1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
30 #include "parameters.h"
35 #include "compressed_output.h"
41 // Layout_task_runner methods.
43 // Lay out the sections. This is called after all the input objects
47 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
49 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
53 // Now we know the final size of the output file and we know where
54 // each piece of information goes.
55 Output_file
* of
= new Output_file(this->options_
,
56 this->input_objects_
->target());
59 // Queue up the final set of tasks.
60 gold::queue_final_tasks(this->options_
, this->input_objects_
,
61 this->symtab_
, this->layout_
, workqueue
, of
);
66 Layout::Layout(const General_options
& options
, Script_options
* script_options
)
67 : options_(options
), script_options_(script_options
), namepool_(),
68 sympool_(), dynpool_(), signatures_(),
69 section_name_map_(), segment_list_(), section_list_(),
70 unattached_section_list_(), special_output_list_(),
71 section_headers_(NULL
), tls_segment_(NULL
), symtab_section_(NULL
),
72 dynsym_section_(NULL
), dynamic_section_(NULL
), dynamic_data_(NULL
),
73 eh_frame_section_(NULL
), output_file_size_(-1),
74 input_requires_executable_stack_(false),
75 input_with_gnu_stack_note_(false),
76 input_without_gnu_stack_note_(false),
77 has_static_tls_(false),
78 any_postprocessing_sections_(false)
80 // Make space for more than enough segments for a typical file.
81 // This is just for efficiency--it's OK if we wind up needing more.
82 this->segment_list_
.reserve(12);
84 // We expect two unattached Output_data objects: the file header and
85 // the segment headers.
86 this->special_output_list_
.reserve(2);
89 // Hash a key we use to look up an output section mapping.
92 Layout::Hash_key::operator()(const Layout::Key
& k
) const
94 return k
.first
+ k
.second
.first
+ k
.second
.second
;
97 // Return whether PREFIX is a prefix of STR.
100 is_prefix_of(const char* prefix
, const char* str
)
102 return strncmp(prefix
, str
, strlen(prefix
)) == 0;
105 // Returns whether the given section is in the list of
106 // debug-sections-used-by-some-version-of-gdb. Currently,
107 // we've checked versions of gdb up to and including 6.7.1.
109 static const char* gdb_sections
[] =
111 // ".debug_aranges", // not used by gdb as of 6.7.1
117 // ".debug_pubnames", // not used by gdb as of 6.7.1
123 is_gdb_debug_section(const char* str
)
125 // We can do this faster: binary search or a hashtable. But why bother?
126 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
127 if (strcmp(str
, gdb_sections
[i
]) == 0)
132 // Whether to include this section in the link.
134 template<int size
, bool big_endian
>
136 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
137 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
139 // Some section types are never linked. Some are only linked when
140 // doing a relocateable link.
141 switch (shdr
.get_sh_type())
143 case elfcpp::SHT_NULL
:
144 case elfcpp::SHT_SYMTAB
:
145 case elfcpp::SHT_DYNSYM
:
146 case elfcpp::SHT_STRTAB
:
147 case elfcpp::SHT_HASH
:
148 case elfcpp::SHT_DYNAMIC
:
149 case elfcpp::SHT_SYMTAB_SHNDX
:
152 case elfcpp::SHT_RELA
:
153 case elfcpp::SHT_REL
:
154 case elfcpp::SHT_GROUP
:
155 return parameters
->output_is_object();
157 case elfcpp::SHT_PROGBITS
:
158 if (parameters
->strip_debug()
159 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
161 // Debugging sections can only be recognized by name.
162 if (is_prefix_of(".debug", name
)
163 || is_prefix_of(".gnu.linkonce.wi.", name
)
164 || is_prefix_of(".line", name
)
165 || is_prefix_of(".stab", name
))
168 if (parameters
->strip_debug_gdb()
169 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
171 // Debugging sections can only be recognized by name.
172 if (is_prefix_of(".debug", name
)
173 && !is_gdb_debug_section(name
))
183 // Return an output section named NAME, or NULL if there is none.
186 Layout::find_output_section(const char* name
) const
188 for (Section_name_map::const_iterator p
= this->section_name_map_
.begin();
189 p
!= this->section_name_map_
.end();
191 if (strcmp(p
->second
->name(), name
) == 0)
196 // Return an output segment of type TYPE, with segment flags SET set
197 // and segment flags CLEAR clear. Return NULL if there is none.
200 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
201 elfcpp::Elf_Word clear
) const
203 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
204 p
!= this->segment_list_
.end();
206 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
207 && ((*p
)->flags() & set
) == set
208 && ((*p
)->flags() & clear
) == 0)
213 // Return the output section to use for section NAME with type TYPE
214 // and section flags FLAGS.
217 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
218 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
220 // We should ignore some flags.
221 flags
&= ~ (elfcpp::SHF_INFO_LINK
222 | elfcpp::SHF_LINK_ORDER
225 | elfcpp::SHF_STRINGS
);
227 const Key
key(name_key
, std::make_pair(type
, flags
));
228 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
229 std::pair
<Section_name_map::iterator
, bool> ins(
230 this->section_name_map_
.insert(v
));
233 return ins
.first
->second
;
236 // This is the first time we've seen this name/type/flags
238 Output_section
* os
= this->make_output_section(name
, type
, flags
);
239 ins
.first
->second
= os
;
244 // Return the output section to use for input section SHNDX, with name
245 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
246 // index of a relocation section which applies to this section, or 0
247 // if none, or -1U if more than one. RELOC_TYPE is the type of the
248 // relocation section if there is one. Set *OFF to the offset of this
249 // input section without the output section. Return NULL if the
250 // section should be discarded. Set *OFF to -1 if the section
251 // contents should not be written directly to the output file, but
252 // will instead receive special handling.
254 template<int size
, bool big_endian
>
256 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
257 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
258 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
260 if (!this->include_section(object
, name
, shdr
))
263 // If we are not doing a relocateable link, choose the name to use
264 // for the output section.
265 size_t len
= strlen(name
);
266 if (!parameters
->output_is_object())
267 name
= Layout::output_section_name(name
, &len
);
269 // FIXME: Handle SHF_OS_NONCONFORMING here.
271 // Canonicalize the section name.
272 Stringpool::Key name_key
;
273 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
275 // Find the output section. The output section is selected based on
276 // the section name, type, and flags.
277 Output_section
* os
= this->get_output_section(name
, name_key
,
279 shdr
.get_sh_flags());
281 // FIXME: Handle SHF_LINK_ORDER somewhere.
283 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
);
288 // Special GNU handling of sections name .eh_frame. They will
289 // normally hold exception frame data as defined by the C++ ABI
290 // (http://codesourcery.com/cxx-abi/).
292 template<int size
, bool big_endian
>
294 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
295 const unsigned char* symbols
,
297 const unsigned char* symbol_names
,
298 off_t symbol_names_size
,
300 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
301 unsigned int reloc_shndx
, unsigned int reloc_type
,
304 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
305 gold_assert(shdr
.get_sh_flags() == elfcpp::SHF_ALLOC
);
307 Stringpool::Key name_key
;
308 const char* name
= this->namepool_
.add(".eh_frame", false, &name_key
);
310 Output_section
* os
= this->get_output_section(name
, name_key
,
311 elfcpp::SHT_PROGBITS
,
314 if (this->eh_frame_section_
== NULL
)
316 this->eh_frame_section_
= os
;
317 this->eh_frame_data_
= new Eh_frame();
318 os
->add_output_section_data(this->eh_frame_data_
);
320 if (this->options_
.create_eh_frame_hdr())
322 Stringpool::Key hdr_name_key
;
323 const char* hdr_name
= this->namepool_
.add(".eh_frame_hdr",
326 Output_section
* hdr_os
=
327 this->get_output_section(hdr_name
, hdr_name_key
,
328 elfcpp::SHT_PROGBITS
,
331 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
, this->eh_frame_data_
);
332 hdr_os
->add_output_section_data(hdr_posd
);
334 hdr_os
->set_after_input_sections();
336 Output_segment
* hdr_oseg
=
337 new Output_segment(elfcpp::PT_GNU_EH_FRAME
, elfcpp::PF_R
);
338 this->segment_list_
.push_back(hdr_oseg
);
339 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
341 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
345 gold_assert(this->eh_frame_section_
== os
);
347 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
358 // We couldn't handle this .eh_frame section for some reason.
359 // Add it as a normal section.
360 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
);
366 // Add POSD to an output section using NAME, TYPE, and FLAGS.
369 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
370 elfcpp::Elf_Xword flags
,
371 Output_section_data
* posd
)
373 // Canonicalize the name.
374 Stringpool::Key name_key
;
375 name
= this->namepool_
.add(name
, true, &name_key
);
377 Output_section
* os
= this->get_output_section(name
, name_key
, type
, flags
);
378 os
->add_output_section_data(posd
);
381 // Map section flags to segment flags.
384 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
386 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
387 if ((flags
& elfcpp::SHF_WRITE
) != 0)
389 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
394 // Sometimes we compress sections. This is typically done for
395 // sections that are not part of normal program execution (such as
396 // .debug_* sections), and where the readers of these sections know
397 // how to deal with compressed sections. (To make it easier for them,
398 // we will rename the ouput section in such cases from .foo to
399 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
400 // doesn't say for certain whether we'll compress -- it depends on
401 // commandline options as well -- just whether this section is a
402 // candidate for compression.
405 is_compressible_debug_section(const char* secname
)
407 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
410 // Make a new Output_section, and attach it to segments as
414 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
415 elfcpp::Elf_Xword flags
)
418 if ((flags
& elfcpp::SHF_ALLOC
) == 0
419 && this->options_
.compress_debug_sections()
420 && is_compressible_debug_section(name
))
421 os
= new Output_compressed_section(&this->options_
, name
, type
, flags
);
423 os
= new Output_section(name
, type
, flags
);
425 this->section_list_
.push_back(os
);
427 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
428 this->unattached_section_list_
.push_back(os
);
431 // This output section goes into a PT_LOAD segment.
433 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
435 // The only thing we really care about for PT_LOAD segments is
436 // whether or not they are writable, so that is how we search
437 // for them. People who need segments sorted on some other
438 // basis will have to wait until we implement a mechanism for
439 // them to describe the segments they want.
441 Segment_list::const_iterator p
;
442 for (p
= this->segment_list_
.begin();
443 p
!= this->segment_list_
.end();
446 if ((*p
)->type() == elfcpp::PT_LOAD
447 && ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
))
449 (*p
)->add_output_section(os
, seg_flags
);
454 if (p
== this->segment_list_
.end())
456 Output_segment
* oseg
= new Output_segment(elfcpp::PT_LOAD
,
458 this->segment_list_
.push_back(oseg
);
459 oseg
->add_output_section(os
, seg_flags
);
462 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
464 if (type
== elfcpp::SHT_NOTE
)
466 // See if we already have an equivalent PT_NOTE segment.
467 for (p
= this->segment_list_
.begin();
468 p
!= segment_list_
.end();
471 if ((*p
)->type() == elfcpp::PT_NOTE
472 && (((*p
)->flags() & elfcpp::PF_W
)
473 == (seg_flags
& elfcpp::PF_W
)))
475 (*p
)->add_output_section(os
, seg_flags
);
480 if (p
== this->segment_list_
.end())
482 Output_segment
* oseg
= new Output_segment(elfcpp::PT_NOTE
,
484 this->segment_list_
.push_back(oseg
);
485 oseg
->add_output_section(os
, seg_flags
);
489 // If we see a loadable SHF_TLS section, we create a PT_TLS
490 // segment. There can only be one such segment.
491 if ((flags
& elfcpp::SHF_TLS
) != 0)
493 if (this->tls_segment_
== NULL
)
495 this->tls_segment_
= new Output_segment(elfcpp::PT_TLS
,
497 this->segment_list_
.push_back(this->tls_segment_
);
499 this->tls_segment_
->add_output_section(os
, seg_flags
);
506 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
507 // is whether we saw a .note.GNU-stack section in the object file.
508 // GNU_STACK_FLAGS is the section flags. The flags give the
509 // protection required for stack memory. We record this in an
510 // executable as a PT_GNU_STACK segment. If an object file does not
511 // have a .note.GNU-stack segment, we must assume that it is an old
512 // object. On some targets that will force an executable stack.
515 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
518 this->input_without_gnu_stack_note_
= true;
521 this->input_with_gnu_stack_note_
= true;
522 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
523 this->input_requires_executable_stack_
= true;
527 // Create the dynamic sections which are needed before we read the
531 Layout::create_initial_dynamic_sections(const Input_objects
* input_objects
,
532 Symbol_table
* symtab
)
534 if (parameters
->doing_static_link())
537 const char* dynamic_name
= this->namepool_
.add(".dynamic", false, NULL
);
538 this->dynamic_section_
= this->make_output_section(dynamic_name
,
541 | elfcpp::SHF_WRITE
));
543 symtab
->define_in_output_data(input_objects
->target(), "_DYNAMIC", NULL
,
544 this->dynamic_section_
, 0, 0,
545 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
546 elfcpp::STV_HIDDEN
, 0, false, false);
548 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
550 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
553 // For each output section whose name can be represented as C symbol,
554 // define __start and __stop symbols for the section. This is a GNU
558 Layout::define_section_symbols(Symbol_table
* symtab
, const Target
* target
)
560 for (Section_list::const_iterator p
= this->section_list_
.begin();
561 p
!= this->section_list_
.end();
564 const char* const name
= (*p
)->name();
565 if (name
[strspn(name
,
567 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
568 "abcdefghijklmnopqrstuvwxyz"
572 const std::string
name_string(name
);
573 const std::string
start_name("__start_" + name_string
);
574 const std::string
stop_name("__stop_" + name_string
);
576 symtab
->define_in_output_data(target
,
586 false, // offset_is_from_end
587 false); // only_if_ref
589 symtab
->define_in_output_data(target
,
599 true, // offset_is_from_end
600 false); // only_if_ref
605 // Find the first read-only PT_LOAD segment, creating one if
609 Layout::find_first_load_seg()
611 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
612 p
!= this->segment_list_
.end();
615 if ((*p
)->type() == elfcpp::PT_LOAD
616 && ((*p
)->flags() & elfcpp::PF_R
) != 0
617 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
621 Output_segment
* load_seg
= new Output_segment(elfcpp::PT_LOAD
, elfcpp::PF_R
);
622 this->segment_list_
.push_back(load_seg
);
626 // Finalize the layout. When this is called, we have created all the
627 // output sections and all the output segments which are based on
628 // input sections. We have several things to do, and we have to do
629 // them in the right order, so that we get the right results correctly
632 // 1) Finalize the list of output segments and create the segment
635 // 2) Finalize the dynamic symbol table and associated sections.
637 // 3) Determine the final file offset of all the output segments.
639 // 4) Determine the final file offset of all the SHF_ALLOC output
642 // 5) Create the symbol table sections and the section name table
645 // 6) Finalize the symbol table: set symbol values to their final
646 // value and make a final determination of which symbols are going
647 // into the output symbol table.
649 // 7) Create the section table header.
651 // 8) Determine the final file offset of all the output sections which
652 // are not SHF_ALLOC, including the section table header.
654 // 9) Finalize the ELF file header.
656 // This function returns the size of the output file.
659 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
662 Target
* const target
= input_objects
->target();
664 target
->finalize_sections(this);
666 this->count_local_symbols(task
, input_objects
);
668 this->create_gold_note();
669 this->create_executable_stack_info(target
);
671 Output_segment
* phdr_seg
= NULL
;
672 if (!parameters
->doing_static_link())
674 // There was a dynamic object in the link. We need to create
675 // some information for the dynamic linker.
677 // Create the PT_PHDR segment which will hold the program
679 phdr_seg
= new Output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
680 this->segment_list_
.push_back(phdr_seg
);
682 // Create the dynamic symbol table, including the hash table.
683 Output_section
* dynstr
;
684 std::vector
<Symbol
*> dynamic_symbols
;
685 unsigned int local_dynamic_count
;
687 this->create_dynamic_symtab(input_objects
, target
, symtab
, &dynstr
,
688 &local_dynamic_count
, &dynamic_symbols
,
691 // Create the .interp section to hold the name of the
692 // interpreter, and put it in a PT_INTERP segment.
693 if (!parameters
->output_is_shared())
694 this->create_interp(target
);
696 // Finish the .dynamic section to hold the dynamic data, and put
697 // it in a PT_DYNAMIC segment.
698 this->finish_dynamic_section(input_objects
, symtab
);
700 // We should have added everything we need to the dynamic string
702 this->dynpool_
.set_string_offsets();
704 // Create the version sections. We can't do this until the
705 // dynamic string table is complete.
706 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
707 dynamic_symbols
, dynstr
);
710 // FIXME: Handle PT_GNU_STACK.
712 Output_segment
* load_seg
= this->find_first_load_seg();
714 // Lay out the segment headers.
715 Output_segment_headers
* segment_headers
;
716 segment_headers
= new Output_segment_headers(this->segment_list_
);
717 load_seg
->add_initial_output_data(segment_headers
);
718 this->special_output_list_
.push_back(segment_headers
);
719 if (phdr_seg
!= NULL
)
720 phdr_seg
->add_initial_output_data(segment_headers
);
722 // Lay out the file header.
723 Output_file_header
* file_header
;
724 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
725 this->script_options_
->entry());
726 load_seg
->add_initial_output_data(file_header
);
727 this->special_output_list_
.push_back(file_header
);
729 // We set the output section indexes in set_segment_offsets and
730 // set_section_indexes.
731 unsigned int shndx
= 1;
733 // Set the file offsets of all the segments, and all the sections
735 off_t off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
737 // Set the file offsets of all the non-data sections we've seen so
738 // far which don't have to wait for the input sections. We need
739 // this in order to finalize local symbols in non-allocated
741 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
743 // Create the symbol table sections.
744 this->create_symtab_sections(input_objects
, symtab
, &off
);
745 if (!parameters
->doing_static_link())
746 this->assign_local_dynsym_offsets(input_objects
);
748 // Process any symbol assignments from a linker script. This must
749 // be called after the symbol table has been finalized.
750 this->script_options_
->finalize_symbols(symtab
, this);
752 // Create the .shstrtab section.
753 Output_section
* shstrtab_section
= this->create_shstrtab();
755 // Set the file offsets of the rest of the non-data sections which
756 // don't have to wait for the input sections.
757 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
759 // Now that all sections have been created, set the section indexes.
760 shndx
= this->set_section_indexes(shndx
);
762 // Create the section table header.
763 this->create_shdrs(&off
);
765 // If there are no sections which require postprocessing, we can
766 // handle the section names now, and avoid a resize later.
767 if (!this->any_postprocessing_sections_
)
768 off
= this->set_section_offsets(off
,
769 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
771 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
773 // Now we know exactly where everything goes in the output file
774 // (except for non-allocated sections which require postprocessing).
775 Output_data::layout_complete();
777 this->output_file_size_
= off
;
782 // Create a .note section for an executable or shared library. This
783 // records the version of gold used to create the binary.
786 Layout::create_gold_note()
788 if (parameters
->output_is_object())
791 // Authorities all agree that the values in a .note field should
792 // be aligned on 4-byte boundaries for 32-bit binaries. However,
793 // they differ on what the alignment is for 64-bit binaries.
794 // The GABI says unambiguously they take 8-byte alignment:
795 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
796 // Other documentation says alignment should always be 4 bytes:
797 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
798 // GNU ld and GNU readelf both support the latter (at least as of
799 // version 2.16.91), and glibc always generates the latter for
800 // .note.ABI-tag (as of version 1.6), so that's the one we go with
802 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
803 const int size
= parameters
->get_size();
808 // The contents of the .note section.
809 const char* name
= "GNU";
810 std::string
desc(std::string("gold ") + gold::get_version_string());
811 size_t namesz
= strlen(name
) + 1;
812 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
813 size_t descsz
= desc
.length() + 1;
814 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
815 const int note_type
= 4;
817 size_t notesz
= 3 * (size
/ 8) + aligned_namesz
+ aligned_descsz
;
819 unsigned char buffer
[128];
820 gold_assert(sizeof buffer
>= notesz
);
821 memset(buffer
, 0, notesz
);
823 bool is_big_endian
= parameters
->is_big_endian();
829 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
830 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
831 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
835 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
836 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
837 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
844 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
845 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
846 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
850 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
851 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
852 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
858 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
859 memcpy(buffer
+ 3 * (size
/ 8) + aligned_namesz
, desc
.data(), descsz
);
861 const char* note_name
= this->namepool_
.add(".note", false, NULL
);
862 Output_section
* os
= this->make_output_section(note_name
,
865 Output_section_data
* posd
= new Output_data_const(buffer
, notesz
,
867 os
->add_output_section_data(posd
);
870 // Record whether the stack should be executable. This can be set
871 // from the command line using the -z execstack or -z noexecstack
872 // options. Otherwise, if any input file has a .note.GNU-stack
873 // section with the SHF_EXECINSTR flag set, the stack should be
874 // executable. Otherwise, if at least one input file a
875 // .note.GNU-stack section, and some input file has no .note.GNU-stack
876 // section, we use the target default for whether the stack should be
877 // executable. Otherwise, we don't generate a stack note. When
878 // generating a object file, we create a .note.GNU-stack section with
879 // the appropriate marking. When generating an executable or shared
880 // library, we create a PT_GNU_STACK segment.
883 Layout::create_executable_stack_info(const Target
* target
)
885 bool is_stack_executable
;
886 if (this->options_
.is_execstack_set())
887 is_stack_executable
= this->options_
.is_stack_executable();
888 else if (!this->input_with_gnu_stack_note_
)
892 if (this->input_requires_executable_stack_
)
893 is_stack_executable
= true;
894 else if (this->input_without_gnu_stack_note_
)
895 is_stack_executable
= target
->is_default_stack_executable();
897 is_stack_executable
= false;
900 if (parameters
->output_is_object())
902 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
903 elfcpp::Elf_Xword flags
= 0;
904 if (is_stack_executable
)
905 flags
|= elfcpp::SHF_EXECINSTR
;
906 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
910 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
911 if (is_stack_executable
)
912 flags
|= elfcpp::PF_X
;
913 Output_segment
* oseg
= new Output_segment(elfcpp::PT_GNU_STACK
, flags
);
914 this->segment_list_
.push_back(oseg
);
918 // Return whether SEG1 should be before SEG2 in the output file. This
919 // is based entirely on the segment type and flags. When this is
920 // called the segment addresses has normally not yet been set.
923 Layout::segment_precedes(const Output_segment
* seg1
,
924 const Output_segment
* seg2
)
926 elfcpp::Elf_Word type1
= seg1
->type();
927 elfcpp::Elf_Word type2
= seg2
->type();
929 // The single PT_PHDR segment is required to precede any loadable
930 // segment. We simply make it always first.
931 if (type1
== elfcpp::PT_PHDR
)
933 gold_assert(type2
!= elfcpp::PT_PHDR
);
936 if (type2
== elfcpp::PT_PHDR
)
939 // The single PT_INTERP segment is required to precede any loadable
940 // segment. We simply make it always second.
941 if (type1
== elfcpp::PT_INTERP
)
943 gold_assert(type2
!= elfcpp::PT_INTERP
);
946 if (type2
== elfcpp::PT_INTERP
)
949 // We then put PT_LOAD segments before any other segments.
950 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
952 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
955 // We put the PT_TLS segment last, because that is where the dynamic
956 // linker expects to find it (this is just for efficiency; other
957 // positions would also work correctly).
958 if (type1
== elfcpp::PT_TLS
&& type2
!= elfcpp::PT_TLS
)
960 if (type2
== elfcpp::PT_TLS
&& type1
!= elfcpp::PT_TLS
)
963 const elfcpp::Elf_Word flags1
= seg1
->flags();
964 const elfcpp::Elf_Word flags2
= seg2
->flags();
966 // The order of non-PT_LOAD segments is unimportant. We simply sort
967 // by the numeric segment type and flags values. There should not
968 // be more than one segment with the same type and flags.
969 if (type1
!= elfcpp::PT_LOAD
)
972 return type1
< type2
;
973 gold_assert(flags1
!= flags2
);
974 return flags1
< flags2
;
977 // We sort PT_LOAD segments based on the flags. Readonly segments
978 // come before writable segments. Then executable segments come
979 // before non-executable segments. Then the unlikely case of a
980 // non-readable segment comes before the normal case of a readable
981 // segment. If there are multiple segments with the same type and
982 // flags, we require that the address be set, and we sort by
983 // virtual address and then physical address.
984 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
985 return (flags1
& elfcpp::PF_W
) == 0;
986 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
987 return (flags1
& elfcpp::PF_X
) != 0;
988 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
989 return (flags1
& elfcpp::PF_R
) == 0;
991 uint64_t vaddr1
= seg1
->vaddr();
992 uint64_t vaddr2
= seg2
->vaddr();
993 if (vaddr1
!= vaddr2
)
994 return vaddr1
< vaddr2
;
996 uint64_t paddr1
= seg1
->paddr();
997 uint64_t paddr2
= seg2
->paddr();
998 gold_assert(paddr1
!= paddr2
);
999 return paddr1
< paddr2
;
1002 // Set the file offsets of all the segments, and all the sections they
1003 // contain. They have all been created. LOAD_SEG must be be laid out
1004 // first. Return the offset of the data to follow.
1007 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1008 unsigned int *pshndx
)
1010 // Sort them into the final order.
1011 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1012 Layout::Compare_segments());
1014 // Find the PT_LOAD segments, and set their addresses and offsets
1015 // and their section's addresses and offsets.
1017 if (parameters
->output_is_shared())
1019 else if (options_
.user_set_text_segment_address())
1020 addr
= options_
.text_segment_address();
1022 addr
= target
->default_text_segment_address();
1024 bool was_readonly
= false;
1025 for (Segment_list::iterator p
= this->segment_list_
.begin();
1026 p
!= this->segment_list_
.end();
1029 if ((*p
)->type() == elfcpp::PT_LOAD
)
1031 if (load_seg
!= NULL
&& load_seg
!= *p
)
1035 // If the last segment was readonly, and this one is not,
1036 // then skip the address forward one page, maintaining the
1037 // same position within the page. This lets us store both
1038 // segments overlapping on a single page in the file, but
1039 // the loader will put them on different pages in memory.
1041 uint64_t orig_addr
= addr
;
1042 uint64_t orig_off
= off
;
1044 uint64_t aligned_addr
= addr
;
1045 uint64_t abi_pagesize
= target
->abi_pagesize();
1047 // FIXME: This should depend on the -n and -N options.
1048 (*p
)->set_minimum_addralign(target
->common_pagesize());
1050 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1052 uint64_t align
= (*p
)->addralign();
1054 addr
= align_address(addr
, align
);
1055 aligned_addr
= addr
;
1056 if ((addr
& (abi_pagesize
- 1)) != 0)
1057 addr
= addr
+ abi_pagesize
;
1060 unsigned int shndx_hold
= *pshndx
;
1061 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1062 uint64_t new_addr
= (*p
)->set_section_addresses(addr
, &off
, pshndx
);
1064 // Now that we know the size of this segment, we may be able
1065 // to save a page in memory, at the cost of wasting some
1066 // file space, by instead aligning to the start of a new
1067 // page. Here we use the real machine page size rather than
1068 // the ABI mandated page size.
1070 if (aligned_addr
!= addr
)
1072 uint64_t common_pagesize
= target
->common_pagesize();
1073 uint64_t first_off
= (common_pagesize
1075 & (common_pagesize
- 1)));
1076 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1079 && ((aligned_addr
& ~ (common_pagesize
- 1))
1080 != (new_addr
& ~ (common_pagesize
- 1)))
1081 && first_off
+ last_off
<= common_pagesize
)
1083 *pshndx
= shndx_hold
;
1084 addr
= align_address(aligned_addr
, common_pagesize
);
1085 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1086 new_addr
= (*p
)->set_section_addresses(addr
, &off
, pshndx
);
1092 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1093 was_readonly
= true;
1097 // Handle the non-PT_LOAD segments, setting their offsets from their
1098 // section's offsets.
1099 for (Segment_list::iterator p
= this->segment_list_
.begin();
1100 p
!= this->segment_list_
.end();
1103 if ((*p
)->type() != elfcpp::PT_LOAD
)
1107 // Set the TLS offsets for each section in the PT_TLS segment.
1108 if (this->tls_segment_
!= NULL
)
1109 this->tls_segment_
->set_tls_offsets();
1114 // Set the file offset of all the sections not associated with a
1118 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
1120 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1121 p
!= this->unattached_section_list_
.end();
1124 // The symtab section is handled in create_symtab_sections.
1125 if (*p
== this->symtab_section_
)
1128 // If we've already set the data size, don't set it again.
1129 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
1132 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1133 && (*p
)->requires_postprocessing())
1135 (*p
)->create_postprocessing_buffer();
1136 this->any_postprocessing_sections_
= true;
1139 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1140 && (*p
)->after_input_sections())
1142 else if (pass
== POSTPROCESSING_SECTIONS_PASS
1143 && (!(*p
)->after_input_sections()
1144 || (*p
)->type() == elfcpp::SHT_STRTAB
))
1146 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1147 && (!(*p
)->after_input_sections()
1148 || (*p
)->type() != elfcpp::SHT_STRTAB
))
1151 off
= align_address(off
, (*p
)->addralign());
1152 (*p
)->set_file_offset(off
);
1153 (*p
)->finalize_data_size();
1154 off
+= (*p
)->data_size();
1156 // At this point the name must be set.
1157 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
1158 this->namepool_
.add((*p
)->name(), false, NULL
);
1163 // Set the section indexes of all the sections not associated with a
1167 Layout::set_section_indexes(unsigned int shndx
)
1169 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1170 p
!= this->unattached_section_list_
.end();
1173 (*p
)->set_out_shndx(shndx
);
1179 // Count the local symbols in the regular symbol table and the dynamic
1180 // symbol table, and build the respective string pools.
1183 Layout::count_local_symbols(const Task
* task
,
1184 const Input_objects
* input_objects
)
1186 // First, figure out an upper bound on the number of symbols we'll
1187 // be inserting into each pool. This helps us create the pools with
1188 // the right size, to avoid unnecessary hashtable resizing.
1189 unsigned int symbol_count
= 0;
1190 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1191 p
!= input_objects
->relobj_end();
1193 symbol_count
+= (*p
)->local_symbol_count();
1195 // Go from "upper bound" to "estimate." We overcount for two
1196 // reasons: we double-count symbols that occur in more than one
1197 // object file, and we count symbols that are dropped from the
1198 // output. Add it all together and assume we overcount by 100%.
1201 // We assume all symbols will go into both the sympool and dynpool.
1202 this->sympool_
.reserve(symbol_count
);
1203 this->dynpool_
.reserve(symbol_count
);
1205 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1206 p
!= input_objects
->relobj_end();
1209 Task_lock_obj
<Object
> tlo(task
, *p
);
1210 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
1214 // Create the symbol table sections. Here we also set the final
1215 // values of the symbols. At this point all the loadable sections are
1219 Layout::create_symtab_sections(const Input_objects
* input_objects
,
1220 Symbol_table
* symtab
,
1225 if (parameters
->get_size() == 32)
1227 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
1230 else if (parameters
->get_size() == 64)
1232 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
1239 off
= align_address(off
, align
);
1240 off_t startoff
= off
;
1242 // Save space for the dummy symbol at the start of the section. We
1243 // never bother to write this out--it will just be left as zero.
1245 unsigned int local_symbol_index
= 1;
1247 // Add STT_SECTION symbols for each Output section which needs one.
1248 for (Section_list::iterator p
= this->section_list_
.begin();
1249 p
!= this->section_list_
.end();
1252 if (!(*p
)->needs_symtab_index())
1253 (*p
)->set_symtab_index(-1U);
1256 (*p
)->set_symtab_index(local_symbol_index
);
1257 ++local_symbol_index
;
1262 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1263 p
!= input_objects
->relobj_end();
1266 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
1268 off
+= (index
- local_symbol_index
) * symsize
;
1269 local_symbol_index
= index
;
1272 unsigned int local_symcount
= local_symbol_index
;
1273 gold_assert(local_symcount
* symsize
== off
- startoff
);
1276 size_t dyn_global_index
;
1278 if (this->dynsym_section_
== NULL
)
1281 dyn_global_index
= 0;
1286 dyn_global_index
= this->dynsym_section_
->info();
1287 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
1288 dynoff
= this->dynsym_section_
->offset() + locsize
;
1289 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
1290 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
1291 == this->dynsym_section_
->data_size() - locsize
);
1294 off
= symtab
->finalize(local_symcount
, off
, dynoff
, dyn_global_index
,
1295 dyncount
, &this->sympool_
);
1297 if (!parameters
->strip_all())
1299 this->sympool_
.set_string_offsets();
1301 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
1302 Output_section
* osymtab
= this->make_output_section(symtab_name
,
1305 this->symtab_section_
= osymtab
;
1307 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
1309 osymtab
->add_output_section_data(pos
);
1311 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
1312 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
1316 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
1317 ostrtab
->add_output_section_data(pstr
);
1319 osymtab
->set_file_offset(startoff
);
1320 osymtab
->finalize_data_size();
1321 osymtab
->set_link_section(ostrtab
);
1322 osymtab
->set_info(local_symcount
);
1323 osymtab
->set_entsize(symsize
);
1329 // Create the .shstrtab section, which holds the names of the
1330 // sections. At the time this is called, we have created all the
1331 // output sections except .shstrtab itself.
1334 Layout::create_shstrtab()
1336 // FIXME: We don't need to create a .shstrtab section if we are
1337 // stripping everything.
1339 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
1341 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
1343 // We can't write out this section until we've set all the section
1344 // names, and we don't set the names of compressed output sections
1345 // until relocations are complete.
1346 os
->set_after_input_sections();
1348 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
1349 os
->add_output_section_data(posd
);
1354 // Create the section headers. SIZE is 32 or 64. OFF is the file
1358 Layout::create_shdrs(off_t
* poff
)
1360 Output_section_headers
* oshdrs
;
1361 oshdrs
= new Output_section_headers(this,
1362 &this->segment_list_
,
1363 &this->unattached_section_list_
,
1365 off_t off
= align_address(*poff
, oshdrs
->addralign());
1366 oshdrs
->set_address_and_file_offset(0, off
);
1367 off
+= oshdrs
->data_size();
1369 this->section_headers_
= oshdrs
;
1372 // Create the dynamic symbol table.
1375 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
1376 const Target
* target
, Symbol_table
* symtab
,
1377 Output_section
**pdynstr
,
1378 unsigned int* plocal_dynamic_count
,
1379 std::vector
<Symbol
*>* pdynamic_symbols
,
1380 Versions
* pversions
)
1382 // Count all the symbols in the dynamic symbol table, and set the
1383 // dynamic symbol indexes.
1385 // Skip symbol 0, which is always all zeroes.
1386 unsigned int index
= 1;
1388 // Add STT_SECTION symbols for each Output section which needs one.
1389 for (Section_list::iterator p
= this->section_list_
.begin();
1390 p
!= this->section_list_
.end();
1393 if (!(*p
)->needs_dynsym_index())
1394 (*p
)->set_dynsym_index(-1U);
1397 (*p
)->set_dynsym_index(index
);
1402 // Count the local symbols that need to go in the dynamic symbol table,
1403 // and set the dynamic symbol indexes.
1404 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1405 p
!= input_objects
->relobj_end();
1408 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
1412 unsigned int local_symcount
= index
;
1413 *plocal_dynamic_count
= local_symcount
;
1415 // FIXME: We have to tell set_dynsym_indexes whether the
1416 // -E/--export-dynamic option was used.
1417 index
= symtab
->set_dynsym_indexes(target
, index
, pdynamic_symbols
,
1418 &this->dynpool_
, pversions
);
1422 const int size
= parameters
->get_size();
1425 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
1428 else if (size
== 64)
1430 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
1436 // Create the dynamic symbol table section.
1438 const char* dynsym_name
= this->namepool_
.add(".dynsym", false, NULL
);
1439 Output_section
* dynsym
= this->make_output_section(dynsym_name
,
1443 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
1445 dynsym
->add_output_section_data(odata
);
1447 dynsym
->set_info(local_symcount
);
1448 dynsym
->set_entsize(symsize
);
1449 dynsym
->set_addralign(align
);
1451 this->dynsym_section_
= dynsym
;
1453 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
1454 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
1455 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
1457 // Create the dynamic string table section.
1459 const char* dynstr_name
= this->namepool_
.add(".dynstr", false, NULL
);
1460 Output_section
* dynstr
= this->make_output_section(dynstr_name
,
1464 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
1465 dynstr
->add_output_section_data(strdata
);
1467 dynsym
->set_link_section(dynstr
);
1468 this->dynamic_section_
->set_link_section(dynstr
);
1470 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
1471 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
1475 // Create the hash tables.
1477 // FIXME: We need an option to create a GNU hash table.
1479 unsigned char* phash
;
1480 unsigned int hashlen
;
1481 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
1484 const char* hash_name
= this->namepool_
.add(".hash", false, NULL
);
1485 Output_section
* hashsec
= this->make_output_section(hash_name
,
1489 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
1492 hashsec
->add_output_section_data(hashdata
);
1494 hashsec
->set_link_section(dynsym
);
1495 hashsec
->set_entsize(4);
1497 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
1500 // Assign offsets to each local portion of the dynamic symbol table.
1503 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
1505 Output_section
* dynsym
= this->dynsym_section_
;
1506 gold_assert(dynsym
!= NULL
);
1508 off_t off
= dynsym
->offset();
1510 // Skip the dummy symbol at the start of the section.
1511 off
+= dynsym
->entsize();
1513 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1514 p
!= input_objects
->relobj_end();
1517 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
1518 off
+= count
* dynsym
->entsize();
1522 // Create the version sections.
1525 Layout::create_version_sections(const Versions
* versions
,
1526 const Symbol_table
* symtab
,
1527 unsigned int local_symcount
,
1528 const std::vector
<Symbol
*>& dynamic_symbols
,
1529 const Output_section
* dynstr
)
1531 if (!versions
->any_defs() && !versions
->any_needs())
1534 if (parameters
->get_size() == 32)
1536 if (parameters
->is_big_endian())
1538 #ifdef HAVE_TARGET_32_BIG
1539 this->sized_create_version_sections
1540 SELECT_SIZE_ENDIAN_NAME(32, true)(
1541 versions
, symtab
, local_symcount
, dynamic_symbols
, dynstr
1542 SELECT_SIZE_ENDIAN(32, true));
1549 #ifdef HAVE_TARGET_32_LITTLE
1550 this->sized_create_version_sections
1551 SELECT_SIZE_ENDIAN_NAME(32, false)(
1552 versions
, symtab
, local_symcount
, dynamic_symbols
, dynstr
1553 SELECT_SIZE_ENDIAN(32, false));
1559 else if (parameters
->get_size() == 64)
1561 if (parameters
->is_big_endian())
1563 #ifdef HAVE_TARGET_64_BIG
1564 this->sized_create_version_sections
1565 SELECT_SIZE_ENDIAN_NAME(64, true)(
1566 versions
, symtab
, local_symcount
, dynamic_symbols
, dynstr
1567 SELECT_SIZE_ENDIAN(64, true));
1574 #ifdef HAVE_TARGET_64_LITTLE
1575 this->sized_create_version_sections
1576 SELECT_SIZE_ENDIAN_NAME(64, false)(
1577 versions
, symtab
, local_symcount
, dynamic_symbols
, dynstr
1578 SELECT_SIZE_ENDIAN(64, false));
1588 // Create the version sections, sized version.
1590 template<int size
, bool big_endian
>
1592 Layout::sized_create_version_sections(
1593 const Versions
* versions
,
1594 const Symbol_table
* symtab
,
1595 unsigned int local_symcount
,
1596 const std::vector
<Symbol
*>& dynamic_symbols
,
1597 const Output_section
* dynstr
1600 const char* vname
= this->namepool_
.add(".gnu.version", false, NULL
);
1601 Output_section
* vsec
= this->make_output_section(vname
,
1602 elfcpp::SHT_GNU_versym
,
1605 unsigned char* vbuf
;
1607 versions
->symbol_section_contents
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1608 symtab
, &this->dynpool_
, local_symcount
, dynamic_symbols
, &vbuf
, &vsize
1609 SELECT_SIZE_ENDIAN(size
, big_endian
));
1611 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2);
1613 vsec
->add_output_section_data(vdata
);
1614 vsec
->set_entsize(2);
1615 vsec
->set_link_section(this->dynsym_section_
);
1617 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
1618 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
1620 if (versions
->any_defs())
1622 const char* vdname
= this->namepool_
.add(".gnu.version_d", false, NULL
);
1623 Output_section
*vdsec
;
1624 vdsec
= this->make_output_section(vdname
, elfcpp::SHT_GNU_verdef
,
1627 unsigned char* vdbuf
;
1628 unsigned int vdsize
;
1629 unsigned int vdentries
;
1630 versions
->def_section_contents
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1631 &this->dynpool_
, &vdbuf
, &vdsize
, &vdentries
1632 SELECT_SIZE_ENDIAN(size
, big_endian
));
1634 Output_section_data
* vddata
= new Output_data_const_buffer(vdbuf
,
1638 vdsec
->add_output_section_data(vddata
);
1639 vdsec
->set_link_section(dynstr
);
1640 vdsec
->set_info(vdentries
);
1642 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
1643 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
1646 if (versions
->any_needs())
1648 const char* vnname
= this->namepool_
.add(".gnu.version_r", false, NULL
);
1649 Output_section
* vnsec
;
1650 vnsec
= this->make_output_section(vnname
, elfcpp::SHT_GNU_verneed
,
1653 unsigned char* vnbuf
;
1654 unsigned int vnsize
;
1655 unsigned int vnentries
;
1656 versions
->need_section_contents
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)
1657 (&this->dynpool_
, &vnbuf
, &vnsize
, &vnentries
1658 SELECT_SIZE_ENDIAN(size
, big_endian
));
1660 Output_section_data
* vndata
= new Output_data_const_buffer(vnbuf
,
1664 vnsec
->add_output_section_data(vndata
);
1665 vnsec
->set_link_section(dynstr
);
1666 vnsec
->set_info(vnentries
);
1668 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
1669 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
1673 // Create the .interp section and PT_INTERP segment.
1676 Layout::create_interp(const Target
* target
)
1678 const char* interp
= this->options_
.dynamic_linker();
1681 interp
= target
->dynamic_linker();
1682 gold_assert(interp
!= NULL
);
1685 size_t len
= strlen(interp
) + 1;
1687 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
1689 const char* interp_name
= this->namepool_
.add(".interp", false, NULL
);
1690 Output_section
* osec
= this->make_output_section(interp_name
,
1691 elfcpp::SHT_PROGBITS
,
1693 osec
->add_output_section_data(odata
);
1695 Output_segment
* oseg
= new Output_segment(elfcpp::PT_INTERP
, elfcpp::PF_R
);
1696 this->segment_list_
.push_back(oseg
);
1697 oseg
->add_initial_output_section(osec
, elfcpp::PF_R
);
1700 // Finish the .dynamic section and PT_DYNAMIC segment.
1703 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
1704 const Symbol_table
* symtab
)
1706 Output_segment
* oseg
= new Output_segment(elfcpp::PT_DYNAMIC
,
1707 elfcpp::PF_R
| elfcpp::PF_W
);
1708 this->segment_list_
.push_back(oseg
);
1709 oseg
->add_initial_output_section(this->dynamic_section_
,
1710 elfcpp::PF_R
| elfcpp::PF_W
);
1712 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
1714 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
1715 p
!= input_objects
->dynobj_end();
1718 // FIXME: Handle --as-needed.
1719 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
1722 if (parameters
->output_is_shared())
1724 const char* soname
= this->options_
.soname();
1726 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
1729 // FIXME: Support --init and --fini.
1730 Symbol
* sym
= symtab
->lookup("_init");
1731 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
1732 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
1734 sym
= symtab
->lookup("_fini");
1735 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
1736 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
1738 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1740 // Add a DT_RPATH entry if needed.
1741 const General_options::Dir_list
& rpath(this->options_
.rpath());
1744 std::string rpath_val
;
1745 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
1749 if (rpath_val
.empty())
1750 rpath_val
= p
->name();
1753 // Eliminate duplicates.
1754 General_options::Dir_list::const_iterator q
;
1755 for (q
= rpath
.begin(); q
!= p
; ++q
)
1756 if (q
->name() == p
->name())
1761 rpath_val
+= p
->name();
1766 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
1769 // Look for text segments that have dynamic relocations.
1770 bool have_textrel
= false;
1771 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1772 p
!= this->segment_list_
.end();
1775 if (((*p
)->flags() & elfcpp::PF_W
) == 0
1776 && (*p
)->dynamic_reloc_count() > 0)
1778 have_textrel
= true;
1783 // Add a DT_FLAGS entry. We add it even if no flags are set so that
1784 // post-link tools can easily modify these flags if desired.
1785 unsigned int flags
= 0;
1788 // Add a DT_TEXTREL for compatibility with older loaders.
1789 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
1790 flags
|= elfcpp::DF_TEXTREL
;
1792 if (parameters
->output_is_shared() && this->has_static_tls())
1793 flags
|= elfcpp::DF_STATIC_TLS
;
1794 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
1797 // The mapping of .gnu.linkonce section names to real section names.
1799 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1800 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
1802 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1803 MAPPING_INIT("t", ".text"),
1804 MAPPING_INIT("r", ".rodata"),
1805 MAPPING_INIT("d", ".data"),
1806 MAPPING_INIT("b", ".bss"),
1807 MAPPING_INIT("s", ".sdata"),
1808 MAPPING_INIT("sb", ".sbss"),
1809 MAPPING_INIT("s2", ".sdata2"),
1810 MAPPING_INIT("sb2", ".sbss2"),
1811 MAPPING_INIT("wi", ".debug_info"),
1812 MAPPING_INIT("td", ".tdata"),
1813 MAPPING_INIT("tb", ".tbss"),
1814 MAPPING_INIT("lr", ".lrodata"),
1815 MAPPING_INIT("l", ".ldata"),
1816 MAPPING_INIT("lb", ".lbss"),
1820 const int Layout::linkonce_mapping_count
=
1821 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
1823 // Return the name of the output section to use for a .gnu.linkonce
1824 // section. This is based on the default ELF linker script of the old
1825 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1826 // to ".text". Set *PLEN to the length of the name. *PLEN is
1827 // initialized to the length of NAME.
1830 Layout::linkonce_output_name(const char* name
, size_t *plen
)
1832 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
1836 const Linkonce_mapping
* plm
= linkonce_mapping
;
1837 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
1839 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
1848 // Choose the output section name to use given an input section name.
1849 // Set *PLEN to the length of the name. *PLEN is initialized to the
1853 Layout::output_section_name(const char* name
, size_t* plen
)
1855 if (Layout::is_linkonce(name
))
1857 // .gnu.linkonce sections are laid out as though they were named
1858 // for the sections are placed into.
1859 return Layout::linkonce_output_name(name
, plen
);
1862 // gcc 4.3 generates the following sorts of section names when it
1863 // needs a section name specific to a function:
1869 // .data.rel.local.FN
1871 // .data.rel.ro.local.FN
1878 // The GNU linker maps all of those to the part before the .FN,
1879 // except that .data.rel.local.FN is mapped to .data, and
1880 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
1881 // beginning with .data.rel.ro.local are grouped together.
1883 // For an anonymous namespace, the string FN can contain a '.'.
1885 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1886 // GNU linker maps to .rodata.
1888 // The .data.rel.ro sections enable a security feature triggered by
1889 // the -z relro option. Section which need to be relocated at
1890 // program startup time but which may be readonly after startup are
1891 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
1892 // segment. The dynamic linker will make that segment writable,
1893 // perform relocations, and then make it read-only. FIXME: We do
1894 // not yet implement this optimization.
1896 // It is hard to handle this in a principled way.
1898 // These are the rules we follow:
1900 // If the section name has no initial '.', or no dot other than an
1901 // initial '.', we use the name unchanged (i.e., "mysection" and
1902 // ".text" are unchanged).
1904 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1906 // Otherwise, we drop the second '.' and everything that comes after
1907 // it (i.e., ".text.XXX" becomes ".text").
1909 const char* s
= name
;
1913 const char* sdot
= strchr(s
, '.');
1917 const char* const data_rel_ro
= ".data.rel.ro";
1918 if (strncmp(name
, data_rel_ro
, strlen(data_rel_ro
)) == 0)
1920 *plen
= strlen(data_rel_ro
);
1924 *plen
= sdot
- name
;
1928 // Record the signature of a comdat section, and return whether to
1929 // include it in the link. If GROUP is true, this is a regular
1930 // section group. If GROUP is false, this is a group signature
1931 // derived from the name of a linkonce section. We want linkonce
1932 // signatures and group signatures to block each other, but we don't
1933 // want a linkonce signature to block another linkonce signature.
1936 Layout::add_comdat(const char* signature
, bool group
)
1938 std::string
sig(signature
);
1939 std::pair
<Signatures::iterator
, bool> ins(
1940 this->signatures_
.insert(std::make_pair(sig
, group
)));
1944 // This is the first time we've seen this signature.
1948 if (ins
.first
->second
)
1950 // We've already seen a real section group with this signature.
1955 // This is a real section group, and we've already seen a
1956 // linkonce section with this signature. Record that we've seen
1957 // a section group, and don't include this section group.
1958 ins
.first
->second
= true;
1963 // We've already seen a linkonce section and this is a linkonce
1964 // section. These don't block each other--this may be the same
1965 // symbol name with different section types.
1970 // Write out the Output_sections. Most won't have anything to write,
1971 // since most of the data will come from input sections which are
1972 // handled elsewhere. But some Output_sections do have Output_data.
1975 Layout::write_output_sections(Output_file
* of
) const
1977 for (Section_list::const_iterator p
= this->section_list_
.begin();
1978 p
!= this->section_list_
.end();
1981 if (!(*p
)->after_input_sections())
1986 // Write out data not associated with a section or the symbol table.
1989 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
1991 if (!parameters
->strip_all())
1993 const Output_section
* symtab_section
= this->symtab_section_
;
1994 for (Section_list::const_iterator p
= this->section_list_
.begin();
1995 p
!= this->section_list_
.end();
1998 if ((*p
)->needs_symtab_index())
2000 gold_assert(symtab_section
!= NULL
);
2001 unsigned int index
= (*p
)->symtab_index();
2002 gold_assert(index
> 0 && index
!= -1U);
2003 off_t off
= (symtab_section
->offset()
2004 + index
* symtab_section
->entsize());
2005 symtab
->write_section_symbol(*p
, of
, off
);
2010 const Output_section
* dynsym_section
= this->dynsym_section_
;
2011 for (Section_list::const_iterator p
= this->section_list_
.begin();
2012 p
!= this->section_list_
.end();
2015 if ((*p
)->needs_dynsym_index())
2017 gold_assert(dynsym_section
!= NULL
);
2018 unsigned int index
= (*p
)->dynsym_index();
2019 gold_assert(index
> 0 && index
!= -1U);
2020 off_t off
= (dynsym_section
->offset()
2021 + index
* dynsym_section
->entsize());
2022 symtab
->write_section_symbol(*p
, of
, off
);
2026 // Write out the Output_data which are not in an Output_section.
2027 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
2028 p
!= this->special_output_list_
.end();
2033 // Write out the Output_sections which can only be written after the
2034 // input sections are complete.
2037 Layout::write_sections_after_input_sections(Output_file
* of
)
2039 // Determine the final section offsets, and thus the final output
2040 // file size. Note we finalize the .shstrab last, to allow the
2041 // after_input_section sections to modify their section-names before
2043 if (this->any_postprocessing_sections_
)
2045 off_t off
= this->output_file_size_
;
2046 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
2048 // Now that we've finalized the names, we can finalize the shstrab.
2050 this->set_section_offsets(off
,
2051 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
2053 if (off
> this->output_file_size_
)
2056 this->output_file_size_
= off
;
2060 for (Section_list::const_iterator p
= this->section_list_
.begin();
2061 p
!= this->section_list_
.end();
2064 if ((*p
)->after_input_sections())
2068 this->section_headers_
->write(of
);
2071 // Print statistical information to stderr. This is used for --stats.
2074 Layout::print_stats() const
2076 this->namepool_
.print_stats("section name pool");
2077 this->sympool_
.print_stats("output symbol name pool");
2078 this->dynpool_
.print_stats("dynamic name pool");
2080 for (Section_list::const_iterator p
= this->section_list_
.begin();
2081 p
!= this->section_list_
.end();
2083 (*p
)->print_merge_stats();
2086 // Write_sections_task methods.
2088 // We can always run this task.
2091 Write_sections_task::is_runnable()
2096 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2100 Write_sections_task::locks(Task_locker
* tl
)
2102 tl
->add(this, this->output_sections_blocker_
);
2103 tl
->add(this, this->final_blocker_
);
2106 // Run the task--write out the data.
2109 Write_sections_task::run(Workqueue
*)
2111 this->layout_
->write_output_sections(this->of_
);
2114 // Write_data_task methods.
2116 // We can always run this task.
2119 Write_data_task::is_runnable()
2124 // We need to unlock FINAL_BLOCKER when finished.
2127 Write_data_task::locks(Task_locker
* tl
)
2129 tl
->add(this, this->final_blocker_
);
2132 // Run the task--write out the data.
2135 Write_data_task::run(Workqueue
*)
2137 this->layout_
->write_data(this->symtab_
, this->of_
);
2140 // Write_symbols_task methods.
2142 // We can always run this task.
2145 Write_symbols_task::is_runnable()
2150 // We need to unlock FINAL_BLOCKER when finished.
2153 Write_symbols_task::locks(Task_locker
* tl
)
2155 tl
->add(this, this->final_blocker_
);
2158 // Run the task--write out the symbols.
2161 Write_symbols_task::run(Workqueue
*)
2163 this->symtab_
->write_globals(this->input_objects_
, this->sympool_
,
2164 this->dynpool_
, this->of_
);
2167 // Write_after_input_sections_task methods.
2169 // We can only run this task after the input sections have completed.
2172 Write_after_input_sections_task::is_runnable()
2174 if (this->input_sections_blocker_
->is_blocked())
2175 return this->input_sections_blocker_
;
2179 // We need to unlock FINAL_BLOCKER when finished.
2182 Write_after_input_sections_task::locks(Task_locker
* tl
)
2184 tl
->add(this, this->final_blocker_
);
2190 Write_after_input_sections_task::run(Workqueue
*)
2192 this->layout_
->write_sections_after_input_sections(this->of_
);
2195 // Close_task_runner methods.
2197 // Run the task--close the file.
2200 Close_task_runner::run(Workqueue
*, const Task
*)
2205 // Instantiate the templates we need. We could use the configure
2206 // script to restrict this to only the ones for implemented targets.
2208 #ifdef HAVE_TARGET_32_LITTLE
2211 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
2213 const elfcpp::Shdr
<32, false>& shdr
,
2214 unsigned int, unsigned int, off_t
*);
2217 #ifdef HAVE_TARGET_32_BIG
2220 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
2222 const elfcpp::Shdr
<32, true>& shdr
,
2223 unsigned int, unsigned int, off_t
*);
2226 #ifdef HAVE_TARGET_64_LITTLE
2229 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
2231 const elfcpp::Shdr
<64, false>& shdr
,
2232 unsigned int, unsigned int, off_t
*);
2235 #ifdef HAVE_TARGET_64_BIG
2238 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
2240 const elfcpp::Shdr
<64, true>& shdr
,
2241 unsigned int, unsigned int, off_t
*);
2244 #ifdef HAVE_TARGET_32_LITTLE
2247 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
2248 const unsigned char* symbols
,
2250 const unsigned char* symbol_names
,
2251 off_t symbol_names_size
,
2253 const elfcpp::Shdr
<32, false>& shdr
,
2254 unsigned int reloc_shndx
,
2255 unsigned int reloc_type
,
2259 #ifdef HAVE_TARGET_32_BIG
2262 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
2263 const unsigned char* symbols
,
2265 const unsigned char* symbol_names
,
2266 off_t symbol_names_size
,
2268 const elfcpp::Shdr
<32, true>& shdr
,
2269 unsigned int reloc_shndx
,
2270 unsigned int reloc_type
,
2274 #ifdef HAVE_TARGET_64_LITTLE
2277 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
2278 const unsigned char* symbols
,
2280 const unsigned char* symbol_names
,
2281 off_t symbol_names_size
,
2283 const elfcpp::Shdr
<64, false>& shdr
,
2284 unsigned int reloc_shndx
,
2285 unsigned int reloc_type
,
2289 #ifdef HAVE_TARGET_64_BIG
2292 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
2293 const unsigned char* symbols
,
2295 const unsigned char* symbol_names
,
2296 off_t symbol_names_size
,
2298 const elfcpp::Shdr
<64, true>& shdr
,
2299 unsigned int reloc_shndx
,
2300 unsigned int reloc_type
,
2304 } // End namespace gold.