include/opcode/ChangeLog:
[binutils.git] / bfd / elflink.c
blobd37b19ba92ac1ca4d048252addd9cfb85424357d
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
30 bfd_boolean
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
33 flagword flags;
34 asection *s;
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 int ptralign;
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 return TRUE;
45 switch (bed->s->arch_size)
47 case 32:
48 ptralign = 2;
49 break;
51 case 64:
52 ptralign = 3;
53 break;
55 default:
56 bfd_set_error (bfd_error_bad_value);
57 return FALSE;
60 flags = bed->dynamic_sec_flags;
62 s = bfd_make_section (abfd, ".got");
63 if (s == NULL
64 || !bfd_set_section_flags (abfd, s, flags)
65 || !bfd_set_section_alignment (abfd, s, ptralign))
66 return FALSE;
68 if (bed->want_got_plt)
70 s = bfd_make_section (abfd, ".got.plt");
71 if (s == NULL
72 || !bfd_set_section_flags (abfd, s, flags)
73 || !bfd_set_section_alignment (abfd, s, ptralign))
74 return FALSE;
77 if (bed->want_got_sym)
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
83 bh = NULL;
84 if (!(_bfd_generic_link_add_one_symbol
85 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
86 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
87 return FALSE;
88 h = (struct elf_link_hash_entry *) bh;
89 h->def_regular = 1;
90 h->type = STT_OBJECT;
91 h->other = STV_HIDDEN;
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
95 return FALSE;
97 elf_hash_table (info)->hgot = h;
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
103 return TRUE;
106 /* Create a strtab to hold the dynamic symbol names. */
107 static bfd_boolean
108 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
110 struct elf_link_hash_table *hash_table;
112 hash_table = elf_hash_table (info);
113 if (hash_table->dynobj == NULL)
114 hash_table->dynobj = abfd;
116 if (hash_table->dynstr == NULL)
118 hash_table->dynstr = _bfd_elf_strtab_init ();
119 if (hash_table->dynstr == NULL)
120 return FALSE;
122 return TRUE;
125 /* Create some sections which will be filled in with dynamic linking
126 information. ABFD is an input file which requires dynamic sections
127 to be created. The dynamic sections take up virtual memory space
128 when the final executable is run, so we need to create them before
129 addresses are assigned to the output sections. We work out the
130 actual contents and size of these sections later. */
132 bfd_boolean
133 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
135 flagword flags;
136 register asection *s;
137 struct elf_link_hash_entry *h;
138 struct bfd_link_hash_entry *bh;
139 const struct elf_backend_data *bed;
141 if (! is_elf_hash_table (info->hash))
142 return FALSE;
144 if (elf_hash_table (info)->dynamic_sections_created)
145 return TRUE;
147 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
148 return FALSE;
150 abfd = elf_hash_table (info)->dynobj;
151 bed = get_elf_backend_data (abfd);
153 flags = bed->dynamic_sec_flags;
155 /* A dynamically linked executable has a .interp section, but a
156 shared library does not. */
157 if (info->executable)
159 s = bfd_make_section (abfd, ".interp");
160 if (s == NULL
161 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
162 return FALSE;
165 if (! info->traditional_format)
167 s = bfd_make_section (abfd, ".eh_frame_hdr");
168 if (s == NULL
169 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
170 || ! bfd_set_section_alignment (abfd, s, 2))
171 return FALSE;
172 elf_hash_table (info)->eh_info.hdr_sec = s;
175 /* Create sections to hold version informations. These are removed
176 if they are not needed. */
177 s = bfd_make_section (abfd, ".gnu.version_d");
178 if (s == NULL
179 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
180 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 return FALSE;
183 s = bfd_make_section (abfd, ".gnu.version");
184 if (s == NULL
185 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
186 || ! bfd_set_section_alignment (abfd, s, 1))
187 return FALSE;
189 s = bfd_make_section (abfd, ".gnu.version_r");
190 if (s == NULL
191 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
192 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
193 return FALSE;
195 s = bfd_make_section (abfd, ".dynsym");
196 if (s == NULL
197 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
198 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
199 return FALSE;
201 s = bfd_make_section (abfd, ".dynstr");
202 if (s == NULL
203 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
204 return FALSE;
206 s = bfd_make_section (abfd, ".dynamic");
207 if (s == NULL
208 || ! bfd_set_section_flags (abfd, s, flags)
209 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
210 return FALSE;
212 /* The special symbol _DYNAMIC is always set to the start of the
213 .dynamic section. We could set _DYNAMIC in a linker script, but we
214 only want to define it if we are, in fact, creating a .dynamic
215 section. We don't want to define it if there is no .dynamic
216 section, since on some ELF platforms the start up code examines it
217 to decide how to initialize the process. */
218 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
219 FALSE, FALSE, FALSE);
220 if (h != NULL)
222 /* Zap symbol defined in an as-needed lib that wasn't linked.
223 This is a symptom of a larger problem: Absolute symbols
224 defined in shared libraries can't be overridden, because we
225 lose the link to the bfd which is via the symbol section. */
226 h->root.type = bfd_link_hash_new;
228 bh = &h->root;
229 if (! (_bfd_generic_link_add_one_symbol
230 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
231 get_elf_backend_data (abfd)->collect, &bh)))
232 return FALSE;
233 h = (struct elf_link_hash_entry *) bh;
234 h->def_regular = 1;
235 h->type = STT_OBJECT;
237 if (! info->executable
238 && ! bfd_elf_link_record_dynamic_symbol (info, h))
239 return FALSE;
241 s = bfd_make_section (abfd, ".hash");
242 if (s == NULL
243 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
244 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
245 return FALSE;
246 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
248 /* Let the backend create the rest of the sections. This lets the
249 backend set the right flags. The backend will normally create
250 the .got and .plt sections. */
251 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
252 return FALSE;
254 elf_hash_table (info)->dynamic_sections_created = TRUE;
256 return TRUE;
259 /* Create dynamic sections when linking against a dynamic object. */
261 bfd_boolean
262 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
264 flagword flags, pltflags;
265 asection *s;
266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
268 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
269 .rel[a].bss sections. */
270 flags = bed->dynamic_sec_flags;
272 pltflags = flags;
273 if (bed->plt_not_loaded)
274 /* We do not clear SEC_ALLOC here because we still want the OS to
275 allocate space for the section; it's just that there's nothing
276 to read in from the object file. */
277 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
278 else
279 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
280 if (bed->plt_readonly)
281 pltflags |= SEC_READONLY;
283 s = bfd_make_section (abfd, ".plt");
284 if (s == NULL
285 || ! bfd_set_section_flags (abfd, s, pltflags)
286 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
287 return FALSE;
289 if (bed->want_plt_sym)
291 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
292 .plt section. */
293 struct elf_link_hash_entry *h;
294 struct bfd_link_hash_entry *bh = NULL;
296 if (! (_bfd_generic_link_add_one_symbol
297 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
298 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
299 return FALSE;
300 h = (struct elf_link_hash_entry *) bh;
301 h->def_regular = 1;
302 h->type = STT_OBJECT;
304 if (! info->executable
305 && ! bfd_elf_link_record_dynamic_symbol (info, h))
306 return FALSE;
309 s = bfd_make_section (abfd,
310 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
311 if (s == NULL
312 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
314 return FALSE;
316 if (! _bfd_elf_create_got_section (abfd, info))
317 return FALSE;
319 if (bed->want_dynbss)
321 /* The .dynbss section is a place to put symbols which are defined
322 by dynamic objects, are referenced by regular objects, and are
323 not functions. We must allocate space for them in the process
324 image and use a R_*_COPY reloc to tell the dynamic linker to
325 initialize them at run time. The linker script puts the .dynbss
326 section into the .bss section of the final image. */
327 s = bfd_make_section (abfd, ".dynbss");
328 if (s == NULL
329 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
330 return FALSE;
332 /* The .rel[a].bss section holds copy relocs. This section is not
333 normally needed. We need to create it here, though, so that the
334 linker will map it to an output section. We can't just create it
335 only if we need it, because we will not know whether we need it
336 until we have seen all the input files, and the first time the
337 main linker code calls BFD after examining all the input files
338 (size_dynamic_sections) the input sections have already been
339 mapped to the output sections. If the section turns out not to
340 be needed, we can discard it later. We will never need this
341 section when generating a shared object, since they do not use
342 copy relocs. */
343 if (! info->shared)
345 s = bfd_make_section (abfd,
346 (bed->default_use_rela_p
347 ? ".rela.bss" : ".rel.bss"));
348 if (s == NULL
349 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
351 return FALSE;
355 return TRUE;
358 /* Record a new dynamic symbol. We record the dynamic symbols as we
359 read the input files, since we need to have a list of all of them
360 before we can determine the final sizes of the output sections.
361 Note that we may actually call this function even though we are not
362 going to output any dynamic symbols; in some cases we know that a
363 symbol should be in the dynamic symbol table, but only if there is
364 one. */
366 bfd_boolean
367 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
368 struct elf_link_hash_entry *h)
370 if (h->dynindx == -1)
372 struct elf_strtab_hash *dynstr;
373 char *p;
374 const char *name;
375 bfd_size_type indx;
377 /* XXX: The ABI draft says the linker must turn hidden and
378 internal symbols into STB_LOCAL symbols when producing the
379 DSO. However, if ld.so honors st_other in the dynamic table,
380 this would not be necessary. */
381 switch (ELF_ST_VISIBILITY (h->other))
383 case STV_INTERNAL:
384 case STV_HIDDEN:
385 if (h->root.type != bfd_link_hash_undefined
386 && h->root.type != bfd_link_hash_undefweak)
388 h->forced_local = 1;
389 if (!elf_hash_table (info)->is_relocatable_executable)
390 return TRUE;
393 default:
394 break;
397 h->dynindx = elf_hash_table (info)->dynsymcount;
398 ++elf_hash_table (info)->dynsymcount;
400 dynstr = elf_hash_table (info)->dynstr;
401 if (dynstr == NULL)
403 /* Create a strtab to hold the dynamic symbol names. */
404 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
405 if (dynstr == NULL)
406 return FALSE;
409 /* We don't put any version information in the dynamic string
410 table. */
411 name = h->root.root.string;
412 p = strchr (name, ELF_VER_CHR);
413 if (p != NULL)
414 /* We know that the p points into writable memory. In fact,
415 there are only a few symbols that have read-only names, being
416 those like _GLOBAL_OFFSET_TABLE_ that are created specially
417 by the backends. Most symbols will have names pointing into
418 an ELF string table read from a file, or to objalloc memory. */
419 *p = 0;
421 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
423 if (p != NULL)
424 *p = ELF_VER_CHR;
426 if (indx == (bfd_size_type) -1)
427 return FALSE;
428 h->dynstr_index = indx;
431 return TRUE;
434 /* Record an assignment to a symbol made by a linker script. We need
435 this in case some dynamic object refers to this symbol. */
437 bfd_boolean
438 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
439 struct bfd_link_info *info,
440 const char *name,
441 bfd_boolean provide)
443 struct elf_link_hash_entry *h;
444 struct elf_link_hash_table *htab;
446 if (!is_elf_hash_table (info->hash))
447 return TRUE;
449 htab = elf_hash_table (info);
450 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
451 if (h == NULL)
452 return provide;
454 /* Since we're defining the symbol, don't let it seem to have not
455 been defined. record_dynamic_symbol and size_dynamic_sections
456 may depend on this. */
457 if (h->root.type == bfd_link_hash_undefweak
458 || h->root.type == bfd_link_hash_undefined)
460 h->root.type = bfd_link_hash_new;
461 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
462 bfd_link_repair_undef_list (&htab->root);
465 if (h->root.type == bfd_link_hash_new)
466 h->non_elf = 0;
468 /* If this symbol is being provided by the linker script, and it is
469 currently defined by a dynamic object, but not by a regular
470 object, then mark it as undefined so that the generic linker will
471 force the correct value. */
472 if (provide
473 && h->def_dynamic
474 && !h->def_regular)
475 h->root.type = bfd_link_hash_undefined;
477 /* If this symbol is not being provided by the linker script, and it is
478 currently defined by a dynamic object, but not by a regular object,
479 then clear out any version information because the symbol will not be
480 associated with the dynamic object any more. */
481 if (!provide
482 && h->def_dynamic
483 && !h->def_regular)
484 h->verinfo.verdef = NULL;
486 h->def_regular = 1;
488 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
489 and executables. */
490 if (!info->relocatable
491 && h->dynindx != -1
492 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
493 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
494 h->forced_local = 1;
496 if ((h->def_dynamic
497 || h->ref_dynamic
498 || info->shared
499 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
500 && h->dynindx == -1)
502 if (! bfd_elf_link_record_dynamic_symbol (info, h))
503 return FALSE;
505 /* If this is a weak defined symbol, and we know a corresponding
506 real symbol from the same dynamic object, make sure the real
507 symbol is also made into a dynamic symbol. */
508 if (h->u.weakdef != NULL
509 && h->u.weakdef->dynindx == -1)
511 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
512 return FALSE;
516 return TRUE;
519 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
520 success, and 2 on a failure caused by attempting to record a symbol
521 in a discarded section, eg. a discarded link-once section symbol. */
524 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
525 bfd *input_bfd,
526 long input_indx)
528 bfd_size_type amt;
529 struct elf_link_local_dynamic_entry *entry;
530 struct elf_link_hash_table *eht;
531 struct elf_strtab_hash *dynstr;
532 unsigned long dynstr_index;
533 char *name;
534 Elf_External_Sym_Shndx eshndx;
535 char esym[sizeof (Elf64_External_Sym)];
537 if (! is_elf_hash_table (info->hash))
538 return 0;
540 /* See if the entry exists already. */
541 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
542 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
543 return 1;
545 amt = sizeof (*entry);
546 entry = bfd_alloc (input_bfd, amt);
547 if (entry == NULL)
548 return 0;
550 /* Go find the symbol, so that we can find it's name. */
551 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
552 1, input_indx, &entry->isym, esym, &eshndx))
554 bfd_release (input_bfd, entry);
555 return 0;
558 if (entry->isym.st_shndx != SHN_UNDEF
559 && (entry->isym.st_shndx < SHN_LORESERVE
560 || entry->isym.st_shndx > SHN_HIRESERVE))
562 asection *s;
564 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
565 if (s == NULL || bfd_is_abs_section (s->output_section))
567 /* We can still bfd_release here as nothing has done another
568 bfd_alloc. We can't do this later in this function. */
569 bfd_release (input_bfd, entry);
570 return 2;
574 name = (bfd_elf_string_from_elf_section
575 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
576 entry->isym.st_name));
578 dynstr = elf_hash_table (info)->dynstr;
579 if (dynstr == NULL)
581 /* Create a strtab to hold the dynamic symbol names. */
582 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
583 if (dynstr == NULL)
584 return 0;
587 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
588 if (dynstr_index == (unsigned long) -1)
589 return 0;
590 entry->isym.st_name = dynstr_index;
592 eht = elf_hash_table (info);
594 entry->next = eht->dynlocal;
595 eht->dynlocal = entry;
596 entry->input_bfd = input_bfd;
597 entry->input_indx = input_indx;
598 eht->dynsymcount++;
600 /* Whatever binding the symbol had before, it's now local. */
601 entry->isym.st_info
602 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
604 /* The dynindx will be set at the end of size_dynamic_sections. */
606 return 1;
609 /* Return the dynindex of a local dynamic symbol. */
611 long
612 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
613 bfd *input_bfd,
614 long input_indx)
616 struct elf_link_local_dynamic_entry *e;
618 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
619 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
620 return e->dynindx;
621 return -1;
624 /* This function is used to renumber the dynamic symbols, if some of
625 them are removed because they are marked as local. This is called
626 via elf_link_hash_traverse. */
628 static bfd_boolean
629 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
630 void *data)
632 size_t *count = data;
634 if (h->root.type == bfd_link_hash_warning)
635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
637 if (h->forced_local)
638 return TRUE;
640 if (h->dynindx != -1)
641 h->dynindx = ++(*count);
643 return TRUE;
647 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
648 STB_LOCAL binding. */
650 static bfd_boolean
651 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
652 void *data)
654 size_t *count = data;
656 if (h->root.type == bfd_link_hash_warning)
657 h = (struct elf_link_hash_entry *) h->root.u.i.link;
659 if (!h->forced_local)
660 return TRUE;
662 if (h->dynindx != -1)
663 h->dynindx = ++(*count);
665 return TRUE;
668 /* Return true if the dynamic symbol for a given section should be
669 omitted when creating a shared library. */
670 bfd_boolean
671 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
672 struct bfd_link_info *info,
673 asection *p)
675 switch (elf_section_data (p)->this_hdr.sh_type)
677 case SHT_PROGBITS:
678 case SHT_NOBITS:
679 /* If sh_type is yet undecided, assume it could be
680 SHT_PROGBITS/SHT_NOBITS. */
681 case SHT_NULL:
682 if (strcmp (p->name, ".got") == 0
683 || strcmp (p->name, ".got.plt") == 0
684 || strcmp (p->name, ".plt") == 0)
686 asection *ip;
687 bfd *dynobj = elf_hash_table (info)->dynobj;
689 if (dynobj != NULL
690 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
691 && (ip->flags & SEC_LINKER_CREATED)
692 && ip->output_section == p)
693 return TRUE;
695 return FALSE;
697 /* There shouldn't be section relative relocations
698 against any other section. */
699 default:
700 return TRUE;
704 /* Assign dynsym indices. In a shared library we generate a section
705 symbol for each output section, which come first. Next come symbols
706 which have been forced to local binding. Then all of the back-end
707 allocated local dynamic syms, followed by the rest of the global
708 symbols. */
710 static unsigned long
711 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
712 struct bfd_link_info *info,
713 unsigned long *section_sym_count)
715 unsigned long dynsymcount = 0;
717 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
719 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
720 asection *p;
721 for (p = output_bfd->sections; p ; p = p->next)
722 if ((p->flags & SEC_EXCLUDE) == 0
723 && (p->flags & SEC_ALLOC) != 0
724 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
725 elf_section_data (p)->dynindx = ++dynsymcount;
727 *section_sym_count = dynsymcount;
729 elf_link_hash_traverse (elf_hash_table (info),
730 elf_link_renumber_local_hash_table_dynsyms,
731 &dynsymcount);
733 if (elf_hash_table (info)->dynlocal)
735 struct elf_link_local_dynamic_entry *p;
736 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
737 p->dynindx = ++dynsymcount;
740 elf_link_hash_traverse (elf_hash_table (info),
741 elf_link_renumber_hash_table_dynsyms,
742 &dynsymcount);
744 /* There is an unused NULL entry at the head of the table which
745 we must account for in our count. Unless there weren't any
746 symbols, which means we'll have no table at all. */
747 if (dynsymcount != 0)
748 ++dynsymcount;
750 return elf_hash_table (info)->dynsymcount = dynsymcount;
753 /* This function is called when we want to define a new symbol. It
754 handles the various cases which arise when we find a definition in
755 a dynamic object, or when there is already a definition in a
756 dynamic object. The new symbol is described by NAME, SYM, PSEC,
757 and PVALUE. We set SYM_HASH to the hash table entry. We set
758 OVERRIDE if the old symbol is overriding a new definition. We set
759 TYPE_CHANGE_OK if it is OK for the type to change. We set
760 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
761 change, we mean that we shouldn't warn if the type or size does
762 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
763 object is overridden by a regular object. */
765 bfd_boolean
766 _bfd_elf_merge_symbol (bfd *abfd,
767 struct bfd_link_info *info,
768 const char *name,
769 Elf_Internal_Sym *sym,
770 asection **psec,
771 bfd_vma *pvalue,
772 unsigned int *pold_alignment,
773 struct elf_link_hash_entry **sym_hash,
774 bfd_boolean *skip,
775 bfd_boolean *override,
776 bfd_boolean *type_change_ok,
777 bfd_boolean *size_change_ok)
779 asection *sec, *oldsec;
780 struct elf_link_hash_entry *h;
781 struct elf_link_hash_entry *flip;
782 int bind;
783 bfd *oldbfd;
784 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
785 bfd_boolean newweak, oldweak;
787 *skip = FALSE;
788 *override = FALSE;
790 sec = *psec;
791 bind = ELF_ST_BIND (sym->st_info);
793 if (! bfd_is_und_section (sec))
794 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
795 else
796 h = ((struct elf_link_hash_entry *)
797 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
798 if (h == NULL)
799 return FALSE;
800 *sym_hash = h;
802 /* This code is for coping with dynamic objects, and is only useful
803 if we are doing an ELF link. */
804 if (info->hash->creator != abfd->xvec)
805 return TRUE;
807 /* For merging, we only care about real symbols. */
809 while (h->root.type == bfd_link_hash_indirect
810 || h->root.type == bfd_link_hash_warning)
811 h = (struct elf_link_hash_entry *) h->root.u.i.link;
813 /* If we just created the symbol, mark it as being an ELF symbol.
814 Other than that, there is nothing to do--there is no merge issue
815 with a newly defined symbol--so we just return. */
817 if (h->root.type == bfd_link_hash_new)
819 h->non_elf = 0;
820 return TRUE;
823 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
824 existing symbol. */
826 switch (h->root.type)
828 default:
829 oldbfd = NULL;
830 oldsec = NULL;
831 break;
833 case bfd_link_hash_undefined:
834 case bfd_link_hash_undefweak:
835 oldbfd = h->root.u.undef.abfd;
836 oldsec = NULL;
837 break;
839 case bfd_link_hash_defined:
840 case bfd_link_hash_defweak:
841 oldbfd = h->root.u.def.section->owner;
842 oldsec = h->root.u.def.section;
843 break;
845 case bfd_link_hash_common:
846 oldbfd = h->root.u.c.p->section->owner;
847 oldsec = h->root.u.c.p->section;
848 break;
851 /* In cases involving weak versioned symbols, we may wind up trying
852 to merge a symbol with itself. Catch that here, to avoid the
853 confusion that results if we try to override a symbol with
854 itself. The additional tests catch cases like
855 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
856 dynamic object, which we do want to handle here. */
857 if (abfd == oldbfd
858 && ((abfd->flags & DYNAMIC) == 0
859 || !h->def_regular))
860 return TRUE;
862 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
863 respectively, is from a dynamic object. */
865 if ((abfd->flags & DYNAMIC) != 0)
866 newdyn = TRUE;
867 else
868 newdyn = FALSE;
870 if (oldbfd != NULL)
871 olddyn = (oldbfd->flags & DYNAMIC) != 0;
872 else
874 asection *hsec;
876 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
877 indices used by MIPS ELF. */
878 switch (h->root.type)
880 default:
881 hsec = NULL;
882 break;
884 case bfd_link_hash_defined:
885 case bfd_link_hash_defweak:
886 hsec = h->root.u.def.section;
887 break;
889 case bfd_link_hash_common:
890 hsec = h->root.u.c.p->section;
891 break;
894 if (hsec == NULL)
895 olddyn = FALSE;
896 else
897 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
900 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
901 respectively, appear to be a definition rather than reference. */
903 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
904 newdef = FALSE;
905 else
906 newdef = TRUE;
908 if (h->root.type == bfd_link_hash_undefined
909 || h->root.type == bfd_link_hash_undefweak
910 || h->root.type == bfd_link_hash_common)
911 olddef = FALSE;
912 else
913 olddef = TRUE;
915 /* Check TLS symbol. */
916 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
917 && ELF_ST_TYPE (sym->st_info) != h->type)
919 bfd *ntbfd, *tbfd;
920 bfd_boolean ntdef, tdef;
921 asection *ntsec, *tsec;
923 if (h->type == STT_TLS)
925 ntbfd = abfd;
926 ntsec = sec;
927 ntdef = newdef;
928 tbfd = oldbfd;
929 tsec = oldsec;
930 tdef = olddef;
932 else
934 ntbfd = oldbfd;
935 ntsec = oldsec;
936 ntdef = olddef;
937 tbfd = abfd;
938 tsec = sec;
939 tdef = newdef;
942 if (tdef && ntdef)
943 (*_bfd_error_handler)
944 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
945 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
946 else if (!tdef && !ntdef)
947 (*_bfd_error_handler)
948 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
949 tbfd, ntbfd, h->root.root.string);
950 else if (tdef)
951 (*_bfd_error_handler)
952 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
953 tbfd, tsec, ntbfd, h->root.root.string);
954 else
955 (*_bfd_error_handler)
956 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
957 tbfd, ntbfd, ntsec, h->root.root.string);
959 bfd_set_error (bfd_error_bad_value);
960 return FALSE;
963 /* We need to remember if a symbol has a definition in a dynamic
964 object or is weak in all dynamic objects. Internal and hidden
965 visibility will make it unavailable to dynamic objects. */
966 if (newdyn && !h->dynamic_def)
968 if (!bfd_is_und_section (sec))
969 h->dynamic_def = 1;
970 else
972 /* Check if this symbol is weak in all dynamic objects. If it
973 is the first time we see it in a dynamic object, we mark
974 if it is weak. Otherwise, we clear it. */
975 if (!h->ref_dynamic)
977 if (bind == STB_WEAK)
978 h->dynamic_weak = 1;
980 else if (bind != STB_WEAK)
981 h->dynamic_weak = 0;
985 /* If the old symbol has non-default visibility, we ignore the new
986 definition from a dynamic object. */
987 if (newdyn
988 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
989 && !bfd_is_und_section (sec))
991 *skip = TRUE;
992 /* Make sure this symbol is dynamic. */
993 h->ref_dynamic = 1;
994 /* A protected symbol has external availability. Make sure it is
995 recorded as dynamic.
997 FIXME: Should we check type and size for protected symbol? */
998 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
999 return bfd_elf_link_record_dynamic_symbol (info, h);
1000 else
1001 return TRUE;
1003 else if (!newdyn
1004 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1005 && h->def_dynamic)
1007 /* If the new symbol with non-default visibility comes from a
1008 relocatable file and the old definition comes from a dynamic
1009 object, we remove the old definition. */
1010 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1011 h = *sym_hash;
1013 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1014 && bfd_is_und_section (sec))
1016 /* If the new symbol is undefined and the old symbol was
1017 also undefined before, we need to make sure
1018 _bfd_generic_link_add_one_symbol doesn't mess
1019 up the linker hash table undefs list. Since the old
1020 definition came from a dynamic object, it is still on the
1021 undefs list. */
1022 h->root.type = bfd_link_hash_undefined;
1023 h->root.u.undef.abfd = abfd;
1025 else
1027 h->root.type = bfd_link_hash_new;
1028 h->root.u.undef.abfd = NULL;
1031 if (h->def_dynamic)
1033 h->def_dynamic = 0;
1034 h->ref_dynamic = 1;
1035 h->dynamic_def = 1;
1037 /* FIXME: Should we check type and size for protected symbol? */
1038 h->size = 0;
1039 h->type = 0;
1040 return TRUE;
1043 /* Differentiate strong and weak symbols. */
1044 newweak = bind == STB_WEAK;
1045 oldweak = (h->root.type == bfd_link_hash_defweak
1046 || h->root.type == bfd_link_hash_undefweak);
1048 /* If a new weak symbol definition comes from a regular file and the
1049 old symbol comes from a dynamic library, we treat the new one as
1050 strong. Similarly, an old weak symbol definition from a regular
1051 file is treated as strong when the new symbol comes from a dynamic
1052 library. Further, an old weak symbol from a dynamic library is
1053 treated as strong if the new symbol is from a dynamic library.
1054 This reflects the way glibc's ld.so works.
1056 Do this before setting *type_change_ok or *size_change_ok so that
1057 we warn properly when dynamic library symbols are overridden. */
1059 if (newdef && !newdyn && olddyn)
1060 newweak = FALSE;
1061 if (olddef && newdyn)
1062 oldweak = FALSE;
1064 /* It's OK to change the type if either the existing symbol or the
1065 new symbol is weak. A type change is also OK if the old symbol
1066 is undefined and the new symbol is defined. */
1068 if (oldweak
1069 || newweak
1070 || (newdef
1071 && h->root.type == bfd_link_hash_undefined))
1072 *type_change_ok = TRUE;
1074 /* It's OK to change the size if either the existing symbol or the
1075 new symbol is weak, or if the old symbol is undefined. */
1077 if (*type_change_ok
1078 || h->root.type == bfd_link_hash_undefined)
1079 *size_change_ok = TRUE;
1081 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1082 symbol, respectively, appears to be a common symbol in a dynamic
1083 object. If a symbol appears in an uninitialized section, and is
1084 not weak, and is not a function, then it may be a common symbol
1085 which was resolved when the dynamic object was created. We want
1086 to treat such symbols specially, because they raise special
1087 considerations when setting the symbol size: if the symbol
1088 appears as a common symbol in a regular object, and the size in
1089 the regular object is larger, we must make sure that we use the
1090 larger size. This problematic case can always be avoided in C,
1091 but it must be handled correctly when using Fortran shared
1092 libraries.
1094 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1095 likewise for OLDDYNCOMMON and OLDDEF.
1097 Note that this test is just a heuristic, and that it is quite
1098 possible to have an uninitialized symbol in a shared object which
1099 is really a definition, rather than a common symbol. This could
1100 lead to some minor confusion when the symbol really is a common
1101 symbol in some regular object. However, I think it will be
1102 harmless. */
1104 if (newdyn
1105 && newdef
1106 && !newweak
1107 && (sec->flags & SEC_ALLOC) != 0
1108 && (sec->flags & SEC_LOAD) == 0
1109 && sym->st_size > 0
1110 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1111 newdyncommon = TRUE;
1112 else
1113 newdyncommon = FALSE;
1115 if (olddyn
1116 && olddef
1117 && h->root.type == bfd_link_hash_defined
1118 && h->def_dynamic
1119 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1120 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1121 && h->size > 0
1122 && h->type != STT_FUNC)
1123 olddyncommon = TRUE;
1124 else
1125 olddyncommon = FALSE;
1127 /* If both the old and the new symbols look like common symbols in a
1128 dynamic object, set the size of the symbol to the larger of the
1129 two. */
1131 if (olddyncommon
1132 && newdyncommon
1133 && sym->st_size != h->size)
1135 /* Since we think we have two common symbols, issue a multiple
1136 common warning if desired. Note that we only warn if the
1137 size is different. If the size is the same, we simply let
1138 the old symbol override the new one as normally happens with
1139 symbols defined in dynamic objects. */
1141 if (! ((*info->callbacks->multiple_common)
1142 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1143 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1144 return FALSE;
1146 if (sym->st_size > h->size)
1147 h->size = sym->st_size;
1149 *size_change_ok = TRUE;
1152 /* If we are looking at a dynamic object, and we have found a
1153 definition, we need to see if the symbol was already defined by
1154 some other object. If so, we want to use the existing
1155 definition, and we do not want to report a multiple symbol
1156 definition error; we do this by clobbering *PSEC to be
1157 bfd_und_section_ptr.
1159 We treat a common symbol as a definition if the symbol in the
1160 shared library is a function, since common symbols always
1161 represent variables; this can cause confusion in principle, but
1162 any such confusion would seem to indicate an erroneous program or
1163 shared library. We also permit a common symbol in a regular
1164 object to override a weak symbol in a shared object. */
1166 if (newdyn
1167 && newdef
1168 && (olddef
1169 || (h->root.type == bfd_link_hash_common
1170 && (newweak
1171 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1173 *override = TRUE;
1174 newdef = FALSE;
1175 newdyncommon = FALSE;
1177 *psec = sec = bfd_und_section_ptr;
1178 *size_change_ok = TRUE;
1180 /* If we get here when the old symbol is a common symbol, then
1181 we are explicitly letting it override a weak symbol or
1182 function in a dynamic object, and we don't want to warn about
1183 a type change. If the old symbol is a defined symbol, a type
1184 change warning may still be appropriate. */
1186 if (h->root.type == bfd_link_hash_common)
1187 *type_change_ok = TRUE;
1190 /* Handle the special case of an old common symbol merging with a
1191 new symbol which looks like a common symbol in a shared object.
1192 We change *PSEC and *PVALUE to make the new symbol look like a
1193 common symbol, and let _bfd_generic_link_add_one_symbol will do
1194 the right thing. */
1196 if (newdyncommon
1197 && h->root.type == bfd_link_hash_common)
1199 *override = TRUE;
1200 newdef = FALSE;
1201 newdyncommon = FALSE;
1202 *pvalue = sym->st_size;
1203 *psec = sec = bfd_com_section_ptr;
1204 *size_change_ok = TRUE;
1207 /* If the old symbol is from a dynamic object, and the new symbol is
1208 a definition which is not from a dynamic object, then the new
1209 symbol overrides the old symbol. Symbols from regular files
1210 always take precedence over symbols from dynamic objects, even if
1211 they are defined after the dynamic object in the link.
1213 As above, we again permit a common symbol in a regular object to
1214 override a definition in a shared object if the shared object
1215 symbol is a function or is weak. */
1217 flip = NULL;
1218 if (!newdyn
1219 && (newdef
1220 || (bfd_is_com_section (sec)
1221 && (oldweak
1222 || h->type == STT_FUNC)))
1223 && olddyn
1224 && olddef
1225 && h->def_dynamic)
1227 /* Change the hash table entry to undefined, and let
1228 _bfd_generic_link_add_one_symbol do the right thing with the
1229 new definition. */
1231 h->root.type = bfd_link_hash_undefined;
1232 h->root.u.undef.abfd = h->root.u.def.section->owner;
1233 *size_change_ok = TRUE;
1235 olddef = FALSE;
1236 olddyncommon = FALSE;
1238 /* We again permit a type change when a common symbol may be
1239 overriding a function. */
1241 if (bfd_is_com_section (sec))
1242 *type_change_ok = TRUE;
1244 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1245 flip = *sym_hash;
1246 else
1247 /* This union may have been set to be non-NULL when this symbol
1248 was seen in a dynamic object. We must force the union to be
1249 NULL, so that it is correct for a regular symbol. */
1250 h->verinfo.vertree = NULL;
1253 /* Handle the special case of a new common symbol merging with an
1254 old symbol that looks like it might be a common symbol defined in
1255 a shared object. Note that we have already handled the case in
1256 which a new common symbol should simply override the definition
1257 in the shared library. */
1259 if (! newdyn
1260 && bfd_is_com_section (sec)
1261 && olddyncommon)
1263 /* It would be best if we could set the hash table entry to a
1264 common symbol, but we don't know what to use for the section
1265 or the alignment. */
1266 if (! ((*info->callbacks->multiple_common)
1267 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1268 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1269 return FALSE;
1271 /* If the presumed common symbol in the dynamic object is
1272 larger, pretend that the new symbol has its size. */
1274 if (h->size > *pvalue)
1275 *pvalue = h->size;
1277 /* We need to remember the alignment required by the symbol
1278 in the dynamic object. */
1279 BFD_ASSERT (pold_alignment);
1280 *pold_alignment = h->root.u.def.section->alignment_power;
1282 olddef = FALSE;
1283 olddyncommon = FALSE;
1285 h->root.type = bfd_link_hash_undefined;
1286 h->root.u.undef.abfd = h->root.u.def.section->owner;
1288 *size_change_ok = TRUE;
1289 *type_change_ok = TRUE;
1291 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1292 flip = *sym_hash;
1293 else
1294 h->verinfo.vertree = NULL;
1297 if (flip != NULL)
1299 /* Handle the case where we had a versioned symbol in a dynamic
1300 library and now find a definition in a normal object. In this
1301 case, we make the versioned symbol point to the normal one. */
1302 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1303 flip->root.type = h->root.type;
1304 h->root.type = bfd_link_hash_indirect;
1305 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1306 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1307 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1308 if (h->def_dynamic)
1310 h->def_dynamic = 0;
1311 flip->ref_dynamic = 1;
1315 return TRUE;
1318 /* This function is called to create an indirect symbol from the
1319 default for the symbol with the default version if needed. The
1320 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1321 set DYNSYM if the new indirect symbol is dynamic. */
1323 bfd_boolean
1324 _bfd_elf_add_default_symbol (bfd *abfd,
1325 struct bfd_link_info *info,
1326 struct elf_link_hash_entry *h,
1327 const char *name,
1328 Elf_Internal_Sym *sym,
1329 asection **psec,
1330 bfd_vma *value,
1331 bfd_boolean *dynsym,
1332 bfd_boolean override)
1334 bfd_boolean type_change_ok;
1335 bfd_boolean size_change_ok;
1336 bfd_boolean skip;
1337 char *shortname;
1338 struct elf_link_hash_entry *hi;
1339 struct bfd_link_hash_entry *bh;
1340 const struct elf_backend_data *bed;
1341 bfd_boolean collect;
1342 bfd_boolean dynamic;
1343 char *p;
1344 size_t len, shortlen;
1345 asection *sec;
1347 /* If this symbol has a version, and it is the default version, we
1348 create an indirect symbol from the default name to the fully
1349 decorated name. This will cause external references which do not
1350 specify a version to be bound to this version of the symbol. */
1351 p = strchr (name, ELF_VER_CHR);
1352 if (p == NULL || p[1] != ELF_VER_CHR)
1353 return TRUE;
1355 if (override)
1357 /* We are overridden by an old definition. We need to check if we
1358 need to create the indirect symbol from the default name. */
1359 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1360 FALSE, FALSE);
1361 BFD_ASSERT (hi != NULL);
1362 if (hi == h)
1363 return TRUE;
1364 while (hi->root.type == bfd_link_hash_indirect
1365 || hi->root.type == bfd_link_hash_warning)
1367 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1368 if (hi == h)
1369 return TRUE;
1373 bed = get_elf_backend_data (abfd);
1374 collect = bed->collect;
1375 dynamic = (abfd->flags & DYNAMIC) != 0;
1377 shortlen = p - name;
1378 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1379 if (shortname == NULL)
1380 return FALSE;
1381 memcpy (shortname, name, shortlen);
1382 shortname[shortlen] = '\0';
1384 /* We are going to create a new symbol. Merge it with any existing
1385 symbol with this name. For the purposes of the merge, act as
1386 though we were defining the symbol we just defined, although we
1387 actually going to define an indirect symbol. */
1388 type_change_ok = FALSE;
1389 size_change_ok = FALSE;
1390 sec = *psec;
1391 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1392 NULL, &hi, &skip, &override,
1393 &type_change_ok, &size_change_ok))
1394 return FALSE;
1396 if (skip)
1397 goto nondefault;
1399 if (! override)
1401 bh = &hi->root;
1402 if (! (_bfd_generic_link_add_one_symbol
1403 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1404 0, name, FALSE, collect, &bh)))
1405 return FALSE;
1406 hi = (struct elf_link_hash_entry *) bh;
1408 else
1410 /* In this case the symbol named SHORTNAME is overriding the
1411 indirect symbol we want to add. We were planning on making
1412 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1413 is the name without a version. NAME is the fully versioned
1414 name, and it is the default version.
1416 Overriding means that we already saw a definition for the
1417 symbol SHORTNAME in a regular object, and it is overriding
1418 the symbol defined in the dynamic object.
1420 When this happens, we actually want to change NAME, the
1421 symbol we just added, to refer to SHORTNAME. This will cause
1422 references to NAME in the shared object to become references
1423 to SHORTNAME in the regular object. This is what we expect
1424 when we override a function in a shared object: that the
1425 references in the shared object will be mapped to the
1426 definition in the regular object. */
1428 while (hi->root.type == bfd_link_hash_indirect
1429 || hi->root.type == bfd_link_hash_warning)
1430 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1432 h->root.type = bfd_link_hash_indirect;
1433 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1434 if (h->def_dynamic)
1436 h->def_dynamic = 0;
1437 hi->ref_dynamic = 1;
1438 if (hi->ref_regular
1439 || hi->def_regular)
1441 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1442 return FALSE;
1446 /* Now set HI to H, so that the following code will set the
1447 other fields correctly. */
1448 hi = h;
1451 /* If there is a duplicate definition somewhere, then HI may not
1452 point to an indirect symbol. We will have reported an error to
1453 the user in that case. */
1455 if (hi->root.type == bfd_link_hash_indirect)
1457 struct elf_link_hash_entry *ht;
1459 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1460 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1462 /* See if the new flags lead us to realize that the symbol must
1463 be dynamic. */
1464 if (! *dynsym)
1466 if (! dynamic)
1468 if (info->shared
1469 || hi->ref_dynamic)
1470 *dynsym = TRUE;
1472 else
1474 if (hi->ref_regular)
1475 *dynsym = TRUE;
1480 /* We also need to define an indirection from the nondefault version
1481 of the symbol. */
1483 nondefault:
1484 len = strlen (name);
1485 shortname = bfd_hash_allocate (&info->hash->table, len);
1486 if (shortname == NULL)
1487 return FALSE;
1488 memcpy (shortname, name, shortlen);
1489 memcpy (shortname + shortlen, p + 1, len - shortlen);
1491 /* Once again, merge with any existing symbol. */
1492 type_change_ok = FALSE;
1493 size_change_ok = FALSE;
1494 sec = *psec;
1495 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1496 NULL, &hi, &skip, &override,
1497 &type_change_ok, &size_change_ok))
1498 return FALSE;
1500 if (skip)
1501 return TRUE;
1503 if (override)
1505 /* Here SHORTNAME is a versioned name, so we don't expect to see
1506 the type of override we do in the case above unless it is
1507 overridden by a versioned definition. */
1508 if (hi->root.type != bfd_link_hash_defined
1509 && hi->root.type != bfd_link_hash_defweak)
1510 (*_bfd_error_handler)
1511 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1512 abfd, shortname);
1514 else
1516 bh = &hi->root;
1517 if (! (_bfd_generic_link_add_one_symbol
1518 (info, abfd, shortname, BSF_INDIRECT,
1519 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1520 return FALSE;
1521 hi = (struct elf_link_hash_entry *) bh;
1523 /* If there is a duplicate definition somewhere, then HI may not
1524 point to an indirect symbol. We will have reported an error
1525 to the user in that case. */
1527 if (hi->root.type == bfd_link_hash_indirect)
1529 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1531 /* See if the new flags lead us to realize that the symbol
1532 must be dynamic. */
1533 if (! *dynsym)
1535 if (! dynamic)
1537 if (info->shared
1538 || hi->ref_dynamic)
1539 *dynsym = TRUE;
1541 else
1543 if (hi->ref_regular)
1544 *dynsym = TRUE;
1550 return TRUE;
1553 /* This routine is used to export all defined symbols into the dynamic
1554 symbol table. It is called via elf_link_hash_traverse. */
1556 bfd_boolean
1557 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1559 struct elf_info_failed *eif = data;
1561 /* Ignore indirect symbols. These are added by the versioning code. */
1562 if (h->root.type == bfd_link_hash_indirect)
1563 return TRUE;
1565 if (h->root.type == bfd_link_hash_warning)
1566 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1568 if (h->dynindx == -1
1569 && (h->def_regular
1570 || h->ref_regular))
1572 struct bfd_elf_version_tree *t;
1573 struct bfd_elf_version_expr *d;
1575 for (t = eif->verdefs; t != NULL; t = t->next)
1577 if (t->globals.list != NULL)
1579 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1580 if (d != NULL)
1581 goto doit;
1584 if (t->locals.list != NULL)
1586 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1587 if (d != NULL)
1588 return TRUE;
1592 if (!eif->verdefs)
1594 doit:
1595 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1597 eif->failed = TRUE;
1598 return FALSE;
1603 return TRUE;
1606 /* Look through the symbols which are defined in other shared
1607 libraries and referenced here. Update the list of version
1608 dependencies. This will be put into the .gnu.version_r section.
1609 This function is called via elf_link_hash_traverse. */
1611 bfd_boolean
1612 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1613 void *data)
1615 struct elf_find_verdep_info *rinfo = data;
1616 Elf_Internal_Verneed *t;
1617 Elf_Internal_Vernaux *a;
1618 bfd_size_type amt;
1620 if (h->root.type == bfd_link_hash_warning)
1621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1623 /* We only care about symbols defined in shared objects with version
1624 information. */
1625 if (!h->def_dynamic
1626 || h->def_regular
1627 || h->dynindx == -1
1628 || h->verinfo.verdef == NULL)
1629 return TRUE;
1631 /* See if we already know about this version. */
1632 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1634 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1635 continue;
1637 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1638 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1639 return TRUE;
1641 break;
1644 /* This is a new version. Add it to tree we are building. */
1646 if (t == NULL)
1648 amt = sizeof *t;
1649 t = bfd_zalloc (rinfo->output_bfd, amt);
1650 if (t == NULL)
1652 rinfo->failed = TRUE;
1653 return FALSE;
1656 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1657 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1658 elf_tdata (rinfo->output_bfd)->verref = t;
1661 amt = sizeof *a;
1662 a = bfd_zalloc (rinfo->output_bfd, amt);
1664 /* Note that we are copying a string pointer here, and testing it
1665 above. If bfd_elf_string_from_elf_section is ever changed to
1666 discard the string data when low in memory, this will have to be
1667 fixed. */
1668 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1670 a->vna_flags = h->verinfo.verdef->vd_flags;
1671 a->vna_nextptr = t->vn_auxptr;
1673 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1674 ++rinfo->vers;
1676 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1678 t->vn_auxptr = a;
1680 return TRUE;
1683 /* Figure out appropriate versions for all the symbols. We may not
1684 have the version number script until we have read all of the input
1685 files, so until that point we don't know which symbols should be
1686 local. This function is called via elf_link_hash_traverse. */
1688 bfd_boolean
1689 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1691 struct elf_assign_sym_version_info *sinfo;
1692 struct bfd_link_info *info;
1693 const struct elf_backend_data *bed;
1694 struct elf_info_failed eif;
1695 char *p;
1696 bfd_size_type amt;
1698 sinfo = data;
1699 info = sinfo->info;
1701 if (h->root.type == bfd_link_hash_warning)
1702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1704 /* Fix the symbol flags. */
1705 eif.failed = FALSE;
1706 eif.info = info;
1707 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1709 if (eif.failed)
1710 sinfo->failed = TRUE;
1711 return FALSE;
1714 /* We only need version numbers for symbols defined in regular
1715 objects. */
1716 if (!h->def_regular)
1717 return TRUE;
1719 bed = get_elf_backend_data (sinfo->output_bfd);
1720 p = strchr (h->root.root.string, ELF_VER_CHR);
1721 if (p != NULL && h->verinfo.vertree == NULL)
1723 struct bfd_elf_version_tree *t;
1724 bfd_boolean hidden;
1726 hidden = TRUE;
1728 /* There are two consecutive ELF_VER_CHR characters if this is
1729 not a hidden symbol. */
1730 ++p;
1731 if (*p == ELF_VER_CHR)
1733 hidden = FALSE;
1734 ++p;
1737 /* If there is no version string, we can just return out. */
1738 if (*p == '\0')
1740 if (hidden)
1741 h->hidden = 1;
1742 return TRUE;
1745 /* Look for the version. If we find it, it is no longer weak. */
1746 for (t = sinfo->verdefs; t != NULL; t = t->next)
1748 if (strcmp (t->name, p) == 0)
1750 size_t len;
1751 char *alc;
1752 struct bfd_elf_version_expr *d;
1754 len = p - h->root.root.string;
1755 alc = bfd_malloc (len);
1756 if (alc == NULL)
1757 return FALSE;
1758 memcpy (alc, h->root.root.string, len - 1);
1759 alc[len - 1] = '\0';
1760 if (alc[len - 2] == ELF_VER_CHR)
1761 alc[len - 2] = '\0';
1763 h->verinfo.vertree = t;
1764 t->used = TRUE;
1765 d = NULL;
1767 if (t->globals.list != NULL)
1768 d = (*t->match) (&t->globals, NULL, alc);
1770 /* See if there is anything to force this symbol to
1771 local scope. */
1772 if (d == NULL && t->locals.list != NULL)
1774 d = (*t->match) (&t->locals, NULL, alc);
1775 if (d != NULL
1776 && h->dynindx != -1
1777 && info->shared
1778 && ! info->export_dynamic)
1779 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1782 free (alc);
1783 break;
1787 /* If we are building an application, we need to create a
1788 version node for this version. */
1789 if (t == NULL && info->executable)
1791 struct bfd_elf_version_tree **pp;
1792 int version_index;
1794 /* If we aren't going to export this symbol, we don't need
1795 to worry about it. */
1796 if (h->dynindx == -1)
1797 return TRUE;
1799 amt = sizeof *t;
1800 t = bfd_zalloc (sinfo->output_bfd, amt);
1801 if (t == NULL)
1803 sinfo->failed = TRUE;
1804 return FALSE;
1807 t->name = p;
1808 t->name_indx = (unsigned int) -1;
1809 t->used = TRUE;
1811 version_index = 1;
1812 /* Don't count anonymous version tag. */
1813 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1814 version_index = 0;
1815 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1816 ++version_index;
1817 t->vernum = version_index;
1819 *pp = t;
1821 h->verinfo.vertree = t;
1823 else if (t == NULL)
1825 /* We could not find the version for a symbol when
1826 generating a shared archive. Return an error. */
1827 (*_bfd_error_handler)
1828 (_("%B: undefined versioned symbol name %s"),
1829 sinfo->output_bfd, h->root.root.string);
1830 bfd_set_error (bfd_error_bad_value);
1831 sinfo->failed = TRUE;
1832 return FALSE;
1835 if (hidden)
1836 h->hidden = 1;
1839 /* If we don't have a version for this symbol, see if we can find
1840 something. */
1841 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1843 struct bfd_elf_version_tree *t;
1844 struct bfd_elf_version_tree *local_ver;
1845 struct bfd_elf_version_expr *d;
1847 /* See if can find what version this symbol is in. If the
1848 symbol is supposed to be local, then don't actually register
1849 it. */
1850 local_ver = NULL;
1851 for (t = sinfo->verdefs; t != NULL; t = t->next)
1853 if (t->globals.list != NULL)
1855 bfd_boolean matched;
1857 matched = FALSE;
1858 d = NULL;
1859 while ((d = (*t->match) (&t->globals, d,
1860 h->root.root.string)) != NULL)
1861 if (d->symver)
1862 matched = TRUE;
1863 else
1865 /* There is a version without definition. Make
1866 the symbol the default definition for this
1867 version. */
1868 h->verinfo.vertree = t;
1869 local_ver = NULL;
1870 d->script = 1;
1871 break;
1873 if (d != NULL)
1874 break;
1875 else if (matched)
1876 /* There is no undefined version for this symbol. Hide the
1877 default one. */
1878 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1881 if (t->locals.list != NULL)
1883 d = NULL;
1884 while ((d = (*t->match) (&t->locals, d,
1885 h->root.root.string)) != NULL)
1887 local_ver = t;
1888 /* If the match is "*", keep looking for a more
1889 explicit, perhaps even global, match.
1890 XXX: Shouldn't this be !d->wildcard instead? */
1891 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1892 break;
1895 if (d != NULL)
1896 break;
1900 if (local_ver != NULL)
1902 h->verinfo.vertree = local_ver;
1903 if (h->dynindx != -1
1904 && info->shared
1905 && ! info->export_dynamic)
1907 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1912 return TRUE;
1915 /* Read and swap the relocs from the section indicated by SHDR. This
1916 may be either a REL or a RELA section. The relocations are
1917 translated into RELA relocations and stored in INTERNAL_RELOCS,
1918 which should have already been allocated to contain enough space.
1919 The EXTERNAL_RELOCS are a buffer where the external form of the
1920 relocations should be stored.
1922 Returns FALSE if something goes wrong. */
1924 static bfd_boolean
1925 elf_link_read_relocs_from_section (bfd *abfd,
1926 asection *sec,
1927 Elf_Internal_Shdr *shdr,
1928 void *external_relocs,
1929 Elf_Internal_Rela *internal_relocs)
1931 const struct elf_backend_data *bed;
1932 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1933 const bfd_byte *erela;
1934 const bfd_byte *erelaend;
1935 Elf_Internal_Rela *irela;
1936 Elf_Internal_Shdr *symtab_hdr;
1937 size_t nsyms;
1939 /* Position ourselves at the start of the section. */
1940 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1941 return FALSE;
1943 /* Read the relocations. */
1944 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1945 return FALSE;
1947 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1948 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1950 bed = get_elf_backend_data (abfd);
1952 /* Convert the external relocations to the internal format. */
1953 if (shdr->sh_entsize == bed->s->sizeof_rel)
1954 swap_in = bed->s->swap_reloc_in;
1955 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1956 swap_in = bed->s->swap_reloca_in;
1957 else
1959 bfd_set_error (bfd_error_wrong_format);
1960 return FALSE;
1963 erela = external_relocs;
1964 erelaend = erela + shdr->sh_size;
1965 irela = internal_relocs;
1966 while (erela < erelaend)
1968 bfd_vma r_symndx;
1970 (*swap_in) (abfd, erela, irela);
1971 r_symndx = ELF32_R_SYM (irela->r_info);
1972 if (bed->s->arch_size == 64)
1973 r_symndx >>= 24;
1974 if ((size_t) r_symndx >= nsyms)
1976 (*_bfd_error_handler)
1977 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1978 " for offset 0x%lx in section `%A'"),
1979 abfd, sec,
1980 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1981 bfd_set_error (bfd_error_bad_value);
1982 return FALSE;
1984 irela += bed->s->int_rels_per_ext_rel;
1985 erela += shdr->sh_entsize;
1988 return TRUE;
1991 /* Read and swap the relocs for a section O. They may have been
1992 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1993 not NULL, they are used as buffers to read into. They are known to
1994 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1995 the return value is allocated using either malloc or bfd_alloc,
1996 according to the KEEP_MEMORY argument. If O has two relocation
1997 sections (both REL and RELA relocations), then the REL_HDR
1998 relocations will appear first in INTERNAL_RELOCS, followed by the
1999 REL_HDR2 relocations. */
2001 Elf_Internal_Rela *
2002 _bfd_elf_link_read_relocs (bfd *abfd,
2003 asection *o,
2004 void *external_relocs,
2005 Elf_Internal_Rela *internal_relocs,
2006 bfd_boolean keep_memory)
2008 Elf_Internal_Shdr *rel_hdr;
2009 void *alloc1 = NULL;
2010 Elf_Internal_Rela *alloc2 = NULL;
2011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2013 if (elf_section_data (o)->relocs != NULL)
2014 return elf_section_data (o)->relocs;
2016 if (o->reloc_count == 0)
2017 return NULL;
2019 rel_hdr = &elf_section_data (o)->rel_hdr;
2021 if (internal_relocs == NULL)
2023 bfd_size_type size;
2025 size = o->reloc_count;
2026 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2027 if (keep_memory)
2028 internal_relocs = bfd_alloc (abfd, size);
2029 else
2030 internal_relocs = alloc2 = bfd_malloc (size);
2031 if (internal_relocs == NULL)
2032 goto error_return;
2035 if (external_relocs == NULL)
2037 bfd_size_type size = rel_hdr->sh_size;
2039 if (elf_section_data (o)->rel_hdr2)
2040 size += elf_section_data (o)->rel_hdr2->sh_size;
2041 alloc1 = bfd_malloc (size);
2042 if (alloc1 == NULL)
2043 goto error_return;
2044 external_relocs = alloc1;
2047 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2048 external_relocs,
2049 internal_relocs))
2050 goto error_return;
2051 if (elf_section_data (o)->rel_hdr2
2052 && (!elf_link_read_relocs_from_section
2053 (abfd, o,
2054 elf_section_data (o)->rel_hdr2,
2055 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2056 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2057 * bed->s->int_rels_per_ext_rel))))
2058 goto error_return;
2060 /* Cache the results for next time, if we can. */
2061 if (keep_memory)
2062 elf_section_data (o)->relocs = internal_relocs;
2064 if (alloc1 != NULL)
2065 free (alloc1);
2067 /* Don't free alloc2, since if it was allocated we are passing it
2068 back (under the name of internal_relocs). */
2070 return internal_relocs;
2072 error_return:
2073 if (alloc1 != NULL)
2074 free (alloc1);
2075 if (alloc2 != NULL)
2076 free (alloc2);
2077 return NULL;
2080 /* Compute the size of, and allocate space for, REL_HDR which is the
2081 section header for a section containing relocations for O. */
2083 bfd_boolean
2084 _bfd_elf_link_size_reloc_section (bfd *abfd,
2085 Elf_Internal_Shdr *rel_hdr,
2086 asection *o)
2088 bfd_size_type reloc_count;
2089 bfd_size_type num_rel_hashes;
2091 /* Figure out how many relocations there will be. */
2092 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2093 reloc_count = elf_section_data (o)->rel_count;
2094 else
2095 reloc_count = elf_section_data (o)->rel_count2;
2097 num_rel_hashes = o->reloc_count;
2098 if (num_rel_hashes < reloc_count)
2099 num_rel_hashes = reloc_count;
2101 /* That allows us to calculate the size of the section. */
2102 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2104 /* The contents field must last into write_object_contents, so we
2105 allocate it with bfd_alloc rather than malloc. Also since we
2106 cannot be sure that the contents will actually be filled in,
2107 we zero the allocated space. */
2108 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2109 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2110 return FALSE;
2112 /* We only allocate one set of hash entries, so we only do it the
2113 first time we are called. */
2114 if (elf_section_data (o)->rel_hashes == NULL
2115 && num_rel_hashes)
2117 struct elf_link_hash_entry **p;
2119 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2120 if (p == NULL)
2121 return FALSE;
2123 elf_section_data (o)->rel_hashes = p;
2126 return TRUE;
2129 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2130 originated from the section given by INPUT_REL_HDR) to the
2131 OUTPUT_BFD. */
2133 bfd_boolean
2134 _bfd_elf_link_output_relocs (bfd *output_bfd,
2135 asection *input_section,
2136 Elf_Internal_Shdr *input_rel_hdr,
2137 Elf_Internal_Rela *internal_relocs)
2139 Elf_Internal_Rela *irela;
2140 Elf_Internal_Rela *irelaend;
2141 bfd_byte *erel;
2142 Elf_Internal_Shdr *output_rel_hdr;
2143 asection *output_section;
2144 unsigned int *rel_countp = NULL;
2145 const struct elf_backend_data *bed;
2146 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2148 output_section = input_section->output_section;
2149 output_rel_hdr = NULL;
2151 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2152 == input_rel_hdr->sh_entsize)
2154 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2155 rel_countp = &elf_section_data (output_section)->rel_count;
2157 else if (elf_section_data (output_section)->rel_hdr2
2158 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2159 == input_rel_hdr->sh_entsize))
2161 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2162 rel_countp = &elf_section_data (output_section)->rel_count2;
2164 else
2166 (*_bfd_error_handler)
2167 (_("%B: relocation size mismatch in %B section %A"),
2168 output_bfd, input_section->owner, input_section);
2169 bfd_set_error (bfd_error_wrong_object_format);
2170 return FALSE;
2173 bed = get_elf_backend_data (output_bfd);
2174 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2175 swap_out = bed->s->swap_reloc_out;
2176 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2177 swap_out = bed->s->swap_reloca_out;
2178 else
2179 abort ();
2181 erel = output_rel_hdr->contents;
2182 erel += *rel_countp * input_rel_hdr->sh_entsize;
2183 irela = internal_relocs;
2184 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2185 * bed->s->int_rels_per_ext_rel);
2186 while (irela < irelaend)
2188 (*swap_out) (output_bfd, irela, erel);
2189 irela += bed->s->int_rels_per_ext_rel;
2190 erel += input_rel_hdr->sh_entsize;
2193 /* Bump the counter, so that we know where to add the next set of
2194 relocations. */
2195 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2197 return TRUE;
2200 /* Fix up the flags for a symbol. This handles various cases which
2201 can only be fixed after all the input files are seen. This is
2202 currently called by both adjust_dynamic_symbol and
2203 assign_sym_version, which is unnecessary but perhaps more robust in
2204 the face of future changes. */
2206 bfd_boolean
2207 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2208 struct elf_info_failed *eif)
2210 /* If this symbol was mentioned in a non-ELF file, try to set
2211 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2212 permit a non-ELF file to correctly refer to a symbol defined in
2213 an ELF dynamic object. */
2214 if (h->non_elf)
2216 while (h->root.type == bfd_link_hash_indirect)
2217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2219 if (h->root.type != bfd_link_hash_defined
2220 && h->root.type != bfd_link_hash_defweak)
2222 h->ref_regular = 1;
2223 h->ref_regular_nonweak = 1;
2225 else
2227 if (h->root.u.def.section->owner != NULL
2228 && (bfd_get_flavour (h->root.u.def.section->owner)
2229 == bfd_target_elf_flavour))
2231 h->ref_regular = 1;
2232 h->ref_regular_nonweak = 1;
2234 else
2235 h->def_regular = 1;
2238 if (h->dynindx == -1
2239 && (h->def_dynamic
2240 || h->ref_dynamic))
2242 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2244 eif->failed = TRUE;
2245 return FALSE;
2249 else
2251 /* Unfortunately, NON_ELF is only correct if the symbol
2252 was first seen in a non-ELF file. Fortunately, if the symbol
2253 was first seen in an ELF file, we're probably OK unless the
2254 symbol was defined in a non-ELF file. Catch that case here.
2255 FIXME: We're still in trouble if the symbol was first seen in
2256 a dynamic object, and then later in a non-ELF regular object. */
2257 if ((h->root.type == bfd_link_hash_defined
2258 || h->root.type == bfd_link_hash_defweak)
2259 && !h->def_regular
2260 && (h->root.u.def.section->owner != NULL
2261 ? (bfd_get_flavour (h->root.u.def.section->owner)
2262 != bfd_target_elf_flavour)
2263 : (bfd_is_abs_section (h->root.u.def.section)
2264 && !h->def_dynamic)))
2265 h->def_regular = 1;
2268 /* If this is a final link, and the symbol was defined as a common
2269 symbol in a regular object file, and there was no definition in
2270 any dynamic object, then the linker will have allocated space for
2271 the symbol in a common section but the DEF_REGULAR
2272 flag will not have been set. */
2273 if (h->root.type == bfd_link_hash_defined
2274 && !h->def_regular
2275 && h->ref_regular
2276 && !h->def_dynamic
2277 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2278 h->def_regular = 1;
2280 /* If -Bsymbolic was used (which means to bind references to global
2281 symbols to the definition within the shared object), and this
2282 symbol was defined in a regular object, then it actually doesn't
2283 need a PLT entry. Likewise, if the symbol has non-default
2284 visibility. If the symbol has hidden or internal visibility, we
2285 will force it local. */
2286 if (h->needs_plt
2287 && eif->info->shared
2288 && is_elf_hash_table (eif->info->hash)
2289 && (eif->info->symbolic
2290 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2291 && h->def_regular)
2293 const struct elf_backend_data *bed;
2294 bfd_boolean force_local;
2296 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2298 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2299 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2300 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2303 /* If a weak undefined symbol has non-default visibility, we also
2304 hide it from the dynamic linker. */
2305 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2306 && h->root.type == bfd_link_hash_undefweak)
2308 const struct elf_backend_data *bed;
2309 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2310 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2313 /* If this is a weak defined symbol in a dynamic object, and we know
2314 the real definition in the dynamic object, copy interesting flags
2315 over to the real definition. */
2316 if (h->u.weakdef != NULL)
2318 struct elf_link_hash_entry *weakdef;
2320 weakdef = h->u.weakdef;
2321 if (h->root.type == bfd_link_hash_indirect)
2322 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2324 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2325 || h->root.type == bfd_link_hash_defweak);
2326 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2327 || weakdef->root.type == bfd_link_hash_defweak);
2328 BFD_ASSERT (weakdef->def_dynamic);
2330 /* If the real definition is defined by a regular object file,
2331 don't do anything special. See the longer description in
2332 _bfd_elf_adjust_dynamic_symbol, below. */
2333 if (weakdef->def_regular)
2334 h->u.weakdef = NULL;
2335 else
2337 const struct elf_backend_data *bed;
2339 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2340 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2344 return TRUE;
2347 /* Make the backend pick a good value for a dynamic symbol. This is
2348 called via elf_link_hash_traverse, and also calls itself
2349 recursively. */
2351 bfd_boolean
2352 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2354 struct elf_info_failed *eif = data;
2355 bfd *dynobj;
2356 const struct elf_backend_data *bed;
2358 if (! is_elf_hash_table (eif->info->hash))
2359 return FALSE;
2361 if (h->root.type == bfd_link_hash_warning)
2363 h->plt = elf_hash_table (eif->info)->init_offset;
2364 h->got = elf_hash_table (eif->info)->init_offset;
2366 /* When warning symbols are created, they **replace** the "real"
2367 entry in the hash table, thus we never get to see the real
2368 symbol in a hash traversal. So look at it now. */
2369 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2372 /* Ignore indirect symbols. These are added by the versioning code. */
2373 if (h->root.type == bfd_link_hash_indirect)
2374 return TRUE;
2376 /* Fix the symbol flags. */
2377 if (! _bfd_elf_fix_symbol_flags (h, eif))
2378 return FALSE;
2380 /* If this symbol does not require a PLT entry, and it is not
2381 defined by a dynamic object, or is not referenced by a regular
2382 object, ignore it. We do have to handle a weak defined symbol,
2383 even if no regular object refers to it, if we decided to add it
2384 to the dynamic symbol table. FIXME: Do we normally need to worry
2385 about symbols which are defined by one dynamic object and
2386 referenced by another one? */
2387 if (!h->needs_plt
2388 && (h->def_regular
2389 || !h->def_dynamic
2390 || (!h->ref_regular
2391 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2393 h->plt = elf_hash_table (eif->info)->init_offset;
2394 return TRUE;
2397 /* If we've already adjusted this symbol, don't do it again. This
2398 can happen via a recursive call. */
2399 if (h->dynamic_adjusted)
2400 return TRUE;
2402 /* Don't look at this symbol again. Note that we must set this
2403 after checking the above conditions, because we may look at a
2404 symbol once, decide not to do anything, and then get called
2405 recursively later after REF_REGULAR is set below. */
2406 h->dynamic_adjusted = 1;
2408 /* If this is a weak definition, and we know a real definition, and
2409 the real symbol is not itself defined by a regular object file,
2410 then get a good value for the real definition. We handle the
2411 real symbol first, for the convenience of the backend routine.
2413 Note that there is a confusing case here. If the real definition
2414 is defined by a regular object file, we don't get the real symbol
2415 from the dynamic object, but we do get the weak symbol. If the
2416 processor backend uses a COPY reloc, then if some routine in the
2417 dynamic object changes the real symbol, we will not see that
2418 change in the corresponding weak symbol. This is the way other
2419 ELF linkers work as well, and seems to be a result of the shared
2420 library model.
2422 I will clarify this issue. Most SVR4 shared libraries define the
2423 variable _timezone and define timezone as a weak synonym. The
2424 tzset call changes _timezone. If you write
2425 extern int timezone;
2426 int _timezone = 5;
2427 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2428 you might expect that, since timezone is a synonym for _timezone,
2429 the same number will print both times. However, if the processor
2430 backend uses a COPY reloc, then actually timezone will be copied
2431 into your process image, and, since you define _timezone
2432 yourself, _timezone will not. Thus timezone and _timezone will
2433 wind up at different memory locations. The tzset call will set
2434 _timezone, leaving timezone unchanged. */
2436 if (h->u.weakdef != NULL)
2438 /* If we get to this point, we know there is an implicit
2439 reference by a regular object file via the weak symbol H.
2440 FIXME: Is this really true? What if the traversal finds
2441 H->U.WEAKDEF before it finds H? */
2442 h->u.weakdef->ref_regular = 1;
2444 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2445 return FALSE;
2448 /* If a symbol has no type and no size and does not require a PLT
2449 entry, then we are probably about to do the wrong thing here: we
2450 are probably going to create a COPY reloc for an empty object.
2451 This case can arise when a shared object is built with assembly
2452 code, and the assembly code fails to set the symbol type. */
2453 if (h->size == 0
2454 && h->type == STT_NOTYPE
2455 && !h->needs_plt)
2456 (*_bfd_error_handler)
2457 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2458 h->root.root.string);
2460 dynobj = elf_hash_table (eif->info)->dynobj;
2461 bed = get_elf_backend_data (dynobj);
2462 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2464 eif->failed = TRUE;
2465 return FALSE;
2468 return TRUE;
2471 /* Adjust all external symbols pointing into SEC_MERGE sections
2472 to reflect the object merging within the sections. */
2474 bfd_boolean
2475 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2477 asection *sec;
2479 if (h->root.type == bfd_link_hash_warning)
2480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2482 if ((h->root.type == bfd_link_hash_defined
2483 || h->root.type == bfd_link_hash_defweak)
2484 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2485 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2487 bfd *output_bfd = data;
2489 h->root.u.def.value =
2490 _bfd_merged_section_offset (output_bfd,
2491 &h->root.u.def.section,
2492 elf_section_data (sec)->sec_info,
2493 h->root.u.def.value);
2496 return TRUE;
2499 /* Returns false if the symbol referred to by H should be considered
2500 to resolve local to the current module, and true if it should be
2501 considered to bind dynamically. */
2503 bfd_boolean
2504 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2505 struct bfd_link_info *info,
2506 bfd_boolean ignore_protected)
2508 bfd_boolean binding_stays_local_p;
2510 if (h == NULL)
2511 return FALSE;
2513 while (h->root.type == bfd_link_hash_indirect
2514 || h->root.type == bfd_link_hash_warning)
2515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2517 /* If it was forced local, then clearly it's not dynamic. */
2518 if (h->dynindx == -1)
2519 return FALSE;
2520 if (h->forced_local)
2521 return FALSE;
2523 /* Identify the cases where name binding rules say that a
2524 visible symbol resolves locally. */
2525 binding_stays_local_p = info->executable || info->symbolic;
2527 switch (ELF_ST_VISIBILITY (h->other))
2529 case STV_INTERNAL:
2530 case STV_HIDDEN:
2531 return FALSE;
2533 case STV_PROTECTED:
2534 /* Proper resolution for function pointer equality may require
2535 that these symbols perhaps be resolved dynamically, even though
2536 we should be resolving them to the current module. */
2537 if (!ignore_protected || h->type != STT_FUNC)
2538 binding_stays_local_p = TRUE;
2539 break;
2541 default:
2542 break;
2545 /* If it isn't defined locally, then clearly it's dynamic. */
2546 if (!h->def_regular)
2547 return TRUE;
2549 /* Otherwise, the symbol is dynamic if binding rules don't tell
2550 us that it remains local. */
2551 return !binding_stays_local_p;
2554 /* Return true if the symbol referred to by H should be considered
2555 to resolve local to the current module, and false otherwise. Differs
2556 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2557 undefined symbols and weak symbols. */
2559 bfd_boolean
2560 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2561 struct bfd_link_info *info,
2562 bfd_boolean local_protected)
2564 /* If it's a local sym, of course we resolve locally. */
2565 if (h == NULL)
2566 return TRUE;
2568 /* Common symbols that become definitions don't get the DEF_REGULAR
2569 flag set, so test it first, and don't bail out. */
2570 if (ELF_COMMON_DEF_P (h))
2571 /* Do nothing. */;
2572 /* If we don't have a definition in a regular file, then we can't
2573 resolve locally. The sym is either undefined or dynamic. */
2574 else if (!h->def_regular)
2575 return FALSE;
2577 /* Forced local symbols resolve locally. */
2578 if (h->forced_local)
2579 return TRUE;
2581 /* As do non-dynamic symbols. */
2582 if (h->dynindx == -1)
2583 return TRUE;
2585 /* At this point, we know the symbol is defined and dynamic. In an
2586 executable it must resolve locally, likewise when building symbolic
2587 shared libraries. */
2588 if (info->executable || info->symbolic)
2589 return TRUE;
2591 /* Now deal with defined dynamic symbols in shared libraries. Ones
2592 with default visibility might not resolve locally. */
2593 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2594 return FALSE;
2596 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2597 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2598 return TRUE;
2600 /* STV_PROTECTED non-function symbols are local. */
2601 if (h->type != STT_FUNC)
2602 return TRUE;
2604 /* Function pointer equality tests may require that STV_PROTECTED
2605 symbols be treated as dynamic symbols, even when we know that the
2606 dynamic linker will resolve them locally. */
2607 return local_protected;
2610 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2611 aligned. Returns the first TLS output section. */
2613 struct bfd_section *
2614 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2616 struct bfd_section *sec, *tls;
2617 unsigned int align = 0;
2619 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2620 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2621 break;
2622 tls = sec;
2624 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2625 if (sec->alignment_power > align)
2626 align = sec->alignment_power;
2628 elf_hash_table (info)->tls_sec = tls;
2630 /* Ensure the alignment of the first section is the largest alignment,
2631 so that the tls segment starts aligned. */
2632 if (tls != NULL)
2633 tls->alignment_power = align;
2635 return tls;
2638 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2639 static bfd_boolean
2640 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2641 Elf_Internal_Sym *sym)
2643 /* Local symbols do not count, but target specific ones might. */
2644 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2645 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2646 return FALSE;
2648 /* Function symbols do not count. */
2649 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2650 return FALSE;
2652 /* If the section is undefined, then so is the symbol. */
2653 if (sym->st_shndx == SHN_UNDEF)
2654 return FALSE;
2656 /* If the symbol is defined in the common section, then
2657 it is a common definition and so does not count. */
2658 if (sym->st_shndx == SHN_COMMON)
2659 return FALSE;
2661 /* If the symbol is in a target specific section then we
2662 must rely upon the backend to tell us what it is. */
2663 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2664 /* FIXME - this function is not coded yet:
2666 return _bfd_is_global_symbol_definition (abfd, sym);
2668 Instead for now assume that the definition is not global,
2669 Even if this is wrong, at least the linker will behave
2670 in the same way that it used to do. */
2671 return FALSE;
2673 return TRUE;
2676 /* Search the symbol table of the archive element of the archive ABFD
2677 whose archive map contains a mention of SYMDEF, and determine if
2678 the symbol is defined in this element. */
2679 static bfd_boolean
2680 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2682 Elf_Internal_Shdr * hdr;
2683 bfd_size_type symcount;
2684 bfd_size_type extsymcount;
2685 bfd_size_type extsymoff;
2686 Elf_Internal_Sym *isymbuf;
2687 Elf_Internal_Sym *isym;
2688 Elf_Internal_Sym *isymend;
2689 bfd_boolean result;
2691 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2692 if (abfd == NULL)
2693 return FALSE;
2695 if (! bfd_check_format (abfd, bfd_object))
2696 return FALSE;
2698 /* If we have already included the element containing this symbol in the
2699 link then we do not need to include it again. Just claim that any symbol
2700 it contains is not a definition, so that our caller will not decide to
2701 (re)include this element. */
2702 if (abfd->archive_pass)
2703 return FALSE;
2705 /* Select the appropriate symbol table. */
2706 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2707 hdr = &elf_tdata (abfd)->symtab_hdr;
2708 else
2709 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2711 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2713 /* The sh_info field of the symtab header tells us where the
2714 external symbols start. We don't care about the local symbols. */
2715 if (elf_bad_symtab (abfd))
2717 extsymcount = symcount;
2718 extsymoff = 0;
2720 else
2722 extsymcount = symcount - hdr->sh_info;
2723 extsymoff = hdr->sh_info;
2726 if (extsymcount == 0)
2727 return FALSE;
2729 /* Read in the symbol table. */
2730 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2731 NULL, NULL, NULL);
2732 if (isymbuf == NULL)
2733 return FALSE;
2735 /* Scan the symbol table looking for SYMDEF. */
2736 result = FALSE;
2737 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2739 const char *name;
2741 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2742 isym->st_name);
2743 if (name == NULL)
2744 break;
2746 if (strcmp (name, symdef->name) == 0)
2748 result = is_global_data_symbol_definition (abfd, isym);
2749 break;
2753 free (isymbuf);
2755 return result;
2758 /* Add an entry to the .dynamic table. */
2760 bfd_boolean
2761 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2762 bfd_vma tag,
2763 bfd_vma val)
2765 struct elf_link_hash_table *hash_table;
2766 const struct elf_backend_data *bed;
2767 asection *s;
2768 bfd_size_type newsize;
2769 bfd_byte *newcontents;
2770 Elf_Internal_Dyn dyn;
2772 hash_table = elf_hash_table (info);
2773 if (! is_elf_hash_table (hash_table))
2774 return FALSE;
2776 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2777 _bfd_error_handler
2778 (_("warning: creating a DT_TEXTREL in a shared object."));
2780 bed = get_elf_backend_data (hash_table->dynobj);
2781 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2782 BFD_ASSERT (s != NULL);
2784 newsize = s->size + bed->s->sizeof_dyn;
2785 newcontents = bfd_realloc (s->contents, newsize);
2786 if (newcontents == NULL)
2787 return FALSE;
2789 dyn.d_tag = tag;
2790 dyn.d_un.d_val = val;
2791 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2793 s->size = newsize;
2794 s->contents = newcontents;
2796 return TRUE;
2799 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2800 otherwise just check whether one already exists. Returns -1 on error,
2801 1 if a DT_NEEDED tag already exists, and 0 on success. */
2803 static int
2804 elf_add_dt_needed_tag (bfd *abfd,
2805 struct bfd_link_info *info,
2806 const char *soname,
2807 bfd_boolean do_it)
2809 struct elf_link_hash_table *hash_table;
2810 bfd_size_type oldsize;
2811 bfd_size_type strindex;
2813 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2814 return -1;
2816 hash_table = elf_hash_table (info);
2817 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2818 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2819 if (strindex == (bfd_size_type) -1)
2820 return -1;
2822 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2824 asection *sdyn;
2825 const struct elf_backend_data *bed;
2826 bfd_byte *extdyn;
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2830 if (sdyn != NULL)
2831 for (extdyn = sdyn->contents;
2832 extdyn < sdyn->contents + sdyn->size;
2833 extdyn += bed->s->sizeof_dyn)
2835 Elf_Internal_Dyn dyn;
2837 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2838 if (dyn.d_tag == DT_NEEDED
2839 && dyn.d_un.d_val == strindex)
2841 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2842 return 1;
2847 if (do_it)
2849 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2850 return -1;
2852 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2853 return -1;
2855 else
2856 /* We were just checking for existence of the tag. */
2857 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2859 return 0;
2862 /* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2863 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
2864 references from regular objects to these symbols.
2866 ??? Should we do something about references from other dynamic
2867 obects? If not, we potentially lose some warnings about undefined
2868 symbols. But how can we recover the initial undefined / undefweak
2869 state? */
2871 struct elf_smash_syms_data
2873 bfd *not_needed;
2874 struct elf_link_hash_table *htab;
2875 bfd_boolean twiddled;
2878 static bfd_boolean
2879 elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2881 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2882 struct bfd_link_hash_entry *bh;
2884 switch (h->root.type)
2886 default:
2887 case bfd_link_hash_new:
2888 return TRUE;
2890 case bfd_link_hash_undefined:
2891 if (h->root.u.undef.abfd != inf->not_needed)
2892 return TRUE;
2893 if (h->root.u.undef.weak != NULL
2894 && h->root.u.undef.weak != inf->not_needed)
2896 /* Symbol was undefweak in u.undef.weak bfd, and has become
2897 undefined in as-needed lib. Restore weak. */
2898 h->root.type = bfd_link_hash_undefweak;
2899 h->root.u.undef.abfd = h->root.u.undef.weak;
2900 if (h->root.u.undef.next != NULL
2901 || inf->htab->root.undefs_tail == &h->root)
2902 inf->twiddled = TRUE;
2903 return TRUE;
2905 break;
2907 case bfd_link_hash_undefweak:
2908 if (h->root.u.undef.abfd != inf->not_needed)
2909 return TRUE;
2910 break;
2912 case bfd_link_hash_defined:
2913 case bfd_link_hash_defweak:
2914 if (h->root.u.def.section->owner != inf->not_needed)
2915 return TRUE;
2916 break;
2918 case bfd_link_hash_common:
2919 if (h->root.u.c.p->section->owner != inf->not_needed)
2920 return TRUE;
2921 break;
2923 case bfd_link_hash_warning:
2924 case bfd_link_hash_indirect:
2925 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2926 if (h->root.u.i.link->type != bfd_link_hash_new)
2927 return TRUE;
2928 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2929 return TRUE;
2930 break;
2933 /* There is no way we can undo symbol table state from defined or
2934 defweak back to undefined. */
2935 if (h->ref_regular)
2936 abort ();
2938 /* Set sym back to newly created state, but keep undefs list pointer. */
2939 bh = h->root.u.undef.next;
2940 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2941 inf->twiddled = TRUE;
2942 (*inf->htab->root.table.newfunc) (&h->root.root,
2943 &inf->htab->root.table,
2944 h->root.root.string);
2945 h->root.u.undef.next = bh;
2946 h->root.u.undef.abfd = inf->not_needed;
2947 h->non_elf = 0;
2948 return TRUE;
2951 /* Sort symbol by value and section. */
2952 static int
2953 elf_sort_symbol (const void *arg1, const void *arg2)
2955 const struct elf_link_hash_entry *h1;
2956 const struct elf_link_hash_entry *h2;
2957 bfd_signed_vma vdiff;
2959 h1 = *(const struct elf_link_hash_entry **) arg1;
2960 h2 = *(const struct elf_link_hash_entry **) arg2;
2961 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2962 if (vdiff != 0)
2963 return vdiff > 0 ? 1 : -1;
2964 else
2966 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2967 if (sdiff != 0)
2968 return sdiff > 0 ? 1 : -1;
2970 return 0;
2973 /* This function is used to adjust offsets into .dynstr for
2974 dynamic symbols. This is called via elf_link_hash_traverse. */
2976 static bfd_boolean
2977 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2979 struct elf_strtab_hash *dynstr = data;
2981 if (h->root.type == bfd_link_hash_warning)
2982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2984 if (h->dynindx != -1)
2985 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2986 return TRUE;
2989 /* Assign string offsets in .dynstr, update all structures referencing
2990 them. */
2992 static bfd_boolean
2993 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2995 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2996 struct elf_link_local_dynamic_entry *entry;
2997 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2998 bfd *dynobj = hash_table->dynobj;
2999 asection *sdyn;
3000 bfd_size_type size;
3001 const struct elf_backend_data *bed;
3002 bfd_byte *extdyn;
3004 _bfd_elf_strtab_finalize (dynstr);
3005 size = _bfd_elf_strtab_size (dynstr);
3007 bed = get_elf_backend_data (dynobj);
3008 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3009 BFD_ASSERT (sdyn != NULL);
3011 /* Update all .dynamic entries referencing .dynstr strings. */
3012 for (extdyn = sdyn->contents;
3013 extdyn < sdyn->contents + sdyn->size;
3014 extdyn += bed->s->sizeof_dyn)
3016 Elf_Internal_Dyn dyn;
3018 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3019 switch (dyn.d_tag)
3021 case DT_STRSZ:
3022 dyn.d_un.d_val = size;
3023 break;
3024 case DT_NEEDED:
3025 case DT_SONAME:
3026 case DT_RPATH:
3027 case DT_RUNPATH:
3028 case DT_FILTER:
3029 case DT_AUXILIARY:
3030 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3031 break;
3032 default:
3033 continue;
3035 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3038 /* Now update local dynamic symbols. */
3039 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3040 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3041 entry->isym.st_name);
3043 /* And the rest of dynamic symbols. */
3044 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3046 /* Adjust version definitions. */
3047 if (elf_tdata (output_bfd)->cverdefs)
3049 asection *s;
3050 bfd_byte *p;
3051 bfd_size_type i;
3052 Elf_Internal_Verdef def;
3053 Elf_Internal_Verdaux defaux;
3055 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3056 p = s->contents;
3059 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3060 &def);
3061 p += sizeof (Elf_External_Verdef);
3062 if (def.vd_aux != sizeof (Elf_External_Verdef))
3063 continue;
3064 for (i = 0; i < def.vd_cnt; ++i)
3066 _bfd_elf_swap_verdaux_in (output_bfd,
3067 (Elf_External_Verdaux *) p, &defaux);
3068 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3069 defaux.vda_name);
3070 _bfd_elf_swap_verdaux_out (output_bfd,
3071 &defaux, (Elf_External_Verdaux *) p);
3072 p += sizeof (Elf_External_Verdaux);
3075 while (def.vd_next);
3078 /* Adjust version references. */
3079 if (elf_tdata (output_bfd)->verref)
3081 asection *s;
3082 bfd_byte *p;
3083 bfd_size_type i;
3084 Elf_Internal_Verneed need;
3085 Elf_Internal_Vernaux needaux;
3087 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3088 p = s->contents;
3091 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3092 &need);
3093 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3094 _bfd_elf_swap_verneed_out (output_bfd, &need,
3095 (Elf_External_Verneed *) p);
3096 p += sizeof (Elf_External_Verneed);
3097 for (i = 0; i < need.vn_cnt; ++i)
3099 _bfd_elf_swap_vernaux_in (output_bfd,
3100 (Elf_External_Vernaux *) p, &needaux);
3101 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3102 needaux.vna_name);
3103 _bfd_elf_swap_vernaux_out (output_bfd,
3104 &needaux,
3105 (Elf_External_Vernaux *) p);
3106 p += sizeof (Elf_External_Vernaux);
3109 while (need.vn_next);
3112 return TRUE;
3115 /* Add symbols from an ELF object file to the linker hash table. */
3117 static bfd_boolean
3118 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3120 bfd_boolean (*add_symbol_hook)
3121 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
3122 const char **, flagword *, asection **, bfd_vma *);
3123 bfd_boolean (*check_relocs)
3124 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
3125 bfd_boolean (*check_directives)
3126 (bfd *, struct bfd_link_info *);
3127 bfd_boolean collect;
3128 Elf_Internal_Shdr *hdr;
3129 bfd_size_type symcount;
3130 bfd_size_type extsymcount;
3131 bfd_size_type extsymoff;
3132 struct elf_link_hash_entry **sym_hash;
3133 bfd_boolean dynamic;
3134 Elf_External_Versym *extversym = NULL;
3135 Elf_External_Versym *ever;
3136 struct elf_link_hash_entry *weaks;
3137 struct elf_link_hash_entry **nondeflt_vers = NULL;
3138 bfd_size_type nondeflt_vers_cnt = 0;
3139 Elf_Internal_Sym *isymbuf = NULL;
3140 Elf_Internal_Sym *isym;
3141 Elf_Internal_Sym *isymend;
3142 const struct elf_backend_data *bed;
3143 bfd_boolean add_needed;
3144 struct elf_link_hash_table * hash_table;
3145 bfd_size_type amt;
3147 hash_table = elf_hash_table (info);
3149 bed = get_elf_backend_data (abfd);
3150 add_symbol_hook = bed->elf_add_symbol_hook;
3151 collect = bed->collect;
3153 if ((abfd->flags & DYNAMIC) == 0)
3154 dynamic = FALSE;
3155 else
3157 dynamic = TRUE;
3159 /* You can't use -r against a dynamic object. Also, there's no
3160 hope of using a dynamic object which does not exactly match
3161 the format of the output file. */
3162 if (info->relocatable
3163 || !is_elf_hash_table (hash_table)
3164 || hash_table->root.creator != abfd->xvec)
3166 if (info->relocatable)
3167 bfd_set_error (bfd_error_invalid_operation);
3168 else
3169 bfd_set_error (bfd_error_wrong_format);
3170 goto error_return;
3174 /* As a GNU extension, any input sections which are named
3175 .gnu.warning.SYMBOL are treated as warning symbols for the given
3176 symbol. This differs from .gnu.warning sections, which generate
3177 warnings when they are included in an output file. */
3178 if (info->executable)
3180 asection *s;
3182 for (s = abfd->sections; s != NULL; s = s->next)
3184 const char *name;
3186 name = bfd_get_section_name (abfd, s);
3187 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3189 char *msg;
3190 bfd_size_type sz;
3192 name += sizeof ".gnu.warning." - 1;
3194 /* If this is a shared object, then look up the symbol
3195 in the hash table. If it is there, and it is already
3196 been defined, then we will not be using the entry
3197 from this shared object, so we don't need to warn.
3198 FIXME: If we see the definition in a regular object
3199 later on, we will warn, but we shouldn't. The only
3200 fix is to keep track of what warnings we are supposed
3201 to emit, and then handle them all at the end of the
3202 link. */
3203 if (dynamic)
3205 struct elf_link_hash_entry *h;
3207 h = elf_link_hash_lookup (hash_table, name,
3208 FALSE, FALSE, TRUE);
3210 /* FIXME: What about bfd_link_hash_common? */
3211 if (h != NULL
3212 && (h->root.type == bfd_link_hash_defined
3213 || h->root.type == bfd_link_hash_defweak))
3215 /* We don't want to issue this warning. Clobber
3216 the section size so that the warning does not
3217 get copied into the output file. */
3218 s->size = 0;
3219 continue;
3223 sz = s->size;
3224 msg = bfd_alloc (abfd, sz + 1);
3225 if (msg == NULL)
3226 goto error_return;
3228 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3229 goto error_return;
3231 msg[sz] = '\0';
3233 if (! (_bfd_generic_link_add_one_symbol
3234 (info, abfd, name, BSF_WARNING, s, 0, msg,
3235 FALSE, collect, NULL)))
3236 goto error_return;
3238 if (! info->relocatable)
3240 /* Clobber the section size so that the warning does
3241 not get copied into the output file. */
3242 s->size = 0;
3244 /* Also set SEC_EXCLUDE, so that symbols defined in
3245 the warning section don't get copied to the output. */
3246 s->flags |= SEC_EXCLUDE;
3252 add_needed = TRUE;
3253 if (! dynamic)
3255 /* If we are creating a shared library, create all the dynamic
3256 sections immediately. We need to attach them to something,
3257 so we attach them to this BFD, provided it is the right
3258 format. FIXME: If there are no input BFD's of the same
3259 format as the output, we can't make a shared library. */
3260 if (info->shared
3261 && is_elf_hash_table (hash_table)
3262 && hash_table->root.creator == abfd->xvec
3263 && ! hash_table->dynamic_sections_created)
3265 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3266 goto error_return;
3269 else if (!is_elf_hash_table (hash_table))
3270 goto error_return;
3271 else
3273 asection *s;
3274 const char *soname = NULL;
3275 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3276 int ret;
3278 /* ld --just-symbols and dynamic objects don't mix very well.
3279 Test for --just-symbols by looking at info set up by
3280 _bfd_elf_link_just_syms. */
3281 if ((s = abfd->sections) != NULL
3282 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3283 goto error_return;
3285 /* If this dynamic lib was specified on the command line with
3286 --as-needed in effect, then we don't want to add a DT_NEEDED
3287 tag unless the lib is actually used. Similary for libs brought
3288 in by another lib's DT_NEEDED. When --no-add-needed is used
3289 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3290 any dynamic library in DT_NEEDED tags in the dynamic lib at
3291 all. */
3292 add_needed = (elf_dyn_lib_class (abfd)
3293 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3294 | DYN_NO_NEEDED)) == 0;
3296 s = bfd_get_section_by_name (abfd, ".dynamic");
3297 if (s != NULL)
3299 bfd_byte *dynbuf;
3300 bfd_byte *extdyn;
3301 int elfsec;
3302 unsigned long shlink;
3304 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3305 goto error_free_dyn;
3307 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3308 if (elfsec == -1)
3309 goto error_free_dyn;
3310 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3312 for (extdyn = dynbuf;
3313 extdyn < dynbuf + s->size;
3314 extdyn += bed->s->sizeof_dyn)
3316 Elf_Internal_Dyn dyn;
3318 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3319 if (dyn.d_tag == DT_SONAME)
3321 unsigned int tagv = dyn.d_un.d_val;
3322 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3323 if (soname == NULL)
3324 goto error_free_dyn;
3326 if (dyn.d_tag == DT_NEEDED)
3328 struct bfd_link_needed_list *n, **pn;
3329 char *fnm, *anm;
3330 unsigned int tagv = dyn.d_un.d_val;
3332 amt = sizeof (struct bfd_link_needed_list);
3333 n = bfd_alloc (abfd, amt);
3334 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3335 if (n == NULL || fnm == NULL)
3336 goto error_free_dyn;
3337 amt = strlen (fnm) + 1;
3338 anm = bfd_alloc (abfd, amt);
3339 if (anm == NULL)
3340 goto error_free_dyn;
3341 memcpy (anm, fnm, amt);
3342 n->name = anm;
3343 n->by = abfd;
3344 n->next = NULL;
3345 for (pn = & hash_table->needed;
3346 *pn != NULL;
3347 pn = &(*pn)->next)
3349 *pn = n;
3351 if (dyn.d_tag == DT_RUNPATH)
3353 struct bfd_link_needed_list *n, **pn;
3354 char *fnm, *anm;
3355 unsigned int tagv = dyn.d_un.d_val;
3357 amt = sizeof (struct bfd_link_needed_list);
3358 n = bfd_alloc (abfd, amt);
3359 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3360 if (n == NULL || fnm == NULL)
3361 goto error_free_dyn;
3362 amt = strlen (fnm) + 1;
3363 anm = bfd_alloc (abfd, amt);
3364 if (anm == NULL)
3365 goto error_free_dyn;
3366 memcpy (anm, fnm, amt);
3367 n->name = anm;
3368 n->by = abfd;
3369 n->next = NULL;
3370 for (pn = & runpath;
3371 *pn != NULL;
3372 pn = &(*pn)->next)
3374 *pn = n;
3376 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3377 if (!runpath && dyn.d_tag == DT_RPATH)
3379 struct bfd_link_needed_list *n, **pn;
3380 char *fnm, *anm;
3381 unsigned int tagv = dyn.d_un.d_val;
3383 amt = sizeof (struct bfd_link_needed_list);
3384 n = bfd_alloc (abfd, amt);
3385 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3386 if (n == NULL || fnm == NULL)
3387 goto error_free_dyn;
3388 amt = strlen (fnm) + 1;
3389 anm = bfd_alloc (abfd, amt);
3390 if (anm == NULL)
3392 error_free_dyn:
3393 free (dynbuf);
3394 goto error_return;
3396 memcpy (anm, fnm, amt);
3397 n->name = anm;
3398 n->by = abfd;
3399 n->next = NULL;
3400 for (pn = & rpath;
3401 *pn != NULL;
3402 pn = &(*pn)->next)
3404 *pn = n;
3408 free (dynbuf);
3411 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3412 frees all more recently bfd_alloc'd blocks as well. */
3413 if (runpath)
3414 rpath = runpath;
3416 if (rpath)
3418 struct bfd_link_needed_list **pn;
3419 for (pn = & hash_table->runpath;
3420 *pn != NULL;
3421 pn = &(*pn)->next)
3423 *pn = rpath;
3426 /* We do not want to include any of the sections in a dynamic
3427 object in the output file. We hack by simply clobbering the
3428 list of sections in the BFD. This could be handled more
3429 cleanly by, say, a new section flag; the existing
3430 SEC_NEVER_LOAD flag is not the one we want, because that one
3431 still implies that the section takes up space in the output
3432 file. */
3433 bfd_section_list_clear (abfd);
3435 /* Find the name to use in a DT_NEEDED entry that refers to this
3436 object. If the object has a DT_SONAME entry, we use it.
3437 Otherwise, if the generic linker stuck something in
3438 elf_dt_name, we use that. Otherwise, we just use the file
3439 name. */
3440 if (soname == NULL || *soname == '\0')
3442 soname = elf_dt_name (abfd);
3443 if (soname == NULL || *soname == '\0')
3444 soname = bfd_get_filename (abfd);
3447 /* Save the SONAME because sometimes the linker emulation code
3448 will need to know it. */
3449 elf_dt_name (abfd) = soname;
3451 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3452 if (ret < 0)
3453 goto error_return;
3455 /* If we have already included this dynamic object in the
3456 link, just ignore it. There is no reason to include a
3457 particular dynamic object more than once. */
3458 if (ret > 0)
3459 return TRUE;
3462 /* If this is a dynamic object, we always link against the .dynsym
3463 symbol table, not the .symtab symbol table. The dynamic linker
3464 will only see the .dynsym symbol table, so there is no reason to
3465 look at .symtab for a dynamic object. */
3467 if (! dynamic || elf_dynsymtab (abfd) == 0)
3468 hdr = &elf_tdata (abfd)->symtab_hdr;
3469 else
3470 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3472 symcount = hdr->sh_size / bed->s->sizeof_sym;
3474 /* The sh_info field of the symtab header tells us where the
3475 external symbols start. We don't care about the local symbols at
3476 this point. */
3477 if (elf_bad_symtab (abfd))
3479 extsymcount = symcount;
3480 extsymoff = 0;
3482 else
3484 extsymcount = symcount - hdr->sh_info;
3485 extsymoff = hdr->sh_info;
3488 sym_hash = NULL;
3489 if (extsymcount != 0)
3491 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3492 NULL, NULL, NULL);
3493 if (isymbuf == NULL)
3494 goto error_return;
3496 /* We store a pointer to the hash table entry for each external
3497 symbol. */
3498 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3499 sym_hash = bfd_alloc (abfd, amt);
3500 if (sym_hash == NULL)
3501 goto error_free_sym;
3502 elf_sym_hashes (abfd) = sym_hash;
3505 if (dynamic)
3507 /* Read in any version definitions. */
3508 if (!_bfd_elf_slurp_version_tables (abfd,
3509 info->default_imported_symver))
3510 goto error_free_sym;
3512 /* Read in the symbol versions, but don't bother to convert them
3513 to internal format. */
3514 if (elf_dynversym (abfd) != 0)
3516 Elf_Internal_Shdr *versymhdr;
3518 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3519 extversym = bfd_malloc (versymhdr->sh_size);
3520 if (extversym == NULL)
3521 goto error_free_sym;
3522 amt = versymhdr->sh_size;
3523 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3524 || bfd_bread (extversym, amt, abfd) != amt)
3525 goto error_free_vers;
3529 weaks = NULL;
3531 ever = extversym != NULL ? extversym + extsymoff : NULL;
3532 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3533 isym < isymend;
3534 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3536 int bind;
3537 bfd_vma value;
3538 asection *sec, *new_sec;
3539 flagword flags;
3540 const char *name;
3541 struct elf_link_hash_entry *h;
3542 bfd_boolean definition;
3543 bfd_boolean size_change_ok;
3544 bfd_boolean type_change_ok;
3545 bfd_boolean new_weakdef;
3546 bfd_boolean override;
3547 unsigned int old_alignment;
3548 bfd *old_bfd;
3550 override = FALSE;
3552 flags = BSF_NO_FLAGS;
3553 sec = NULL;
3554 value = isym->st_value;
3555 *sym_hash = NULL;
3557 bind = ELF_ST_BIND (isym->st_info);
3558 if (bind == STB_LOCAL)
3560 /* This should be impossible, since ELF requires that all
3561 global symbols follow all local symbols, and that sh_info
3562 point to the first global symbol. Unfortunately, Irix 5
3563 screws this up. */
3564 continue;
3566 else if (bind == STB_GLOBAL)
3568 if (isym->st_shndx != SHN_UNDEF
3569 && isym->st_shndx != SHN_COMMON)
3570 flags = BSF_GLOBAL;
3572 else if (bind == STB_WEAK)
3573 flags = BSF_WEAK;
3574 else
3576 /* Leave it up to the processor backend. */
3579 if (isym->st_shndx == SHN_UNDEF)
3580 sec = bfd_und_section_ptr;
3581 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3583 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3584 if (sec == NULL)
3585 sec = bfd_abs_section_ptr;
3586 else if (sec->kept_section)
3588 /* Symbols from discarded section are undefined, and have
3589 default visibility. */
3590 sec = bfd_und_section_ptr;
3591 isym->st_shndx = SHN_UNDEF;
3592 isym->st_other = STV_DEFAULT
3593 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
3595 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3596 value -= sec->vma;
3598 else if (isym->st_shndx == SHN_ABS)
3599 sec = bfd_abs_section_ptr;
3600 else if (isym->st_shndx == SHN_COMMON)
3602 sec = bfd_com_section_ptr;
3603 /* What ELF calls the size we call the value. What ELF
3604 calls the value we call the alignment. */
3605 value = isym->st_size;
3607 else
3609 /* Leave it up to the processor backend. */
3612 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3613 isym->st_name);
3614 if (name == NULL)
3615 goto error_free_vers;
3617 if (isym->st_shndx == SHN_COMMON
3618 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3620 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3622 if (tcomm == NULL)
3624 tcomm = bfd_make_section (abfd, ".tcommon");
3625 if (tcomm == NULL
3626 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3627 | SEC_IS_COMMON
3628 | SEC_LINKER_CREATED
3629 | SEC_THREAD_LOCAL)))
3630 goto error_free_vers;
3632 sec = tcomm;
3634 else if (add_symbol_hook)
3636 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3637 &value))
3638 goto error_free_vers;
3640 /* The hook function sets the name to NULL if this symbol
3641 should be skipped for some reason. */
3642 if (name == NULL)
3643 continue;
3646 /* Sanity check that all possibilities were handled. */
3647 if (sec == NULL)
3649 bfd_set_error (bfd_error_bad_value);
3650 goto error_free_vers;
3653 if (bfd_is_und_section (sec)
3654 || bfd_is_com_section (sec))
3655 definition = FALSE;
3656 else
3657 definition = TRUE;
3659 size_change_ok = FALSE;
3660 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3661 old_alignment = 0;
3662 old_bfd = NULL;
3663 new_sec = sec;
3665 if (is_elf_hash_table (hash_table))
3667 Elf_Internal_Versym iver;
3668 unsigned int vernum = 0;
3669 bfd_boolean skip;
3671 if (ever == NULL)
3673 if (info->default_imported_symver)
3674 /* Use the default symbol version created earlier. */
3675 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3676 else
3677 iver.vs_vers = 0;
3679 else
3680 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3682 vernum = iver.vs_vers & VERSYM_VERSION;
3684 /* If this is a hidden symbol, or if it is not version
3685 1, we append the version name to the symbol name.
3686 However, we do not modify a non-hidden absolute
3687 symbol, because it might be the version symbol
3688 itself. FIXME: What if it isn't? */
3689 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3690 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3692 const char *verstr;
3693 size_t namelen, verlen, newlen;
3694 char *newname, *p;
3696 if (isym->st_shndx != SHN_UNDEF)
3698 if (vernum > elf_tdata (abfd)->cverdefs)
3699 verstr = NULL;
3700 else if (vernum > 1)
3701 verstr =
3702 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3703 else
3704 verstr = "";
3706 if (verstr == NULL)
3708 (*_bfd_error_handler)
3709 (_("%B: %s: invalid version %u (max %d)"),
3710 abfd, name, vernum,
3711 elf_tdata (abfd)->cverdefs);
3712 bfd_set_error (bfd_error_bad_value);
3713 goto error_free_vers;
3716 else
3718 /* We cannot simply test for the number of
3719 entries in the VERNEED section since the
3720 numbers for the needed versions do not start
3721 at 0. */
3722 Elf_Internal_Verneed *t;
3724 verstr = NULL;
3725 for (t = elf_tdata (abfd)->verref;
3726 t != NULL;
3727 t = t->vn_nextref)
3729 Elf_Internal_Vernaux *a;
3731 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3733 if (a->vna_other == vernum)
3735 verstr = a->vna_nodename;
3736 break;
3739 if (a != NULL)
3740 break;
3742 if (verstr == NULL)
3744 (*_bfd_error_handler)
3745 (_("%B: %s: invalid needed version %d"),
3746 abfd, name, vernum);
3747 bfd_set_error (bfd_error_bad_value);
3748 goto error_free_vers;
3752 namelen = strlen (name);
3753 verlen = strlen (verstr);
3754 newlen = namelen + verlen + 2;
3755 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3756 && isym->st_shndx != SHN_UNDEF)
3757 ++newlen;
3759 newname = bfd_alloc (abfd, newlen);
3760 if (newname == NULL)
3761 goto error_free_vers;
3762 memcpy (newname, name, namelen);
3763 p = newname + namelen;
3764 *p++ = ELF_VER_CHR;
3765 /* If this is a defined non-hidden version symbol,
3766 we add another @ to the name. This indicates the
3767 default version of the symbol. */
3768 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3769 && isym->st_shndx != SHN_UNDEF)
3770 *p++ = ELF_VER_CHR;
3771 memcpy (p, verstr, verlen + 1);
3773 name = newname;
3776 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3777 &value, &old_alignment,
3778 sym_hash, &skip, &override,
3779 &type_change_ok, &size_change_ok))
3780 goto error_free_vers;
3782 if (skip)
3783 continue;
3785 if (override)
3786 definition = FALSE;
3788 h = *sym_hash;
3789 while (h->root.type == bfd_link_hash_indirect
3790 || h->root.type == bfd_link_hash_warning)
3791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3793 /* Remember the old alignment if this is a common symbol, so
3794 that we don't reduce the alignment later on. We can't
3795 check later, because _bfd_generic_link_add_one_symbol
3796 will set a default for the alignment which we want to
3797 override. We also remember the old bfd where the existing
3798 definition comes from. */
3799 switch (h->root.type)
3801 default:
3802 break;
3804 case bfd_link_hash_defined:
3805 case bfd_link_hash_defweak:
3806 old_bfd = h->root.u.def.section->owner;
3807 break;
3809 case bfd_link_hash_common:
3810 old_bfd = h->root.u.c.p->section->owner;
3811 old_alignment = h->root.u.c.p->alignment_power;
3812 break;
3815 if (elf_tdata (abfd)->verdef != NULL
3816 && ! override
3817 && vernum > 1
3818 && definition)
3819 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3822 if (! (_bfd_generic_link_add_one_symbol
3823 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3824 (struct bfd_link_hash_entry **) sym_hash)))
3825 goto error_free_vers;
3827 h = *sym_hash;
3828 while (h->root.type == bfd_link_hash_indirect
3829 || h->root.type == bfd_link_hash_warning)
3830 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3831 *sym_hash = h;
3833 new_weakdef = FALSE;
3834 if (dynamic
3835 && definition
3836 && (flags & BSF_WEAK) != 0
3837 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3838 && is_elf_hash_table (hash_table)
3839 && h->u.weakdef == NULL)
3841 /* Keep a list of all weak defined non function symbols from
3842 a dynamic object, using the weakdef field. Later in this
3843 function we will set the weakdef field to the correct
3844 value. We only put non-function symbols from dynamic
3845 objects on this list, because that happens to be the only
3846 time we need to know the normal symbol corresponding to a
3847 weak symbol, and the information is time consuming to
3848 figure out. If the weakdef field is not already NULL,
3849 then this symbol was already defined by some previous
3850 dynamic object, and we will be using that previous
3851 definition anyhow. */
3853 h->u.weakdef = weaks;
3854 weaks = h;
3855 new_weakdef = TRUE;
3858 /* Set the alignment of a common symbol. */
3859 if ((isym->st_shndx == SHN_COMMON
3860 || bfd_is_com_section (sec))
3861 && h->root.type == bfd_link_hash_common)
3863 unsigned int align;
3865 if (isym->st_shndx == SHN_COMMON)
3866 align = bfd_log2 (isym->st_value);
3867 else
3869 /* The new symbol is a common symbol in a shared object.
3870 We need to get the alignment from the section. */
3871 align = new_sec->alignment_power;
3873 if (align > old_alignment
3874 /* Permit an alignment power of zero if an alignment of one
3875 is specified and no other alignments have been specified. */
3876 || (isym->st_value == 1 && old_alignment == 0))
3877 h->root.u.c.p->alignment_power = align;
3878 else
3879 h->root.u.c.p->alignment_power = old_alignment;
3882 if (is_elf_hash_table (hash_table))
3884 bfd_boolean dynsym;
3886 /* Check the alignment when a common symbol is involved. This
3887 can change when a common symbol is overridden by a normal
3888 definition or a common symbol is ignored due to the old
3889 normal definition. We need to make sure the maximum
3890 alignment is maintained. */
3891 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3892 && h->root.type != bfd_link_hash_common)
3894 unsigned int common_align;
3895 unsigned int normal_align;
3896 unsigned int symbol_align;
3897 bfd *normal_bfd;
3898 bfd *common_bfd;
3900 symbol_align = ffs (h->root.u.def.value) - 1;
3901 if (h->root.u.def.section->owner != NULL
3902 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3904 normal_align = h->root.u.def.section->alignment_power;
3905 if (normal_align > symbol_align)
3906 normal_align = symbol_align;
3908 else
3909 normal_align = symbol_align;
3911 if (old_alignment)
3913 common_align = old_alignment;
3914 common_bfd = old_bfd;
3915 normal_bfd = abfd;
3917 else
3919 common_align = bfd_log2 (isym->st_value);
3920 common_bfd = abfd;
3921 normal_bfd = old_bfd;
3924 if (normal_align < common_align)
3925 (*_bfd_error_handler)
3926 (_("Warning: alignment %u of symbol `%s' in %B"
3927 " is smaller than %u in %B"),
3928 normal_bfd, common_bfd,
3929 1 << normal_align, name, 1 << common_align);
3932 /* Remember the symbol size and type. */
3933 if (isym->st_size != 0
3934 && (definition || h->size == 0))
3936 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3937 (*_bfd_error_handler)
3938 (_("Warning: size of symbol `%s' changed"
3939 " from %lu in %B to %lu in %B"),
3940 old_bfd, abfd,
3941 name, (unsigned long) h->size,
3942 (unsigned long) isym->st_size);
3944 h->size = isym->st_size;
3947 /* If this is a common symbol, then we always want H->SIZE
3948 to be the size of the common symbol. The code just above
3949 won't fix the size if a common symbol becomes larger. We
3950 don't warn about a size change here, because that is
3951 covered by --warn-common. */
3952 if (h->root.type == bfd_link_hash_common)
3953 h->size = h->root.u.c.size;
3955 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3956 && (definition || h->type == STT_NOTYPE))
3958 if (h->type != STT_NOTYPE
3959 && h->type != ELF_ST_TYPE (isym->st_info)
3960 && ! type_change_ok)
3961 (*_bfd_error_handler)
3962 (_("Warning: type of symbol `%s' changed"
3963 " from %d to %d in %B"),
3964 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3966 h->type = ELF_ST_TYPE (isym->st_info);
3969 /* If st_other has a processor-specific meaning, specific
3970 code might be needed here. We never merge the visibility
3971 attribute with the one from a dynamic object. */
3972 if (bed->elf_backend_merge_symbol_attribute)
3973 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3974 dynamic);
3976 /* If this symbol has default visibility and the user has requested
3977 we not re-export it, then mark it as hidden. */
3978 if (definition && !dynamic
3979 && (abfd->no_export
3980 || (abfd->my_archive && abfd->my_archive->no_export))
3981 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3982 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3984 if (isym->st_other != 0 && !dynamic)
3986 unsigned char hvis, symvis, other, nvis;
3988 /* Take the balance of OTHER from the definition. */
3989 other = (definition ? isym->st_other : h->other);
3990 other &= ~ ELF_ST_VISIBILITY (-1);
3992 /* Combine visibilities, using the most constraining one. */
3993 hvis = ELF_ST_VISIBILITY (h->other);
3994 symvis = ELF_ST_VISIBILITY (isym->st_other);
3995 if (! hvis)
3996 nvis = symvis;
3997 else if (! symvis)
3998 nvis = hvis;
3999 else
4000 nvis = hvis < symvis ? hvis : symvis;
4002 h->other = other | nvis;
4005 /* Set a flag in the hash table entry indicating the type of
4006 reference or definition we just found. Keep a count of
4007 the number of dynamic symbols we find. A dynamic symbol
4008 is one which is referenced or defined by both a regular
4009 object and a shared object. */
4010 dynsym = FALSE;
4011 if (! dynamic)
4013 if (! definition)
4015 h->ref_regular = 1;
4016 if (bind != STB_WEAK)
4017 h->ref_regular_nonweak = 1;
4019 else
4020 h->def_regular = 1;
4021 if (! info->executable
4022 || h->def_dynamic
4023 || h->ref_dynamic)
4024 dynsym = TRUE;
4026 else
4028 if (! definition)
4029 h->ref_dynamic = 1;
4030 else
4031 h->def_dynamic = 1;
4032 if (h->def_regular
4033 || h->ref_regular
4034 || (h->u.weakdef != NULL
4035 && ! new_weakdef
4036 && h->u.weakdef->dynindx != -1))
4037 dynsym = TRUE;
4040 /* Check to see if we need to add an indirect symbol for
4041 the default name. */
4042 if (definition || h->root.type == bfd_link_hash_common)
4043 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4044 &sec, &value, &dynsym,
4045 override))
4046 goto error_free_vers;
4048 if (definition && !dynamic)
4050 char *p = strchr (name, ELF_VER_CHR);
4051 if (p != NULL && p[1] != ELF_VER_CHR)
4053 /* Queue non-default versions so that .symver x, x@FOO
4054 aliases can be checked. */
4055 if (! nondeflt_vers)
4057 amt = (isymend - isym + 1)
4058 * sizeof (struct elf_link_hash_entry *);
4059 nondeflt_vers = bfd_malloc (amt);
4061 nondeflt_vers [nondeflt_vers_cnt++] = h;
4065 if (dynsym && h->dynindx == -1)
4067 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4068 goto error_free_vers;
4069 if (h->u.weakdef != NULL
4070 && ! new_weakdef
4071 && h->u.weakdef->dynindx == -1)
4073 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4074 goto error_free_vers;
4077 else if (dynsym && h->dynindx != -1)
4078 /* If the symbol already has a dynamic index, but
4079 visibility says it should not be visible, turn it into
4080 a local symbol. */
4081 switch (ELF_ST_VISIBILITY (h->other))
4083 case STV_INTERNAL:
4084 case STV_HIDDEN:
4085 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4086 dynsym = FALSE;
4087 break;
4090 if (!add_needed
4091 && definition
4092 && dynsym
4093 && h->ref_regular)
4095 int ret;
4096 const char *soname = elf_dt_name (abfd);
4098 /* A symbol from a library loaded via DT_NEEDED of some
4099 other library is referenced by a regular object.
4100 Add a DT_NEEDED entry for it. Issue an error if
4101 --no-add-needed is used. */
4102 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4104 (*_bfd_error_handler)
4105 (_("%s: invalid DSO for symbol `%s' definition"),
4106 abfd, name);
4107 bfd_set_error (bfd_error_bad_value);
4108 goto error_free_vers;
4111 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4113 add_needed = TRUE;
4114 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4115 if (ret < 0)
4116 goto error_free_vers;
4118 BFD_ASSERT (ret == 0);
4123 /* Now that all the symbols from this input file are created, handle
4124 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4125 if (nondeflt_vers != NULL)
4127 bfd_size_type cnt, symidx;
4129 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4131 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4132 char *shortname, *p;
4134 p = strchr (h->root.root.string, ELF_VER_CHR);
4135 if (p == NULL
4136 || (h->root.type != bfd_link_hash_defined
4137 && h->root.type != bfd_link_hash_defweak))
4138 continue;
4140 amt = p - h->root.root.string;
4141 shortname = bfd_malloc (amt + 1);
4142 memcpy (shortname, h->root.root.string, amt);
4143 shortname[amt] = '\0';
4145 hi = (struct elf_link_hash_entry *)
4146 bfd_link_hash_lookup (&hash_table->root, shortname,
4147 FALSE, FALSE, FALSE);
4148 if (hi != NULL
4149 && hi->root.type == h->root.type
4150 && hi->root.u.def.value == h->root.u.def.value
4151 && hi->root.u.def.section == h->root.u.def.section)
4153 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4154 hi->root.type = bfd_link_hash_indirect;
4155 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4156 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4157 sym_hash = elf_sym_hashes (abfd);
4158 if (sym_hash)
4159 for (symidx = 0; symidx < extsymcount; ++symidx)
4160 if (sym_hash[symidx] == hi)
4162 sym_hash[symidx] = h;
4163 break;
4166 free (shortname);
4168 free (nondeflt_vers);
4169 nondeflt_vers = NULL;
4172 if (extversym != NULL)
4174 free (extversym);
4175 extversym = NULL;
4178 if (isymbuf != NULL)
4179 free (isymbuf);
4180 isymbuf = NULL;
4182 if (!add_needed
4183 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4185 /* Remove symbols defined in an as-needed shared lib that wasn't
4186 needed. */
4187 struct elf_smash_syms_data inf;
4188 inf.not_needed = abfd;
4189 inf.htab = hash_table;
4190 inf.twiddled = FALSE;
4191 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4192 if (inf.twiddled)
4193 bfd_link_repair_undef_list (&hash_table->root);
4194 weaks = NULL;
4197 /* Now set the weakdefs field correctly for all the weak defined
4198 symbols we found. The only way to do this is to search all the
4199 symbols. Since we only need the information for non functions in
4200 dynamic objects, that's the only time we actually put anything on
4201 the list WEAKS. We need this information so that if a regular
4202 object refers to a symbol defined weakly in a dynamic object, the
4203 real symbol in the dynamic object is also put in the dynamic
4204 symbols; we also must arrange for both symbols to point to the
4205 same memory location. We could handle the general case of symbol
4206 aliasing, but a general symbol alias can only be generated in
4207 assembler code, handling it correctly would be very time
4208 consuming, and other ELF linkers don't handle general aliasing
4209 either. */
4210 if (weaks != NULL)
4212 struct elf_link_hash_entry **hpp;
4213 struct elf_link_hash_entry **hppend;
4214 struct elf_link_hash_entry **sorted_sym_hash;
4215 struct elf_link_hash_entry *h;
4216 size_t sym_count;
4218 /* Since we have to search the whole symbol list for each weak
4219 defined symbol, search time for N weak defined symbols will be
4220 O(N^2). Binary search will cut it down to O(NlogN). */
4221 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4222 sorted_sym_hash = bfd_malloc (amt);
4223 if (sorted_sym_hash == NULL)
4224 goto error_return;
4225 sym_hash = sorted_sym_hash;
4226 hpp = elf_sym_hashes (abfd);
4227 hppend = hpp + extsymcount;
4228 sym_count = 0;
4229 for (; hpp < hppend; hpp++)
4231 h = *hpp;
4232 if (h != NULL
4233 && h->root.type == bfd_link_hash_defined
4234 && h->type != STT_FUNC)
4236 *sym_hash = h;
4237 sym_hash++;
4238 sym_count++;
4242 qsort (sorted_sym_hash, sym_count,
4243 sizeof (struct elf_link_hash_entry *),
4244 elf_sort_symbol);
4246 while (weaks != NULL)
4248 struct elf_link_hash_entry *hlook;
4249 asection *slook;
4250 bfd_vma vlook;
4251 long ilook;
4252 size_t i, j, idx;
4254 hlook = weaks;
4255 weaks = hlook->u.weakdef;
4256 hlook->u.weakdef = NULL;
4258 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4259 || hlook->root.type == bfd_link_hash_defweak
4260 || hlook->root.type == bfd_link_hash_common
4261 || hlook->root.type == bfd_link_hash_indirect);
4262 slook = hlook->root.u.def.section;
4263 vlook = hlook->root.u.def.value;
4265 ilook = -1;
4266 i = 0;
4267 j = sym_count;
4268 while (i < j)
4270 bfd_signed_vma vdiff;
4271 idx = (i + j) / 2;
4272 h = sorted_sym_hash [idx];
4273 vdiff = vlook - h->root.u.def.value;
4274 if (vdiff < 0)
4275 j = idx;
4276 else if (vdiff > 0)
4277 i = idx + 1;
4278 else
4280 long sdiff = slook->id - h->root.u.def.section->id;
4281 if (sdiff < 0)
4282 j = idx;
4283 else if (sdiff > 0)
4284 i = idx + 1;
4285 else
4287 ilook = idx;
4288 break;
4293 /* We didn't find a value/section match. */
4294 if (ilook == -1)
4295 continue;
4297 for (i = ilook; i < sym_count; i++)
4299 h = sorted_sym_hash [i];
4301 /* Stop if value or section doesn't match. */
4302 if (h->root.u.def.value != vlook
4303 || h->root.u.def.section != slook)
4304 break;
4305 else if (h != hlook)
4307 hlook->u.weakdef = h;
4309 /* If the weak definition is in the list of dynamic
4310 symbols, make sure the real definition is put
4311 there as well. */
4312 if (hlook->dynindx != -1 && h->dynindx == -1)
4314 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4315 goto error_return;
4318 /* If the real definition is in the list of dynamic
4319 symbols, make sure the weak definition is put
4320 there as well. If we don't do this, then the
4321 dynamic loader might not merge the entries for the
4322 real definition and the weak definition. */
4323 if (h->dynindx != -1 && hlook->dynindx == -1)
4325 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4326 goto error_return;
4328 break;
4333 free (sorted_sym_hash);
4336 check_directives = get_elf_backend_data (abfd)->check_directives;
4337 if (check_directives)
4338 check_directives (abfd, info);
4340 /* If this object is the same format as the output object, and it is
4341 not a shared library, then let the backend look through the
4342 relocs.
4344 This is required to build global offset table entries and to
4345 arrange for dynamic relocs. It is not required for the
4346 particular common case of linking non PIC code, even when linking
4347 against shared libraries, but unfortunately there is no way of
4348 knowing whether an object file has been compiled PIC or not.
4349 Looking through the relocs is not particularly time consuming.
4350 The problem is that we must either (1) keep the relocs in memory,
4351 which causes the linker to require additional runtime memory or
4352 (2) read the relocs twice from the input file, which wastes time.
4353 This would be a good case for using mmap.
4355 I have no idea how to handle linking PIC code into a file of a
4356 different format. It probably can't be done. */
4357 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4358 if (! dynamic
4359 && is_elf_hash_table (hash_table)
4360 && hash_table->root.creator == abfd->xvec
4361 && check_relocs != NULL)
4363 asection *o;
4365 for (o = abfd->sections; o != NULL; o = o->next)
4367 Elf_Internal_Rela *internal_relocs;
4368 bfd_boolean ok;
4370 if ((o->flags & SEC_RELOC) == 0
4371 || o->reloc_count == 0
4372 || ((info->strip == strip_all || info->strip == strip_debugger)
4373 && (o->flags & SEC_DEBUGGING) != 0)
4374 || bfd_is_abs_section (o->output_section))
4375 continue;
4377 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4378 info->keep_memory);
4379 if (internal_relocs == NULL)
4380 goto error_return;
4382 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4384 if (elf_section_data (o)->relocs != internal_relocs)
4385 free (internal_relocs);
4387 if (! ok)
4388 goto error_return;
4392 /* If this is a non-traditional link, try to optimize the handling
4393 of the .stab/.stabstr sections. */
4394 if (! dynamic
4395 && ! info->traditional_format
4396 && is_elf_hash_table (hash_table)
4397 && (info->strip != strip_all && info->strip != strip_debugger))
4399 asection *stabstr;
4401 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4402 if (stabstr != NULL)
4404 bfd_size_type string_offset = 0;
4405 asection *stab;
4407 for (stab = abfd->sections; stab; stab = stab->next)
4408 if (strncmp (".stab", stab->name, 5) == 0
4409 && (!stab->name[5] ||
4410 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4411 && (stab->flags & SEC_MERGE) == 0
4412 && !bfd_is_abs_section (stab->output_section))
4414 struct bfd_elf_section_data *secdata;
4416 secdata = elf_section_data (stab);
4417 if (! _bfd_link_section_stabs (abfd,
4418 &hash_table->stab_info,
4419 stab, stabstr,
4420 &secdata->sec_info,
4421 &string_offset))
4422 goto error_return;
4423 if (secdata->sec_info)
4424 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4429 if (is_elf_hash_table (hash_table) && add_needed)
4431 /* Add this bfd to the loaded list. */
4432 struct elf_link_loaded_list *n;
4434 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4435 if (n == NULL)
4436 goto error_return;
4437 n->abfd = abfd;
4438 n->next = hash_table->loaded;
4439 hash_table->loaded = n;
4442 return TRUE;
4444 error_free_vers:
4445 if (nondeflt_vers != NULL)
4446 free (nondeflt_vers);
4447 if (extversym != NULL)
4448 free (extversym);
4449 error_free_sym:
4450 if (isymbuf != NULL)
4451 free (isymbuf);
4452 error_return:
4453 return FALSE;
4456 /* Return the linker hash table entry of a symbol that might be
4457 satisfied by an archive symbol. Return -1 on error. */
4459 struct elf_link_hash_entry *
4460 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4461 struct bfd_link_info *info,
4462 const char *name)
4464 struct elf_link_hash_entry *h;
4465 char *p, *copy;
4466 size_t len, first;
4468 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4469 if (h != NULL)
4470 return h;
4472 /* If this is a default version (the name contains @@), look up the
4473 symbol again with only one `@' as well as without the version.
4474 The effect is that references to the symbol with and without the
4475 version will be matched by the default symbol in the archive. */
4477 p = strchr (name, ELF_VER_CHR);
4478 if (p == NULL || p[1] != ELF_VER_CHR)
4479 return h;
4481 /* First check with only one `@'. */
4482 len = strlen (name);
4483 copy = bfd_alloc (abfd, len);
4484 if (copy == NULL)
4485 return (struct elf_link_hash_entry *) 0 - 1;
4487 first = p - name + 1;
4488 memcpy (copy, name, first);
4489 memcpy (copy + first, name + first + 1, len - first);
4491 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4492 if (h == NULL)
4494 /* We also need to check references to the symbol without the
4495 version. */
4496 copy[first - 1] = '\0';
4497 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4498 FALSE, FALSE, FALSE);
4501 bfd_release (abfd, copy);
4502 return h;
4505 /* Add symbols from an ELF archive file to the linker hash table. We
4506 don't use _bfd_generic_link_add_archive_symbols because of a
4507 problem which arises on UnixWare. The UnixWare libc.so is an
4508 archive which includes an entry libc.so.1 which defines a bunch of
4509 symbols. The libc.so archive also includes a number of other
4510 object files, which also define symbols, some of which are the same
4511 as those defined in libc.so.1. Correct linking requires that we
4512 consider each object file in turn, and include it if it defines any
4513 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4514 this; it looks through the list of undefined symbols, and includes
4515 any object file which defines them. When this algorithm is used on
4516 UnixWare, it winds up pulling in libc.so.1 early and defining a
4517 bunch of symbols. This means that some of the other objects in the
4518 archive are not included in the link, which is incorrect since they
4519 precede libc.so.1 in the archive.
4521 Fortunately, ELF archive handling is simpler than that done by
4522 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4523 oddities. In ELF, if we find a symbol in the archive map, and the
4524 symbol is currently undefined, we know that we must pull in that
4525 object file.
4527 Unfortunately, we do have to make multiple passes over the symbol
4528 table until nothing further is resolved. */
4530 static bfd_boolean
4531 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4533 symindex c;
4534 bfd_boolean *defined = NULL;
4535 bfd_boolean *included = NULL;
4536 carsym *symdefs;
4537 bfd_boolean loop;
4538 bfd_size_type amt;
4539 const struct elf_backend_data *bed;
4540 struct elf_link_hash_entry * (*archive_symbol_lookup)
4541 (bfd *, struct bfd_link_info *, const char *);
4543 if (! bfd_has_map (abfd))
4545 /* An empty archive is a special case. */
4546 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4547 return TRUE;
4548 bfd_set_error (bfd_error_no_armap);
4549 return FALSE;
4552 /* Keep track of all symbols we know to be already defined, and all
4553 files we know to be already included. This is to speed up the
4554 second and subsequent passes. */
4555 c = bfd_ardata (abfd)->symdef_count;
4556 if (c == 0)
4557 return TRUE;
4558 amt = c;
4559 amt *= sizeof (bfd_boolean);
4560 defined = bfd_zmalloc (amt);
4561 included = bfd_zmalloc (amt);
4562 if (defined == NULL || included == NULL)
4563 goto error_return;
4565 symdefs = bfd_ardata (abfd)->symdefs;
4566 bed = get_elf_backend_data (abfd);
4567 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4571 file_ptr last;
4572 symindex i;
4573 carsym *symdef;
4574 carsym *symdefend;
4576 loop = FALSE;
4577 last = -1;
4579 symdef = symdefs;
4580 symdefend = symdef + c;
4581 for (i = 0; symdef < symdefend; symdef++, i++)
4583 struct elf_link_hash_entry *h;
4584 bfd *element;
4585 struct bfd_link_hash_entry *undefs_tail;
4586 symindex mark;
4588 if (defined[i] || included[i])
4589 continue;
4590 if (symdef->file_offset == last)
4592 included[i] = TRUE;
4593 continue;
4596 h = archive_symbol_lookup (abfd, info, symdef->name);
4597 if (h == (struct elf_link_hash_entry *) 0 - 1)
4598 goto error_return;
4600 if (h == NULL)
4601 continue;
4603 if (h->root.type == bfd_link_hash_common)
4605 /* We currently have a common symbol. The archive map contains
4606 a reference to this symbol, so we may want to include it. We
4607 only want to include it however, if this archive element
4608 contains a definition of the symbol, not just another common
4609 declaration of it.
4611 Unfortunately some archivers (including GNU ar) will put
4612 declarations of common symbols into their archive maps, as
4613 well as real definitions, so we cannot just go by the archive
4614 map alone. Instead we must read in the element's symbol
4615 table and check that to see what kind of symbol definition
4616 this is. */
4617 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4618 continue;
4620 else if (h->root.type != bfd_link_hash_undefined)
4622 if (h->root.type != bfd_link_hash_undefweak)
4623 defined[i] = TRUE;
4624 continue;
4627 /* We need to include this archive member. */
4628 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4629 if (element == NULL)
4630 goto error_return;
4632 if (! bfd_check_format (element, bfd_object))
4633 goto error_return;
4635 /* Doublecheck that we have not included this object
4636 already--it should be impossible, but there may be
4637 something wrong with the archive. */
4638 if (element->archive_pass != 0)
4640 bfd_set_error (bfd_error_bad_value);
4641 goto error_return;
4643 element->archive_pass = 1;
4645 undefs_tail = info->hash->undefs_tail;
4647 if (! (*info->callbacks->add_archive_element) (info, element,
4648 symdef->name))
4649 goto error_return;
4650 if (! bfd_link_add_symbols (element, info))
4651 goto error_return;
4653 /* If there are any new undefined symbols, we need to make
4654 another pass through the archive in order to see whether
4655 they can be defined. FIXME: This isn't perfect, because
4656 common symbols wind up on undefs_tail and because an
4657 undefined symbol which is defined later on in this pass
4658 does not require another pass. This isn't a bug, but it
4659 does make the code less efficient than it could be. */
4660 if (undefs_tail != info->hash->undefs_tail)
4661 loop = TRUE;
4663 /* Look backward to mark all symbols from this object file
4664 which we have already seen in this pass. */
4665 mark = i;
4668 included[mark] = TRUE;
4669 if (mark == 0)
4670 break;
4671 --mark;
4673 while (symdefs[mark].file_offset == symdef->file_offset);
4675 /* We mark subsequent symbols from this object file as we go
4676 on through the loop. */
4677 last = symdef->file_offset;
4680 while (loop);
4682 free (defined);
4683 free (included);
4685 return TRUE;
4687 error_return:
4688 if (defined != NULL)
4689 free (defined);
4690 if (included != NULL)
4691 free (included);
4692 return FALSE;
4695 /* Given an ELF BFD, add symbols to the global hash table as
4696 appropriate. */
4698 bfd_boolean
4699 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4701 switch (bfd_get_format (abfd))
4703 case bfd_object:
4704 return elf_link_add_object_symbols (abfd, info);
4705 case bfd_archive:
4706 return elf_link_add_archive_symbols (abfd, info);
4707 default:
4708 bfd_set_error (bfd_error_wrong_format);
4709 return FALSE;
4713 /* This function will be called though elf_link_hash_traverse to store
4714 all hash value of the exported symbols in an array. */
4716 static bfd_boolean
4717 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4719 unsigned long **valuep = data;
4720 const char *name;
4721 char *p;
4722 unsigned long ha;
4723 char *alc = NULL;
4725 if (h->root.type == bfd_link_hash_warning)
4726 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4728 /* Ignore indirect symbols. These are added by the versioning code. */
4729 if (h->dynindx == -1)
4730 return TRUE;
4732 name = h->root.root.string;
4733 p = strchr (name, ELF_VER_CHR);
4734 if (p != NULL)
4736 alc = bfd_malloc (p - name + 1);
4737 memcpy (alc, name, p - name);
4738 alc[p - name] = '\0';
4739 name = alc;
4742 /* Compute the hash value. */
4743 ha = bfd_elf_hash (name);
4745 /* Store the found hash value in the array given as the argument. */
4746 *(*valuep)++ = ha;
4748 /* And store it in the struct so that we can put it in the hash table
4749 later. */
4750 h->u.elf_hash_value = ha;
4752 if (alc != NULL)
4753 free (alc);
4755 return TRUE;
4758 /* Array used to determine the number of hash table buckets to use
4759 based on the number of symbols there are. If there are fewer than
4760 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4761 fewer than 37 we use 17 buckets, and so forth. We never use more
4762 than 32771 buckets. */
4764 static const size_t elf_buckets[] =
4766 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4767 16411, 32771, 0
4770 /* Compute bucket count for hashing table. We do not use a static set
4771 of possible tables sizes anymore. Instead we determine for all
4772 possible reasonable sizes of the table the outcome (i.e., the
4773 number of collisions etc) and choose the best solution. The
4774 weighting functions are not too simple to allow the table to grow
4775 without bounds. Instead one of the weighting factors is the size.
4776 Therefore the result is always a good payoff between few collisions
4777 (= short chain lengths) and table size. */
4778 static size_t
4779 compute_bucket_count (struct bfd_link_info *info)
4781 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4782 size_t best_size = 0;
4783 unsigned long int *hashcodes;
4784 unsigned long int *hashcodesp;
4785 unsigned long int i;
4786 bfd_size_type amt;
4788 /* Compute the hash values for all exported symbols. At the same
4789 time store the values in an array so that we could use them for
4790 optimizations. */
4791 amt = dynsymcount;
4792 amt *= sizeof (unsigned long int);
4793 hashcodes = bfd_malloc (amt);
4794 if (hashcodes == NULL)
4795 return 0;
4796 hashcodesp = hashcodes;
4798 /* Put all hash values in HASHCODES. */
4799 elf_link_hash_traverse (elf_hash_table (info),
4800 elf_collect_hash_codes, &hashcodesp);
4802 /* We have a problem here. The following code to optimize the table
4803 size requires an integer type with more the 32 bits. If
4804 BFD_HOST_U_64_BIT is set we know about such a type. */
4805 #ifdef BFD_HOST_U_64_BIT
4806 if (info->optimize)
4808 unsigned long int nsyms = hashcodesp - hashcodes;
4809 size_t minsize;
4810 size_t maxsize;
4811 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4812 unsigned long int *counts ;
4813 bfd *dynobj = elf_hash_table (info)->dynobj;
4814 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4816 /* Possible optimization parameters: if we have NSYMS symbols we say
4817 that the hashing table must at least have NSYMS/4 and at most
4818 2*NSYMS buckets. */
4819 minsize = nsyms / 4;
4820 if (minsize == 0)
4821 minsize = 1;
4822 best_size = maxsize = nsyms * 2;
4824 /* Create array where we count the collisions in. We must use bfd_malloc
4825 since the size could be large. */
4826 amt = maxsize;
4827 amt *= sizeof (unsigned long int);
4828 counts = bfd_malloc (amt);
4829 if (counts == NULL)
4831 free (hashcodes);
4832 return 0;
4835 /* Compute the "optimal" size for the hash table. The criteria is a
4836 minimal chain length. The minor criteria is (of course) the size
4837 of the table. */
4838 for (i = minsize; i < maxsize; ++i)
4840 /* Walk through the array of hashcodes and count the collisions. */
4841 BFD_HOST_U_64_BIT max;
4842 unsigned long int j;
4843 unsigned long int fact;
4845 memset (counts, '\0', i * sizeof (unsigned long int));
4847 /* Determine how often each hash bucket is used. */
4848 for (j = 0; j < nsyms; ++j)
4849 ++counts[hashcodes[j] % i];
4851 /* For the weight function we need some information about the
4852 pagesize on the target. This is information need not be 100%
4853 accurate. Since this information is not available (so far) we
4854 define it here to a reasonable default value. If it is crucial
4855 to have a better value some day simply define this value. */
4856 # ifndef BFD_TARGET_PAGESIZE
4857 # define BFD_TARGET_PAGESIZE (4096)
4858 # endif
4860 /* We in any case need 2 + NSYMS entries for the size values and
4861 the chains. */
4862 max = (2 + nsyms) * (bed->s->arch_size / 8);
4864 # if 1
4865 /* Variant 1: optimize for short chains. We add the squares
4866 of all the chain lengths (which favors many small chain
4867 over a few long chains). */
4868 for (j = 0; j < i; ++j)
4869 max += counts[j] * counts[j];
4871 /* This adds penalties for the overall size of the table. */
4872 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4873 max *= fact * fact;
4874 # else
4875 /* Variant 2: Optimize a lot more for small table. Here we
4876 also add squares of the size but we also add penalties for
4877 empty slots (the +1 term). */
4878 for (j = 0; j < i; ++j)
4879 max += (1 + counts[j]) * (1 + counts[j]);
4881 /* The overall size of the table is considered, but not as
4882 strong as in variant 1, where it is squared. */
4883 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4884 max *= fact;
4885 # endif
4887 /* Compare with current best results. */
4888 if (max < best_chlen)
4890 best_chlen = max;
4891 best_size = i;
4895 free (counts);
4897 else
4898 #endif /* defined (BFD_HOST_U_64_BIT) */
4900 /* This is the fallback solution if no 64bit type is available or if we
4901 are not supposed to spend much time on optimizations. We select the
4902 bucket count using a fixed set of numbers. */
4903 for (i = 0; elf_buckets[i] != 0; i++)
4905 best_size = elf_buckets[i];
4906 if (dynsymcount < elf_buckets[i + 1])
4907 break;
4911 /* Free the arrays we needed. */
4912 free (hashcodes);
4914 return best_size;
4917 /* Set up the sizes and contents of the ELF dynamic sections. This is
4918 called by the ELF linker emulation before_allocation routine. We
4919 must set the sizes of the sections before the linker sets the
4920 addresses of the various sections. */
4922 bfd_boolean
4923 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4924 const char *soname,
4925 const char *rpath,
4926 const char *filter_shlib,
4927 const char * const *auxiliary_filters,
4928 struct bfd_link_info *info,
4929 asection **sinterpptr,
4930 struct bfd_elf_version_tree *verdefs)
4932 bfd_size_type soname_indx;
4933 bfd *dynobj;
4934 const struct elf_backend_data *bed;
4935 struct elf_assign_sym_version_info asvinfo;
4937 *sinterpptr = NULL;
4939 soname_indx = (bfd_size_type) -1;
4941 if (!is_elf_hash_table (info->hash))
4942 return TRUE;
4944 elf_tdata (output_bfd)->relro = info->relro;
4945 if (info->execstack)
4946 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4947 else if (info->noexecstack)
4948 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4949 else
4951 bfd *inputobj;
4952 asection *notesec = NULL;
4953 int exec = 0;
4955 for (inputobj = info->input_bfds;
4956 inputobj;
4957 inputobj = inputobj->link_next)
4959 asection *s;
4961 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
4962 continue;
4963 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4964 if (s)
4966 if (s->flags & SEC_CODE)
4967 exec = PF_X;
4968 notesec = s;
4970 else
4971 exec = PF_X;
4973 if (notesec)
4975 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4976 if (exec && info->relocatable
4977 && notesec->output_section != bfd_abs_section_ptr)
4978 notesec->output_section->flags |= SEC_CODE;
4982 /* Any syms created from now on start with -1 in
4983 got.refcount/offset and plt.refcount/offset. */
4984 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4986 /* The backend may have to create some sections regardless of whether
4987 we're dynamic or not. */
4988 bed = get_elf_backend_data (output_bfd);
4989 if (bed->elf_backend_always_size_sections
4990 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4991 return FALSE;
4993 dynobj = elf_hash_table (info)->dynobj;
4995 /* If there were no dynamic objects in the link, there is nothing to
4996 do here. */
4997 if (dynobj == NULL)
4998 return TRUE;
5000 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5001 return FALSE;
5003 if (elf_hash_table (info)->dynamic_sections_created)
5005 struct elf_info_failed eif;
5006 struct elf_link_hash_entry *h;
5007 asection *dynstr;
5008 struct bfd_elf_version_tree *t;
5009 struct bfd_elf_version_expr *d;
5010 bfd_boolean all_defined;
5012 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5013 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5015 if (soname != NULL)
5017 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5018 soname, TRUE);
5019 if (soname_indx == (bfd_size_type) -1
5020 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5021 return FALSE;
5024 if (info->symbolic)
5026 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5027 return FALSE;
5028 info->flags |= DF_SYMBOLIC;
5031 if (rpath != NULL)
5033 bfd_size_type indx;
5035 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5036 TRUE);
5037 if (indx == (bfd_size_type) -1
5038 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5039 return FALSE;
5041 if (info->new_dtags)
5043 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5044 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5045 return FALSE;
5049 if (filter_shlib != NULL)
5051 bfd_size_type indx;
5053 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5054 filter_shlib, TRUE);
5055 if (indx == (bfd_size_type) -1
5056 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5057 return FALSE;
5060 if (auxiliary_filters != NULL)
5062 const char * const *p;
5064 for (p = auxiliary_filters; *p != NULL; p++)
5066 bfd_size_type indx;
5068 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5069 *p, TRUE);
5070 if (indx == (bfd_size_type) -1
5071 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5072 return FALSE;
5076 eif.info = info;
5077 eif.verdefs = verdefs;
5078 eif.failed = FALSE;
5080 /* If we are supposed to export all symbols into the dynamic symbol
5081 table (this is not the normal case), then do so. */
5082 if (info->export_dynamic)
5084 elf_link_hash_traverse (elf_hash_table (info),
5085 _bfd_elf_export_symbol,
5086 &eif);
5087 if (eif.failed)
5088 return FALSE;
5091 /* Make all global versions with definition. */
5092 for (t = verdefs; t != NULL; t = t->next)
5093 for (d = t->globals.list; d != NULL; d = d->next)
5094 if (!d->symver && d->symbol)
5096 const char *verstr, *name;
5097 size_t namelen, verlen, newlen;
5098 char *newname, *p;
5099 struct elf_link_hash_entry *newh;
5101 name = d->symbol;
5102 namelen = strlen (name);
5103 verstr = t->name;
5104 verlen = strlen (verstr);
5105 newlen = namelen + verlen + 3;
5107 newname = bfd_malloc (newlen);
5108 if (newname == NULL)
5109 return FALSE;
5110 memcpy (newname, name, namelen);
5112 /* Check the hidden versioned definition. */
5113 p = newname + namelen;
5114 *p++ = ELF_VER_CHR;
5115 memcpy (p, verstr, verlen + 1);
5116 newh = elf_link_hash_lookup (elf_hash_table (info),
5117 newname, FALSE, FALSE,
5118 FALSE);
5119 if (newh == NULL
5120 || (newh->root.type != bfd_link_hash_defined
5121 && newh->root.type != bfd_link_hash_defweak))
5123 /* Check the default versioned definition. */
5124 *p++ = ELF_VER_CHR;
5125 memcpy (p, verstr, verlen + 1);
5126 newh = elf_link_hash_lookup (elf_hash_table (info),
5127 newname, FALSE, FALSE,
5128 FALSE);
5130 free (newname);
5132 /* Mark this version if there is a definition and it is
5133 not defined in a shared object. */
5134 if (newh != NULL
5135 && !newh->def_dynamic
5136 && (newh->root.type == bfd_link_hash_defined
5137 || newh->root.type == bfd_link_hash_defweak))
5138 d->symver = 1;
5141 /* Attach all the symbols to their version information. */
5142 asvinfo.output_bfd = output_bfd;
5143 asvinfo.info = info;
5144 asvinfo.verdefs = verdefs;
5145 asvinfo.failed = FALSE;
5147 elf_link_hash_traverse (elf_hash_table (info),
5148 _bfd_elf_link_assign_sym_version,
5149 &asvinfo);
5150 if (asvinfo.failed)
5151 return FALSE;
5153 if (!info->allow_undefined_version)
5155 /* Check if all global versions have a definition. */
5156 all_defined = TRUE;
5157 for (t = verdefs; t != NULL; t = t->next)
5158 for (d = t->globals.list; d != NULL; d = d->next)
5159 if (!d->symver && !d->script)
5161 (*_bfd_error_handler)
5162 (_("%s: undefined version: %s"),
5163 d->pattern, t->name);
5164 all_defined = FALSE;
5167 if (!all_defined)
5169 bfd_set_error (bfd_error_bad_value);
5170 return FALSE;
5174 /* Find all symbols which were defined in a dynamic object and make
5175 the backend pick a reasonable value for them. */
5176 elf_link_hash_traverse (elf_hash_table (info),
5177 _bfd_elf_adjust_dynamic_symbol,
5178 &eif);
5179 if (eif.failed)
5180 return FALSE;
5182 /* Add some entries to the .dynamic section. We fill in some of the
5183 values later, in bfd_elf_final_link, but we must add the entries
5184 now so that we know the final size of the .dynamic section. */
5186 /* If there are initialization and/or finalization functions to
5187 call then add the corresponding DT_INIT/DT_FINI entries. */
5188 h = (info->init_function
5189 ? elf_link_hash_lookup (elf_hash_table (info),
5190 info->init_function, FALSE,
5191 FALSE, FALSE)
5192 : NULL);
5193 if (h != NULL
5194 && (h->ref_regular
5195 || h->def_regular))
5197 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5198 return FALSE;
5200 h = (info->fini_function
5201 ? elf_link_hash_lookup (elf_hash_table (info),
5202 info->fini_function, FALSE,
5203 FALSE, FALSE)
5204 : NULL);
5205 if (h != NULL
5206 && (h->ref_regular
5207 || h->def_regular))
5209 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5210 return FALSE;
5213 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5215 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5216 if (! info->executable)
5218 bfd *sub;
5219 asection *o;
5221 for (sub = info->input_bfds; sub != NULL;
5222 sub = sub->link_next)
5223 for (o = sub->sections; o != NULL; o = o->next)
5224 if (elf_section_data (o)->this_hdr.sh_type
5225 == SHT_PREINIT_ARRAY)
5227 (*_bfd_error_handler)
5228 (_("%B: .preinit_array section is not allowed in DSO"),
5229 sub);
5230 break;
5233 bfd_set_error (bfd_error_nonrepresentable_section);
5234 return FALSE;
5237 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5238 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5239 return FALSE;
5241 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5243 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5244 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5245 return FALSE;
5247 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5249 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5250 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5251 return FALSE;
5254 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5255 /* If .dynstr is excluded from the link, we don't want any of
5256 these tags. Strictly, we should be checking each section
5257 individually; This quick check covers for the case where
5258 someone does a /DISCARD/ : { *(*) }. */
5259 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5261 bfd_size_type strsize;
5263 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5264 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5265 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5266 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5267 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5268 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5269 bed->s->sizeof_sym))
5270 return FALSE;
5274 /* The backend must work out the sizes of all the other dynamic
5275 sections. */
5276 if (bed->elf_backend_size_dynamic_sections
5277 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5278 return FALSE;
5280 if (elf_hash_table (info)->dynamic_sections_created)
5282 bfd_size_type dynsymcount;
5283 unsigned long section_sym_count;
5284 asection *s;
5285 size_t bucketcount = 0;
5286 size_t hash_entry_size;
5287 unsigned int dtagcount;
5289 /* Set up the version definition section. */
5290 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5291 BFD_ASSERT (s != NULL);
5293 /* We may have created additional version definitions if we are
5294 just linking a regular application. */
5295 verdefs = asvinfo.verdefs;
5297 /* Skip anonymous version tag. */
5298 if (verdefs != NULL && verdefs->vernum == 0)
5299 verdefs = verdefs->next;
5301 if (verdefs == NULL && !info->create_default_symver)
5302 _bfd_strip_section_from_output (info, s);
5303 else
5305 unsigned int cdefs;
5306 bfd_size_type size;
5307 struct bfd_elf_version_tree *t;
5308 bfd_byte *p;
5309 Elf_Internal_Verdef def;
5310 Elf_Internal_Verdaux defaux;
5311 struct bfd_link_hash_entry *bh;
5312 struct elf_link_hash_entry *h;
5313 const char *name;
5315 cdefs = 0;
5316 size = 0;
5318 /* Make space for the base version. */
5319 size += sizeof (Elf_External_Verdef);
5320 size += sizeof (Elf_External_Verdaux);
5321 ++cdefs;
5323 /* Make space for the default version. */
5324 if (info->create_default_symver)
5326 size += sizeof (Elf_External_Verdef);
5327 ++cdefs;
5330 for (t = verdefs; t != NULL; t = t->next)
5332 struct bfd_elf_version_deps *n;
5334 size += sizeof (Elf_External_Verdef);
5335 size += sizeof (Elf_External_Verdaux);
5336 ++cdefs;
5338 for (n = t->deps; n != NULL; n = n->next)
5339 size += sizeof (Elf_External_Verdaux);
5342 s->size = size;
5343 s->contents = bfd_alloc (output_bfd, s->size);
5344 if (s->contents == NULL && s->size != 0)
5345 return FALSE;
5347 /* Fill in the version definition section. */
5349 p = s->contents;
5351 def.vd_version = VER_DEF_CURRENT;
5352 def.vd_flags = VER_FLG_BASE;
5353 def.vd_ndx = 1;
5354 def.vd_cnt = 1;
5355 if (info->create_default_symver)
5357 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5358 def.vd_next = sizeof (Elf_External_Verdef);
5360 else
5362 def.vd_aux = sizeof (Elf_External_Verdef);
5363 def.vd_next = (sizeof (Elf_External_Verdef)
5364 + sizeof (Elf_External_Verdaux));
5367 if (soname_indx != (bfd_size_type) -1)
5369 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5370 soname_indx);
5371 def.vd_hash = bfd_elf_hash (soname);
5372 defaux.vda_name = soname_indx;
5373 name = soname;
5375 else
5377 bfd_size_type indx;
5379 name = basename (output_bfd->filename);
5380 def.vd_hash = bfd_elf_hash (name);
5381 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5382 name, FALSE);
5383 if (indx == (bfd_size_type) -1)
5384 return FALSE;
5385 defaux.vda_name = indx;
5387 defaux.vda_next = 0;
5389 _bfd_elf_swap_verdef_out (output_bfd, &def,
5390 (Elf_External_Verdef *) p);
5391 p += sizeof (Elf_External_Verdef);
5392 if (info->create_default_symver)
5394 /* Add a symbol representing this version. */
5395 bh = NULL;
5396 if (! (_bfd_generic_link_add_one_symbol
5397 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5398 0, NULL, FALSE,
5399 get_elf_backend_data (dynobj)->collect, &bh)))
5400 return FALSE;
5401 h = (struct elf_link_hash_entry *) bh;
5402 h->non_elf = 0;
5403 h->def_regular = 1;
5404 h->type = STT_OBJECT;
5405 h->verinfo.vertree = NULL;
5407 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5408 return FALSE;
5410 /* Create a duplicate of the base version with the same
5411 aux block, but different flags. */
5412 def.vd_flags = 0;
5413 def.vd_ndx = 2;
5414 def.vd_aux = sizeof (Elf_External_Verdef);
5415 if (verdefs)
5416 def.vd_next = (sizeof (Elf_External_Verdef)
5417 + sizeof (Elf_External_Verdaux));
5418 else
5419 def.vd_next = 0;
5420 _bfd_elf_swap_verdef_out (output_bfd, &def,
5421 (Elf_External_Verdef *) p);
5422 p += sizeof (Elf_External_Verdef);
5424 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5425 (Elf_External_Verdaux *) p);
5426 p += sizeof (Elf_External_Verdaux);
5428 for (t = verdefs; t != NULL; t = t->next)
5430 unsigned int cdeps;
5431 struct bfd_elf_version_deps *n;
5433 cdeps = 0;
5434 for (n = t->deps; n != NULL; n = n->next)
5435 ++cdeps;
5437 /* Add a symbol representing this version. */
5438 bh = NULL;
5439 if (! (_bfd_generic_link_add_one_symbol
5440 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5441 0, NULL, FALSE,
5442 get_elf_backend_data (dynobj)->collect, &bh)))
5443 return FALSE;
5444 h = (struct elf_link_hash_entry *) bh;
5445 h->non_elf = 0;
5446 h->def_regular = 1;
5447 h->type = STT_OBJECT;
5448 h->verinfo.vertree = t;
5450 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5451 return FALSE;
5453 def.vd_version = VER_DEF_CURRENT;
5454 def.vd_flags = 0;
5455 if (t->globals.list == NULL
5456 && t->locals.list == NULL
5457 && ! t->used)
5458 def.vd_flags |= VER_FLG_WEAK;
5459 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5460 def.vd_cnt = cdeps + 1;
5461 def.vd_hash = bfd_elf_hash (t->name);
5462 def.vd_aux = sizeof (Elf_External_Verdef);
5463 def.vd_next = 0;
5464 if (t->next != NULL)
5465 def.vd_next = (sizeof (Elf_External_Verdef)
5466 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5468 _bfd_elf_swap_verdef_out (output_bfd, &def,
5469 (Elf_External_Verdef *) p);
5470 p += sizeof (Elf_External_Verdef);
5472 defaux.vda_name = h->dynstr_index;
5473 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5474 h->dynstr_index);
5475 defaux.vda_next = 0;
5476 if (t->deps != NULL)
5477 defaux.vda_next = sizeof (Elf_External_Verdaux);
5478 t->name_indx = defaux.vda_name;
5480 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5481 (Elf_External_Verdaux *) p);
5482 p += sizeof (Elf_External_Verdaux);
5484 for (n = t->deps; n != NULL; n = n->next)
5486 if (n->version_needed == NULL)
5488 /* This can happen if there was an error in the
5489 version script. */
5490 defaux.vda_name = 0;
5492 else
5494 defaux.vda_name = n->version_needed->name_indx;
5495 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5496 defaux.vda_name);
5498 if (n->next == NULL)
5499 defaux.vda_next = 0;
5500 else
5501 defaux.vda_next = sizeof (Elf_External_Verdaux);
5503 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5504 (Elf_External_Verdaux *) p);
5505 p += sizeof (Elf_External_Verdaux);
5509 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5510 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5511 return FALSE;
5513 elf_tdata (output_bfd)->cverdefs = cdefs;
5516 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5518 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5519 return FALSE;
5521 else if (info->flags & DF_BIND_NOW)
5523 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5524 return FALSE;
5527 if (info->flags_1)
5529 if (info->executable)
5530 info->flags_1 &= ~ (DF_1_INITFIRST
5531 | DF_1_NODELETE
5532 | DF_1_NOOPEN);
5533 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5534 return FALSE;
5537 /* Work out the size of the version reference section. */
5539 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5540 BFD_ASSERT (s != NULL);
5542 struct elf_find_verdep_info sinfo;
5544 sinfo.output_bfd = output_bfd;
5545 sinfo.info = info;
5546 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5547 if (sinfo.vers == 0)
5548 sinfo.vers = 1;
5549 sinfo.failed = FALSE;
5551 elf_link_hash_traverse (elf_hash_table (info),
5552 _bfd_elf_link_find_version_dependencies,
5553 &sinfo);
5555 if (elf_tdata (output_bfd)->verref == NULL)
5556 _bfd_strip_section_from_output (info, s);
5557 else
5559 Elf_Internal_Verneed *t;
5560 unsigned int size;
5561 unsigned int crefs;
5562 bfd_byte *p;
5564 /* Build the version definition section. */
5565 size = 0;
5566 crefs = 0;
5567 for (t = elf_tdata (output_bfd)->verref;
5568 t != NULL;
5569 t = t->vn_nextref)
5571 Elf_Internal_Vernaux *a;
5573 size += sizeof (Elf_External_Verneed);
5574 ++crefs;
5575 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5576 size += sizeof (Elf_External_Vernaux);
5579 s->size = size;
5580 s->contents = bfd_alloc (output_bfd, s->size);
5581 if (s->contents == NULL)
5582 return FALSE;
5584 p = s->contents;
5585 for (t = elf_tdata (output_bfd)->verref;
5586 t != NULL;
5587 t = t->vn_nextref)
5589 unsigned int caux;
5590 Elf_Internal_Vernaux *a;
5591 bfd_size_type indx;
5593 caux = 0;
5594 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5595 ++caux;
5597 t->vn_version = VER_NEED_CURRENT;
5598 t->vn_cnt = caux;
5599 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5600 elf_dt_name (t->vn_bfd) != NULL
5601 ? elf_dt_name (t->vn_bfd)
5602 : basename (t->vn_bfd->filename),
5603 FALSE);
5604 if (indx == (bfd_size_type) -1)
5605 return FALSE;
5606 t->vn_file = indx;
5607 t->vn_aux = sizeof (Elf_External_Verneed);
5608 if (t->vn_nextref == NULL)
5609 t->vn_next = 0;
5610 else
5611 t->vn_next = (sizeof (Elf_External_Verneed)
5612 + caux * sizeof (Elf_External_Vernaux));
5614 _bfd_elf_swap_verneed_out (output_bfd, t,
5615 (Elf_External_Verneed *) p);
5616 p += sizeof (Elf_External_Verneed);
5618 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5620 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5621 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5622 a->vna_nodename, FALSE);
5623 if (indx == (bfd_size_type) -1)
5624 return FALSE;
5625 a->vna_name = indx;
5626 if (a->vna_nextptr == NULL)
5627 a->vna_next = 0;
5628 else
5629 a->vna_next = sizeof (Elf_External_Vernaux);
5631 _bfd_elf_swap_vernaux_out (output_bfd, a,
5632 (Elf_External_Vernaux *) p);
5633 p += sizeof (Elf_External_Vernaux);
5637 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5638 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5639 return FALSE;
5641 elf_tdata (output_bfd)->cverrefs = crefs;
5645 /* Assign dynsym indicies. In a shared library we generate a
5646 section symbol for each output section, which come first.
5647 Next come all of the back-end allocated local dynamic syms,
5648 followed by the rest of the global symbols. */
5650 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5651 &section_sym_count);
5653 /* Work out the size of the symbol version section. */
5654 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5655 BFD_ASSERT (s != NULL);
5656 if (dynsymcount == 0
5657 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL
5658 && !info->create_default_symver))
5660 _bfd_strip_section_from_output (info, s);
5661 /* The DYNSYMCOUNT might have changed if we were going to
5662 output a dynamic symbol table entry for S. */
5663 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5664 &section_sym_count);
5666 else
5668 s->size = dynsymcount * sizeof (Elf_External_Versym);
5669 s->contents = bfd_zalloc (output_bfd, s->size);
5670 if (s->contents == NULL)
5671 return FALSE;
5673 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5674 return FALSE;
5677 /* Set the size of the .dynsym and .hash sections. We counted
5678 the number of dynamic symbols in elf_link_add_object_symbols.
5679 We will build the contents of .dynsym and .hash when we build
5680 the final symbol table, because until then we do not know the
5681 correct value to give the symbols. We built the .dynstr
5682 section as we went along in elf_link_add_object_symbols. */
5683 s = bfd_get_section_by_name (dynobj, ".dynsym");
5684 BFD_ASSERT (s != NULL);
5685 s->size = dynsymcount * bed->s->sizeof_sym;
5687 if (dynsymcount != 0)
5689 s->contents = bfd_alloc (output_bfd, s->size);
5690 if (s->contents == NULL)
5691 return FALSE;
5693 /* The first entry in .dynsym is a dummy symbol.
5694 Clear all the section syms, in case we don't output them all. */
5695 ++section_sym_count;
5696 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5699 /* Compute the size of the hashing table. As a side effect this
5700 computes the hash values for all the names we export. */
5701 bucketcount = compute_bucket_count (info);
5703 s = bfd_get_section_by_name (dynobj, ".hash");
5704 BFD_ASSERT (s != NULL);
5705 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5706 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5707 s->contents = bfd_zalloc (output_bfd, s->size);
5708 if (s->contents == NULL)
5709 return FALSE;
5711 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5712 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5713 s->contents + hash_entry_size);
5715 elf_hash_table (info)->bucketcount = bucketcount;
5717 s = bfd_get_section_by_name (dynobj, ".dynstr");
5718 BFD_ASSERT (s != NULL);
5720 elf_finalize_dynstr (output_bfd, info);
5722 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5724 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5725 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5726 return FALSE;
5729 return TRUE;
5732 /* Final phase of ELF linker. */
5734 /* A structure we use to avoid passing large numbers of arguments. */
5736 struct elf_final_link_info
5738 /* General link information. */
5739 struct bfd_link_info *info;
5740 /* Output BFD. */
5741 bfd *output_bfd;
5742 /* Symbol string table. */
5743 struct bfd_strtab_hash *symstrtab;
5744 /* .dynsym section. */
5745 asection *dynsym_sec;
5746 /* .hash section. */
5747 asection *hash_sec;
5748 /* symbol version section (.gnu.version). */
5749 asection *symver_sec;
5750 /* Buffer large enough to hold contents of any section. */
5751 bfd_byte *contents;
5752 /* Buffer large enough to hold external relocs of any section. */
5753 void *external_relocs;
5754 /* Buffer large enough to hold internal relocs of any section. */
5755 Elf_Internal_Rela *internal_relocs;
5756 /* Buffer large enough to hold external local symbols of any input
5757 BFD. */
5758 bfd_byte *external_syms;
5759 /* And a buffer for symbol section indices. */
5760 Elf_External_Sym_Shndx *locsym_shndx;
5761 /* Buffer large enough to hold internal local symbols of any input
5762 BFD. */
5763 Elf_Internal_Sym *internal_syms;
5764 /* Array large enough to hold a symbol index for each local symbol
5765 of any input BFD. */
5766 long *indices;
5767 /* Array large enough to hold a section pointer for each local
5768 symbol of any input BFD. */
5769 asection **sections;
5770 /* Buffer to hold swapped out symbols. */
5771 bfd_byte *symbuf;
5772 /* And one for symbol section indices. */
5773 Elf_External_Sym_Shndx *symshndxbuf;
5774 /* Number of swapped out symbols in buffer. */
5775 size_t symbuf_count;
5776 /* Number of symbols which fit in symbuf. */
5777 size_t symbuf_size;
5778 /* And same for symshndxbuf. */
5779 size_t shndxbuf_size;
5782 /* This struct is used to pass information to elf_link_output_extsym. */
5784 struct elf_outext_info
5786 bfd_boolean failed;
5787 bfd_boolean localsyms;
5788 struct elf_final_link_info *finfo;
5791 /* When performing a relocatable link, the input relocations are
5792 preserved. But, if they reference global symbols, the indices
5793 referenced must be updated. Update all the relocations in
5794 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5796 static void
5797 elf_link_adjust_relocs (bfd *abfd,
5798 Elf_Internal_Shdr *rel_hdr,
5799 unsigned int count,
5800 struct elf_link_hash_entry **rel_hash)
5802 unsigned int i;
5803 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5804 bfd_byte *erela;
5805 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5806 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5807 bfd_vma r_type_mask;
5808 int r_sym_shift;
5810 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5812 swap_in = bed->s->swap_reloc_in;
5813 swap_out = bed->s->swap_reloc_out;
5815 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5817 swap_in = bed->s->swap_reloca_in;
5818 swap_out = bed->s->swap_reloca_out;
5820 else
5821 abort ();
5823 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5824 abort ();
5826 if (bed->s->arch_size == 32)
5828 r_type_mask = 0xff;
5829 r_sym_shift = 8;
5831 else
5833 r_type_mask = 0xffffffff;
5834 r_sym_shift = 32;
5837 erela = rel_hdr->contents;
5838 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5840 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5841 unsigned int j;
5843 if (*rel_hash == NULL)
5844 continue;
5846 BFD_ASSERT ((*rel_hash)->indx >= 0);
5848 (*swap_in) (abfd, erela, irela);
5849 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5850 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5851 | (irela[j].r_info & r_type_mask));
5852 (*swap_out) (abfd, irela, erela);
5856 struct elf_link_sort_rela
5858 union {
5859 bfd_vma offset;
5860 bfd_vma sym_mask;
5861 } u;
5862 enum elf_reloc_type_class type;
5863 /* We use this as an array of size int_rels_per_ext_rel. */
5864 Elf_Internal_Rela rela[1];
5867 static int
5868 elf_link_sort_cmp1 (const void *A, const void *B)
5870 const struct elf_link_sort_rela *a = A;
5871 const struct elf_link_sort_rela *b = B;
5872 int relativea, relativeb;
5874 relativea = a->type == reloc_class_relative;
5875 relativeb = b->type == reloc_class_relative;
5877 if (relativea < relativeb)
5878 return 1;
5879 if (relativea > relativeb)
5880 return -1;
5881 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5882 return -1;
5883 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5884 return 1;
5885 if (a->rela->r_offset < b->rela->r_offset)
5886 return -1;
5887 if (a->rela->r_offset > b->rela->r_offset)
5888 return 1;
5889 return 0;
5892 static int
5893 elf_link_sort_cmp2 (const void *A, const void *B)
5895 const struct elf_link_sort_rela *a = A;
5896 const struct elf_link_sort_rela *b = B;
5897 int copya, copyb;
5899 if (a->u.offset < b->u.offset)
5900 return -1;
5901 if (a->u.offset > b->u.offset)
5902 return 1;
5903 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5904 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5905 if (copya < copyb)
5906 return -1;
5907 if (copya > copyb)
5908 return 1;
5909 if (a->rela->r_offset < b->rela->r_offset)
5910 return -1;
5911 if (a->rela->r_offset > b->rela->r_offset)
5912 return 1;
5913 return 0;
5916 static size_t
5917 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5919 asection *reldyn;
5920 bfd_size_type count, size;
5921 size_t i, ret, sort_elt, ext_size;
5922 bfd_byte *sort, *s_non_relative, *p;
5923 struct elf_link_sort_rela *sq;
5924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5925 int i2e = bed->s->int_rels_per_ext_rel;
5926 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5927 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5928 struct bfd_link_order *lo;
5929 bfd_vma r_sym_mask;
5931 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5932 if (reldyn == NULL || reldyn->size == 0)
5934 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5935 if (reldyn == NULL || reldyn->size == 0)
5936 return 0;
5937 ext_size = bed->s->sizeof_rel;
5938 swap_in = bed->s->swap_reloc_in;
5939 swap_out = bed->s->swap_reloc_out;
5941 else
5943 ext_size = bed->s->sizeof_rela;
5944 swap_in = bed->s->swap_reloca_in;
5945 swap_out = bed->s->swap_reloca_out;
5947 count = reldyn->size / ext_size;
5949 size = 0;
5950 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5951 if (lo->type == bfd_indirect_link_order)
5953 asection *o = lo->u.indirect.section;
5954 size += o->size;
5957 if (size != reldyn->size)
5958 return 0;
5960 sort_elt = (sizeof (struct elf_link_sort_rela)
5961 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5962 sort = bfd_zmalloc (sort_elt * count);
5963 if (sort == NULL)
5965 (*info->callbacks->warning)
5966 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5967 return 0;
5970 if (bed->s->arch_size == 32)
5971 r_sym_mask = ~(bfd_vma) 0xff;
5972 else
5973 r_sym_mask = ~(bfd_vma) 0xffffffff;
5975 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5976 if (lo->type == bfd_indirect_link_order)
5978 bfd_byte *erel, *erelend;
5979 asection *o = lo->u.indirect.section;
5981 if (o->contents == NULL && o->size != 0)
5983 /* This is a reloc section that is being handled as a normal
5984 section. See bfd_section_from_shdr. We can't combine
5985 relocs in this case. */
5986 free (sort);
5987 return 0;
5989 erel = o->contents;
5990 erelend = o->contents + o->size;
5991 p = sort + o->output_offset / ext_size * sort_elt;
5992 while (erel < erelend)
5994 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5995 (*swap_in) (abfd, erel, s->rela);
5996 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5997 s->u.sym_mask = r_sym_mask;
5998 p += sort_elt;
5999 erel += ext_size;
6003 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6005 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6007 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6008 if (s->type != reloc_class_relative)
6009 break;
6011 ret = i;
6012 s_non_relative = p;
6014 sq = (struct elf_link_sort_rela *) s_non_relative;
6015 for (; i < count; i++, p += sort_elt)
6017 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6018 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6019 sq = sp;
6020 sp->u.offset = sq->rela->r_offset;
6023 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6025 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
6026 if (lo->type == bfd_indirect_link_order)
6028 bfd_byte *erel, *erelend;
6029 asection *o = lo->u.indirect.section;
6031 erel = o->contents;
6032 erelend = o->contents + o->size;
6033 p = sort + o->output_offset / ext_size * sort_elt;
6034 while (erel < erelend)
6036 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6037 (*swap_out) (abfd, s->rela, erel);
6038 p += sort_elt;
6039 erel += ext_size;
6043 free (sort);
6044 *psec = reldyn;
6045 return ret;
6048 /* Flush the output symbols to the file. */
6050 static bfd_boolean
6051 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6052 const struct elf_backend_data *bed)
6054 if (finfo->symbuf_count > 0)
6056 Elf_Internal_Shdr *hdr;
6057 file_ptr pos;
6058 bfd_size_type amt;
6060 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6061 pos = hdr->sh_offset + hdr->sh_size;
6062 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6063 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6064 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6065 return FALSE;
6067 hdr->sh_size += amt;
6068 finfo->symbuf_count = 0;
6071 return TRUE;
6074 /* Add a symbol to the output symbol table. */
6076 static bfd_boolean
6077 elf_link_output_sym (struct elf_final_link_info *finfo,
6078 const char *name,
6079 Elf_Internal_Sym *elfsym,
6080 asection *input_sec,
6081 struct elf_link_hash_entry *h)
6083 bfd_byte *dest;
6084 Elf_External_Sym_Shndx *destshndx;
6085 bfd_boolean (*output_symbol_hook)
6086 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6087 struct elf_link_hash_entry *);
6088 const struct elf_backend_data *bed;
6090 bed = get_elf_backend_data (finfo->output_bfd);
6091 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6092 if (output_symbol_hook != NULL)
6094 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6095 return FALSE;
6098 if (name == NULL || *name == '\0')
6099 elfsym->st_name = 0;
6100 else if (input_sec->flags & SEC_EXCLUDE)
6101 elfsym->st_name = 0;
6102 else
6104 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6105 name, TRUE, FALSE);
6106 if (elfsym->st_name == (unsigned long) -1)
6107 return FALSE;
6110 if (finfo->symbuf_count >= finfo->symbuf_size)
6112 if (! elf_link_flush_output_syms (finfo, bed))
6113 return FALSE;
6116 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6117 destshndx = finfo->symshndxbuf;
6118 if (destshndx != NULL)
6120 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6122 bfd_size_type amt;
6124 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6125 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6126 if (destshndx == NULL)
6127 return FALSE;
6128 memset ((char *) destshndx + amt, 0, amt);
6129 finfo->shndxbuf_size *= 2;
6131 destshndx += bfd_get_symcount (finfo->output_bfd);
6134 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6135 finfo->symbuf_count += 1;
6136 bfd_get_symcount (finfo->output_bfd) += 1;
6138 return TRUE;
6141 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6142 allowing an unsatisfied unversioned symbol in the DSO to match a
6143 versioned symbol that would normally require an explicit version.
6144 We also handle the case that a DSO references a hidden symbol
6145 which may be satisfied by a versioned symbol in another DSO. */
6147 static bfd_boolean
6148 elf_link_check_versioned_symbol (struct bfd_link_info *info,
6149 const struct elf_backend_data *bed,
6150 struct elf_link_hash_entry *h)
6152 bfd *abfd;
6153 struct elf_link_loaded_list *loaded;
6155 if (!is_elf_hash_table (info->hash))
6156 return FALSE;
6158 switch (h->root.type)
6160 default:
6161 abfd = NULL;
6162 break;
6164 case bfd_link_hash_undefined:
6165 case bfd_link_hash_undefweak:
6166 abfd = h->root.u.undef.abfd;
6167 if ((abfd->flags & DYNAMIC) == 0
6168 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
6169 return FALSE;
6170 break;
6172 case bfd_link_hash_defined:
6173 case bfd_link_hash_defweak:
6174 abfd = h->root.u.def.section->owner;
6175 break;
6177 case bfd_link_hash_common:
6178 abfd = h->root.u.c.p->section->owner;
6179 break;
6181 BFD_ASSERT (abfd != NULL);
6183 for (loaded = elf_hash_table (info)->loaded;
6184 loaded != NULL;
6185 loaded = loaded->next)
6187 bfd *input;
6188 Elf_Internal_Shdr *hdr;
6189 bfd_size_type symcount;
6190 bfd_size_type extsymcount;
6191 bfd_size_type extsymoff;
6192 Elf_Internal_Shdr *versymhdr;
6193 Elf_Internal_Sym *isym;
6194 Elf_Internal_Sym *isymend;
6195 Elf_Internal_Sym *isymbuf;
6196 Elf_External_Versym *ever;
6197 Elf_External_Versym *extversym;
6199 input = loaded->abfd;
6201 /* We check each DSO for a possible hidden versioned definition. */
6202 if (input == abfd
6203 || (input->flags & DYNAMIC) == 0
6204 || elf_dynversym (input) == 0)
6205 continue;
6207 hdr = &elf_tdata (input)->dynsymtab_hdr;
6209 symcount = hdr->sh_size / bed->s->sizeof_sym;
6210 if (elf_bad_symtab (input))
6212 extsymcount = symcount;
6213 extsymoff = 0;
6215 else
6217 extsymcount = symcount - hdr->sh_info;
6218 extsymoff = hdr->sh_info;
6221 if (extsymcount == 0)
6222 continue;
6224 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6225 NULL, NULL, NULL);
6226 if (isymbuf == NULL)
6227 return FALSE;
6229 /* Read in any version definitions. */
6230 versymhdr = &elf_tdata (input)->dynversym_hdr;
6231 extversym = bfd_malloc (versymhdr->sh_size);
6232 if (extversym == NULL)
6233 goto error_ret;
6235 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6236 || (bfd_bread (extversym, versymhdr->sh_size, input)
6237 != versymhdr->sh_size))
6239 free (extversym);
6240 error_ret:
6241 free (isymbuf);
6242 return FALSE;
6245 ever = extversym + extsymoff;
6246 isymend = isymbuf + extsymcount;
6247 for (isym = isymbuf; isym < isymend; isym++, ever++)
6249 const char *name;
6250 Elf_Internal_Versym iver;
6251 unsigned short version_index;
6253 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6254 || isym->st_shndx == SHN_UNDEF)
6255 continue;
6257 name = bfd_elf_string_from_elf_section (input,
6258 hdr->sh_link,
6259 isym->st_name);
6260 if (strcmp (name, h->root.root.string) != 0)
6261 continue;
6263 _bfd_elf_swap_versym_in (input, ever, &iver);
6265 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6267 /* If we have a non-hidden versioned sym, then it should
6268 have provided a definition for the undefined sym. */
6269 abort ();
6272 version_index = iver.vs_vers & VERSYM_VERSION;
6273 if (version_index == 1 || version_index == 2)
6275 /* This is the base or first version. We can use it. */
6276 free (extversym);
6277 free (isymbuf);
6278 return TRUE;
6282 free (extversym);
6283 free (isymbuf);
6286 return FALSE;
6289 /* Add an external symbol to the symbol table. This is called from
6290 the hash table traversal routine. When generating a shared object,
6291 we go through the symbol table twice. The first time we output
6292 anything that might have been forced to local scope in a version
6293 script. The second time we output the symbols that are still
6294 global symbols. */
6296 static bfd_boolean
6297 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6299 struct elf_outext_info *eoinfo = data;
6300 struct elf_final_link_info *finfo = eoinfo->finfo;
6301 bfd_boolean strip;
6302 Elf_Internal_Sym sym;
6303 asection *input_sec;
6304 const struct elf_backend_data *bed;
6306 if (h->root.type == bfd_link_hash_warning)
6308 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6309 if (h->root.type == bfd_link_hash_new)
6310 return TRUE;
6313 /* Decide whether to output this symbol in this pass. */
6314 if (eoinfo->localsyms)
6316 if (!h->forced_local)
6317 return TRUE;
6319 else
6321 if (h->forced_local)
6322 return TRUE;
6325 bed = get_elf_backend_data (finfo->output_bfd);
6327 /* If we have an undefined symbol reference here then it must have
6328 come from a shared library that is being linked in. (Undefined
6329 references in regular files have already been handled). If we
6330 are reporting errors for this situation then do so now. */
6331 if (h->root.type == bfd_link_hash_undefined
6332 && h->ref_dynamic
6333 && !h->ref_regular
6334 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6335 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6337 if (! ((*finfo->info->callbacks->undefined_symbol)
6338 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6339 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6341 eoinfo->failed = TRUE;
6342 return FALSE;
6346 /* We should also warn if a forced local symbol is referenced from
6347 shared libraries. */
6348 if (! finfo->info->relocatable
6349 && (! finfo->info->shared)
6350 && h->forced_local
6351 && h->ref_dynamic
6352 && !h->dynamic_def
6353 && !h->dynamic_weak
6354 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6356 (*_bfd_error_handler)
6357 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6358 finfo->output_bfd, h->root.u.def.section->owner,
6359 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6360 ? "internal"
6361 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6362 ? "hidden" : "local",
6363 h->root.root.string);
6364 eoinfo->failed = TRUE;
6365 return FALSE;
6368 /* We don't want to output symbols that have never been mentioned by
6369 a regular file, or that we have been told to strip. However, if
6370 h->indx is set to -2, the symbol is used by a reloc and we must
6371 output it. */
6372 if (h->indx == -2)
6373 strip = FALSE;
6374 else if ((h->def_dynamic
6375 || h->ref_dynamic
6376 || h->root.type == bfd_link_hash_new)
6377 && !h->def_regular
6378 && !h->ref_regular)
6379 strip = TRUE;
6380 else if (finfo->info->strip == strip_all)
6381 strip = TRUE;
6382 else if (finfo->info->strip == strip_some
6383 && bfd_hash_lookup (finfo->info->keep_hash,
6384 h->root.root.string, FALSE, FALSE) == NULL)
6385 strip = TRUE;
6386 else if (finfo->info->strip_discarded
6387 && (h->root.type == bfd_link_hash_defined
6388 || h->root.type == bfd_link_hash_defweak)
6389 && elf_discarded_section (h->root.u.def.section))
6390 strip = TRUE;
6391 else
6392 strip = FALSE;
6394 /* If we're stripping it, and it's not a dynamic symbol, there's
6395 nothing else to do unless it is a forced local symbol. */
6396 if (strip
6397 && h->dynindx == -1
6398 && !h->forced_local)
6399 return TRUE;
6401 sym.st_value = 0;
6402 sym.st_size = h->size;
6403 sym.st_other = h->other;
6404 if (h->forced_local)
6405 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6406 else if (h->root.type == bfd_link_hash_undefweak
6407 || h->root.type == bfd_link_hash_defweak)
6408 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6409 else
6410 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6412 switch (h->root.type)
6414 default:
6415 case bfd_link_hash_new:
6416 case bfd_link_hash_warning:
6417 abort ();
6418 return FALSE;
6420 case bfd_link_hash_undefined:
6421 case bfd_link_hash_undefweak:
6422 input_sec = bfd_und_section_ptr;
6423 sym.st_shndx = SHN_UNDEF;
6424 break;
6426 case bfd_link_hash_defined:
6427 case bfd_link_hash_defweak:
6429 input_sec = h->root.u.def.section;
6430 if (input_sec->output_section != NULL)
6432 sym.st_shndx =
6433 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6434 input_sec->output_section);
6435 if (sym.st_shndx == SHN_BAD)
6437 (*_bfd_error_handler)
6438 (_("%B: could not find output section %A for input section %A"),
6439 finfo->output_bfd, input_sec->output_section, input_sec);
6440 eoinfo->failed = TRUE;
6441 return FALSE;
6444 /* ELF symbols in relocatable files are section relative,
6445 but in nonrelocatable files they are virtual
6446 addresses. */
6447 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6448 if (! finfo->info->relocatable)
6450 sym.st_value += input_sec->output_section->vma;
6451 if (h->type == STT_TLS)
6453 /* STT_TLS symbols are relative to PT_TLS segment
6454 base. */
6455 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6456 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6460 else
6462 BFD_ASSERT (input_sec->owner == NULL
6463 || (input_sec->owner->flags & DYNAMIC) != 0);
6464 sym.st_shndx = SHN_UNDEF;
6465 input_sec = bfd_und_section_ptr;
6468 break;
6470 case bfd_link_hash_common:
6471 input_sec = h->root.u.c.p->section;
6472 sym.st_shndx = SHN_COMMON;
6473 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6474 break;
6476 case bfd_link_hash_indirect:
6477 /* These symbols are created by symbol versioning. They point
6478 to the decorated version of the name. For example, if the
6479 symbol foo@@GNU_1.2 is the default, which should be used when
6480 foo is used with no version, then we add an indirect symbol
6481 foo which points to foo@@GNU_1.2. We ignore these symbols,
6482 since the indirected symbol is already in the hash table. */
6483 return TRUE;
6486 /* Give the processor backend a chance to tweak the symbol value,
6487 and also to finish up anything that needs to be done for this
6488 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6489 forced local syms when non-shared is due to a historical quirk. */
6490 if ((h->dynindx != -1
6491 || h->forced_local)
6492 && ((finfo->info->shared
6493 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6494 || h->root.type != bfd_link_hash_undefweak))
6495 || !h->forced_local)
6496 && elf_hash_table (finfo->info)->dynamic_sections_created)
6498 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6499 (finfo->output_bfd, finfo->info, h, &sym)))
6501 eoinfo->failed = TRUE;
6502 return FALSE;
6506 /* If we are marking the symbol as undefined, and there are no
6507 non-weak references to this symbol from a regular object, then
6508 mark the symbol as weak undefined; if there are non-weak
6509 references, mark the symbol as strong. We can't do this earlier,
6510 because it might not be marked as undefined until the
6511 finish_dynamic_symbol routine gets through with it. */
6512 if (sym.st_shndx == SHN_UNDEF
6513 && h->ref_regular
6514 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6515 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6517 int bindtype;
6519 if (h->ref_regular_nonweak)
6520 bindtype = STB_GLOBAL;
6521 else
6522 bindtype = STB_WEAK;
6523 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6526 /* If a non-weak symbol with non-default visibility is not defined
6527 locally, it is a fatal error. */
6528 if (! finfo->info->relocatable
6529 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6530 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6531 && h->root.type == bfd_link_hash_undefined
6532 && !h->def_regular)
6534 (*_bfd_error_handler)
6535 (_("%B: %s symbol `%s' isn't defined"),
6536 finfo->output_bfd,
6537 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6538 ? "protected"
6539 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6540 ? "internal" : "hidden",
6541 h->root.root.string);
6542 eoinfo->failed = TRUE;
6543 return FALSE;
6546 /* If this symbol should be put in the .dynsym section, then put it
6547 there now. We already know the symbol index. We also fill in
6548 the entry in the .hash section. */
6549 if (h->dynindx != -1
6550 && elf_hash_table (finfo->info)->dynamic_sections_created)
6552 size_t bucketcount;
6553 size_t bucket;
6554 size_t hash_entry_size;
6555 bfd_byte *bucketpos;
6556 bfd_vma chain;
6557 bfd_byte *esym;
6559 sym.st_name = h->dynstr_index;
6560 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6561 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6563 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6564 bucket = h->u.elf_hash_value % bucketcount;
6565 hash_entry_size
6566 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6567 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6568 + (bucket + 2) * hash_entry_size);
6569 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6570 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6571 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6572 ((bfd_byte *) finfo->hash_sec->contents
6573 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6575 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6577 Elf_Internal_Versym iversym;
6578 Elf_External_Versym *eversym;
6580 if (!h->def_regular)
6582 if (h->verinfo.verdef == NULL)
6583 iversym.vs_vers = 0;
6584 else
6585 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6587 else
6589 if (h->verinfo.vertree == NULL)
6590 iversym.vs_vers = 1;
6591 else
6592 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6593 if (finfo->info->create_default_symver)
6594 iversym.vs_vers++;
6597 if (h->hidden)
6598 iversym.vs_vers |= VERSYM_HIDDEN;
6600 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6601 eversym += h->dynindx;
6602 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6606 /* If we're stripping it, then it was just a dynamic symbol, and
6607 there's nothing else to do. */
6608 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6609 return TRUE;
6611 h->indx = bfd_get_symcount (finfo->output_bfd);
6613 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6615 eoinfo->failed = TRUE;
6616 return FALSE;
6619 return TRUE;
6622 /* Return TRUE if special handling is done for relocs in SEC against
6623 symbols defined in discarded sections. */
6625 static bfd_boolean
6626 elf_section_ignore_discarded_relocs (asection *sec)
6628 const struct elf_backend_data *bed;
6630 switch (sec->sec_info_type)
6632 case ELF_INFO_TYPE_STABS:
6633 case ELF_INFO_TYPE_EH_FRAME:
6634 return TRUE;
6635 default:
6636 break;
6639 bed = get_elf_backend_data (sec->owner);
6640 if (bed->elf_backend_ignore_discarded_relocs != NULL
6641 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6642 return TRUE;
6644 return FALSE;
6647 enum action_discarded
6649 COMPLAIN = 1,
6650 PRETEND = 2
6653 /* Return a mask saying how ld should treat relocations in SEC against
6654 symbols defined in discarded sections. If this function returns
6655 COMPLAIN set, ld will issue a warning message. If this function
6656 returns PRETEND set, and the discarded section was link-once and the
6657 same size as the kept link-once section, ld will pretend that the
6658 symbol was actually defined in the kept section. Otherwise ld will
6659 zero the reloc (at least that is the intent, but some cooperation by
6660 the target dependent code is needed, particularly for REL targets). */
6662 static unsigned int
6663 elf_action_discarded (asection *sec)
6665 if (sec->flags & SEC_DEBUGGING)
6666 return PRETEND;
6668 if (strcmp (".eh_frame", sec->name) == 0)
6669 return 0;
6671 if (strcmp (".gcc_except_table", sec->name) == 0)
6672 return 0;
6674 if (strcmp (".PARISC.unwind", sec->name) == 0)
6675 return 0;
6677 if (strcmp (".fixup", sec->name) == 0)
6678 return 0;
6680 return COMPLAIN | PRETEND;
6683 /* Find a match between a section and a member of a section group. */
6685 static asection *
6686 match_group_member (asection *sec, asection *group)
6688 asection *first = elf_next_in_group (group);
6689 asection *s = first;
6691 while (s != NULL)
6693 if (bfd_elf_match_symbols_in_sections (s, sec))
6694 return s;
6696 if (s == first)
6697 break;
6700 return NULL;
6703 /* Check if the kept section of a discarded section SEC can be used
6704 to replace it. Return the replacement if it is OK. Otherwise return
6705 NULL. */
6707 asection *
6708 _bfd_elf_check_kept_section (asection *sec)
6710 asection *kept;
6712 kept = sec->kept_section;
6713 if (kept != NULL)
6715 if (elf_sec_group (sec) != NULL)
6716 kept = match_group_member (sec, kept);
6717 if (kept != NULL && sec->size != kept->size)
6718 kept = NULL;
6720 return kept;
6723 /* Link an input file into the linker output file. This function
6724 handles all the sections and relocations of the input file at once.
6725 This is so that we only have to read the local symbols once, and
6726 don't have to keep them in memory. */
6728 static bfd_boolean
6729 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6731 bfd_boolean (*relocate_section)
6732 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6733 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6734 bfd *output_bfd;
6735 Elf_Internal_Shdr *symtab_hdr;
6736 size_t locsymcount;
6737 size_t extsymoff;
6738 Elf_Internal_Sym *isymbuf;
6739 Elf_Internal_Sym *isym;
6740 Elf_Internal_Sym *isymend;
6741 long *pindex;
6742 asection **ppsection;
6743 asection *o;
6744 const struct elf_backend_data *bed;
6745 bfd_boolean emit_relocs;
6746 struct elf_link_hash_entry **sym_hashes;
6748 output_bfd = finfo->output_bfd;
6749 bed = get_elf_backend_data (output_bfd);
6750 relocate_section = bed->elf_backend_relocate_section;
6752 /* If this is a dynamic object, we don't want to do anything here:
6753 we don't want the local symbols, and we don't want the section
6754 contents. */
6755 if ((input_bfd->flags & DYNAMIC) != 0)
6756 return TRUE;
6758 emit_relocs = (finfo->info->relocatable
6759 || finfo->info->emitrelocations
6760 || bed->elf_backend_emit_relocs);
6762 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6763 if (elf_bad_symtab (input_bfd))
6765 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6766 extsymoff = 0;
6768 else
6770 locsymcount = symtab_hdr->sh_info;
6771 extsymoff = symtab_hdr->sh_info;
6774 /* Read the local symbols. */
6775 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6776 if (isymbuf == NULL && locsymcount != 0)
6778 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6779 finfo->internal_syms,
6780 finfo->external_syms,
6781 finfo->locsym_shndx);
6782 if (isymbuf == NULL)
6783 return FALSE;
6786 /* Find local symbol sections and adjust values of symbols in
6787 SEC_MERGE sections. Write out those local symbols we know are
6788 going into the output file. */
6789 isymend = isymbuf + locsymcount;
6790 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6791 isym < isymend;
6792 isym++, pindex++, ppsection++)
6794 asection *isec;
6795 const char *name;
6796 Elf_Internal_Sym osym;
6798 *pindex = -1;
6800 if (elf_bad_symtab (input_bfd))
6802 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6804 *ppsection = NULL;
6805 continue;
6809 if (isym->st_shndx == SHN_UNDEF)
6810 isec = bfd_und_section_ptr;
6811 else if (isym->st_shndx < SHN_LORESERVE
6812 || isym->st_shndx > SHN_HIRESERVE)
6814 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6815 if (isec
6816 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6817 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6818 isym->st_value =
6819 _bfd_merged_section_offset (output_bfd, &isec,
6820 elf_section_data (isec)->sec_info,
6821 isym->st_value);
6823 else if (isym->st_shndx == SHN_ABS)
6824 isec = bfd_abs_section_ptr;
6825 else if (isym->st_shndx == SHN_COMMON)
6826 isec = bfd_com_section_ptr;
6827 else
6829 /* Who knows? */
6830 isec = NULL;
6833 *ppsection = isec;
6835 /* Don't output the first, undefined, symbol. */
6836 if (ppsection == finfo->sections)
6837 continue;
6839 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6841 /* We never output section symbols. Instead, we use the
6842 section symbol of the corresponding section in the output
6843 file. */
6844 continue;
6847 /* If we are stripping all symbols, we don't want to output this
6848 one. */
6849 if (finfo->info->strip == strip_all)
6850 continue;
6852 /* If we are discarding all local symbols, we don't want to
6853 output this one. If we are generating a relocatable output
6854 file, then some of the local symbols may be required by
6855 relocs; we output them below as we discover that they are
6856 needed. */
6857 if (finfo->info->discard == discard_all)
6858 continue;
6860 /* If this symbol is defined in a section which we are
6861 discarding, we don't need to keep it, but note that
6862 linker_mark is only reliable for sections that have contents.
6863 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6864 as well as linker_mark. */
6865 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6866 && (isec == NULL
6867 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6868 || (! finfo->info->relocatable
6869 && (isec->flags & SEC_EXCLUDE) != 0)))
6870 continue;
6872 /* Get the name of the symbol. */
6873 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6874 isym->st_name);
6875 if (name == NULL)
6876 return FALSE;
6878 /* See if we are discarding symbols with this name. */
6879 if ((finfo->info->strip == strip_some
6880 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6881 == NULL))
6882 || (((finfo->info->discard == discard_sec_merge
6883 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6884 || finfo->info->discard == discard_l)
6885 && bfd_is_local_label_name (input_bfd, name)))
6886 continue;
6888 /* If we get here, we are going to output this symbol. */
6890 osym = *isym;
6892 /* Adjust the section index for the output file. */
6893 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6894 isec->output_section);
6895 if (osym.st_shndx == SHN_BAD)
6896 return FALSE;
6898 *pindex = bfd_get_symcount (output_bfd);
6900 /* ELF symbols in relocatable files are section relative, but
6901 in executable files they are virtual addresses. Note that
6902 this code assumes that all ELF sections have an associated
6903 BFD section with a reasonable value for output_offset; below
6904 we assume that they also have a reasonable value for
6905 output_section. Any special sections must be set up to meet
6906 these requirements. */
6907 osym.st_value += isec->output_offset;
6908 if (! finfo->info->relocatable)
6910 osym.st_value += isec->output_section->vma;
6911 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6913 /* STT_TLS symbols are relative to PT_TLS segment base. */
6914 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6915 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6919 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6920 return FALSE;
6923 /* Relocate the contents of each section. */
6924 sym_hashes = elf_sym_hashes (input_bfd);
6925 for (o = input_bfd->sections; o != NULL; o = o->next)
6927 bfd_byte *contents;
6929 if (! o->linker_mark)
6931 /* This section was omitted from the link. */
6932 continue;
6935 if ((o->flags & SEC_HAS_CONTENTS) == 0
6936 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6937 continue;
6939 if ((o->flags & SEC_LINKER_CREATED) != 0)
6941 /* Section was created by _bfd_elf_link_create_dynamic_sections
6942 or somesuch. */
6943 continue;
6946 /* Get the contents of the section. They have been cached by a
6947 relaxation routine. Note that o is a section in an input
6948 file, so the contents field will not have been set by any of
6949 the routines which work on output files. */
6950 if (elf_section_data (o)->this_hdr.contents != NULL)
6951 contents = elf_section_data (o)->this_hdr.contents;
6952 else
6954 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6956 contents = finfo->contents;
6957 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6958 return FALSE;
6961 if ((o->flags & SEC_RELOC) != 0)
6963 Elf_Internal_Rela *internal_relocs;
6964 bfd_vma r_type_mask;
6965 int r_sym_shift;
6967 /* Get the swapped relocs. */
6968 internal_relocs
6969 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6970 finfo->internal_relocs, FALSE);
6971 if (internal_relocs == NULL
6972 && o->reloc_count > 0)
6973 return FALSE;
6975 if (bed->s->arch_size == 32)
6977 r_type_mask = 0xff;
6978 r_sym_shift = 8;
6980 else
6982 r_type_mask = 0xffffffff;
6983 r_sym_shift = 32;
6986 /* Run through the relocs looking for any against symbols
6987 from discarded sections and section symbols from
6988 removed link-once sections. Complain about relocs
6989 against discarded sections. Zero relocs against removed
6990 link-once sections. Preserve debug information as much
6991 as we can. */
6992 if (!elf_section_ignore_discarded_relocs (o))
6994 Elf_Internal_Rela *rel, *relend;
6995 unsigned int action = elf_action_discarded (o);
6997 rel = internal_relocs;
6998 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6999 for ( ; rel < relend; rel++)
7001 unsigned long r_symndx = rel->r_info >> r_sym_shift;
7002 asection **ps, *sec;
7003 struct elf_link_hash_entry *h = NULL;
7004 const char *sym_name;
7006 if (r_symndx == STN_UNDEF)
7007 continue;
7009 if (r_symndx >= locsymcount
7010 || (elf_bad_symtab (input_bfd)
7011 && finfo->sections[r_symndx] == NULL))
7013 h = sym_hashes[r_symndx - extsymoff];
7014 while (h->root.type == bfd_link_hash_indirect
7015 || h->root.type == bfd_link_hash_warning)
7016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7018 if (h->root.type != bfd_link_hash_defined
7019 && h->root.type != bfd_link_hash_defweak)
7020 continue;
7022 ps = &h->root.u.def.section;
7023 sym_name = h->root.root.string;
7025 else
7027 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7028 ps = &finfo->sections[r_symndx];
7029 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym);
7032 /* Complain if the definition comes from a
7033 discarded section. */
7034 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7036 BFD_ASSERT (r_symndx != 0);
7037 if (action & COMPLAIN)
7039 (*_bfd_error_handler)
7040 (_("`%s' referenced in section `%A' of %B: "
7041 "defined in discarded section `%A' of %B"),
7042 o, input_bfd, sec, sec->owner, sym_name);
7045 /* Try to do the best we can to support buggy old
7046 versions of gcc. If we've warned, or this is
7047 debugging info, pretend that the symbol is
7048 really defined in the kept linkonce section.
7049 FIXME: This is quite broken. Modifying the
7050 symbol here means we will be changing all later
7051 uses of the symbol, not just in this section.
7052 The only thing that makes this half reasonable
7053 is that we warn in non-debug sections, and
7054 debug sections tend to come after other
7055 sections. */
7056 if (action & PRETEND)
7058 asection *kept;
7060 kept = _bfd_elf_check_kept_section (sec);
7061 if (kept != NULL)
7063 *ps = kept;
7064 continue;
7068 /* Remove the symbol reference from the reloc, but
7069 don't kill the reloc completely. This is so that
7070 a zero value will be written into the section,
7071 which may have non-zero contents put there by the
7072 assembler. Zero in things like an eh_frame fde
7073 pc_begin allows stack unwinders to recognize the
7074 fde as bogus. */
7075 rel->r_info &= r_type_mask;
7076 rel->r_addend = 0;
7081 /* Relocate the section by invoking a back end routine.
7083 The back end routine is responsible for adjusting the
7084 section contents as necessary, and (if using Rela relocs
7085 and generating a relocatable output file) adjusting the
7086 reloc addend as necessary.
7088 The back end routine does not have to worry about setting
7089 the reloc address or the reloc symbol index.
7091 The back end routine is given a pointer to the swapped in
7092 internal symbols, and can access the hash table entries
7093 for the external symbols via elf_sym_hashes (input_bfd).
7095 When generating relocatable output, the back end routine
7096 must handle STB_LOCAL/STT_SECTION symbols specially. The
7097 output symbol is going to be a section symbol
7098 corresponding to the output section, which will require
7099 the addend to be adjusted. */
7101 if (! (*relocate_section) (output_bfd, finfo->info,
7102 input_bfd, o, contents,
7103 internal_relocs,
7104 isymbuf,
7105 finfo->sections))
7106 return FALSE;
7108 if (emit_relocs)
7110 Elf_Internal_Rela *irela;
7111 Elf_Internal_Rela *irelaend;
7112 bfd_vma last_offset;
7113 struct elf_link_hash_entry **rel_hash;
7114 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7115 unsigned int next_erel;
7116 bfd_boolean (*reloc_emitter)
7117 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
7118 bfd_boolean rela_normal;
7120 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7121 rela_normal = (bed->rela_normal
7122 && (input_rel_hdr->sh_entsize
7123 == bed->s->sizeof_rela));
7125 /* Adjust the reloc addresses and symbol indices. */
7127 irela = internal_relocs;
7128 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7129 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7130 + elf_section_data (o->output_section)->rel_count
7131 + elf_section_data (o->output_section)->rel_count2);
7132 last_offset = o->output_offset;
7133 if (!finfo->info->relocatable)
7134 last_offset += o->output_section->vma;
7135 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7137 unsigned long r_symndx;
7138 asection *sec;
7139 Elf_Internal_Sym sym;
7141 if (next_erel == bed->s->int_rels_per_ext_rel)
7143 rel_hash++;
7144 next_erel = 0;
7147 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7148 finfo->info, o,
7149 irela->r_offset);
7150 if (irela->r_offset >= (bfd_vma) -2)
7152 /* This is a reloc for a deleted entry or somesuch.
7153 Turn it into an R_*_NONE reloc, at the same
7154 offset as the last reloc. elf_eh_frame.c and
7155 elf_bfd_discard_info rely on reloc offsets
7156 being ordered. */
7157 irela->r_offset = last_offset;
7158 irela->r_info = 0;
7159 irela->r_addend = 0;
7160 continue;
7163 irela->r_offset += o->output_offset;
7165 /* Relocs in an executable have to be virtual addresses. */
7166 if (!finfo->info->relocatable)
7167 irela->r_offset += o->output_section->vma;
7169 last_offset = irela->r_offset;
7171 r_symndx = irela->r_info >> r_sym_shift;
7172 if (r_symndx == STN_UNDEF)
7173 continue;
7175 if (r_symndx >= locsymcount
7176 || (elf_bad_symtab (input_bfd)
7177 && finfo->sections[r_symndx] == NULL))
7179 struct elf_link_hash_entry *rh;
7180 unsigned long indx;
7182 /* This is a reloc against a global symbol. We
7183 have not yet output all the local symbols, so
7184 we do not know the symbol index of any global
7185 symbol. We set the rel_hash entry for this
7186 reloc to point to the global hash table entry
7187 for this symbol. The symbol index is then
7188 set at the end of bfd_elf_final_link. */
7189 indx = r_symndx - extsymoff;
7190 rh = elf_sym_hashes (input_bfd)[indx];
7191 while (rh->root.type == bfd_link_hash_indirect
7192 || rh->root.type == bfd_link_hash_warning)
7193 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7195 /* Setting the index to -2 tells
7196 elf_link_output_extsym that this symbol is
7197 used by a reloc. */
7198 BFD_ASSERT (rh->indx < 0);
7199 rh->indx = -2;
7201 *rel_hash = rh;
7203 continue;
7206 /* This is a reloc against a local symbol. */
7208 *rel_hash = NULL;
7209 sym = isymbuf[r_symndx];
7210 sec = finfo->sections[r_symndx];
7211 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7213 /* I suppose the backend ought to fill in the
7214 section of any STT_SECTION symbol against a
7215 processor specific section. */
7216 r_symndx = 0;
7217 if (bfd_is_abs_section (sec))
7219 else if (sec == NULL || sec->owner == NULL)
7221 bfd_set_error (bfd_error_bad_value);
7222 return FALSE;
7224 else
7226 asection *osec = sec->output_section;
7228 /* If we have discarded a section, the output
7229 section will be the absolute section. In
7230 case of discarded link-once and discarded
7231 SEC_MERGE sections, use the kept section. */
7232 if (bfd_is_abs_section (osec)
7233 && sec->kept_section != NULL
7234 && sec->kept_section->output_section != NULL)
7236 osec = sec->kept_section->output_section;
7237 irela->r_addend -= osec->vma;
7240 if (!bfd_is_abs_section (osec))
7242 r_symndx = osec->target_index;
7243 BFD_ASSERT (r_symndx != 0);
7247 /* Adjust the addend according to where the
7248 section winds up in the output section. */
7249 if (rela_normal)
7250 irela->r_addend += sec->output_offset;
7252 else
7254 if (finfo->indices[r_symndx] == -1)
7256 unsigned long shlink;
7257 const char *name;
7258 asection *osec;
7260 if (finfo->info->strip == strip_all)
7262 /* You can't do ld -r -s. */
7263 bfd_set_error (bfd_error_invalid_operation);
7264 return FALSE;
7267 /* This symbol was skipped earlier, but
7268 since it is needed by a reloc, we
7269 must output it now. */
7270 shlink = symtab_hdr->sh_link;
7271 name = (bfd_elf_string_from_elf_section
7272 (input_bfd, shlink, sym.st_name));
7273 if (name == NULL)
7274 return FALSE;
7276 osec = sec->output_section;
7277 sym.st_shndx =
7278 _bfd_elf_section_from_bfd_section (output_bfd,
7279 osec);
7280 if (sym.st_shndx == SHN_BAD)
7281 return FALSE;
7283 sym.st_value += sec->output_offset;
7284 if (! finfo->info->relocatable)
7286 sym.st_value += osec->vma;
7287 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7289 /* STT_TLS symbols are relative to PT_TLS
7290 segment base. */
7291 BFD_ASSERT (elf_hash_table (finfo->info)
7292 ->tls_sec != NULL);
7293 sym.st_value -= (elf_hash_table (finfo->info)
7294 ->tls_sec->vma);
7298 finfo->indices[r_symndx]
7299 = bfd_get_symcount (output_bfd);
7301 if (! elf_link_output_sym (finfo, name, &sym, sec,
7302 NULL))
7303 return FALSE;
7306 r_symndx = finfo->indices[r_symndx];
7309 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7310 | (irela->r_info & r_type_mask));
7313 /* Swap out the relocs. */
7314 if (bed->elf_backend_emit_relocs
7315 && !(finfo->info->relocatable
7316 || finfo->info->emitrelocations))
7317 reloc_emitter = bed->elf_backend_emit_relocs;
7318 else
7319 reloc_emitter = _bfd_elf_link_output_relocs;
7321 if (input_rel_hdr->sh_size != 0
7322 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7323 internal_relocs))
7324 return FALSE;
7326 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7327 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7329 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7330 * bed->s->int_rels_per_ext_rel);
7331 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7332 internal_relocs))
7333 return FALSE;
7338 /* Write out the modified section contents. */
7339 if (bed->elf_backend_write_section
7340 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7342 /* Section written out. */
7344 else switch (o->sec_info_type)
7346 case ELF_INFO_TYPE_STABS:
7347 if (! (_bfd_write_section_stabs
7348 (output_bfd,
7349 &elf_hash_table (finfo->info)->stab_info,
7350 o, &elf_section_data (o)->sec_info, contents)))
7351 return FALSE;
7352 break;
7353 case ELF_INFO_TYPE_MERGE:
7354 if (! _bfd_write_merged_section (output_bfd, o,
7355 elf_section_data (o)->sec_info))
7356 return FALSE;
7357 break;
7358 case ELF_INFO_TYPE_EH_FRAME:
7360 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7361 o, contents))
7362 return FALSE;
7364 break;
7365 default:
7367 if (! (o->flags & SEC_EXCLUDE)
7368 && ! bfd_set_section_contents (output_bfd, o->output_section,
7369 contents,
7370 (file_ptr) o->output_offset,
7371 o->size))
7372 return FALSE;
7374 break;
7378 return TRUE;
7381 /* Generate a reloc when linking an ELF file. This is a reloc
7382 requested by the linker, and does come from any input file. This
7383 is used to build constructor and destructor tables when linking
7384 with -Ur. */
7386 static bfd_boolean
7387 elf_reloc_link_order (bfd *output_bfd,
7388 struct bfd_link_info *info,
7389 asection *output_section,
7390 struct bfd_link_order *link_order)
7392 reloc_howto_type *howto;
7393 long indx;
7394 bfd_vma offset;
7395 bfd_vma addend;
7396 struct elf_link_hash_entry **rel_hash_ptr;
7397 Elf_Internal_Shdr *rel_hdr;
7398 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7399 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7400 bfd_byte *erel;
7401 unsigned int i;
7403 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7404 if (howto == NULL)
7406 bfd_set_error (bfd_error_bad_value);
7407 return FALSE;
7410 addend = link_order->u.reloc.p->addend;
7412 /* Figure out the symbol index. */
7413 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7414 + elf_section_data (output_section)->rel_count
7415 + elf_section_data (output_section)->rel_count2);
7416 if (link_order->type == bfd_section_reloc_link_order)
7418 indx = link_order->u.reloc.p->u.section->target_index;
7419 BFD_ASSERT (indx != 0);
7420 *rel_hash_ptr = NULL;
7422 else
7424 struct elf_link_hash_entry *h;
7426 /* Treat a reloc against a defined symbol as though it were
7427 actually against the section. */
7428 h = ((struct elf_link_hash_entry *)
7429 bfd_wrapped_link_hash_lookup (output_bfd, info,
7430 link_order->u.reloc.p->u.name,
7431 FALSE, FALSE, TRUE));
7432 if (h != NULL
7433 && (h->root.type == bfd_link_hash_defined
7434 || h->root.type == bfd_link_hash_defweak))
7436 asection *section;
7438 section = h->root.u.def.section;
7439 indx = section->output_section->target_index;
7440 *rel_hash_ptr = NULL;
7441 /* It seems that we ought to add the symbol value to the
7442 addend here, but in practice it has already been added
7443 because it was passed to constructor_callback. */
7444 addend += section->output_section->vma + section->output_offset;
7446 else if (h != NULL)
7448 /* Setting the index to -2 tells elf_link_output_extsym that
7449 this symbol is used by a reloc. */
7450 h->indx = -2;
7451 *rel_hash_ptr = h;
7452 indx = 0;
7454 else
7456 if (! ((*info->callbacks->unattached_reloc)
7457 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7458 return FALSE;
7459 indx = 0;
7463 /* If this is an inplace reloc, we must write the addend into the
7464 object file. */
7465 if (howto->partial_inplace && addend != 0)
7467 bfd_size_type size;
7468 bfd_reloc_status_type rstat;
7469 bfd_byte *buf;
7470 bfd_boolean ok;
7471 const char *sym_name;
7473 size = bfd_get_reloc_size (howto);
7474 buf = bfd_zmalloc (size);
7475 if (buf == NULL)
7476 return FALSE;
7477 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7478 switch (rstat)
7480 case bfd_reloc_ok:
7481 break;
7483 default:
7484 case bfd_reloc_outofrange:
7485 abort ();
7487 case bfd_reloc_overflow:
7488 if (link_order->type == bfd_section_reloc_link_order)
7489 sym_name = bfd_section_name (output_bfd,
7490 link_order->u.reloc.p->u.section);
7491 else
7492 sym_name = link_order->u.reloc.p->u.name;
7493 if (! ((*info->callbacks->reloc_overflow)
7494 (info, NULL, sym_name, howto->name, addend, NULL,
7495 NULL, (bfd_vma) 0)))
7497 free (buf);
7498 return FALSE;
7500 break;
7502 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7503 link_order->offset, size);
7504 free (buf);
7505 if (! ok)
7506 return FALSE;
7509 /* The address of a reloc is relative to the section in a
7510 relocatable file, and is a virtual address in an executable
7511 file. */
7512 offset = link_order->offset;
7513 if (! info->relocatable)
7514 offset += output_section->vma;
7516 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7518 irel[i].r_offset = offset;
7519 irel[i].r_info = 0;
7520 irel[i].r_addend = 0;
7522 if (bed->s->arch_size == 32)
7523 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7524 else
7525 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7527 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7528 erel = rel_hdr->contents;
7529 if (rel_hdr->sh_type == SHT_REL)
7531 erel += (elf_section_data (output_section)->rel_count
7532 * bed->s->sizeof_rel);
7533 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7535 else
7537 irel[0].r_addend = addend;
7538 erel += (elf_section_data (output_section)->rel_count
7539 * bed->s->sizeof_rela);
7540 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7543 ++elf_section_data (output_section)->rel_count;
7545 return TRUE;
7549 /* Get the output vma of the section pointed to by the sh_link field. */
7551 static bfd_vma
7552 elf_get_linked_section_vma (struct bfd_link_order *p)
7554 Elf_Internal_Shdr **elf_shdrp;
7555 asection *s;
7556 int elfsec;
7558 s = p->u.indirect.section;
7559 elf_shdrp = elf_elfsections (s->owner);
7560 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7561 elfsec = elf_shdrp[elfsec]->sh_link;
7562 /* PR 290:
7563 The Intel C compiler generates SHT_IA_64_UNWIND with
7564 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7565 sh_info fields. Hence we could get the situation
7566 where elfsec is 0. */
7567 if (elfsec == 0)
7569 const struct elf_backend_data *bed
7570 = get_elf_backend_data (s->owner);
7571 if (bed->link_order_error_handler)
7572 bed->link_order_error_handler
7573 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7574 return 0;
7576 else
7578 s = elf_shdrp[elfsec]->bfd_section;
7579 return s->output_section->vma + s->output_offset;
7584 /* Compare two sections based on the locations of the sections they are
7585 linked to. Used by elf_fixup_link_order. */
7587 static int
7588 compare_link_order (const void * a, const void * b)
7590 bfd_vma apos;
7591 bfd_vma bpos;
7593 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7594 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7595 if (apos < bpos)
7596 return -1;
7597 return apos > bpos;
7601 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7602 order as their linked sections. Returns false if this could not be done
7603 because an output section includes both ordered and unordered
7604 sections. Ideally we'd do this in the linker proper. */
7606 static bfd_boolean
7607 elf_fixup_link_order (bfd *abfd, asection *o)
7609 int seen_linkorder;
7610 int seen_other;
7611 int n;
7612 struct bfd_link_order *p;
7613 bfd *sub;
7614 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7615 int elfsec;
7616 struct bfd_link_order **sections;
7617 asection *s;
7618 bfd_vma offset;
7620 seen_other = 0;
7621 seen_linkorder = 0;
7622 for (p = o->link_order_head; p != NULL; p = p->next)
7624 if (p->type == bfd_indirect_link_order
7625 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7626 == bfd_target_elf_flavour)
7627 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7629 s = p->u.indirect.section;
7630 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7631 if (elfsec != -1
7632 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7633 seen_linkorder++;
7634 else
7635 seen_other++;
7637 else
7638 seen_other++;
7641 if (!seen_linkorder)
7642 return TRUE;
7644 if (seen_other && seen_linkorder)
7646 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7648 bfd_set_error (bfd_error_bad_value);
7649 return FALSE;
7652 sections = (struct bfd_link_order **)
7653 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7654 seen_linkorder = 0;
7656 for (p = o->link_order_head; p != NULL; p = p->next)
7658 sections[seen_linkorder++] = p;
7660 /* Sort the input sections in the order of their linked section. */
7661 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7662 compare_link_order);
7664 /* Change the offsets of the sections. */
7665 offset = 0;
7666 for (n = 0; n < seen_linkorder; n++)
7668 s = sections[n]->u.indirect.section;
7669 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7670 s->output_offset = offset;
7671 sections[n]->offset = offset;
7672 offset += sections[n]->size;
7675 return TRUE;
7679 /* Do the final step of an ELF link. */
7681 bfd_boolean
7682 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7684 bfd_boolean dynamic;
7685 bfd_boolean emit_relocs;
7686 bfd *dynobj;
7687 struct elf_final_link_info finfo;
7688 register asection *o;
7689 register struct bfd_link_order *p;
7690 register bfd *sub;
7691 bfd_size_type max_contents_size;
7692 bfd_size_type max_external_reloc_size;
7693 bfd_size_type max_internal_reloc_count;
7694 bfd_size_type max_sym_count;
7695 bfd_size_type max_sym_shndx_count;
7696 file_ptr off;
7697 Elf_Internal_Sym elfsym;
7698 unsigned int i;
7699 Elf_Internal_Shdr *symtab_hdr;
7700 Elf_Internal_Shdr *symtab_shndx_hdr;
7701 Elf_Internal_Shdr *symstrtab_hdr;
7702 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7703 struct elf_outext_info eoinfo;
7704 bfd_boolean merged;
7705 size_t relativecount = 0;
7706 asection *reldyn = 0;
7707 bfd_size_type amt;
7709 if (! is_elf_hash_table (info->hash))
7710 return FALSE;
7712 if (info->shared)
7713 abfd->flags |= DYNAMIC;
7715 dynamic = elf_hash_table (info)->dynamic_sections_created;
7716 dynobj = elf_hash_table (info)->dynobj;
7718 emit_relocs = (info->relocatable
7719 || info->emitrelocations
7720 || bed->elf_backend_emit_relocs);
7722 finfo.info = info;
7723 finfo.output_bfd = abfd;
7724 finfo.symstrtab = _bfd_elf_stringtab_init ();
7725 if (finfo.symstrtab == NULL)
7726 return FALSE;
7728 if (! dynamic)
7730 finfo.dynsym_sec = NULL;
7731 finfo.hash_sec = NULL;
7732 finfo.symver_sec = NULL;
7734 else
7736 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7737 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7738 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7739 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7740 /* Note that it is OK if symver_sec is NULL. */
7743 finfo.contents = NULL;
7744 finfo.external_relocs = NULL;
7745 finfo.internal_relocs = NULL;
7746 finfo.external_syms = NULL;
7747 finfo.locsym_shndx = NULL;
7748 finfo.internal_syms = NULL;
7749 finfo.indices = NULL;
7750 finfo.sections = NULL;
7751 finfo.symbuf = NULL;
7752 finfo.symshndxbuf = NULL;
7753 finfo.symbuf_count = 0;
7754 finfo.shndxbuf_size = 0;
7756 /* Count up the number of relocations we will output for each output
7757 section, so that we know the sizes of the reloc sections. We
7758 also figure out some maximum sizes. */
7759 max_contents_size = 0;
7760 max_external_reloc_size = 0;
7761 max_internal_reloc_count = 0;
7762 max_sym_count = 0;
7763 max_sym_shndx_count = 0;
7764 merged = FALSE;
7765 for (o = abfd->sections; o != NULL; o = o->next)
7767 struct bfd_elf_section_data *esdo = elf_section_data (o);
7768 o->reloc_count = 0;
7770 for (p = o->link_order_head; p != NULL; p = p->next)
7772 unsigned int reloc_count = 0;
7773 struct bfd_elf_section_data *esdi = NULL;
7774 unsigned int *rel_count1;
7776 if (p->type == bfd_section_reloc_link_order
7777 || p->type == bfd_symbol_reloc_link_order)
7778 reloc_count = 1;
7779 else if (p->type == bfd_indirect_link_order)
7781 asection *sec;
7783 sec = p->u.indirect.section;
7784 esdi = elf_section_data (sec);
7786 /* Mark all sections which are to be included in the
7787 link. This will normally be every section. We need
7788 to do this so that we can identify any sections which
7789 the linker has decided to not include. */
7790 sec->linker_mark = TRUE;
7792 if (sec->flags & SEC_MERGE)
7793 merged = TRUE;
7795 if (info->relocatable || info->emitrelocations)
7796 reloc_count = sec->reloc_count;
7797 else if (bed->elf_backend_count_relocs)
7799 Elf_Internal_Rela * relocs;
7801 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7802 info->keep_memory);
7804 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7806 if (elf_section_data (o)->relocs != relocs)
7807 free (relocs);
7810 if (sec->rawsize > max_contents_size)
7811 max_contents_size = sec->rawsize;
7812 if (sec->size > max_contents_size)
7813 max_contents_size = sec->size;
7815 /* We are interested in just local symbols, not all
7816 symbols. */
7817 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7818 && (sec->owner->flags & DYNAMIC) == 0)
7820 size_t sym_count;
7822 if (elf_bad_symtab (sec->owner))
7823 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7824 / bed->s->sizeof_sym);
7825 else
7826 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7828 if (sym_count > max_sym_count)
7829 max_sym_count = sym_count;
7831 if (sym_count > max_sym_shndx_count
7832 && elf_symtab_shndx (sec->owner) != 0)
7833 max_sym_shndx_count = sym_count;
7835 if ((sec->flags & SEC_RELOC) != 0)
7837 size_t ext_size;
7839 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7840 if (ext_size > max_external_reloc_size)
7841 max_external_reloc_size = ext_size;
7842 if (sec->reloc_count > max_internal_reloc_count)
7843 max_internal_reloc_count = sec->reloc_count;
7848 if (reloc_count == 0)
7849 continue;
7851 o->reloc_count += reloc_count;
7853 /* MIPS may have a mix of REL and RELA relocs on sections.
7854 To support this curious ABI we keep reloc counts in
7855 elf_section_data too. We must be careful to add the
7856 relocations from the input section to the right output
7857 count. FIXME: Get rid of one count. We have
7858 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7859 rel_count1 = &esdo->rel_count;
7860 if (esdi != NULL)
7862 bfd_boolean same_size;
7863 bfd_size_type entsize1;
7865 entsize1 = esdi->rel_hdr.sh_entsize;
7866 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7867 || entsize1 == bed->s->sizeof_rela);
7868 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7870 if (!same_size)
7871 rel_count1 = &esdo->rel_count2;
7873 if (esdi->rel_hdr2 != NULL)
7875 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7876 unsigned int alt_count;
7877 unsigned int *rel_count2;
7879 BFD_ASSERT (entsize2 != entsize1
7880 && (entsize2 == bed->s->sizeof_rel
7881 || entsize2 == bed->s->sizeof_rela));
7883 rel_count2 = &esdo->rel_count2;
7884 if (!same_size)
7885 rel_count2 = &esdo->rel_count;
7887 /* The following is probably too simplistic if the
7888 backend counts output relocs unusually. */
7889 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7890 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7891 *rel_count2 += alt_count;
7892 reloc_count -= alt_count;
7895 *rel_count1 += reloc_count;
7898 if (o->reloc_count > 0)
7899 o->flags |= SEC_RELOC;
7900 else
7902 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7903 set it (this is probably a bug) and if it is set
7904 assign_section_numbers will create a reloc section. */
7905 o->flags &=~ SEC_RELOC;
7908 /* If the SEC_ALLOC flag is not set, force the section VMA to
7909 zero. This is done in elf_fake_sections as well, but forcing
7910 the VMA to 0 here will ensure that relocs against these
7911 sections are handled correctly. */
7912 if ((o->flags & SEC_ALLOC) == 0
7913 && ! o->user_set_vma)
7914 o->vma = 0;
7917 if (! info->relocatable && merged)
7918 elf_link_hash_traverse (elf_hash_table (info),
7919 _bfd_elf_link_sec_merge_syms, abfd);
7921 /* Figure out the file positions for everything but the symbol table
7922 and the relocs. We set symcount to force assign_section_numbers
7923 to create a symbol table. */
7924 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7925 BFD_ASSERT (! abfd->output_has_begun);
7926 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7927 goto error_return;
7929 /* Set sizes, and assign file positions for reloc sections. */
7930 for (o = abfd->sections; o != NULL; o = o->next)
7932 if ((o->flags & SEC_RELOC) != 0)
7934 if (!(_bfd_elf_link_size_reloc_section
7935 (abfd, &elf_section_data (o)->rel_hdr, o)))
7936 goto error_return;
7938 if (elf_section_data (o)->rel_hdr2
7939 && !(_bfd_elf_link_size_reloc_section
7940 (abfd, elf_section_data (o)->rel_hdr2, o)))
7941 goto error_return;
7944 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7945 to count upwards while actually outputting the relocations. */
7946 elf_section_data (o)->rel_count = 0;
7947 elf_section_data (o)->rel_count2 = 0;
7950 _bfd_elf_assign_file_positions_for_relocs (abfd);
7952 /* We have now assigned file positions for all the sections except
7953 .symtab and .strtab. We start the .symtab section at the current
7954 file position, and write directly to it. We build the .strtab
7955 section in memory. */
7956 bfd_get_symcount (abfd) = 0;
7957 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7958 /* sh_name is set in prep_headers. */
7959 symtab_hdr->sh_type = SHT_SYMTAB;
7960 /* sh_flags, sh_addr and sh_size all start off zero. */
7961 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7962 /* sh_link is set in assign_section_numbers. */
7963 /* sh_info is set below. */
7964 /* sh_offset is set just below. */
7965 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7967 off = elf_tdata (abfd)->next_file_pos;
7968 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7970 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7971 incorrect. We do not yet know the size of the .symtab section.
7972 We correct next_file_pos below, after we do know the size. */
7974 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7975 continuously seeking to the right position in the file. */
7976 if (! info->keep_memory || max_sym_count < 20)
7977 finfo.symbuf_size = 20;
7978 else
7979 finfo.symbuf_size = max_sym_count;
7980 amt = finfo.symbuf_size;
7981 amt *= bed->s->sizeof_sym;
7982 finfo.symbuf = bfd_malloc (amt);
7983 if (finfo.symbuf == NULL)
7984 goto error_return;
7985 if (elf_numsections (abfd) > SHN_LORESERVE)
7987 /* Wild guess at number of output symbols. realloc'd as needed. */
7988 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7989 finfo.shndxbuf_size = amt;
7990 amt *= sizeof (Elf_External_Sym_Shndx);
7991 finfo.symshndxbuf = bfd_zmalloc (amt);
7992 if (finfo.symshndxbuf == NULL)
7993 goto error_return;
7996 /* Start writing out the symbol table. The first symbol is always a
7997 dummy symbol. */
7998 if (info->strip != strip_all
7999 || emit_relocs)
8001 elfsym.st_value = 0;
8002 elfsym.st_size = 0;
8003 elfsym.st_info = 0;
8004 elfsym.st_other = 0;
8005 elfsym.st_shndx = SHN_UNDEF;
8006 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8007 NULL))
8008 goto error_return;
8011 /* Output a symbol for each section. We output these even if we are
8012 discarding local symbols, since they are used for relocs. These
8013 symbols have no names. We store the index of each one in the
8014 index field of the section, so that we can find it again when
8015 outputting relocs. */
8016 if (info->strip != strip_all
8017 || emit_relocs)
8019 elfsym.st_size = 0;
8020 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8021 elfsym.st_other = 0;
8022 for (i = 1; i < elf_numsections (abfd); i++)
8024 o = bfd_section_from_elf_index (abfd, i);
8025 if (o != NULL)
8026 o->target_index = bfd_get_symcount (abfd);
8027 elfsym.st_shndx = i;
8028 if (info->relocatable || o == NULL)
8029 elfsym.st_value = 0;
8030 else
8031 elfsym.st_value = o->vma;
8032 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8033 goto error_return;
8034 if (i == SHN_LORESERVE - 1)
8035 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8039 /* Allocate some memory to hold information read in from the input
8040 files. */
8041 if (max_contents_size != 0)
8043 finfo.contents = bfd_malloc (max_contents_size);
8044 if (finfo.contents == NULL)
8045 goto error_return;
8048 if (max_external_reloc_size != 0)
8050 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8051 if (finfo.external_relocs == NULL)
8052 goto error_return;
8055 if (max_internal_reloc_count != 0)
8057 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8058 amt *= sizeof (Elf_Internal_Rela);
8059 finfo.internal_relocs = bfd_malloc (amt);
8060 if (finfo.internal_relocs == NULL)
8061 goto error_return;
8064 if (max_sym_count != 0)
8066 amt = max_sym_count * bed->s->sizeof_sym;
8067 finfo.external_syms = bfd_malloc (amt);
8068 if (finfo.external_syms == NULL)
8069 goto error_return;
8071 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8072 finfo.internal_syms = bfd_malloc (amt);
8073 if (finfo.internal_syms == NULL)
8074 goto error_return;
8076 amt = max_sym_count * sizeof (long);
8077 finfo.indices = bfd_malloc (amt);
8078 if (finfo.indices == NULL)
8079 goto error_return;
8081 amt = max_sym_count * sizeof (asection *);
8082 finfo.sections = bfd_malloc (amt);
8083 if (finfo.sections == NULL)
8084 goto error_return;
8087 if (max_sym_shndx_count != 0)
8089 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8090 finfo.locsym_shndx = bfd_malloc (amt);
8091 if (finfo.locsym_shndx == NULL)
8092 goto error_return;
8095 if (elf_hash_table (info)->tls_sec)
8097 bfd_vma base, end = 0;
8098 asection *sec;
8100 for (sec = elf_hash_table (info)->tls_sec;
8101 sec && (sec->flags & SEC_THREAD_LOCAL);
8102 sec = sec->next)
8104 bfd_vma size = sec->size;
8106 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8108 struct bfd_link_order *o;
8110 for (o = sec->link_order_head; o != NULL; o = o->next)
8111 if (size < o->offset + o->size)
8112 size = o->offset + o->size;
8114 end = sec->vma + size;
8116 base = elf_hash_table (info)->tls_sec->vma;
8117 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8118 elf_hash_table (info)->tls_size = end - base;
8121 /* Reorder SHF_LINK_ORDER sections. */
8122 for (o = abfd->sections; o != NULL; o = o->next)
8124 if (!elf_fixup_link_order (abfd, o))
8125 return FALSE;
8128 /* Since ELF permits relocations to be against local symbols, we
8129 must have the local symbols available when we do the relocations.
8130 Since we would rather only read the local symbols once, and we
8131 would rather not keep them in memory, we handle all the
8132 relocations for a single input file at the same time.
8134 Unfortunately, there is no way to know the total number of local
8135 symbols until we have seen all of them, and the local symbol
8136 indices precede the global symbol indices. This means that when
8137 we are generating relocatable output, and we see a reloc against
8138 a global symbol, we can not know the symbol index until we have
8139 finished examining all the local symbols to see which ones we are
8140 going to output. To deal with this, we keep the relocations in
8141 memory, and don't output them until the end of the link. This is
8142 an unfortunate waste of memory, but I don't see a good way around
8143 it. Fortunately, it only happens when performing a relocatable
8144 link, which is not the common case. FIXME: If keep_memory is set
8145 we could write the relocs out and then read them again; I don't
8146 know how bad the memory loss will be. */
8148 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8149 sub->output_has_begun = FALSE;
8150 for (o = abfd->sections; o != NULL; o = o->next)
8152 for (p = o->link_order_head; p != NULL; p = p->next)
8154 if (p->type == bfd_indirect_link_order
8155 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8156 == bfd_target_elf_flavour)
8157 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8159 if (! sub->output_has_begun)
8161 if (! elf_link_input_bfd (&finfo, sub))
8162 goto error_return;
8163 sub->output_has_begun = TRUE;
8166 else if (p->type == bfd_section_reloc_link_order
8167 || p->type == bfd_symbol_reloc_link_order)
8169 if (! elf_reloc_link_order (abfd, info, o, p))
8170 goto error_return;
8172 else
8174 if (! _bfd_default_link_order (abfd, info, o, p))
8175 goto error_return;
8180 /* Output any global symbols that got converted to local in a
8181 version script or due to symbol visibility. We do this in a
8182 separate step since ELF requires all local symbols to appear
8183 prior to any global symbols. FIXME: We should only do this if
8184 some global symbols were, in fact, converted to become local.
8185 FIXME: Will this work correctly with the Irix 5 linker? */
8186 eoinfo.failed = FALSE;
8187 eoinfo.finfo = &finfo;
8188 eoinfo.localsyms = TRUE;
8189 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8190 &eoinfo);
8191 if (eoinfo.failed)
8192 return FALSE;
8194 /* That wrote out all the local symbols. Finish up the symbol table
8195 with the global symbols. Even if we want to strip everything we
8196 can, we still need to deal with those global symbols that got
8197 converted to local in a version script. */
8199 /* The sh_info field records the index of the first non local symbol. */
8200 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8202 if (dynamic
8203 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8205 Elf_Internal_Sym sym;
8206 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8207 long last_local = 0;
8209 /* Write out the section symbols for the output sections. */
8210 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
8212 asection *s;
8214 sym.st_size = 0;
8215 sym.st_name = 0;
8216 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8217 sym.st_other = 0;
8219 for (s = abfd->sections; s != NULL; s = s->next)
8221 int indx;
8222 bfd_byte *dest;
8223 long dynindx;
8225 dynindx = elf_section_data (s)->dynindx;
8226 if (dynindx <= 0)
8227 continue;
8228 indx = elf_section_data (s)->this_idx;
8229 BFD_ASSERT (indx > 0);
8230 sym.st_shndx = indx;
8231 sym.st_value = s->vma;
8232 dest = dynsym + dynindx * bed->s->sizeof_sym;
8233 if (last_local < dynindx)
8234 last_local = dynindx;
8235 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8239 /* Write out the local dynsyms. */
8240 if (elf_hash_table (info)->dynlocal)
8242 struct elf_link_local_dynamic_entry *e;
8243 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8245 asection *s;
8246 bfd_byte *dest;
8248 sym.st_size = e->isym.st_size;
8249 sym.st_other = e->isym.st_other;
8251 /* Copy the internal symbol as is.
8252 Note that we saved a word of storage and overwrote
8253 the original st_name with the dynstr_index. */
8254 sym = e->isym;
8256 if (e->isym.st_shndx != SHN_UNDEF
8257 && (e->isym.st_shndx < SHN_LORESERVE
8258 || e->isym.st_shndx > SHN_HIRESERVE))
8260 s = bfd_section_from_elf_index (e->input_bfd,
8261 e->isym.st_shndx);
8263 sym.st_shndx =
8264 elf_section_data (s->output_section)->this_idx;
8265 sym.st_value = (s->output_section->vma
8266 + s->output_offset
8267 + e->isym.st_value);
8270 if (last_local < e->dynindx)
8271 last_local = e->dynindx;
8273 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8274 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8278 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8279 last_local + 1;
8282 /* We get the global symbols from the hash table. */
8283 eoinfo.failed = FALSE;
8284 eoinfo.localsyms = FALSE;
8285 eoinfo.finfo = &finfo;
8286 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8287 &eoinfo);
8288 if (eoinfo.failed)
8289 return FALSE;
8291 /* If backend needs to output some symbols not present in the hash
8292 table, do it now. */
8293 if (bed->elf_backend_output_arch_syms)
8295 typedef bfd_boolean (*out_sym_func)
8296 (void *, const char *, Elf_Internal_Sym *, asection *,
8297 struct elf_link_hash_entry *);
8299 if (! ((*bed->elf_backend_output_arch_syms)
8300 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8301 return FALSE;
8304 /* Flush all symbols to the file. */
8305 if (! elf_link_flush_output_syms (&finfo, bed))
8306 return FALSE;
8308 /* Now we know the size of the symtab section. */
8309 off += symtab_hdr->sh_size;
8311 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8312 if (symtab_shndx_hdr->sh_name != 0)
8314 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8315 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8316 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8317 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8318 symtab_shndx_hdr->sh_size = amt;
8320 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8321 off, TRUE);
8323 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8324 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8325 return FALSE;
8329 /* Finish up and write out the symbol string table (.strtab)
8330 section. */
8331 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8332 /* sh_name was set in prep_headers. */
8333 symstrtab_hdr->sh_type = SHT_STRTAB;
8334 symstrtab_hdr->sh_flags = 0;
8335 symstrtab_hdr->sh_addr = 0;
8336 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8337 symstrtab_hdr->sh_entsize = 0;
8338 symstrtab_hdr->sh_link = 0;
8339 symstrtab_hdr->sh_info = 0;
8340 /* sh_offset is set just below. */
8341 symstrtab_hdr->sh_addralign = 1;
8343 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8344 elf_tdata (abfd)->next_file_pos = off;
8346 if (bfd_get_symcount (abfd) > 0)
8348 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8349 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8350 return FALSE;
8353 /* Adjust the relocs to have the correct symbol indices. */
8354 for (o = abfd->sections; o != NULL; o = o->next)
8356 if ((o->flags & SEC_RELOC) == 0)
8357 continue;
8359 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8360 elf_section_data (o)->rel_count,
8361 elf_section_data (o)->rel_hashes);
8362 if (elf_section_data (o)->rel_hdr2 != NULL)
8363 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8364 elf_section_data (o)->rel_count2,
8365 (elf_section_data (o)->rel_hashes
8366 + elf_section_data (o)->rel_count));
8368 /* Set the reloc_count field to 0 to prevent write_relocs from
8369 trying to swap the relocs out itself. */
8370 o->reloc_count = 0;
8373 if (dynamic && info->combreloc && dynobj != NULL)
8374 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8376 /* If we are linking against a dynamic object, or generating a
8377 shared library, finish up the dynamic linking information. */
8378 if (dynamic)
8380 bfd_byte *dyncon, *dynconend;
8382 /* Fix up .dynamic entries. */
8383 o = bfd_get_section_by_name (dynobj, ".dynamic");
8384 BFD_ASSERT (o != NULL);
8386 dyncon = o->contents;
8387 dynconend = o->contents + o->size;
8388 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8390 Elf_Internal_Dyn dyn;
8391 const char *name;
8392 unsigned int type;
8394 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8396 switch (dyn.d_tag)
8398 default:
8399 continue;
8400 case DT_NULL:
8401 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8403 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8405 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8406 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8407 default: continue;
8409 dyn.d_un.d_val = relativecount;
8410 relativecount = 0;
8411 break;
8413 continue;
8415 case DT_INIT:
8416 name = info->init_function;
8417 goto get_sym;
8418 case DT_FINI:
8419 name = info->fini_function;
8420 get_sym:
8422 struct elf_link_hash_entry *h;
8424 h = elf_link_hash_lookup (elf_hash_table (info), name,
8425 FALSE, FALSE, TRUE);
8426 if (h != NULL
8427 && (h->root.type == bfd_link_hash_defined
8428 || h->root.type == bfd_link_hash_defweak))
8430 dyn.d_un.d_val = h->root.u.def.value;
8431 o = h->root.u.def.section;
8432 if (o->output_section != NULL)
8433 dyn.d_un.d_val += (o->output_section->vma
8434 + o->output_offset);
8435 else
8437 /* The symbol is imported from another shared
8438 library and does not apply to this one. */
8439 dyn.d_un.d_val = 0;
8441 break;
8444 continue;
8446 case DT_PREINIT_ARRAYSZ:
8447 name = ".preinit_array";
8448 goto get_size;
8449 case DT_INIT_ARRAYSZ:
8450 name = ".init_array";
8451 goto get_size;
8452 case DT_FINI_ARRAYSZ:
8453 name = ".fini_array";
8454 get_size:
8455 o = bfd_get_section_by_name (abfd, name);
8456 if (o == NULL)
8458 (*_bfd_error_handler)
8459 (_("%B: could not find output section %s"), abfd, name);
8460 goto error_return;
8462 if (o->size == 0)
8463 (*_bfd_error_handler)
8464 (_("warning: %s section has zero size"), name);
8465 dyn.d_un.d_val = o->size;
8466 break;
8468 case DT_PREINIT_ARRAY:
8469 name = ".preinit_array";
8470 goto get_vma;
8471 case DT_INIT_ARRAY:
8472 name = ".init_array";
8473 goto get_vma;
8474 case DT_FINI_ARRAY:
8475 name = ".fini_array";
8476 goto get_vma;
8478 case DT_HASH:
8479 name = ".hash";
8480 goto get_vma;
8481 case DT_STRTAB:
8482 name = ".dynstr";
8483 goto get_vma;
8484 case DT_SYMTAB:
8485 name = ".dynsym";
8486 goto get_vma;
8487 case DT_VERDEF:
8488 name = ".gnu.version_d";
8489 goto get_vma;
8490 case DT_VERNEED:
8491 name = ".gnu.version_r";
8492 goto get_vma;
8493 case DT_VERSYM:
8494 name = ".gnu.version";
8495 get_vma:
8496 o = bfd_get_section_by_name (abfd, name);
8497 if (o == NULL)
8499 (*_bfd_error_handler)
8500 (_("%B: could not find output section %s"), abfd, name);
8501 goto error_return;
8503 dyn.d_un.d_ptr = o->vma;
8504 break;
8506 case DT_REL:
8507 case DT_RELA:
8508 case DT_RELSZ:
8509 case DT_RELASZ:
8510 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8511 type = SHT_REL;
8512 else
8513 type = SHT_RELA;
8514 dyn.d_un.d_val = 0;
8515 for (i = 1; i < elf_numsections (abfd); i++)
8517 Elf_Internal_Shdr *hdr;
8519 hdr = elf_elfsections (abfd)[i];
8520 if (hdr->sh_type == type
8521 && (hdr->sh_flags & SHF_ALLOC) != 0)
8523 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8524 dyn.d_un.d_val += hdr->sh_size;
8525 else
8527 if (dyn.d_un.d_val == 0
8528 || hdr->sh_addr < dyn.d_un.d_val)
8529 dyn.d_un.d_val = hdr->sh_addr;
8533 break;
8535 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8539 /* If we have created any dynamic sections, then output them. */
8540 if (dynobj != NULL)
8542 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8543 goto error_return;
8545 for (o = dynobj->sections; o != NULL; o = o->next)
8547 if ((o->flags & SEC_HAS_CONTENTS) == 0
8548 || o->size == 0
8549 || o->output_section == bfd_abs_section_ptr)
8550 continue;
8551 if ((o->flags & SEC_LINKER_CREATED) == 0)
8553 /* At this point, we are only interested in sections
8554 created by _bfd_elf_link_create_dynamic_sections. */
8555 continue;
8557 if (elf_hash_table (info)->stab_info.stabstr == o)
8558 continue;
8559 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8560 continue;
8561 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8562 != SHT_STRTAB)
8563 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8565 if (! bfd_set_section_contents (abfd, o->output_section,
8566 o->contents,
8567 (file_ptr) o->output_offset,
8568 o->size))
8569 goto error_return;
8571 else
8573 /* The contents of the .dynstr section are actually in a
8574 stringtab. */
8575 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8576 if (bfd_seek (abfd, off, SEEK_SET) != 0
8577 || ! _bfd_elf_strtab_emit (abfd,
8578 elf_hash_table (info)->dynstr))
8579 goto error_return;
8584 if (info->relocatable)
8586 bfd_boolean failed = FALSE;
8588 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8589 if (failed)
8590 goto error_return;
8593 /* If we have optimized stabs strings, output them. */
8594 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8596 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8597 goto error_return;
8600 if (info->eh_frame_hdr)
8602 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8603 goto error_return;
8606 if (finfo.symstrtab != NULL)
8607 _bfd_stringtab_free (finfo.symstrtab);
8608 if (finfo.contents != NULL)
8609 free (finfo.contents);
8610 if (finfo.external_relocs != NULL)
8611 free (finfo.external_relocs);
8612 if (finfo.internal_relocs != NULL)
8613 free (finfo.internal_relocs);
8614 if (finfo.external_syms != NULL)
8615 free (finfo.external_syms);
8616 if (finfo.locsym_shndx != NULL)
8617 free (finfo.locsym_shndx);
8618 if (finfo.internal_syms != NULL)
8619 free (finfo.internal_syms);
8620 if (finfo.indices != NULL)
8621 free (finfo.indices);
8622 if (finfo.sections != NULL)
8623 free (finfo.sections);
8624 if (finfo.symbuf != NULL)
8625 free (finfo.symbuf);
8626 if (finfo.symshndxbuf != NULL)
8627 free (finfo.symshndxbuf);
8628 for (o = abfd->sections; o != NULL; o = o->next)
8630 if ((o->flags & SEC_RELOC) != 0
8631 && elf_section_data (o)->rel_hashes != NULL)
8632 free (elf_section_data (o)->rel_hashes);
8635 elf_tdata (abfd)->linker = TRUE;
8637 return TRUE;
8639 error_return:
8640 if (finfo.symstrtab != NULL)
8641 _bfd_stringtab_free (finfo.symstrtab);
8642 if (finfo.contents != NULL)
8643 free (finfo.contents);
8644 if (finfo.external_relocs != NULL)
8645 free (finfo.external_relocs);
8646 if (finfo.internal_relocs != NULL)
8647 free (finfo.internal_relocs);
8648 if (finfo.external_syms != NULL)
8649 free (finfo.external_syms);
8650 if (finfo.locsym_shndx != NULL)
8651 free (finfo.locsym_shndx);
8652 if (finfo.internal_syms != NULL)
8653 free (finfo.internal_syms);
8654 if (finfo.indices != NULL)
8655 free (finfo.indices);
8656 if (finfo.sections != NULL)
8657 free (finfo.sections);
8658 if (finfo.symbuf != NULL)
8659 free (finfo.symbuf);
8660 if (finfo.symshndxbuf != NULL)
8661 free (finfo.symshndxbuf);
8662 for (o = abfd->sections; o != NULL; o = o->next)
8664 if ((o->flags & SEC_RELOC) != 0
8665 && elf_section_data (o)->rel_hashes != NULL)
8666 free (elf_section_data (o)->rel_hashes);
8669 return FALSE;
8672 /* Garbage collect unused sections. */
8674 /* The mark phase of garbage collection. For a given section, mark
8675 it and any sections in this section's group, and all the sections
8676 which define symbols to which it refers. */
8678 typedef asection * (*gc_mark_hook_fn)
8679 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8680 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8682 bfd_boolean
8683 _bfd_elf_gc_mark (struct bfd_link_info *info,
8684 asection *sec,
8685 gc_mark_hook_fn gc_mark_hook)
8687 bfd_boolean ret;
8688 asection *group_sec;
8690 sec->gc_mark = 1;
8692 /* Mark all the sections in the group. */
8693 group_sec = elf_section_data (sec)->next_in_group;
8694 if (group_sec && !group_sec->gc_mark)
8695 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8696 return FALSE;
8698 /* Look through the section relocs. */
8699 ret = TRUE;
8700 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8702 Elf_Internal_Rela *relstart, *rel, *relend;
8703 Elf_Internal_Shdr *symtab_hdr;
8704 struct elf_link_hash_entry **sym_hashes;
8705 size_t nlocsyms;
8706 size_t extsymoff;
8707 bfd *input_bfd = sec->owner;
8708 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8709 Elf_Internal_Sym *isym = NULL;
8710 int r_sym_shift;
8712 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8713 sym_hashes = elf_sym_hashes (input_bfd);
8715 /* Read the local symbols. */
8716 if (elf_bad_symtab (input_bfd))
8718 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8719 extsymoff = 0;
8721 else
8722 extsymoff = nlocsyms = symtab_hdr->sh_info;
8724 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8725 if (isym == NULL && nlocsyms != 0)
8727 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8728 NULL, NULL, NULL);
8729 if (isym == NULL)
8730 return FALSE;
8733 /* Read the relocations. */
8734 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8735 info->keep_memory);
8736 if (relstart == NULL)
8738 ret = FALSE;
8739 goto out1;
8741 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8743 if (bed->s->arch_size == 32)
8744 r_sym_shift = 8;
8745 else
8746 r_sym_shift = 32;
8748 for (rel = relstart; rel < relend; rel++)
8750 unsigned long r_symndx;
8751 asection *rsec;
8752 struct elf_link_hash_entry *h;
8754 r_symndx = rel->r_info >> r_sym_shift;
8755 if (r_symndx == 0)
8756 continue;
8758 if (r_symndx >= nlocsyms
8759 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8761 h = sym_hashes[r_symndx - extsymoff];
8762 while (h->root.type == bfd_link_hash_indirect
8763 || h->root.type == bfd_link_hash_warning)
8764 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8765 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8767 else
8769 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8772 if (rsec && !rsec->gc_mark)
8774 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8775 rsec->gc_mark = 1;
8776 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8778 ret = FALSE;
8779 goto out2;
8784 out2:
8785 if (elf_section_data (sec)->relocs != relstart)
8786 free (relstart);
8787 out1:
8788 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8790 if (! info->keep_memory)
8791 free (isym);
8792 else
8793 symtab_hdr->contents = (unsigned char *) isym;
8797 return ret;
8800 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8802 static bfd_boolean
8803 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8805 int *idx = idxptr;
8807 if (h->root.type == bfd_link_hash_warning)
8808 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8810 if (h->dynindx != -1
8811 && ((h->root.type != bfd_link_hash_defined
8812 && h->root.type != bfd_link_hash_defweak)
8813 || h->root.u.def.section->gc_mark))
8814 h->dynindx = (*idx)++;
8816 return TRUE;
8819 /* The sweep phase of garbage collection. Remove all garbage sections. */
8821 typedef bfd_boolean (*gc_sweep_hook_fn)
8822 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8824 static bfd_boolean
8825 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8827 bfd *sub;
8829 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8831 asection *o;
8833 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8834 continue;
8836 for (o = sub->sections; o != NULL; o = o->next)
8838 /* Keep debug and special sections. */
8839 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8840 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
8841 o->gc_mark = 1;
8843 if (o->gc_mark)
8844 continue;
8846 /* Skip sweeping sections already excluded. */
8847 if (o->flags & SEC_EXCLUDE)
8848 continue;
8850 /* Since this is early in the link process, it is simple
8851 to remove a section from the output. */
8852 o->flags |= SEC_EXCLUDE;
8854 /* But we also have to update some of the relocation
8855 info we collected before. */
8856 if (gc_sweep_hook
8857 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8859 Elf_Internal_Rela *internal_relocs;
8860 bfd_boolean r;
8862 internal_relocs
8863 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8864 info->keep_memory);
8865 if (internal_relocs == NULL)
8866 return FALSE;
8868 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8870 if (elf_section_data (o)->relocs != internal_relocs)
8871 free (internal_relocs);
8873 if (!r)
8874 return FALSE;
8879 /* Remove the symbols that were in the swept sections from the dynamic
8880 symbol table. GCFIXME: Anyone know how to get them out of the
8881 static symbol table as well? */
8883 int i = 0;
8885 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8887 elf_hash_table (info)->dynsymcount = i;
8890 return TRUE;
8893 /* Propagate collected vtable information. This is called through
8894 elf_link_hash_traverse. */
8896 static bfd_boolean
8897 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8899 if (h->root.type == bfd_link_hash_warning)
8900 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8902 /* Those that are not vtables. */
8903 if (h->vtable == NULL || h->vtable->parent == NULL)
8904 return TRUE;
8906 /* Those vtables that do not have parents, we cannot merge. */
8907 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
8908 return TRUE;
8910 /* If we've already been done, exit. */
8911 if (h->vtable->used && h->vtable->used[-1])
8912 return TRUE;
8914 /* Make sure the parent's table is up to date. */
8915 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
8917 if (h->vtable->used == NULL)
8919 /* None of this table's entries were referenced. Re-use the
8920 parent's table. */
8921 h->vtable->used = h->vtable->parent->vtable->used;
8922 h->vtable->size = h->vtable->parent->vtable->size;
8924 else
8926 size_t n;
8927 bfd_boolean *cu, *pu;
8929 /* Or the parent's entries into ours. */
8930 cu = h->vtable->used;
8931 cu[-1] = TRUE;
8932 pu = h->vtable->parent->vtable->used;
8933 if (pu != NULL)
8935 const struct elf_backend_data *bed;
8936 unsigned int log_file_align;
8938 bed = get_elf_backend_data (h->root.u.def.section->owner);
8939 log_file_align = bed->s->log_file_align;
8940 n = h->vtable->parent->vtable->size >> log_file_align;
8941 while (n--)
8943 if (*pu)
8944 *cu = TRUE;
8945 pu++;
8946 cu++;
8951 return TRUE;
8954 static bfd_boolean
8955 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8957 asection *sec;
8958 bfd_vma hstart, hend;
8959 Elf_Internal_Rela *relstart, *relend, *rel;
8960 const struct elf_backend_data *bed;
8961 unsigned int log_file_align;
8963 if (h->root.type == bfd_link_hash_warning)
8964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8966 /* Take care of both those symbols that do not describe vtables as
8967 well as those that are not loaded. */
8968 if (h->vtable == NULL || h->vtable->parent == NULL)
8969 return TRUE;
8971 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8972 || h->root.type == bfd_link_hash_defweak);
8974 sec = h->root.u.def.section;
8975 hstart = h->root.u.def.value;
8976 hend = hstart + h->size;
8978 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8979 if (!relstart)
8980 return *(bfd_boolean *) okp = FALSE;
8981 bed = get_elf_backend_data (sec->owner);
8982 log_file_align = bed->s->log_file_align;
8984 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8986 for (rel = relstart; rel < relend; ++rel)
8987 if (rel->r_offset >= hstart && rel->r_offset < hend)
8989 /* If the entry is in use, do nothing. */
8990 if (h->vtable->used
8991 && (rel->r_offset - hstart) < h->vtable->size)
8993 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8994 if (h->vtable->used[entry])
8995 continue;
8997 /* Otherwise, kill it. */
8998 rel->r_offset = rel->r_info = rel->r_addend = 0;
9001 return TRUE;
9004 /* Mark sections containing dynamically referenced symbols. This is called
9005 through elf_link_hash_traverse. */
9007 static bfd_boolean
9008 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
9009 void *okp ATTRIBUTE_UNUSED)
9011 if (h->root.type == bfd_link_hash_warning)
9012 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9014 if ((h->root.type == bfd_link_hash_defined
9015 || h->root.type == bfd_link_hash_defweak)
9016 && h->ref_dynamic)
9017 h->root.u.def.section->flags |= SEC_KEEP;
9019 return TRUE;
9022 /* Mark sections containing global symbols. This is called through
9023 elf_link_hash_traverse. */
9025 static bfd_boolean
9026 elf_mark_used_section (struct elf_link_hash_entry *h,
9027 void *data ATTRIBUTE_UNUSED)
9029 if (h->root.type == bfd_link_hash_warning)
9030 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9032 if (h->root.type == bfd_link_hash_defined
9033 || h->root.type == bfd_link_hash_defweak)
9035 asection *s = h->root.u.def.section;
9036 if (s != NULL && s->output_section != NULL)
9037 s->output_section->flags |= SEC_KEEP;
9040 return TRUE;
9043 /* Do mark and sweep of unused sections. */
9045 bfd_boolean
9046 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9048 bfd_boolean ok = TRUE;
9049 bfd *sub;
9050 asection * (*gc_mark_hook)
9051 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9052 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9054 if (!info->gc_sections)
9056 /* If we are called when info->gc_sections is 0, we will mark
9057 all sections containing global symbols for non-relocatable
9058 link. */
9059 if (!info->relocatable)
9060 elf_link_hash_traverse (elf_hash_table (info),
9061 elf_mark_used_section, NULL);
9062 return TRUE;
9065 if (!get_elf_backend_data (abfd)->can_gc_sections
9066 || info->relocatable
9067 || info->emitrelocations
9068 || info->shared
9069 || !is_elf_hash_table (info->hash))
9071 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9072 return TRUE;
9075 /* Apply transitive closure to the vtable entry usage info. */
9076 elf_link_hash_traverse (elf_hash_table (info),
9077 elf_gc_propagate_vtable_entries_used,
9078 &ok);
9079 if (!ok)
9080 return FALSE;
9082 /* Kill the vtable relocations that were not used. */
9083 elf_link_hash_traverse (elf_hash_table (info),
9084 elf_gc_smash_unused_vtentry_relocs,
9085 &ok);
9086 if (!ok)
9087 return FALSE;
9089 /* Mark dynamically referenced symbols. */
9090 if (elf_hash_table (info)->dynamic_sections_created)
9091 elf_link_hash_traverse (elf_hash_table (info),
9092 elf_gc_mark_dynamic_ref_symbol,
9093 &ok);
9094 if (!ok)
9095 return FALSE;
9097 /* Grovel through relocs to find out who stays ... */
9098 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9099 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9101 asection *o;
9103 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9104 continue;
9106 for (o = sub->sections; o != NULL; o = o->next)
9108 if (o->flags & SEC_KEEP)
9110 /* _bfd_elf_discard_section_eh_frame knows how to discard
9111 orphaned FDEs so don't mark sections referenced by the
9112 EH frame section. */
9113 if (strcmp (o->name, ".eh_frame") == 0)
9114 o->gc_mark = 1;
9115 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9116 return FALSE;
9121 /* ... and mark SEC_EXCLUDE for those that go. */
9122 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9123 return FALSE;
9125 return TRUE;
9128 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9130 bfd_boolean
9131 bfd_elf_gc_record_vtinherit (bfd *abfd,
9132 asection *sec,
9133 struct elf_link_hash_entry *h,
9134 bfd_vma offset)
9136 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9137 struct elf_link_hash_entry **search, *child;
9138 bfd_size_type extsymcount;
9139 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9141 /* The sh_info field of the symtab header tells us where the
9142 external symbols start. We don't care about the local symbols at
9143 this point. */
9144 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9145 if (!elf_bad_symtab (abfd))
9146 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9148 sym_hashes = elf_sym_hashes (abfd);
9149 sym_hashes_end = sym_hashes + extsymcount;
9151 /* Hunt down the child symbol, which is in this section at the same
9152 offset as the relocation. */
9153 for (search = sym_hashes; search != sym_hashes_end; ++search)
9155 if ((child = *search) != NULL
9156 && (child->root.type == bfd_link_hash_defined
9157 || child->root.type == bfd_link_hash_defweak)
9158 && child->root.u.def.section == sec
9159 && child->root.u.def.value == offset)
9160 goto win;
9163 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9164 abfd, sec, (unsigned long) offset);
9165 bfd_set_error (bfd_error_invalid_operation);
9166 return FALSE;
9168 win:
9169 if (!child->vtable)
9171 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9172 if (!child->vtable)
9173 return FALSE;
9175 if (!h)
9177 /* This *should* only be the absolute section. It could potentially
9178 be that someone has defined a non-global vtable though, which
9179 would be bad. It isn't worth paging in the local symbols to be
9180 sure though; that case should simply be handled by the assembler. */
9182 child->vtable->parent = (struct elf_link_hash_entry *) -1;
9184 else
9185 child->vtable->parent = h;
9187 return TRUE;
9190 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9192 bfd_boolean
9193 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9194 asection *sec ATTRIBUTE_UNUSED,
9195 struct elf_link_hash_entry *h,
9196 bfd_vma addend)
9198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9199 unsigned int log_file_align = bed->s->log_file_align;
9201 if (!h->vtable)
9203 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9204 if (!h->vtable)
9205 return FALSE;
9208 if (addend >= h->vtable->size)
9210 size_t size, bytes, file_align;
9211 bfd_boolean *ptr = h->vtable->used;
9213 /* While the symbol is undefined, we have to be prepared to handle
9214 a zero size. */
9215 file_align = 1 << log_file_align;
9216 if (h->root.type == bfd_link_hash_undefined)
9217 size = addend + file_align;
9218 else
9220 size = h->size;
9221 if (addend >= size)
9223 /* Oops! We've got a reference past the defined end of
9224 the table. This is probably a bug -- shall we warn? */
9225 size = addend + file_align;
9228 size = (size + file_align - 1) & -file_align;
9230 /* Allocate one extra entry for use as a "done" flag for the
9231 consolidation pass. */
9232 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9234 if (ptr)
9236 ptr = bfd_realloc (ptr - 1, bytes);
9238 if (ptr != NULL)
9240 size_t oldbytes;
9242 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9243 * sizeof (bfd_boolean));
9244 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9247 else
9248 ptr = bfd_zmalloc (bytes);
9250 if (ptr == NULL)
9251 return FALSE;
9253 /* And arrange for that done flag to be at index -1. */
9254 h->vtable->used = ptr + 1;
9255 h->vtable->size = size;
9258 h->vtable->used[addend >> log_file_align] = TRUE;
9260 return TRUE;
9263 struct alloc_got_off_arg {
9264 bfd_vma gotoff;
9265 unsigned int got_elt_size;
9268 /* We need a special top-level link routine to convert got reference counts
9269 to real got offsets. */
9271 static bfd_boolean
9272 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9274 struct alloc_got_off_arg *gofarg = arg;
9276 if (h->root.type == bfd_link_hash_warning)
9277 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9279 if (h->got.refcount > 0)
9281 h->got.offset = gofarg->gotoff;
9282 gofarg->gotoff += gofarg->got_elt_size;
9284 else
9285 h->got.offset = (bfd_vma) -1;
9287 return TRUE;
9290 /* And an accompanying bit to work out final got entry offsets once
9291 we're done. Should be called from final_link. */
9293 bfd_boolean
9294 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9295 struct bfd_link_info *info)
9297 bfd *i;
9298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9299 bfd_vma gotoff;
9300 unsigned int got_elt_size = bed->s->arch_size / 8;
9301 struct alloc_got_off_arg gofarg;
9303 if (! is_elf_hash_table (info->hash))
9304 return FALSE;
9306 /* The GOT offset is relative to the .got section, but the GOT header is
9307 put into the .got.plt section, if the backend uses it. */
9308 if (bed->want_got_plt)
9309 gotoff = 0;
9310 else
9311 gotoff = bed->got_header_size;
9313 /* Do the local .got entries first. */
9314 for (i = info->input_bfds; i; i = i->link_next)
9316 bfd_signed_vma *local_got;
9317 bfd_size_type j, locsymcount;
9318 Elf_Internal_Shdr *symtab_hdr;
9320 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9321 continue;
9323 local_got = elf_local_got_refcounts (i);
9324 if (!local_got)
9325 continue;
9327 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9328 if (elf_bad_symtab (i))
9329 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9330 else
9331 locsymcount = symtab_hdr->sh_info;
9333 for (j = 0; j < locsymcount; ++j)
9335 if (local_got[j] > 0)
9337 local_got[j] = gotoff;
9338 gotoff += got_elt_size;
9340 else
9341 local_got[j] = (bfd_vma) -1;
9345 /* Then the global .got entries. .plt refcounts are handled by
9346 adjust_dynamic_symbol */
9347 gofarg.gotoff = gotoff;
9348 gofarg.got_elt_size = got_elt_size;
9349 elf_link_hash_traverse (elf_hash_table (info),
9350 elf_gc_allocate_got_offsets,
9351 &gofarg);
9352 return TRUE;
9355 /* Many folk need no more in the way of final link than this, once
9356 got entry reference counting is enabled. */
9358 bfd_boolean
9359 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9361 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9362 return FALSE;
9364 /* Invoke the regular ELF backend linker to do all the work. */
9365 return bfd_elf_final_link (abfd, info);
9368 bfd_boolean
9369 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9371 struct elf_reloc_cookie *rcookie = cookie;
9373 if (rcookie->bad_symtab)
9374 rcookie->rel = rcookie->rels;
9376 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9378 unsigned long r_symndx;
9380 if (! rcookie->bad_symtab)
9381 if (rcookie->rel->r_offset > offset)
9382 return FALSE;
9383 if (rcookie->rel->r_offset != offset)
9384 continue;
9386 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9387 if (r_symndx == SHN_UNDEF)
9388 return TRUE;
9390 if (r_symndx >= rcookie->locsymcount
9391 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9393 struct elf_link_hash_entry *h;
9395 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9397 while (h->root.type == bfd_link_hash_indirect
9398 || h->root.type == bfd_link_hash_warning)
9399 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9401 if ((h->root.type == bfd_link_hash_defined
9402 || h->root.type == bfd_link_hash_defweak)
9403 && elf_discarded_section (h->root.u.def.section))
9404 return TRUE;
9405 else
9406 return FALSE;
9408 else
9410 /* It's not a relocation against a global symbol,
9411 but it could be a relocation against a local
9412 symbol for a discarded section. */
9413 asection *isec;
9414 Elf_Internal_Sym *isym;
9416 /* Need to: get the symbol; get the section. */
9417 isym = &rcookie->locsyms[r_symndx];
9418 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9420 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9421 if (isec != NULL && elf_discarded_section (isec))
9422 return TRUE;
9425 return FALSE;
9427 return FALSE;
9430 /* Discard unneeded references to discarded sections.
9431 Returns TRUE if any section's size was changed. */
9432 /* This function assumes that the relocations are in sorted order,
9433 which is true for all known assemblers. */
9435 bfd_boolean
9436 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9438 struct elf_reloc_cookie cookie;
9439 asection *stab, *eh;
9440 Elf_Internal_Shdr *symtab_hdr;
9441 const struct elf_backend_data *bed;
9442 bfd *abfd;
9443 unsigned int count;
9444 bfd_boolean ret = FALSE;
9446 if (info->traditional_format
9447 || !is_elf_hash_table (info->hash))
9448 return FALSE;
9450 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9452 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9453 continue;
9455 bed = get_elf_backend_data (abfd);
9457 if ((abfd->flags & DYNAMIC) != 0)
9458 continue;
9460 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9461 if (info->relocatable
9462 || (eh != NULL
9463 && (eh->size == 0
9464 || bfd_is_abs_section (eh->output_section))))
9465 eh = NULL;
9467 stab = bfd_get_section_by_name (abfd, ".stab");
9468 if (stab != NULL
9469 && (stab->size == 0
9470 || bfd_is_abs_section (stab->output_section)
9471 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9472 stab = NULL;
9474 if (stab == NULL
9475 && eh == NULL
9476 && bed->elf_backend_discard_info == NULL)
9477 continue;
9479 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9480 cookie.abfd = abfd;
9481 cookie.sym_hashes = elf_sym_hashes (abfd);
9482 cookie.bad_symtab = elf_bad_symtab (abfd);
9483 if (cookie.bad_symtab)
9485 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9486 cookie.extsymoff = 0;
9488 else
9490 cookie.locsymcount = symtab_hdr->sh_info;
9491 cookie.extsymoff = symtab_hdr->sh_info;
9494 if (bed->s->arch_size == 32)
9495 cookie.r_sym_shift = 8;
9496 else
9497 cookie.r_sym_shift = 32;
9499 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9500 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9502 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9503 cookie.locsymcount, 0,
9504 NULL, NULL, NULL);
9505 if (cookie.locsyms == NULL)
9506 return FALSE;
9509 if (stab != NULL)
9511 cookie.rels = NULL;
9512 count = stab->reloc_count;
9513 if (count != 0)
9514 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9515 info->keep_memory);
9516 if (cookie.rels != NULL)
9518 cookie.rel = cookie.rels;
9519 cookie.relend = cookie.rels;
9520 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9521 if (_bfd_discard_section_stabs (abfd, stab,
9522 elf_section_data (stab)->sec_info,
9523 bfd_elf_reloc_symbol_deleted_p,
9524 &cookie))
9525 ret = TRUE;
9526 if (elf_section_data (stab)->relocs != cookie.rels)
9527 free (cookie.rels);
9531 if (eh != NULL)
9533 cookie.rels = NULL;
9534 count = eh->reloc_count;
9535 if (count != 0)
9536 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9537 info->keep_memory);
9538 cookie.rel = cookie.rels;
9539 cookie.relend = cookie.rels;
9540 if (cookie.rels != NULL)
9541 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9543 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9544 bfd_elf_reloc_symbol_deleted_p,
9545 &cookie))
9546 ret = TRUE;
9548 if (cookie.rels != NULL
9549 && elf_section_data (eh)->relocs != cookie.rels)
9550 free (cookie.rels);
9553 if (bed->elf_backend_discard_info != NULL
9554 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9555 ret = TRUE;
9557 if (cookie.locsyms != NULL
9558 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9560 if (! info->keep_memory)
9561 free (cookie.locsyms);
9562 else
9563 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9567 if (info->eh_frame_hdr
9568 && !info->relocatable
9569 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9570 ret = TRUE;
9572 return ret;
9575 void
9576 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9578 flagword flags;
9579 const char *name, *p;
9580 struct bfd_section_already_linked *l;
9581 struct bfd_section_already_linked_hash_entry *already_linked_list;
9582 asection *group;
9584 /* A single member comdat group section may be discarded by a
9585 linkonce section. See below. */
9586 if (sec->output_section == bfd_abs_section_ptr)
9587 return;
9589 flags = sec->flags;
9591 /* Check if it belongs to a section group. */
9592 group = elf_sec_group (sec);
9594 /* Return if it isn't a linkonce section nor a member of a group. A
9595 comdat group section also has SEC_LINK_ONCE set. */
9596 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9597 return;
9599 if (group)
9601 /* If this is the member of a single member comdat group, check if
9602 the group should be discarded. */
9603 if (elf_next_in_group (sec) == sec
9604 && (group->flags & SEC_LINK_ONCE) != 0)
9605 sec = group;
9606 else
9607 return;
9610 /* FIXME: When doing a relocatable link, we may have trouble
9611 copying relocations in other sections that refer to local symbols
9612 in the section being discarded. Those relocations will have to
9613 be converted somehow; as of this writing I'm not sure that any of
9614 the backends handle that correctly.
9616 It is tempting to instead not discard link once sections when
9617 doing a relocatable link (technically, they should be discarded
9618 whenever we are building constructors). However, that fails,
9619 because the linker winds up combining all the link once sections
9620 into a single large link once section, which defeats the purpose
9621 of having link once sections in the first place.
9623 Also, not merging link once sections in a relocatable link
9624 causes trouble for MIPS ELF, which relies on link once semantics
9625 to handle the .reginfo section correctly. */
9627 name = bfd_get_section_name (abfd, sec);
9629 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9630 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9631 p++;
9632 else
9633 p = name;
9635 already_linked_list = bfd_section_already_linked_table_lookup (p);
9637 for (l = already_linked_list->entry; l != NULL; l = l->next)
9639 /* We may have 3 different sections on the list: group section,
9640 comdat section and linkonce section. SEC may be a linkonce or
9641 group section. We match a group section with a group section,
9642 a linkonce section with a linkonce section, and ignore comdat
9643 section. */
9644 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9645 && strcmp (name, l->sec->name) == 0
9646 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9648 /* The section has already been linked. See if we should
9649 issue a warning. */
9650 switch (flags & SEC_LINK_DUPLICATES)
9652 default:
9653 abort ();
9655 case SEC_LINK_DUPLICATES_DISCARD:
9656 break;
9658 case SEC_LINK_DUPLICATES_ONE_ONLY:
9659 (*_bfd_error_handler)
9660 (_("%B: ignoring duplicate section `%A'"),
9661 abfd, sec);
9662 break;
9664 case SEC_LINK_DUPLICATES_SAME_SIZE:
9665 if (sec->size != l->sec->size)
9666 (*_bfd_error_handler)
9667 (_("%B: duplicate section `%A' has different size"),
9668 abfd, sec);
9669 break;
9671 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9672 if (sec->size != l->sec->size)
9673 (*_bfd_error_handler)
9674 (_("%B: duplicate section `%A' has different size"),
9675 abfd, sec);
9676 else if (sec->size != 0)
9678 bfd_byte *sec_contents, *l_sec_contents;
9680 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9681 (*_bfd_error_handler)
9682 (_("%B: warning: could not read contents of section `%A'"),
9683 abfd, sec);
9684 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9685 &l_sec_contents))
9686 (*_bfd_error_handler)
9687 (_("%B: warning: could not read contents of section `%A'"),
9688 l->sec->owner, l->sec);
9689 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9690 (*_bfd_error_handler)
9691 (_("%B: warning: duplicate section `%A' has different contents"),
9692 abfd, sec);
9694 if (sec_contents)
9695 free (sec_contents);
9696 if (l_sec_contents)
9697 free (l_sec_contents);
9699 break;
9702 /* Set the output_section field so that lang_add_section
9703 does not create a lang_input_section structure for this
9704 section. Since there might be a symbol in the section
9705 being discarded, we must retain a pointer to the section
9706 which we are really going to use. */
9707 sec->output_section = bfd_abs_section_ptr;
9708 sec->kept_section = l->sec;
9710 if (flags & SEC_GROUP)
9712 asection *first = elf_next_in_group (sec);
9713 asection *s = first;
9715 while (s != NULL)
9717 s->output_section = bfd_abs_section_ptr;
9718 /* Record which group discards it. */
9719 s->kept_section = l->sec;
9720 s = elf_next_in_group (s);
9721 /* These lists are circular. */
9722 if (s == first)
9723 break;
9727 return;
9731 if (group)
9733 /* If this is the member of a single member comdat group and the
9734 group hasn't be discarded, we check if it matches a linkonce
9735 section. We only record the discarded comdat group. Otherwise
9736 the undiscarded group will be discarded incorrectly later since
9737 itself has been recorded. */
9738 for (l = already_linked_list->entry; l != NULL; l = l->next)
9739 if ((l->sec->flags & SEC_GROUP) == 0
9740 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9741 && bfd_elf_match_symbols_in_sections (l->sec,
9742 elf_next_in_group (sec)))
9744 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9745 elf_next_in_group (sec)->kept_section = l->sec;
9746 group->output_section = bfd_abs_section_ptr;
9747 break;
9749 if (l == NULL)
9750 return;
9752 else
9753 /* There is no direct match. But for linkonce section, we should
9754 check if there is a match with comdat group member. We always
9755 record the linkonce section, discarded or not. */
9756 for (l = already_linked_list->entry; l != NULL; l = l->next)
9757 if (l->sec->flags & SEC_GROUP)
9759 asection *first = elf_next_in_group (l->sec);
9761 if (first != NULL
9762 && elf_next_in_group (first) == first
9763 && bfd_elf_match_symbols_in_sections (first, sec))
9765 sec->output_section = bfd_abs_section_ptr;
9766 sec->kept_section = l->sec;
9767 break;
9771 /* This is the first section with this name. Record it. */
9772 bfd_section_already_linked_table_insert (already_linked_list, sec);
9775 /* Set NAME to VAL if the symbol exists and is undefined. */
9777 void
9778 _bfd_elf_provide_symbol (struct bfd_link_info *info, const char *name,
9779 bfd_vma val)
9781 struct elf_link_hash_entry *h;
9782 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE,
9783 FALSE);
9784 if (h != NULL && h->root.type == bfd_link_hash_undefined)
9786 h->root.type = bfd_link_hash_defined;
9787 h->root.u.def.section = bfd_abs_section_ptr;
9788 h->root.u.def.value = val;
9789 h->def_regular = 1;
9790 h->type = STT_OBJECT;
9791 h->other = STV_HIDDEN | (h->other & ~ ELF_ST_VISIBILITY (-1));
9792 h->forced_local = 1;