t* plen
)
2929 // gcc 4.3 generates the following sorts of section names when it
2930 // needs a section name specific to a function:
2936 // .data.rel.local.FN
2938 // .data.rel.ro.local.FN
2945 // The GNU linker maps all of those to the part before the .FN,
2946 // except that .data.rel.local.FN is mapped to .data, and
2947 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2948 // beginning with .data.rel.ro.local are grouped together.
2950 // For an anonymous namespace, the string FN can contain a '.'.
2952 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2953 // GNU linker maps to .rodata.
2955 // The .data.rel.ro sections are used with -z relro. The sections
2956 // are recognized by name. We use the same names that the GNU
2957 // linker does for these sections.
2959 // It is hard to handle this in a principled way, so we don't even
2960 // try. We use a table of mappings. If the input section name is
2961 // not found in the table, we simply use it as the output section
2964 const Section_name_mapping
* psnm
= section_name_mapping
;
2965 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
2967 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
2969 *plen
= psnm
->tolen
;
2977 // Check if a comdat group or .gnu.linkonce section with the given
2978 // NAME is selected for the link. If there is already a section,
2979 // *KEPT_SECTION is set to point to the signature and the function
2980 // returns false. Otherwise, the CANDIDATE signature is recorded for
2981 // this NAME in the layout object, *KEPT_SECTION is set to the
2982 // internal copy and the function return false. In some cases, with
2983 // CANDIDATE->GROUP_ being false, KEPT_SECTION can point back to
2987 Layout::find_or_add_kept_section(const std::string
& name
,
2988 Kept_section
* candidate
,
2989 Kept_section
** kept_section
)
2991 // It's normal to see a couple of entries here, for the x86 thunk
2992 // sections. If we see more than a few, we're linking a C++
2993 // program, and we resize to get more space to minimize rehashing.
2994 if (this->signatures_
.size() > 4
2995 && !this->resized_signatures_
)
2997 reserve_unordered_map(&this->signatures_
,
2998 this->number_of_input_files_
* 64);
2999 this->resized_signatures_
= true;
3002 std::pair
<Signatures::iterator
, bool> ins(
3003 this->signatures_
.insert(std::make_pair(name
, *candidate
)));
3006 *kept_section
= &ins
.first
->second
;
3009 // This is the first time we've seen this signature.
3013 if (ins
.first
->second
.is_group
)
3015 // We've already seen a real section group with this signature.
3016 // If the kept group is from a plugin object, and we're in
3017 // the replacement phase, accept the new one as a replacement.
3018 if (ins
.first
->second
.object
== NULL
3019 && parameters
->options().plugins()->in_replacement_phase())
3021 ins
.first
->second
= *candidate
;
3026 else if (candidate
->is_group
)
3028 // This is a real section group, and we've already seen a
3029 // linkonce section with this signature. Record that we've seen
3030 // a section group, and don't include this section group.
3031 ins
.first
->second
.is_group
= true;
3036 // We've already seen a linkonce section and this is a linkonce
3037 // section. These don't block each other--this may be the same
3038 // symbol name with different section types.
3039 *kept_section
= candidate
;
3044 // Find the given comdat signature, and return the object and section
3045 // index of the kept group.
3047 Layout::find_kept_object(const std::string
& signature
,
3048 unsigned int* pshndx
) const
3050 Signatures::const_iterator p
= this->signatures_
.find(signature
);
3051 if (p
== this->signatures_
.end())
3054 *pshndx
= p
->second
.shndx
;
3055 return p
->second
.object
;
3058 // Store the allocated sections into the section list.
3061 Layout::get_allocated_sections(Section_list
* section_list
) const
3063 for (Section_list::const_iterator p
= this->section_list_
.begin();
3064 p
!= this->section_list_
.end();
3066 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3067 section_list
->push_back(*p
);
3070 // Create an output segment.
3073 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3075 gold_assert(!parameters
->options().relocatable());
3076 Output_segment
* oseg
= new Output_segment(type
, flags
);
3077 this->segment_list_
.push_back(oseg
);
3079 if (type
== elfcpp::PT_TLS
)
3080 this->tls_segment_
= oseg
;
3081 else if (type
== elfcpp::PT_GNU_RELRO
)
3082 this->relro_segment_
= oseg
;
3087 // Write out the Output_sections. Most won't have anything to write,
3088 // since most of the data will come from input sections which are
3089 // handled elsewhere. But some Output_sections do have Output_data.
3092 Layout::write_output_sections(Output_file
* of
) const
3094 for (Section_list::const_iterator p
= this->section_list_
.begin();
3095 p
!= this->section_list_
.end();
3098 if (!(*p
)->after_input_sections())
3103 // Write out data not associated with a section or the symbol table.
3106 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3108 if (!parameters
->options().strip_all())
3110 const Output_section
* symtab_section
= this->symtab_section_
;
3111 for (Section_list::const_iterator p
= this->section_list_
.begin();
3112 p
!= this->section_list_
.end();
3115 if ((*p
)->needs_symtab_index())
3117 gold_assert(symtab_section
!= NULL
);
3118 unsigned int index
= (*p
)->symtab_index();
3119 gold_assert(index
> 0 && index
!= -1U);
3120 off_t off
= (symtab_section
->offset()
3121 + index
* symtab_section
->entsize());
3122 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3127 const Output_section
* dynsym_section
= this->dynsym_section_
;
3128 for (Section_list::const_iterator p
= this->section_list_
.begin();
3129 p
!= this->section_list_
.end();
3132 if ((*p
)->needs_dynsym_index())
3134 gold_assert(dynsym_section
!= NULL
);
3135 unsigned int index
= (*p
)->dynsym_index();
3136 gold_assert(index
> 0 && index
!= -1U);
3137 off_t off
= (dynsym_section
->offset()
3138 + index
* dynsym_section
->entsize());
3139 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3143 // Write out the Output_data which are not in an Output_section.
3144 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3145 p
!= this->special_output_list_
.end();
3150 // Write out the Output_sections which can only be written after the
3151 // input sections are complete.
3154 Layout::write_sections_after_input_sections(Output_file
* of
)
3156 // Determine the final section offsets, and thus the final output
3157 // file size. Note we finalize the .shstrab last, to allow the
3158 // after_input_section sections to modify their section-names before
3160 if (this->any_postprocessing_sections_
)
3162 off_t off
= this->output_file_size_
;
3163 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3165 // Now that we've finalized the names, we can finalize the shstrab.
3167 this->set_section_offsets(off
,
3168 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3170 if (off
> this->output_file_size_
)
3173 this->output_file_size_
= off
;
3177 for (Section_list::const_iterator p
= this->section_list_
.begin();
3178 p
!= this->section_list_
.end();
3181 if ((*p
)->after_input_sections())
3185 this->section_headers_
->write(of
);
3188 // If the build ID requires computing a checksum, do so here, and
3189 // write it out. We compute a checksum over the entire file because
3190 // that is simplest.
3193 Layout::write_build_id(Output_file
* of
) const
3195 if (this->build_id_note_
== NULL
)
3198 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3200 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3201 this->build_id_note_
->data_size());
3203 const char* style
= parameters
->options().build_id();
3204 if (strcmp(style
, "sha1") == 0)
3207 sha1_init_ctx(&ctx
);
3208 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3209 sha1_finish_ctx(&ctx
, ov
);
3211 else if (strcmp(style
, "md5") == 0)
3215 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3216 md5_finish_ctx(&ctx
, ov
);
3221 of
->write_output_view(this->build_id_note_
->offset(),
3222 this->build_id_note_
->data_size(),
3225 of
->free_input_view(0, this->output_file_size_
, iv
);
3228 // Write out a binary file. This is called after the link is
3229 // complete. IN is the temporary output file we used to generate the
3230 // ELF code. We simply walk through the segments, read them from
3231 // their file offset in IN, and write them to their load address in
3232 // the output file. FIXME: with a bit more work, we could support
3233 // S-records and/or Intel hex format here.
3236 Layout::write_binary(Output_file
* in
) const
3238 gold_assert(parameters
->options().oformat_enum()
3239 == General_options::OBJECT_FORMAT_BINARY
);
3241 // Get the size of the binary file.
3242 uint64_t max_load_address
= 0;
3243 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3244 p
!= this->segment_list_
.end();
3247 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3249 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3250 if (max_paddr
> max_load_address
)
3251 max_load_address
= max_paddr
;
3255 Output_file
out(parameters
->options().output_file_name());
3256 out
.open(max_load_address
);
3258 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3259 p
!= this->segment_list_
.end();
3262 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3264 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3266 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3268 memcpy(vout
, vin
, (*p
)->filesz());
3269 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3270 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3277 // Print the output sections to the map file.
3280 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3282 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3283 p
!= this->segment_list_
.end();
3285 (*p
)->print_sections_to_mapfile(mapfile
);
3288 // Print statistical information to stderr. This is used for --stats.
3291 Layout::print_stats() const
3293 this->namepool_
.print_stats("section name pool");
3294 this->sympool_
.print_stats("output symbol name pool");
3295 this->dynpool_
.print_stats("dynamic name pool");
3297 for (Section_list::const_iterator p
= this->section_list_
.begin();
3298 p
!= this->section_list_
.end();
3300 (*p
)->print_merge_stats();
3303 // Write_sections_task methods.
3305 // We can always run this task.
3308 Write_sections_task::is_runnable()
3313 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3317 Write_sections_task::locks(Task_locker
* tl
)
3319 tl
->add(this, this->output_sections_blocker_
);
3320 tl
->add(this, this->final_blocker_
);
3323 // Run the task--write out the data.
3326 Write_sections_task::run(Workqueue
*)
3328 this->layout_
->write_output_sections(this->of_
);
3331 // Write_data_task methods.
3333 // We can always run this task.
3336 Write_data_task::is_runnable()
3341 // We need to unlock FINAL_BLOCKER when finished.
3344 Write_data_task::locks(Task_locker
* tl
)
3346 tl
->add(this, this->final_blocker_
);
3349 // Run the task--write out the data.
3352 Write_data_task::run(Workqueue
*)
3354 this->layout_
->write_data(this->symtab_
, this->of_
);
3357 // Write_symbols_task methods.
3359 // We can always run this task.
3362 Write_symbols_task::is_runnable()
3367 // We need to unlock FINAL_BLOCKER when finished.
3370 Write_symbols_task::locks(Task_locker
* tl
)
3372 tl
->add(this, this->final_blocker_
);
3375 // Run the task--write out the symbols.
3378 Write_symbols_task::run(Workqueue
*)
3380 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
3381 this->layout_
->symtab_xindex(),
3382 this->layout_
->dynsym_xindex(), this->of_
);
3385 // Write_after_input_sections_task methods.
3387 // We can only run this task after the input sections have completed.
3390 Write_after_input_sections_task::is_runnable()
3392 if (this->input_sections_blocker_
->is_blocked())
3393 return this->input_sections_blocker_
;
3397 // We need to unlock FINAL_BLOCKER when finished.
3400 Write_after_input_sections_task::locks(Task_locker
* tl
)
3402 tl
->add(this, this->final_blocker_
);
3408 Write_after_input_sections_task::run(Workqueue
*)
3410 this->layout_
->write_sections_after_input_sections(this->of_
);
3413 // Close_task_runner methods.
3415 // Run the task--close the file.
3418 Close_task_runner::run(Workqueue
*, const Task
*)
3420 // If we need to compute a checksum for the BUILD if, we do so here.
3421 this->layout_
->write_build_id(this->of_
);
3423 // If we've been asked to create a binary file, we do so here.
3424 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
3425 this->layout_
->write_binary(this->of_
);
3430 // Instantiate the templates we need. We could use the configure
3431 // script to restrict this to only the ones for implemented targets.
3433 #ifdef HAVE_TARGET_32_LITTLE
3436 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
3438 const elfcpp::Shdr
<32, false>& shdr
,
3439 unsigned int, unsigned int, off_t
*);
3442 #ifdef HAVE_TARGET_32_BIG
3445 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
3447 const elfcpp::Shdr
<32, true>& shdr
,
3448 unsigned int, unsigned int, off_t
*);
3451 #ifdef HAVE_TARGET_64_LITTLE
3454 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
3456 const elfcpp::Shdr
<64, false>& shdr
,
3457 unsigned int, unsigned int, off_t
*);
3460 #ifdef HAVE_TARGET_64_BIG
3463 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
3465 const elfcpp::Shdr
<64, true>& shdr
,
3466 unsigned int, unsigned int, off_t
*);
3469 #ifdef HAVE_TARGET_32_LITTLE
3472 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
3473 unsigned int reloc_shndx
,
3474 const elfcpp::Shdr
<32, false>& shdr
,
3475 Output_section
* data_section
,
3476 Relocatable_relocs
* rr
);
3479 #ifdef HAVE_TARGET_32_BIG
3482 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
3483 unsigned int reloc_shndx
,
3484 const elfcpp::Shdr
<32, true>& shdr
,
3485 Output_section
* data_section
,
3486 Relocatable_relocs
* rr
);
3489 #ifdef HAVE_TARGET_64_LITTLE
3492 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
3493 unsigned int reloc_shndx
,
3494 const elfcpp::Shdr
<64, false>& shdr
,
3495 Output_section
* data_section
,
3496 Relocatable_relocs
* rr
);
3499 #ifdef HAVE_TARGET_64_BIG
3502 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
3503 unsigned int reloc_shndx
,
3504 const elfcpp::Shdr
<64, true>& shdr
,
3505 Output_section
* data_section
,
3506 Relocatable_relocs
* rr
);
3509 #ifdef HAVE_TARGET_32_LITTLE
3512 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
3513 Sized_relobj
<32, false>* object
,
3515 const char* group_section_name
,
3516 const char* signature
,
3517 const elfcpp::Shdr
<32, false>& shdr
,
3518 elfcpp::Elf_Word flags
,
3519 std::vector
<unsigned int>* shndxes
);
3522 #ifdef HAVE_TARGET_32_BIG
3525 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
3526 Sized_relobj
<32, true>* object
,
3528 const char* group_section_name
,
3529 const char* signature
,
3530 const elfcpp::Shdr
<32, true>& shdr
,
3531 elfcpp::Elf_Word flags
,
3532 std::vector
<unsigned int>* shndxes
);
3535 #ifdef HAVE_TARGET_64_LITTLE
3538 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
3539 Sized_relobj
<64, false>* object
,
3541 const char* group_section_name
,
3542 const char* signature
,
3543 const elfcpp::Shdr
<64, false>& shdr
,
3544 elfcpp::Elf_Word flags
,
3545 std::vector
<unsigned int>* shndxes
);
3548 #ifdef HAVE_TARGET_64_BIG
3551 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
3552 Sized_relobj
<64, true>* object
,
3554 const char* group_section_name
,
3555 const char* signature
,
3556 const elfcpp::Shdr
<64, true>& shdr
,
3557 elfcpp::Elf_Word flags
,
3558 std::vector
<unsigned int>* shndxes
);
3561 #ifdef HAVE_TARGET_32_LITTLE
3564 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
3565 const unsigned char* symbols
,
3567 const unsigned char* symbol_names
,
3568 off_t symbol_names_size
,
3570 const elfcpp::Shdr
<32, false>& shdr
,
3571 unsigned int reloc_shndx
,
3572 unsigned int reloc_type
,
3576 #ifdef HAVE_TARGET_32_BIG
3579 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
3580 const unsigned char* symbols
,
3582 const unsigned char* symbol_names
,
3583 off_t symbol_names_size
,
3585 const elfcpp::Shdr
<32, true>& shdr
,
3586 unsigned int reloc_shndx
,
3587 unsigned int reloc_type
,
3591 #ifdef HAVE_TARGET_64_LITTLE
3594 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
3595 const unsigned char* symbols
,
3597 const unsigned char* symbol_names
,
3598 off_t symbol_names_size
,
3600 const elfcpp::Shdr
<64, false>& shdr
,
3601 unsigned int reloc_shndx
,
3602 unsigned int reloc_type
,
3606 #ifdef HAVE_TARGET_64_BIG
3609 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
3610 const unsigned char* symbols
,
3612 const unsigned char* symbol_names
,
3613 off_t symbol_names_size
,
3615 const elfcpp::Shdr
<64, true>& shdr
,
3616 unsigned int reloc_shndx
,
3617 unsigned int reloc_type
,
3621 } // End namespace gold.