2001-03-18 H.J. Lu <hjl@gnu.org>
[binutils.git] / opcodes / arc-opc.c
blob81519041c705665da7b7b45d8f6a5fb31dc0313d
1 /* Opcode table for the ARC.
2 Copyright 1994, 1995, 1997, 1998, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Doug Evans (dje@cygnus.com).
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 #include <stdio.h>
21 #include "ansidecl.h"
22 #include "opcode/arc.h"
24 #define INSERT_FN(fn) \
25 static arc_insn fn PARAMS ((arc_insn, const struct arc_operand *, \
26 int, const struct arc_operand_value *, long, \
27 const char **))
28 #define EXTRACT_FN(fn) \
29 static long fn PARAMS ((arc_insn *, const struct arc_operand *, \
30 int, const struct arc_operand_value **, int *))
32 INSERT_FN (insert_reg);
33 INSERT_FN (insert_shimmfinish);
34 INSERT_FN (insert_limmfinish);
35 INSERT_FN (insert_offset);
36 INSERT_FN (insert_base);
37 INSERT_FN (insert_st_syntax);
38 INSERT_FN (insert_ld_syntax);
39 INSERT_FN (insert_addr_wb);
40 INSERT_FN (insert_flag);
41 INSERT_FN (insert_nullify);
42 INSERT_FN (insert_flagfinish);
43 INSERT_FN (insert_cond);
44 INSERT_FN (insert_forcelimm);
45 INSERT_FN (insert_reladdr);
46 INSERT_FN (insert_absaddr);
47 INSERT_FN (insert_jumpflags);
48 INSERT_FN (insert_unopmacro);
50 EXTRACT_FN (extract_reg);
51 EXTRACT_FN (extract_ld_offset);
52 EXTRACT_FN (extract_ld_syntax);
53 EXTRACT_FN (extract_st_offset);
54 EXTRACT_FN (extract_st_syntax);
55 EXTRACT_FN (extract_flag);
56 EXTRACT_FN (extract_cond);
57 EXTRACT_FN (extract_reladdr);
58 EXTRACT_FN (extract_jumpflags);
59 EXTRACT_FN (extract_unopmacro);
61 enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM};
63 #define OPERANDS 3
65 enum operand ls_operand[OPERANDS];
67 #define LS_VALUE 0
68 #define LS_DEST 0
69 #define LS_BASE 1
70 #define LS_OFFSET 2
72 /* Various types of ARC operands, including insn suffixes. */
74 /* Insn format values:
76 'a' REGA register A field
77 'b' REGB register B field
78 'c' REGC register C field
79 'S' SHIMMFINISH finish inserting a shimm value
80 'L' LIMMFINISH finish inserting a limm value
81 'o' OFFSET offset in st insns
82 'O' OFFSET offset in ld insns
83 '0' SYNTAX_ST_NE enforce store insn syntax, no errors
84 '1' SYNTAX_LD_NE enforce load insn syntax, no errors
85 '2' SYNTAX_ST enforce store insn syntax, errors, last pattern only
86 '3' SYNTAX_LD enforce load insn syntax, errors, last pattern only
87 's' BASE base in st insn
88 'f' FLAG F flag
89 'F' FLAGFINISH finish inserting the F flag
90 'G' FLAGINSN insert F flag in "flag" insn
91 'n' DELAY N field (nullify field)
92 'q' COND condition code field
93 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
94 'B' BRANCH branch address (22 bit pc relative)
95 'J' JUMP jump address (26 bit absolute)
96 'j' JUMPFLAGS optional high order bits of 'J'
97 'z' SIZE1 size field in ld a,[b,c]
98 'Z' SIZE10 size field in ld a,[b,shimm]
99 'y' SIZE22 size field in st c,[b,shimm]
100 'x' SIGN0 sign extend field ld a,[b,c]
101 'X' SIGN9 sign extend field ld a,[b,shimm]
102 'w' ADDRESS3 write-back field in ld a,[b,c]
103 'W' ADDRESS12 write-back field in ld a,[b,shimm]
104 'v' ADDRESS24 write-back field in st c,[b,shimm]
105 'e' CACHEBYPASS5 cache bypass in ld a,[b,c]
106 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm]
107 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm]
108 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
110 The following modifiers may appear between the % and char (eg: %.f):
112 '.' MODDOT '.' prefix must be present
113 'r' REG generic register value, for register table
114 'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
116 Fields are:
118 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN */
120 const struct arc_operand arc_operands[] =
122 /* place holder (??? not sure if needed). */
123 #define UNUSED 0
124 { 0, 0, 0, 0, 0, 0 },
126 /* register A or shimm/limm indicator. */
127 #define REGA (UNUSED + 1)
128 { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
130 /* register B or shimm/limm indicator. */
131 #define REGB (REGA + 1)
132 { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
134 /* register C or shimm/limm indicator. */
135 #define REGC (REGB + 1)
136 { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
138 /* fake operand used to insert shimm value into most instructions. */
139 #define SHIMMFINISH (REGC + 1)
140 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
142 /* fake operand used to insert limm value into most instructions. */
143 #define LIMMFINISH (SHIMMFINISH + 1)
144 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
146 /* shimm operand when there is no reg indicator (st). */
147 #define ST_OFFSET (LIMMFINISH + 1)
148 { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset },
150 /* shimm operand when there is no reg indicator (ld). */
151 #define LD_OFFSET (ST_OFFSET + 1)
152 { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset },
154 /* operand for base. */
155 #define BASE (LD_OFFSET + 1)
156 { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg},
158 /* 0 enforce syntax for st insns. */
159 #define SYNTAX_ST_NE (BASE + 1)
160 { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax },
162 /* 1 enforce syntax for ld insns. */
163 #define SYNTAX_LD_NE (SYNTAX_ST_NE + 1)
164 { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax },
166 /* 0 enforce syntax for st insns. */
167 #define SYNTAX_ST (SYNTAX_LD_NE + 1)
168 { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax },
170 /* 0 enforce syntax for ld insns. */
171 #define SYNTAX_LD (SYNTAX_ST + 1)
172 { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax },
174 /* flag update bit (insertion is defered until we know how). */
175 #define FLAG (SYNTAX_LD + 1)
176 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
178 /* fake utility operand to finish 'f' suffix handling. */
179 #define FLAGFINISH (FLAG + 1)
180 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
182 /* fake utility operand to set the 'f' flag for the "flag" insn. */
183 #define FLAGINSN (FLAGFINISH + 1)
184 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
186 /* branch delay types. */
187 #define DELAY (FLAGINSN + 1)
188 { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 },
190 /* conditions. */
191 #define COND (DELAY + 1)
192 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
194 /* set `cond_p' to 1 to ensure a constant is treated as a limm. */
195 #define FORCELIMM (COND + 1)
196 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 },
198 /* branch address; b, bl, and lp insns. */
199 #define BRANCH (FORCELIMM + 1)
200 { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr },
202 /* jump address; j insn (this is basically the same as 'L' except that the
203 value is right shifted by 2). */
204 #define JUMP (BRANCH + 1)
205 { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 },
207 /* jump flags; j{,l} insn value or'ed into 'J' addr for flag values. */
208 #define JUMPFLAGS (JUMP + 1)
209 { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags },
211 /* size field, stored in bit 1,2. */
212 #define SIZE1 (JUMPFLAGS + 1)
213 { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 },
215 /* size field, stored in bit 10,11. */
216 #define SIZE10 (SIZE1 + 1)
217 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 },
219 /* size field, stored in bit 22,23. */
220 #define SIZE22 (SIZE10 + 1)
221 { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 },
223 /* sign extend field, stored in bit 0. */
224 #define SIGN0 (SIZE22 + 1)
225 { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 },
227 /* sign extend field, stored in bit 9. */
228 #define SIGN9 (SIGN0 + 1)
229 { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 },
231 /* address write back, stored in bit 3. */
232 #define ADDRESS3 (SIGN9 + 1)
233 { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
235 /* address write back, stored in bit 12. */
236 #define ADDRESS12 (ADDRESS3 + 1)
237 { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
239 /* address write back, stored in bit 24. */
240 #define ADDRESS24 (ADDRESS12 + 1)
241 { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
243 /* cache bypass, stored in bit 5. */
244 #define CACHEBYPASS5 (ADDRESS24 + 1)
245 { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 },
247 /* cache bypass, stored in bit 14. */
248 #define CACHEBYPASS14 (CACHEBYPASS5 + 1)
249 { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 },
251 /* cache bypass, stored in bit 26. */
252 #define CACHEBYPASS26 (CACHEBYPASS14 + 1)
253 { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 },
255 /* unop macro, used to copy REGB to REGC. */
256 #define UNOPMACRO (CACHEBYPASS26 + 1)
257 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
259 /* '.' modifier ('.' required). */
260 #define MODDOT (UNOPMACRO + 1)
261 { '.', 1, 0, ARC_MOD_DOT, 0, 0 },
263 /* Dummy 'r' modifier for the register table.
264 It's called a "dummy" because there's no point in inserting an 'r' into all
265 the %a/%b/%c occurrences in the insn table. */
266 #define REG (MODDOT + 1)
267 { 'r', 6, 0, ARC_MOD_REG, 0, 0 },
269 /* Known auxiliary register modifier (stored in shimm field). */
270 #define AUXREG (REG + 1)
271 { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 },
273 /* end of list place holder. */
274 { 0, 0, 0, 0, 0, 0 }
277 /* Given a format letter, yields the index into `arc_operands'.
278 eg: arc_operand_map['a'] = REGA. */
279 unsigned char arc_operand_map[256];
281 /* ARC instructions.
283 Longer versions of insns must appear before shorter ones (if gas sees
284 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
285 junk). This isn't necessary for `ld' because of the trailing ']'.
287 Instructions that are really macros based on other insns must appear
288 before the real insn so they're chosen when disassembling. Eg: The `mov'
289 insn is really the `and' insn. */
291 struct arc_opcode arc_opcodes[] =
293 /* Base case instruction set (core versions 5-8) */
295 /* "mov" is really an "and". */
296 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 },
297 /* "asl" is really an "add". */
298 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
299 /* "lsl" is really an "add". */
300 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
301 /* "nop" is really an "xor". */
302 { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 },
303 /* "rlc" is really an "adc". */
304 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 },
305 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 },
306 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 },
307 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 },
308 { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 },
309 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14), ARC_MACH_5, 0, 0 },
310 { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
311 { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
312 { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 },
313 { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 },
314 { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 },
315 { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 },
316 { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 },
317 { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 },
318 /* %Q: force cond_p=1 -> no shimm values. This insn allows an
319 optional flags spec. */
320 { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
321 { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
322 /* This insn allows an optional flags spec. */
323 { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
324 { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
325 /* Put opcode 1 ld insns first so shimm gets prefered over limm.
326 "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
327 { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 },
328 { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
329 { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
330 { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1), I(1)|R(0,13,1), ARC_MACH_5, 0, 0 },
331 { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 },
332 { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 },
333 { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 },
334 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 },
335 { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 },
336 { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 },
337 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11), ARC_MACH_5, 0, 0 },
338 { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 },
339 { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 },
340 { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 },
341 /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
342 { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
343 { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
344 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10), ARC_MACH_5, 0, 0 },
345 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15), ARC_MACH_5, 0, 0 }
348 const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
350 const struct arc_operand_value arc_reg_names[] =
352 /* Core register set r0-r63. */
354 /* r0-r28 - general purpose registers. */
355 { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 },
356 { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 },
357 { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 },
358 { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 },
359 { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 },
360 { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 },
361 { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 },
362 { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 },
363 { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 },
364 { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 },
365 /* Maskable interrupt link register. */
366 { "ilink1", 29, REG, 0 },
367 /* Maskable interrupt link register. */
368 { "ilink2", 30, REG, 0 },
369 /* Branch-link register. */
370 { "blink", 31, REG, 0 },
372 /* r32-r59 reserved for extensions. */
373 { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 },
374 { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 },
375 { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 },
376 { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 },
377 { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 },
378 { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 },
379 { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 },
380 { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 },
381 { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 },
382 { "r59", 59, REG, 0 },
384 /* Loop count register (24 bits). */
385 { "lp_count", 60, REG, ARC_REGISTER_READONLY },
386 /* Short immediate data indicator setting flags. */
387 { "r61", 61, REG, ARC_REGISTER_READONLY },
388 /* Long immediate data indicator setting flags. */
389 { "r62", 62, REG, ARC_REGISTER_READONLY },
390 /* Short immediate data indicator not setting flags. */
391 { "r63", 63, REG, ARC_REGISTER_READONLY },
393 /* Small-data base register. */
394 { "gp", 26, REG, 0 },
395 /* Frame pointer. */
396 { "fp", 27, REG, 0 },
397 /* Stack pointer. */
398 { "sp", 28, REG, 0 },
400 { "r29", 29, REG, 0 },
401 { "r30", 30, REG, 0 },
402 { "r31", 31, REG, 0 },
403 { "r60", 60, REG, 0 },
405 /* Auxiliary register set. */
407 /* Auxiliary register address map:
408 0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation
409 0xfffffeff-0x80000000 - customer limm allocation
410 0x7fffffff-0x00000100 - ARC limm allocation
411 0x000000ff-0x00000000 - ARC shimm allocation */
413 /* Base case auxiliary registers (shimm address). */
414 { "status", 0x00, AUXREG, 0 },
415 { "semaphore", 0x01, AUXREG, 0 },
416 { "lp_start", 0x02, AUXREG, 0 },
417 { "lp_end", 0x03, AUXREG, 0 },
418 { "identity", 0x04, AUXREG, ARC_REGISTER_READONLY },
419 { "debug", 0x05, AUXREG, 0 },
422 const int arc_reg_names_count =
423 sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
425 /* The suffix table.
426 Operands with the same name must be stored together. */
428 const struct arc_operand_value arc_suffixes[] =
430 /* Entry 0 is special, default values aren't printed by the disassembler. */
431 { "", 0, -1, 0 },
433 /* Base case condition codes. */
434 { "al", 0, COND, 0 },
435 { "ra", 0, COND, 0 },
436 { "eq", 1, COND, 0 },
437 { "z", 1, COND, 0 },
438 { "ne", 2, COND, 0 },
439 { "nz", 2, COND, 0 },
440 { "pl", 3, COND, 0 },
441 { "p", 3, COND, 0 },
442 { "mi", 4, COND, 0 },
443 { "n", 4, COND, 0 },
444 { "cs", 5, COND, 0 },
445 { "c", 5, COND, 0 },
446 { "lo", 5, COND, 0 },
447 { "cc", 6, COND, 0 },
448 { "nc", 6, COND, 0 },
449 { "hs", 6, COND, 0 },
450 { "vs", 7, COND, 0 },
451 { "v", 7, COND, 0 },
452 { "vc", 8, COND, 0 },
453 { "nv", 8, COND, 0 },
454 { "gt", 9, COND, 0 },
455 { "ge", 10, COND, 0 },
456 { "lt", 11, COND, 0 },
457 { "le", 12, COND, 0 },
458 { "hi", 13, COND, 0 },
459 { "ls", 14, COND, 0 },
460 { "pnz", 15, COND, 0 },
462 /* Condition codes 16-31 reserved for extensions. */
464 { "f", 1, FLAG, 0 },
466 { "nd", ARC_DELAY_NONE, DELAY, 0 },
467 { "d", ARC_DELAY_NORMAL, DELAY, 0 },
468 { "jd", ARC_DELAY_JUMP, DELAY, 0 },
470 { "b", 1, SIZE1, 0 },
471 { "b", 1, SIZE10, 0 },
472 { "b", 1, SIZE22, 0 },
473 { "w", 2, SIZE1, 0 },
474 { "w", 2, SIZE10, 0 },
475 { "w", 2, SIZE22, 0 },
476 { "x", 1, SIGN0, 0 },
477 { "x", 1, SIGN9, 0 },
478 { "a", 1, ADDRESS3, 0 },
479 { "a", 1, ADDRESS12, 0 },
480 { "a", 1, ADDRESS24, 0 },
482 { "di", 1, CACHEBYPASS5, 0 },
483 { "di", 1, CACHEBYPASS14, 0 },
484 { "di", 1, CACHEBYPASS26, 0 },
487 const int arc_suffixes_count =
488 sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
490 /* Indexed by first letter of opcode. Points to chain of opcodes with same
491 first letter. */
492 static struct arc_opcode *opcode_map[26 + 1];
494 /* Indexed by insn code. Points to chain of opcodes with same insn code. */
495 static struct arc_opcode *icode_map[32];
497 /* Configuration flags. */
499 /* Various ARC_HAVE_XXX bits. */
500 static int cpu_type;
502 /* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */
505 arc_get_opcode_mach (bfd_mach, big_p)
506 int bfd_mach, big_p;
508 static int mach_type_map[] =
510 ARC_MACH_5,
511 ARC_MACH_6,
512 ARC_MACH_7,
513 ARC_MACH_8
515 return mach_type_map[bfd_mach] | (big_p ? ARC_MACH_BIG : 0);
518 /* Initialize any tables that need it.
519 Must be called once at start up (or when first needed).
521 FLAGS is a set of bits that say what version of the cpu we have,
522 and in particular at least (one of) ARC_MACH_XXX. */
524 void
525 arc_opcode_init_tables (flags)
526 int flags;
528 static int init_p = 0;
530 cpu_type = flags;
532 /* We may be intentionally called more than once (for example gdb will call
533 us each time the user switches cpu). These tables only need to be init'd
534 once though. */
535 if (!init_p)
537 register int i,n;
539 memset (arc_operand_map, 0, sizeof (arc_operand_map));
540 n = sizeof (arc_operands) / sizeof (arc_operands[0]);
541 for (i = 0; i < n; ++i)
542 arc_operand_map[arc_operands[i].fmt] = i;
544 memset (opcode_map, 0, sizeof (opcode_map));
545 memset (icode_map, 0, sizeof (icode_map));
546 /* Scan the table backwards so macros appear at the front. */
547 for (i = arc_opcodes_count - 1; i >= 0; --i)
549 int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax);
550 int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value);
552 arc_opcodes[i].next_asm = opcode_map[opcode_hash];
553 opcode_map[opcode_hash] = &arc_opcodes[i];
555 arc_opcodes[i].next_dis = icode_map[icode_hash];
556 icode_map[icode_hash] = &arc_opcodes[i];
559 init_p = 1;
563 /* Return non-zero if OPCODE is supported on the specified cpu.
564 Cpu selection is made when calling `arc_opcode_init_tables'. */
567 arc_opcode_supported (opcode)
568 const struct arc_opcode *opcode;
570 if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type)
571 return 1;
572 return 0;
575 /* Return the first insn in the chain for assembling INSN. */
577 const struct arc_opcode *
578 arc_opcode_lookup_asm (insn)
579 const char *insn;
581 return opcode_map[ARC_HASH_OPCODE (insn)];
584 /* Return the first insn in the chain for disassembling INSN. */
586 const struct arc_opcode *
587 arc_opcode_lookup_dis (insn)
588 unsigned int insn;
590 return icode_map[ARC_HASH_ICODE (insn)];
593 /* Nonzero if we've seen an 'f' suffix (in certain insns). */
594 static int flag_p;
596 /* Nonzero if we've finished processing the 'f' suffix. */
597 static int flagshimm_handled_p;
599 /* Nonzero if we've seen a 'a' suffix (address writeback). */
600 static int addrwb_p;
602 /* Nonzero if we've seen a 'q' suffix (condition code). */
603 static int cond_p;
605 /* Nonzero if we've inserted a nullify condition. */
606 static int nullify_p;
608 /* The value of the a nullify condition we inserted. */
609 static int nullify;
611 /* Nonzero if we've inserted jumpflags. */
612 static int jumpflags_p;
614 /* Nonzero if we've inserted a shimm. */
615 static int shimm_p;
617 /* The value of the shimm we inserted (each insn only gets one but it can
618 appear multiple times). */
619 static int shimm;
621 /* Nonzero if we've inserted a limm (during assembly) or seen a limm
622 (during disassembly). */
623 static int limm_p;
625 /* The value of the limm we inserted. Each insn only gets one but it can
626 appear multiple times. */
627 static long limm;
629 /* Insertion functions. */
631 /* Called by the assembler before parsing an instruction. */
633 void
634 arc_opcode_init_insert ()
636 int i;
638 for(i = 0; i < OPERANDS; i++)
639 ls_operand[i] = OP_NONE;
641 flag_p = 0;
642 flagshimm_handled_p = 0;
643 cond_p = 0;
644 addrwb_p = 0;
645 shimm_p = 0;
646 limm_p = 0;
647 jumpflags_p = 0;
648 nullify_p = 0;
649 nullify = 0; /* the default is important. */
652 /* Called by the assembler to see if the insn has a limm operand.
653 Also called by the disassembler to see if the insn contains a limm. */
656 arc_opcode_limm_p (limmp)
657 long *limmp;
659 if (limmp)
660 *limmp = limm;
661 return limm_p;
664 /* Insert a value into a register field.
665 If REG is NULL, then this is actually a constant.
667 We must also handle auxiliary registers for lr/sr insns. */
669 static arc_insn
670 insert_reg (insn, operand, mods, reg, value, errmsg)
671 arc_insn insn;
672 const struct arc_operand *operand;
673 int mods;
674 const struct arc_operand_value *reg;
675 long value;
676 const char **errmsg;
678 static char buf[100];
679 enum operand op_type = OP_NONE;
681 if (reg == NULL)
683 /* We have a constant that also requires a value stored in a register
684 field. Handle these by updating the register field and saving the
685 value for later handling by either %S (shimm) or %L (limm). */
687 /* Try to use a shimm value before a limm one. */
688 if (ARC_SHIMM_CONST_P (value)
689 /* If we've seen a conditional suffix we have to use a limm. */
690 && !cond_p
691 /* If we already have a shimm value that is different than ours
692 we have to use a limm. */
693 && (!shimm_p || shimm == value))
695 int marker;
697 op_type = OP_SHIMM;
698 /* forget about shimm as dest mlm. */
700 if('a' != operand->fmt)
702 shimm_p = 1;
703 shimm = value;
704 flagshimm_handled_p = 1;
705 marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
707 else
709 /* don't request flag setting on shimm as dest. */
710 marker = ARC_REG_SHIMM;
712 insn |= marker << operand->shift;
713 /* insn |= value & 511; - done later. */
715 /* We have to use a limm. If we've already seen one they must match. */
716 else if (!limm_p || limm == value)
718 op_type = OP_LIMM;
719 limm_p = 1;
720 limm = value;
721 insn |= ARC_REG_LIMM << operand->shift;
722 /* The constant is stored later. */
724 else
726 *errmsg = "unable to fit different valued constants into instruction";
729 else
731 /* We have to handle both normal and auxiliary registers. */
733 if (reg->type == AUXREG)
735 if (!(mods & ARC_MOD_AUXREG))
736 *errmsg = "auxiliary register not allowed here";
737 else
739 if((insn & I(-1)) == I(2)) /* check for use validity. */
741 if(reg->flags & ARC_REGISTER_READONLY)
742 *errmsg = "attempt to set readonly register";
744 else
746 if(reg->flags & ARC_REGISTER_WRITEONLY)
747 *errmsg = "attempt to read writeonly register";
749 insn |= ARC_REG_SHIMM << operand->shift;
750 insn |= reg->value << arc_operands[reg->type].shift;
753 else
755 /* check for use validity. */
756 if('a' == operand->fmt || ((insn & I(-1)) < I(2)))
758 if(reg->flags & ARC_REGISTER_READONLY)
759 *errmsg = "attempt to set readonly register";
761 if('a' != operand->fmt)
763 if(reg->flags & ARC_REGISTER_WRITEONLY)
764 *errmsg = "attempt to read writeonly register";
766 /* We should never get an invalid register number here. */
767 if ((unsigned int) reg->value > 60)
769 sprintf (buf, "invalid register number `%d'", reg->value);
770 *errmsg = buf;
772 insn |= reg->value << operand->shift;
773 op_type = OP_REG;
777 switch (operand->fmt)
779 case 'a':
780 ls_operand[LS_DEST] = op_type;
781 break;
782 case 's':
783 ls_operand[LS_BASE] = op_type;
784 break;
785 case 'c':
786 if ((insn & I(-1)) == I(2))
787 ls_operand[LS_VALUE] = op_type;
788 else
789 ls_operand[LS_OFFSET] = op_type;
790 break;
791 case 'o': case 'O':
792 ls_operand[LS_OFFSET] = op_type;
793 break;
796 return insn;
799 /* Called when we see an 'f' flag. */
801 static arc_insn
802 insert_flag (insn, operand, mods, reg, value, errmsg)
803 arc_insn insn;
804 const struct arc_operand *operand ATTRIBUTE_UNUSED;
805 int mods ATTRIBUTE_UNUSED;
806 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
807 long value ATTRIBUTE_UNUSED;
808 const char **errmsg ATTRIBUTE_UNUSED;
810 /* We can't store anything in the insn until we've parsed the registers.
811 Just record the fact that we've got this flag. `insert_reg' will use it
812 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
813 flag_p = 1;
814 return insn;
817 /* Called when we see an nullify condition. */
819 static arc_insn
820 insert_nullify (insn, operand, mods, reg, value, errmsg)
821 arc_insn insn;
822 const struct arc_operand *operand;
823 int mods ATTRIBUTE_UNUSED;
824 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
825 long value;
826 const char **errmsg ATTRIBUTE_UNUSED;
828 nullify_p = 1;
829 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
830 nullify = value;
831 return insn;
834 /* Called after completely building an insn to ensure the 'f' flag gets set
835 properly. This is needed because we don't know how to set this flag until
836 we've parsed the registers. */
838 static arc_insn
839 insert_flagfinish (insn, operand, mods, reg, value, errmsg)
840 arc_insn insn;
841 const struct arc_operand *operand;
842 int mods ATTRIBUTE_UNUSED;
843 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
844 long value ATTRIBUTE_UNUSED;
845 const char **errmsg ATTRIBUTE_UNUSED;
847 if (flag_p && !flagshimm_handled_p)
849 if (shimm_p)
850 abort ();
851 flagshimm_handled_p = 1;
852 insn |= (1 << operand->shift);
854 return insn;
857 /* Called when we see a conditional flag (eg: .eq). */
859 static arc_insn
860 insert_cond (insn, operand, mods, reg, value, errmsg)
861 arc_insn insn;
862 const struct arc_operand *operand;
863 int mods ATTRIBUTE_UNUSED;
864 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
865 long value;
866 const char **errmsg ATTRIBUTE_UNUSED;
868 cond_p = 1;
869 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
870 return insn;
873 /* Used in the "j" instruction to prevent constants from being interpreted as
874 shimm values (which the jump insn doesn't accept). This can also be used
875 to force the use of limm values in other situations (eg: ld r0,[foo] uses
876 this).
877 ??? The mechanism is sound. Access to it is a bit klunky right now. */
879 static arc_insn
880 insert_forcelimm (insn, operand, mods, reg, value, errmsg)
881 arc_insn insn;
882 const struct arc_operand *operand ATTRIBUTE_UNUSED;
883 int mods ATTRIBUTE_UNUSED;
884 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
885 long value ATTRIBUTE_UNUSED;
886 const char **errmsg ATTRIBUTE_UNUSED;
888 cond_p = 1;
889 return insn;
892 static arc_insn
893 insert_addr_wb (insn, operand, mods, reg, value, errmsg)
894 arc_insn insn;
895 const struct arc_operand *operand;
896 int mods ATTRIBUTE_UNUSED;
897 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
898 long value ATTRIBUTE_UNUSED;
899 const char **errmsg ATTRIBUTE_UNUSED;
901 addrwb_p = 1 << operand->shift;
902 return insn;
905 static arc_insn
906 insert_base (insn, operand, mods, reg, value, errmsg)
907 arc_insn insn;
908 const struct arc_operand *operand;
909 int mods;
910 const struct arc_operand_value *reg;
911 long value;
912 const char **errmsg;
914 if (reg != NULL)
916 arc_insn myinsn;
917 myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift;
918 insn |= B(myinsn);
919 ls_operand[LS_BASE] = OP_REG;
921 else if (ARC_SHIMM_CONST_P (value) && !cond_p)
923 if (shimm_p && value != shimm)
925 /* convert the previous shimm operand to a limm. */
926 limm_p = 1;
927 limm = shimm;
928 insn &= ~C(-1); /* we know where the value is in insn. */
929 insn |= C(ARC_REG_LIMM);
930 ls_operand[LS_VALUE] = OP_LIMM;
932 insn |= ARC_REG_SHIMM << operand->shift;
933 shimm_p = 1;
934 shimm = value;
935 ls_operand[LS_BASE] = OP_SHIMM;
937 else
939 if (limm_p && value != limm)
941 *errmsg = "too many long constants";
942 return insn;
944 limm_p = 1;
945 limm = value;
946 insn |= B(ARC_REG_LIMM);
947 ls_operand[LS_BASE] = OP_LIMM;
950 return insn;
953 /* Used in ld/st insns to handle the offset field. We don't try to
954 match operand syntax here. we catch bad combinations later. */
956 static arc_insn
957 insert_offset (insn, operand, mods, reg, value, errmsg)
958 arc_insn insn;
959 const struct arc_operand *operand;
960 int mods;
961 const struct arc_operand_value *reg;
962 long value;
963 const char **errmsg;
965 long minval, maxval;
967 if (reg != NULL)
969 arc_insn myinsn;
970 myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift;
971 ls_operand[LS_OFFSET] = OP_REG;
972 if (operand->flags & ARC_OPERAND_LOAD) /* not if store, catch it later. */
973 if ((insn & I(-1)) != I(1)) /* not if opcode == 1, catch it later. */
974 insn |= C(myinsn);
976 else
978 /* This is *way* more general than necessary, but maybe some day it'll
979 be useful. */
980 if (operand->flags & ARC_OPERAND_SIGNED)
982 minval = -(1 << (operand->bits - 1));
983 maxval = (1 << (operand->bits - 1)) - 1;
985 else
987 minval = 0;
988 maxval = (1 << operand->bits) - 1;
990 if ((cond_p && !limm_p) || (value < minval || value > maxval))
992 if (limm_p && value != limm)
994 *errmsg = "too many long constants";
996 else
998 limm_p = 1;
999 limm = value;
1000 if (operand->flags & ARC_OPERAND_STORE)
1001 insn |= B(ARC_REG_LIMM);
1002 if (operand->flags & ARC_OPERAND_LOAD)
1003 insn |= C(ARC_REG_LIMM);
1004 ls_operand[LS_OFFSET] = OP_LIMM;
1007 else
1009 if ((value < minval || value > maxval))
1010 *errmsg = "need too many limms";
1011 else if (shimm_p && value != shimm)
1013 /* check for bad operand combinations before we lose info about them. */
1014 if ((insn & I(-1)) == I(1))
1016 *errmsg = "to many shimms in load";
1017 goto out;
1019 if (limm_p && operand->flags & ARC_OPERAND_LOAD)
1021 *errmsg = "too many long constants";
1022 goto out;
1024 /* convert what we thought was a shimm to a limm. */
1025 limm_p = 1;
1026 limm = shimm;
1027 if (ls_operand[LS_VALUE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1029 insn &= ~C(-1);
1030 insn |= C(ARC_REG_LIMM);
1031 ls_operand[LS_VALUE] = OP_LIMM;
1033 if (ls_operand[LS_BASE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1035 insn &= ~B(-1);
1036 insn |= B(ARC_REG_LIMM);
1037 ls_operand[LS_BASE] = OP_LIMM;
1040 shimm = value;
1041 shimm_p = 1;
1042 ls_operand[LS_OFFSET] = OP_SHIMM;
1045 out:
1046 return insn;
1049 /* Used in st insns to do final disasemble syntax check. */
1051 static long
1052 extract_st_syntax (insn, operand, mods, opval, invalid)
1053 arc_insn *insn;
1054 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1055 int mods ATTRIBUTE_UNUSED;
1056 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1057 int *invalid;
1059 #define ST_SYNTAX(V,B,O) \
1060 ((ls_operand[LS_VALUE] == (V) && \
1061 ls_operand[LS_BASE] == (B) && \
1062 ls_operand[LS_OFFSET] == (O)))
1063 if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1064 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1065 || (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1066 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0)
1067 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1068 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM)
1069 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1070 || (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1071 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1072 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1073 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1074 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1075 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE)
1076 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1077 *invalid = 1;
1078 return 0;
1082 arc_limm_fixup_adjust(insn)
1083 arc_insn insn;
1085 int retval = 0;
1087 /* check for st shimm,[limm]. */
1088 if ((insn & (I(-1) | C(-1) | B(-1))) ==
1089 (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM)))
1091 retval = insn & 0x1ff;
1092 if (retval & 0x100) /* sign extend 9 bit offset. */
1093 retval |= ~0x1ff;
1095 return(-retval); /* negate offset for return. */
1098 /* Used in st insns to do final syntax check. */
1100 static arc_insn
1101 insert_st_syntax (insn, operand, mods, reg, value, errmsg)
1102 arc_insn insn;
1103 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1104 int mods ATTRIBUTE_UNUSED;
1105 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1106 long value ATTRIBUTE_UNUSED;
1107 const char **errmsg;
1109 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm != 0)
1111 /* change an illegal insn into a legal one, it's easier to
1112 do it here than to try to handle it during operand scan. */
1113 limm_p = 1;
1114 limm = shimm;
1115 shimm_p = 0;
1116 shimm = 0;
1117 insn = insn & ~(C(-1) | 511);
1118 insn |= ARC_REG_LIMM << ARC_SHIFT_REGC;
1119 ls_operand[LS_VALUE] = OP_LIMM;
1122 if (ST_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE))
1124 /* try to salvage this syntax. */
1125 if (shimm & 0x1) /* odd shimms won't work. */
1127 if (limm_p) /* do we have a limm already? */
1129 *errmsg = "impossible store";
1131 limm_p = 1;
1132 limm = shimm;
1133 shimm = 0;
1134 shimm_p = 0;
1135 insn = insn & ~(B(-1) | 511);
1136 insn |= B(ARC_REG_LIMM);
1137 ls_operand[LS_BASE] = OP_LIMM;
1139 else
1141 shimm >>= 1;
1142 insn = insn & ~511;
1143 insn |= shimm;
1144 ls_operand[LS_OFFSET] = OP_SHIMM;
1147 if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE))
1149 limm += arc_limm_fixup_adjust(insn);
1151 if (ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM) && (shimm * 2 == limm))
1153 insn &= ~C(-1);
1154 limm_p = 0;
1155 limm = 0;
1156 insn |= C(ARC_REG_SHIMM);
1157 ls_operand[LS_VALUE] = OP_SHIMM;
1159 if (!(ST_SYNTAX(OP_REG,OP_REG,OP_NONE)
1160 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1161 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1162 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1163 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0))
1164 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1165 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE)
1166 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1167 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1168 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1169 || ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE)
1170 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1171 *errmsg = "st operand error";
1172 if (addrwb_p)
1174 if (ls_operand[LS_BASE] != OP_REG)
1175 *errmsg = "address writeback not allowed";
1176 insn |= addrwb_p;
1178 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm)
1179 *errmsg = "store value must be zero";
1180 return insn;
1183 /* Used in ld insns to do final syntax check. */
1185 static arc_insn
1186 insert_ld_syntax (insn, operand, mods, reg, value, errmsg)
1187 arc_insn insn;
1188 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1189 int mods ATTRIBUTE_UNUSED;
1190 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1191 long value ATTRIBUTE_UNUSED;
1192 const char **errmsg;
1194 #define LD_SYNTAX(D,B,O) \
1195 ((ls_operand[LS_DEST] == (D) && \
1196 ls_operand[LS_BASE] == (B) && \
1197 ls_operand[LS_OFFSET] == (O)))
1199 int test = insn & I(-1);
1201 if (!(test == I(1)))
1203 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1204 || ls_operand[LS_OFFSET] == OP_SHIMM))
1205 *errmsg = "invalid load/shimm insn";
1207 if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE)
1208 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1209 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1210 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1211 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1212 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1213 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1214 *errmsg = "ld operand error";
1215 if (addrwb_p)
1217 if (ls_operand[LS_BASE] != OP_REG)
1218 *errmsg = "address writeback not allowed";
1219 insn |= addrwb_p;
1221 return insn;
1224 /* Used in ld insns to do final syntax check. */
1226 static long
1227 extract_ld_syntax (insn, operand, mods, opval, invalid)
1228 arc_insn *insn;
1229 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1230 int mods ATTRIBUTE_UNUSED;
1231 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1232 int *invalid;
1234 int test = insn[0] & I(-1);
1236 if (!(test == I(1)))
1238 if((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1239 || ls_operand[LS_OFFSET] == OP_SHIMM))
1240 *invalid = 1;
1242 if (!((LD_SYNTAX(OP_REG,OP_REG,OP_NONE) && (test == I(1)))
1243 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1244 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1245 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1246 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1247 || (LD_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) && (shimm == 0))
1248 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1249 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1250 *invalid = 1;
1251 return 0;
1254 /* Called at the end of processing normal insns (eg: add) to insert a shimm
1255 value (if present) into the insn. */
1257 static arc_insn
1258 insert_shimmfinish (insn, operand, mods, reg, value, errmsg)
1259 arc_insn insn;
1260 const struct arc_operand *operand;
1261 int mods ATTRIBUTE_UNUSED;
1262 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1263 long value ATTRIBUTE_UNUSED;
1264 const char **errmsg ATTRIBUTE_UNUSED;
1266 if (shimm_p)
1267 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
1268 return insn;
1271 /* Called at the end of processing normal insns (eg: add) to insert a limm
1272 value (if present) into the insn.
1274 Note that this function is only intended to handle instructions (with 4 byte
1275 immediate operands). It is not intended to handle data. */
1277 /* ??? Actually, there's nothing for us to do as we can't call frag_more, the
1278 caller must do that. The extract fns take a pointer to two words. The
1279 insert fns could be converted and then we could do something useful, but
1280 then the reloc handlers would have to know to work on the second word of
1281 a 2 word quantity. That's too much so we don't handle them. */
1283 static arc_insn
1284 insert_limmfinish (insn, operand, mods, reg, value, errmsg)
1285 arc_insn insn;
1286 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1287 int mods ATTRIBUTE_UNUSED;
1288 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1289 long value ATTRIBUTE_UNUSED;
1290 const char **errmsg ATTRIBUTE_UNUSED;
1292 #if 0
1293 if (limm_p)
1294 ; /* nothing to do, gas does it. */
1295 #endif
1296 return insn;
1299 static arc_insn
1300 insert_jumpflags (insn, operand, mods, reg, value, errmsg)
1301 arc_insn insn;
1302 const struct arc_operand *operand;
1303 int mods ATTRIBUTE_UNUSED;
1304 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1305 long value;
1306 const char **errmsg;
1308 if (!flag_p)
1310 *errmsg = "jump flags, but no .f seen";
1312 if (!limm_p)
1314 *errmsg = "jump flags, but no limm addr";
1316 if (limm & 0xfc000000)
1318 *errmsg = "flag bits of jump address limm lost";
1320 if (limm & 0x03000000)
1322 *errmsg = "attempt to set HR bits";
1324 if ((value & ((1 << operand->bits) - 1)) != value)
1326 *errmsg = "bad jump flags value";
1328 jumpflags_p = 1;
1329 limm = (limm & ((1 << operand->shift) - 1))
1330 | ((value & ((1 << operand->bits) - 1)) << operand->shift);
1331 return insn;
1334 /* Called at the end of unary operand macros to copy the B field to C. */
1336 static arc_insn
1337 insert_unopmacro (insn, operand, mods, reg, value, errmsg)
1338 arc_insn insn;
1339 const struct arc_operand *operand;
1340 int mods ATTRIBUTE_UNUSED;
1341 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1342 long value ATTRIBUTE_UNUSED;
1343 const char **errmsg ATTRIBUTE_UNUSED;
1345 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
1346 return insn;
1349 /* Insert a relative address for a branch insn (b, bl, or lp). */
1351 static arc_insn
1352 insert_reladdr (insn, operand, mods, reg, value, errmsg)
1353 arc_insn insn;
1354 const struct arc_operand *operand;
1355 int mods ATTRIBUTE_UNUSED;
1356 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1357 long value;
1358 const char **errmsg;
1360 if (value & 3)
1361 *errmsg = "branch address not on 4 byte boundary";
1362 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
1363 return insn;
1366 /* Insert a limm value as a 26 bit address right shifted 2 into the insn.
1368 Note that this function is only intended to handle instructions (with 4 byte
1369 immediate operands). It is not intended to handle data. */
1371 /* ??? Actually, there's little for us to do as we can't call frag_more, the
1372 caller must do that. The extract fns take a pointer to two words. The
1373 insert fns could be converted and then we could do something useful, but
1374 then the reloc handlers would have to know to work on the second word of
1375 a 2 word quantity. That's too much so we don't handle them.
1377 We do check for correct usage of the nullify suffix, or we
1378 set the default correctly, though. */
1380 static arc_insn
1381 insert_absaddr (insn, operand, mods, reg, value, errmsg)
1382 arc_insn insn;
1383 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1384 int mods ATTRIBUTE_UNUSED;
1385 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1386 long value ATTRIBUTE_UNUSED;
1387 const char **errmsg;
1389 if (limm_p)
1391 /* if it is a jump and link, .jd must be specified. */
1392 if (insn & R(-1,9,1))
1394 if (!nullify_p)
1396 insn |= 0x02 << 5; /* default nullify to .jd. */
1398 else
1400 if(nullify != 0x02)
1402 *errmsg = "must specify .jd or no nullify suffix";
1407 return insn;
1410 /* Extraction functions.
1412 The suffix extraction functions' return value is redundant since it can be
1413 obtained from (*OPVAL)->value. However, the boolean suffixes don't have
1414 a suffix table entry for the "false" case, so values of zero must be
1415 obtained from the return value (*OPVAL == NULL). */
1417 static const struct arc_operand_value *lookup_register (int type, long regno);
1419 /* Called by the disassembler before printing an instruction. */
1421 void
1422 arc_opcode_init_extract ()
1424 arc_opcode_init_insert();
1427 /* As we're extracting registers, keep an eye out for the 'f' indicator
1428 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
1429 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
1431 We must also handle auxiliary registers for lr/sr insns. They are just
1432 constants with special names. */
1434 static long
1435 extract_reg (insn, operand, mods, opval, invalid)
1436 arc_insn *insn;
1437 const struct arc_operand *operand;
1438 int mods;
1439 const struct arc_operand_value **opval;
1440 int *invalid ATTRIBUTE_UNUSED;
1442 int regno;
1443 long value;
1444 enum operand op_type;
1446 /* Get the register number. */
1447 regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1449 /* Is it a constant marker? */
1450 if (regno == ARC_REG_SHIMM)
1452 op_type = OP_SHIMM;
1453 /* always return zero if dest is a shimm mlm. */
1455 if ('a' != operand->fmt)
1457 value = *insn & 511;
1458 if ((operand->flags & ARC_OPERAND_SIGNED)
1459 && (value & 256))
1460 value -= 512;
1461 if (!flagshimm_handled_p)
1462 flag_p = 0;
1463 flagshimm_handled_p = 1;
1465 else
1467 value = 0;
1470 else if (regno == ARC_REG_SHIMM_UPDATE)
1472 op_type = OP_SHIMM;
1474 /* always return zero if dest is a shimm mlm. */
1476 if ('a' != operand->fmt)
1478 value = *insn & 511;
1479 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1480 value -= 512;
1482 else
1484 value = 0;
1486 flag_p = 1;
1487 flagshimm_handled_p = 1;
1489 else if (regno == ARC_REG_LIMM)
1491 op_type = OP_LIMM;
1492 value = insn[1];
1493 limm_p = 1;
1494 /* if this is a jump instruction (j,jl), show new pc correctly. */
1495 if(0x07 == ((*insn & I(-1)) >> 27))
1497 value = (value & 0xffffff);
1500 /* It's a register, set OPVAL (that's the only way we distinguish registers
1501 from constants here). */
1502 else
1504 const struct arc_operand_value *reg = lookup_register (REG, regno);
1505 op_type = OP_REG;
1507 if (reg == NULL)
1508 abort ();
1509 if (opval != NULL)
1510 *opval = reg;
1511 value = regno;
1514 /* If this field takes an auxiliary register, see if it's a known one. */
1515 if ((mods & ARC_MOD_AUXREG)
1516 && ARC_REG_CONSTANT_P (regno))
1518 const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1520 /* This is really a constant, but tell the caller it has a special
1521 name. */
1522 if (reg != NULL && opval != NULL)
1523 *opval = reg;
1525 switch(operand->fmt)
1527 case 'a':
1528 ls_operand[LS_DEST] = op_type;
1529 break;
1530 case 's':
1531 ls_operand[LS_BASE] = op_type;
1532 break;
1533 case 'c':
1534 if((insn[0]& I(-1)) == I(2))
1535 ls_operand[LS_VALUE] = op_type;
1536 else
1537 ls_operand[LS_OFFSET] = op_type;
1538 break;
1539 case 'o': case 'O':
1540 ls_operand[LS_OFFSET] = op_type;
1541 break;
1544 return value;
1547 /* Return the value of the "flag update" field for shimm insns.
1548 This value is actually stored in the register field. */
1550 static long
1551 extract_flag (insn, operand, mods, opval, invalid)
1552 arc_insn *insn;
1553 const struct arc_operand *operand;
1554 int mods ATTRIBUTE_UNUSED;
1555 const struct arc_operand_value **opval;
1556 int *invalid ATTRIBUTE_UNUSED;
1558 int f;
1559 const struct arc_operand_value *val;
1561 if (flagshimm_handled_p)
1562 f = flag_p != 0;
1563 else
1564 f = (*insn & (1 << operand->shift)) != 0;
1566 /* There is no text for zero values. */
1567 if (f == 0)
1568 return 0;
1569 flag_p = 1;
1570 val = arc_opcode_lookup_suffix (operand, 1);
1571 if (opval != NULL && val != NULL)
1572 *opval = val;
1573 return val->value;
1576 /* Extract the condition code (if it exists).
1577 If we've seen a shimm value in this insn (meaning that the insn can't have
1578 a condition code field), then we don't store anything in OPVAL and return
1579 zero. */
1581 static long
1582 extract_cond (insn, operand, mods, opval, invalid)
1583 arc_insn *insn;
1584 const struct arc_operand *operand;
1585 int mods ATTRIBUTE_UNUSED;
1586 const struct arc_operand_value **opval;
1587 int *invalid ATTRIBUTE_UNUSED;
1589 long cond;
1590 const struct arc_operand_value *val;
1592 if (flagshimm_handled_p)
1593 return 0;
1595 cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1596 val = arc_opcode_lookup_suffix (operand, cond);
1598 /* Ignore NULL values of `val'. Several condition code values are
1599 reserved for extensions. */
1600 if (opval != NULL && val != NULL)
1601 *opval = val;
1602 return cond;
1605 /* Extract a branch address.
1606 We return the value as a real address (not right shifted by 2). */
1608 static long
1609 extract_reladdr (insn, operand, mods, opval, invalid)
1610 arc_insn *insn;
1611 const struct arc_operand *operand;
1612 int mods ATTRIBUTE_UNUSED;
1613 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1614 int *invalid ATTRIBUTE_UNUSED;
1616 long addr;
1618 addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1619 if ((operand->flags & ARC_OPERAND_SIGNED)
1620 && (addr & (1 << (operand->bits - 1))))
1621 addr -= 1 << operand->bits;
1622 return addr << 2;
1625 /* extract the flags bits from a j or jl long immediate. */
1626 static long
1627 extract_jumpflags(insn, operand, mods, opval, invalid)
1628 arc_insn *insn;
1629 const struct arc_operand *operand;
1630 int mods ATTRIBUTE_UNUSED;
1631 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1632 int *invalid;
1634 if (!flag_p || !limm_p)
1635 *invalid = 1;
1636 return((flag_p && limm_p)
1637 ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0);
1640 /* extract st insn's offset. */
1642 static long
1643 extract_st_offset (insn, operand, mods, opval, invalid)
1644 arc_insn *insn;
1645 const struct arc_operand *operand;
1646 int mods ATTRIBUTE_UNUSED;
1647 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1648 int *invalid;
1650 int value = 0;
1652 if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM)
1654 value = insn[0] & 511;
1655 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1656 value -= 512;
1657 if(value)
1658 ls_operand[LS_OFFSET] = OP_SHIMM;
1660 else
1662 *invalid = 1;
1664 return(value);
1667 /* extract ld insn's offset. */
1669 static long
1670 extract_ld_offset (insn, operand, mods, opval, invalid)
1671 arc_insn *insn;
1672 const struct arc_operand *operand;
1673 int mods;
1674 const struct arc_operand_value **opval;
1675 int *invalid;
1677 int test = insn[0] & I(-1);
1678 int value;
1680 if (test)
1682 value = insn[0] & 511;
1683 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1684 value -= 512;
1685 if (value)
1686 ls_operand[LS_OFFSET] = OP_SHIMM;
1687 return(value);
1689 /* if it isn't in the insn, it's concealed behind reg 'c'. */
1690 return extract_reg(insn,
1691 &arc_operands[arc_operand_map['c']], mods, opval, invalid);
1694 /* The only thing this does is set the `invalid' flag if B != C.
1695 This is needed because the "mov" macro appears before it's real insn "and"
1696 and we don't want the disassembler to confuse them. */
1698 static long
1699 extract_unopmacro (insn, operand, mods, opval, invalid)
1700 arc_insn *insn;
1701 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1702 int mods ATTRIBUTE_UNUSED;
1703 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1704 int *invalid;
1706 /* This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1707 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
1708 printed as "and"s. */
1709 if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1710 != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1711 if (invalid != NULL)
1712 *invalid = 1;
1713 return 0;
1716 /* Utility for the extraction functions to return the index into
1717 `arc_suffixes'. */
1719 const struct arc_operand_value *
1720 arc_opcode_lookup_suffix (type, value)
1721 const struct arc_operand *type;
1722 int value;
1724 register const struct arc_operand_value *v,*end;
1725 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1727 while (ext_oper)
1729 if (type == &arc_operands[ext_oper->operand.type]
1730 && value == ext_oper->operand.value)
1731 return (&ext_oper->operand);
1732 ext_oper = ext_oper->next;
1735 /* ??? This is a little slow and can be speeded up. */
1737 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1738 if (type == &arc_operands[v->type]
1739 && value == v->value)
1740 return v;
1741 return 0;
1744 static const struct arc_operand_value *
1745 lookup_register (type, regno)
1746 int type;
1747 long regno;
1749 register const struct arc_operand_value *r,*end;
1750 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1752 while (ext_oper)
1754 if (ext_oper->operand.type == type && ext_oper->operand.value == regno)
1755 return (&ext_oper->operand);
1756 ext_oper = ext_oper->next;
1759 if (type == REG)
1760 return &arc_reg_names[regno];
1762 /* ??? This is a little slow and can be speeded up. */
1764 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1765 r < end; ++r)
1766 if (type == r->type && regno == r->value)
1767 return r;
1768 return 0;
1772 arc_insn_is_j(insn)
1773 arc_insn insn;
1775 return (insn & (I(-1))) == I(0x7);
1779 arc_insn_not_jl(insn)
1780 arc_insn insn;
1782 return (insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1))) !=
1783 (I(0x7) | R(-1,9,1));
1787 arc_operand_type(int opertype)
1789 switch (opertype)
1791 case 0:
1792 return(COND);
1793 break;
1794 case 1:
1795 return(REG);
1796 break;
1797 case 2:
1798 return(AUXREG);
1799 break;
1801 return -1;
1804 struct arc_operand_value *
1805 get_ext_suffix(s)
1806 char *s;
1808 struct arc_ext_operand_value *suffix = arc_ext_operands;
1810 while (suffix)
1812 if ((COND == suffix->operand.type)
1813 && !strcmp(s,suffix->operand.name))
1814 return(&suffix->operand);
1815 suffix = suffix->next;
1817 return(NULL);
1821 arc_get_noshortcut_flag()
1823 return(ARC_REGISTER_NOSHORT_CUT);