2011-09-19 Tristan Gingold <gingold@adacore.com>
[binutils.git] / gold / output.h
blob1bec2c003956f44a30697ca8dec6ab4933405310
1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
26 #include <list>
27 #include <vector>
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
34 namespace gold
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
52 // An abtract class for data which has to go into the output file.
54 class Output_data
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
64 virtual
65 ~Output_data();
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
72 gold_assert(this->is_address_valid_);
73 return this->address_;
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
120 bool
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
124 // Return the required alignment.
125 uint64_t
126 addralign() const
127 { return this->do_addralign(); }
129 // Return whether this has a load address.
130 bool
131 has_load_address() const
132 { return this->do_has_load_address(); }
134 // Return the load address.
135 uint64_t
136 load_address() const
137 { return this->do_load_address(); }
139 // Return whether this is an Output_section.
140 bool
141 is_section() const
142 { return this->do_is_section(); }
144 // Return whether this is an Output_section of the specified type.
145 bool
146 is_section_type(elfcpp::Elf_Word stt) const
147 { return this->do_is_section_type(stt); }
149 // Return whether this is an Output_section with the specified flag
150 // set.
151 bool
152 is_section_flag_set(elfcpp::Elf_Xword shf) const
153 { return this->do_is_section_flag_set(shf); }
155 // Return the output section that this goes in, if there is one.
156 Output_section*
157 output_section()
158 { return this->do_output_section(); }
160 const Output_section*
161 output_section() const
162 { return this->do_output_section(); }
164 // Return the output section index, if there is an output section.
165 unsigned int
166 out_shndx() const
167 { return this->do_out_shndx(); }
169 // Set the output section index, if this is an output section.
170 void
171 set_out_shndx(unsigned int shndx)
172 { this->do_set_out_shndx(shndx); }
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
177 void
178 set_address_and_file_offset(uint64_t addr, off_t off)
180 this->set_address(addr);
181 this->set_file_offset(off);
182 this->finalize_data_size();
185 // Set the address.
186 void
187 set_address(uint64_t addr)
189 gold_assert(!this->is_address_valid_);
190 this->address_ = addr;
191 this->is_address_valid_ = true;
194 // Set the file offset.
195 void
196 set_file_offset(off_t off)
198 gold_assert(!this->is_offset_valid_);
199 this->offset_ = off;
200 this->is_offset_valid_ = true;
203 // Update the data size without finalizing it.
204 void
205 pre_finalize_data_size()
207 if (!this->is_data_size_valid_)
209 // Tell the child class to update the data size.
210 this->update_data_size();
214 // Finalize the data size.
215 void
216 finalize_data_size()
218 if (!this->is_data_size_valid_)
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_);
226 // Set the TLS offset. Called only for SHT_TLS sections.
227 void
228 set_tls_offset(uint64_t tls_base)
229 { this->do_set_tls_offset(tls_base); }
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
233 uint64_t
234 tls_offset() const
235 { return this->do_tls_offset(); }
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
239 void
240 write(Output_file* file)
241 { this->do_write(file); }
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
245 static void
246 layout_complete()
247 { Output_data::allocated_sizes_are_fixed = true; }
249 // Used to check that layout has been done.
250 static bool
251 is_layout_complete()
252 { return Output_data::allocated_sizes_are_fixed; }
254 // Note that a dynamic reloc has been applied to this data.
255 void
256 add_dynamic_reloc()
257 { this->has_dynamic_reloc_ = true; }
259 // Return whether a dynamic reloc has been applied.
260 bool
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_; }
264 // Whether the address is valid.
265 bool
266 is_address_valid() const
267 { return this->is_address_valid_; }
269 // Whether the file offset is valid.
270 bool
271 is_offset_valid() const
272 { return this->is_offset_valid_; }
274 // Whether the data size is valid.
275 bool
276 is_data_size_valid() const
277 { return this->is_data_size_valid_; }
279 // Print information to the map file.
280 void
281 print_to_mapfile(Mapfile* mapfile) const
282 { return this->do_print_to_mapfile(mapfile); }
284 protected:
285 // Functions that child classes may or in some cases must implement.
287 // Write the data to the output file.
288 virtual void
289 do_write(Output_file*) = 0;
291 // Return the required alignment.
292 virtual uint64_t
293 do_addralign() const = 0;
295 // Return whether this has a load address.
296 virtual bool
297 do_has_load_address() const
298 { return false; }
300 // Return the load address.
301 virtual uint64_t
302 do_load_address() const
303 { gold_unreachable(); }
305 // Return whether this is an Output_section.
306 virtual bool
307 do_is_section() const
308 { return false; }
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
312 virtual bool
313 do_is_section_type(elfcpp::Elf_Word) const
314 { return false; }
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
318 virtual bool
319 do_is_section_flag_set(elfcpp::Elf_Xword) const
320 { return false; }
322 // Return the output section, if there is one.
323 virtual Output_section*
324 do_output_section()
325 { return NULL; }
327 virtual const Output_section*
328 do_output_section() const
329 { return NULL; }
331 // Return the output section index, if there is an output section.
332 virtual unsigned int
333 do_out_shndx() const
334 { gold_unreachable(); }
336 // Set the output section index, if this is an output section.
337 virtual void
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
348 virtual void
349 update_data_size()
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
355 virtual void
356 set_final_data_size()
357 { gold_unreachable(); }
359 // A hook for resetting the address and file offset.
360 virtual void
361 do_reset_address_and_file_offset()
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
368 virtual bool
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_ && !this->is_offset_valid_; }
372 // Set the TLS offset. Called only for SHT_TLS sections.
373 virtual void
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
379 virtual uint64_t
380 do_tls_offset() const
381 { gold_unreachable(); }
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
385 virtual void
386 do_print_to_mapfile(Mapfile*) const
387 { gold_unreachable(); }
389 // Functions that child classes may call.
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
394 void
395 mark_address_invalid()
396 { this->is_address_valid_ = false; }
398 // Set the size of the data.
399 void
400 set_data_size(off_t data_size)
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_);
404 this->data_size_ = data_size;
405 this->is_data_size_valid_ = true;
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
410 void
411 fix_data_size()
413 gold_assert(this->is_data_size_valid_);
414 this->is_data_size_fixed_ = true;
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
419 off_t
420 current_data_size_for_child() const
421 { return this->data_size_; }
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
425 void
426 set_current_data_size_for_child(off_t data_size)
428 gold_assert(!this->is_data_size_valid_);
429 this->data_size_ = data_size;
432 // Return default alignment for the target size.
433 static uint64_t
434 default_alignment();
436 // Return default alignment for a specified size--32 or 64.
437 static uint64_t
438 default_alignment_for_size(int size);
440 private:
441 Output_data(const Output_data&);
442 Output_data& operator=(const Output_data&);
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
446 // addresses.
447 static bool allocated_sizes_are_fixed;
449 // Memory address in output file.
450 uint64_t address_;
451 // Size of data in output file.
452 off_t data_size_;
453 // File offset of contents in output file.
454 off_t offset_;
455 // Whether address_ is valid.
456 bool is_address_valid_ : 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_ : 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_ : 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_ : 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_ : 1;
467 // Output the section headers.
469 class Output_section_headers : public Output_data
471 public:
472 Output_section_headers(const Layout*,
473 const Layout::Segment_list*,
474 const Layout::Section_list*,
475 const Layout::Section_list*,
476 const Stringpool*,
477 const Output_section*);
479 protected:
480 // Write the data to the file.
481 void
482 do_write(Output_file*);
484 // Return the required alignment.
485 uint64_t
486 do_addralign() const
487 { return Output_data::default_alignment(); }
489 // Write to a map file.
490 void
491 do_print_to_mapfile(Mapfile* mapfile) const
492 { mapfile->print_output_data(this, _("** section headers")); }
494 // Update the data size.
495 void
496 update_data_size()
497 { this->set_data_size(this->do_size()); }
499 // Set final data size.
500 void
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
504 private:
505 // Write the data to the file with the right size and endianness.
506 template<int size, bool big_endian>
507 void
508 do_sized_write(Output_file*);
510 // Compute data size.
511 off_t
512 do_size() const;
514 const Layout* layout_;
515 const Layout::Segment_list* segment_list_;
516 const Layout::Section_list* section_list_;
517 const Layout::Section_list* unattached_section_list_;
518 const Stringpool* secnamepool_;
519 const Output_section* shstrtab_section_;
522 // Output the segment headers.
524 class Output_segment_headers : public Output_data
526 public:
527 Output_segment_headers(const Layout::Segment_list& segment_list);
529 protected:
530 // Write the data to the file.
531 void
532 do_write(Output_file*);
534 // Return the required alignment.
535 uint64_t
536 do_addralign() const
537 { return Output_data::default_alignment(); }
539 // Write to a map file.
540 void
541 do_print_to_mapfile(Mapfile* mapfile) const
542 { mapfile->print_output_data(this, _("** segment headers")); }
544 // Set final data size.
545 void
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
549 private:
550 // Write the data to the file with the right size and endianness.
551 template<int size, bool big_endian>
552 void
553 do_sized_write(Output_file*);
555 // Compute the current size.
556 off_t
557 do_size() const;
559 const Layout::Segment_list& segment_list_;
562 // Output the ELF file header.
564 class Output_file_header : public Output_data
566 public:
567 Output_file_header(const Target*,
568 const Symbol_table*,
569 const Output_segment_headers*);
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers*,
574 const Output_section* shstrtab);
576 protected:
577 // Write the data to the file.
578 void
579 do_write(Output_file*);
581 // Return the required alignment.
582 uint64_t
583 do_addralign() const
584 { return Output_data::default_alignment(); }
586 // Write to a map file.
587 void
588 do_print_to_mapfile(Mapfile* mapfile) const
589 { mapfile->print_output_data(this, _("** file header")); }
591 // Set final data size.
592 void
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
596 private:
597 // Write the data to the file with the right size and endianness.
598 template<int size, bool big_endian>
599 void
600 do_sized_write(Output_file*);
602 // Return the value to use for the entry address.
603 template<int size>
604 typename elfcpp::Elf_types<size>::Elf_Addr
605 entry();
607 // Compute the current data size.
608 off_t
609 do_size() const;
611 const Target* target_;
612 const Symbol_table* symtab_;
613 const Output_segment_headers* segment_header_;
614 const Output_section_headers* section_header_;
615 const Output_section* shstrtab_;
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
623 class Output_section_data : public Output_data
625 public:
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
639 // Return the output section.
640 Output_section*
641 output_section()
642 { return this->output_section_; }
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
648 // Record the output section.
649 void
650 set_output_section(Output_section* os);
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
654 bool
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
664 bool
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
673 bool
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
679 void
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
685 void
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
689 protected:
690 // The child class must implement do_write.
692 // The child class may implement specific adjustments to the output
693 // section.
694 virtual void
695 do_adjust_output_section(Output_section*)
698 // May be implemented by child class. Return true if the section
699 // was handled.
700 virtual bool
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
704 // The child class may implement output_offset.
705 virtual bool
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
708 { return false; }
710 // The child class may implement is_merge_section_for.
711 virtual bool
712 do_is_merge_section_for(const Relobj*, unsigned int) const
713 { return false; }
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
717 // implement this.
718 virtual void
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
722 // Print merge statistics.
723 virtual void
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
727 // Return the required alignment.
728 uint64_t
729 do_addralign() const
730 { return this->addralign_; }
732 // Return the output section.
733 Output_section*
734 do_output_section()
735 { return this->output_section_; }
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
741 // Return the section index of the output section.
742 unsigned int
743 do_out_shndx() const;
745 // Set the alignment.
746 void
747 set_addralign(uint64_t addralign);
749 private:
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
753 uint64_t addralign_;
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
758 // them.
760 class Output_section_data_build : public Output_section_data
762 public:
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
771 // Set the current data size.
772 void
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
776 protected:
777 // Set the final data size.
778 virtual void
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
783 // A simple case of Output_data in which we have constant data to
784 // output.
786 class Output_data_const : public Output_section_data
788 public:
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
802 protected:
803 // Write the data to the output file.
804 void
805 do_write(Output_file*);
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
817 private:
818 std::string data_;
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
824 class Output_data_const_buffer : public Output_section_data
826 public:
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
833 protected:
834 // Write the data the output file.
835 void
836 do_write(Output_file*);
838 // Write the data to a buffer.
839 void
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
843 // Write to a map file.
844 void
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
848 private:
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
859 class Output_data_fixed_space : public Output_section_data
861 public:
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
865 map_name_(map_name)
868 protected:
869 // Write out the data--the actual data must be written out
870 // elsewhere.
871 void
872 do_write(Output_file*)
875 // Write to a map file.
876 void
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
880 private:
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
886 // A place holder for variable sized data written out via some other
887 // mechanism.
889 class Output_data_space : public Output_section_data_build
891 public:
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
894 map_name_(map_name)
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
900 map_name_(map_name)
903 // Set the alignment.
904 void
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
908 protected:
909 // Write out the data--the actual data must be written out
910 // elsewhere.
911 void
912 do_write(Output_file*)
915 // Write to a map file.
916 void
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
920 private:
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
929 class Output_data_zero_fill : public Output_section_data
931 public:
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
936 protected:
937 // There is no data to write out.
938 void
939 do_write(Output_file*)
942 // Write to a map file.
943 void
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
948 // A string table which goes into an output section.
950 class Output_data_strtab : public Output_section_data
952 public:
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
957 protected:
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
960 void
961 update_data_size()
962 { this->set_final_data_size(); }
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
966 void
967 set_final_data_size();
969 // Write out the data.
970 void
971 do_write(Output_file*);
973 // Write the data to a buffer.
974 void
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
978 // Write to a map file.
979 void
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
983 private:
984 Stringpool* strtab_;
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1012 Output_reloc()
1013 : local_sym_index_(INVALID_CODE)
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1019 // input section.
1021 // A reloc against a global symbol.
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless);
1026 Output_reloc(Symbol* gsym, unsigned int type,
1027 Sized_relobj<size, big_endian>* relobj,
1028 unsigned int shndx, Address address, bool is_relative,
1029 bool is_symbolless);
1031 // A reloc against a local symbol or local section symbol.
1033 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1034 unsigned int local_sym_index, unsigned int type,
1035 Output_data* od, Address address, bool is_relative,
1036 bool is_symbolless, bool is_section_symbol);
1038 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1039 unsigned int local_sym_index, unsigned int type,
1040 unsigned int shndx, Address address, bool is_relative,
1041 bool is_symbolless, bool is_section_symbol);
1043 // A reloc against the STT_SECTION symbol of an output section.
1045 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1046 Address address);
1048 Output_reloc(Output_section* os, unsigned int type,
1049 Sized_relobj<size, big_endian>* relobj,
1050 unsigned int shndx, Address address);
1052 // An absolute relocation with no symbol.
1054 Output_reloc(unsigned int type, Output_data* od, Address address);
1056 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1057 unsigned int shndx, Address address);
1059 // A target specific relocation. The target will be called to get
1060 // the symbol index, passing ARG. The type and offset will be set
1061 // as for other relocation types.
1063 Output_reloc(unsigned int type, void* arg, Output_data* od,
1064 Address address);
1066 Output_reloc(unsigned int type, void* arg,
1067 Sized_relobj<size, big_endian>* relobj,
1068 unsigned int shndx, Address address);
1070 // Return the reloc type.
1071 unsigned int
1072 type() const
1073 { return this->type_; }
1075 // Return whether this is a RELATIVE relocation.
1076 bool
1077 is_relative() const
1078 { return this->is_relative_; }
1080 // Return whether this is a relocation which should not use
1081 // a symbol, but which obtains its addend from a symbol.
1082 bool
1083 is_symbolless() const
1084 { return this->is_symbolless_; }
1086 // Return whether this is against a local section symbol.
1087 bool
1088 is_local_section_symbol() const
1090 return (this->local_sym_index_ != GSYM_CODE
1091 && this->local_sym_index_ != SECTION_CODE
1092 && this->local_sym_index_ != INVALID_CODE
1093 && this->local_sym_index_ != TARGET_CODE
1094 && this->is_section_symbol_);
1097 // Return whether this is a target specific relocation.
1098 bool
1099 is_target_specific() const
1100 { return this->local_sym_index_ == TARGET_CODE; }
1102 // Return the argument to pass to the target for a target specific
1103 // relocation.
1104 void*
1105 target_arg() const
1107 gold_assert(this->local_sym_index_ == TARGET_CODE);
1108 return this->u1_.arg;
1111 // For a local section symbol, return the offset of the input
1112 // section within the output section. ADDEND is the addend being
1113 // applied to the input section.
1114 Address
1115 local_section_offset(Addend addend) const;
1117 // Get the value of the symbol referred to by a Rel relocation when
1118 // we are adding the given ADDEND.
1119 Address
1120 symbol_value(Addend addend) const;
1122 // If this relocation is against an input section, return the
1123 // relocatable object containing the input section.
1124 Sized_relobj<size, big_endian>*
1125 get_relobj() const
1127 if (this->shndx_ == INVALID_CODE)
1128 return NULL;
1129 return this->u2_.relobj;
1132 // Write the reloc entry to an output view.
1133 void
1134 write(unsigned char* pov) const;
1136 // Write the offset and info fields to Write_rel.
1137 template<typename Write_rel>
1138 void write_rel(Write_rel*) const;
1140 // This is used when sorting dynamic relocs. Return -1 to sort this
1141 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1143 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1144 const;
1146 // Return whether this reloc should be sorted before the argument
1147 // when sorting dynamic relocs.
1148 bool
1149 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1150 r2) const
1151 { return this->compare(r2) < 0; }
1153 private:
1154 // Record that we need a dynamic symbol index.
1155 void
1156 set_needs_dynsym_index();
1158 // Return the symbol index.
1159 unsigned int
1160 get_symbol_index() const;
1162 // Return the output address.
1163 Address
1164 get_address() const;
1166 // Codes for local_sym_index_.
1167 enum
1169 // Global symbol.
1170 GSYM_CODE = -1U,
1171 // Output section.
1172 SECTION_CODE = -2U,
1173 // Target specific.
1174 TARGET_CODE = -3U,
1175 // Invalid uninitialized entry.
1176 INVALID_CODE = -4U
1179 union
1181 // For a local symbol or local section symbol
1182 // (this->local_sym_index_ >= 0), the object. We will never
1183 // generate a relocation against a local symbol in a dynamic
1184 // object; that doesn't make sense. And our callers will always
1185 // be templatized, so we use Sized_relobj here.
1186 Sized_relobj<size, big_endian>* relobj;
1187 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1188 // symbol. If this is NULL, it indicates a relocation against the
1189 // undefined 0 symbol.
1190 Symbol* gsym;
1191 // For a relocation against an output section
1192 // (this->local_sym_index_ == SECTION_CODE), the output section.
1193 Output_section* os;
1194 // For a target specific relocation, an argument to pass to the
1195 // target.
1196 void* arg;
1197 } u1_;
1198 union
1200 // If this->shndx_ is not INVALID CODE, the object which holds the
1201 // input section being used to specify the reloc address.
1202 Sized_relobj<size, big_endian>* relobj;
1203 // If this->shndx_ is INVALID_CODE, the output data being used to
1204 // specify the reloc address. This may be NULL if the reloc
1205 // address is absolute.
1206 Output_data* od;
1207 } u2_;
1208 // The address offset within the input section or the Output_data.
1209 Address address_;
1210 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1211 // relocation against an output section, or TARGET_CODE for a target
1212 // specific relocation, or INVALID_CODE for an uninitialized value.
1213 // Otherwise, for a local symbol (this->is_section_symbol_ is
1214 // false), the local symbol index. For a local section symbol
1215 // (this->is_section_symbol_ is true), the section index in the
1216 // input file.
1217 unsigned int local_sym_index_;
1218 // The reloc type--a processor specific code.
1219 unsigned int type_ : 29;
1220 // True if the relocation is a RELATIVE relocation.
1221 bool is_relative_ : 1;
1222 // True if the relocation is one which should not use
1223 // a symbol, but which obtains its addend from a symbol.
1224 bool is_symbolless_ : 1;
1225 // True if the relocation is against a section symbol.
1226 bool is_section_symbol_ : 1;
1227 // If the reloc address is an input section in an object, the
1228 // section index. This is INVALID_CODE if the reloc address is
1229 // specified in some other way.
1230 unsigned int shndx_;
1233 // The SHT_RELA version of Output_reloc<>. This is just derived from
1234 // the SHT_REL version of Output_reloc, but it adds an addend.
1236 template<bool dynamic, int size, bool big_endian>
1237 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1239 public:
1240 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1241 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1243 // An uninitialized entry.
1244 Output_reloc()
1245 : rel_()
1248 // A reloc against a global symbol.
1250 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1251 Address address, Addend addend, bool is_relative,
1252 bool is_symbolless)
1253 : rel_(gsym, type, od, address, is_relative, is_symbolless),
1254 addend_(addend)
1257 Output_reloc(Symbol* gsym, unsigned int type,
1258 Sized_relobj<size, big_endian>* relobj,
1259 unsigned int shndx, Address address, Addend addend,
1260 bool is_relative, bool is_symbolless)
1261 : rel_(gsym, type, relobj, shndx, address, is_relative,
1262 is_symbolless), addend_(addend)
1265 // A reloc against a local symbol.
1267 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1268 unsigned int local_sym_index, unsigned int type,
1269 Output_data* od, Address address,
1270 Addend addend, bool is_relative,
1271 bool is_symbolless, bool is_section_symbol)
1272 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1273 is_symbolless, is_section_symbol),
1274 addend_(addend)
1277 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1278 unsigned int local_sym_index, unsigned int type,
1279 unsigned int shndx, Address address,
1280 Addend addend, bool is_relative,
1281 bool is_symbolless, bool is_section_symbol)
1282 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1283 is_symbolless, is_section_symbol),
1284 addend_(addend)
1287 // A reloc against the STT_SECTION symbol of an output section.
1289 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1290 Address address, Addend addend)
1291 : rel_(os, type, od, address), addend_(addend)
1294 Output_reloc(Output_section* os, unsigned int type,
1295 Sized_relobj<size, big_endian>* relobj,
1296 unsigned int shndx, Address address, Addend addend)
1297 : rel_(os, type, relobj, shndx, address), addend_(addend)
1300 // An absolute relocation with no symbol.
1302 Output_reloc(unsigned int type, Output_data* od, Address address,
1303 Addend addend)
1304 : rel_(type, od, address), addend_(addend)
1307 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1308 unsigned int shndx, Address address, Addend addend)
1309 : rel_(type, relobj, shndx, address), addend_(addend)
1312 // A target specific relocation. The target will be called to get
1313 // the symbol index and the addend, passing ARG. The type and
1314 // offset will be set as for other relocation types.
1316 Output_reloc(unsigned int type, void* arg, Output_data* od,
1317 Address address, Addend addend)
1318 : rel_(type, arg, od, address), addend_(addend)
1321 Output_reloc(unsigned int type, void* arg,
1322 Sized_relobj<size, big_endian>* relobj,
1323 unsigned int shndx, Address address, Addend addend)
1324 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1327 // Return whether this is a RELATIVE relocation.
1328 bool
1329 is_relative() const
1330 { return this->rel_.is_relative(); }
1332 // Return whether this is a relocation which should not use
1333 // a symbol, but which obtains its addend from a symbol.
1334 bool
1335 is_symbolless() const
1336 { return this->rel_.is_symbolless(); }
1338 // If this relocation is against an input section, return the
1339 // relocatable object containing the input section.
1340 Sized_relobj<size, big_endian>*
1341 get_relobj() const
1342 { return this->rel_.get_relobj(); }
1344 // Write the reloc entry to an output view.
1345 void
1346 write(unsigned char* pov) const;
1348 // Return whether this reloc should be sorted before the argument
1349 // when sorting dynamic relocs.
1350 bool
1351 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1352 r2) const
1354 int i = this->rel_.compare(r2.rel_);
1355 if (i < 0)
1356 return true;
1357 else if (i > 0)
1358 return false;
1359 else
1360 return this->addend_ < r2.addend_;
1363 private:
1364 // The basic reloc.
1365 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1366 // The addend.
1367 Addend addend_;
1370 // Output_data_reloc_generic is a non-template base class for
1371 // Output_data_reloc_base. This gives the generic code a way to hold
1372 // a pointer to a reloc section.
1374 class Output_data_reloc_generic : public Output_section_data_build
1376 public:
1377 Output_data_reloc_generic(int size, bool sort_relocs)
1378 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1379 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1382 // Return the number of relative relocs in this section.
1383 size_t
1384 relative_reloc_count() const
1385 { return this->relative_reloc_count_; }
1387 // Whether we should sort the relocs.
1388 bool
1389 sort_relocs() const
1390 { return this->sort_relocs_; }
1392 protected:
1393 // Note that we've added another relative reloc.
1394 void
1395 bump_relative_reloc_count()
1396 { ++this->relative_reloc_count_; }
1398 private:
1399 // The number of relative relocs added to this section. This is to
1400 // support DT_RELCOUNT.
1401 size_t relative_reloc_count_;
1402 // Whether to sort the relocations when writing them out, to make
1403 // the dynamic linker more efficient.
1404 bool sort_relocs_;
1407 // Output_data_reloc is used to manage a section containing relocs.
1408 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1409 // indicates whether this is a dynamic relocation or a normal
1410 // relocation. Output_data_reloc_base is a base class.
1411 // Output_data_reloc is the real class, which we specialize based on
1412 // the reloc type.
1414 template<int sh_type, bool dynamic, int size, bool big_endian>
1415 class Output_data_reloc_base : public Output_data_reloc_generic
1417 public:
1418 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1419 typedef typename Output_reloc_type::Address Address;
1420 static const int reloc_size =
1421 Reloc_types<sh_type, size, big_endian>::reloc_size;
1423 // Construct the section.
1424 Output_data_reloc_base(bool sort_relocs)
1425 : Output_data_reloc_generic(size, sort_relocs)
1428 protected:
1429 // Write out the data.
1430 void
1431 do_write(Output_file*);
1433 // Set the entry size and the link.
1434 void
1435 do_adjust_output_section(Output_section* os);
1437 // Write to a map file.
1438 void
1439 do_print_to_mapfile(Mapfile* mapfile) const
1441 mapfile->print_output_data(this,
1442 (dynamic
1443 ? _("** dynamic relocs")
1444 : _("** relocs")));
1447 // Add a relocation entry.
1448 void
1449 add(Output_data* od, const Output_reloc_type& reloc)
1451 this->relocs_.push_back(reloc);
1452 this->set_current_data_size(this->relocs_.size() * reloc_size);
1453 od->add_dynamic_reloc();
1454 if (reloc.is_relative())
1455 this->bump_relative_reloc_count();
1456 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1457 if (relobj != NULL)
1458 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1461 private:
1462 typedef std::vector<Output_reloc_type> Relocs;
1464 // The class used to sort the relocations.
1465 struct Sort_relocs_comparison
1467 bool
1468 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1469 { return r1.sort_before(r2); }
1472 // The relocations in this section.
1473 Relocs relocs_;
1476 // The class which callers actually create.
1478 template<int sh_type, bool dynamic, int size, bool big_endian>
1479 class Output_data_reloc;
1481 // The SHT_REL version of Output_data_reloc.
1483 template<bool dynamic, int size, bool big_endian>
1484 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1485 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1487 private:
1488 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1489 big_endian> Base;
1491 public:
1492 typedef typename Base::Output_reloc_type Output_reloc_type;
1493 typedef typename Output_reloc_type::Address Address;
1495 Output_data_reloc(bool sr)
1496 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1499 // Add a reloc against a global symbol.
1501 void
1502 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1503 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1505 void
1506 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1507 Sized_relobj<size, big_endian>* relobj,
1508 unsigned int shndx, Address address)
1509 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1510 false, false)); }
1512 // These are to simplify the Copy_relocs class.
1514 void
1515 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1516 Address addend)
1518 gold_assert(addend == 0);
1519 this->add_global(gsym, type, od, address);
1522 void
1523 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1524 Sized_relobj<size, big_endian>* relobj,
1525 unsigned int shndx, Address address, Address addend)
1527 gold_assert(addend == 0);
1528 this->add_global(gsym, type, od, relobj, shndx, address);
1531 // Add a RELATIVE reloc against a global symbol. The final relocation
1532 // will not reference the symbol.
1534 void
1535 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1536 Address address)
1537 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1539 void
1540 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1541 Sized_relobj<size, big_endian>* relobj,
1542 unsigned int shndx, Address address)
1544 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1545 true, true));
1548 // Add a global relocation which does not use a symbol for the relocation,
1549 // but which gets its addend from a symbol.
1551 void
1552 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1553 Output_data* od, Address address)
1554 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1556 void
1557 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1558 Output_data* od,
1559 Sized_relobj<size, big_endian>* relobj,
1560 unsigned int shndx, Address address)
1562 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1563 false, true));
1566 // Add a reloc against a local symbol.
1568 void
1569 add_local(Sized_relobj<size, big_endian>* relobj,
1570 unsigned int local_sym_index, unsigned int type,
1571 Output_data* od, Address address)
1573 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1574 address, false, false, false));
1577 void
1578 add_local(Sized_relobj<size, big_endian>* relobj,
1579 unsigned int local_sym_index, unsigned int type,
1580 Output_data* od, unsigned int shndx, Address address)
1582 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1583 address, false, false, false));
1586 // Add a RELATIVE reloc against a local symbol.
1588 void
1589 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1590 unsigned int local_sym_index, unsigned int type,
1591 Output_data* od, Address address)
1593 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1594 address, true, true, false));
1597 void
1598 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1599 unsigned int local_sym_index, unsigned int type,
1600 Output_data* od, unsigned int shndx, Address address)
1602 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1603 address, true, true, false));
1606 // Add a local relocation which does not use a symbol for the relocation,
1607 // but which gets its addend from a symbol.
1609 void
1610 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1611 unsigned int local_sym_index, unsigned int type,
1612 Output_data* od, Address address)
1614 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1615 address, false, true, false));
1618 void
1619 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1620 unsigned int local_sym_index, unsigned int type,
1621 Output_data* od, unsigned int shndx,
1622 Address address)
1624 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1625 address, false, true, false));
1628 // Add a reloc against a local section symbol. This will be
1629 // converted into a reloc against the STT_SECTION symbol of the
1630 // output section.
1632 void
1633 add_local_section(Sized_relobj<size, big_endian>* relobj,
1634 unsigned int input_shndx, unsigned int type,
1635 Output_data* od, Address address)
1637 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1638 address, false, false, true));
1641 void
1642 add_local_section(Sized_relobj<size, big_endian>* relobj,
1643 unsigned int input_shndx, unsigned int type,
1644 Output_data* od, unsigned int shndx, Address address)
1646 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1647 address, false, false, true));
1650 // A reloc against the STT_SECTION symbol of an output section.
1651 // OS is the Output_section that the relocation refers to; OD is
1652 // the Output_data object being relocated.
1654 void
1655 add_output_section(Output_section* os, unsigned int type,
1656 Output_data* od, Address address)
1657 { this->add(od, Output_reloc_type(os, type, od, address)); }
1659 void
1660 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1661 Sized_relobj<size, big_endian>* relobj,
1662 unsigned int shndx, Address address)
1663 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1665 // Add an absolute relocation.
1667 void
1668 add_absolute(unsigned int type, Output_data* od, Address address)
1669 { this->add(od, Output_reloc_type(type, od, address)); }
1671 void
1672 add_absolute(unsigned int type, Output_data* od,
1673 Sized_relobj<size, big_endian>* relobj,
1674 unsigned int shndx, Address address)
1675 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1677 // Add a target specific relocation. A target which calls this must
1678 // define the reloc_symbol_index and reloc_addend virtual functions.
1680 void
1681 add_target_specific(unsigned int type, void* arg, Output_data* od,
1682 Address address)
1683 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1685 void
1686 add_target_specific(unsigned int type, void* arg, Output_data* od,
1687 Sized_relobj<size, big_endian>* relobj,
1688 unsigned int shndx, Address address)
1689 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1692 // The SHT_RELA version of Output_data_reloc.
1694 template<bool dynamic, int size, bool big_endian>
1695 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1696 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1698 private:
1699 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1700 big_endian> Base;
1702 public:
1703 typedef typename Base::Output_reloc_type Output_reloc_type;
1704 typedef typename Output_reloc_type::Address Address;
1705 typedef typename Output_reloc_type::Addend Addend;
1707 Output_data_reloc(bool sr)
1708 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1711 // Add a reloc against a global symbol.
1713 void
1714 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1715 Address address, Addend addend)
1716 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1717 false, false)); }
1719 void
1720 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1721 Sized_relobj<size, big_endian>* relobj,
1722 unsigned int shndx, Address address,
1723 Addend addend)
1724 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1725 addend, false, false)); }
1727 // Add a RELATIVE reloc against a global symbol. The final output
1728 // relocation will not reference the symbol, but we must keep the symbol
1729 // information long enough to set the addend of the relocation correctly
1730 // when it is written.
1732 void
1733 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1734 Address address, Addend addend)
1735 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1736 true)); }
1738 void
1739 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1740 Sized_relobj<size, big_endian>* relobj,
1741 unsigned int shndx, Address address, Addend addend)
1742 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1743 addend, true, true)); }
1745 // Add a global relocation which does not use a symbol for the relocation,
1746 // but which gets its addend from a symbol.
1748 void
1749 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1750 Address address, Addend addend)
1751 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1752 false, true)); }
1754 void
1755 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1756 Output_data* od,
1757 Sized_relobj<size, big_endian>* relobj,
1758 unsigned int shndx, Address address, Addend addend)
1759 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1760 addend, false, true)); }
1762 // Add a reloc against a local symbol.
1764 void
1765 add_local(Sized_relobj<size, big_endian>* relobj,
1766 unsigned int local_sym_index, unsigned int type,
1767 Output_data* od, Address address, Addend addend)
1769 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1770 addend, false, false, false));
1773 void
1774 add_local(Sized_relobj<size, big_endian>* relobj,
1775 unsigned int local_sym_index, unsigned int type,
1776 Output_data* od, unsigned int shndx, Address address,
1777 Addend addend)
1779 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1780 address, addend, false, false, false));
1783 // Add a RELATIVE reloc against a local symbol.
1785 void
1786 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1787 unsigned int local_sym_index, unsigned int type,
1788 Output_data* od, Address address, Addend addend)
1790 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1791 addend, true, true, false));
1794 void
1795 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1796 unsigned int local_sym_index, unsigned int type,
1797 Output_data* od, unsigned int shndx, Address address,
1798 Addend addend)
1800 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1801 address, addend, true, true, false));
1804 // Add a local relocation which does not use a symbol for the relocation,
1805 // but which gets it's addend from a symbol.
1807 void
1808 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1809 unsigned int local_sym_index, unsigned int type,
1810 Output_data* od, Address address, Addend addend)
1812 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1813 addend, false, true, false));
1816 void
1817 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1818 unsigned int local_sym_index, unsigned int type,
1819 Output_data* od, unsigned int shndx,
1820 Address address, Addend addend)
1822 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1823 address, addend, false, true, false));
1826 // Add a reloc against a local section symbol. This will be
1827 // converted into a reloc against the STT_SECTION symbol of the
1828 // output section.
1830 void
1831 add_local_section(Sized_relobj<size, big_endian>* relobj,
1832 unsigned int input_shndx, unsigned int type,
1833 Output_data* od, Address address, Addend addend)
1835 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1836 addend, false, false, true));
1839 void
1840 add_local_section(Sized_relobj<size, big_endian>* relobj,
1841 unsigned int input_shndx, unsigned int type,
1842 Output_data* od, unsigned int shndx, Address address,
1843 Addend addend)
1845 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1846 address, addend, false, false, true));
1849 // A reloc against the STT_SECTION symbol of an output section.
1851 void
1852 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1853 Address address, Addend addend)
1854 { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
1856 void
1857 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1858 Sized_relobj<size, big_endian>* relobj,
1859 unsigned int shndx, Address address, Addend addend)
1860 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
1861 addend)); }
1863 // Add an absolute relocation.
1865 void
1866 add_absolute(unsigned int type, Output_data* od, Address address,
1867 Addend addend)
1868 { this->add(od, Output_reloc_type(type, od, address, addend)); }
1870 void
1871 add_absolute(unsigned int type, Output_data* od,
1872 Sized_relobj<size, big_endian>* relobj,
1873 unsigned int shndx, Address address, Addend addend)
1874 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
1876 // Add a target specific relocation. A target which calls this must
1877 // define the reloc_symbol_index and reloc_addend virtual functions.
1879 void
1880 add_target_specific(unsigned int type, void* arg, Output_data* od,
1881 Address address, Addend addend)
1882 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
1884 void
1885 add_target_specific(unsigned int type, void* arg, Output_data* od,
1886 Sized_relobj<size, big_endian>* relobj,
1887 unsigned int shndx, Address address, Addend addend)
1889 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
1890 addend));
1894 // Output_relocatable_relocs represents a relocation section in a
1895 // relocatable link. The actual data is written out in the target
1896 // hook relocate_for_relocatable. This just saves space for it.
1898 template<int sh_type, int size, bool big_endian>
1899 class Output_relocatable_relocs : public Output_section_data
1901 public:
1902 Output_relocatable_relocs(Relocatable_relocs* rr)
1903 : Output_section_data(Output_data::default_alignment_for_size(size)),
1904 rr_(rr)
1907 void
1908 set_final_data_size();
1910 // Write out the data. There is nothing to do here.
1911 void
1912 do_write(Output_file*)
1915 // Write to a map file.
1916 void
1917 do_print_to_mapfile(Mapfile* mapfile) const
1918 { mapfile->print_output_data(this, _("** relocs")); }
1920 private:
1921 // The relocs associated with this input section.
1922 Relocatable_relocs* rr_;
1925 // Handle a GROUP section.
1927 template<int size, bool big_endian>
1928 class Output_data_group : public Output_section_data
1930 public:
1931 // The constructor clears *INPUT_SHNDXES.
1932 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
1933 section_size_type entry_count,
1934 elfcpp::Elf_Word flags,
1935 std::vector<unsigned int>* input_shndxes);
1937 void
1938 do_write(Output_file*);
1940 // Write to a map file.
1941 void
1942 do_print_to_mapfile(Mapfile* mapfile) const
1943 { mapfile->print_output_data(this, _("** group")); }
1945 // Set final data size.
1946 void
1947 set_final_data_size()
1948 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1950 private:
1951 // The input object.
1952 Sized_relobj_file<size, big_endian>* relobj_;
1953 // The group flag word.
1954 elfcpp::Elf_Word flags_;
1955 // The section indexes of the input sections in this group.
1956 std::vector<unsigned int> input_shndxes_;
1959 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1960 // for one symbol--either a global symbol or a local symbol in an
1961 // object. The target specific code adds entries to the GOT as
1962 // needed.
1964 template<int size, bool big_endian>
1965 class Output_data_got : public Output_section_data_build
1967 public:
1968 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1969 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1970 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1972 Output_data_got()
1973 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1974 entries_(), free_list_()
1977 Output_data_got(off_t data_size)
1978 : Output_section_data_build(data_size,
1979 Output_data::default_alignment_for_size(size)),
1980 entries_(), free_list_()
1982 // For an incremental update, we have an existing GOT section.
1983 // Initialize the list of entries and the free list.
1984 this->entries_.resize(data_size / (size / 8));
1985 this->free_list_.init(data_size, false);
1988 // Add an entry for a global symbol to the GOT. Return true if this
1989 // is a new GOT entry, false if the symbol was already in the GOT.
1990 bool
1991 add_global(Symbol* gsym, unsigned int got_type);
1993 // Like add_global, but use the PLT offset of the global symbol if
1994 // it has one.
1995 bool
1996 add_global_plt(Symbol* gsym, unsigned int got_type);
1998 // Add an entry for a global symbol to the GOT, and add a dynamic
1999 // relocation of type R_TYPE for the GOT entry.
2000 void
2001 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2002 Rel_dyn* rel_dyn, unsigned int r_type);
2004 void
2005 add_global_with_rela(Symbol* gsym, unsigned int got_type,
2006 Rela_dyn* rela_dyn, unsigned int r_type);
2008 // Add a pair of entries for a global symbol to the GOT, and add
2009 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2010 void
2011 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2012 Rel_dyn* rel_dyn, unsigned int r_type_1,
2013 unsigned int r_type_2);
2015 void
2016 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
2017 Rela_dyn* rela_dyn, unsigned int r_type_1,
2018 unsigned int r_type_2);
2020 // Add an entry for a local symbol to the GOT. This returns true if
2021 // this is a new GOT entry, false if the symbol already has a GOT
2022 // entry.
2023 bool
2024 add_local(Sized_relobj_file<size, big_endian>* object, unsigned int sym_index,
2025 unsigned int got_type);
2027 // Like add_local, but use the PLT offset of the local symbol if it
2028 // has one.
2029 bool
2030 add_local_plt(Sized_relobj_file<size, big_endian>* object,
2031 unsigned int sym_index,
2032 unsigned int got_type);
2034 // Add an entry for a local symbol to the GOT, and add a dynamic
2035 // relocation of type R_TYPE for the GOT entry.
2036 void
2037 add_local_with_rel(Sized_relobj_file<size, big_endian>* object,
2038 unsigned int sym_index, unsigned int got_type,
2039 Rel_dyn* rel_dyn, unsigned int r_type);
2041 void
2042 add_local_with_rela(Sized_relobj_file<size, big_endian>* object,
2043 unsigned int sym_index, unsigned int got_type,
2044 Rela_dyn* rela_dyn, unsigned int r_type);
2046 // Add a pair of entries for a local symbol to the GOT, and add
2047 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2048 void
2049 add_local_pair_with_rel(Sized_relobj_file<size, big_endian>* object,
2050 unsigned int sym_index, unsigned int shndx,
2051 unsigned int got_type, Rel_dyn* rel_dyn,
2052 unsigned int r_type_1, unsigned int r_type_2);
2054 void
2055 add_local_pair_with_rela(Sized_relobj_file<size, big_endian>* object,
2056 unsigned int sym_index, unsigned int shndx,
2057 unsigned int got_type, Rela_dyn* rela_dyn,
2058 unsigned int r_type_1, unsigned int r_type_2);
2060 // Add a constant to the GOT. This returns the offset of the new
2061 // entry from the start of the GOT.
2062 unsigned int
2063 add_constant(Valtype constant)
2065 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2066 return got_offset;
2069 // Reserve a slot in the GOT.
2070 void
2071 reserve_slot(unsigned int i)
2072 { this->free_list_.remove(i * size / 8, (i + 1) * size / 8); }
2074 // Reserve a slot in the GOT for a local symbol.
2075 void
2076 reserve_local(unsigned int i, Sized_relobj<size, big_endian>* object,
2077 unsigned int sym_index, unsigned int got_type);
2079 // Reserve a slot in the GOT for a global symbol.
2080 void
2081 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2083 protected:
2084 // Write out the GOT table.
2085 void
2086 do_write(Output_file*);
2088 // Write to a map file.
2089 void
2090 do_print_to_mapfile(Mapfile* mapfile) const
2091 { mapfile->print_output_data(this, _("** GOT")); }
2093 private:
2094 // This POD class holds a single GOT entry.
2095 class Got_entry
2097 public:
2098 // Create a zero entry.
2099 Got_entry()
2100 : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2101 { this->u_.constant = 0; }
2103 // Create a global symbol entry.
2104 Got_entry(Symbol* gsym, bool use_plt_offset)
2105 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2106 { this->u_.gsym = gsym; }
2108 // Create a local symbol entry.
2109 Got_entry(Sized_relobj_file<size, big_endian>* object,
2110 unsigned int local_sym_index, bool use_plt_offset)
2111 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2113 gold_assert(local_sym_index != GSYM_CODE
2114 && local_sym_index != CONSTANT_CODE
2115 && local_sym_index != RESERVED_CODE
2116 && local_sym_index == this->local_sym_index_);
2117 this->u_.object = object;
2120 // Create a constant entry. The constant is a host value--it will
2121 // be swapped, if necessary, when it is written out.
2122 explicit Got_entry(Valtype constant)
2123 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2124 { this->u_.constant = constant; }
2126 // Write the GOT entry to an output view.
2127 void
2128 write(unsigned char* pov) const;
2130 private:
2131 enum
2133 GSYM_CODE = 0x7fffffff,
2134 CONSTANT_CODE = 0x7ffffffe,
2135 RESERVED_CODE = 0x7ffffffd
2138 union
2140 // For a local symbol, the object.
2141 Sized_relobj_file<size, big_endian>* object;
2142 // For a global symbol, the symbol.
2143 Symbol* gsym;
2144 // For a constant, the constant.
2145 Valtype constant;
2146 } u_;
2147 // For a local symbol, the local symbol index. This is GSYM_CODE
2148 // for a global symbol, or CONSTANT_CODE for a constant.
2149 unsigned int local_sym_index_ : 31;
2150 // Whether to use the PLT offset of the symbol if it has one.
2151 bool use_plt_offset_ : 1;
2154 typedef std::vector<Got_entry> Got_entries;
2156 // Create a new GOT entry and return its offset.
2157 unsigned int
2158 add_got_entry(Got_entry got_entry);
2160 // Create a pair of new GOT entries and return the offset of the first.
2161 unsigned int
2162 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2164 // Return the offset into the GOT of GOT entry I.
2165 unsigned int
2166 got_offset(unsigned int i) const
2167 { return i * (size / 8); }
2169 // Return the offset into the GOT of the last entry added.
2170 unsigned int
2171 last_got_offset() const
2172 { return this->got_offset(this->entries_.size() - 1); }
2174 // Set the size of the section.
2175 void
2176 set_got_size()
2177 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2179 // The list of GOT entries.
2180 Got_entries entries_;
2182 // List of available regions within the section, for incremental
2183 // update links.
2184 Free_list free_list_;
2187 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2188 // section.
2190 class Output_data_dynamic : public Output_section_data
2192 public:
2193 Output_data_dynamic(Stringpool* pool)
2194 : Output_section_data(Output_data::default_alignment()),
2195 entries_(), pool_(pool)
2198 // Add a new dynamic entry with a fixed numeric value.
2199 void
2200 add_constant(elfcpp::DT tag, unsigned int val)
2201 { this->add_entry(Dynamic_entry(tag, val)); }
2203 // Add a new dynamic entry with the address of output data.
2204 void
2205 add_section_address(elfcpp::DT tag, const Output_data* od)
2206 { this->add_entry(Dynamic_entry(tag, od, false)); }
2208 // Add a new dynamic entry with the address of output data
2209 // plus a constant offset.
2210 void
2211 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2212 unsigned int offset)
2213 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2215 // Add a new dynamic entry with the size of output data.
2216 void
2217 add_section_size(elfcpp::DT tag, const Output_data* od)
2218 { this->add_entry(Dynamic_entry(tag, od, true)); }
2220 // Add a new dynamic entry with the total size of two output datas.
2221 void
2222 add_section_size(elfcpp::DT tag, const Output_data* od,
2223 const Output_data* od2)
2224 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2226 // Add a new dynamic entry with the address of a symbol.
2227 void
2228 add_symbol(elfcpp::DT tag, const Symbol* sym)
2229 { this->add_entry(Dynamic_entry(tag, sym)); }
2231 // Add a new dynamic entry with a string.
2232 void
2233 add_string(elfcpp::DT tag, const char* str)
2234 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2236 void
2237 add_string(elfcpp::DT tag, const std::string& str)
2238 { this->add_string(tag, str.c_str()); }
2240 protected:
2241 // Adjust the output section to set the entry size.
2242 void
2243 do_adjust_output_section(Output_section*);
2245 // Set the final data size.
2246 void
2247 set_final_data_size();
2249 // Write out the dynamic entries.
2250 void
2251 do_write(Output_file*);
2253 // Write to a map file.
2254 void
2255 do_print_to_mapfile(Mapfile* mapfile) const
2256 { mapfile->print_output_data(this, _("** dynamic")); }
2258 private:
2259 // This POD class holds a single dynamic entry.
2260 class Dynamic_entry
2262 public:
2263 // Create an entry with a fixed numeric value.
2264 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2265 : tag_(tag), offset_(DYNAMIC_NUMBER)
2266 { this->u_.val = val; }
2268 // Create an entry with the size or address of a section.
2269 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2270 : tag_(tag),
2271 offset_(section_size
2272 ? DYNAMIC_SECTION_SIZE
2273 : DYNAMIC_SECTION_ADDRESS)
2275 this->u_.od = od;
2276 this->od2 = NULL;
2279 // Create an entry with the size of two sections.
2280 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2281 : tag_(tag),
2282 offset_(DYNAMIC_SECTION_SIZE)
2284 this->u_.od = od;
2285 this->od2 = od2;
2288 // Create an entry with the address of a section plus a constant offset.
2289 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2290 : tag_(tag),
2291 offset_(offset)
2292 { this->u_.od = od; }
2294 // Create an entry with the address of a symbol.
2295 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2296 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2297 { this->u_.sym = sym; }
2299 // Create an entry with a string.
2300 Dynamic_entry(elfcpp::DT tag, const char* str)
2301 : tag_(tag), offset_(DYNAMIC_STRING)
2302 { this->u_.str = str; }
2304 // Return the tag of this entry.
2305 elfcpp::DT
2306 tag() const
2307 { return this->tag_; }
2309 // Write the dynamic entry to an output view.
2310 template<int size, bool big_endian>
2311 void
2312 write(unsigned char* pov, const Stringpool*) const;
2314 private:
2315 // Classification is encoded in the OFFSET field.
2316 enum Classification
2318 // Section address.
2319 DYNAMIC_SECTION_ADDRESS = 0,
2320 // Number.
2321 DYNAMIC_NUMBER = -1U,
2322 // Section size.
2323 DYNAMIC_SECTION_SIZE = -2U,
2324 // Symbol adress.
2325 DYNAMIC_SYMBOL = -3U,
2326 // String.
2327 DYNAMIC_STRING = -4U
2328 // Any other value indicates a section address plus OFFSET.
2331 union
2333 // For DYNAMIC_NUMBER.
2334 unsigned int val;
2335 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2336 const Output_data* od;
2337 // For DYNAMIC_SYMBOL.
2338 const Symbol* sym;
2339 // For DYNAMIC_STRING.
2340 const char* str;
2341 } u_;
2342 // For DYNAMIC_SYMBOL with two sections.
2343 const Output_data* od2;
2344 // The dynamic tag.
2345 elfcpp::DT tag_;
2346 // The type of entry (Classification) or offset within a section.
2347 unsigned int offset_;
2350 // Add an entry to the list.
2351 void
2352 add_entry(const Dynamic_entry& entry)
2353 { this->entries_.push_back(entry); }
2355 // Sized version of write function.
2356 template<int size, bool big_endian>
2357 void
2358 sized_write(Output_file* of);
2360 // The type of the list of entries.
2361 typedef std::vector<Dynamic_entry> Dynamic_entries;
2363 // The entries.
2364 Dynamic_entries entries_;
2365 // The pool used for strings.
2366 Stringpool* pool_;
2369 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2370 // which may be required if the object file has more than
2371 // SHN_LORESERVE sections.
2373 class Output_symtab_xindex : public Output_section_data
2375 public:
2376 Output_symtab_xindex(size_t symcount)
2377 : Output_section_data(symcount * 4, 4, true),
2378 entries_()
2381 // Add an entry: symbol number SYMNDX has section SHNDX.
2382 void
2383 add(unsigned int symndx, unsigned int shndx)
2384 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2386 protected:
2387 void
2388 do_write(Output_file*);
2390 // Write to a map file.
2391 void
2392 do_print_to_mapfile(Mapfile* mapfile) const
2393 { mapfile->print_output_data(this, _("** symtab xindex")); }
2395 private:
2396 template<bool big_endian>
2397 void
2398 endian_do_write(unsigned char*);
2400 // It is likely that most symbols will not require entries. Rather
2401 // than keep a vector for all symbols, we keep pairs of symbol index
2402 // and section index.
2403 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2405 // The entries we need.
2406 Xindex_entries entries_;
2409 // A relaxed input section.
2410 class Output_relaxed_input_section : public Output_section_data_build
2412 public:
2413 // We would like to call relobj->section_addralign(shndx) to get the
2414 // alignment but we do not want the constructor to fail. So callers
2415 // are repsonsible for ensuring that.
2416 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2417 uint64_t addralign)
2418 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2421 // Return the Relobj of this relaxed input section.
2422 Relobj*
2423 relobj() const
2424 { return this->relobj_; }
2426 // Return the section index of this relaxed input section.
2427 unsigned int
2428 shndx() const
2429 { return this->shndx_; }
2431 private:
2432 Relobj* relobj_;
2433 unsigned int shndx_;
2436 // This class describes properties of merge data sections. It is used
2437 // as a key type for maps.
2438 class Merge_section_properties
2440 public:
2441 Merge_section_properties(bool is_string, uint64_t entsize,
2442 uint64_t addralign)
2443 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2446 // Whether this equals to another Merge_section_properties MSP.
2447 bool
2448 eq(const Merge_section_properties& msp) const
2450 return ((this->is_string_ == msp.is_string_)
2451 && (this->entsize_ == msp.entsize_)
2452 && (this->addralign_ == msp.addralign_));
2455 // Compute a hash value for this using 64-bit FNV-1a hash.
2456 size_t
2457 hash_value() const
2459 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2460 uint64_t prime = 1099511628211ULL;
2461 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2462 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2463 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2464 return h;
2467 // Functors for associative containers.
2468 struct equal_to
2470 bool
2471 operator()(const Merge_section_properties& msp1,
2472 const Merge_section_properties& msp2) const
2473 { return msp1.eq(msp2); }
2476 struct hash
2478 size_t
2479 operator()(const Merge_section_properties& msp) const
2480 { return msp.hash_value(); }
2483 private:
2484 // Whether this merge data section is for strings.
2485 bool is_string_;
2486 // Entsize of this merge data section.
2487 uint64_t entsize_;
2488 // Address alignment.
2489 uint64_t addralign_;
2492 // This class is used to speed up look up of special input sections in an
2493 // Output_section.
2495 class Output_section_lookup_maps
2497 public:
2498 Output_section_lookup_maps()
2499 : is_valid_(true), merge_sections_by_properties_(),
2500 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2503 // Whether the maps are valid.
2504 bool
2505 is_valid() const
2506 { return this->is_valid_; }
2508 // Invalidate the maps.
2509 void
2510 invalidate()
2511 { this->is_valid_ = false; }
2513 // Clear the maps.
2514 void
2515 clear()
2517 this->merge_sections_by_properties_.clear();
2518 this->merge_sections_by_id_.clear();
2519 this->relaxed_input_sections_by_id_.clear();
2520 // A cleared map is valid.
2521 this->is_valid_ = true;
2524 // Find a merge section by merge section properties. Return NULL if none
2525 // is found.
2526 Output_merge_base*
2527 find_merge_section(const Merge_section_properties& msp) const
2529 gold_assert(this->is_valid_);
2530 Merge_sections_by_properties::const_iterator p =
2531 this->merge_sections_by_properties_.find(msp);
2532 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2535 // Find a merge section by section ID of a merge input section. Return NULL
2536 // if none is found.
2537 Output_merge_base*
2538 find_merge_section(const Object* object, unsigned int shndx) const
2540 gold_assert(this->is_valid_);
2541 Merge_sections_by_id::const_iterator p =
2542 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2543 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2546 // Add a merge section pointed by POMB with properties MSP.
2547 void
2548 add_merge_section(const Merge_section_properties& msp,
2549 Output_merge_base* pomb)
2551 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2552 std::pair<Merge_sections_by_properties::iterator, bool> result =
2553 this->merge_sections_by_properties_.insert(value);
2554 gold_assert(result.second);
2557 // Add a mapping from a merged input section in OBJECT with index SHNDX
2558 // to a merge output section pointed by POMB.
2559 void
2560 add_merge_input_section(const Object* object, unsigned int shndx,
2561 Output_merge_base* pomb)
2563 Const_section_id csid(object, shndx);
2564 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2565 std::pair<Merge_sections_by_id::iterator, bool> result =
2566 this->merge_sections_by_id_.insert(value);
2567 gold_assert(result.second);
2570 // Find a relaxed input section of OBJECT with index SHNDX.
2571 Output_relaxed_input_section*
2572 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2574 gold_assert(this->is_valid_);
2575 Relaxed_input_sections_by_id::const_iterator p =
2576 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2577 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2580 // Add a relaxed input section pointed by POMB and whose original input
2581 // section is in OBJECT with index SHNDX.
2582 void
2583 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2584 Output_relaxed_input_section* poris)
2586 Const_section_id csid(relobj, shndx);
2587 std::pair<Const_section_id, Output_relaxed_input_section*>
2588 value(csid, poris);
2589 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2590 this->relaxed_input_sections_by_id_.insert(value);
2591 gold_assert(result.second);
2594 private:
2595 typedef Unordered_map<Const_section_id, Output_merge_base*,
2596 Const_section_id_hash>
2597 Merge_sections_by_id;
2599 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2600 Merge_section_properties::hash,
2601 Merge_section_properties::equal_to>
2602 Merge_sections_by_properties;
2604 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2605 Const_section_id_hash>
2606 Relaxed_input_sections_by_id;
2608 // Whether this is valid
2609 bool is_valid_;
2610 // Merge sections by merge section properties.
2611 Merge_sections_by_properties merge_sections_by_properties_;
2612 // Merge sections by section IDs.
2613 Merge_sections_by_id merge_sections_by_id_;
2614 // Relaxed sections by section IDs.
2615 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2618 // This abstract base class defines the interface for the
2619 // types of methods used to fill free space left in an output
2620 // section during an incremental link. These methods are used
2621 // to insert dummy compilation units into debug info so that
2622 // debug info consumers can scan the debug info serially.
2624 class Output_fill
2626 public:
2627 Output_fill()
2628 : is_big_endian_(parameters->target().is_big_endian())
2631 // Return the smallest size chunk of free space that can be
2632 // filled with a dummy compilation unit.
2633 size_t
2634 minimum_hole_size() const
2635 { return this->do_minimum_hole_size(); }
2637 // Write a fill pattern of length LEN at offset OFF in the file.
2638 void
2639 write(Output_file* of, off_t off, size_t len) const
2640 { this->do_write(of, off, len); }
2642 protected:
2643 virtual size_t
2644 do_minimum_hole_size() const = 0;
2646 virtual void
2647 do_write(Output_file* of, off_t off, size_t len) const = 0;
2649 bool
2650 is_big_endian() const
2651 { return this->is_big_endian_; }
2653 private:
2654 bool is_big_endian_;
2657 // Fill method that introduces a dummy compilation unit in
2658 // a .debug_info or .debug_types section.
2660 class Output_fill_debug_info : public Output_fill
2662 public:
2663 Output_fill_debug_info(bool is_debug_types)
2664 : is_debug_types_(is_debug_types)
2667 protected:
2668 virtual size_t
2669 do_minimum_hole_size() const;
2671 virtual void
2672 do_write(Output_file* of, off_t off, size_t len) const;
2674 private:
2675 // Version of the header.
2676 static const int version = 4;
2677 // True if this is a .debug_types section.
2678 bool is_debug_types_;
2681 // Fill method that introduces a dummy compilation unit in
2682 // a .debug_line section.
2684 class Output_fill_debug_line : public Output_fill
2686 public:
2687 Output_fill_debug_line()
2690 protected:
2691 virtual size_t
2692 do_minimum_hole_size() const;
2694 virtual void
2695 do_write(Output_file* of, off_t off, size_t len) const;
2697 private:
2698 // Version of the header. We write a DWARF-3 header because it's smaller
2699 // and many tools have not yet been updated to understand the DWARF-4 header.
2700 static const int version = 3;
2701 // Length of the portion of the header that follows the header_length
2702 // field. This includes the following fields:
2703 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2704 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2705 // The standard_opcode_lengths array is 12 bytes long, and the
2706 // include_directories and filenames fields each contain only a single
2707 // null byte.
2708 static const size_t header_length = 19;
2711 // An output section. We don't expect to have too many output
2712 // sections, so we don't bother to do a template on the size.
2714 class Output_section : public Output_data
2716 public:
2717 // Create an output section, giving the name, type, and flags.
2718 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2719 virtual ~Output_section();
2721 // Add a new input section SHNDX, named NAME, with header SHDR, from
2722 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2723 // which applies to this section, or 0 if none, or -1 if more than
2724 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2725 // in a linker script; in that case we need to keep track of input
2726 // sections associated with an output section. Return the offset
2727 // within the output section.
2728 template<int size, bool big_endian>
2729 off_t
2730 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2731 unsigned int shndx, const char* name,
2732 const elfcpp::Shdr<size, big_endian>& shdr,
2733 unsigned int reloc_shndx, bool have_sections_script);
2735 // Add generated data POSD to this output section.
2736 void
2737 add_output_section_data(Output_section_data* posd);
2739 // Add a relaxed input section PORIS called NAME to this output section
2740 // with LAYOUT.
2741 void
2742 add_relaxed_input_section(Layout* layout,
2743 Output_relaxed_input_section* poris,
2744 const std::string& name);
2746 // Return the section name.
2747 const char*
2748 name() const
2749 { return this->name_; }
2751 // Return the section type.
2752 elfcpp::Elf_Word
2753 type() const
2754 { return this->type_; }
2756 // Return the section flags.
2757 elfcpp::Elf_Xword
2758 flags() const
2759 { return this->flags_; }
2761 typedef std::map<Section_id, unsigned int> Section_layout_order;
2763 void
2764 update_section_layout(const Section_layout_order& order_map);
2766 // Update the output section flags based on input section flags.
2767 void
2768 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2770 // Return the entsize field.
2771 uint64_t
2772 entsize() const
2773 { return this->entsize_; }
2775 // Set the entsize field.
2776 void
2777 set_entsize(uint64_t v);
2779 // Set the load address.
2780 void
2781 set_load_address(uint64_t load_address)
2783 this->load_address_ = load_address;
2784 this->has_load_address_ = true;
2787 // Set the link field to the output section index of a section.
2788 void
2789 set_link_section(const Output_data* od)
2791 gold_assert(this->link_ == 0
2792 && !this->should_link_to_symtab_
2793 && !this->should_link_to_dynsym_);
2794 this->link_section_ = od;
2797 // Set the link field to a constant.
2798 void
2799 set_link(unsigned int v)
2801 gold_assert(this->link_section_ == NULL
2802 && !this->should_link_to_symtab_
2803 && !this->should_link_to_dynsym_);
2804 this->link_ = v;
2807 // Record that this section should link to the normal symbol table.
2808 void
2809 set_should_link_to_symtab()
2811 gold_assert(this->link_section_ == NULL
2812 && this->link_ == 0
2813 && !this->should_link_to_dynsym_);
2814 this->should_link_to_symtab_ = true;
2817 // Record that this section should link to the dynamic symbol table.
2818 void
2819 set_should_link_to_dynsym()
2821 gold_assert(this->link_section_ == NULL
2822 && this->link_ == 0
2823 && !this->should_link_to_symtab_);
2824 this->should_link_to_dynsym_ = true;
2827 // Return the info field.
2828 unsigned int
2829 info() const
2831 gold_assert(this->info_section_ == NULL
2832 && this->info_symndx_ == NULL);
2833 return this->info_;
2836 // Set the info field to the output section index of a section.
2837 void
2838 set_info_section(const Output_section* os)
2840 gold_assert((this->info_section_ == NULL
2841 || (this->info_section_ == os
2842 && this->info_uses_section_index_))
2843 && this->info_symndx_ == NULL
2844 && this->info_ == 0);
2845 this->info_section_ = os;
2846 this->info_uses_section_index_= true;
2849 // Set the info field to the symbol table index of a symbol.
2850 void
2851 set_info_symndx(const Symbol* sym)
2853 gold_assert(this->info_section_ == NULL
2854 && (this->info_symndx_ == NULL
2855 || this->info_symndx_ == sym)
2856 && this->info_ == 0);
2857 this->info_symndx_ = sym;
2860 // Set the info field to the symbol table index of a section symbol.
2861 void
2862 set_info_section_symndx(const Output_section* os)
2864 gold_assert((this->info_section_ == NULL
2865 || (this->info_section_ == os
2866 && !this->info_uses_section_index_))
2867 && this->info_symndx_ == NULL
2868 && this->info_ == 0);
2869 this->info_section_ = os;
2870 this->info_uses_section_index_ = false;
2873 // Set the info field to a constant.
2874 void
2875 set_info(unsigned int v)
2877 gold_assert(this->info_section_ == NULL
2878 && this->info_symndx_ == NULL
2879 && (this->info_ == 0
2880 || this->info_ == v));
2881 this->info_ = v;
2884 // Set the addralign field.
2885 void
2886 set_addralign(uint64_t v)
2887 { this->addralign_ = v; }
2889 // Whether the output section index has been set.
2890 bool
2891 has_out_shndx() const
2892 { return this->out_shndx_ != -1U; }
2894 // Indicate that we need a symtab index.
2895 void
2896 set_needs_symtab_index()
2897 { this->needs_symtab_index_ = true; }
2899 // Return whether we need a symtab index.
2900 bool
2901 needs_symtab_index() const
2902 { return this->needs_symtab_index_; }
2904 // Get the symtab index.
2905 unsigned int
2906 symtab_index() const
2908 gold_assert(this->symtab_index_ != 0);
2909 return this->symtab_index_;
2912 // Set the symtab index.
2913 void
2914 set_symtab_index(unsigned int index)
2916 gold_assert(index != 0);
2917 this->symtab_index_ = index;
2920 // Indicate that we need a dynsym index.
2921 void
2922 set_needs_dynsym_index()
2923 { this->needs_dynsym_index_ = true; }
2925 // Return whether we need a dynsym index.
2926 bool
2927 needs_dynsym_index() const
2928 { return this->needs_dynsym_index_; }
2930 // Get the dynsym index.
2931 unsigned int
2932 dynsym_index() const
2934 gold_assert(this->dynsym_index_ != 0);
2935 return this->dynsym_index_;
2938 // Set the dynsym index.
2939 void
2940 set_dynsym_index(unsigned int index)
2942 gold_assert(index != 0);
2943 this->dynsym_index_ = index;
2946 // Return whether the input sections sections attachd to this output
2947 // section may require sorting. This is used to handle constructor
2948 // priorities compatibly with GNU ld.
2949 bool
2950 may_sort_attached_input_sections() const
2951 { return this->may_sort_attached_input_sections_; }
2953 // Record that the input sections attached to this output section
2954 // may require sorting.
2955 void
2956 set_may_sort_attached_input_sections()
2957 { this->may_sort_attached_input_sections_ = true; }
2959 // Returns true if input sections must be sorted according to the
2960 // order in which their name appear in the --section-ordering-file.
2961 bool
2962 input_section_order_specified()
2963 { return this->input_section_order_specified_; }
2965 // Record that input sections must be sorted as some of their names
2966 // match the patterns specified through --section-ordering-file.
2967 void
2968 set_input_section_order_specified()
2969 { this->input_section_order_specified_ = true; }
2971 // Return whether the input sections attached to this output section
2972 // require sorting. This is used to handle constructor priorities
2973 // compatibly with GNU ld.
2974 bool
2975 must_sort_attached_input_sections() const
2976 { return this->must_sort_attached_input_sections_; }
2978 // Record that the input sections attached to this output section
2979 // require sorting.
2980 void
2981 set_must_sort_attached_input_sections()
2982 { this->must_sort_attached_input_sections_ = true; }
2984 // Get the order in which this section appears in the PT_LOAD output
2985 // segment.
2986 Output_section_order
2987 order() const
2988 { return this->order_; }
2990 // Set the order for this section.
2991 void
2992 set_order(Output_section_order order)
2993 { this->order_ = order; }
2995 // Return whether this section holds relro data--data which has
2996 // dynamic relocations but which may be marked read-only after the
2997 // dynamic relocations have been completed.
2998 bool
2999 is_relro() const
3000 { return this->is_relro_; }
3002 // Record that this section holds relro data.
3003 void
3004 set_is_relro()
3005 { this->is_relro_ = true; }
3007 // Record that this section does not hold relro data.
3008 void
3009 clear_is_relro()
3010 { this->is_relro_ = false; }
3012 // True if this is a small section: a section which holds small
3013 // variables.
3014 bool
3015 is_small_section() const
3016 { return this->is_small_section_; }
3018 // Record that this is a small section.
3019 void
3020 set_is_small_section()
3021 { this->is_small_section_ = true; }
3023 // True if this is a large section: a section which holds large
3024 // variables.
3025 bool
3026 is_large_section() const
3027 { return this->is_large_section_; }
3029 // Record that this is a large section.
3030 void
3031 set_is_large_section()
3032 { this->is_large_section_ = true; }
3034 // True if this is a large data (not BSS) section.
3035 bool
3036 is_large_data_section()
3037 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3039 // Return whether this section should be written after all the input
3040 // sections are complete.
3041 bool
3042 after_input_sections() const
3043 { return this->after_input_sections_; }
3045 // Record that this section should be written after all the input
3046 // sections are complete.
3047 void
3048 set_after_input_sections()
3049 { this->after_input_sections_ = true; }
3051 // Return whether this section requires postprocessing after all
3052 // relocations have been applied.
3053 bool
3054 requires_postprocessing() const
3055 { return this->requires_postprocessing_; }
3057 // If a section requires postprocessing, return the buffer to use.
3058 unsigned char*
3059 postprocessing_buffer() const
3061 gold_assert(this->postprocessing_buffer_ != NULL);
3062 return this->postprocessing_buffer_;
3065 // If a section requires postprocessing, create the buffer to use.
3066 void
3067 create_postprocessing_buffer();
3069 // If a section requires postprocessing, this is the size of the
3070 // buffer to which relocations should be applied.
3071 off_t
3072 postprocessing_buffer_size() const
3073 { return this->current_data_size_for_child(); }
3075 // Modify the section name. This is only permitted for an
3076 // unallocated section, and only before the size has been finalized.
3077 // Otherwise the name will not get into Layout::namepool_.
3078 void
3079 set_name(const char* newname)
3081 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3082 gold_assert(!this->is_data_size_valid());
3083 this->name_ = newname;
3086 // Return whether the offset OFFSET in the input section SHNDX in
3087 // object OBJECT is being included in the link.
3088 bool
3089 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3090 off_t offset) const;
3092 // Return the offset within the output section of OFFSET relative to
3093 // the start of input section SHNDX in object OBJECT.
3094 section_offset_type
3095 output_offset(const Relobj* object, unsigned int shndx,
3096 section_offset_type offset) const;
3098 // Return the output virtual address of OFFSET relative to the start
3099 // of input section SHNDX in object OBJECT.
3100 uint64_t
3101 output_address(const Relobj* object, unsigned int shndx,
3102 off_t offset) const;
3104 // Look for the merged section for input section SHNDX in object
3105 // OBJECT. If found, return true, and set *ADDR to the address of
3106 // the start of the merged section. This is not necessary the
3107 // output offset corresponding to input offset 0 in the section,
3108 // since the section may be mapped arbitrarily.
3109 bool
3110 find_starting_output_address(const Relobj* object, unsigned int shndx,
3111 uint64_t* addr) const;
3113 // Record that this output section was found in the SECTIONS clause
3114 // of a linker script.
3115 void
3116 set_found_in_sections_clause()
3117 { this->found_in_sections_clause_ = true; }
3119 // Return whether this output section was found in the SECTIONS
3120 // clause of a linker script.
3121 bool
3122 found_in_sections_clause() const
3123 { return this->found_in_sections_clause_; }
3125 // Write the section header into *OPHDR.
3126 template<int size, bool big_endian>
3127 void
3128 write_header(const Layout*, const Stringpool*,
3129 elfcpp::Shdr_write<size, big_endian>*) const;
3131 // The next few calls are for linker script support.
3133 // In some cases we need to keep a list of the input sections
3134 // associated with this output section. We only need the list if we
3135 // might have to change the offsets of the input section within the
3136 // output section after we add the input section. The ordinary
3137 // input sections will be written out when we process the object
3138 // file, and as such we don't need to track them here. We do need
3139 // to track Output_section_data objects here. We store instances of
3140 // this structure in a std::vector, so it must be a POD. There can
3141 // be many instances of this structure, so we use a union to save
3142 // some space.
3143 class Input_section
3145 public:
3146 Input_section()
3147 : shndx_(0), p2align_(0)
3149 this->u1_.data_size = 0;
3150 this->u2_.object = NULL;
3153 // For an ordinary input section.
3154 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3155 uint64_t addralign)
3156 : shndx_(shndx),
3157 p2align_(ffsll(static_cast<long long>(addralign))),
3158 section_order_index_(0)
3160 gold_assert(shndx != OUTPUT_SECTION_CODE
3161 && shndx != MERGE_DATA_SECTION_CODE
3162 && shndx != MERGE_STRING_SECTION_CODE
3163 && shndx != RELAXED_INPUT_SECTION_CODE);
3164 this->u1_.data_size = data_size;
3165 this->u2_.object = object;
3168 // For a non-merge output section.
3169 Input_section(Output_section_data* posd)
3170 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3171 section_order_index_(0)
3173 this->u1_.data_size = 0;
3174 this->u2_.posd = posd;
3177 // For a merge section.
3178 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3179 : shndx_(is_string
3180 ? MERGE_STRING_SECTION_CODE
3181 : MERGE_DATA_SECTION_CODE),
3182 p2align_(0),
3183 section_order_index_(0)
3185 this->u1_.entsize = entsize;
3186 this->u2_.posd = posd;
3189 // For a relaxed input section.
3190 Input_section(Output_relaxed_input_section* psection)
3191 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3192 section_order_index_(0)
3194 this->u1_.data_size = 0;
3195 this->u2_.poris = psection;
3198 unsigned int
3199 section_order_index() const
3201 return this->section_order_index_;
3204 void
3205 set_section_order_index(unsigned int number)
3207 this->section_order_index_ = number;
3210 // The required alignment.
3211 uint64_t
3212 addralign() const
3214 if (this->p2align_ != 0)
3215 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3216 else if (!this->is_input_section())
3217 return this->u2_.posd->addralign();
3218 else
3219 return 0;
3222 // Set the required alignment, which must be either 0 or a power of 2.
3223 // For input sections that are sub-classes of Output_section_data, a
3224 // alignment of zero means asking the underlying object for alignment.
3225 void
3226 set_addralign(uint64_t addralign)
3228 if (addralign == 0)
3229 this->p2align_ = 0;
3230 else
3232 gold_assert((addralign & (addralign - 1)) == 0);
3233 this->p2align_ = ffsll(static_cast<long long>(addralign));
3237 // Return the current required size, without finalization.
3238 off_t
3239 current_data_size() const;
3241 // Return the required size.
3242 off_t
3243 data_size() const;
3245 // Whether this is an input section.
3246 bool
3247 is_input_section() const
3249 return (this->shndx_ != OUTPUT_SECTION_CODE
3250 && this->shndx_ != MERGE_DATA_SECTION_CODE
3251 && this->shndx_ != MERGE_STRING_SECTION_CODE
3252 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3255 // Return whether this is a merge section which matches the
3256 // parameters.
3257 bool
3258 is_merge_section(bool is_string, uint64_t entsize,
3259 uint64_t addralign) const
3261 return (this->shndx_ == (is_string
3262 ? MERGE_STRING_SECTION_CODE
3263 : MERGE_DATA_SECTION_CODE)
3264 && this->u1_.entsize == entsize
3265 && this->addralign() == addralign);
3268 // Return whether this is a merge section for some input section.
3269 bool
3270 is_merge_section() const
3272 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3273 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3276 // Return whether this is a relaxed input section.
3277 bool
3278 is_relaxed_input_section() const
3279 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3281 // Return whether this is a generic Output_section_data.
3282 bool
3283 is_output_section_data() const
3285 return this->shndx_ == OUTPUT_SECTION_CODE;
3288 // Return the object for an input section.
3289 Relobj*
3290 relobj() const;
3292 // Return the input section index for an input section.
3293 unsigned int
3294 shndx() const;
3296 // For non-input-sections, return the associated Output_section_data
3297 // object.
3298 Output_section_data*
3299 output_section_data() const
3301 gold_assert(!this->is_input_section());
3302 return this->u2_.posd;
3305 // For a merge section, return the Output_merge_base pointer.
3306 Output_merge_base*
3307 output_merge_base() const
3309 gold_assert(this->is_merge_section());
3310 return this->u2_.pomb;
3313 // Return the Output_relaxed_input_section object.
3314 Output_relaxed_input_section*
3315 relaxed_input_section() const
3317 gold_assert(this->is_relaxed_input_section());
3318 return this->u2_.poris;
3321 // Set the output section.
3322 void
3323 set_output_section(Output_section* os)
3325 gold_assert(!this->is_input_section());
3326 Output_section_data* posd =
3327 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3328 posd->set_output_section(os);
3331 // Set the address and file offset. This is called during
3332 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3333 // the enclosing section.
3334 void
3335 set_address_and_file_offset(uint64_t address, off_t file_offset,
3336 off_t section_file_offset);
3338 // Reset the address and file offset.
3339 void
3340 reset_address_and_file_offset();
3342 // Finalize the data size.
3343 void
3344 finalize_data_size();
3346 // Add an input section, for SHF_MERGE sections.
3347 bool
3348 add_input_section(Relobj* object, unsigned int shndx)
3350 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3351 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3352 return this->u2_.posd->add_input_section(object, shndx);
3355 // Given an input OBJECT, an input section index SHNDX within that
3356 // object, and an OFFSET relative to the start of that input
3357 // section, return whether or not the output offset is known. If
3358 // this function returns true, it sets *POUTPUT to the offset in
3359 // the output section, relative to the start of the input section
3360 // in the output section. *POUTPUT may be different from OFFSET
3361 // for a merged section.
3362 bool
3363 output_offset(const Relobj* object, unsigned int shndx,
3364 section_offset_type offset,
3365 section_offset_type* poutput) const;
3367 // Return whether this is the merge section for the input section
3368 // SHNDX in OBJECT.
3369 bool
3370 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3372 // Write out the data. This does nothing for an input section.
3373 void
3374 write(Output_file*);
3376 // Write the data to a buffer. This does nothing for an input
3377 // section.
3378 void
3379 write_to_buffer(unsigned char*);
3381 // Print to a map file.
3382 void
3383 print_to_mapfile(Mapfile*) const;
3385 // Print statistics about merge sections to stderr.
3386 void
3387 print_merge_stats(const char* section_name)
3389 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3390 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3391 this->u2_.posd->print_merge_stats(section_name);
3394 private:
3395 // Code values which appear in shndx_. If the value is not one of
3396 // these codes, it is the input section index in the object file.
3397 enum
3399 // An Output_section_data.
3400 OUTPUT_SECTION_CODE = -1U,
3401 // An Output_section_data for an SHF_MERGE section with
3402 // SHF_STRINGS not set.
3403 MERGE_DATA_SECTION_CODE = -2U,
3404 // An Output_section_data for an SHF_MERGE section with
3405 // SHF_STRINGS set.
3406 MERGE_STRING_SECTION_CODE = -3U,
3407 // An Output_section_data for a relaxed input section.
3408 RELAXED_INPUT_SECTION_CODE = -4U
3411 // For an ordinary input section, this is the section index in the
3412 // input file. For an Output_section_data, this is
3413 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3414 // MERGE_STRING_SECTION_CODE.
3415 unsigned int shndx_;
3416 // The required alignment, stored as a power of 2.
3417 unsigned int p2align_;
3418 union
3420 // For an ordinary input section, the section size.
3421 off_t data_size;
3422 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3423 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3424 // entity size.
3425 uint64_t entsize;
3426 } u1_;
3427 union
3429 // For an ordinary input section, the object which holds the
3430 // input section.
3431 Relobj* object;
3432 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3433 // MERGE_STRING_SECTION_CODE, the data.
3434 Output_section_data* posd;
3435 Output_merge_base* pomb;
3436 // For RELAXED_INPUT_SECTION_CODE, the data.
3437 Output_relaxed_input_section* poris;
3438 } u2_;
3439 // The line number of the pattern it matches in the --section-ordering-file
3440 // file. It is 0 if does not match any pattern.
3441 unsigned int section_order_index_;
3444 // Store the list of input sections for this Output_section into the
3445 // list passed in. This removes the input sections, leaving only
3446 // any Output_section_data elements. This returns the size of those
3447 // Output_section_data elements. ADDRESS is the address of this
3448 // output section. FILL is the fill value to use, in case there are
3449 // any spaces between the remaining Output_section_data elements.
3450 uint64_t
3451 get_input_sections(uint64_t address, const std::string& fill,
3452 std::list<Input_section>*);
3454 // Add a script input section. A script input section can either be
3455 // a plain input section or a sub-class of Output_section_data.
3456 void
3457 add_script_input_section(const Input_section& input_section);
3459 // Set the current size of the output section.
3460 void
3461 set_current_data_size(off_t size)
3462 { this->set_current_data_size_for_child(size); }
3464 // End of linker script support.
3466 // Save states before doing section layout.
3467 // This is used for relaxation.
3468 void
3469 save_states();
3471 // Restore states prior to section layout.
3472 void
3473 restore_states();
3475 // Discard states.
3476 void
3477 discard_states();
3479 // Convert existing input sections to relaxed input sections.
3480 void
3481 convert_input_sections_to_relaxed_sections(
3482 const std::vector<Output_relaxed_input_section*>& sections);
3484 // Find a relaxed input section to an input section in OBJECT
3485 // with index SHNDX. Return NULL if none is found.
3486 const Output_relaxed_input_section*
3487 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3489 // Whether section offsets need adjustment due to relaxation.
3490 bool
3491 section_offsets_need_adjustment() const
3492 { return this->section_offsets_need_adjustment_; }
3494 // Set section_offsets_need_adjustment to be true.
3495 void
3496 set_section_offsets_need_adjustment()
3497 { this->section_offsets_need_adjustment_ = true; }
3499 // Adjust section offsets of input sections in this. This is
3500 // requires if relaxation caused some input sections to change sizes.
3501 void
3502 adjust_section_offsets();
3504 // Whether this is a NOLOAD section.
3505 bool
3506 is_noload() const
3507 { return this->is_noload_; }
3509 // Set NOLOAD flag.
3510 void
3511 set_is_noload()
3512 { this->is_noload_ = true; }
3514 // Print merge statistics to stderr.
3515 void
3516 print_merge_stats();
3518 // Set a fixed layout for the section. Used for incremental update links.
3519 void
3520 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3521 uint64_t sh_addralign);
3523 // Return TRUE if the section has a fixed layout.
3524 bool
3525 has_fixed_layout() const
3526 { return this->has_fixed_layout_; }
3528 // Set flag to allow patch space for this section. Used for full
3529 // incremental links.
3530 void
3531 set_is_patch_space_allowed()
3532 { this->is_patch_space_allowed_ = true; }
3534 // Set a fill method to use for free space left in the output section
3535 // during incremental links.
3536 void
3537 set_free_space_fill(Output_fill* free_space_fill)
3539 this->free_space_fill_ = free_space_fill;
3540 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3543 // Reserve space within the fixed layout for the section. Used for
3544 // incremental update links.
3545 void
3546 reserve(uint64_t sh_offset, uint64_t sh_size);
3548 // Allocate space from the free list for the section. Used for
3549 // incremental update links.
3550 off_t
3551 allocate(off_t len, uint64_t addralign);
3553 protected:
3554 // Return the output section--i.e., the object itself.
3555 Output_section*
3556 do_output_section()
3557 { return this; }
3559 const Output_section*
3560 do_output_section() const
3561 { return this; }
3563 // Return the section index in the output file.
3564 unsigned int
3565 do_out_shndx() const
3567 gold_assert(this->out_shndx_ != -1U);
3568 return this->out_shndx_;
3571 // Set the output section index.
3572 void
3573 do_set_out_shndx(unsigned int shndx)
3575 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3576 this->out_shndx_ = shndx;
3579 // Update the data size of the Output_section. For a typical
3580 // Output_section, there is nothing to do, but if there are any
3581 // Output_section_data objects we need to do a trial layout
3582 // here.
3583 virtual void
3584 update_data_size();
3586 // Set the final data size of the Output_section. For a typical
3587 // Output_section, there is nothing to do, but if there are any
3588 // Output_section_data objects we need to set their final addresses
3589 // here.
3590 virtual void
3591 set_final_data_size();
3593 // Reset the address and file offset.
3594 void
3595 do_reset_address_and_file_offset();
3597 // Return true if address and file offset already have reset values. In
3598 // other words, calling reset_address_and_file_offset will not change them.
3599 bool
3600 do_address_and_file_offset_have_reset_values() const;
3602 // Write the data to the file. For a typical Output_section, this
3603 // does nothing: the data is written out by calling Object::Relocate
3604 // on each input object. But if there are any Output_section_data
3605 // objects we do need to write them out here.
3606 virtual void
3607 do_write(Output_file*);
3609 // Return the address alignment--function required by parent class.
3610 uint64_t
3611 do_addralign() const
3612 { return this->addralign_; }
3614 // Return whether there is a load address.
3615 bool
3616 do_has_load_address() const
3617 { return this->has_load_address_; }
3619 // Return the load address.
3620 uint64_t
3621 do_load_address() const
3623 gold_assert(this->has_load_address_);
3624 return this->load_address_;
3627 // Return whether this is an Output_section.
3628 bool
3629 do_is_section() const
3630 { return true; }
3632 // Return whether this is a section of the specified type.
3633 bool
3634 do_is_section_type(elfcpp::Elf_Word type) const
3635 { return this->type_ == type; }
3637 // Return whether the specified section flag is set.
3638 bool
3639 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3640 { return (this->flags_ & flag) != 0; }
3642 // Set the TLS offset. Called only for SHT_TLS sections.
3643 void
3644 do_set_tls_offset(uint64_t tls_base);
3646 // Return the TLS offset, relative to the base of the TLS segment.
3647 // Valid only for SHT_TLS sections.
3648 uint64_t
3649 do_tls_offset() const
3650 { return this->tls_offset_; }
3652 // This may be implemented by a child class.
3653 virtual void
3654 do_finalize_name(Layout*)
3657 // Print to the map file.
3658 virtual void
3659 do_print_to_mapfile(Mapfile*) const;
3661 // Record that this section requires postprocessing after all
3662 // relocations have been applied. This is called by a child class.
3663 void
3664 set_requires_postprocessing()
3666 this->requires_postprocessing_ = true;
3667 this->after_input_sections_ = true;
3670 // Write all the data of an Output_section into the postprocessing
3671 // buffer.
3672 void
3673 write_to_postprocessing_buffer();
3675 typedef std::vector<Input_section> Input_section_list;
3677 // Allow a child class to access the input sections.
3678 const Input_section_list&
3679 input_sections() const
3680 { return this->input_sections_; }
3682 // Whether this always keeps an input section list
3683 bool
3684 always_keeps_input_sections() const
3685 { return this->always_keeps_input_sections_; }
3687 // Always keep an input section list.
3688 void
3689 set_always_keeps_input_sections()
3691 gold_assert(this->current_data_size_for_child() == 0);
3692 this->always_keeps_input_sections_ = true;
3695 private:
3696 // We only save enough information to undo the effects of section layout.
3697 class Checkpoint_output_section
3699 public:
3700 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3701 const Input_section_list& input_sections,
3702 off_t first_input_offset,
3703 bool attached_input_sections_are_sorted)
3704 : addralign_(addralign), flags_(flags),
3705 input_sections_(input_sections),
3706 input_sections_size_(input_sections_.size()),
3707 input_sections_copy_(), first_input_offset_(first_input_offset),
3708 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3711 virtual
3712 ~Checkpoint_output_section()
3715 // Return the address alignment.
3716 uint64_t
3717 addralign() const
3718 { return this->addralign_; }
3720 // Return the section flags.
3721 elfcpp::Elf_Xword
3722 flags() const
3723 { return this->flags_; }
3725 // Return a reference to the input section list copy.
3726 Input_section_list*
3727 input_sections()
3728 { return &this->input_sections_copy_; }
3730 // Return the size of input_sections at the time when checkpoint is
3731 // taken.
3732 size_t
3733 input_sections_size() const
3734 { return this->input_sections_size_; }
3736 // Whether input sections are copied.
3737 bool
3738 input_sections_saved() const
3739 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3741 off_t
3742 first_input_offset() const
3743 { return this->first_input_offset_; }
3745 bool
3746 attached_input_sections_are_sorted() const
3747 { return this->attached_input_sections_are_sorted_; }
3749 // Save input sections.
3750 void
3751 save_input_sections()
3753 this->input_sections_copy_.reserve(this->input_sections_size_);
3754 this->input_sections_copy_.clear();
3755 Input_section_list::const_iterator p = this->input_sections_.begin();
3756 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3757 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3758 this->input_sections_copy_.push_back(*p);
3761 private:
3762 // The section alignment.
3763 uint64_t addralign_;
3764 // The section flags.
3765 elfcpp::Elf_Xword flags_;
3766 // Reference to the input sections to be checkpointed.
3767 const Input_section_list& input_sections_;
3768 // Size of the checkpointed portion of input_sections_;
3769 size_t input_sections_size_;
3770 // Copy of input sections.
3771 Input_section_list input_sections_copy_;
3772 // The offset of the first entry in input_sections_.
3773 off_t first_input_offset_;
3774 // True if the input sections attached to this output section have
3775 // already been sorted.
3776 bool attached_input_sections_are_sorted_;
3779 // This class is used to sort the input sections.
3780 class Input_section_sort_entry;
3782 // This is the sort comparison function for ctors and dtors.
3783 struct Input_section_sort_compare
3785 bool
3786 operator()(const Input_section_sort_entry&,
3787 const Input_section_sort_entry&) const;
3790 // This is the sort comparison function for .init_array and .fini_array.
3791 struct Input_section_sort_init_fini_compare
3793 bool
3794 operator()(const Input_section_sort_entry&,
3795 const Input_section_sort_entry&) const;
3798 // This is the sort comparison function when a section order is specified
3799 // from an input file.
3800 struct Input_section_sort_section_order_index_compare
3802 bool
3803 operator()(const Input_section_sort_entry&,
3804 const Input_section_sort_entry&) const;
3807 // Fill data. This is used to fill in data between input sections.
3808 // It is also used for data statements (BYTE, WORD, etc.) in linker
3809 // scripts. When we have to keep track of the input sections, we
3810 // can use an Output_data_const, but we don't want to have to keep
3811 // track of input sections just to implement fills.
3812 class Fill
3814 public:
3815 Fill(off_t section_offset, off_t length)
3816 : section_offset_(section_offset),
3817 length_(convert_to_section_size_type(length))
3820 // Return section offset.
3821 off_t
3822 section_offset() const
3823 { return this->section_offset_; }
3825 // Return fill length.
3826 section_size_type
3827 length() const
3828 { return this->length_; }
3830 private:
3831 // The offset within the output section.
3832 off_t section_offset_;
3833 // The length of the space to fill.
3834 section_size_type length_;
3837 typedef std::vector<Fill> Fill_list;
3839 // Map used during relaxation of existing sections. This map
3840 // a section id an input section list index. We assume that
3841 // Input_section_list is a vector.
3842 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
3844 // Add a new output section by Input_section.
3845 void
3846 add_output_section_data(Input_section*);
3848 // Add an SHF_MERGE input section. Returns true if the section was
3849 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
3850 // stores information about the merged input sections.
3851 bool
3852 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3853 uint64_t entsize, uint64_t addralign,
3854 bool keeps_input_sections);
3856 // Add an output SHF_MERGE section POSD to this output section.
3857 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3858 // ENTSIZE is the entity size. This returns the entry added to
3859 // input_sections_.
3860 void
3861 add_output_merge_section(Output_section_data* posd, bool is_string,
3862 uint64_t entsize);
3864 // Sort the attached input sections.
3865 void
3866 sort_attached_input_sections();
3868 // Find the merge section into which an input section with index SHNDX in
3869 // OBJECT has been added. Return NULL if none found.
3870 Output_section_data*
3871 find_merge_section(const Relobj* object, unsigned int shndx) const;
3873 // Build a relaxation map.
3874 void
3875 build_relaxation_map(
3876 const Input_section_list& input_sections,
3877 size_t limit,
3878 Relaxation_map* map) const;
3880 // Convert input sections in an input section list into relaxed sections.
3881 void
3882 convert_input_sections_in_list_to_relaxed_sections(
3883 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3884 const Relaxation_map& map,
3885 Input_section_list* input_sections);
3887 // Build the lookup maps for merge and relaxed input sections.
3888 void
3889 build_lookup_maps() const;
3891 // Most of these fields are only valid after layout.
3893 // The name of the section. This will point into a Stringpool.
3894 const char* name_;
3895 // The section address is in the parent class.
3896 // The section alignment.
3897 uint64_t addralign_;
3898 // The section entry size.
3899 uint64_t entsize_;
3900 // The load address. This is only used when using a linker script
3901 // with a SECTIONS clause. The has_load_address_ field indicates
3902 // whether this field is valid.
3903 uint64_t load_address_;
3904 // The file offset is in the parent class.
3905 // Set the section link field to the index of this section.
3906 const Output_data* link_section_;
3907 // If link_section_ is NULL, this is the link field.
3908 unsigned int link_;
3909 // Set the section info field to the index of this section.
3910 const Output_section* info_section_;
3911 // If info_section_ is NULL, set the info field to the symbol table
3912 // index of this symbol.
3913 const Symbol* info_symndx_;
3914 // If info_section_ and info_symndx_ are NULL, this is the section
3915 // info field.
3916 unsigned int info_;
3917 // The section type.
3918 const elfcpp::Elf_Word type_;
3919 // The section flags.
3920 elfcpp::Elf_Xword flags_;
3921 // The order of this section in the output segment.
3922 Output_section_order order_;
3923 // The section index.
3924 unsigned int out_shndx_;
3925 // If there is a STT_SECTION for this output section in the normal
3926 // symbol table, this is the symbol index. This starts out as zero.
3927 // It is initialized in Layout::finalize() to be the index, or -1U
3928 // if there isn't one.
3929 unsigned int symtab_index_;
3930 // If there is a STT_SECTION for this output section in the dynamic
3931 // symbol table, this is the symbol index. This starts out as zero.
3932 // It is initialized in Layout::finalize() to be the index, or -1U
3933 // if there isn't one.
3934 unsigned int dynsym_index_;
3935 // The input sections. This will be empty in cases where we don't
3936 // need to keep track of them.
3937 Input_section_list input_sections_;
3938 // The offset of the first entry in input_sections_.
3939 off_t first_input_offset_;
3940 // The fill data. This is separate from input_sections_ because we
3941 // often will need fill sections without needing to keep track of
3942 // input sections.
3943 Fill_list fills_;
3944 // If the section requires postprocessing, this buffer holds the
3945 // section contents during relocation.
3946 unsigned char* postprocessing_buffer_;
3947 // Whether this output section needs a STT_SECTION symbol in the
3948 // normal symbol table. This will be true if there is a relocation
3949 // which needs it.
3950 bool needs_symtab_index_ : 1;
3951 // Whether this output section needs a STT_SECTION symbol in the
3952 // dynamic symbol table. This will be true if there is a dynamic
3953 // relocation which needs it.
3954 bool needs_dynsym_index_ : 1;
3955 // Whether the link field of this output section should point to the
3956 // normal symbol table.
3957 bool should_link_to_symtab_ : 1;
3958 // Whether the link field of this output section should point to the
3959 // dynamic symbol table.
3960 bool should_link_to_dynsym_ : 1;
3961 // Whether this section should be written after all the input
3962 // sections are complete.
3963 bool after_input_sections_ : 1;
3964 // Whether this section requires post processing after all
3965 // relocations have been applied.
3966 bool requires_postprocessing_ : 1;
3967 // Whether an input section was mapped to this output section
3968 // because of a SECTIONS clause in a linker script.
3969 bool found_in_sections_clause_ : 1;
3970 // Whether this section has an explicitly specified load address.
3971 bool has_load_address_ : 1;
3972 // True if the info_section_ field means the section index of the
3973 // section, false if it means the symbol index of the corresponding
3974 // section symbol.
3975 bool info_uses_section_index_ : 1;
3976 // True if input sections attached to this output section have to be
3977 // sorted according to a specified order.
3978 bool input_section_order_specified_ : 1;
3979 // True if the input sections attached to this output section may
3980 // need sorting.
3981 bool may_sort_attached_input_sections_ : 1;
3982 // True if the input sections attached to this output section must
3983 // be sorted.
3984 bool must_sort_attached_input_sections_ : 1;
3985 // True if the input sections attached to this output section have
3986 // already been sorted.
3987 bool attached_input_sections_are_sorted_ : 1;
3988 // True if this section holds relro data.
3989 bool is_relro_ : 1;
3990 // True if this is a small section.
3991 bool is_small_section_ : 1;
3992 // True if this is a large section.
3993 bool is_large_section_ : 1;
3994 // Whether code-fills are generated at write.
3995 bool generate_code_fills_at_write_ : 1;
3996 // Whether the entry size field should be zero.
3997 bool is_entsize_zero_ : 1;
3998 // Whether section offsets need adjustment due to relaxation.
3999 bool section_offsets_need_adjustment_ : 1;
4000 // Whether this is a NOLOAD section.
4001 bool is_noload_ : 1;
4002 // Whether this always keeps input section.
4003 bool always_keeps_input_sections_ : 1;
4004 // Whether this section has a fixed layout, for incremental update links.
4005 bool has_fixed_layout_ : 1;
4006 // True if we can add patch space to this section.
4007 bool is_patch_space_allowed_ : 1;
4008 // For SHT_TLS sections, the offset of this section relative to the base
4009 // of the TLS segment.
4010 uint64_t tls_offset_;
4011 // Saved checkpoint.
4012 Checkpoint_output_section* checkpoint_;
4013 // Fast lookup maps for merged and relaxed input sections.
4014 Output_section_lookup_maps* lookup_maps_;
4015 // List of available regions within the section, for incremental
4016 // update links.
4017 Free_list free_list_;
4018 // Method for filling chunks of free space.
4019 Output_fill* free_space_fill_;
4020 // Amount added as patch space for incremental linking.
4021 off_t patch_space_;
4024 // An output segment. PT_LOAD segments are built from collections of
4025 // output sections. Other segments typically point within PT_LOAD
4026 // segments, and are built directly as needed.
4028 // NOTE: We want to use the copy constructor for this class. During
4029 // relaxation, we may try built the segments multiple times. We do
4030 // that by copying the original segment list before lay-out, doing
4031 // a trial lay-out and roll-back to the saved copied if we need to
4032 // to the lay-out again.
4034 class Output_segment
4036 public:
4037 // Create an output segment, specifying the type and flags.
4038 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4040 // Return the virtual address.
4041 uint64_t
4042 vaddr() const
4043 { return this->vaddr_; }
4045 // Return the physical address.
4046 uint64_t
4047 paddr() const
4048 { return this->paddr_; }
4050 // Return the segment type.
4051 elfcpp::Elf_Word
4052 type() const
4053 { return this->type_; }
4055 // Return the segment flags.
4056 elfcpp::Elf_Word
4057 flags() const
4058 { return this->flags_; }
4060 // Return the memory size.
4061 uint64_t
4062 memsz() const
4063 { return this->memsz_; }
4065 // Return the file size.
4066 off_t
4067 filesz() const
4068 { return this->filesz_; }
4070 // Return the file offset.
4071 off_t
4072 offset() const
4073 { return this->offset_; }
4075 // Whether this is a segment created to hold large data sections.
4076 bool
4077 is_large_data_segment() const
4078 { return this->is_large_data_segment_; }
4080 // Record that this is a segment created to hold large data
4081 // sections.
4082 void
4083 set_is_large_data_segment()
4084 { this->is_large_data_segment_ = true; }
4086 // Return the maximum alignment of the Output_data.
4087 uint64_t
4088 maximum_alignment();
4090 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4091 // the segment flags to use.
4092 void
4093 add_output_section_to_load(Layout* layout, Output_section* os,
4094 elfcpp::Elf_Word seg_flags);
4096 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4097 // is the segment flags to use.
4098 void
4099 add_output_section_to_nonload(Output_section* os,
4100 elfcpp::Elf_Word seg_flags);
4102 // Remove an Output_section from this segment. It is an error if it
4103 // is not present.
4104 void
4105 remove_output_section(Output_section* os);
4107 // Add an Output_data (which need not be an Output_section) to the
4108 // start of this segment.
4109 void
4110 add_initial_output_data(Output_data*);
4112 // Return true if this segment has any sections which hold actual
4113 // data, rather than being a BSS section.
4114 bool
4115 has_any_data_sections() const;
4117 // Whether this segment has a dynamic relocs.
4118 bool
4119 has_dynamic_reloc() const;
4121 // Return the address of the first section.
4122 uint64_t
4123 first_section_load_address() const;
4125 // Return whether the addresses have been set already.
4126 bool
4127 are_addresses_set() const
4128 { return this->are_addresses_set_; }
4130 // Set the addresses.
4131 void
4132 set_addresses(uint64_t vaddr, uint64_t paddr)
4134 this->vaddr_ = vaddr;
4135 this->paddr_ = paddr;
4136 this->are_addresses_set_ = true;
4139 // Update the flags for the flags of an output section added to this
4140 // segment.
4141 void
4142 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4144 // The ELF ABI specifies that a PT_TLS segment should always have
4145 // PF_R as the flags.
4146 if (this->type() != elfcpp::PT_TLS)
4147 this->flags_ |= flags;
4150 // Set the segment flags. This is only used if we have a PHDRS
4151 // clause which explicitly specifies the flags.
4152 void
4153 set_flags(elfcpp::Elf_Word flags)
4154 { this->flags_ = flags; }
4156 // Set the address of the segment to ADDR and the offset to *POFF
4157 // and set the addresses and offsets of all contained output
4158 // sections accordingly. Set the section indexes of all contained
4159 // output sections starting with *PSHNDX. If RESET is true, first
4160 // reset the addresses of the contained sections. Return the
4161 // address of the immediately following segment. Update *POFF and
4162 // *PSHNDX. This should only be called for a PT_LOAD segment.
4163 uint64_t
4164 set_section_addresses(Layout*, bool reset, uint64_t addr,
4165 unsigned int* increase_relro, bool* has_relro,
4166 off_t* poff, unsigned int* pshndx);
4168 // Set the minimum alignment of this segment. This may be adjusted
4169 // upward based on the section alignments.
4170 void
4171 set_minimum_p_align(uint64_t align)
4173 if (align > this->min_p_align_)
4174 this->min_p_align_ = align;
4177 // Set the offset of this segment based on the section. This should
4178 // only be called for a non-PT_LOAD segment.
4179 void
4180 set_offset(unsigned int increase);
4182 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4183 void
4184 set_tls_offsets();
4186 // Return the number of output sections.
4187 unsigned int
4188 output_section_count() const;
4190 // Return the section attached to the list segment with the lowest
4191 // load address. This is used when handling a PHDRS clause in a
4192 // linker script.
4193 Output_section*
4194 section_with_lowest_load_address() const;
4196 // Write the segment header into *OPHDR.
4197 template<int size, bool big_endian>
4198 void
4199 write_header(elfcpp::Phdr_write<size, big_endian>*);
4201 // Write the section headers of associated sections into V.
4202 template<int size, bool big_endian>
4203 unsigned char*
4204 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4205 unsigned int* pshndx) const;
4207 // Print the output sections in the map file.
4208 void
4209 print_sections_to_mapfile(Mapfile*) const;
4211 private:
4212 typedef std::vector<Output_data*> Output_data_list;
4214 // Find the maximum alignment in an Output_data_list.
4215 static uint64_t
4216 maximum_alignment_list(const Output_data_list*);
4218 // Return whether the first data section is a relro section.
4219 bool
4220 is_first_section_relro() const;
4222 // Set the section addresses in an Output_data_list.
4223 uint64_t
4224 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4225 uint64_t addr, off_t* poff, unsigned int* pshndx,
4226 bool* in_tls);
4228 // Return the number of Output_sections in an Output_data_list.
4229 unsigned int
4230 output_section_count_list(const Output_data_list*) const;
4232 // Return whether an Output_data_list has a dynamic reloc.
4233 bool
4234 has_dynamic_reloc_list(const Output_data_list*) const;
4236 // Find the section with the lowest load address in an
4237 // Output_data_list.
4238 void
4239 lowest_load_address_in_list(const Output_data_list* pdl,
4240 Output_section** found,
4241 uint64_t* found_lma) const;
4243 // Find the first and last entries by address.
4244 void
4245 find_first_and_last_list(const Output_data_list* pdl,
4246 const Output_data** pfirst,
4247 const Output_data** plast) const;
4249 // Write the section headers in the list into V.
4250 template<int size, bool big_endian>
4251 unsigned char*
4252 write_section_headers_list(const Layout*, const Stringpool*,
4253 const Output_data_list*, unsigned char* v,
4254 unsigned int* pshdx) const;
4256 // Print a section list to the mapfile.
4257 void
4258 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4260 // NOTE: We want to use the copy constructor. Currently, shallow copy
4261 // works for us so we do not need to write our own copy constructor.
4263 // The list of output data attached to this segment.
4264 Output_data_list output_lists_[ORDER_MAX];
4265 // The segment virtual address.
4266 uint64_t vaddr_;
4267 // The segment physical address.
4268 uint64_t paddr_;
4269 // The size of the segment in memory.
4270 uint64_t memsz_;
4271 // The maximum section alignment. The is_max_align_known_ field
4272 // indicates whether this has been finalized.
4273 uint64_t max_align_;
4274 // The required minimum value for the p_align field. This is used
4275 // for PT_LOAD segments. Note that this does not mean that
4276 // addresses should be aligned to this value; it means the p_paddr
4277 // and p_vaddr fields must be congruent modulo this value. For
4278 // non-PT_LOAD segments, the dynamic linker works more efficiently
4279 // if the p_align field has the more conventional value, although it
4280 // can align as needed.
4281 uint64_t min_p_align_;
4282 // The offset of the segment data within the file.
4283 off_t offset_;
4284 // The size of the segment data in the file.
4285 off_t filesz_;
4286 // The segment type;
4287 elfcpp::Elf_Word type_;
4288 // The segment flags.
4289 elfcpp::Elf_Word flags_;
4290 // Whether we have finalized max_align_.
4291 bool is_max_align_known_ : 1;
4292 // Whether vaddr and paddr were set by a linker script.
4293 bool are_addresses_set_ : 1;
4294 // Whether this segment holds large data sections.
4295 bool is_large_data_segment_ : 1;
4298 // This class represents the output file.
4300 class Output_file
4302 public:
4303 Output_file(const char* name);
4305 // Indicate that this is a temporary file which should not be
4306 // output.
4307 void
4308 set_is_temporary()
4309 { this->is_temporary_ = true; }
4311 // Try to open an existing file. Returns false if the file doesn't
4312 // exist, has a size of 0 or can't be mmaped. This method is
4313 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4314 // that file as the base for incremental linking.
4315 bool
4316 open_base_file(const char* base_name, bool writable);
4318 // Open the output file. FILE_SIZE is the final size of the file.
4319 // If the file already exists, it is deleted/truncated. This method
4320 // is thread-unsafe.
4321 void
4322 open(off_t file_size);
4324 // Resize the output file. This method is thread-unsafe.
4325 void
4326 resize(off_t file_size);
4328 // Close the output file (flushing all buffered data) and make sure
4329 // there are no errors. This method is thread-unsafe.
4330 void
4331 close();
4333 // Return the size of this file.
4334 off_t
4335 filesize()
4336 { return this->file_size_; }
4338 // Return the name of this file.
4339 const char*
4340 filename()
4341 { return this->name_; }
4343 // We currently always use mmap which makes the view handling quite
4344 // simple. In the future we may support other approaches.
4346 // Write data to the output file.
4347 void
4348 write(off_t offset, const void* data, size_t len)
4349 { memcpy(this->base_ + offset, data, len); }
4351 // Get a buffer to use to write to the file, given the offset into
4352 // the file and the size.
4353 unsigned char*
4354 get_output_view(off_t start, size_t size)
4356 gold_assert(start >= 0
4357 && start + static_cast<off_t>(size) <= this->file_size_);
4358 return this->base_ + start;
4361 // VIEW must have been returned by get_output_view. Write the
4362 // buffer to the file, passing in the offset and the size.
4363 void
4364 write_output_view(off_t, size_t, unsigned char*)
4367 // Get a read/write buffer. This is used when we want to write part
4368 // of the file, read it in, and write it again.
4369 unsigned char*
4370 get_input_output_view(off_t start, size_t size)
4371 { return this->get_output_view(start, size); }
4373 // Write a read/write buffer back to the file.
4374 void
4375 write_input_output_view(off_t, size_t, unsigned char*)
4378 // Get a read buffer. This is used when we just want to read part
4379 // of the file back it in.
4380 const unsigned char*
4381 get_input_view(off_t start, size_t size)
4382 { return this->get_output_view(start, size); }
4384 // Release a read bfufer.
4385 void
4386 free_input_view(off_t, size_t, const unsigned char*)
4389 private:
4390 // Map the file into memory or, if that fails, allocate anonymous
4391 // memory.
4392 void
4393 map();
4395 // Allocate anonymous memory for the file.
4396 bool
4397 map_anonymous();
4399 // Map the file into memory.
4400 bool
4401 map_no_anonymous(bool);
4403 // Unmap the file from memory (and flush to disk buffers).
4404 void
4405 unmap();
4407 // File name.
4408 const char* name_;
4409 // File descriptor.
4410 int o_;
4411 // File size.
4412 off_t file_size_;
4413 // Base of file mapped into memory.
4414 unsigned char* base_;
4415 // True iff base_ points to a memory buffer rather than an output file.
4416 bool map_is_anonymous_;
4417 // True if base_ was allocated using new rather than mmap.
4418 bool map_is_allocated_;
4419 // True if this is a temporary file which should not be output.
4420 bool is_temporary_;
4423 } // End namespace gold.
4425 #endif // !defined(GOLD_OUTPUT_H)