1 // dynobj.cc -- dynamic object support for gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
38 // Sets up the default soname_ to use, in the (rare) cases we never
39 // see a DT_SONAME entry.
41 Dynobj::Dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
)
42 : Object(name
, input_file
, true, offset
),
44 unknown_needed_(UNKNOWN_NEEDED_UNSET
)
46 // This will be overridden by a DT_SONAME entry, hopefully. But if
47 // we never see a DT_SONAME entry, our rule is to use the dynamic
48 // object's filename. The only exception is when the dynamic object
49 // is part of an archive (so the filename is the archive's
50 // filename). In that case, we use just the dynobj's name-in-archive.
51 this->soname_
= this->input_file()->found_name();
52 if (this->offset() != 0)
54 std::string::size_type open_paren
= this->name().find('(');
55 std::string::size_type close_paren
= this->name().find(')');
56 if (open_paren
!= std::string::npos
&& close_paren
!= std::string::npos
)
58 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
59 this->soname_
= this->name().substr(open_paren
+ 1,
60 close_paren
- (open_paren
+ 1));
65 // Class Sized_dynobj.
67 template<int size
, bool big_endian
>
68 Sized_dynobj
<size
, big_endian
>::Sized_dynobj(
69 const std::string
& name
,
70 Input_file
* input_file
,
72 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
73 : Dynobj(name
, input_file
, offset
),
80 template<int size
, bool big_endian
>
82 Sized_dynobj
<size
, big_endian
>::setup(
83 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
85 this->set_target(ehdr
.get_e_machine(), size
, big_endian
,
86 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
87 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
89 const unsigned int shnum
= this->elf_file_
.shnum();
90 this->set_shnum(shnum
);
93 // Find the SHT_DYNSYM section and the various version sections, and
94 // the dynamic section, given the section headers.
96 template<int size
, bool big_endian
>
98 Sized_dynobj
<size
, big_endian
>::find_dynsym_sections(
99 const unsigned char* pshdrs
,
100 unsigned int* pdynsym_shndx
,
101 unsigned int* pversym_shndx
,
102 unsigned int* pverdef_shndx
,
103 unsigned int* pverneed_shndx
,
104 unsigned int* pdynamic_shndx
)
106 *pdynsym_shndx
= -1U;
107 *pversym_shndx
= -1U;
108 *pverdef_shndx
= -1U;
109 *pverneed_shndx
= -1U;
110 *pdynamic_shndx
= -1U;
112 const unsigned int shnum
= this->shnum();
113 const unsigned char* p
= pshdrs
;
114 for (unsigned int i
= 0; i
< shnum
; ++i
, p
+= This::shdr_size
)
116 typename
This::Shdr
shdr(p
);
119 switch (shdr
.get_sh_type())
121 case elfcpp::SHT_DYNSYM
:
124 case elfcpp::SHT_GNU_versym
:
127 case elfcpp::SHT_GNU_verdef
:
130 case elfcpp::SHT_GNU_verneed
:
133 case elfcpp::SHT_DYNAMIC
:
145 this->error(_("unexpected duplicate type %u section: %u, %u"),
146 shdr
.get_sh_type(), *pi
, i
);
152 // Read the contents of section SHNDX. PSHDRS points to the section
153 // headers. TYPE is the expected section type. LINK is the expected
154 // section link. Store the data in *VIEW and *VIEW_SIZE. The
155 // section's sh_info field is stored in *VIEW_INFO.
157 template<int size
, bool big_endian
>
159 Sized_dynobj
<size
, big_endian
>::read_dynsym_section(
160 const unsigned char* pshdrs
,
165 section_size_type
* view_size
,
166 unsigned int* view_info
)
176 typename
This::Shdr
shdr(pshdrs
+ shndx
* This::shdr_size
);
178 gold_assert(shdr
.get_sh_type() == type
);
180 if (shdr
.get_sh_link() != link
)
181 this->error(_("unexpected link in section %u header: %u != %u"),
182 shndx
, shdr
.get_sh_link(), link
);
184 *view
= this->get_lasting_view(shdr
.get_sh_offset(), shdr
.get_sh_size(),
186 *view_size
= convert_to_section_size_type(shdr
.get_sh_size());
187 *view_info
= shdr
.get_sh_info();
190 // Read the dynamic tags. Set the soname field if this shared object
191 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
192 // the section headers. DYNAMIC_SHNDX is the section index of the
193 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
194 // section index and contents of a string table which may be the one
195 // associated with the SHT_DYNAMIC section.
197 template<int size
, bool big_endian
>
199 Sized_dynobj
<size
, big_endian
>::read_dynamic(const unsigned char* pshdrs
,
200 unsigned int dynamic_shndx
,
201 unsigned int strtab_shndx
,
202 const unsigned char* strtabu
,
205 typename
This::Shdr
dynamicshdr(pshdrs
+ dynamic_shndx
* This::shdr_size
);
206 gold_assert(dynamicshdr
.get_sh_type() == elfcpp::SHT_DYNAMIC
);
208 const off_t dynamic_size
= dynamicshdr
.get_sh_size();
209 const unsigned char* pdynamic
= this->get_view(dynamicshdr
.get_sh_offset(),
210 dynamic_size
, false);
212 const unsigned int link
= dynamicshdr
.get_sh_link();
213 if (link
!= strtab_shndx
)
215 if (link
>= this->shnum())
217 this->error(_("DYNAMIC section %u link out of range: %u"),
218 dynamic_shndx
, link
);
222 typename
This::Shdr
strtabshdr(pshdrs
+ link
* This::shdr_size
);
223 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
225 this->error(_("DYNAMIC section %u link %u is not a strtab"),
226 dynamic_shndx
, link
);
230 strtab_size
= strtabshdr
.get_sh_size();
231 strtabu
= this->get_view(strtabshdr
.get_sh_offset(), strtab_size
, false);
234 const char* const strtab
= reinterpret_cast<const char*>(strtabu
);
236 for (const unsigned char* p
= pdynamic
;
237 p
< pdynamic
+ dynamic_size
;
240 typename
This::Dyn
dyn(p
);
242 switch (dyn
.get_d_tag())
244 case elfcpp::DT_NULL
:
245 // We should always see DT_NULL at the end of the dynamic
249 case elfcpp::DT_SONAME
:
251 off_t val
= dyn
.get_d_val();
252 if (val
>= strtab_size
)
253 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
254 static_cast<long long>(val
),
255 static_cast<long long>(strtab_size
));
257 this->set_soname_string(strtab
+ val
);
261 case elfcpp::DT_NEEDED
:
263 off_t val
= dyn
.get_d_val();
264 if (val
>= strtab_size
)
265 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
266 static_cast<long long>(val
),
267 static_cast<long long>(strtab_size
));
269 this->add_needed(strtab
+ val
);
278 this->error(_("missing DT_NULL in dynamic segment"));
281 // Read the symbols and sections from a dynamic object. We read the
282 // dynamic symbols, not the normal symbols.
284 template<int size
, bool big_endian
>
286 Sized_dynobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
288 this->read_section_data(&this->elf_file_
, sd
);
290 const unsigned char* const pshdrs
= sd
->section_headers
->data();
292 unsigned int dynsym_shndx
;
293 unsigned int versym_shndx
;
294 unsigned int verdef_shndx
;
295 unsigned int verneed_shndx
;
296 unsigned int dynamic_shndx
;
297 this->find_dynsym_sections(pshdrs
, &dynsym_shndx
, &versym_shndx
,
298 &verdef_shndx
, &verneed_shndx
, &dynamic_shndx
);
300 unsigned int strtab_shndx
= -1U;
303 sd
->symbols_size
= 0;
304 sd
->external_symbols_offset
= 0;
305 sd
->symbol_names
= NULL
;
306 sd
->symbol_names_size
= 0;
308 if (dynsym_shndx
!= -1U)
310 // Get the dynamic symbols.
311 typename
This::Shdr
dynsymshdr(pshdrs
+ dynsym_shndx
* This::shdr_size
);
312 gold_assert(dynsymshdr
.get_sh_type() == elfcpp::SHT_DYNSYM
);
314 sd
->symbols
= this->get_lasting_view(dynsymshdr
.get_sh_offset(),
315 dynsymshdr
.get_sh_size(), false);
317 convert_to_section_size_type(dynsymshdr
.get_sh_size());
319 // Get the symbol names.
320 strtab_shndx
= dynsymshdr
.get_sh_link();
321 if (strtab_shndx
>= this->shnum())
323 this->error(_("invalid dynamic symbol table name index: %u"),
327 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
328 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
330 this->error(_("dynamic symbol table name section "
331 "has wrong type: %u"),
332 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
336 sd
->symbol_names
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
337 strtabshdr
.get_sh_size(),
339 sd
->symbol_names_size
=
340 convert_to_section_size_type(strtabshdr
.get_sh_size());
342 // Get the version information.
345 this->read_dynsym_section(pshdrs
, versym_shndx
, elfcpp::SHT_GNU_versym
,
346 dynsym_shndx
, &sd
->versym
, &sd
->versym_size
,
349 // We require that the version definition and need section link
350 // to the same string table as the dynamic symbol table. This
351 // is not a technical requirement, but it always happens in
352 // practice. We could change this if necessary.
354 this->read_dynsym_section(pshdrs
, verdef_shndx
, elfcpp::SHT_GNU_verdef
,
355 strtab_shndx
, &sd
->verdef
, &sd
->verdef_size
,
358 this->read_dynsym_section(pshdrs
, verneed_shndx
, elfcpp::SHT_GNU_verneed
,
359 strtab_shndx
, &sd
->verneed
, &sd
->verneed_size
,
363 // Read the SHT_DYNAMIC section to find whether this shared object
364 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
365 // doesn't really have anything to do with reading the symbols, but
366 // this is a convenient place to do it.
367 if (dynamic_shndx
!= -1U)
368 this->read_dynamic(pshdrs
, dynamic_shndx
, strtab_shndx
,
369 (sd
->symbol_names
== NULL
371 : sd
->symbol_names
->data()),
372 sd
->symbol_names_size
);
375 // Lay out the input sections for a dynamic object. We don't want to
376 // include sections from a dynamic object, so all that we actually do
377 // here is check for .gnu.warning sections.
379 template<int size
, bool big_endian
>
381 Sized_dynobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
383 Read_symbols_data
* sd
)
385 const unsigned int shnum
= this->shnum();
389 // Get the section headers.
390 const unsigned char* pshdrs
= sd
->section_headers
->data();
392 // Get the section names.
393 const unsigned char* pnamesu
= sd
->section_names
->data();
394 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
396 // Skip the first, dummy, section.
397 pshdrs
+= This::shdr_size
;
398 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
400 typename
This::Shdr
shdr(pshdrs
);
402 if (shdr
.get_sh_name() >= sd
->section_names_size
)
404 this->error(_("bad section name offset for section %u: %lu"),
405 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
409 const char* name
= pnames
+ shdr
.get_sh_name();
411 this->handle_gnu_warning_section(name
, i
, symtab
);
414 delete sd
->section_headers
;
415 sd
->section_headers
= NULL
;
416 delete sd
->section_names
;
417 sd
->section_names
= NULL
;
420 // Add an entry to the vector mapping version numbers to version
423 template<int size
, bool big_endian
>
425 Sized_dynobj
<size
, big_endian
>::set_version_map(
426 Version_map
* version_map
,
428 const char* name
) const
430 if (ndx
>= version_map
->size())
431 version_map
->resize(ndx
+ 1);
432 if ((*version_map
)[ndx
] != NULL
)
433 this->error(_("duplicate definition for version %u"), ndx
);
434 (*version_map
)[ndx
] = name
;
437 // Add mappings for the version definitions to VERSION_MAP.
439 template<int size
, bool big_endian
>
441 Sized_dynobj
<size
, big_endian
>::make_verdef_map(
442 Read_symbols_data
* sd
,
443 Version_map
* version_map
) const
445 if (sd
->verdef
== NULL
)
448 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
449 section_size_type names_size
= sd
->symbol_names_size
;
451 const unsigned char* pverdef
= sd
->verdef
->data();
452 section_size_type verdef_size
= sd
->verdef_size
;
453 const unsigned int count
= sd
->verdef_info
;
455 const unsigned char* p
= pverdef
;
456 for (unsigned int i
= 0; i
< count
; ++i
)
458 elfcpp::Verdef
<size
, big_endian
> verdef(p
);
460 if (verdef
.get_vd_version() != elfcpp::VER_DEF_CURRENT
)
462 this->error(_("unexpected verdef version %u"),
463 verdef
.get_vd_version());
467 const section_size_type vd_ndx
= verdef
.get_vd_ndx();
469 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
472 // The first Verdaux holds the name of this version. Subsequent
473 // ones are versions that this one depends upon, which we don't
475 const section_size_type vd_cnt
= verdef
.get_vd_cnt();
478 this->error(_("verdef vd_cnt field too small: %u"),
479 static_cast<unsigned int>(vd_cnt
));
483 const section_size_type vd_aux
= verdef
.get_vd_aux();
484 if ((p
- pverdef
) + vd_aux
>= verdef_size
)
486 this->error(_("verdef vd_aux field out of range: %u"),
487 static_cast<unsigned int>(vd_aux
));
491 const unsigned char* pvda
= p
+ vd_aux
;
492 elfcpp::Verdaux
<size
, big_endian
> verdaux(pvda
);
494 const section_size_type vda_name
= verdaux
.get_vda_name();
495 if (vda_name
>= names_size
)
497 this->error(_("verdaux vda_name field out of range: %u"),
498 static_cast<unsigned int>(vda_name
));
502 this->set_version_map(version_map
, vd_ndx
, names
+ vda_name
);
504 const section_size_type vd_next
= verdef
.get_vd_next();
505 if ((p
- pverdef
) + vd_next
>= verdef_size
)
507 this->error(_("verdef vd_next field out of range: %u"),
508 static_cast<unsigned int>(vd_next
));
516 // Add mappings for the required versions to VERSION_MAP.
518 template<int size
, bool big_endian
>
520 Sized_dynobj
<size
, big_endian
>::make_verneed_map(
521 Read_symbols_data
* sd
,
522 Version_map
* version_map
) const
524 if (sd
->verneed
== NULL
)
527 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
528 section_size_type names_size
= sd
->symbol_names_size
;
530 const unsigned char* pverneed
= sd
->verneed
->data();
531 const section_size_type verneed_size
= sd
->verneed_size
;
532 const unsigned int count
= sd
->verneed_info
;
534 const unsigned char* p
= pverneed
;
535 for (unsigned int i
= 0; i
< count
; ++i
)
537 elfcpp::Verneed
<size
, big_endian
> verneed(p
);
539 if (verneed
.get_vn_version() != elfcpp::VER_NEED_CURRENT
)
541 this->error(_("unexpected verneed version %u"),
542 verneed
.get_vn_version());
546 const section_size_type vn_aux
= verneed
.get_vn_aux();
548 if ((p
- pverneed
) + vn_aux
>= verneed_size
)
550 this->error(_("verneed vn_aux field out of range: %u"),
551 static_cast<unsigned int>(vn_aux
));
555 const unsigned int vn_cnt
= verneed
.get_vn_cnt();
556 const unsigned char* pvna
= p
+ vn_aux
;
557 for (unsigned int j
= 0; j
< vn_cnt
; ++j
)
559 elfcpp::Vernaux
<size
, big_endian
> vernaux(pvna
);
561 const unsigned int vna_name
= vernaux
.get_vna_name();
562 if (vna_name
>= names_size
)
564 this->error(_("vernaux vna_name field out of range: %u"),
565 static_cast<unsigned int>(vna_name
));
569 this->set_version_map(version_map
, vernaux
.get_vna_other(),
572 const section_size_type vna_next
= vernaux
.get_vna_next();
573 if ((pvna
- pverneed
) + vna_next
>= verneed_size
)
575 this->error(_("verneed vna_next field out of range: %u"),
576 static_cast<unsigned int>(vna_next
));
583 const section_size_type vn_next
= verneed
.get_vn_next();
584 if ((p
- pverneed
) + vn_next
>= verneed_size
)
586 this->error(_("verneed vn_next field out of range: %u"),
587 static_cast<unsigned int>(vn_next
));
595 // Create a vector mapping version numbers to version strings.
597 template<int size
, bool big_endian
>
599 Sized_dynobj
<size
, big_endian
>::make_version_map(
600 Read_symbols_data
* sd
,
601 Version_map
* version_map
) const
603 if (sd
->verdef
== NULL
&& sd
->verneed
== NULL
)
606 // A guess at the maximum version number we will see. If this is
607 // wrong we will be less efficient but still correct.
608 version_map
->reserve(sd
->verdef_info
+ sd
->verneed_info
* 10);
610 this->make_verdef_map(sd
, version_map
);
611 this->make_verneed_map(sd
, version_map
);
614 // Add the dynamic symbols to the symbol table.
616 template<int size
, bool big_endian
>
618 Sized_dynobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
619 Read_symbols_data
* sd
)
621 if (sd
->symbols
== NULL
)
623 gold_assert(sd
->symbol_names
== NULL
);
624 gold_assert(sd
->versym
== NULL
&& sd
->verdef
== NULL
625 && sd
->verneed
== NULL
);
629 const int sym_size
= This::sym_size
;
630 const size_t symcount
= sd
->symbols_size
/ sym_size
;
631 gold_assert(sd
->external_symbols_offset
== 0);
632 if (symcount
* sym_size
!= sd
->symbols_size
)
634 this->error(_("size of dynamic symbols is not multiple of symbol size"));
638 Version_map version_map
;
639 this->make_version_map(sd
, &version_map
);
641 const char* sym_names
=
642 reinterpret_cast<const char*>(sd
->symbol_names
->data());
643 symtab
->add_from_dynobj(this, sd
->symbols
->data(), symcount
,
644 sym_names
, sd
->symbol_names_size
,
647 : sd
->versym
->data()),
653 delete sd
->symbol_names
;
654 sd
->symbol_names
= NULL
;
655 if (sd
->versym
!= NULL
)
660 if (sd
->verdef
!= NULL
)
665 if (sd
->verneed
!= NULL
)
671 // This is normally the last time we will read any data from this
673 this->clear_view_cache_marks();
676 // Given a vector of hash codes, compute the number of hash buckets to
680 Dynobj::compute_bucket_count(const std::vector
<uint32_t>& hashcodes
,
681 bool for_gnu_hash_table
)
683 // FIXME: Implement optional hash table optimization.
685 // Array used to determine the number of hash table buckets to use
686 // based on the number of symbols there are. If there are fewer
687 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
688 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
689 // use more than 32771 buckets. This is straight from the old GNU
691 static const unsigned int buckets
[] =
693 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
696 const int buckets_count
= sizeof buckets
/ sizeof buckets
[0];
698 unsigned int symcount
= hashcodes
.size();
699 unsigned int ret
= 1;
700 for (int i
= 0; i
< buckets_count
; ++i
)
702 if (symcount
< buckets
[i
])
707 if (for_gnu_hash_table
&& ret
< 2)
713 // The standard ELF hash function. This hash function must not
714 // change, as the dynamic linker uses it also.
717 Dynobj::elf_hash(const char* name
)
719 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
722 while ((c
= *nameu
++) != '\0')
725 uint32_t g
= h
& 0xf0000000;
729 // The ELF ABI says h &= ~g, but using xor is equivalent in
730 // this case (since g was set from h) and may save one
738 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
739 // DYNSYMS is a vector with all the global dynamic symbols.
740 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
744 Dynobj::create_elf_hash_table(const std::vector
<Symbol
*>& dynsyms
,
745 unsigned int local_dynsym_count
,
746 unsigned char** pphash
,
747 unsigned int* phashlen
)
749 unsigned int dynsym_count
= dynsyms
.size();
751 // Get the hash values for all the symbols.
752 std::vector
<uint32_t> dynsym_hashvals(dynsym_count
);
753 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
754 dynsym_hashvals
[i
] = Dynobj::elf_hash(dynsyms
[i
]->name());
756 const unsigned int bucketcount
=
757 Dynobj::compute_bucket_count(dynsym_hashvals
, false);
759 std::vector
<uint32_t> bucket(bucketcount
);
760 std::vector
<uint32_t> chain(local_dynsym_count
+ dynsym_count
);
762 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
764 unsigned int dynsym_index
= dynsyms
[i
]->dynsym_index();
765 unsigned int bucketpos
= dynsym_hashvals
[i
] % bucketcount
;
766 chain
[dynsym_index
] = bucket
[bucketpos
];
767 bucket
[bucketpos
] = dynsym_index
;
770 unsigned int hashlen
= ((2
775 unsigned char* phash
= new unsigned char[hashlen
];
777 if (parameters
->is_big_endian())
779 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
780 Dynobj::sized_create_elf_hash_table
<true>(bucket
, chain
, phash
,
788 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
789 Dynobj::sized_create_elf_hash_table
<false>(bucket
, chain
, phash
,
800 // Fill in an ELF hash table.
802 template<bool big_endian
>
804 Dynobj::sized_create_elf_hash_table(const std::vector
<uint32_t>& bucket
,
805 const std::vector
<uint32_t>& chain
,
806 unsigned char* phash
,
807 unsigned int hashlen
)
809 unsigned char* p
= phash
;
811 const unsigned int bucketcount
= bucket
.size();
812 const unsigned int chaincount
= chain
.size();
814 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucketcount
);
816 elfcpp::Swap
<32, big_endian
>::writeval(p
, chaincount
);
819 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
821 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucket
[i
]);
825 for (unsigned int i
= 0; i
< chaincount
; ++i
)
827 elfcpp::Swap
<32, big_endian
>::writeval(p
, chain
[i
]);
831 gold_assert(static_cast<unsigned int>(p
- phash
) == hashlen
);
834 // The hash function used for the GNU hash table. This hash function
835 // must not change, as the dynamic linker uses it also.
838 Dynobj::gnu_hash(const char* name
)
840 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
843 while ((c
= *nameu
++) != '\0')
844 h
= (h
<< 5) + h
+ c
;
848 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
849 // tables are an extension to ELF which are recognized by the GNU
850 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
851 // TARGET is the target. DYNSYMS is a vector with all the global
852 // symbols which will be going into the dynamic symbol table.
853 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
857 Dynobj::create_gnu_hash_table(const std::vector
<Symbol
*>& dynsyms
,
858 unsigned int local_dynsym_count
,
859 unsigned char** pphash
,
860 unsigned int* phashlen
)
862 const unsigned int count
= dynsyms
.size();
864 // Sort the dynamic symbols into two vectors. Symbols which we do
865 // not want to put into the hash table we store into
866 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
867 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
868 // and records the hash codes.
870 std::vector
<Symbol
*> unhashed_dynsyms
;
871 unhashed_dynsyms
.reserve(count
);
873 std::vector
<Symbol
*> hashed_dynsyms
;
874 hashed_dynsyms
.reserve(count
);
876 std::vector
<uint32_t> dynsym_hashvals
;
877 dynsym_hashvals
.reserve(count
);
879 for (unsigned int i
= 0; i
< count
; ++i
)
881 Symbol
* sym
= dynsyms
[i
];
883 // FIXME: Should put on unhashed_dynsyms if the symbol is
885 if (sym
->is_undefined())
886 unhashed_dynsyms
.push_back(sym
);
889 hashed_dynsyms
.push_back(sym
);
890 dynsym_hashvals
.push_back(Dynobj::gnu_hash(sym
->name()));
894 // Put the unhashed symbols at the start of the global portion of
895 // the dynamic symbol table.
896 const unsigned int unhashed_count
= unhashed_dynsyms
.size();
897 unsigned int unhashed_dynsym_index
= local_dynsym_count
;
898 for (unsigned int i
= 0; i
< unhashed_count
; ++i
)
900 unhashed_dynsyms
[i
]->set_dynsym_index(unhashed_dynsym_index
);
901 ++unhashed_dynsym_index
;
904 // For the actual data generation we call out to a templatized
906 int size
= parameters
->get_size();
907 bool big_endian
= parameters
->is_big_endian();
912 #ifdef HAVE_TARGET_32_BIG
913 Dynobj::sized_create_gnu_hash_table
<32, true>(hashed_dynsyms
,
915 unhashed_dynsym_index
,
924 #ifdef HAVE_TARGET_32_LITTLE
925 Dynobj::sized_create_gnu_hash_table
<32, false>(hashed_dynsyms
,
927 unhashed_dynsym_index
,
939 #ifdef HAVE_TARGET_64_BIG
940 Dynobj::sized_create_gnu_hash_table
<64, true>(hashed_dynsyms
,
942 unhashed_dynsym_index
,
951 #ifdef HAVE_TARGET_64_LITTLE
952 Dynobj::sized_create_gnu_hash_table
<64, false>(hashed_dynsyms
,
954 unhashed_dynsym_index
,
966 // Create the actual data for a GNU hash table. This is just a copy
967 // of the code from the old GNU linker.
969 template<int size
, bool big_endian
>
971 Dynobj::sized_create_gnu_hash_table(
972 const std::vector
<Symbol
*>& hashed_dynsyms
,
973 const std::vector
<uint32_t>& dynsym_hashvals
,
974 unsigned int unhashed_dynsym_count
,
975 unsigned char** pphash
,
976 unsigned int* phashlen
)
978 if (hashed_dynsyms
.empty())
980 // Special case for the empty hash table.
981 unsigned int hashlen
= 5 * 4 + size
/ 8;
982 unsigned char* phash
= new unsigned char[hashlen
];
984 elfcpp::Swap
<32, big_endian
>::writeval(phash
, 1);
985 // Symbol index above unhashed symbols.
986 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, unhashed_dynsym_count
);
987 // One word for bitmask.
988 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, 1);
989 // Only bloom filter.
990 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, 0);
992 elfcpp::Swap
<size
, big_endian
>::writeval(phash
+ 16, 0);
993 // No hashes in only bucket.
994 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 16 + size
/ 8, 0);
1002 const unsigned int bucketcount
=
1003 Dynobj::compute_bucket_count(dynsym_hashvals
, true);
1005 const unsigned int nsyms
= hashed_dynsyms
.size();
1007 uint32_t maskbitslog2
= 1;
1008 uint32_t x
= nsyms
>> 1;
1014 if (maskbitslog2
< 3)
1016 else if (((1U << (maskbitslog2
- 2)) & nsyms
) != 0)
1026 if (maskbitslog2
== 5)
1030 uint32_t mask
= (1U << shift1
) - 1U;
1031 uint32_t shift2
= maskbitslog2
;
1032 uint32_t maskbits
= 1U << maskbitslog2
;
1033 uint32_t maskwords
= 1U << (maskbitslog2
- shift1
);
1035 typedef typename
elfcpp::Elf_types
<size
>::Elf_WXword Word
;
1036 std::vector
<Word
> bitmask(maskwords
);
1037 std::vector
<uint32_t> counts(bucketcount
);
1038 std::vector
<uint32_t> indx(bucketcount
);
1039 uint32_t symindx
= unhashed_dynsym_count
;
1041 // Count the number of times each hash bucket is used.
1042 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1043 ++counts
[dynsym_hashvals
[i
] % bucketcount
];
1045 unsigned int cnt
= symindx
;
1046 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1052 unsigned int hashlen
= (4 + bucketcount
+ nsyms
) * 4;
1053 hashlen
+= maskbits
/ 8;
1054 unsigned char* phash
= new unsigned char[hashlen
];
1056 elfcpp::Swap
<32, big_endian
>::writeval(phash
, bucketcount
);
1057 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, symindx
);
1058 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, maskwords
);
1059 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, shift2
);
1061 unsigned char* p
= phash
+ 16 + maskbits
/ 8;
1062 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1065 elfcpp::Swap
<32, big_endian
>::writeval(p
, 0);
1067 elfcpp::Swap
<32, big_endian
>::writeval(p
, indx
[i
]);
1071 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1073 Symbol
* sym
= hashed_dynsyms
[i
];
1074 uint32_t hashval
= dynsym_hashvals
[i
];
1076 unsigned int bucket
= hashval
% bucketcount
;
1077 unsigned int val
= ((hashval
>> shift1
)
1078 & ((maskbits
>> shift1
) - 1));
1079 bitmask
[val
] |= (static_cast<Word
>(1U)) << (hashval
& mask
);
1080 bitmask
[val
] |= (static_cast<Word
>(1U)) << ((hashval
>> shift2
) & mask
);
1081 val
= hashval
& ~ 1U;
1082 if (counts
[bucket
] == 1)
1084 // Last element terminates the chain.
1087 elfcpp::Swap
<32, big_endian
>::writeval(p
+ (indx
[bucket
] - symindx
) * 4,
1091 sym
->set_dynsym_index(indx
[bucket
]);
1096 for (unsigned int i
= 0; i
< maskwords
; ++i
)
1098 elfcpp::Swap
<size
, big_endian
>::writeval(p
, bitmask
[i
]);
1102 *phashlen
= hashlen
;
1108 // Write this definition to a buffer for the output section.
1110 template<int size
, bool big_endian
>
1112 Verdef::write(const Stringpool
* dynpool
, bool is_last
, unsigned char* pb
1113 ACCEPT_SIZE_ENDIAN
) const
1115 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1116 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1118 elfcpp::Verdef_write
<size
, big_endian
> vd(pb
);
1119 vd
.set_vd_version(elfcpp::VER_DEF_CURRENT
);
1120 vd
.set_vd_flags((this->is_base_
? elfcpp::VER_FLG_BASE
: 0)
1121 | (this->is_weak_
? elfcpp::VER_FLG_WEAK
: 0));
1122 vd
.set_vd_ndx(this->index());
1123 vd
.set_vd_cnt(1 + this->deps_
.size());
1124 vd
.set_vd_hash(Dynobj::elf_hash(this->name()));
1125 vd
.set_vd_aux(verdef_size
);
1126 vd
.set_vd_next(is_last
1128 : verdef_size
+ (1 + this->deps_
.size()) * verdaux_size
);
1131 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1132 vda
.set_vda_name(dynpool
->get_offset(this->name()));
1133 vda
.set_vda_next(this->deps_
.empty() ? 0 : verdaux_size
);
1136 Deps::const_iterator p
;
1138 for (p
= this->deps_
.begin(), i
= 0;
1139 p
!= this->deps_
.end();
1142 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1143 vda
.set_vda_name(dynpool
->get_offset(*p
));
1144 vda
.set_vda_next(i
+ 1 >= this->deps_
.size() ? 0 : verdaux_size
);
1155 for (Need_versions::iterator p
= this->need_versions_
.begin();
1156 p
!= this->need_versions_
.end();
1161 // Add a new version to this file reference.
1164 Verneed::add_name(const char* name
)
1166 Verneed_version
* vv
= new Verneed_version(name
);
1167 this->need_versions_
.push_back(vv
);
1171 // Set the version indexes starting at INDEX.
1174 Verneed::finalize(unsigned int index
)
1176 for (Need_versions::iterator p
= this->need_versions_
.begin();
1177 p
!= this->need_versions_
.end();
1180 (*p
)->set_index(index
);
1186 // Write this list of referenced versions to a buffer for the output
1189 template<int size
, bool big_endian
>
1191 Verneed::write(const Stringpool
* dynpool
, bool is_last
,
1192 unsigned char* pb ACCEPT_SIZE_ENDIAN
) const
1194 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1195 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1197 elfcpp::Verneed_write
<size
, big_endian
> vn(pb
);
1198 vn
.set_vn_version(elfcpp::VER_NEED_CURRENT
);
1199 vn
.set_vn_cnt(this->need_versions_
.size());
1200 vn
.set_vn_file(dynpool
->get_offset(this->filename()));
1201 vn
.set_vn_aux(verneed_size
);
1202 vn
.set_vn_next(is_last
1204 : verneed_size
+ this->need_versions_
.size() * vernaux_size
);
1207 Need_versions::const_iterator p
;
1209 for (p
= this->need_versions_
.begin(), i
= 0;
1210 p
!= this->need_versions_
.end();
1213 elfcpp::Vernaux_write
<size
, big_endian
> vna(pb
);
1214 vna
.set_vna_hash(Dynobj::elf_hash((*p
)->version()));
1215 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1216 vna
.set_vna_flags(0);
1217 vna
.set_vna_other((*p
)->index());
1218 vna
.set_vna_name(dynpool
->get_offset((*p
)->version()));
1219 vna
.set_vna_next(i
+ 1 >= this->need_versions_
.size()
1228 // Versions methods.
1230 Versions::~Versions()
1232 for (Defs::iterator p
= this->defs_
.begin();
1233 p
!= this->defs_
.end();
1237 for (Needs::iterator p
= this->needs_
.begin();
1238 p
!= this->needs_
.end();
1243 // Return the dynamic object which a symbol refers to.
1246 Versions::get_dynobj_for_sym(const Symbol_table
* symtab
,
1247 const Symbol
* sym
) const
1249 if (sym
->is_copied_from_dynobj())
1250 return symtab
->get_copy_source(sym
);
1253 Object
* object
= sym
->object();
1254 gold_assert(object
->is_dynamic());
1255 return static_cast<Dynobj
*>(object
);
1259 // Record version information for a symbol going into the dynamic
1263 Versions::record_version(const Symbol_table
* symtab
,
1264 Stringpool
* dynpool
, const Symbol
* sym
)
1266 gold_assert(!this->is_finalized_
);
1267 gold_assert(sym
->version() != NULL
);
1269 Stringpool::Key version_key
;
1270 const char* version
= dynpool
->add(sym
->version(), false, &version_key
);
1272 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1274 if (parameters
->output_is_shared())
1275 this->add_def(sym
, version
, version_key
);
1279 // This is a version reference.
1280 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1281 this->add_need(dynpool
, dynobj
->soname(), version
, version_key
);
1285 // We've found a symbol SYM defined in version VERSION.
1288 Versions::add_def(const Symbol
* sym
, const char* version
,
1289 Stringpool::Key version_key
)
1291 Key
k(version_key
, 0);
1292 Version_base
* const vbnull
= NULL
;
1293 std::pair
<Version_table::iterator
, bool> ins
=
1294 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1298 // We already have an entry for this version.
1299 Version_base
* vb
= ins
.first
->second
;
1301 // We have now seen a symbol in this version, so it is not
1303 gold_assert(vb
!= NULL
);
1306 // FIXME: When we support version scripts, we will need to
1307 // check whether this symbol should be forced local.
1311 // If we are creating a shared object, it is an error to
1312 // find a definition of a symbol with a version which is not
1313 // in the version script.
1314 if (parameters
->output_is_shared())
1316 gold_error(_("symbol %s has undefined version %s"),
1317 sym
->demangled_name().c_str(), version
);
1321 // If this is the first version we are defining, first define
1322 // the base version. FIXME: Should use soname here when
1323 // creating a shared object.
1324 Verdef
* vdbase
= new Verdef(parameters
->output_file_name(), true, false,
1326 this->defs_
.push_back(vdbase
);
1328 // When creating a regular executable, automatically define
1330 Verdef
* vd
= new Verdef(version
, false, false, false);
1331 this->defs_
.push_back(vd
);
1332 ins
.first
->second
= vd
;
1336 // Add a reference to version NAME in file FILENAME.
1339 Versions::add_need(Stringpool
* dynpool
, const char* filename
, const char* name
,
1340 Stringpool::Key name_key
)
1342 Stringpool::Key filename_key
;
1343 filename
= dynpool
->add(filename
, true, &filename_key
);
1345 Key
k(name_key
, filename_key
);
1346 Version_base
* const vbnull
= NULL
;
1347 std::pair
<Version_table::iterator
, bool> ins
=
1348 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1352 // We already have an entry for this filename/version.
1356 // See whether we already have this filename. We don't expect many
1357 // version references, so we just do a linear search. This could be
1358 // replaced by a hash table.
1360 for (Needs::iterator p
= this->needs_
.begin();
1361 p
!= this->needs_
.end();
1364 if ((*p
)->filename() == filename
)
1373 // We have a new filename.
1374 vn
= new Verneed(filename
);
1375 this->needs_
.push_back(vn
);
1378 ins
.first
->second
= vn
->add_name(name
);
1381 // Set the version indexes. Create a new dynamic version symbol for
1382 // each new version definition.
1385 Versions::finalize(const Target
* target
, Symbol_table
* symtab
,
1386 unsigned int dynsym_index
, std::vector
<Symbol
*>* syms
)
1388 gold_assert(!this->is_finalized_
);
1390 unsigned int vi
= 1;
1392 for (Defs::iterator p
= this->defs_
.begin();
1393 p
!= this->defs_
.end();
1396 (*p
)->set_index(vi
);
1399 // Create a version symbol if necessary.
1400 if (!(*p
)->is_symbol_created())
1402 Symbol
* vsym
= symtab
->define_as_constant(target
, (*p
)->name(),
1406 elfcpp::STV_DEFAULT
, 0,
1408 vsym
->set_needs_dynsym_entry();
1409 vsym
->set_dynsym_index(dynsym_index
);
1411 syms
->push_back(vsym
);
1412 // The name is already in the dynamic pool.
1416 // Index 1 is used for global symbols.
1419 gold_assert(this->defs_
.empty());
1423 for (Needs::iterator p
= this->needs_
.begin();
1424 p
!= this->needs_
.end();
1426 vi
= (*p
)->finalize(vi
);
1428 this->is_finalized_
= true;
1430 return dynsym_index
;
1433 // Return the version index to use for a symbol. This does two hash
1434 // table lookups: one in DYNPOOL and one in this->version_table_.
1435 // Another approach alternative would be store a pointer in SYM, which
1436 // would increase the size of the symbol table. Or perhaps we could
1437 // use a hash table from dynamic symbol pointer values to Version_base
1441 Versions::version_index(const Symbol_table
* symtab
, const Stringpool
* dynpool
,
1442 const Symbol
* sym
) const
1444 Stringpool::Key version_key
;
1445 const char* version
= dynpool
->find(sym
->version(), &version_key
);
1446 gold_assert(version
!= NULL
);
1449 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1451 if (!parameters
->output_is_shared())
1452 return elfcpp::VER_NDX_GLOBAL
;
1453 k
= Key(version_key
, 0);
1457 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1459 Stringpool::Key filename_key
;
1460 const char* filename
= dynpool
->find(dynobj
->soname(), &filename_key
);
1461 gold_assert(filename
!= NULL
);
1463 k
= Key(version_key
, filename_key
);
1466 Version_table::const_iterator p
= this->version_table_
.find(k
);
1467 gold_assert(p
!= this->version_table_
.end());
1469 return p
->second
->index();
1472 // Return an allocated buffer holding the contents of the symbol
1475 template<int size
, bool big_endian
>
1477 Versions::symbol_section_contents(const Symbol_table
* symtab
,
1478 const Stringpool
* dynpool
,
1479 unsigned int local_symcount
,
1480 const std::vector
<Symbol
*>& syms
,
1483 ACCEPT_SIZE_ENDIAN
) const
1485 gold_assert(this->is_finalized_
);
1487 unsigned int sz
= (local_symcount
+ syms
.size()) * 2;
1488 unsigned char* pbuf
= new unsigned char[sz
];
1490 for (unsigned int i
= 0; i
< local_symcount
; ++i
)
1491 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ i
* 2,
1492 elfcpp::VER_NDX_LOCAL
);
1494 for (std::vector
<Symbol
*>::const_iterator p
= syms
.begin();
1498 unsigned int version_index
;
1499 const char* version
= (*p
)->version();
1500 if (version
== NULL
)
1501 version_index
= elfcpp::VER_NDX_GLOBAL
;
1503 version_index
= this->version_index(symtab
, dynpool
, *p
);
1504 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ (*p
)->dynsym_index() * 2,
1512 // Return an allocated buffer holding the contents of the version
1513 // definition section.
1515 template<int size
, bool big_endian
>
1517 Versions::def_section_contents(const Stringpool
* dynpool
,
1518 unsigned char** pp
, unsigned int* psize
,
1519 unsigned int* pentries
1520 ACCEPT_SIZE_ENDIAN
) const
1522 gold_assert(this->is_finalized_
);
1523 gold_assert(!this->defs_
.empty());
1525 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1526 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1528 unsigned int sz
= 0;
1529 for (Defs::const_iterator p
= this->defs_
.begin();
1530 p
!= this->defs_
.end();
1533 sz
+= verdef_size
+ verdaux_size
;
1534 sz
+= (*p
)->count_dependencies() * verdaux_size
;
1537 unsigned char* pbuf
= new unsigned char[sz
];
1539 unsigned char* pb
= pbuf
;
1540 Defs::const_iterator p
;
1542 for (p
= this->defs_
.begin(), i
= 0;
1543 p
!= this->defs_
.end();
1545 pb
= (*p
)->write
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1546 dynpool
, i
+ 1 >= this->defs_
.size(), pb
1547 SELECT_SIZE_ENDIAN(size
, big_endian
));
1549 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1553 *pentries
= this->defs_
.size();
1556 // Return an allocated buffer holding the contents of the version
1557 // reference section.
1559 template<int size
, bool big_endian
>
1561 Versions::need_section_contents(const Stringpool
* dynpool
,
1562 unsigned char** pp
, unsigned int *psize
,
1563 unsigned int *pentries
1564 ACCEPT_SIZE_ENDIAN
) const
1566 gold_assert(this->is_finalized_
);
1567 gold_assert(!this->needs_
.empty());
1569 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1570 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1572 unsigned int sz
= 0;
1573 for (Needs::const_iterator p
= this->needs_
.begin();
1574 p
!= this->needs_
.end();
1578 sz
+= (*p
)->count_versions() * vernaux_size
;
1581 unsigned char* pbuf
= new unsigned char[sz
];
1583 unsigned char* pb
= pbuf
;
1584 Needs::const_iterator p
;
1586 for (p
= this->needs_
.begin(), i
= 0;
1587 p
!= this->needs_
.end();
1589 pb
= (*p
)->write
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1590 dynpool
, i
+ 1 >= this->needs_
.size(), pb
1591 SELECT_SIZE_ENDIAN(size
, big_endian
));
1593 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1597 *pentries
= this->needs_
.size();
1600 // Instantiate the templates we need. We could use the configure
1601 // script to restrict this to only the ones for implemented targets.
1603 #ifdef HAVE_TARGET_32_LITTLE
1605 class Sized_dynobj
<32, false>;
1608 #ifdef HAVE_TARGET_32_BIG
1610 class Sized_dynobj
<32, true>;
1613 #ifdef HAVE_TARGET_64_LITTLE
1615 class Sized_dynobj
<64, false>;
1618 #ifdef HAVE_TARGET_64_BIG
1620 class Sized_dynobj
<64, true>;
1623 #ifdef HAVE_TARGET_32_LITTLE
1626 Versions::symbol_section_contents
<32, false>(
1627 const Symbol_table
*,
1630 const std::vector
<Symbol
*>&,
1633 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, false)) const;
1636 #ifdef HAVE_TARGET_32_BIG
1639 Versions::symbol_section_contents
<32, true>(
1640 const Symbol_table
*,
1643 const std::vector
<Symbol
*>&,
1646 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, true)) const;
1649 #ifdef HAVE_TARGET_64_LITTLE
1652 Versions::symbol_section_contents
<64, false>(
1653 const Symbol_table
*,
1656 const std::vector
<Symbol
*>&,
1659 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, false)) const;
1662 #ifdef HAVE_TARGET_64_BIG
1665 Versions::symbol_section_contents
<64, true>(
1666 const Symbol_table
*,
1669 const std::vector
<Symbol
*>&,
1672 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, true)) const;
1675 #ifdef HAVE_TARGET_32_LITTLE
1678 Versions::def_section_contents
<32, false>(
1683 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, false)) const;
1686 #ifdef HAVE_TARGET_32_BIG
1689 Versions::def_section_contents
<32, true>(
1694 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, true)) const;
1697 #ifdef HAVE_TARGET_64_LITTLE
1700 Versions::def_section_contents
<64, false>(
1705 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, false)) const;
1708 #ifdef HAVE_TARGET_64_BIG
1711 Versions::def_section_contents
<64, true>(
1716 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, true)) const;
1719 #ifdef HAVE_TARGET_32_LITTLE
1722 Versions::need_section_contents
<32, false>(
1727 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, false)) const;
1730 #ifdef HAVE_TARGET_32_BIG
1733 Versions::need_section_contents
<32, true>(
1738 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, true)) const;
1741 #ifdef HAVE_TARGET_64_LITTLE
1744 Versions::need_section_contents
<64, false>(
1749 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, false)) const;
1752 #ifdef HAVE_TARGET_64_BIG
1755 Versions::need_section_contents
<64, true>(
1760 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, true)) const;
1763 } // End namespace gold.