1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
31 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
35 struct elf_link_hash_entry
*h
;
36 struct bfd_link_hash_entry
*bh
;
37 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
40 /* This function may be called more than once. */
41 s
= bfd_get_section_by_name (abfd
, ".got");
42 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
45 switch (bed
->s
->arch_size
)
56 bfd_set_error (bfd_error_bad_value
);
60 flags
= bed
->dynamic_sec_flags
;
62 s
= bfd_make_section (abfd
, ".got");
64 || !bfd_set_section_flags (abfd
, s
, flags
)
65 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
68 if (bed
->want_got_plt
)
70 s
= bfd_make_section (abfd
, ".got.plt");
72 || !bfd_set_section_flags (abfd
, s
, flags
)
73 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
77 if (bed
->want_got_sym
)
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
84 if (!(_bfd_generic_link_add_one_symbol
85 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
86 bed
->got_symbol_offset
, NULL
, FALSE
, bed
->collect
, &bh
)))
88 h
= (struct elf_link_hash_entry
*) bh
;
91 h
->other
= STV_HIDDEN
;
93 if (! info
->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
97 elf_hash_table (info
)->hgot
= h
;
100 /* The first bit of the global offset table is the header. */
101 s
->size
+= bed
->got_header_size
+ bed
->got_symbol_offset
;
106 /* Create a strtab to hold the dynamic symbol names. */
108 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
110 struct elf_link_hash_table
*hash_table
;
112 hash_table
= elf_hash_table (info
);
113 if (hash_table
->dynobj
== NULL
)
114 hash_table
->dynobj
= abfd
;
116 if (hash_table
->dynstr
== NULL
)
118 hash_table
->dynstr
= _bfd_elf_strtab_init ();
119 if (hash_table
->dynstr
== NULL
)
125 /* Create some sections which will be filled in with dynamic linking
126 information. ABFD is an input file which requires dynamic sections
127 to be created. The dynamic sections take up virtual memory space
128 when the final executable is run, so we need to create them before
129 addresses are assigned to the output sections. We work out the
130 actual contents and size of these sections later. */
133 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
136 register asection
*s
;
137 struct elf_link_hash_entry
*h
;
138 struct bfd_link_hash_entry
*bh
;
139 const struct elf_backend_data
*bed
;
141 if (! is_elf_hash_table (info
->hash
))
144 if (elf_hash_table (info
)->dynamic_sections_created
)
147 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
150 abfd
= elf_hash_table (info
)->dynobj
;
151 bed
= get_elf_backend_data (abfd
);
153 flags
= bed
->dynamic_sec_flags
;
155 /* A dynamically linked executable has a .interp section, but a
156 shared library does not. */
157 if (info
->executable
)
159 s
= bfd_make_section (abfd
, ".interp");
161 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
165 if (! info
->traditional_format
)
167 s
= bfd_make_section (abfd
, ".eh_frame_hdr");
169 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
170 || ! bfd_set_section_alignment (abfd
, s
, 2))
172 elf_hash_table (info
)->eh_info
.hdr_sec
= s
;
175 /* Create sections to hold version informations. These are removed
176 if they are not needed. */
177 s
= bfd_make_section (abfd
, ".gnu.version_d");
179 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
180 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
183 s
= bfd_make_section (abfd
, ".gnu.version");
185 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
186 || ! bfd_set_section_alignment (abfd
, s
, 1))
189 s
= bfd_make_section (abfd
, ".gnu.version_r");
191 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
192 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
195 s
= bfd_make_section (abfd
, ".dynsym");
197 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
198 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
201 s
= bfd_make_section (abfd
, ".dynstr");
203 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
206 s
= bfd_make_section (abfd
, ".dynamic");
208 || ! bfd_set_section_flags (abfd
, s
, flags
)
209 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
212 /* The special symbol _DYNAMIC is always set to the start of the
213 .dynamic section. We could set _DYNAMIC in a linker script, but we
214 only want to define it if we are, in fact, creating a .dynamic
215 section. We don't want to define it if there is no .dynamic
216 section, since on some ELF platforms the start up code examines it
217 to decide how to initialize the process. */
218 h
= elf_link_hash_lookup (elf_hash_table (info
), "_DYNAMIC",
219 FALSE
, FALSE
, FALSE
);
222 /* Zap symbol defined in an as-needed lib that wasn't linked.
223 This is a symptom of a larger problem: Absolute symbols
224 defined in shared libraries can't be overridden, because we
225 lose the link to the bfd which is via the symbol section. */
226 h
->root
.type
= bfd_link_hash_new
;
229 if (! (_bfd_generic_link_add_one_symbol
230 (info
, abfd
, "_DYNAMIC", BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
231 get_elf_backend_data (abfd
)->collect
, &bh
)))
233 h
= (struct elf_link_hash_entry
*) bh
;
235 h
->type
= STT_OBJECT
;
237 if (! info
->executable
238 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
241 s
= bfd_make_section (abfd
, ".hash");
243 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
244 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
246 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
248 /* Let the backend create the rest of the sections. This lets the
249 backend set the right flags. The backend will normally create
250 the .got and .plt sections. */
251 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
254 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
259 /* Create dynamic sections when linking against a dynamic object. */
262 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
264 flagword flags
, pltflags
;
266 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
268 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
269 .rel[a].bss sections. */
270 flags
= bed
->dynamic_sec_flags
;
273 if (bed
->plt_not_loaded
)
274 /* We do not clear SEC_ALLOC here because we still want the OS to
275 allocate space for the section; it's just that there's nothing
276 to read in from the object file. */
277 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
279 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
280 if (bed
->plt_readonly
)
281 pltflags
|= SEC_READONLY
;
283 s
= bfd_make_section (abfd
, ".plt");
285 || ! bfd_set_section_flags (abfd
, s
, pltflags
)
286 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
289 if (bed
->want_plt_sym
)
291 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
293 struct elf_link_hash_entry
*h
;
294 struct bfd_link_hash_entry
*bh
= NULL
;
296 if (! (_bfd_generic_link_add_one_symbol
297 (info
, abfd
, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL
, s
, 0, NULL
,
298 FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
300 h
= (struct elf_link_hash_entry
*) bh
;
302 h
->type
= STT_OBJECT
;
304 if (! info
->executable
305 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
309 s
= bfd_make_section (abfd
,
310 bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt");
312 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
313 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
316 if (! _bfd_elf_create_got_section (abfd
, info
))
319 if (bed
->want_dynbss
)
321 /* The .dynbss section is a place to put symbols which are defined
322 by dynamic objects, are referenced by regular objects, and are
323 not functions. We must allocate space for them in the process
324 image and use a R_*_COPY reloc to tell the dynamic linker to
325 initialize them at run time. The linker script puts the .dynbss
326 section into the .bss section of the final image. */
327 s
= bfd_make_section (abfd
, ".dynbss");
329 || ! bfd_set_section_flags (abfd
, s
, SEC_ALLOC
| SEC_LINKER_CREATED
))
332 /* The .rel[a].bss section holds copy relocs. This section is not
333 normally needed. We need to create it here, though, so that the
334 linker will map it to an output section. We can't just create it
335 only if we need it, because we will not know whether we need it
336 until we have seen all the input files, and the first time the
337 main linker code calls BFD after examining all the input files
338 (size_dynamic_sections) the input sections have already been
339 mapped to the output sections. If the section turns out not to
340 be needed, we can discard it later. We will never need this
341 section when generating a shared object, since they do not use
345 s
= bfd_make_section (abfd
,
346 (bed
->default_use_rela_p
347 ? ".rela.bss" : ".rel.bss"));
349 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
350 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
358 /* Record a new dynamic symbol. We record the dynamic symbols as we
359 read the input files, since we need to have a list of all of them
360 before we can determine the final sizes of the output sections.
361 Note that we may actually call this function even though we are not
362 going to output any dynamic symbols; in some cases we know that a
363 symbol should be in the dynamic symbol table, but only if there is
367 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
368 struct elf_link_hash_entry
*h
)
370 if (h
->dynindx
== -1)
372 struct elf_strtab_hash
*dynstr
;
377 /* XXX: The ABI draft says the linker must turn hidden and
378 internal symbols into STB_LOCAL symbols when producing the
379 DSO. However, if ld.so honors st_other in the dynamic table,
380 this would not be necessary. */
381 switch (ELF_ST_VISIBILITY (h
->other
))
385 if (h
->root
.type
!= bfd_link_hash_undefined
386 && h
->root
.type
!= bfd_link_hash_undefweak
)
389 if (!elf_hash_table (info
)->is_relocatable_executable
)
397 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
398 ++elf_hash_table (info
)->dynsymcount
;
400 dynstr
= elf_hash_table (info
)->dynstr
;
403 /* Create a strtab to hold the dynamic symbol names. */
404 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
409 /* We don't put any version information in the dynamic string
411 name
= h
->root
.root
.string
;
412 p
= strchr (name
, ELF_VER_CHR
);
414 /* We know that the p points into writable memory. In fact,
415 there are only a few symbols that have read-only names, being
416 those like _GLOBAL_OFFSET_TABLE_ that are created specially
417 by the backends. Most symbols will have names pointing into
418 an ELF string table read from a file, or to objalloc memory. */
421 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
426 if (indx
== (bfd_size_type
) -1)
428 h
->dynstr_index
= indx
;
434 /* Record an assignment to a symbol made by a linker script. We need
435 this in case some dynamic object refers to this symbol. */
438 bfd_elf_record_link_assignment (bfd
*output_bfd ATTRIBUTE_UNUSED
,
439 struct bfd_link_info
*info
,
443 struct elf_link_hash_entry
*h
;
444 struct elf_link_hash_table
*htab
;
446 if (!is_elf_hash_table (info
->hash
))
449 htab
= elf_hash_table (info
);
450 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
454 /* Since we're defining the symbol, don't let it seem to have not
455 been defined. record_dynamic_symbol and size_dynamic_sections
456 may depend on this. */
457 if (h
->root
.type
== bfd_link_hash_undefweak
458 || h
->root
.type
== bfd_link_hash_undefined
)
460 h
->root
.type
= bfd_link_hash_new
;
461 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
462 bfd_link_repair_undef_list (&htab
->root
);
465 if (h
->root
.type
== bfd_link_hash_new
)
468 /* If this symbol is being provided by the linker script, and it is
469 currently defined by a dynamic object, but not by a regular
470 object, then mark it as undefined so that the generic linker will
471 force the correct value. */
475 h
->root
.type
= bfd_link_hash_undefined
;
477 /* If this symbol is not being provided by the linker script, and it is
478 currently defined by a dynamic object, but not by a regular object,
479 then clear out any version information because the symbol will not be
480 associated with the dynamic object any more. */
484 h
->verinfo
.verdef
= NULL
;
488 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
490 if (!info
->relocatable
492 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
493 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
499 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
502 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
505 /* If this is a weak defined symbol, and we know a corresponding
506 real symbol from the same dynamic object, make sure the real
507 symbol is also made into a dynamic symbol. */
508 if (h
->u
.weakdef
!= NULL
509 && h
->u
.weakdef
->dynindx
== -1)
511 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
519 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
520 success, and 2 on a failure caused by attempting to record a symbol
521 in a discarded section, eg. a discarded link-once section symbol. */
524 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
529 struct elf_link_local_dynamic_entry
*entry
;
530 struct elf_link_hash_table
*eht
;
531 struct elf_strtab_hash
*dynstr
;
532 unsigned long dynstr_index
;
534 Elf_External_Sym_Shndx eshndx
;
535 char esym
[sizeof (Elf64_External_Sym
)];
537 if (! is_elf_hash_table (info
->hash
))
540 /* See if the entry exists already. */
541 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
542 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
545 amt
= sizeof (*entry
);
546 entry
= bfd_alloc (input_bfd
, amt
);
550 /* Go find the symbol, so that we can find it's name. */
551 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
552 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
554 bfd_release (input_bfd
, entry
);
558 if (entry
->isym
.st_shndx
!= SHN_UNDEF
559 && (entry
->isym
.st_shndx
< SHN_LORESERVE
560 || entry
->isym
.st_shndx
> SHN_HIRESERVE
))
564 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
565 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
567 /* We can still bfd_release here as nothing has done another
568 bfd_alloc. We can't do this later in this function. */
569 bfd_release (input_bfd
, entry
);
574 name
= (bfd_elf_string_from_elf_section
575 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
576 entry
->isym
.st_name
));
578 dynstr
= elf_hash_table (info
)->dynstr
;
581 /* Create a strtab to hold the dynamic symbol names. */
582 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
587 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
588 if (dynstr_index
== (unsigned long) -1)
590 entry
->isym
.st_name
= dynstr_index
;
592 eht
= elf_hash_table (info
);
594 entry
->next
= eht
->dynlocal
;
595 eht
->dynlocal
= entry
;
596 entry
->input_bfd
= input_bfd
;
597 entry
->input_indx
= input_indx
;
600 /* Whatever binding the symbol had before, it's now local. */
602 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
604 /* The dynindx will be set at the end of size_dynamic_sections. */
609 /* Return the dynindex of a local dynamic symbol. */
612 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
616 struct elf_link_local_dynamic_entry
*e
;
618 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
619 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
624 /* This function is used to renumber the dynamic symbols, if some of
625 them are removed because they are marked as local. This is called
626 via elf_link_hash_traverse. */
629 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
632 size_t *count
= data
;
634 if (h
->root
.type
== bfd_link_hash_warning
)
635 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
640 if (h
->dynindx
!= -1)
641 h
->dynindx
= ++(*count
);
647 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
648 STB_LOCAL binding. */
651 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
654 size_t *count
= data
;
656 if (h
->root
.type
== bfd_link_hash_warning
)
657 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
659 if (!h
->forced_local
)
662 if (h
->dynindx
!= -1)
663 h
->dynindx
= ++(*count
);
668 /* Return true if the dynamic symbol for a given section should be
669 omitted when creating a shared library. */
671 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
672 struct bfd_link_info
*info
,
675 switch (elf_section_data (p
)->this_hdr
.sh_type
)
679 /* If sh_type is yet undecided, assume it could be
680 SHT_PROGBITS/SHT_NOBITS. */
682 if (strcmp (p
->name
, ".got") == 0
683 || strcmp (p
->name
, ".got.plt") == 0
684 || strcmp (p
->name
, ".plt") == 0)
687 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
690 && (ip
= bfd_get_section_by_name (dynobj
, p
->name
)) != NULL
691 && (ip
->flags
& SEC_LINKER_CREATED
)
692 && ip
->output_section
== p
)
697 /* There shouldn't be section relative relocations
698 against any other section. */
704 /* Assign dynsym indices. In a shared library we generate a section
705 symbol for each output section, which come first. Next come symbols
706 which have been forced to local binding. Then all of the back-end
707 allocated local dynamic syms, followed by the rest of the global
711 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
712 struct bfd_link_info
*info
,
713 unsigned long *section_sym_count
)
715 unsigned long dynsymcount
= 0;
717 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
719 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
721 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
722 if ((p
->flags
& SEC_EXCLUDE
) == 0
723 && (p
->flags
& SEC_ALLOC
) != 0
724 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
725 elf_section_data (p
)->dynindx
= ++dynsymcount
;
727 *section_sym_count
= dynsymcount
;
729 elf_link_hash_traverse (elf_hash_table (info
),
730 elf_link_renumber_local_hash_table_dynsyms
,
733 if (elf_hash_table (info
)->dynlocal
)
735 struct elf_link_local_dynamic_entry
*p
;
736 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
737 p
->dynindx
= ++dynsymcount
;
740 elf_link_hash_traverse (elf_hash_table (info
),
741 elf_link_renumber_hash_table_dynsyms
,
744 /* There is an unused NULL entry at the head of the table which
745 we must account for in our count. Unless there weren't any
746 symbols, which means we'll have no table at all. */
747 if (dynsymcount
!= 0)
750 return elf_hash_table (info
)->dynsymcount
= dynsymcount
;
753 /* This function is called when we want to define a new symbol. It
754 handles the various cases which arise when we find a definition in
755 a dynamic object, or when there is already a definition in a
756 dynamic object. The new symbol is described by NAME, SYM, PSEC,
757 and PVALUE. We set SYM_HASH to the hash table entry. We set
758 OVERRIDE if the old symbol is overriding a new definition. We set
759 TYPE_CHANGE_OK if it is OK for the type to change. We set
760 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
761 change, we mean that we shouldn't warn if the type or size does
762 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
763 object is overridden by a regular object. */
766 _bfd_elf_merge_symbol (bfd
*abfd
,
767 struct bfd_link_info
*info
,
769 Elf_Internal_Sym
*sym
,
772 unsigned int *pold_alignment
,
773 struct elf_link_hash_entry
**sym_hash
,
775 bfd_boolean
*override
,
776 bfd_boolean
*type_change_ok
,
777 bfd_boolean
*size_change_ok
)
779 asection
*sec
, *oldsec
;
780 struct elf_link_hash_entry
*h
;
781 struct elf_link_hash_entry
*flip
;
784 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
785 bfd_boolean newweak
, oldweak
;
791 bind
= ELF_ST_BIND (sym
->st_info
);
793 if (! bfd_is_und_section (sec
))
794 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
796 h
= ((struct elf_link_hash_entry
*)
797 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
802 /* This code is for coping with dynamic objects, and is only useful
803 if we are doing an ELF link. */
804 if (info
->hash
->creator
!= abfd
->xvec
)
807 /* For merging, we only care about real symbols. */
809 while (h
->root
.type
== bfd_link_hash_indirect
810 || h
->root
.type
== bfd_link_hash_warning
)
811 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
813 /* If we just created the symbol, mark it as being an ELF symbol.
814 Other than that, there is nothing to do--there is no merge issue
815 with a newly defined symbol--so we just return. */
817 if (h
->root
.type
== bfd_link_hash_new
)
823 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
826 switch (h
->root
.type
)
833 case bfd_link_hash_undefined
:
834 case bfd_link_hash_undefweak
:
835 oldbfd
= h
->root
.u
.undef
.abfd
;
839 case bfd_link_hash_defined
:
840 case bfd_link_hash_defweak
:
841 oldbfd
= h
->root
.u
.def
.section
->owner
;
842 oldsec
= h
->root
.u
.def
.section
;
845 case bfd_link_hash_common
:
846 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
847 oldsec
= h
->root
.u
.c
.p
->section
;
851 /* In cases involving weak versioned symbols, we may wind up trying
852 to merge a symbol with itself. Catch that here, to avoid the
853 confusion that results if we try to override a symbol with
854 itself. The additional tests catch cases like
855 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
856 dynamic object, which we do want to handle here. */
858 && ((abfd
->flags
& DYNAMIC
) == 0
862 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
863 respectively, is from a dynamic object. */
865 if ((abfd
->flags
& DYNAMIC
) != 0)
871 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
876 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
877 indices used by MIPS ELF. */
878 switch (h
->root
.type
)
884 case bfd_link_hash_defined
:
885 case bfd_link_hash_defweak
:
886 hsec
= h
->root
.u
.def
.section
;
889 case bfd_link_hash_common
:
890 hsec
= h
->root
.u
.c
.p
->section
;
897 olddyn
= (hsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
900 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
901 respectively, appear to be a definition rather than reference. */
903 if (bfd_is_und_section (sec
) || bfd_is_com_section (sec
))
908 if (h
->root
.type
== bfd_link_hash_undefined
909 || h
->root
.type
== bfd_link_hash_undefweak
910 || h
->root
.type
== bfd_link_hash_common
)
915 /* Check TLS symbol. */
916 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
917 && ELF_ST_TYPE (sym
->st_info
) != h
->type
)
920 bfd_boolean ntdef
, tdef
;
921 asection
*ntsec
, *tsec
;
923 if (h
->type
== STT_TLS
)
943 (*_bfd_error_handler
)
944 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
945 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
946 else if (!tdef
&& !ntdef
)
947 (*_bfd_error_handler
)
948 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
949 tbfd
, ntbfd
, h
->root
.root
.string
);
951 (*_bfd_error_handler
)
952 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
953 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
955 (*_bfd_error_handler
)
956 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
957 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
959 bfd_set_error (bfd_error_bad_value
);
963 /* We need to remember if a symbol has a definition in a dynamic
964 object or is weak in all dynamic objects. Internal and hidden
965 visibility will make it unavailable to dynamic objects. */
966 if (newdyn
&& !h
->dynamic_def
)
968 if (!bfd_is_und_section (sec
))
972 /* Check if this symbol is weak in all dynamic objects. If it
973 is the first time we see it in a dynamic object, we mark
974 if it is weak. Otherwise, we clear it. */
977 if (bind
== STB_WEAK
)
980 else if (bind
!= STB_WEAK
)
985 /* If the old symbol has non-default visibility, we ignore the new
986 definition from a dynamic object. */
988 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
989 && !bfd_is_und_section (sec
))
992 /* Make sure this symbol is dynamic. */
994 /* A protected symbol has external availability. Make sure it is
997 FIXME: Should we check type and size for protected symbol? */
998 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
999 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1004 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1007 /* If the new symbol with non-default visibility comes from a
1008 relocatable file and the old definition comes from a dynamic
1009 object, we remove the old definition. */
1010 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1013 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1014 && bfd_is_und_section (sec
))
1016 /* If the new symbol is undefined and the old symbol was
1017 also undefined before, we need to make sure
1018 _bfd_generic_link_add_one_symbol doesn't mess
1019 up the linker hash table undefs list. Since the old
1020 definition came from a dynamic object, it is still on the
1022 h
->root
.type
= bfd_link_hash_undefined
;
1023 h
->root
.u
.undef
.abfd
= abfd
;
1027 h
->root
.type
= bfd_link_hash_new
;
1028 h
->root
.u
.undef
.abfd
= NULL
;
1037 /* FIXME: Should we check type and size for protected symbol? */
1043 /* Differentiate strong and weak symbols. */
1044 newweak
= bind
== STB_WEAK
;
1045 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1046 || h
->root
.type
== bfd_link_hash_undefweak
);
1048 /* If a new weak symbol definition comes from a regular file and the
1049 old symbol comes from a dynamic library, we treat the new one as
1050 strong. Similarly, an old weak symbol definition from a regular
1051 file is treated as strong when the new symbol comes from a dynamic
1052 library. Further, an old weak symbol from a dynamic library is
1053 treated as strong if the new symbol is from a dynamic library.
1054 This reflects the way glibc's ld.so works.
1056 Do this before setting *type_change_ok or *size_change_ok so that
1057 we warn properly when dynamic library symbols are overridden. */
1059 if (newdef
&& !newdyn
&& olddyn
)
1061 if (olddef
&& newdyn
)
1064 /* It's OK to change the type if either the existing symbol or the
1065 new symbol is weak. A type change is also OK if the old symbol
1066 is undefined and the new symbol is defined. */
1071 && h
->root
.type
== bfd_link_hash_undefined
))
1072 *type_change_ok
= TRUE
;
1074 /* It's OK to change the size if either the existing symbol or the
1075 new symbol is weak, or if the old symbol is undefined. */
1078 || h
->root
.type
== bfd_link_hash_undefined
)
1079 *size_change_ok
= TRUE
;
1081 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1082 symbol, respectively, appears to be a common symbol in a dynamic
1083 object. If a symbol appears in an uninitialized section, and is
1084 not weak, and is not a function, then it may be a common symbol
1085 which was resolved when the dynamic object was created. We want
1086 to treat such symbols specially, because they raise special
1087 considerations when setting the symbol size: if the symbol
1088 appears as a common symbol in a regular object, and the size in
1089 the regular object is larger, we must make sure that we use the
1090 larger size. This problematic case can always be avoided in C,
1091 but it must be handled correctly when using Fortran shared
1094 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1095 likewise for OLDDYNCOMMON and OLDDEF.
1097 Note that this test is just a heuristic, and that it is quite
1098 possible to have an uninitialized symbol in a shared object which
1099 is really a definition, rather than a common symbol. This could
1100 lead to some minor confusion when the symbol really is a common
1101 symbol in some regular object. However, I think it will be
1107 && (sec
->flags
& SEC_ALLOC
) != 0
1108 && (sec
->flags
& SEC_LOAD
) == 0
1110 && ELF_ST_TYPE (sym
->st_info
) != STT_FUNC
)
1111 newdyncommon
= TRUE
;
1113 newdyncommon
= FALSE
;
1117 && h
->root
.type
== bfd_link_hash_defined
1119 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1120 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1122 && h
->type
!= STT_FUNC
)
1123 olddyncommon
= TRUE
;
1125 olddyncommon
= FALSE
;
1127 /* If both the old and the new symbols look like common symbols in a
1128 dynamic object, set the size of the symbol to the larger of the
1133 && sym
->st_size
!= h
->size
)
1135 /* Since we think we have two common symbols, issue a multiple
1136 common warning if desired. Note that we only warn if the
1137 size is different. If the size is the same, we simply let
1138 the old symbol override the new one as normally happens with
1139 symbols defined in dynamic objects. */
1141 if (! ((*info
->callbacks
->multiple_common
)
1142 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1143 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1146 if (sym
->st_size
> h
->size
)
1147 h
->size
= sym
->st_size
;
1149 *size_change_ok
= TRUE
;
1152 /* If we are looking at a dynamic object, and we have found a
1153 definition, we need to see if the symbol was already defined by
1154 some other object. If so, we want to use the existing
1155 definition, and we do not want to report a multiple symbol
1156 definition error; we do this by clobbering *PSEC to be
1157 bfd_und_section_ptr.
1159 We treat a common symbol as a definition if the symbol in the
1160 shared library is a function, since common symbols always
1161 represent variables; this can cause confusion in principle, but
1162 any such confusion would seem to indicate an erroneous program or
1163 shared library. We also permit a common symbol in a regular
1164 object to override a weak symbol in a shared object. */
1169 || (h
->root
.type
== bfd_link_hash_common
1171 || ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
))))
1175 newdyncommon
= FALSE
;
1177 *psec
= sec
= bfd_und_section_ptr
;
1178 *size_change_ok
= TRUE
;
1180 /* If we get here when the old symbol is a common symbol, then
1181 we are explicitly letting it override a weak symbol or
1182 function in a dynamic object, and we don't want to warn about
1183 a type change. If the old symbol is a defined symbol, a type
1184 change warning may still be appropriate. */
1186 if (h
->root
.type
== bfd_link_hash_common
)
1187 *type_change_ok
= TRUE
;
1190 /* Handle the special case of an old common symbol merging with a
1191 new symbol which looks like a common symbol in a shared object.
1192 We change *PSEC and *PVALUE to make the new symbol look like a
1193 common symbol, and let _bfd_generic_link_add_one_symbol will do
1197 && h
->root
.type
== bfd_link_hash_common
)
1201 newdyncommon
= FALSE
;
1202 *pvalue
= sym
->st_size
;
1203 *psec
= sec
= bfd_com_section_ptr
;
1204 *size_change_ok
= TRUE
;
1207 /* If the old symbol is from a dynamic object, and the new symbol is
1208 a definition which is not from a dynamic object, then the new
1209 symbol overrides the old symbol. Symbols from regular files
1210 always take precedence over symbols from dynamic objects, even if
1211 they are defined after the dynamic object in the link.
1213 As above, we again permit a common symbol in a regular object to
1214 override a definition in a shared object if the shared object
1215 symbol is a function or is weak. */
1220 || (bfd_is_com_section (sec
)
1222 || h
->type
== STT_FUNC
)))
1227 /* Change the hash table entry to undefined, and let
1228 _bfd_generic_link_add_one_symbol do the right thing with the
1231 h
->root
.type
= bfd_link_hash_undefined
;
1232 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1233 *size_change_ok
= TRUE
;
1236 olddyncommon
= FALSE
;
1238 /* We again permit a type change when a common symbol may be
1239 overriding a function. */
1241 if (bfd_is_com_section (sec
))
1242 *type_change_ok
= TRUE
;
1244 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1247 /* This union may have been set to be non-NULL when this symbol
1248 was seen in a dynamic object. We must force the union to be
1249 NULL, so that it is correct for a regular symbol. */
1250 h
->verinfo
.vertree
= NULL
;
1253 /* Handle the special case of a new common symbol merging with an
1254 old symbol that looks like it might be a common symbol defined in
1255 a shared object. Note that we have already handled the case in
1256 which a new common symbol should simply override the definition
1257 in the shared library. */
1260 && bfd_is_com_section (sec
)
1263 /* It would be best if we could set the hash table entry to a
1264 common symbol, but we don't know what to use for the section
1265 or the alignment. */
1266 if (! ((*info
->callbacks
->multiple_common
)
1267 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1268 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1271 /* If the presumed common symbol in the dynamic object is
1272 larger, pretend that the new symbol has its size. */
1274 if (h
->size
> *pvalue
)
1277 /* We need to remember the alignment required by the symbol
1278 in the dynamic object. */
1279 BFD_ASSERT (pold_alignment
);
1280 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1283 olddyncommon
= FALSE
;
1285 h
->root
.type
= bfd_link_hash_undefined
;
1286 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1288 *size_change_ok
= TRUE
;
1289 *type_change_ok
= TRUE
;
1291 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1294 h
->verinfo
.vertree
= NULL
;
1299 /* Handle the case where we had a versioned symbol in a dynamic
1300 library and now find a definition in a normal object. In this
1301 case, we make the versioned symbol point to the normal one. */
1302 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1303 flip
->root
.type
= h
->root
.type
;
1304 h
->root
.type
= bfd_link_hash_indirect
;
1305 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1306 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, flip
, h
);
1307 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1311 flip
->ref_dynamic
= 1;
1318 /* This function is called to create an indirect symbol from the
1319 default for the symbol with the default version if needed. The
1320 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1321 set DYNSYM if the new indirect symbol is dynamic. */
1324 _bfd_elf_add_default_symbol (bfd
*abfd
,
1325 struct bfd_link_info
*info
,
1326 struct elf_link_hash_entry
*h
,
1328 Elf_Internal_Sym
*sym
,
1331 bfd_boolean
*dynsym
,
1332 bfd_boolean override
)
1334 bfd_boolean type_change_ok
;
1335 bfd_boolean size_change_ok
;
1338 struct elf_link_hash_entry
*hi
;
1339 struct bfd_link_hash_entry
*bh
;
1340 const struct elf_backend_data
*bed
;
1341 bfd_boolean collect
;
1342 bfd_boolean dynamic
;
1344 size_t len
, shortlen
;
1347 /* If this symbol has a version, and it is the default version, we
1348 create an indirect symbol from the default name to the fully
1349 decorated name. This will cause external references which do not
1350 specify a version to be bound to this version of the symbol. */
1351 p
= strchr (name
, ELF_VER_CHR
);
1352 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1357 /* We are overridden by an old definition. We need to check if we
1358 need to create the indirect symbol from the default name. */
1359 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1361 BFD_ASSERT (hi
!= NULL
);
1364 while (hi
->root
.type
== bfd_link_hash_indirect
1365 || hi
->root
.type
== bfd_link_hash_warning
)
1367 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1373 bed
= get_elf_backend_data (abfd
);
1374 collect
= bed
->collect
;
1375 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1377 shortlen
= p
- name
;
1378 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1379 if (shortname
== NULL
)
1381 memcpy (shortname
, name
, shortlen
);
1382 shortname
[shortlen
] = '\0';
1384 /* We are going to create a new symbol. Merge it with any existing
1385 symbol with this name. For the purposes of the merge, act as
1386 though we were defining the symbol we just defined, although we
1387 actually going to define an indirect symbol. */
1388 type_change_ok
= FALSE
;
1389 size_change_ok
= FALSE
;
1391 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1392 NULL
, &hi
, &skip
, &override
,
1393 &type_change_ok
, &size_change_ok
))
1402 if (! (_bfd_generic_link_add_one_symbol
1403 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1404 0, name
, FALSE
, collect
, &bh
)))
1406 hi
= (struct elf_link_hash_entry
*) bh
;
1410 /* In this case the symbol named SHORTNAME is overriding the
1411 indirect symbol we want to add. We were planning on making
1412 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1413 is the name without a version. NAME is the fully versioned
1414 name, and it is the default version.
1416 Overriding means that we already saw a definition for the
1417 symbol SHORTNAME in a regular object, and it is overriding
1418 the symbol defined in the dynamic object.
1420 When this happens, we actually want to change NAME, the
1421 symbol we just added, to refer to SHORTNAME. This will cause
1422 references to NAME in the shared object to become references
1423 to SHORTNAME in the regular object. This is what we expect
1424 when we override a function in a shared object: that the
1425 references in the shared object will be mapped to the
1426 definition in the regular object. */
1428 while (hi
->root
.type
== bfd_link_hash_indirect
1429 || hi
->root
.type
== bfd_link_hash_warning
)
1430 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1432 h
->root
.type
= bfd_link_hash_indirect
;
1433 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1437 hi
->ref_dynamic
= 1;
1441 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1446 /* Now set HI to H, so that the following code will set the
1447 other fields correctly. */
1451 /* If there is a duplicate definition somewhere, then HI may not
1452 point to an indirect symbol. We will have reported an error to
1453 the user in that case. */
1455 if (hi
->root
.type
== bfd_link_hash_indirect
)
1457 struct elf_link_hash_entry
*ht
;
1459 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1460 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, ht
, hi
);
1462 /* See if the new flags lead us to realize that the symbol must
1474 if (hi
->ref_regular
)
1480 /* We also need to define an indirection from the nondefault version
1484 len
= strlen (name
);
1485 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1486 if (shortname
== NULL
)
1488 memcpy (shortname
, name
, shortlen
);
1489 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1491 /* Once again, merge with any existing symbol. */
1492 type_change_ok
= FALSE
;
1493 size_change_ok
= FALSE
;
1495 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1496 NULL
, &hi
, &skip
, &override
,
1497 &type_change_ok
, &size_change_ok
))
1505 /* Here SHORTNAME is a versioned name, so we don't expect to see
1506 the type of override we do in the case above unless it is
1507 overridden by a versioned definition. */
1508 if (hi
->root
.type
!= bfd_link_hash_defined
1509 && hi
->root
.type
!= bfd_link_hash_defweak
)
1510 (*_bfd_error_handler
)
1511 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1517 if (! (_bfd_generic_link_add_one_symbol
1518 (info
, abfd
, shortname
, BSF_INDIRECT
,
1519 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1521 hi
= (struct elf_link_hash_entry
*) bh
;
1523 /* If there is a duplicate definition somewhere, then HI may not
1524 point to an indirect symbol. We will have reported an error
1525 to the user in that case. */
1527 if (hi
->root
.type
== bfd_link_hash_indirect
)
1529 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, h
, hi
);
1531 /* See if the new flags lead us to realize that the symbol
1543 if (hi
->ref_regular
)
1553 /* This routine is used to export all defined symbols into the dynamic
1554 symbol table. It is called via elf_link_hash_traverse. */
1557 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1559 struct elf_info_failed
*eif
= data
;
1561 /* Ignore indirect symbols. These are added by the versioning code. */
1562 if (h
->root
.type
== bfd_link_hash_indirect
)
1565 if (h
->root
.type
== bfd_link_hash_warning
)
1566 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1568 if (h
->dynindx
== -1
1572 struct bfd_elf_version_tree
*t
;
1573 struct bfd_elf_version_expr
*d
;
1575 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
1577 if (t
->globals
.list
!= NULL
)
1579 d
= (*t
->match
) (&t
->globals
, NULL
, h
->root
.root
.string
);
1584 if (t
->locals
.list
!= NULL
)
1586 d
= (*t
->match
) (&t
->locals
, NULL
, h
->root
.root
.string
);
1595 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1606 /* Look through the symbols which are defined in other shared
1607 libraries and referenced here. Update the list of version
1608 dependencies. This will be put into the .gnu.version_r section.
1609 This function is called via elf_link_hash_traverse. */
1612 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1615 struct elf_find_verdep_info
*rinfo
= data
;
1616 Elf_Internal_Verneed
*t
;
1617 Elf_Internal_Vernaux
*a
;
1620 if (h
->root
.type
== bfd_link_hash_warning
)
1621 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1623 /* We only care about symbols defined in shared objects with version
1628 || h
->verinfo
.verdef
== NULL
)
1631 /* See if we already know about this version. */
1632 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1634 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1637 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1638 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1644 /* This is a new version. Add it to tree we are building. */
1649 t
= bfd_zalloc (rinfo
->output_bfd
, amt
);
1652 rinfo
->failed
= TRUE
;
1656 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1657 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
1658 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
1662 a
= bfd_zalloc (rinfo
->output_bfd
, amt
);
1664 /* Note that we are copying a string pointer here, and testing it
1665 above. If bfd_elf_string_from_elf_section is ever changed to
1666 discard the string data when low in memory, this will have to be
1668 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1670 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1671 a
->vna_nextptr
= t
->vn_auxptr
;
1673 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1676 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1683 /* Figure out appropriate versions for all the symbols. We may not
1684 have the version number script until we have read all of the input
1685 files, so until that point we don't know which symbols should be
1686 local. This function is called via elf_link_hash_traverse. */
1689 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1691 struct elf_assign_sym_version_info
*sinfo
;
1692 struct bfd_link_info
*info
;
1693 const struct elf_backend_data
*bed
;
1694 struct elf_info_failed eif
;
1701 if (h
->root
.type
== bfd_link_hash_warning
)
1702 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1704 /* Fix the symbol flags. */
1707 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1710 sinfo
->failed
= TRUE
;
1714 /* We only need version numbers for symbols defined in regular
1716 if (!h
->def_regular
)
1719 bed
= get_elf_backend_data (sinfo
->output_bfd
);
1720 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1721 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1723 struct bfd_elf_version_tree
*t
;
1728 /* There are two consecutive ELF_VER_CHR characters if this is
1729 not a hidden symbol. */
1731 if (*p
== ELF_VER_CHR
)
1737 /* If there is no version string, we can just return out. */
1745 /* Look for the version. If we find it, it is no longer weak. */
1746 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1748 if (strcmp (t
->name
, p
) == 0)
1752 struct bfd_elf_version_expr
*d
;
1754 len
= p
- h
->root
.root
.string
;
1755 alc
= bfd_malloc (len
);
1758 memcpy (alc
, h
->root
.root
.string
, len
- 1);
1759 alc
[len
- 1] = '\0';
1760 if (alc
[len
- 2] == ELF_VER_CHR
)
1761 alc
[len
- 2] = '\0';
1763 h
->verinfo
.vertree
= t
;
1767 if (t
->globals
.list
!= NULL
)
1768 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
1770 /* See if there is anything to force this symbol to
1772 if (d
== NULL
&& t
->locals
.list
!= NULL
)
1774 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
1778 && ! info
->export_dynamic
)
1779 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1787 /* If we are building an application, we need to create a
1788 version node for this version. */
1789 if (t
== NULL
&& info
->executable
)
1791 struct bfd_elf_version_tree
**pp
;
1794 /* If we aren't going to export this symbol, we don't need
1795 to worry about it. */
1796 if (h
->dynindx
== -1)
1800 t
= bfd_zalloc (sinfo
->output_bfd
, amt
);
1803 sinfo
->failed
= TRUE
;
1808 t
->name_indx
= (unsigned int) -1;
1812 /* Don't count anonymous version tag. */
1813 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
1815 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
1817 t
->vernum
= version_index
;
1821 h
->verinfo
.vertree
= t
;
1825 /* We could not find the version for a symbol when
1826 generating a shared archive. Return an error. */
1827 (*_bfd_error_handler
)
1828 (_("%B: undefined versioned symbol name %s"),
1829 sinfo
->output_bfd
, h
->root
.root
.string
);
1830 bfd_set_error (bfd_error_bad_value
);
1831 sinfo
->failed
= TRUE
;
1839 /* If we don't have a version for this symbol, see if we can find
1841 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
1843 struct bfd_elf_version_tree
*t
;
1844 struct bfd_elf_version_tree
*local_ver
;
1845 struct bfd_elf_version_expr
*d
;
1847 /* See if can find what version this symbol is in. If the
1848 symbol is supposed to be local, then don't actually register
1851 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1853 if (t
->globals
.list
!= NULL
)
1855 bfd_boolean matched
;
1859 while ((d
= (*t
->match
) (&t
->globals
, d
,
1860 h
->root
.root
.string
)) != NULL
)
1865 /* There is a version without definition. Make
1866 the symbol the default definition for this
1868 h
->verinfo
.vertree
= t
;
1876 /* There is no undefined version for this symbol. Hide the
1878 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1881 if (t
->locals
.list
!= NULL
)
1884 while ((d
= (*t
->match
) (&t
->locals
, d
,
1885 h
->root
.root
.string
)) != NULL
)
1888 /* If the match is "*", keep looking for a more
1889 explicit, perhaps even global, match.
1890 XXX: Shouldn't this be !d->wildcard instead? */
1891 if (d
->pattern
[0] != '*' || d
->pattern
[1] != '\0')
1900 if (local_ver
!= NULL
)
1902 h
->verinfo
.vertree
= local_ver
;
1903 if (h
->dynindx
!= -1
1905 && ! info
->export_dynamic
)
1907 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1915 /* Read and swap the relocs from the section indicated by SHDR. This
1916 may be either a REL or a RELA section. The relocations are
1917 translated into RELA relocations and stored in INTERNAL_RELOCS,
1918 which should have already been allocated to contain enough space.
1919 The EXTERNAL_RELOCS are a buffer where the external form of the
1920 relocations should be stored.
1922 Returns FALSE if something goes wrong. */
1925 elf_link_read_relocs_from_section (bfd
*abfd
,
1927 Elf_Internal_Shdr
*shdr
,
1928 void *external_relocs
,
1929 Elf_Internal_Rela
*internal_relocs
)
1931 const struct elf_backend_data
*bed
;
1932 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
1933 const bfd_byte
*erela
;
1934 const bfd_byte
*erelaend
;
1935 Elf_Internal_Rela
*irela
;
1936 Elf_Internal_Shdr
*symtab_hdr
;
1939 /* Position ourselves at the start of the section. */
1940 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
1943 /* Read the relocations. */
1944 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
1947 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1948 nsyms
= symtab_hdr
->sh_size
/ symtab_hdr
->sh_entsize
;
1950 bed
= get_elf_backend_data (abfd
);
1952 /* Convert the external relocations to the internal format. */
1953 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
1954 swap_in
= bed
->s
->swap_reloc_in
;
1955 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
1956 swap_in
= bed
->s
->swap_reloca_in
;
1959 bfd_set_error (bfd_error_wrong_format
);
1963 erela
= external_relocs
;
1964 erelaend
= erela
+ shdr
->sh_size
;
1965 irela
= internal_relocs
;
1966 while (erela
< erelaend
)
1970 (*swap_in
) (abfd
, erela
, irela
);
1971 r_symndx
= ELF32_R_SYM (irela
->r_info
);
1972 if (bed
->s
->arch_size
== 64)
1974 if ((size_t) r_symndx
>= nsyms
)
1976 (*_bfd_error_handler
)
1977 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1978 " for offset 0x%lx in section `%A'"),
1980 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
1981 bfd_set_error (bfd_error_bad_value
);
1984 irela
+= bed
->s
->int_rels_per_ext_rel
;
1985 erela
+= shdr
->sh_entsize
;
1991 /* Read and swap the relocs for a section O. They may have been
1992 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1993 not NULL, they are used as buffers to read into. They are known to
1994 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1995 the return value is allocated using either malloc or bfd_alloc,
1996 according to the KEEP_MEMORY argument. If O has two relocation
1997 sections (both REL and RELA relocations), then the REL_HDR
1998 relocations will appear first in INTERNAL_RELOCS, followed by the
1999 REL_HDR2 relocations. */
2002 _bfd_elf_link_read_relocs (bfd
*abfd
,
2004 void *external_relocs
,
2005 Elf_Internal_Rela
*internal_relocs
,
2006 bfd_boolean keep_memory
)
2008 Elf_Internal_Shdr
*rel_hdr
;
2009 void *alloc1
= NULL
;
2010 Elf_Internal_Rela
*alloc2
= NULL
;
2011 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2013 if (elf_section_data (o
)->relocs
!= NULL
)
2014 return elf_section_data (o
)->relocs
;
2016 if (o
->reloc_count
== 0)
2019 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2021 if (internal_relocs
== NULL
)
2025 size
= o
->reloc_count
;
2026 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2028 internal_relocs
= bfd_alloc (abfd
, size
);
2030 internal_relocs
= alloc2
= bfd_malloc (size
);
2031 if (internal_relocs
== NULL
)
2035 if (external_relocs
== NULL
)
2037 bfd_size_type size
= rel_hdr
->sh_size
;
2039 if (elf_section_data (o
)->rel_hdr2
)
2040 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2041 alloc1
= bfd_malloc (size
);
2044 external_relocs
= alloc1
;
2047 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2051 if (elf_section_data (o
)->rel_hdr2
2052 && (!elf_link_read_relocs_from_section
2054 elf_section_data (o
)->rel_hdr2
,
2055 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2056 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2057 * bed
->s
->int_rels_per_ext_rel
))))
2060 /* Cache the results for next time, if we can. */
2062 elf_section_data (o
)->relocs
= internal_relocs
;
2067 /* Don't free alloc2, since if it was allocated we are passing it
2068 back (under the name of internal_relocs). */
2070 return internal_relocs
;
2080 /* Compute the size of, and allocate space for, REL_HDR which is the
2081 section header for a section containing relocations for O. */
2084 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2085 Elf_Internal_Shdr
*rel_hdr
,
2088 bfd_size_type reloc_count
;
2089 bfd_size_type num_rel_hashes
;
2091 /* Figure out how many relocations there will be. */
2092 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2093 reloc_count
= elf_section_data (o
)->rel_count
;
2095 reloc_count
= elf_section_data (o
)->rel_count2
;
2097 num_rel_hashes
= o
->reloc_count
;
2098 if (num_rel_hashes
< reloc_count
)
2099 num_rel_hashes
= reloc_count
;
2101 /* That allows us to calculate the size of the section. */
2102 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2104 /* The contents field must last into write_object_contents, so we
2105 allocate it with bfd_alloc rather than malloc. Also since we
2106 cannot be sure that the contents will actually be filled in,
2107 we zero the allocated space. */
2108 rel_hdr
->contents
= bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2109 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2112 /* We only allocate one set of hash entries, so we only do it the
2113 first time we are called. */
2114 if (elf_section_data (o
)->rel_hashes
== NULL
2117 struct elf_link_hash_entry
**p
;
2119 p
= bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2123 elf_section_data (o
)->rel_hashes
= p
;
2129 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2130 originated from the section given by INPUT_REL_HDR) to the
2134 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2135 asection
*input_section
,
2136 Elf_Internal_Shdr
*input_rel_hdr
,
2137 Elf_Internal_Rela
*internal_relocs
)
2139 Elf_Internal_Rela
*irela
;
2140 Elf_Internal_Rela
*irelaend
;
2142 Elf_Internal_Shdr
*output_rel_hdr
;
2143 asection
*output_section
;
2144 unsigned int *rel_countp
= NULL
;
2145 const struct elf_backend_data
*bed
;
2146 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2148 output_section
= input_section
->output_section
;
2149 output_rel_hdr
= NULL
;
2151 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2152 == input_rel_hdr
->sh_entsize
)
2154 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2155 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2157 else if (elf_section_data (output_section
)->rel_hdr2
2158 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2159 == input_rel_hdr
->sh_entsize
))
2161 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2162 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2166 (*_bfd_error_handler
)
2167 (_("%B: relocation size mismatch in %B section %A"),
2168 output_bfd
, input_section
->owner
, input_section
);
2169 bfd_set_error (bfd_error_wrong_object_format
);
2173 bed
= get_elf_backend_data (output_bfd
);
2174 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2175 swap_out
= bed
->s
->swap_reloc_out
;
2176 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2177 swap_out
= bed
->s
->swap_reloca_out
;
2181 erel
= output_rel_hdr
->contents
;
2182 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2183 irela
= internal_relocs
;
2184 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2185 * bed
->s
->int_rels_per_ext_rel
);
2186 while (irela
< irelaend
)
2188 (*swap_out
) (output_bfd
, irela
, erel
);
2189 irela
+= bed
->s
->int_rels_per_ext_rel
;
2190 erel
+= input_rel_hdr
->sh_entsize
;
2193 /* Bump the counter, so that we know where to add the next set of
2195 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2200 /* Fix up the flags for a symbol. This handles various cases which
2201 can only be fixed after all the input files are seen. This is
2202 currently called by both adjust_dynamic_symbol and
2203 assign_sym_version, which is unnecessary but perhaps more robust in
2204 the face of future changes. */
2207 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2208 struct elf_info_failed
*eif
)
2210 /* If this symbol was mentioned in a non-ELF file, try to set
2211 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2212 permit a non-ELF file to correctly refer to a symbol defined in
2213 an ELF dynamic object. */
2216 while (h
->root
.type
== bfd_link_hash_indirect
)
2217 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2219 if (h
->root
.type
!= bfd_link_hash_defined
2220 && h
->root
.type
!= bfd_link_hash_defweak
)
2223 h
->ref_regular_nonweak
= 1;
2227 if (h
->root
.u
.def
.section
->owner
!= NULL
2228 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2229 == bfd_target_elf_flavour
))
2232 h
->ref_regular_nonweak
= 1;
2238 if (h
->dynindx
== -1
2242 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2251 /* Unfortunately, NON_ELF is only correct if the symbol
2252 was first seen in a non-ELF file. Fortunately, if the symbol
2253 was first seen in an ELF file, we're probably OK unless the
2254 symbol was defined in a non-ELF file. Catch that case here.
2255 FIXME: We're still in trouble if the symbol was first seen in
2256 a dynamic object, and then later in a non-ELF regular object. */
2257 if ((h
->root
.type
== bfd_link_hash_defined
2258 || h
->root
.type
== bfd_link_hash_defweak
)
2260 && (h
->root
.u
.def
.section
->owner
!= NULL
2261 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2262 != bfd_target_elf_flavour
)
2263 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2264 && !h
->def_dynamic
)))
2268 /* If this is a final link, and the symbol was defined as a common
2269 symbol in a regular object file, and there was no definition in
2270 any dynamic object, then the linker will have allocated space for
2271 the symbol in a common section but the DEF_REGULAR
2272 flag will not have been set. */
2273 if (h
->root
.type
== bfd_link_hash_defined
2277 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2280 /* If -Bsymbolic was used (which means to bind references to global
2281 symbols to the definition within the shared object), and this
2282 symbol was defined in a regular object, then it actually doesn't
2283 need a PLT entry. Likewise, if the symbol has non-default
2284 visibility. If the symbol has hidden or internal visibility, we
2285 will force it local. */
2287 && eif
->info
->shared
2288 && is_elf_hash_table (eif
->info
->hash
)
2289 && (eif
->info
->symbolic
2290 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2293 const struct elf_backend_data
*bed
;
2294 bfd_boolean force_local
;
2296 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2298 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2299 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2300 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2303 /* If a weak undefined symbol has non-default visibility, we also
2304 hide it from the dynamic linker. */
2305 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2306 && h
->root
.type
== bfd_link_hash_undefweak
)
2308 const struct elf_backend_data
*bed
;
2309 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2310 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2313 /* If this is a weak defined symbol in a dynamic object, and we know
2314 the real definition in the dynamic object, copy interesting flags
2315 over to the real definition. */
2316 if (h
->u
.weakdef
!= NULL
)
2318 struct elf_link_hash_entry
*weakdef
;
2320 weakdef
= h
->u
.weakdef
;
2321 if (h
->root
.type
== bfd_link_hash_indirect
)
2322 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2324 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2325 || h
->root
.type
== bfd_link_hash_defweak
);
2326 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2327 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2328 BFD_ASSERT (weakdef
->def_dynamic
);
2330 /* If the real definition is defined by a regular object file,
2331 don't do anything special. See the longer description in
2332 _bfd_elf_adjust_dynamic_symbol, below. */
2333 if (weakdef
->def_regular
)
2334 h
->u
.weakdef
= NULL
;
2337 const struct elf_backend_data
*bed
;
2339 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2340 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, weakdef
, h
);
2347 /* Make the backend pick a good value for a dynamic symbol. This is
2348 called via elf_link_hash_traverse, and also calls itself
2352 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2354 struct elf_info_failed
*eif
= data
;
2356 const struct elf_backend_data
*bed
;
2358 if (! is_elf_hash_table (eif
->info
->hash
))
2361 if (h
->root
.type
== bfd_link_hash_warning
)
2363 h
->plt
= elf_hash_table (eif
->info
)->init_offset
;
2364 h
->got
= elf_hash_table (eif
->info
)->init_offset
;
2366 /* When warning symbols are created, they **replace** the "real"
2367 entry in the hash table, thus we never get to see the real
2368 symbol in a hash traversal. So look at it now. */
2369 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2372 /* Ignore indirect symbols. These are added by the versioning code. */
2373 if (h
->root
.type
== bfd_link_hash_indirect
)
2376 /* Fix the symbol flags. */
2377 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2380 /* If this symbol does not require a PLT entry, and it is not
2381 defined by a dynamic object, or is not referenced by a regular
2382 object, ignore it. We do have to handle a weak defined symbol,
2383 even if no regular object refers to it, if we decided to add it
2384 to the dynamic symbol table. FIXME: Do we normally need to worry
2385 about symbols which are defined by one dynamic object and
2386 referenced by another one? */
2391 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2393 h
->plt
= elf_hash_table (eif
->info
)->init_offset
;
2397 /* If we've already adjusted this symbol, don't do it again. This
2398 can happen via a recursive call. */
2399 if (h
->dynamic_adjusted
)
2402 /* Don't look at this symbol again. Note that we must set this
2403 after checking the above conditions, because we may look at a
2404 symbol once, decide not to do anything, and then get called
2405 recursively later after REF_REGULAR is set below. */
2406 h
->dynamic_adjusted
= 1;
2408 /* If this is a weak definition, and we know a real definition, and
2409 the real symbol is not itself defined by a regular object file,
2410 then get a good value for the real definition. We handle the
2411 real symbol first, for the convenience of the backend routine.
2413 Note that there is a confusing case here. If the real definition
2414 is defined by a regular object file, we don't get the real symbol
2415 from the dynamic object, but we do get the weak symbol. If the
2416 processor backend uses a COPY reloc, then if some routine in the
2417 dynamic object changes the real symbol, we will not see that
2418 change in the corresponding weak symbol. This is the way other
2419 ELF linkers work as well, and seems to be a result of the shared
2422 I will clarify this issue. Most SVR4 shared libraries define the
2423 variable _timezone and define timezone as a weak synonym. The
2424 tzset call changes _timezone. If you write
2425 extern int timezone;
2427 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2428 you might expect that, since timezone is a synonym for _timezone,
2429 the same number will print both times. However, if the processor
2430 backend uses a COPY reloc, then actually timezone will be copied
2431 into your process image, and, since you define _timezone
2432 yourself, _timezone will not. Thus timezone and _timezone will
2433 wind up at different memory locations. The tzset call will set
2434 _timezone, leaving timezone unchanged. */
2436 if (h
->u
.weakdef
!= NULL
)
2438 /* If we get to this point, we know there is an implicit
2439 reference by a regular object file via the weak symbol H.
2440 FIXME: Is this really true? What if the traversal finds
2441 H->U.WEAKDEF before it finds H? */
2442 h
->u
.weakdef
->ref_regular
= 1;
2444 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2448 /* If a symbol has no type and no size and does not require a PLT
2449 entry, then we are probably about to do the wrong thing here: we
2450 are probably going to create a COPY reloc for an empty object.
2451 This case can arise when a shared object is built with assembly
2452 code, and the assembly code fails to set the symbol type. */
2454 && h
->type
== STT_NOTYPE
2456 (*_bfd_error_handler
)
2457 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2458 h
->root
.root
.string
);
2460 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2461 bed
= get_elf_backend_data (dynobj
);
2462 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2471 /* Adjust all external symbols pointing into SEC_MERGE sections
2472 to reflect the object merging within the sections. */
2475 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2479 if (h
->root
.type
== bfd_link_hash_warning
)
2480 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2482 if ((h
->root
.type
== bfd_link_hash_defined
2483 || h
->root
.type
== bfd_link_hash_defweak
)
2484 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2485 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2487 bfd
*output_bfd
= data
;
2489 h
->root
.u
.def
.value
=
2490 _bfd_merged_section_offset (output_bfd
,
2491 &h
->root
.u
.def
.section
,
2492 elf_section_data (sec
)->sec_info
,
2493 h
->root
.u
.def
.value
);
2499 /* Returns false if the symbol referred to by H should be considered
2500 to resolve local to the current module, and true if it should be
2501 considered to bind dynamically. */
2504 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2505 struct bfd_link_info
*info
,
2506 bfd_boolean ignore_protected
)
2508 bfd_boolean binding_stays_local_p
;
2513 while (h
->root
.type
== bfd_link_hash_indirect
2514 || h
->root
.type
== bfd_link_hash_warning
)
2515 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2517 /* If it was forced local, then clearly it's not dynamic. */
2518 if (h
->dynindx
== -1)
2520 if (h
->forced_local
)
2523 /* Identify the cases where name binding rules say that a
2524 visible symbol resolves locally. */
2525 binding_stays_local_p
= info
->executable
|| info
->symbolic
;
2527 switch (ELF_ST_VISIBILITY (h
->other
))
2534 /* Proper resolution for function pointer equality may require
2535 that these symbols perhaps be resolved dynamically, even though
2536 we should be resolving them to the current module. */
2537 if (!ignore_protected
|| h
->type
!= STT_FUNC
)
2538 binding_stays_local_p
= TRUE
;
2545 /* If it isn't defined locally, then clearly it's dynamic. */
2546 if (!h
->def_regular
)
2549 /* Otherwise, the symbol is dynamic if binding rules don't tell
2550 us that it remains local. */
2551 return !binding_stays_local_p
;
2554 /* Return true if the symbol referred to by H should be considered
2555 to resolve local to the current module, and false otherwise. Differs
2556 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2557 undefined symbols and weak symbols. */
2560 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2561 struct bfd_link_info
*info
,
2562 bfd_boolean local_protected
)
2564 /* If it's a local sym, of course we resolve locally. */
2568 /* Common symbols that become definitions don't get the DEF_REGULAR
2569 flag set, so test it first, and don't bail out. */
2570 if (ELF_COMMON_DEF_P (h
))
2572 /* If we don't have a definition in a regular file, then we can't
2573 resolve locally. The sym is either undefined or dynamic. */
2574 else if (!h
->def_regular
)
2577 /* Forced local symbols resolve locally. */
2578 if (h
->forced_local
)
2581 /* As do non-dynamic symbols. */
2582 if (h
->dynindx
== -1)
2585 /* At this point, we know the symbol is defined and dynamic. In an
2586 executable it must resolve locally, likewise when building symbolic
2587 shared libraries. */
2588 if (info
->executable
|| info
->symbolic
)
2591 /* Now deal with defined dynamic symbols in shared libraries. Ones
2592 with default visibility might not resolve locally. */
2593 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2596 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2597 if (ELF_ST_VISIBILITY (h
->other
) != STV_PROTECTED
)
2600 /* STV_PROTECTED non-function symbols are local. */
2601 if (h
->type
!= STT_FUNC
)
2604 /* Function pointer equality tests may require that STV_PROTECTED
2605 symbols be treated as dynamic symbols, even when we know that the
2606 dynamic linker will resolve them locally. */
2607 return local_protected
;
2610 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2611 aligned. Returns the first TLS output section. */
2613 struct bfd_section
*
2614 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2616 struct bfd_section
*sec
, *tls
;
2617 unsigned int align
= 0;
2619 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2620 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2624 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2625 if (sec
->alignment_power
> align
)
2626 align
= sec
->alignment_power
;
2628 elf_hash_table (info
)->tls_sec
= tls
;
2630 /* Ensure the alignment of the first section is the largest alignment,
2631 so that the tls segment starts aligned. */
2633 tls
->alignment_power
= align
;
2638 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2640 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2641 Elf_Internal_Sym
*sym
)
2643 /* Local symbols do not count, but target specific ones might. */
2644 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2645 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2648 /* Function symbols do not count. */
2649 if (ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)
2652 /* If the section is undefined, then so is the symbol. */
2653 if (sym
->st_shndx
== SHN_UNDEF
)
2656 /* If the symbol is defined in the common section, then
2657 it is a common definition and so does not count. */
2658 if (sym
->st_shndx
== SHN_COMMON
)
2661 /* If the symbol is in a target specific section then we
2662 must rely upon the backend to tell us what it is. */
2663 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2664 /* FIXME - this function is not coded yet:
2666 return _bfd_is_global_symbol_definition (abfd, sym);
2668 Instead for now assume that the definition is not global,
2669 Even if this is wrong, at least the linker will behave
2670 in the same way that it used to do. */
2676 /* Search the symbol table of the archive element of the archive ABFD
2677 whose archive map contains a mention of SYMDEF, and determine if
2678 the symbol is defined in this element. */
2680 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2682 Elf_Internal_Shdr
* hdr
;
2683 bfd_size_type symcount
;
2684 bfd_size_type extsymcount
;
2685 bfd_size_type extsymoff
;
2686 Elf_Internal_Sym
*isymbuf
;
2687 Elf_Internal_Sym
*isym
;
2688 Elf_Internal_Sym
*isymend
;
2691 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2695 if (! bfd_check_format (abfd
, bfd_object
))
2698 /* If we have already included the element containing this symbol in the
2699 link then we do not need to include it again. Just claim that any symbol
2700 it contains is not a definition, so that our caller will not decide to
2701 (re)include this element. */
2702 if (abfd
->archive_pass
)
2705 /* Select the appropriate symbol table. */
2706 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2707 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2709 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2711 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2713 /* The sh_info field of the symtab header tells us where the
2714 external symbols start. We don't care about the local symbols. */
2715 if (elf_bad_symtab (abfd
))
2717 extsymcount
= symcount
;
2722 extsymcount
= symcount
- hdr
->sh_info
;
2723 extsymoff
= hdr
->sh_info
;
2726 if (extsymcount
== 0)
2729 /* Read in the symbol table. */
2730 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
2732 if (isymbuf
== NULL
)
2735 /* Scan the symbol table looking for SYMDEF. */
2737 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
2741 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
2746 if (strcmp (name
, symdef
->name
) == 0)
2748 result
= is_global_data_symbol_definition (abfd
, isym
);
2758 /* Add an entry to the .dynamic table. */
2761 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
2765 struct elf_link_hash_table
*hash_table
;
2766 const struct elf_backend_data
*bed
;
2768 bfd_size_type newsize
;
2769 bfd_byte
*newcontents
;
2770 Elf_Internal_Dyn dyn
;
2772 hash_table
= elf_hash_table (info
);
2773 if (! is_elf_hash_table (hash_table
))
2776 if (info
->warn_shared_textrel
&& info
->shared
&& tag
== DT_TEXTREL
)
2778 (_("warning: creating a DT_TEXTREL in a shared object."));
2780 bed
= get_elf_backend_data (hash_table
->dynobj
);
2781 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
2782 BFD_ASSERT (s
!= NULL
);
2784 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
2785 newcontents
= bfd_realloc (s
->contents
, newsize
);
2786 if (newcontents
== NULL
)
2790 dyn
.d_un
.d_val
= val
;
2791 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
2794 s
->contents
= newcontents
;
2799 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2800 otherwise just check whether one already exists. Returns -1 on error,
2801 1 if a DT_NEEDED tag already exists, and 0 on success. */
2804 elf_add_dt_needed_tag (bfd
*abfd
,
2805 struct bfd_link_info
*info
,
2809 struct elf_link_hash_table
*hash_table
;
2810 bfd_size_type oldsize
;
2811 bfd_size_type strindex
;
2813 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
2816 hash_table
= elf_hash_table (info
);
2817 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
2818 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
2819 if (strindex
== (bfd_size_type
) -1)
2822 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
2825 const struct elf_backend_data
*bed
;
2828 bed
= get_elf_backend_data (hash_table
->dynobj
);
2829 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
2831 for (extdyn
= sdyn
->contents
;
2832 extdyn
< sdyn
->contents
+ sdyn
->size
;
2833 extdyn
+= bed
->s
->sizeof_dyn
)
2835 Elf_Internal_Dyn dyn
;
2837 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
2838 if (dyn
.d_tag
== DT_NEEDED
2839 && dyn
.d_un
.d_val
== strindex
)
2841 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
2849 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
2852 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
2856 /* We were just checking for existence of the tag. */
2857 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
2862 /* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2863 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
2864 references from regular objects to these symbols.
2866 ??? Should we do something about references from other dynamic
2867 obects? If not, we potentially lose some warnings about undefined
2868 symbols. But how can we recover the initial undefined / undefweak
2871 struct elf_smash_syms_data
2874 struct elf_link_hash_table
*htab
;
2875 bfd_boolean twiddled
;
2879 elf_smash_syms (struct elf_link_hash_entry
*h
, void *data
)
2881 struct elf_smash_syms_data
*inf
= (struct elf_smash_syms_data
*) data
;
2882 struct bfd_link_hash_entry
*bh
;
2884 switch (h
->root
.type
)
2887 case bfd_link_hash_new
:
2890 case bfd_link_hash_undefined
:
2891 if (h
->root
.u
.undef
.abfd
!= inf
->not_needed
)
2893 if (h
->root
.u
.undef
.weak
!= NULL
2894 && h
->root
.u
.undef
.weak
!= inf
->not_needed
)
2896 /* Symbol was undefweak in u.undef.weak bfd, and has become
2897 undefined in as-needed lib. Restore weak. */
2898 h
->root
.type
= bfd_link_hash_undefweak
;
2899 h
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.weak
;
2900 if (h
->root
.u
.undef
.next
!= NULL
2901 || inf
->htab
->root
.undefs_tail
== &h
->root
)
2902 inf
->twiddled
= TRUE
;
2907 case bfd_link_hash_undefweak
:
2908 if (h
->root
.u
.undef
.abfd
!= inf
->not_needed
)
2912 case bfd_link_hash_defined
:
2913 case bfd_link_hash_defweak
:
2914 if (h
->root
.u
.def
.section
->owner
!= inf
->not_needed
)
2918 case bfd_link_hash_common
:
2919 if (h
->root
.u
.c
.p
->section
->owner
!= inf
->not_needed
)
2923 case bfd_link_hash_warning
:
2924 case bfd_link_hash_indirect
:
2925 elf_smash_syms ((struct elf_link_hash_entry
*) h
->root
.u
.i
.link
, data
);
2926 if (h
->root
.u
.i
.link
->type
!= bfd_link_hash_new
)
2928 if (h
->root
.u
.i
.link
->u
.undef
.abfd
!= inf
->not_needed
)
2933 /* There is no way we can undo symbol table state from defined or
2934 defweak back to undefined. */
2938 /* Set sym back to newly created state, but keep undefs list pointer. */
2939 bh
= h
->root
.u
.undef
.next
;
2940 if (bh
!= NULL
|| inf
->htab
->root
.undefs_tail
== &h
->root
)
2941 inf
->twiddled
= TRUE
;
2942 (*inf
->htab
->root
.table
.newfunc
) (&h
->root
.root
,
2943 &inf
->htab
->root
.table
,
2944 h
->root
.root
.string
);
2945 h
->root
.u
.undef
.next
= bh
;
2946 h
->root
.u
.undef
.abfd
= inf
->not_needed
;
2951 /* Sort symbol by value and section. */
2953 elf_sort_symbol (const void *arg1
, const void *arg2
)
2955 const struct elf_link_hash_entry
*h1
;
2956 const struct elf_link_hash_entry
*h2
;
2957 bfd_signed_vma vdiff
;
2959 h1
= *(const struct elf_link_hash_entry
**) arg1
;
2960 h2
= *(const struct elf_link_hash_entry
**) arg2
;
2961 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
2963 return vdiff
> 0 ? 1 : -1;
2966 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
2968 return sdiff
> 0 ? 1 : -1;
2973 /* This function is used to adjust offsets into .dynstr for
2974 dynamic symbols. This is called via elf_link_hash_traverse. */
2977 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
2979 struct elf_strtab_hash
*dynstr
= data
;
2981 if (h
->root
.type
== bfd_link_hash_warning
)
2982 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2984 if (h
->dynindx
!= -1)
2985 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
2989 /* Assign string offsets in .dynstr, update all structures referencing
2993 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
2995 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
2996 struct elf_link_local_dynamic_entry
*entry
;
2997 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
2998 bfd
*dynobj
= hash_table
->dynobj
;
3001 const struct elf_backend_data
*bed
;
3004 _bfd_elf_strtab_finalize (dynstr
);
3005 size
= _bfd_elf_strtab_size (dynstr
);
3007 bed
= get_elf_backend_data (dynobj
);
3008 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3009 BFD_ASSERT (sdyn
!= NULL
);
3011 /* Update all .dynamic entries referencing .dynstr strings. */
3012 for (extdyn
= sdyn
->contents
;
3013 extdyn
< sdyn
->contents
+ sdyn
->size
;
3014 extdyn
+= bed
->s
->sizeof_dyn
)
3016 Elf_Internal_Dyn dyn
;
3018 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3022 dyn
.d_un
.d_val
= size
;
3030 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3035 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3038 /* Now update local dynamic symbols. */
3039 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3040 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3041 entry
->isym
.st_name
);
3043 /* And the rest of dynamic symbols. */
3044 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3046 /* Adjust version definitions. */
3047 if (elf_tdata (output_bfd
)->cverdefs
)
3052 Elf_Internal_Verdef def
;
3053 Elf_Internal_Verdaux defaux
;
3055 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3059 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3061 p
+= sizeof (Elf_External_Verdef
);
3062 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3064 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3066 _bfd_elf_swap_verdaux_in (output_bfd
,
3067 (Elf_External_Verdaux
*) p
, &defaux
);
3068 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3070 _bfd_elf_swap_verdaux_out (output_bfd
,
3071 &defaux
, (Elf_External_Verdaux
*) p
);
3072 p
+= sizeof (Elf_External_Verdaux
);
3075 while (def
.vd_next
);
3078 /* Adjust version references. */
3079 if (elf_tdata (output_bfd
)->verref
)
3084 Elf_Internal_Verneed need
;
3085 Elf_Internal_Vernaux needaux
;
3087 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3091 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3093 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3094 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3095 (Elf_External_Verneed
*) p
);
3096 p
+= sizeof (Elf_External_Verneed
);
3097 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3099 _bfd_elf_swap_vernaux_in (output_bfd
,
3100 (Elf_External_Vernaux
*) p
, &needaux
);
3101 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3103 _bfd_elf_swap_vernaux_out (output_bfd
,
3105 (Elf_External_Vernaux
*) p
);
3106 p
+= sizeof (Elf_External_Vernaux
);
3109 while (need
.vn_next
);
3115 /* Add symbols from an ELF object file to the linker hash table. */
3118 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3120 bfd_boolean (*add_symbol_hook
)
3121 (bfd
*, struct bfd_link_info
*, Elf_Internal_Sym
*,
3122 const char **, flagword
*, asection
**, bfd_vma
*);
3123 bfd_boolean (*check_relocs
)
3124 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
3125 bfd_boolean (*check_directives
)
3126 (bfd
*, struct bfd_link_info
*);
3127 bfd_boolean collect
;
3128 Elf_Internal_Shdr
*hdr
;
3129 bfd_size_type symcount
;
3130 bfd_size_type extsymcount
;
3131 bfd_size_type extsymoff
;
3132 struct elf_link_hash_entry
**sym_hash
;
3133 bfd_boolean dynamic
;
3134 Elf_External_Versym
*extversym
= NULL
;
3135 Elf_External_Versym
*ever
;
3136 struct elf_link_hash_entry
*weaks
;
3137 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3138 bfd_size_type nondeflt_vers_cnt
= 0;
3139 Elf_Internal_Sym
*isymbuf
= NULL
;
3140 Elf_Internal_Sym
*isym
;
3141 Elf_Internal_Sym
*isymend
;
3142 const struct elf_backend_data
*bed
;
3143 bfd_boolean add_needed
;
3144 struct elf_link_hash_table
* hash_table
;
3147 hash_table
= elf_hash_table (info
);
3149 bed
= get_elf_backend_data (abfd
);
3150 add_symbol_hook
= bed
->elf_add_symbol_hook
;
3151 collect
= bed
->collect
;
3153 if ((abfd
->flags
& DYNAMIC
) == 0)
3159 /* You can't use -r against a dynamic object. Also, there's no
3160 hope of using a dynamic object which does not exactly match
3161 the format of the output file. */
3162 if (info
->relocatable
3163 || !is_elf_hash_table (hash_table
)
3164 || hash_table
->root
.creator
!= abfd
->xvec
)
3166 if (info
->relocatable
)
3167 bfd_set_error (bfd_error_invalid_operation
);
3169 bfd_set_error (bfd_error_wrong_format
);
3174 /* As a GNU extension, any input sections which are named
3175 .gnu.warning.SYMBOL are treated as warning symbols for the given
3176 symbol. This differs from .gnu.warning sections, which generate
3177 warnings when they are included in an output file. */
3178 if (info
->executable
)
3182 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3186 name
= bfd_get_section_name (abfd
, s
);
3187 if (strncmp (name
, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3192 name
+= sizeof ".gnu.warning." - 1;
3194 /* If this is a shared object, then look up the symbol
3195 in the hash table. If it is there, and it is already
3196 been defined, then we will not be using the entry
3197 from this shared object, so we don't need to warn.
3198 FIXME: If we see the definition in a regular object
3199 later on, we will warn, but we shouldn't. The only
3200 fix is to keep track of what warnings we are supposed
3201 to emit, and then handle them all at the end of the
3205 struct elf_link_hash_entry
*h
;
3207 h
= elf_link_hash_lookup (hash_table
, name
,
3208 FALSE
, FALSE
, TRUE
);
3210 /* FIXME: What about bfd_link_hash_common? */
3212 && (h
->root
.type
== bfd_link_hash_defined
3213 || h
->root
.type
== bfd_link_hash_defweak
))
3215 /* We don't want to issue this warning. Clobber
3216 the section size so that the warning does not
3217 get copied into the output file. */
3224 msg
= bfd_alloc (abfd
, sz
+ 1);
3228 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3233 if (! (_bfd_generic_link_add_one_symbol
3234 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3235 FALSE
, collect
, NULL
)))
3238 if (! info
->relocatable
)
3240 /* Clobber the section size so that the warning does
3241 not get copied into the output file. */
3244 /* Also set SEC_EXCLUDE, so that symbols defined in
3245 the warning section don't get copied to the output. */
3246 s
->flags
|= SEC_EXCLUDE
;
3255 /* If we are creating a shared library, create all the dynamic
3256 sections immediately. We need to attach them to something,
3257 so we attach them to this BFD, provided it is the right
3258 format. FIXME: If there are no input BFD's of the same
3259 format as the output, we can't make a shared library. */
3261 && is_elf_hash_table (hash_table
)
3262 && hash_table
->root
.creator
== abfd
->xvec
3263 && ! hash_table
->dynamic_sections_created
)
3265 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3269 else if (!is_elf_hash_table (hash_table
))
3274 const char *soname
= NULL
;
3275 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3278 /* ld --just-symbols and dynamic objects don't mix very well.
3279 Test for --just-symbols by looking at info set up by
3280 _bfd_elf_link_just_syms. */
3281 if ((s
= abfd
->sections
) != NULL
3282 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3285 /* If this dynamic lib was specified on the command line with
3286 --as-needed in effect, then we don't want to add a DT_NEEDED
3287 tag unless the lib is actually used. Similary for libs brought
3288 in by another lib's DT_NEEDED. When --no-add-needed is used
3289 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3290 any dynamic library in DT_NEEDED tags in the dynamic lib at
3292 add_needed
= (elf_dyn_lib_class (abfd
)
3293 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3294 | DYN_NO_NEEDED
)) == 0;
3296 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3302 unsigned long shlink
;
3304 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3305 goto error_free_dyn
;
3307 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3309 goto error_free_dyn
;
3310 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3312 for (extdyn
= dynbuf
;
3313 extdyn
< dynbuf
+ s
->size
;
3314 extdyn
+= bed
->s
->sizeof_dyn
)
3316 Elf_Internal_Dyn dyn
;
3318 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3319 if (dyn
.d_tag
== DT_SONAME
)
3321 unsigned int tagv
= dyn
.d_un
.d_val
;
3322 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3324 goto error_free_dyn
;
3326 if (dyn
.d_tag
== DT_NEEDED
)
3328 struct bfd_link_needed_list
*n
, **pn
;
3330 unsigned int tagv
= dyn
.d_un
.d_val
;
3332 amt
= sizeof (struct bfd_link_needed_list
);
3333 n
= bfd_alloc (abfd
, amt
);
3334 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3335 if (n
== NULL
|| fnm
== NULL
)
3336 goto error_free_dyn
;
3337 amt
= strlen (fnm
) + 1;
3338 anm
= bfd_alloc (abfd
, amt
);
3340 goto error_free_dyn
;
3341 memcpy (anm
, fnm
, amt
);
3345 for (pn
= & hash_table
->needed
;
3351 if (dyn
.d_tag
== DT_RUNPATH
)
3353 struct bfd_link_needed_list
*n
, **pn
;
3355 unsigned int tagv
= dyn
.d_un
.d_val
;
3357 amt
= sizeof (struct bfd_link_needed_list
);
3358 n
= bfd_alloc (abfd
, amt
);
3359 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3360 if (n
== NULL
|| fnm
== NULL
)
3361 goto error_free_dyn
;
3362 amt
= strlen (fnm
) + 1;
3363 anm
= bfd_alloc (abfd
, amt
);
3365 goto error_free_dyn
;
3366 memcpy (anm
, fnm
, amt
);
3370 for (pn
= & runpath
;
3376 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3377 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3379 struct bfd_link_needed_list
*n
, **pn
;
3381 unsigned int tagv
= dyn
.d_un
.d_val
;
3383 amt
= sizeof (struct bfd_link_needed_list
);
3384 n
= bfd_alloc (abfd
, amt
);
3385 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3386 if (n
== NULL
|| fnm
== NULL
)
3387 goto error_free_dyn
;
3388 amt
= strlen (fnm
) + 1;
3389 anm
= bfd_alloc (abfd
, amt
);
3396 memcpy (anm
, fnm
, amt
);
3411 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3412 frees all more recently bfd_alloc'd blocks as well. */
3418 struct bfd_link_needed_list
**pn
;
3419 for (pn
= & hash_table
->runpath
;
3426 /* We do not want to include any of the sections in a dynamic
3427 object in the output file. We hack by simply clobbering the
3428 list of sections in the BFD. This could be handled more
3429 cleanly by, say, a new section flag; the existing
3430 SEC_NEVER_LOAD flag is not the one we want, because that one
3431 still implies that the section takes up space in the output
3433 bfd_section_list_clear (abfd
);
3435 /* Find the name to use in a DT_NEEDED entry that refers to this
3436 object. If the object has a DT_SONAME entry, we use it.
3437 Otherwise, if the generic linker stuck something in
3438 elf_dt_name, we use that. Otherwise, we just use the file
3440 if (soname
== NULL
|| *soname
== '\0')
3442 soname
= elf_dt_name (abfd
);
3443 if (soname
== NULL
|| *soname
== '\0')
3444 soname
= bfd_get_filename (abfd
);
3447 /* Save the SONAME because sometimes the linker emulation code
3448 will need to know it. */
3449 elf_dt_name (abfd
) = soname
;
3451 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3455 /* If we have already included this dynamic object in the
3456 link, just ignore it. There is no reason to include a
3457 particular dynamic object more than once. */
3462 /* If this is a dynamic object, we always link against the .dynsym
3463 symbol table, not the .symtab symbol table. The dynamic linker
3464 will only see the .dynsym symbol table, so there is no reason to
3465 look at .symtab for a dynamic object. */
3467 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3468 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3470 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3472 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3474 /* The sh_info field of the symtab header tells us where the
3475 external symbols start. We don't care about the local symbols at
3477 if (elf_bad_symtab (abfd
))
3479 extsymcount
= symcount
;
3484 extsymcount
= symcount
- hdr
->sh_info
;
3485 extsymoff
= hdr
->sh_info
;
3489 if (extsymcount
!= 0)
3491 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3493 if (isymbuf
== NULL
)
3496 /* We store a pointer to the hash table entry for each external
3498 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3499 sym_hash
= bfd_alloc (abfd
, amt
);
3500 if (sym_hash
== NULL
)
3501 goto error_free_sym
;
3502 elf_sym_hashes (abfd
) = sym_hash
;
3507 /* Read in any version definitions. */
3508 if (!_bfd_elf_slurp_version_tables (abfd
,
3509 info
->default_imported_symver
))
3510 goto error_free_sym
;
3512 /* Read in the symbol versions, but don't bother to convert them
3513 to internal format. */
3514 if (elf_dynversym (abfd
) != 0)
3516 Elf_Internal_Shdr
*versymhdr
;
3518 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3519 extversym
= bfd_malloc (versymhdr
->sh_size
);
3520 if (extversym
== NULL
)
3521 goto error_free_sym
;
3522 amt
= versymhdr
->sh_size
;
3523 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3524 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3525 goto error_free_vers
;
3531 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3532 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3534 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3538 asection
*sec
, *new_sec
;
3541 struct elf_link_hash_entry
*h
;
3542 bfd_boolean definition
;
3543 bfd_boolean size_change_ok
;
3544 bfd_boolean type_change_ok
;
3545 bfd_boolean new_weakdef
;
3546 bfd_boolean override
;
3547 unsigned int old_alignment
;
3552 flags
= BSF_NO_FLAGS
;
3554 value
= isym
->st_value
;
3557 bind
= ELF_ST_BIND (isym
->st_info
);
3558 if (bind
== STB_LOCAL
)
3560 /* This should be impossible, since ELF requires that all
3561 global symbols follow all local symbols, and that sh_info
3562 point to the first global symbol. Unfortunately, Irix 5
3566 else if (bind
== STB_GLOBAL
)
3568 if (isym
->st_shndx
!= SHN_UNDEF
3569 && isym
->st_shndx
!= SHN_COMMON
)
3572 else if (bind
== STB_WEAK
)
3576 /* Leave it up to the processor backend. */
3579 if (isym
->st_shndx
== SHN_UNDEF
)
3580 sec
= bfd_und_section_ptr
;
3581 else if (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
3583 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3585 sec
= bfd_abs_section_ptr
;
3586 else if (sec
->kept_section
)
3588 /* Symbols from discarded section are undefined, and have
3589 default visibility. */
3590 sec
= bfd_und_section_ptr
;
3591 isym
->st_shndx
= SHN_UNDEF
;
3592 isym
->st_other
= STV_DEFAULT
3593 | (isym
->st_other
& ~ ELF_ST_VISIBILITY(-1));
3595 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3598 else if (isym
->st_shndx
== SHN_ABS
)
3599 sec
= bfd_abs_section_ptr
;
3600 else if (isym
->st_shndx
== SHN_COMMON
)
3602 sec
= bfd_com_section_ptr
;
3603 /* What ELF calls the size we call the value. What ELF
3604 calls the value we call the alignment. */
3605 value
= isym
->st_size
;
3609 /* Leave it up to the processor backend. */
3612 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3615 goto error_free_vers
;
3617 if (isym
->st_shndx
== SHN_COMMON
3618 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
)
3620 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3624 tcomm
= bfd_make_section (abfd
, ".tcommon");
3626 || !bfd_set_section_flags (abfd
, tcomm
, (SEC_ALLOC
3628 | SEC_LINKER_CREATED
3629 | SEC_THREAD_LOCAL
)))
3630 goto error_free_vers
;
3634 else if (add_symbol_hook
)
3636 if (! (*add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
, &sec
,
3638 goto error_free_vers
;
3640 /* The hook function sets the name to NULL if this symbol
3641 should be skipped for some reason. */
3646 /* Sanity check that all possibilities were handled. */
3649 bfd_set_error (bfd_error_bad_value
);
3650 goto error_free_vers
;
3653 if (bfd_is_und_section (sec
)
3654 || bfd_is_com_section (sec
))
3659 size_change_ok
= FALSE
;
3660 type_change_ok
= get_elf_backend_data (abfd
)->type_change_ok
;
3665 if (is_elf_hash_table (hash_table
))
3667 Elf_Internal_Versym iver
;
3668 unsigned int vernum
= 0;
3673 if (info
->default_imported_symver
)
3674 /* Use the default symbol version created earlier. */
3675 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
3680 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
3682 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
3684 /* If this is a hidden symbol, or if it is not version
3685 1, we append the version name to the symbol name.
3686 However, we do not modify a non-hidden absolute
3687 symbol, because it might be the version symbol
3688 itself. FIXME: What if it isn't? */
3689 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
3690 || (vernum
> 1 && ! bfd_is_abs_section (sec
)))
3693 size_t namelen
, verlen
, newlen
;
3696 if (isym
->st_shndx
!= SHN_UNDEF
)
3698 if (vernum
> elf_tdata (abfd
)->cverdefs
)
3700 else if (vernum
> 1)
3702 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
3708 (*_bfd_error_handler
)
3709 (_("%B: %s: invalid version %u (max %d)"),
3711 elf_tdata (abfd
)->cverdefs
);
3712 bfd_set_error (bfd_error_bad_value
);
3713 goto error_free_vers
;
3718 /* We cannot simply test for the number of
3719 entries in the VERNEED section since the
3720 numbers for the needed versions do not start
3722 Elf_Internal_Verneed
*t
;
3725 for (t
= elf_tdata (abfd
)->verref
;
3729 Elf_Internal_Vernaux
*a
;
3731 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3733 if (a
->vna_other
== vernum
)
3735 verstr
= a
->vna_nodename
;
3744 (*_bfd_error_handler
)
3745 (_("%B: %s: invalid needed version %d"),
3746 abfd
, name
, vernum
);
3747 bfd_set_error (bfd_error_bad_value
);
3748 goto error_free_vers
;
3752 namelen
= strlen (name
);
3753 verlen
= strlen (verstr
);
3754 newlen
= namelen
+ verlen
+ 2;
3755 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
3756 && isym
->st_shndx
!= SHN_UNDEF
)
3759 newname
= bfd_alloc (abfd
, newlen
);
3760 if (newname
== NULL
)
3761 goto error_free_vers
;
3762 memcpy (newname
, name
, namelen
);
3763 p
= newname
+ namelen
;
3765 /* If this is a defined non-hidden version symbol,
3766 we add another @ to the name. This indicates the
3767 default version of the symbol. */
3768 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
3769 && isym
->st_shndx
!= SHN_UNDEF
)
3771 memcpy (p
, verstr
, verlen
+ 1);
3776 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
3777 &value
, &old_alignment
,
3778 sym_hash
, &skip
, &override
,
3779 &type_change_ok
, &size_change_ok
))
3780 goto error_free_vers
;
3789 while (h
->root
.type
== bfd_link_hash_indirect
3790 || h
->root
.type
== bfd_link_hash_warning
)
3791 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3793 /* Remember the old alignment if this is a common symbol, so
3794 that we don't reduce the alignment later on. We can't
3795 check later, because _bfd_generic_link_add_one_symbol
3796 will set a default for the alignment which we want to
3797 override. We also remember the old bfd where the existing
3798 definition comes from. */
3799 switch (h
->root
.type
)
3804 case bfd_link_hash_defined
:
3805 case bfd_link_hash_defweak
:
3806 old_bfd
= h
->root
.u
.def
.section
->owner
;
3809 case bfd_link_hash_common
:
3810 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
3811 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
3815 if (elf_tdata (abfd
)->verdef
!= NULL
3819 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
3822 if (! (_bfd_generic_link_add_one_symbol
3823 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, collect
,
3824 (struct bfd_link_hash_entry
**) sym_hash
)))
3825 goto error_free_vers
;
3828 while (h
->root
.type
== bfd_link_hash_indirect
3829 || h
->root
.type
== bfd_link_hash_warning
)
3830 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3833 new_weakdef
= FALSE
;
3836 && (flags
& BSF_WEAK
) != 0
3837 && ELF_ST_TYPE (isym
->st_info
) != STT_FUNC
3838 && is_elf_hash_table (hash_table
)
3839 && h
->u
.weakdef
== NULL
)
3841 /* Keep a list of all weak defined non function symbols from
3842 a dynamic object, using the weakdef field. Later in this
3843 function we will set the weakdef field to the correct
3844 value. We only put non-function symbols from dynamic
3845 objects on this list, because that happens to be the only
3846 time we need to know the normal symbol corresponding to a
3847 weak symbol, and the information is time consuming to
3848 figure out. If the weakdef field is not already NULL,
3849 then this symbol was already defined by some previous
3850 dynamic object, and we will be using that previous
3851 definition anyhow. */
3853 h
->u
.weakdef
= weaks
;
3858 /* Set the alignment of a common symbol. */
3859 if ((isym
->st_shndx
== SHN_COMMON
3860 || bfd_is_com_section (sec
))
3861 && h
->root
.type
== bfd_link_hash_common
)
3865 if (isym
->st_shndx
== SHN_COMMON
)
3866 align
= bfd_log2 (isym
->st_value
);
3869 /* The new symbol is a common symbol in a shared object.
3870 We need to get the alignment from the section. */
3871 align
= new_sec
->alignment_power
;
3873 if (align
> old_alignment
3874 /* Permit an alignment power of zero if an alignment of one
3875 is specified and no other alignments have been specified. */
3876 || (isym
->st_value
== 1 && old_alignment
== 0))
3877 h
->root
.u
.c
.p
->alignment_power
= align
;
3879 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
3882 if (is_elf_hash_table (hash_table
))
3886 /* Check the alignment when a common symbol is involved. This
3887 can change when a common symbol is overridden by a normal
3888 definition or a common symbol is ignored due to the old
3889 normal definition. We need to make sure the maximum
3890 alignment is maintained. */
3891 if ((old_alignment
|| isym
->st_shndx
== SHN_COMMON
)
3892 && h
->root
.type
!= bfd_link_hash_common
)
3894 unsigned int common_align
;
3895 unsigned int normal_align
;
3896 unsigned int symbol_align
;
3900 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
3901 if (h
->root
.u
.def
.section
->owner
!= NULL
3902 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
3904 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
3905 if (normal_align
> symbol_align
)
3906 normal_align
= symbol_align
;
3909 normal_align
= symbol_align
;
3913 common_align
= old_alignment
;
3914 common_bfd
= old_bfd
;
3919 common_align
= bfd_log2 (isym
->st_value
);
3921 normal_bfd
= old_bfd
;
3924 if (normal_align
< common_align
)
3925 (*_bfd_error_handler
)
3926 (_("Warning: alignment %u of symbol `%s' in %B"
3927 " is smaller than %u in %B"),
3928 normal_bfd
, common_bfd
,
3929 1 << normal_align
, name
, 1 << common_align
);
3932 /* Remember the symbol size and type. */
3933 if (isym
->st_size
!= 0
3934 && (definition
|| h
->size
== 0))
3936 if (h
->size
!= 0 && h
->size
!= isym
->st_size
&& ! size_change_ok
)
3937 (*_bfd_error_handler
)
3938 (_("Warning: size of symbol `%s' changed"
3939 " from %lu in %B to %lu in %B"),
3941 name
, (unsigned long) h
->size
,
3942 (unsigned long) isym
->st_size
);
3944 h
->size
= isym
->st_size
;
3947 /* If this is a common symbol, then we always want H->SIZE
3948 to be the size of the common symbol. The code just above
3949 won't fix the size if a common symbol becomes larger. We
3950 don't warn about a size change here, because that is
3951 covered by --warn-common. */
3952 if (h
->root
.type
== bfd_link_hash_common
)
3953 h
->size
= h
->root
.u
.c
.size
;
3955 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
3956 && (definition
|| h
->type
== STT_NOTYPE
))
3958 if (h
->type
!= STT_NOTYPE
3959 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
3960 && ! type_change_ok
)
3961 (*_bfd_error_handler
)
3962 (_("Warning: type of symbol `%s' changed"
3963 " from %d to %d in %B"),
3964 abfd
, name
, h
->type
, ELF_ST_TYPE (isym
->st_info
));
3966 h
->type
= ELF_ST_TYPE (isym
->st_info
);
3969 /* If st_other has a processor-specific meaning, specific
3970 code might be needed here. We never merge the visibility
3971 attribute with the one from a dynamic object. */
3972 if (bed
->elf_backend_merge_symbol_attribute
)
3973 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
3976 /* If this symbol has default visibility and the user has requested
3977 we not re-export it, then mark it as hidden. */
3978 if (definition
&& !dynamic
3980 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
3981 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
3982 isym
->st_other
= STV_HIDDEN
| (isym
->st_other
& ~ ELF_ST_VISIBILITY (-1));
3984 if (isym
->st_other
!= 0 && !dynamic
)
3986 unsigned char hvis
, symvis
, other
, nvis
;
3988 /* Take the balance of OTHER from the definition. */
3989 other
= (definition
? isym
->st_other
: h
->other
);
3990 other
&= ~ ELF_ST_VISIBILITY (-1);
3992 /* Combine visibilities, using the most constraining one. */
3993 hvis
= ELF_ST_VISIBILITY (h
->other
);
3994 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
4000 nvis
= hvis
< symvis
? hvis
: symvis
;
4002 h
->other
= other
| nvis
;
4005 /* Set a flag in the hash table entry indicating the type of
4006 reference or definition we just found. Keep a count of
4007 the number of dynamic symbols we find. A dynamic symbol
4008 is one which is referenced or defined by both a regular
4009 object and a shared object. */
4016 if (bind
!= STB_WEAK
)
4017 h
->ref_regular_nonweak
= 1;
4021 if (! info
->executable
4034 || (h
->u
.weakdef
!= NULL
4036 && h
->u
.weakdef
->dynindx
!= -1))
4040 /* Check to see if we need to add an indirect symbol for
4041 the default name. */
4042 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4043 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4044 &sec
, &value
, &dynsym
,
4046 goto error_free_vers
;
4048 if (definition
&& !dynamic
)
4050 char *p
= strchr (name
, ELF_VER_CHR
);
4051 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4053 /* Queue non-default versions so that .symver x, x@FOO
4054 aliases can be checked. */
4055 if (! nondeflt_vers
)
4057 amt
= (isymend
- isym
+ 1)
4058 * sizeof (struct elf_link_hash_entry
*);
4059 nondeflt_vers
= bfd_malloc (amt
);
4061 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4065 if (dynsym
&& h
->dynindx
== -1)
4067 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4068 goto error_free_vers
;
4069 if (h
->u
.weakdef
!= NULL
4071 && h
->u
.weakdef
->dynindx
== -1)
4073 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4074 goto error_free_vers
;
4077 else if (dynsym
&& h
->dynindx
!= -1)
4078 /* If the symbol already has a dynamic index, but
4079 visibility says it should not be visible, turn it into
4081 switch (ELF_ST_VISIBILITY (h
->other
))
4085 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4096 const char *soname
= elf_dt_name (abfd
);
4098 /* A symbol from a library loaded via DT_NEEDED of some
4099 other library is referenced by a regular object.
4100 Add a DT_NEEDED entry for it. Issue an error if
4101 --no-add-needed is used. */
4102 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4104 (*_bfd_error_handler
)
4105 (_("%s: invalid DSO for symbol `%s' definition"),
4107 bfd_set_error (bfd_error_bad_value
);
4108 goto error_free_vers
;
4111 elf_dyn_lib_class (abfd
) &= ~DYN_AS_NEEDED
;
4114 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4116 goto error_free_vers
;
4118 BFD_ASSERT (ret
== 0);
4123 /* Now that all the symbols from this input file are created, handle
4124 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4125 if (nondeflt_vers
!= NULL
)
4127 bfd_size_type cnt
, symidx
;
4129 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4131 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4132 char *shortname
, *p
;
4134 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4136 || (h
->root
.type
!= bfd_link_hash_defined
4137 && h
->root
.type
!= bfd_link_hash_defweak
))
4140 amt
= p
- h
->root
.root
.string
;
4141 shortname
= bfd_malloc (amt
+ 1);
4142 memcpy (shortname
, h
->root
.root
.string
, amt
);
4143 shortname
[amt
] = '\0';
4145 hi
= (struct elf_link_hash_entry
*)
4146 bfd_link_hash_lookup (&hash_table
->root
, shortname
,
4147 FALSE
, FALSE
, FALSE
);
4149 && hi
->root
.type
== h
->root
.type
4150 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4151 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4153 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4154 hi
->root
.type
= bfd_link_hash_indirect
;
4155 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4156 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, h
, hi
);
4157 sym_hash
= elf_sym_hashes (abfd
);
4159 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4160 if (sym_hash
[symidx
] == hi
)
4162 sym_hash
[symidx
] = h
;
4168 free (nondeflt_vers
);
4169 nondeflt_vers
= NULL
;
4172 if (extversym
!= NULL
)
4178 if (isymbuf
!= NULL
)
4183 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4185 /* Remove symbols defined in an as-needed shared lib that wasn't
4187 struct elf_smash_syms_data inf
;
4188 inf
.not_needed
= abfd
;
4189 inf
.htab
= hash_table
;
4190 inf
.twiddled
= FALSE
;
4191 elf_link_hash_traverse (hash_table
, elf_smash_syms
, &inf
);
4193 bfd_link_repair_undef_list (&hash_table
->root
);
4197 /* Now set the weakdefs field correctly for all the weak defined
4198 symbols we found. The only way to do this is to search all the
4199 symbols. Since we only need the information for non functions in
4200 dynamic objects, that's the only time we actually put anything on
4201 the list WEAKS. We need this information so that if a regular
4202 object refers to a symbol defined weakly in a dynamic object, the
4203 real symbol in the dynamic object is also put in the dynamic
4204 symbols; we also must arrange for both symbols to point to the
4205 same memory location. We could handle the general case of symbol
4206 aliasing, but a general symbol alias can only be generated in
4207 assembler code, handling it correctly would be very time
4208 consuming, and other ELF linkers don't handle general aliasing
4212 struct elf_link_hash_entry
**hpp
;
4213 struct elf_link_hash_entry
**hppend
;
4214 struct elf_link_hash_entry
**sorted_sym_hash
;
4215 struct elf_link_hash_entry
*h
;
4218 /* Since we have to search the whole symbol list for each weak
4219 defined symbol, search time for N weak defined symbols will be
4220 O(N^2). Binary search will cut it down to O(NlogN). */
4221 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4222 sorted_sym_hash
= bfd_malloc (amt
);
4223 if (sorted_sym_hash
== NULL
)
4225 sym_hash
= sorted_sym_hash
;
4226 hpp
= elf_sym_hashes (abfd
);
4227 hppend
= hpp
+ extsymcount
;
4229 for (; hpp
< hppend
; hpp
++)
4233 && h
->root
.type
== bfd_link_hash_defined
4234 && h
->type
!= STT_FUNC
)
4242 qsort (sorted_sym_hash
, sym_count
,
4243 sizeof (struct elf_link_hash_entry
*),
4246 while (weaks
!= NULL
)
4248 struct elf_link_hash_entry
*hlook
;
4255 weaks
= hlook
->u
.weakdef
;
4256 hlook
->u
.weakdef
= NULL
;
4258 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4259 || hlook
->root
.type
== bfd_link_hash_defweak
4260 || hlook
->root
.type
== bfd_link_hash_common
4261 || hlook
->root
.type
== bfd_link_hash_indirect
);
4262 slook
= hlook
->root
.u
.def
.section
;
4263 vlook
= hlook
->root
.u
.def
.value
;
4270 bfd_signed_vma vdiff
;
4272 h
= sorted_sym_hash
[idx
];
4273 vdiff
= vlook
- h
->root
.u
.def
.value
;
4280 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4293 /* We didn't find a value/section match. */
4297 for (i
= ilook
; i
< sym_count
; i
++)
4299 h
= sorted_sym_hash
[i
];
4301 /* Stop if value or section doesn't match. */
4302 if (h
->root
.u
.def
.value
!= vlook
4303 || h
->root
.u
.def
.section
!= slook
)
4305 else if (h
!= hlook
)
4307 hlook
->u
.weakdef
= h
;
4309 /* If the weak definition is in the list of dynamic
4310 symbols, make sure the real definition is put
4312 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4314 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4318 /* If the real definition is in the list of dynamic
4319 symbols, make sure the weak definition is put
4320 there as well. If we don't do this, then the
4321 dynamic loader might not merge the entries for the
4322 real definition and the weak definition. */
4323 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4325 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4333 free (sorted_sym_hash
);
4336 check_directives
= get_elf_backend_data (abfd
)->check_directives
;
4337 if (check_directives
)
4338 check_directives (abfd
, info
);
4340 /* If this object is the same format as the output object, and it is
4341 not a shared library, then let the backend look through the
4344 This is required to build global offset table entries and to
4345 arrange for dynamic relocs. It is not required for the
4346 particular common case of linking non PIC code, even when linking
4347 against shared libraries, but unfortunately there is no way of
4348 knowing whether an object file has been compiled PIC or not.
4349 Looking through the relocs is not particularly time consuming.
4350 The problem is that we must either (1) keep the relocs in memory,
4351 which causes the linker to require additional runtime memory or
4352 (2) read the relocs twice from the input file, which wastes time.
4353 This would be a good case for using mmap.
4355 I have no idea how to handle linking PIC code into a file of a
4356 different format. It probably can't be done. */
4357 check_relocs
= get_elf_backend_data (abfd
)->check_relocs
;
4359 && is_elf_hash_table (hash_table
)
4360 && hash_table
->root
.creator
== abfd
->xvec
4361 && check_relocs
!= NULL
)
4365 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4367 Elf_Internal_Rela
*internal_relocs
;
4370 if ((o
->flags
& SEC_RELOC
) == 0
4371 || o
->reloc_count
== 0
4372 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4373 && (o
->flags
& SEC_DEBUGGING
) != 0)
4374 || bfd_is_abs_section (o
->output_section
))
4377 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4379 if (internal_relocs
== NULL
)
4382 ok
= (*check_relocs
) (abfd
, info
, o
, internal_relocs
);
4384 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4385 free (internal_relocs
);
4392 /* If this is a non-traditional link, try to optimize the handling
4393 of the .stab/.stabstr sections. */
4395 && ! info
->traditional_format
4396 && is_elf_hash_table (hash_table
)
4397 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4401 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4402 if (stabstr
!= NULL
)
4404 bfd_size_type string_offset
= 0;
4407 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4408 if (strncmp (".stab", stab
->name
, 5) == 0
4409 && (!stab
->name
[5] ||
4410 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4411 && (stab
->flags
& SEC_MERGE
) == 0
4412 && !bfd_is_abs_section (stab
->output_section
))
4414 struct bfd_elf_section_data
*secdata
;
4416 secdata
= elf_section_data (stab
);
4417 if (! _bfd_link_section_stabs (abfd
,
4418 &hash_table
->stab_info
,
4423 if (secdata
->sec_info
)
4424 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4429 if (is_elf_hash_table (hash_table
) && add_needed
)
4431 /* Add this bfd to the loaded list. */
4432 struct elf_link_loaded_list
*n
;
4434 n
= bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4438 n
->next
= hash_table
->loaded
;
4439 hash_table
->loaded
= n
;
4445 if (nondeflt_vers
!= NULL
)
4446 free (nondeflt_vers
);
4447 if (extversym
!= NULL
)
4450 if (isymbuf
!= NULL
)
4456 /* Return the linker hash table entry of a symbol that might be
4457 satisfied by an archive symbol. Return -1 on error. */
4459 struct elf_link_hash_entry
*
4460 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4461 struct bfd_link_info
*info
,
4464 struct elf_link_hash_entry
*h
;
4468 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4472 /* If this is a default version (the name contains @@), look up the
4473 symbol again with only one `@' as well as without the version.
4474 The effect is that references to the symbol with and without the
4475 version will be matched by the default symbol in the archive. */
4477 p
= strchr (name
, ELF_VER_CHR
);
4478 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4481 /* First check with only one `@'. */
4482 len
= strlen (name
);
4483 copy
= bfd_alloc (abfd
, len
);
4485 return (struct elf_link_hash_entry
*) 0 - 1;
4487 first
= p
- name
+ 1;
4488 memcpy (copy
, name
, first
);
4489 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4491 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4494 /* We also need to check references to the symbol without the
4496 copy
[first
- 1] = '\0';
4497 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4498 FALSE
, FALSE
, FALSE
);
4501 bfd_release (abfd
, copy
);
4505 /* Add symbols from an ELF archive file to the linker hash table. We
4506 don't use _bfd_generic_link_add_archive_symbols because of a
4507 problem which arises on UnixWare. The UnixWare libc.so is an
4508 archive which includes an entry libc.so.1 which defines a bunch of
4509 symbols. The libc.so archive also includes a number of other
4510 object files, which also define symbols, some of which are the same
4511 as those defined in libc.so.1. Correct linking requires that we
4512 consider each object file in turn, and include it if it defines any
4513 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4514 this; it looks through the list of undefined symbols, and includes
4515 any object file which defines them. When this algorithm is used on
4516 UnixWare, it winds up pulling in libc.so.1 early and defining a
4517 bunch of symbols. This means that some of the other objects in the
4518 archive are not included in the link, which is incorrect since they
4519 precede libc.so.1 in the archive.
4521 Fortunately, ELF archive handling is simpler than that done by
4522 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4523 oddities. In ELF, if we find a symbol in the archive map, and the
4524 symbol is currently undefined, we know that we must pull in that
4527 Unfortunately, we do have to make multiple passes over the symbol
4528 table until nothing further is resolved. */
4531 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4534 bfd_boolean
*defined
= NULL
;
4535 bfd_boolean
*included
= NULL
;
4539 const struct elf_backend_data
*bed
;
4540 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4541 (bfd
*, struct bfd_link_info
*, const char *);
4543 if (! bfd_has_map (abfd
))
4545 /* An empty archive is a special case. */
4546 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4548 bfd_set_error (bfd_error_no_armap
);
4552 /* Keep track of all symbols we know to be already defined, and all
4553 files we know to be already included. This is to speed up the
4554 second and subsequent passes. */
4555 c
= bfd_ardata (abfd
)->symdef_count
;
4559 amt
*= sizeof (bfd_boolean
);
4560 defined
= bfd_zmalloc (amt
);
4561 included
= bfd_zmalloc (amt
);
4562 if (defined
== NULL
|| included
== NULL
)
4565 symdefs
= bfd_ardata (abfd
)->symdefs
;
4566 bed
= get_elf_backend_data (abfd
);
4567 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
4580 symdefend
= symdef
+ c
;
4581 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
4583 struct elf_link_hash_entry
*h
;
4585 struct bfd_link_hash_entry
*undefs_tail
;
4588 if (defined
[i
] || included
[i
])
4590 if (symdef
->file_offset
== last
)
4596 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
4597 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
4603 if (h
->root
.type
== bfd_link_hash_common
)
4605 /* We currently have a common symbol. The archive map contains
4606 a reference to this symbol, so we may want to include it. We
4607 only want to include it however, if this archive element
4608 contains a definition of the symbol, not just another common
4611 Unfortunately some archivers (including GNU ar) will put
4612 declarations of common symbols into their archive maps, as
4613 well as real definitions, so we cannot just go by the archive
4614 map alone. Instead we must read in the element's symbol
4615 table and check that to see what kind of symbol definition
4617 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
4620 else if (h
->root
.type
!= bfd_link_hash_undefined
)
4622 if (h
->root
.type
!= bfd_link_hash_undefweak
)
4627 /* We need to include this archive member. */
4628 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
4629 if (element
== NULL
)
4632 if (! bfd_check_format (element
, bfd_object
))
4635 /* Doublecheck that we have not included this object
4636 already--it should be impossible, but there may be
4637 something wrong with the archive. */
4638 if (element
->archive_pass
!= 0)
4640 bfd_set_error (bfd_error_bad_value
);
4643 element
->archive_pass
= 1;
4645 undefs_tail
= info
->hash
->undefs_tail
;
4647 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
4650 if (! bfd_link_add_symbols (element
, info
))
4653 /* If there are any new undefined symbols, we need to make
4654 another pass through the archive in order to see whether
4655 they can be defined. FIXME: This isn't perfect, because
4656 common symbols wind up on undefs_tail and because an
4657 undefined symbol which is defined later on in this pass
4658 does not require another pass. This isn't a bug, but it
4659 does make the code less efficient than it could be. */
4660 if (undefs_tail
!= info
->hash
->undefs_tail
)
4663 /* Look backward to mark all symbols from this object file
4664 which we have already seen in this pass. */
4668 included
[mark
] = TRUE
;
4673 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
4675 /* We mark subsequent symbols from this object file as we go
4676 on through the loop. */
4677 last
= symdef
->file_offset
;
4688 if (defined
!= NULL
)
4690 if (included
!= NULL
)
4695 /* Given an ELF BFD, add symbols to the global hash table as
4699 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4701 switch (bfd_get_format (abfd
))
4704 return elf_link_add_object_symbols (abfd
, info
);
4706 return elf_link_add_archive_symbols (abfd
, info
);
4708 bfd_set_error (bfd_error_wrong_format
);
4713 /* This function will be called though elf_link_hash_traverse to store
4714 all hash value of the exported symbols in an array. */
4717 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
4719 unsigned long **valuep
= data
;
4725 if (h
->root
.type
== bfd_link_hash_warning
)
4726 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4728 /* Ignore indirect symbols. These are added by the versioning code. */
4729 if (h
->dynindx
== -1)
4732 name
= h
->root
.root
.string
;
4733 p
= strchr (name
, ELF_VER_CHR
);
4736 alc
= bfd_malloc (p
- name
+ 1);
4737 memcpy (alc
, name
, p
- name
);
4738 alc
[p
- name
] = '\0';
4742 /* Compute the hash value. */
4743 ha
= bfd_elf_hash (name
);
4745 /* Store the found hash value in the array given as the argument. */
4748 /* And store it in the struct so that we can put it in the hash table
4750 h
->u
.elf_hash_value
= ha
;
4758 /* Array used to determine the number of hash table buckets to use
4759 based on the number of symbols there are. If there are fewer than
4760 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4761 fewer than 37 we use 17 buckets, and so forth. We never use more
4762 than 32771 buckets. */
4764 static const size_t elf_buckets
[] =
4766 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4770 /* Compute bucket count for hashing table. We do not use a static set
4771 of possible tables sizes anymore. Instead we determine for all
4772 possible reasonable sizes of the table the outcome (i.e., the
4773 number of collisions etc) and choose the best solution. The
4774 weighting functions are not too simple to allow the table to grow
4775 without bounds. Instead one of the weighting factors is the size.
4776 Therefore the result is always a good payoff between few collisions
4777 (= short chain lengths) and table size. */
4779 compute_bucket_count (struct bfd_link_info
*info
)
4781 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
4782 size_t best_size
= 0;
4783 unsigned long int *hashcodes
;
4784 unsigned long int *hashcodesp
;
4785 unsigned long int i
;
4788 /* Compute the hash values for all exported symbols. At the same
4789 time store the values in an array so that we could use them for
4792 amt
*= sizeof (unsigned long int);
4793 hashcodes
= bfd_malloc (amt
);
4794 if (hashcodes
== NULL
)
4796 hashcodesp
= hashcodes
;
4798 /* Put all hash values in HASHCODES. */
4799 elf_link_hash_traverse (elf_hash_table (info
),
4800 elf_collect_hash_codes
, &hashcodesp
);
4802 /* We have a problem here. The following code to optimize the table
4803 size requires an integer type with more the 32 bits. If
4804 BFD_HOST_U_64_BIT is set we know about such a type. */
4805 #ifdef BFD_HOST_U_64_BIT
4808 unsigned long int nsyms
= hashcodesp
- hashcodes
;
4811 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
4812 unsigned long int *counts
;
4813 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
4814 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
4816 /* Possible optimization parameters: if we have NSYMS symbols we say
4817 that the hashing table must at least have NSYMS/4 and at most
4819 minsize
= nsyms
/ 4;
4822 best_size
= maxsize
= nsyms
* 2;
4824 /* Create array where we count the collisions in. We must use bfd_malloc
4825 since the size could be large. */
4827 amt
*= sizeof (unsigned long int);
4828 counts
= bfd_malloc (amt
);
4835 /* Compute the "optimal" size for the hash table. The criteria is a
4836 minimal chain length. The minor criteria is (of course) the size
4838 for (i
= minsize
; i
< maxsize
; ++i
)
4840 /* Walk through the array of hashcodes and count the collisions. */
4841 BFD_HOST_U_64_BIT max
;
4842 unsigned long int j
;
4843 unsigned long int fact
;
4845 memset (counts
, '\0', i
* sizeof (unsigned long int));
4847 /* Determine how often each hash bucket is used. */
4848 for (j
= 0; j
< nsyms
; ++j
)
4849 ++counts
[hashcodes
[j
] % i
];
4851 /* For the weight function we need some information about the
4852 pagesize on the target. This is information need not be 100%
4853 accurate. Since this information is not available (so far) we
4854 define it here to a reasonable default value. If it is crucial
4855 to have a better value some day simply define this value. */
4856 # ifndef BFD_TARGET_PAGESIZE
4857 # define BFD_TARGET_PAGESIZE (4096)
4860 /* We in any case need 2 + NSYMS entries for the size values and
4862 max
= (2 + nsyms
) * (bed
->s
->arch_size
/ 8);
4865 /* Variant 1: optimize for short chains. We add the squares
4866 of all the chain lengths (which favors many small chain
4867 over a few long chains). */
4868 for (j
= 0; j
< i
; ++j
)
4869 max
+= counts
[j
] * counts
[j
];
4871 /* This adds penalties for the overall size of the table. */
4872 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (bed
->s
->arch_size
/ 8)) + 1;
4875 /* Variant 2: Optimize a lot more for small table. Here we
4876 also add squares of the size but we also add penalties for
4877 empty slots (the +1 term). */
4878 for (j
= 0; j
< i
; ++j
)
4879 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
4881 /* The overall size of the table is considered, but not as
4882 strong as in variant 1, where it is squared. */
4883 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (bed
->s
->arch_size
/ 8)) + 1;
4887 /* Compare with current best results. */
4888 if (max
< best_chlen
)
4898 #endif /* defined (BFD_HOST_U_64_BIT) */
4900 /* This is the fallback solution if no 64bit type is available or if we
4901 are not supposed to spend much time on optimizations. We select the
4902 bucket count using a fixed set of numbers. */
4903 for (i
= 0; elf_buckets
[i
] != 0; i
++)
4905 best_size
= elf_buckets
[i
];
4906 if (dynsymcount
< elf_buckets
[i
+ 1])
4911 /* Free the arrays we needed. */
4917 /* Set up the sizes and contents of the ELF dynamic sections. This is
4918 called by the ELF linker emulation before_allocation routine. We
4919 must set the sizes of the sections before the linker sets the
4920 addresses of the various sections. */
4923 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
4926 const char *filter_shlib
,
4927 const char * const *auxiliary_filters
,
4928 struct bfd_link_info
*info
,
4929 asection
**sinterpptr
,
4930 struct bfd_elf_version_tree
*verdefs
)
4932 bfd_size_type soname_indx
;
4934 const struct elf_backend_data
*bed
;
4935 struct elf_assign_sym_version_info asvinfo
;
4939 soname_indx
= (bfd_size_type
) -1;
4941 if (!is_elf_hash_table (info
->hash
))
4944 elf_tdata (output_bfd
)->relro
= info
->relro
;
4945 if (info
->execstack
)
4946 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
4947 else if (info
->noexecstack
)
4948 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
4952 asection
*notesec
= NULL
;
4955 for (inputobj
= info
->input_bfds
;
4957 inputobj
= inputobj
->link_next
)
4961 if (inputobj
->flags
& (DYNAMIC
| BFD_LINKER_CREATED
))
4963 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
4966 if (s
->flags
& SEC_CODE
)
4975 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
4976 if (exec
&& info
->relocatable
4977 && notesec
->output_section
!= bfd_abs_section_ptr
)
4978 notesec
->output_section
->flags
|= SEC_CODE
;
4982 /* Any syms created from now on start with -1 in
4983 got.refcount/offset and plt.refcount/offset. */
4984 elf_hash_table (info
)->init_refcount
= elf_hash_table (info
)->init_offset
;
4986 /* The backend may have to create some sections regardless of whether
4987 we're dynamic or not. */
4988 bed
= get_elf_backend_data (output_bfd
);
4989 if (bed
->elf_backend_always_size_sections
4990 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
4993 dynobj
= elf_hash_table (info
)->dynobj
;
4995 /* If there were no dynamic objects in the link, there is nothing to
5000 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5003 if (elf_hash_table (info
)->dynamic_sections_created
)
5005 struct elf_info_failed eif
;
5006 struct elf_link_hash_entry
*h
;
5008 struct bfd_elf_version_tree
*t
;
5009 struct bfd_elf_version_expr
*d
;
5010 bfd_boolean all_defined
;
5012 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5013 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5017 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5019 if (soname_indx
== (bfd_size_type
) -1
5020 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5026 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5028 info
->flags
|= DF_SYMBOLIC
;
5035 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5037 if (indx
== (bfd_size_type
) -1
5038 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5041 if (info
->new_dtags
)
5043 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5044 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5049 if (filter_shlib
!= NULL
)
5053 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5054 filter_shlib
, TRUE
);
5055 if (indx
== (bfd_size_type
) -1
5056 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5060 if (auxiliary_filters
!= NULL
)
5062 const char * const *p
;
5064 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5068 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5070 if (indx
== (bfd_size_type
) -1
5071 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5077 eif
.verdefs
= verdefs
;
5080 /* If we are supposed to export all symbols into the dynamic symbol
5081 table (this is not the normal case), then do so. */
5082 if (info
->export_dynamic
)
5084 elf_link_hash_traverse (elf_hash_table (info
),
5085 _bfd_elf_export_symbol
,
5091 /* Make all global versions with definition. */
5092 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5093 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5094 if (!d
->symver
&& d
->symbol
)
5096 const char *verstr
, *name
;
5097 size_t namelen
, verlen
, newlen
;
5099 struct elf_link_hash_entry
*newh
;
5102 namelen
= strlen (name
);
5104 verlen
= strlen (verstr
);
5105 newlen
= namelen
+ verlen
+ 3;
5107 newname
= bfd_malloc (newlen
);
5108 if (newname
== NULL
)
5110 memcpy (newname
, name
, namelen
);
5112 /* Check the hidden versioned definition. */
5113 p
= newname
+ namelen
;
5115 memcpy (p
, verstr
, verlen
+ 1);
5116 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5117 newname
, FALSE
, FALSE
,
5120 || (newh
->root
.type
!= bfd_link_hash_defined
5121 && newh
->root
.type
!= bfd_link_hash_defweak
))
5123 /* Check the default versioned definition. */
5125 memcpy (p
, verstr
, verlen
+ 1);
5126 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5127 newname
, FALSE
, FALSE
,
5132 /* Mark this version if there is a definition and it is
5133 not defined in a shared object. */
5135 && !newh
->def_dynamic
5136 && (newh
->root
.type
== bfd_link_hash_defined
5137 || newh
->root
.type
== bfd_link_hash_defweak
))
5141 /* Attach all the symbols to their version information. */
5142 asvinfo
.output_bfd
= output_bfd
;
5143 asvinfo
.info
= info
;
5144 asvinfo
.verdefs
= verdefs
;
5145 asvinfo
.failed
= FALSE
;
5147 elf_link_hash_traverse (elf_hash_table (info
),
5148 _bfd_elf_link_assign_sym_version
,
5153 if (!info
->allow_undefined_version
)
5155 /* Check if all global versions have a definition. */
5157 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5158 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5159 if (!d
->symver
&& !d
->script
)
5161 (*_bfd_error_handler
)
5162 (_("%s: undefined version: %s"),
5163 d
->pattern
, t
->name
);
5164 all_defined
= FALSE
;
5169 bfd_set_error (bfd_error_bad_value
);
5174 /* Find all symbols which were defined in a dynamic object and make
5175 the backend pick a reasonable value for them. */
5176 elf_link_hash_traverse (elf_hash_table (info
),
5177 _bfd_elf_adjust_dynamic_symbol
,
5182 /* Add some entries to the .dynamic section. We fill in some of the
5183 values later, in bfd_elf_final_link, but we must add the entries
5184 now so that we know the final size of the .dynamic section. */
5186 /* If there are initialization and/or finalization functions to
5187 call then add the corresponding DT_INIT/DT_FINI entries. */
5188 h
= (info
->init_function
5189 ? elf_link_hash_lookup (elf_hash_table (info
),
5190 info
->init_function
, FALSE
,
5197 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5200 h
= (info
->fini_function
5201 ? elf_link_hash_lookup (elf_hash_table (info
),
5202 info
->fini_function
, FALSE
,
5209 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5213 if (bfd_get_section_by_name (output_bfd
, ".preinit_array") != NULL
)
5215 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5216 if (! info
->executable
)
5221 for (sub
= info
->input_bfds
; sub
!= NULL
;
5222 sub
= sub
->link_next
)
5223 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5224 if (elf_section_data (o
)->this_hdr
.sh_type
5225 == SHT_PREINIT_ARRAY
)
5227 (*_bfd_error_handler
)
5228 (_("%B: .preinit_array section is not allowed in DSO"),
5233 bfd_set_error (bfd_error_nonrepresentable_section
);
5237 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5238 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5241 if (bfd_get_section_by_name (output_bfd
, ".init_array") != NULL
)
5243 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5244 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5247 if (bfd_get_section_by_name (output_bfd
, ".fini_array") != NULL
)
5249 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5250 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5254 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5255 /* If .dynstr is excluded from the link, we don't want any of
5256 these tags. Strictly, we should be checking each section
5257 individually; This quick check covers for the case where
5258 someone does a /DISCARD/ : { *(*) }. */
5259 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5261 bfd_size_type strsize
;
5263 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5264 if (!_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0)
5265 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5266 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5267 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5268 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5269 bed
->s
->sizeof_sym
))
5274 /* The backend must work out the sizes of all the other dynamic
5276 if (bed
->elf_backend_size_dynamic_sections
5277 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5280 if (elf_hash_table (info
)->dynamic_sections_created
)
5282 bfd_size_type dynsymcount
;
5283 unsigned long section_sym_count
;
5285 size_t bucketcount
= 0;
5286 size_t hash_entry_size
;
5287 unsigned int dtagcount
;
5289 /* Set up the version definition section. */
5290 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5291 BFD_ASSERT (s
!= NULL
);
5293 /* We may have created additional version definitions if we are
5294 just linking a regular application. */
5295 verdefs
= asvinfo
.verdefs
;
5297 /* Skip anonymous version tag. */
5298 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5299 verdefs
= verdefs
->next
;
5301 if (verdefs
== NULL
&& !info
->create_default_symver
)
5302 _bfd_strip_section_from_output (info
, s
);
5307 struct bfd_elf_version_tree
*t
;
5309 Elf_Internal_Verdef def
;
5310 Elf_Internal_Verdaux defaux
;
5311 struct bfd_link_hash_entry
*bh
;
5312 struct elf_link_hash_entry
*h
;
5318 /* Make space for the base version. */
5319 size
+= sizeof (Elf_External_Verdef
);
5320 size
+= sizeof (Elf_External_Verdaux
);
5323 /* Make space for the default version. */
5324 if (info
->create_default_symver
)
5326 size
+= sizeof (Elf_External_Verdef
);
5330 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5332 struct bfd_elf_version_deps
*n
;
5334 size
+= sizeof (Elf_External_Verdef
);
5335 size
+= sizeof (Elf_External_Verdaux
);
5338 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5339 size
+= sizeof (Elf_External_Verdaux
);
5343 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
5344 if (s
->contents
== NULL
&& s
->size
!= 0)
5347 /* Fill in the version definition section. */
5351 def
.vd_version
= VER_DEF_CURRENT
;
5352 def
.vd_flags
= VER_FLG_BASE
;
5355 if (info
->create_default_symver
)
5357 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5358 def
.vd_next
= sizeof (Elf_External_Verdef
);
5362 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5363 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5364 + sizeof (Elf_External_Verdaux
));
5367 if (soname_indx
!= (bfd_size_type
) -1)
5369 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5371 def
.vd_hash
= bfd_elf_hash (soname
);
5372 defaux
.vda_name
= soname_indx
;
5379 name
= basename (output_bfd
->filename
);
5380 def
.vd_hash
= bfd_elf_hash (name
);
5381 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5383 if (indx
== (bfd_size_type
) -1)
5385 defaux
.vda_name
= indx
;
5387 defaux
.vda_next
= 0;
5389 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5390 (Elf_External_Verdef
*) p
);
5391 p
+= sizeof (Elf_External_Verdef
);
5392 if (info
->create_default_symver
)
5394 /* Add a symbol representing this version. */
5396 if (! (_bfd_generic_link_add_one_symbol
5397 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5399 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5401 h
= (struct elf_link_hash_entry
*) bh
;
5404 h
->type
= STT_OBJECT
;
5405 h
->verinfo
.vertree
= NULL
;
5407 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5410 /* Create a duplicate of the base version with the same
5411 aux block, but different flags. */
5414 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5416 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5417 + sizeof (Elf_External_Verdaux
));
5420 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5421 (Elf_External_Verdef
*) p
);
5422 p
+= sizeof (Elf_External_Verdef
);
5424 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5425 (Elf_External_Verdaux
*) p
);
5426 p
+= sizeof (Elf_External_Verdaux
);
5428 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5431 struct bfd_elf_version_deps
*n
;
5434 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5437 /* Add a symbol representing this version. */
5439 if (! (_bfd_generic_link_add_one_symbol
5440 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5442 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5444 h
= (struct elf_link_hash_entry
*) bh
;
5447 h
->type
= STT_OBJECT
;
5448 h
->verinfo
.vertree
= t
;
5450 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5453 def
.vd_version
= VER_DEF_CURRENT
;
5455 if (t
->globals
.list
== NULL
5456 && t
->locals
.list
== NULL
5458 def
.vd_flags
|= VER_FLG_WEAK
;
5459 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
5460 def
.vd_cnt
= cdeps
+ 1;
5461 def
.vd_hash
= bfd_elf_hash (t
->name
);
5462 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5464 if (t
->next
!= NULL
)
5465 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5466 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
5468 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5469 (Elf_External_Verdef
*) p
);
5470 p
+= sizeof (Elf_External_Verdef
);
5472 defaux
.vda_name
= h
->dynstr_index
;
5473 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5475 defaux
.vda_next
= 0;
5476 if (t
->deps
!= NULL
)
5477 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5478 t
->name_indx
= defaux
.vda_name
;
5480 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5481 (Elf_External_Verdaux
*) p
);
5482 p
+= sizeof (Elf_External_Verdaux
);
5484 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5486 if (n
->version_needed
== NULL
)
5488 /* This can happen if there was an error in the
5490 defaux
.vda_name
= 0;
5494 defaux
.vda_name
= n
->version_needed
->name_indx
;
5495 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5498 if (n
->next
== NULL
)
5499 defaux
.vda_next
= 0;
5501 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5503 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5504 (Elf_External_Verdaux
*) p
);
5505 p
+= sizeof (Elf_External_Verdaux
);
5509 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
5510 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
5513 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
5516 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
5518 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
5521 else if (info
->flags
& DF_BIND_NOW
)
5523 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
5529 if (info
->executable
)
5530 info
->flags_1
&= ~ (DF_1_INITFIRST
5533 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
5537 /* Work out the size of the version reference section. */
5539 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
5540 BFD_ASSERT (s
!= NULL
);
5542 struct elf_find_verdep_info sinfo
;
5544 sinfo
.output_bfd
= output_bfd
;
5546 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
5547 if (sinfo
.vers
== 0)
5549 sinfo
.failed
= FALSE
;
5551 elf_link_hash_traverse (elf_hash_table (info
),
5552 _bfd_elf_link_find_version_dependencies
,
5555 if (elf_tdata (output_bfd
)->verref
== NULL
)
5556 _bfd_strip_section_from_output (info
, s
);
5559 Elf_Internal_Verneed
*t
;
5564 /* Build the version definition section. */
5567 for (t
= elf_tdata (output_bfd
)->verref
;
5571 Elf_Internal_Vernaux
*a
;
5573 size
+= sizeof (Elf_External_Verneed
);
5575 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
5576 size
+= sizeof (Elf_External_Vernaux
);
5580 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
5581 if (s
->contents
== NULL
)
5585 for (t
= elf_tdata (output_bfd
)->verref
;
5590 Elf_Internal_Vernaux
*a
;
5594 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
5597 t
->vn_version
= VER_NEED_CURRENT
;
5599 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5600 elf_dt_name (t
->vn_bfd
) != NULL
5601 ? elf_dt_name (t
->vn_bfd
)
5602 : basename (t
->vn_bfd
->filename
),
5604 if (indx
== (bfd_size_type
) -1)
5607 t
->vn_aux
= sizeof (Elf_External_Verneed
);
5608 if (t
->vn_nextref
== NULL
)
5611 t
->vn_next
= (sizeof (Elf_External_Verneed
)
5612 + caux
* sizeof (Elf_External_Vernaux
));
5614 _bfd_elf_swap_verneed_out (output_bfd
, t
,
5615 (Elf_External_Verneed
*) p
);
5616 p
+= sizeof (Elf_External_Verneed
);
5618 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
5620 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
5621 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5622 a
->vna_nodename
, FALSE
);
5623 if (indx
== (bfd_size_type
) -1)
5626 if (a
->vna_nextptr
== NULL
)
5629 a
->vna_next
= sizeof (Elf_External_Vernaux
);
5631 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
5632 (Elf_External_Vernaux
*) p
);
5633 p
+= sizeof (Elf_External_Vernaux
);
5637 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
5638 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
5641 elf_tdata (output_bfd
)->cverrefs
= crefs
;
5645 /* Assign dynsym indicies. In a shared library we generate a
5646 section symbol for each output section, which come first.
5647 Next come all of the back-end allocated local dynamic syms,
5648 followed by the rest of the global symbols. */
5650 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
5651 §ion_sym_count
);
5653 /* Work out the size of the symbol version section. */
5654 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
5655 BFD_ASSERT (s
!= NULL
);
5656 if (dynsymcount
== 0
5657 || (verdefs
== NULL
&& elf_tdata (output_bfd
)->verref
== NULL
5658 && !info
->create_default_symver
))
5660 _bfd_strip_section_from_output (info
, s
);
5661 /* The DYNSYMCOUNT might have changed if we were going to
5662 output a dynamic symbol table entry for S. */
5663 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
5664 §ion_sym_count
);
5668 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
5669 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
5670 if (s
->contents
== NULL
)
5673 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
5677 /* Set the size of the .dynsym and .hash sections. We counted
5678 the number of dynamic symbols in elf_link_add_object_symbols.
5679 We will build the contents of .dynsym and .hash when we build
5680 the final symbol table, because until then we do not know the
5681 correct value to give the symbols. We built the .dynstr
5682 section as we went along in elf_link_add_object_symbols. */
5683 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
5684 BFD_ASSERT (s
!= NULL
);
5685 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
5687 if (dynsymcount
!= 0)
5689 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
5690 if (s
->contents
== NULL
)
5693 /* The first entry in .dynsym is a dummy symbol.
5694 Clear all the section syms, in case we don't output them all. */
5695 ++section_sym_count
;
5696 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
5699 /* Compute the size of the hashing table. As a side effect this
5700 computes the hash values for all the names we export. */
5701 bucketcount
= compute_bucket_count (info
);
5703 s
= bfd_get_section_by_name (dynobj
, ".hash");
5704 BFD_ASSERT (s
!= NULL
);
5705 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
5706 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
5707 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
5708 if (s
->contents
== NULL
)
5711 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
5712 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
5713 s
->contents
+ hash_entry_size
);
5715 elf_hash_table (info
)->bucketcount
= bucketcount
;
5717 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
5718 BFD_ASSERT (s
!= NULL
);
5720 elf_finalize_dynstr (output_bfd
, info
);
5722 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5724 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
5725 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
5732 /* Final phase of ELF linker. */
5734 /* A structure we use to avoid passing large numbers of arguments. */
5736 struct elf_final_link_info
5738 /* General link information. */
5739 struct bfd_link_info
*info
;
5742 /* Symbol string table. */
5743 struct bfd_strtab_hash
*symstrtab
;
5744 /* .dynsym section. */
5745 asection
*dynsym_sec
;
5746 /* .hash section. */
5748 /* symbol version section (.gnu.version). */
5749 asection
*symver_sec
;
5750 /* Buffer large enough to hold contents of any section. */
5752 /* Buffer large enough to hold external relocs of any section. */
5753 void *external_relocs
;
5754 /* Buffer large enough to hold internal relocs of any section. */
5755 Elf_Internal_Rela
*internal_relocs
;
5756 /* Buffer large enough to hold external local symbols of any input
5758 bfd_byte
*external_syms
;
5759 /* And a buffer for symbol section indices. */
5760 Elf_External_Sym_Shndx
*locsym_shndx
;
5761 /* Buffer large enough to hold internal local symbols of any input
5763 Elf_Internal_Sym
*internal_syms
;
5764 /* Array large enough to hold a symbol index for each local symbol
5765 of any input BFD. */
5767 /* Array large enough to hold a section pointer for each local
5768 symbol of any input BFD. */
5769 asection
**sections
;
5770 /* Buffer to hold swapped out symbols. */
5772 /* And one for symbol section indices. */
5773 Elf_External_Sym_Shndx
*symshndxbuf
;
5774 /* Number of swapped out symbols in buffer. */
5775 size_t symbuf_count
;
5776 /* Number of symbols which fit in symbuf. */
5778 /* And same for symshndxbuf. */
5779 size_t shndxbuf_size
;
5782 /* This struct is used to pass information to elf_link_output_extsym. */
5784 struct elf_outext_info
5787 bfd_boolean localsyms
;
5788 struct elf_final_link_info
*finfo
;
5791 /* When performing a relocatable link, the input relocations are
5792 preserved. But, if they reference global symbols, the indices
5793 referenced must be updated. Update all the relocations in
5794 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5797 elf_link_adjust_relocs (bfd
*abfd
,
5798 Elf_Internal_Shdr
*rel_hdr
,
5800 struct elf_link_hash_entry
**rel_hash
)
5803 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5805 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
5806 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
5807 bfd_vma r_type_mask
;
5810 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
5812 swap_in
= bed
->s
->swap_reloc_in
;
5813 swap_out
= bed
->s
->swap_reloc_out
;
5815 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
5817 swap_in
= bed
->s
->swap_reloca_in
;
5818 swap_out
= bed
->s
->swap_reloca_out
;
5823 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
5826 if (bed
->s
->arch_size
== 32)
5833 r_type_mask
= 0xffffffff;
5837 erela
= rel_hdr
->contents
;
5838 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
5840 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
5843 if (*rel_hash
== NULL
)
5846 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
5848 (*swap_in
) (abfd
, erela
, irela
);
5849 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
5850 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
5851 | (irela
[j
].r_info
& r_type_mask
));
5852 (*swap_out
) (abfd
, irela
, erela
);
5856 struct elf_link_sort_rela
5862 enum elf_reloc_type_class type
;
5863 /* We use this as an array of size int_rels_per_ext_rel. */
5864 Elf_Internal_Rela rela
[1];
5868 elf_link_sort_cmp1 (const void *A
, const void *B
)
5870 const struct elf_link_sort_rela
*a
= A
;
5871 const struct elf_link_sort_rela
*b
= B
;
5872 int relativea
, relativeb
;
5874 relativea
= a
->type
== reloc_class_relative
;
5875 relativeb
= b
->type
== reloc_class_relative
;
5877 if (relativea
< relativeb
)
5879 if (relativea
> relativeb
)
5881 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
5883 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
5885 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
5887 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
5893 elf_link_sort_cmp2 (const void *A
, const void *B
)
5895 const struct elf_link_sort_rela
*a
= A
;
5896 const struct elf_link_sort_rela
*b
= B
;
5899 if (a
->u
.offset
< b
->u
.offset
)
5901 if (a
->u
.offset
> b
->u
.offset
)
5903 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
5904 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
5909 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
5911 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
5917 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
5920 bfd_size_type count
, size
;
5921 size_t i
, ret
, sort_elt
, ext_size
;
5922 bfd_byte
*sort
, *s_non_relative
, *p
;
5923 struct elf_link_sort_rela
*sq
;
5924 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5925 int i2e
= bed
->s
->int_rels_per_ext_rel
;
5926 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
5927 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
5928 struct bfd_link_order
*lo
;
5931 reldyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
5932 if (reldyn
== NULL
|| reldyn
->size
== 0)
5934 reldyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
5935 if (reldyn
== NULL
|| reldyn
->size
== 0)
5937 ext_size
= bed
->s
->sizeof_rel
;
5938 swap_in
= bed
->s
->swap_reloc_in
;
5939 swap_out
= bed
->s
->swap_reloc_out
;
5943 ext_size
= bed
->s
->sizeof_rela
;
5944 swap_in
= bed
->s
->swap_reloca_in
;
5945 swap_out
= bed
->s
->swap_reloca_out
;
5947 count
= reldyn
->size
/ ext_size
;
5950 for (lo
= reldyn
->link_order_head
; lo
!= NULL
; lo
= lo
->next
)
5951 if (lo
->type
== bfd_indirect_link_order
)
5953 asection
*o
= lo
->u
.indirect
.section
;
5957 if (size
!= reldyn
->size
)
5960 sort_elt
= (sizeof (struct elf_link_sort_rela
)
5961 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
5962 sort
= bfd_zmalloc (sort_elt
* count
);
5965 (*info
->callbacks
->warning
)
5966 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
5970 if (bed
->s
->arch_size
== 32)
5971 r_sym_mask
= ~(bfd_vma
) 0xff;
5973 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
5975 for (lo
= reldyn
->link_order_head
; lo
!= NULL
; lo
= lo
->next
)
5976 if (lo
->type
== bfd_indirect_link_order
)
5978 bfd_byte
*erel
, *erelend
;
5979 asection
*o
= lo
->u
.indirect
.section
;
5981 if (o
->contents
== NULL
&& o
->size
!= 0)
5983 /* This is a reloc section that is being handled as a normal
5984 section. See bfd_section_from_shdr. We can't combine
5985 relocs in this case. */
5990 erelend
= o
->contents
+ o
->size
;
5991 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
5992 while (erel
< erelend
)
5994 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
5995 (*swap_in
) (abfd
, erel
, s
->rela
);
5996 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
5997 s
->u
.sym_mask
= r_sym_mask
;
6003 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
6005 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
6007 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
6008 if (s
->type
!= reloc_class_relative
)
6014 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
6015 for (; i
< count
; i
++, p
+= sort_elt
)
6017 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
6018 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
6020 sp
->u
.offset
= sq
->rela
->r_offset
;
6023 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
6025 for (lo
= reldyn
->link_order_head
; lo
!= NULL
; lo
= lo
->next
)
6026 if (lo
->type
== bfd_indirect_link_order
)
6028 bfd_byte
*erel
, *erelend
;
6029 asection
*o
= lo
->u
.indirect
.section
;
6032 erelend
= o
->contents
+ o
->size
;
6033 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
6034 while (erel
< erelend
)
6036 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
6037 (*swap_out
) (abfd
, s
->rela
, erel
);
6048 /* Flush the output symbols to the file. */
6051 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
6052 const struct elf_backend_data
*bed
)
6054 if (finfo
->symbuf_count
> 0)
6056 Elf_Internal_Shdr
*hdr
;
6060 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
6061 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
6062 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
6063 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
6064 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
6067 hdr
->sh_size
+= amt
;
6068 finfo
->symbuf_count
= 0;
6074 /* Add a symbol to the output symbol table. */
6077 elf_link_output_sym (struct elf_final_link_info
*finfo
,
6079 Elf_Internal_Sym
*elfsym
,
6080 asection
*input_sec
,
6081 struct elf_link_hash_entry
*h
)
6084 Elf_External_Sym_Shndx
*destshndx
;
6085 bfd_boolean (*output_symbol_hook
)
6086 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
6087 struct elf_link_hash_entry
*);
6088 const struct elf_backend_data
*bed
;
6090 bed
= get_elf_backend_data (finfo
->output_bfd
);
6091 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
6092 if (output_symbol_hook
!= NULL
)
6094 if (! (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
))
6098 if (name
== NULL
|| *name
== '\0')
6099 elfsym
->st_name
= 0;
6100 else if (input_sec
->flags
& SEC_EXCLUDE
)
6101 elfsym
->st_name
= 0;
6104 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
6106 if (elfsym
->st_name
== (unsigned long) -1)
6110 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
6112 if (! elf_link_flush_output_syms (finfo
, bed
))
6116 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
6117 destshndx
= finfo
->symshndxbuf
;
6118 if (destshndx
!= NULL
)
6120 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
6124 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
6125 finfo
->symshndxbuf
= destshndx
= bfd_realloc (destshndx
, amt
* 2);
6126 if (destshndx
== NULL
)
6128 memset ((char *) destshndx
+ amt
, 0, amt
);
6129 finfo
->shndxbuf_size
*= 2;
6131 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
6134 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
6135 finfo
->symbuf_count
+= 1;
6136 bfd_get_symcount (finfo
->output_bfd
) += 1;
6141 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6142 allowing an unsatisfied unversioned symbol in the DSO to match a
6143 versioned symbol that would normally require an explicit version.
6144 We also handle the case that a DSO references a hidden symbol
6145 which may be satisfied by a versioned symbol in another DSO. */
6148 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
6149 const struct elf_backend_data
*bed
,
6150 struct elf_link_hash_entry
*h
)
6153 struct elf_link_loaded_list
*loaded
;
6155 if (!is_elf_hash_table (info
->hash
))
6158 switch (h
->root
.type
)
6164 case bfd_link_hash_undefined
:
6165 case bfd_link_hash_undefweak
:
6166 abfd
= h
->root
.u
.undef
.abfd
;
6167 if ((abfd
->flags
& DYNAMIC
) == 0
6168 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
6172 case bfd_link_hash_defined
:
6173 case bfd_link_hash_defweak
:
6174 abfd
= h
->root
.u
.def
.section
->owner
;
6177 case bfd_link_hash_common
:
6178 abfd
= h
->root
.u
.c
.p
->section
->owner
;
6181 BFD_ASSERT (abfd
!= NULL
);
6183 for (loaded
= elf_hash_table (info
)->loaded
;
6185 loaded
= loaded
->next
)
6188 Elf_Internal_Shdr
*hdr
;
6189 bfd_size_type symcount
;
6190 bfd_size_type extsymcount
;
6191 bfd_size_type extsymoff
;
6192 Elf_Internal_Shdr
*versymhdr
;
6193 Elf_Internal_Sym
*isym
;
6194 Elf_Internal_Sym
*isymend
;
6195 Elf_Internal_Sym
*isymbuf
;
6196 Elf_External_Versym
*ever
;
6197 Elf_External_Versym
*extversym
;
6199 input
= loaded
->abfd
;
6201 /* We check each DSO for a possible hidden versioned definition. */
6203 || (input
->flags
& DYNAMIC
) == 0
6204 || elf_dynversym (input
) == 0)
6207 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
6209 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
6210 if (elf_bad_symtab (input
))
6212 extsymcount
= symcount
;
6217 extsymcount
= symcount
- hdr
->sh_info
;
6218 extsymoff
= hdr
->sh_info
;
6221 if (extsymcount
== 0)
6224 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
6226 if (isymbuf
== NULL
)
6229 /* Read in any version definitions. */
6230 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
6231 extversym
= bfd_malloc (versymhdr
->sh_size
);
6232 if (extversym
== NULL
)
6235 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
6236 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
6237 != versymhdr
->sh_size
))
6245 ever
= extversym
+ extsymoff
;
6246 isymend
= isymbuf
+ extsymcount
;
6247 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
6250 Elf_Internal_Versym iver
;
6251 unsigned short version_index
;
6253 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
6254 || isym
->st_shndx
== SHN_UNDEF
)
6257 name
= bfd_elf_string_from_elf_section (input
,
6260 if (strcmp (name
, h
->root
.root
.string
) != 0)
6263 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
6265 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
6267 /* If we have a non-hidden versioned sym, then it should
6268 have provided a definition for the undefined sym. */
6272 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
6273 if (version_index
== 1 || version_index
== 2)
6275 /* This is the base or first version. We can use it. */
6289 /* Add an external symbol to the symbol table. This is called from
6290 the hash table traversal routine. When generating a shared object,
6291 we go through the symbol table twice. The first time we output
6292 anything that might have been forced to local scope in a version
6293 script. The second time we output the symbols that are still
6297 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
6299 struct elf_outext_info
*eoinfo
= data
;
6300 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
6302 Elf_Internal_Sym sym
;
6303 asection
*input_sec
;
6304 const struct elf_backend_data
*bed
;
6306 if (h
->root
.type
== bfd_link_hash_warning
)
6308 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6309 if (h
->root
.type
== bfd_link_hash_new
)
6313 /* Decide whether to output this symbol in this pass. */
6314 if (eoinfo
->localsyms
)
6316 if (!h
->forced_local
)
6321 if (h
->forced_local
)
6325 bed
= get_elf_backend_data (finfo
->output_bfd
);
6327 /* If we have an undefined symbol reference here then it must have
6328 come from a shared library that is being linked in. (Undefined
6329 references in regular files have already been handled). If we
6330 are reporting errors for this situation then do so now. */
6331 if (h
->root
.type
== bfd_link_hash_undefined
6334 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
6335 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
6337 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
6338 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
6339 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
6341 eoinfo
->failed
= TRUE
;
6346 /* We should also warn if a forced local symbol is referenced from
6347 shared libraries. */
6348 if (! finfo
->info
->relocatable
6349 && (! finfo
->info
->shared
)
6354 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
6356 (*_bfd_error_handler
)
6357 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6358 finfo
->output_bfd
, h
->root
.u
.def
.section
->owner
,
6359 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
6361 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
6362 ? "hidden" : "local",
6363 h
->root
.root
.string
);
6364 eoinfo
->failed
= TRUE
;
6368 /* We don't want to output symbols that have never been mentioned by
6369 a regular file, or that we have been told to strip. However, if
6370 h->indx is set to -2, the symbol is used by a reloc and we must
6374 else if ((h
->def_dynamic
6376 || h
->root
.type
== bfd_link_hash_new
)
6380 else if (finfo
->info
->strip
== strip_all
)
6382 else if (finfo
->info
->strip
== strip_some
6383 && bfd_hash_lookup (finfo
->info
->keep_hash
,
6384 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
6386 else if (finfo
->info
->strip_discarded
6387 && (h
->root
.type
== bfd_link_hash_defined
6388 || h
->root
.type
== bfd_link_hash_defweak
)
6389 && elf_discarded_section (h
->root
.u
.def
.section
))
6394 /* If we're stripping it, and it's not a dynamic symbol, there's
6395 nothing else to do unless it is a forced local symbol. */
6398 && !h
->forced_local
)
6402 sym
.st_size
= h
->size
;
6403 sym
.st_other
= h
->other
;
6404 if (h
->forced_local
)
6405 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
6406 else if (h
->root
.type
== bfd_link_hash_undefweak
6407 || h
->root
.type
== bfd_link_hash_defweak
)
6408 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
6410 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
6412 switch (h
->root
.type
)
6415 case bfd_link_hash_new
:
6416 case bfd_link_hash_warning
:
6420 case bfd_link_hash_undefined
:
6421 case bfd_link_hash_undefweak
:
6422 input_sec
= bfd_und_section_ptr
;
6423 sym
.st_shndx
= SHN_UNDEF
;
6426 case bfd_link_hash_defined
:
6427 case bfd_link_hash_defweak
:
6429 input_sec
= h
->root
.u
.def
.section
;
6430 if (input_sec
->output_section
!= NULL
)
6433 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
6434 input_sec
->output_section
);
6435 if (sym
.st_shndx
== SHN_BAD
)
6437 (*_bfd_error_handler
)
6438 (_("%B: could not find output section %A for input section %A"),
6439 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
6440 eoinfo
->failed
= TRUE
;
6444 /* ELF symbols in relocatable files are section relative,
6445 but in nonrelocatable files they are virtual
6447 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
6448 if (! finfo
->info
->relocatable
)
6450 sym
.st_value
+= input_sec
->output_section
->vma
;
6451 if (h
->type
== STT_TLS
)
6453 /* STT_TLS symbols are relative to PT_TLS segment
6455 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
6456 sym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
6462 BFD_ASSERT (input_sec
->owner
== NULL
6463 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
6464 sym
.st_shndx
= SHN_UNDEF
;
6465 input_sec
= bfd_und_section_ptr
;
6470 case bfd_link_hash_common
:
6471 input_sec
= h
->root
.u
.c
.p
->section
;
6472 sym
.st_shndx
= SHN_COMMON
;
6473 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
6476 case bfd_link_hash_indirect
:
6477 /* These symbols are created by symbol versioning. They point
6478 to the decorated version of the name. For example, if the
6479 symbol foo@@GNU_1.2 is the default, which should be used when
6480 foo is used with no version, then we add an indirect symbol
6481 foo which points to foo@@GNU_1.2. We ignore these symbols,
6482 since the indirected symbol is already in the hash table. */
6486 /* Give the processor backend a chance to tweak the symbol value,
6487 and also to finish up anything that needs to be done for this
6488 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6489 forced local syms when non-shared is due to a historical quirk. */
6490 if ((h
->dynindx
!= -1
6492 && ((finfo
->info
->shared
6493 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6494 || h
->root
.type
!= bfd_link_hash_undefweak
))
6495 || !h
->forced_local
)
6496 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6498 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
6499 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
6501 eoinfo
->failed
= TRUE
;
6506 /* If we are marking the symbol as undefined, and there are no
6507 non-weak references to this symbol from a regular object, then
6508 mark the symbol as weak undefined; if there are non-weak
6509 references, mark the symbol as strong. We can't do this earlier,
6510 because it might not be marked as undefined until the
6511 finish_dynamic_symbol routine gets through with it. */
6512 if (sym
.st_shndx
== SHN_UNDEF
6514 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
6515 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
6519 if (h
->ref_regular_nonweak
)
6520 bindtype
= STB_GLOBAL
;
6522 bindtype
= STB_WEAK
;
6523 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
6526 /* If a non-weak symbol with non-default visibility is not defined
6527 locally, it is a fatal error. */
6528 if (! finfo
->info
->relocatable
6529 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
6530 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
6531 && h
->root
.type
== bfd_link_hash_undefined
6534 (*_bfd_error_handler
)
6535 (_("%B: %s symbol `%s' isn't defined"),
6537 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
6539 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
6540 ? "internal" : "hidden",
6541 h
->root
.root
.string
);
6542 eoinfo
->failed
= TRUE
;
6546 /* If this symbol should be put in the .dynsym section, then put it
6547 there now. We already know the symbol index. We also fill in
6548 the entry in the .hash section. */
6549 if (h
->dynindx
!= -1
6550 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6554 size_t hash_entry_size
;
6555 bfd_byte
*bucketpos
;
6559 sym
.st_name
= h
->dynstr_index
;
6560 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
6561 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
6563 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
6564 bucket
= h
->u
.elf_hash_value
% bucketcount
;
6566 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
6567 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
6568 + (bucket
+ 2) * hash_entry_size
);
6569 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
6570 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
6571 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
6572 ((bfd_byte
*) finfo
->hash_sec
->contents
6573 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
6575 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
6577 Elf_Internal_Versym iversym
;
6578 Elf_External_Versym
*eversym
;
6580 if (!h
->def_regular
)
6582 if (h
->verinfo
.verdef
== NULL
)
6583 iversym
.vs_vers
= 0;
6585 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
6589 if (h
->verinfo
.vertree
== NULL
)
6590 iversym
.vs_vers
= 1;
6592 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
6593 if (finfo
->info
->create_default_symver
)
6598 iversym
.vs_vers
|= VERSYM_HIDDEN
;
6600 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
6601 eversym
+= h
->dynindx
;
6602 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
6606 /* If we're stripping it, then it was just a dynamic symbol, and
6607 there's nothing else to do. */
6608 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
6611 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
6613 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
))
6615 eoinfo
->failed
= TRUE
;
6622 /* Return TRUE if special handling is done for relocs in SEC against
6623 symbols defined in discarded sections. */
6626 elf_section_ignore_discarded_relocs (asection
*sec
)
6628 const struct elf_backend_data
*bed
;
6630 switch (sec
->sec_info_type
)
6632 case ELF_INFO_TYPE_STABS
:
6633 case ELF_INFO_TYPE_EH_FRAME
:
6639 bed
= get_elf_backend_data (sec
->owner
);
6640 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
6641 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
6647 enum action_discarded
6653 /* Return a mask saying how ld should treat relocations in SEC against
6654 symbols defined in discarded sections. If this function returns
6655 COMPLAIN set, ld will issue a warning message. If this function
6656 returns PRETEND set, and the discarded section was link-once and the
6657 same size as the kept link-once section, ld will pretend that the
6658 symbol was actually defined in the kept section. Otherwise ld will
6659 zero the reloc (at least that is the intent, but some cooperation by
6660 the target dependent code is needed, particularly for REL targets). */
6663 elf_action_discarded (asection
*sec
)
6665 if (sec
->flags
& SEC_DEBUGGING
)
6668 if (strcmp (".eh_frame", sec
->name
) == 0)
6671 if (strcmp (".gcc_except_table", sec
->name
) == 0)
6674 if (strcmp (".PARISC.unwind", sec
->name
) == 0)
6677 if (strcmp (".fixup", sec
->name
) == 0)
6680 return COMPLAIN
| PRETEND
;
6683 /* Find a match between a section and a member of a section group. */
6686 match_group_member (asection
*sec
, asection
*group
)
6688 asection
*first
= elf_next_in_group (group
);
6689 asection
*s
= first
;
6693 if (bfd_elf_match_symbols_in_sections (s
, sec
))
6703 /* Check if the kept section of a discarded section SEC can be used
6704 to replace it. Return the replacement if it is OK. Otherwise return
6708 _bfd_elf_check_kept_section (asection
*sec
)
6712 kept
= sec
->kept_section
;
6715 if (elf_sec_group (sec
) != NULL
)
6716 kept
= match_group_member (sec
, kept
);
6717 if (kept
!= NULL
&& sec
->size
!= kept
->size
)
6723 /* Link an input file into the linker output file. This function
6724 handles all the sections and relocations of the input file at once.
6725 This is so that we only have to read the local symbols once, and
6726 don't have to keep them in memory. */
6729 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
6731 bfd_boolean (*relocate_section
)
6732 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
6733 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
6735 Elf_Internal_Shdr
*symtab_hdr
;
6738 Elf_Internal_Sym
*isymbuf
;
6739 Elf_Internal_Sym
*isym
;
6740 Elf_Internal_Sym
*isymend
;
6742 asection
**ppsection
;
6744 const struct elf_backend_data
*bed
;
6745 bfd_boolean emit_relocs
;
6746 struct elf_link_hash_entry
**sym_hashes
;
6748 output_bfd
= finfo
->output_bfd
;
6749 bed
= get_elf_backend_data (output_bfd
);
6750 relocate_section
= bed
->elf_backend_relocate_section
;
6752 /* If this is a dynamic object, we don't want to do anything here:
6753 we don't want the local symbols, and we don't want the section
6755 if ((input_bfd
->flags
& DYNAMIC
) != 0)
6758 emit_relocs
= (finfo
->info
->relocatable
6759 || finfo
->info
->emitrelocations
6760 || bed
->elf_backend_emit_relocs
);
6762 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6763 if (elf_bad_symtab (input_bfd
))
6765 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
6770 locsymcount
= symtab_hdr
->sh_info
;
6771 extsymoff
= symtab_hdr
->sh_info
;
6774 /* Read the local symbols. */
6775 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6776 if (isymbuf
== NULL
&& locsymcount
!= 0)
6778 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
6779 finfo
->internal_syms
,
6780 finfo
->external_syms
,
6781 finfo
->locsym_shndx
);
6782 if (isymbuf
== NULL
)
6786 /* Find local symbol sections and adjust values of symbols in
6787 SEC_MERGE sections. Write out those local symbols we know are
6788 going into the output file. */
6789 isymend
= isymbuf
+ locsymcount
;
6790 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
6792 isym
++, pindex
++, ppsection
++)
6796 Elf_Internal_Sym osym
;
6800 if (elf_bad_symtab (input_bfd
))
6802 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
6809 if (isym
->st_shndx
== SHN_UNDEF
)
6810 isec
= bfd_und_section_ptr
;
6811 else if (isym
->st_shndx
< SHN_LORESERVE
6812 || isym
->st_shndx
> SHN_HIRESERVE
)
6814 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
6816 && isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
6817 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
6819 _bfd_merged_section_offset (output_bfd
, &isec
,
6820 elf_section_data (isec
)->sec_info
,
6823 else if (isym
->st_shndx
== SHN_ABS
)
6824 isec
= bfd_abs_section_ptr
;
6825 else if (isym
->st_shndx
== SHN_COMMON
)
6826 isec
= bfd_com_section_ptr
;
6835 /* Don't output the first, undefined, symbol. */
6836 if (ppsection
== finfo
->sections
)
6839 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6841 /* We never output section symbols. Instead, we use the
6842 section symbol of the corresponding section in the output
6847 /* If we are stripping all symbols, we don't want to output this
6849 if (finfo
->info
->strip
== strip_all
)
6852 /* If we are discarding all local symbols, we don't want to
6853 output this one. If we are generating a relocatable output
6854 file, then some of the local symbols may be required by
6855 relocs; we output them below as we discover that they are
6857 if (finfo
->info
->discard
== discard_all
)
6860 /* If this symbol is defined in a section which we are
6861 discarding, we don't need to keep it, but note that
6862 linker_mark is only reliable for sections that have contents.
6863 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6864 as well as linker_mark. */
6865 if ((isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
6867 || (! isec
->linker_mark
&& (isec
->flags
& SEC_HAS_CONTENTS
) != 0)
6868 || (! finfo
->info
->relocatable
6869 && (isec
->flags
& SEC_EXCLUDE
) != 0)))
6872 /* Get the name of the symbol. */
6873 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
6878 /* See if we are discarding symbols with this name. */
6879 if ((finfo
->info
->strip
== strip_some
6880 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
6882 || (((finfo
->info
->discard
== discard_sec_merge
6883 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
6884 || finfo
->info
->discard
== discard_l
)
6885 && bfd_is_local_label_name (input_bfd
, name
)))
6888 /* If we get here, we are going to output this symbol. */
6892 /* Adjust the section index for the output file. */
6893 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
6894 isec
->output_section
);
6895 if (osym
.st_shndx
== SHN_BAD
)
6898 *pindex
= bfd_get_symcount (output_bfd
);
6900 /* ELF symbols in relocatable files are section relative, but
6901 in executable files they are virtual addresses. Note that
6902 this code assumes that all ELF sections have an associated
6903 BFD section with a reasonable value for output_offset; below
6904 we assume that they also have a reasonable value for
6905 output_section. Any special sections must be set up to meet
6906 these requirements. */
6907 osym
.st_value
+= isec
->output_offset
;
6908 if (! finfo
->info
->relocatable
)
6910 osym
.st_value
+= isec
->output_section
->vma
;
6911 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
6913 /* STT_TLS symbols are relative to PT_TLS segment base. */
6914 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
6915 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
6919 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
))
6923 /* Relocate the contents of each section. */
6924 sym_hashes
= elf_sym_hashes (input_bfd
);
6925 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
6929 if (! o
->linker_mark
)
6931 /* This section was omitted from the link. */
6935 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
6936 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
6939 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
6941 /* Section was created by _bfd_elf_link_create_dynamic_sections
6946 /* Get the contents of the section. They have been cached by a
6947 relaxation routine. Note that o is a section in an input
6948 file, so the contents field will not have been set by any of
6949 the routines which work on output files. */
6950 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
6951 contents
= elf_section_data (o
)->this_hdr
.contents
;
6954 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
6956 contents
= finfo
->contents
;
6957 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
6961 if ((o
->flags
& SEC_RELOC
) != 0)
6963 Elf_Internal_Rela
*internal_relocs
;
6964 bfd_vma r_type_mask
;
6967 /* Get the swapped relocs. */
6969 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
6970 finfo
->internal_relocs
, FALSE
);
6971 if (internal_relocs
== NULL
6972 && o
->reloc_count
> 0)
6975 if (bed
->s
->arch_size
== 32)
6982 r_type_mask
= 0xffffffff;
6986 /* Run through the relocs looking for any against symbols
6987 from discarded sections and section symbols from
6988 removed link-once sections. Complain about relocs
6989 against discarded sections. Zero relocs against removed
6990 link-once sections. Preserve debug information as much
6992 if (!elf_section_ignore_discarded_relocs (o
))
6994 Elf_Internal_Rela
*rel
, *relend
;
6995 unsigned int action
= elf_action_discarded (o
);
6997 rel
= internal_relocs
;
6998 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6999 for ( ; rel
< relend
; rel
++)
7001 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
7002 asection
**ps
, *sec
;
7003 struct elf_link_hash_entry
*h
= NULL
;
7004 const char *sym_name
;
7006 if (r_symndx
== STN_UNDEF
)
7009 if (r_symndx
>= locsymcount
7010 || (elf_bad_symtab (input_bfd
)
7011 && finfo
->sections
[r_symndx
] == NULL
))
7013 h
= sym_hashes
[r_symndx
- extsymoff
];
7014 while (h
->root
.type
== bfd_link_hash_indirect
7015 || h
->root
.type
== bfd_link_hash_warning
)
7016 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7018 if (h
->root
.type
!= bfd_link_hash_defined
7019 && h
->root
.type
!= bfd_link_hash_defweak
)
7022 ps
= &h
->root
.u
.def
.section
;
7023 sym_name
= h
->root
.root
.string
;
7027 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
7028 ps
= &finfo
->sections
[r_symndx
];
7029 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
);
7032 /* Complain if the definition comes from a
7033 discarded section. */
7034 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
7036 BFD_ASSERT (r_symndx
!= 0);
7037 if (action
& COMPLAIN
)
7039 (*_bfd_error_handler
)
7040 (_("`%s' referenced in section `%A' of %B: "
7041 "defined in discarded section `%A' of %B"),
7042 o
, input_bfd
, sec
, sec
->owner
, sym_name
);
7045 /* Try to do the best we can to support buggy old
7046 versions of gcc. If we've warned, or this is
7047 debugging info, pretend that the symbol is
7048 really defined in the kept linkonce section.
7049 FIXME: This is quite broken. Modifying the
7050 symbol here means we will be changing all later
7051 uses of the symbol, not just in this section.
7052 The only thing that makes this half reasonable
7053 is that we warn in non-debug sections, and
7054 debug sections tend to come after other
7056 if (action
& PRETEND
)
7060 kept
= _bfd_elf_check_kept_section (sec
);
7068 /* Remove the symbol reference from the reloc, but
7069 don't kill the reloc completely. This is so that
7070 a zero value will be written into the section,
7071 which may have non-zero contents put there by the
7072 assembler. Zero in things like an eh_frame fde
7073 pc_begin allows stack unwinders to recognize the
7075 rel
->r_info
&= r_type_mask
;
7081 /* Relocate the section by invoking a back end routine.
7083 The back end routine is responsible for adjusting the
7084 section contents as necessary, and (if using Rela relocs
7085 and generating a relocatable output file) adjusting the
7086 reloc addend as necessary.
7088 The back end routine does not have to worry about setting
7089 the reloc address or the reloc symbol index.
7091 The back end routine is given a pointer to the swapped in
7092 internal symbols, and can access the hash table entries
7093 for the external symbols via elf_sym_hashes (input_bfd).
7095 When generating relocatable output, the back end routine
7096 must handle STB_LOCAL/STT_SECTION symbols specially. The
7097 output symbol is going to be a section symbol
7098 corresponding to the output section, which will require
7099 the addend to be adjusted. */
7101 if (! (*relocate_section
) (output_bfd
, finfo
->info
,
7102 input_bfd
, o
, contents
,
7110 Elf_Internal_Rela
*irela
;
7111 Elf_Internal_Rela
*irelaend
;
7112 bfd_vma last_offset
;
7113 struct elf_link_hash_entry
**rel_hash
;
7114 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
7115 unsigned int next_erel
;
7116 bfd_boolean (*reloc_emitter
)
7117 (bfd
*, asection
*, Elf_Internal_Shdr
*, Elf_Internal_Rela
*);
7118 bfd_boolean rela_normal
;
7120 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
7121 rela_normal
= (bed
->rela_normal
7122 && (input_rel_hdr
->sh_entsize
7123 == bed
->s
->sizeof_rela
));
7125 /* Adjust the reloc addresses and symbol indices. */
7127 irela
= internal_relocs
;
7128 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7129 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
7130 + elf_section_data (o
->output_section
)->rel_count
7131 + elf_section_data (o
->output_section
)->rel_count2
);
7132 last_offset
= o
->output_offset
;
7133 if (!finfo
->info
->relocatable
)
7134 last_offset
+= o
->output_section
->vma
;
7135 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
7137 unsigned long r_symndx
;
7139 Elf_Internal_Sym sym
;
7141 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
7147 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
7150 if (irela
->r_offset
>= (bfd_vma
) -2)
7152 /* This is a reloc for a deleted entry or somesuch.
7153 Turn it into an R_*_NONE reloc, at the same
7154 offset as the last reloc. elf_eh_frame.c and
7155 elf_bfd_discard_info rely on reloc offsets
7157 irela
->r_offset
= last_offset
;
7159 irela
->r_addend
= 0;
7163 irela
->r_offset
+= o
->output_offset
;
7165 /* Relocs in an executable have to be virtual addresses. */
7166 if (!finfo
->info
->relocatable
)
7167 irela
->r_offset
+= o
->output_section
->vma
;
7169 last_offset
= irela
->r_offset
;
7171 r_symndx
= irela
->r_info
>> r_sym_shift
;
7172 if (r_symndx
== STN_UNDEF
)
7175 if (r_symndx
>= locsymcount
7176 || (elf_bad_symtab (input_bfd
)
7177 && finfo
->sections
[r_symndx
] == NULL
))
7179 struct elf_link_hash_entry
*rh
;
7182 /* This is a reloc against a global symbol. We
7183 have not yet output all the local symbols, so
7184 we do not know the symbol index of any global
7185 symbol. We set the rel_hash entry for this
7186 reloc to point to the global hash table entry
7187 for this symbol. The symbol index is then
7188 set at the end of bfd_elf_final_link. */
7189 indx
= r_symndx
- extsymoff
;
7190 rh
= elf_sym_hashes (input_bfd
)[indx
];
7191 while (rh
->root
.type
== bfd_link_hash_indirect
7192 || rh
->root
.type
== bfd_link_hash_warning
)
7193 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
7195 /* Setting the index to -2 tells
7196 elf_link_output_extsym that this symbol is
7198 BFD_ASSERT (rh
->indx
< 0);
7206 /* This is a reloc against a local symbol. */
7209 sym
= isymbuf
[r_symndx
];
7210 sec
= finfo
->sections
[r_symndx
];
7211 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
7213 /* I suppose the backend ought to fill in the
7214 section of any STT_SECTION symbol against a
7215 processor specific section. */
7217 if (bfd_is_abs_section (sec
))
7219 else if (sec
== NULL
|| sec
->owner
== NULL
)
7221 bfd_set_error (bfd_error_bad_value
);
7226 asection
*osec
= sec
->output_section
;
7228 /* If we have discarded a section, the output
7229 section will be the absolute section. In
7230 case of discarded link-once and discarded
7231 SEC_MERGE sections, use the kept section. */
7232 if (bfd_is_abs_section (osec
)
7233 && sec
->kept_section
!= NULL
7234 && sec
->kept_section
->output_section
!= NULL
)
7236 osec
= sec
->kept_section
->output_section
;
7237 irela
->r_addend
-= osec
->vma
;
7240 if (!bfd_is_abs_section (osec
))
7242 r_symndx
= osec
->target_index
;
7243 BFD_ASSERT (r_symndx
!= 0);
7247 /* Adjust the addend according to where the
7248 section winds up in the output section. */
7250 irela
->r_addend
+= sec
->output_offset
;
7254 if (finfo
->indices
[r_symndx
] == -1)
7256 unsigned long shlink
;
7260 if (finfo
->info
->strip
== strip_all
)
7262 /* You can't do ld -r -s. */
7263 bfd_set_error (bfd_error_invalid_operation
);
7267 /* This symbol was skipped earlier, but
7268 since it is needed by a reloc, we
7269 must output it now. */
7270 shlink
= symtab_hdr
->sh_link
;
7271 name
= (bfd_elf_string_from_elf_section
7272 (input_bfd
, shlink
, sym
.st_name
));
7276 osec
= sec
->output_section
;
7278 _bfd_elf_section_from_bfd_section (output_bfd
,
7280 if (sym
.st_shndx
== SHN_BAD
)
7283 sym
.st_value
+= sec
->output_offset
;
7284 if (! finfo
->info
->relocatable
)
7286 sym
.st_value
+= osec
->vma
;
7287 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
7289 /* STT_TLS symbols are relative to PT_TLS
7291 BFD_ASSERT (elf_hash_table (finfo
->info
)
7293 sym
.st_value
-= (elf_hash_table (finfo
->info
)
7298 finfo
->indices
[r_symndx
]
7299 = bfd_get_symcount (output_bfd
);
7301 if (! elf_link_output_sym (finfo
, name
, &sym
, sec
,
7306 r_symndx
= finfo
->indices
[r_symndx
];
7309 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
7310 | (irela
->r_info
& r_type_mask
));
7313 /* Swap out the relocs. */
7314 if (bed
->elf_backend_emit_relocs
7315 && !(finfo
->info
->relocatable
7316 || finfo
->info
->emitrelocations
))
7317 reloc_emitter
= bed
->elf_backend_emit_relocs
;
7319 reloc_emitter
= _bfd_elf_link_output_relocs
;
7321 if (input_rel_hdr
->sh_size
!= 0
7322 && ! (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr
,
7326 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
7327 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
7329 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
7330 * bed
->s
->int_rels_per_ext_rel
);
7331 if (! (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr2
,
7338 /* Write out the modified section contents. */
7339 if (bed
->elf_backend_write_section
7340 && (*bed
->elf_backend_write_section
) (output_bfd
, o
, contents
))
7342 /* Section written out. */
7344 else switch (o
->sec_info_type
)
7346 case ELF_INFO_TYPE_STABS
:
7347 if (! (_bfd_write_section_stabs
7349 &elf_hash_table (finfo
->info
)->stab_info
,
7350 o
, &elf_section_data (o
)->sec_info
, contents
)))
7353 case ELF_INFO_TYPE_MERGE
:
7354 if (! _bfd_write_merged_section (output_bfd
, o
,
7355 elf_section_data (o
)->sec_info
))
7358 case ELF_INFO_TYPE_EH_FRAME
:
7360 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
7367 if (! (o
->flags
& SEC_EXCLUDE
)
7368 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
7370 (file_ptr
) o
->output_offset
,
7381 /* Generate a reloc when linking an ELF file. This is a reloc
7382 requested by the linker, and does come from any input file. This
7383 is used to build constructor and destructor tables when linking
7387 elf_reloc_link_order (bfd
*output_bfd
,
7388 struct bfd_link_info
*info
,
7389 asection
*output_section
,
7390 struct bfd_link_order
*link_order
)
7392 reloc_howto_type
*howto
;
7396 struct elf_link_hash_entry
**rel_hash_ptr
;
7397 Elf_Internal_Shdr
*rel_hdr
;
7398 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
7399 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
7403 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
7406 bfd_set_error (bfd_error_bad_value
);
7410 addend
= link_order
->u
.reloc
.p
->addend
;
7412 /* Figure out the symbol index. */
7413 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
7414 + elf_section_data (output_section
)->rel_count
7415 + elf_section_data (output_section
)->rel_count2
);
7416 if (link_order
->type
== bfd_section_reloc_link_order
)
7418 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
7419 BFD_ASSERT (indx
!= 0);
7420 *rel_hash_ptr
= NULL
;
7424 struct elf_link_hash_entry
*h
;
7426 /* Treat a reloc against a defined symbol as though it were
7427 actually against the section. */
7428 h
= ((struct elf_link_hash_entry
*)
7429 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
7430 link_order
->u
.reloc
.p
->u
.name
,
7431 FALSE
, FALSE
, TRUE
));
7433 && (h
->root
.type
== bfd_link_hash_defined
7434 || h
->root
.type
== bfd_link_hash_defweak
))
7438 section
= h
->root
.u
.def
.section
;
7439 indx
= section
->output_section
->target_index
;
7440 *rel_hash_ptr
= NULL
;
7441 /* It seems that we ought to add the symbol value to the
7442 addend here, but in practice it has already been added
7443 because it was passed to constructor_callback. */
7444 addend
+= section
->output_section
->vma
+ section
->output_offset
;
7448 /* Setting the index to -2 tells elf_link_output_extsym that
7449 this symbol is used by a reloc. */
7456 if (! ((*info
->callbacks
->unattached_reloc
)
7457 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
7463 /* If this is an inplace reloc, we must write the addend into the
7465 if (howto
->partial_inplace
&& addend
!= 0)
7468 bfd_reloc_status_type rstat
;
7471 const char *sym_name
;
7473 size
= bfd_get_reloc_size (howto
);
7474 buf
= bfd_zmalloc (size
);
7477 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
7484 case bfd_reloc_outofrange
:
7487 case bfd_reloc_overflow
:
7488 if (link_order
->type
== bfd_section_reloc_link_order
)
7489 sym_name
= bfd_section_name (output_bfd
,
7490 link_order
->u
.reloc
.p
->u
.section
);
7492 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
7493 if (! ((*info
->callbacks
->reloc_overflow
)
7494 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
7495 NULL
, (bfd_vma
) 0)))
7502 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
7503 link_order
->offset
, size
);
7509 /* The address of a reloc is relative to the section in a
7510 relocatable file, and is a virtual address in an executable
7512 offset
= link_order
->offset
;
7513 if (! info
->relocatable
)
7514 offset
+= output_section
->vma
;
7516 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7518 irel
[i
].r_offset
= offset
;
7520 irel
[i
].r_addend
= 0;
7522 if (bed
->s
->arch_size
== 32)
7523 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
7525 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
7527 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
7528 erel
= rel_hdr
->contents
;
7529 if (rel_hdr
->sh_type
== SHT_REL
)
7531 erel
+= (elf_section_data (output_section
)->rel_count
7532 * bed
->s
->sizeof_rel
);
7533 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
7537 irel
[0].r_addend
= addend
;
7538 erel
+= (elf_section_data (output_section
)->rel_count
7539 * bed
->s
->sizeof_rela
);
7540 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
7543 ++elf_section_data (output_section
)->rel_count
;
7549 /* Get the output vma of the section pointed to by the sh_link field. */
7552 elf_get_linked_section_vma (struct bfd_link_order
*p
)
7554 Elf_Internal_Shdr
**elf_shdrp
;
7558 s
= p
->u
.indirect
.section
;
7559 elf_shdrp
= elf_elfsections (s
->owner
);
7560 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
7561 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
7563 The Intel C compiler generates SHT_IA_64_UNWIND with
7564 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7565 sh_info fields. Hence we could get the situation
7566 where elfsec is 0. */
7569 const struct elf_backend_data
*bed
7570 = get_elf_backend_data (s
->owner
);
7571 if (bed
->link_order_error_handler
)
7572 bed
->link_order_error_handler
7573 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
7578 s
= elf_shdrp
[elfsec
]->bfd_section
;
7579 return s
->output_section
->vma
+ s
->output_offset
;
7584 /* Compare two sections based on the locations of the sections they are
7585 linked to. Used by elf_fixup_link_order. */
7588 compare_link_order (const void * a
, const void * b
)
7593 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
7594 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
7601 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7602 order as their linked sections. Returns false if this could not be done
7603 because an output section includes both ordered and unordered
7604 sections. Ideally we'd do this in the linker proper. */
7607 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
7612 struct bfd_link_order
*p
;
7614 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7616 struct bfd_link_order
**sections
;
7622 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
7624 if (p
->type
== bfd_indirect_link_order
7625 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
7626 == bfd_target_elf_flavour
)
7627 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
7629 s
= p
->u
.indirect
.section
;
7630 elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
);
7632 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
)
7641 if (!seen_linkorder
)
7644 if (seen_other
&& seen_linkorder
)
7646 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
7648 bfd_set_error (bfd_error_bad_value
);
7652 sections
= (struct bfd_link_order
**)
7653 xmalloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
7656 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
7658 sections
[seen_linkorder
++] = p
;
7660 /* Sort the input sections in the order of their linked section. */
7661 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
7662 compare_link_order
);
7664 /* Change the offsets of the sections. */
7666 for (n
= 0; n
< seen_linkorder
; n
++)
7668 s
= sections
[n
]->u
.indirect
.section
;
7669 offset
&= ~(bfd_vma
)((1 << s
->alignment_power
) - 1);
7670 s
->output_offset
= offset
;
7671 sections
[n
]->offset
= offset
;
7672 offset
+= sections
[n
]->size
;
7679 /* Do the final step of an ELF link. */
7682 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
7684 bfd_boolean dynamic
;
7685 bfd_boolean emit_relocs
;
7687 struct elf_final_link_info finfo
;
7688 register asection
*o
;
7689 register struct bfd_link_order
*p
;
7691 bfd_size_type max_contents_size
;
7692 bfd_size_type max_external_reloc_size
;
7693 bfd_size_type max_internal_reloc_count
;
7694 bfd_size_type max_sym_count
;
7695 bfd_size_type max_sym_shndx_count
;
7697 Elf_Internal_Sym elfsym
;
7699 Elf_Internal_Shdr
*symtab_hdr
;
7700 Elf_Internal_Shdr
*symtab_shndx_hdr
;
7701 Elf_Internal_Shdr
*symstrtab_hdr
;
7702 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7703 struct elf_outext_info eoinfo
;
7705 size_t relativecount
= 0;
7706 asection
*reldyn
= 0;
7709 if (! is_elf_hash_table (info
->hash
))
7713 abfd
->flags
|= DYNAMIC
;
7715 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
7716 dynobj
= elf_hash_table (info
)->dynobj
;
7718 emit_relocs
= (info
->relocatable
7719 || info
->emitrelocations
7720 || bed
->elf_backend_emit_relocs
);
7723 finfo
.output_bfd
= abfd
;
7724 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
7725 if (finfo
.symstrtab
== NULL
)
7730 finfo
.dynsym_sec
= NULL
;
7731 finfo
.hash_sec
= NULL
;
7732 finfo
.symver_sec
= NULL
;
7736 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
7737 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
7738 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
&& finfo
.hash_sec
!= NULL
);
7739 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
7740 /* Note that it is OK if symver_sec is NULL. */
7743 finfo
.contents
= NULL
;
7744 finfo
.external_relocs
= NULL
;
7745 finfo
.internal_relocs
= NULL
;
7746 finfo
.external_syms
= NULL
;
7747 finfo
.locsym_shndx
= NULL
;
7748 finfo
.internal_syms
= NULL
;
7749 finfo
.indices
= NULL
;
7750 finfo
.sections
= NULL
;
7751 finfo
.symbuf
= NULL
;
7752 finfo
.symshndxbuf
= NULL
;
7753 finfo
.symbuf_count
= 0;
7754 finfo
.shndxbuf_size
= 0;
7756 /* Count up the number of relocations we will output for each output
7757 section, so that we know the sizes of the reloc sections. We
7758 also figure out some maximum sizes. */
7759 max_contents_size
= 0;
7760 max_external_reloc_size
= 0;
7761 max_internal_reloc_count
= 0;
7763 max_sym_shndx_count
= 0;
7765 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7767 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
7770 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
7772 unsigned int reloc_count
= 0;
7773 struct bfd_elf_section_data
*esdi
= NULL
;
7774 unsigned int *rel_count1
;
7776 if (p
->type
== bfd_section_reloc_link_order
7777 || p
->type
== bfd_symbol_reloc_link_order
)
7779 else if (p
->type
== bfd_indirect_link_order
)
7783 sec
= p
->u
.indirect
.section
;
7784 esdi
= elf_section_data (sec
);
7786 /* Mark all sections which are to be included in the
7787 link. This will normally be every section. We need
7788 to do this so that we can identify any sections which
7789 the linker has decided to not include. */
7790 sec
->linker_mark
= TRUE
;
7792 if (sec
->flags
& SEC_MERGE
)
7795 if (info
->relocatable
|| info
->emitrelocations
)
7796 reloc_count
= sec
->reloc_count
;
7797 else if (bed
->elf_backend_count_relocs
)
7799 Elf_Internal_Rela
* relocs
;
7801 relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
7804 reloc_count
= (*bed
->elf_backend_count_relocs
) (sec
, relocs
);
7806 if (elf_section_data (o
)->relocs
!= relocs
)
7810 if (sec
->rawsize
> max_contents_size
)
7811 max_contents_size
= sec
->rawsize
;
7812 if (sec
->size
> max_contents_size
)
7813 max_contents_size
= sec
->size
;
7815 /* We are interested in just local symbols, not all
7817 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
7818 && (sec
->owner
->flags
& DYNAMIC
) == 0)
7822 if (elf_bad_symtab (sec
->owner
))
7823 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
7824 / bed
->s
->sizeof_sym
);
7826 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
7828 if (sym_count
> max_sym_count
)
7829 max_sym_count
= sym_count
;
7831 if (sym_count
> max_sym_shndx_count
7832 && elf_symtab_shndx (sec
->owner
) != 0)
7833 max_sym_shndx_count
= sym_count
;
7835 if ((sec
->flags
& SEC_RELOC
) != 0)
7839 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
7840 if (ext_size
> max_external_reloc_size
)
7841 max_external_reloc_size
= ext_size
;
7842 if (sec
->reloc_count
> max_internal_reloc_count
)
7843 max_internal_reloc_count
= sec
->reloc_count
;
7848 if (reloc_count
== 0)
7851 o
->reloc_count
+= reloc_count
;
7853 /* MIPS may have a mix of REL and RELA relocs on sections.
7854 To support this curious ABI we keep reloc counts in
7855 elf_section_data too. We must be careful to add the
7856 relocations from the input section to the right output
7857 count. FIXME: Get rid of one count. We have
7858 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7859 rel_count1
= &esdo
->rel_count
;
7862 bfd_boolean same_size
;
7863 bfd_size_type entsize1
;
7865 entsize1
= esdi
->rel_hdr
.sh_entsize
;
7866 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
7867 || entsize1
== bed
->s
->sizeof_rela
);
7868 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
7871 rel_count1
= &esdo
->rel_count2
;
7873 if (esdi
->rel_hdr2
!= NULL
)
7875 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
7876 unsigned int alt_count
;
7877 unsigned int *rel_count2
;
7879 BFD_ASSERT (entsize2
!= entsize1
7880 && (entsize2
== bed
->s
->sizeof_rel
7881 || entsize2
== bed
->s
->sizeof_rela
));
7883 rel_count2
= &esdo
->rel_count2
;
7885 rel_count2
= &esdo
->rel_count
;
7887 /* The following is probably too simplistic if the
7888 backend counts output relocs unusually. */
7889 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
7890 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
7891 *rel_count2
+= alt_count
;
7892 reloc_count
-= alt_count
;
7895 *rel_count1
+= reloc_count
;
7898 if (o
->reloc_count
> 0)
7899 o
->flags
|= SEC_RELOC
;
7902 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7903 set it (this is probably a bug) and if it is set
7904 assign_section_numbers will create a reloc section. */
7905 o
->flags
&=~ SEC_RELOC
;
7908 /* If the SEC_ALLOC flag is not set, force the section VMA to
7909 zero. This is done in elf_fake_sections as well, but forcing
7910 the VMA to 0 here will ensure that relocs against these
7911 sections are handled correctly. */
7912 if ((o
->flags
& SEC_ALLOC
) == 0
7913 && ! o
->user_set_vma
)
7917 if (! info
->relocatable
&& merged
)
7918 elf_link_hash_traverse (elf_hash_table (info
),
7919 _bfd_elf_link_sec_merge_syms
, abfd
);
7921 /* Figure out the file positions for everything but the symbol table
7922 and the relocs. We set symcount to force assign_section_numbers
7923 to create a symbol table. */
7924 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
7925 BFD_ASSERT (! abfd
->output_has_begun
);
7926 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
7929 /* Set sizes, and assign file positions for reloc sections. */
7930 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7932 if ((o
->flags
& SEC_RELOC
) != 0)
7934 if (!(_bfd_elf_link_size_reloc_section
7935 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
7938 if (elf_section_data (o
)->rel_hdr2
7939 && !(_bfd_elf_link_size_reloc_section
7940 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
7944 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7945 to count upwards while actually outputting the relocations. */
7946 elf_section_data (o
)->rel_count
= 0;
7947 elf_section_data (o
)->rel_count2
= 0;
7950 _bfd_elf_assign_file_positions_for_relocs (abfd
);
7952 /* We have now assigned file positions for all the sections except
7953 .symtab and .strtab. We start the .symtab section at the current
7954 file position, and write directly to it. We build the .strtab
7955 section in memory. */
7956 bfd_get_symcount (abfd
) = 0;
7957 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7958 /* sh_name is set in prep_headers. */
7959 symtab_hdr
->sh_type
= SHT_SYMTAB
;
7960 /* sh_flags, sh_addr and sh_size all start off zero. */
7961 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
7962 /* sh_link is set in assign_section_numbers. */
7963 /* sh_info is set below. */
7964 /* sh_offset is set just below. */
7965 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
7967 off
= elf_tdata (abfd
)->next_file_pos
;
7968 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
7970 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7971 incorrect. We do not yet know the size of the .symtab section.
7972 We correct next_file_pos below, after we do know the size. */
7974 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7975 continuously seeking to the right position in the file. */
7976 if (! info
->keep_memory
|| max_sym_count
< 20)
7977 finfo
.symbuf_size
= 20;
7979 finfo
.symbuf_size
= max_sym_count
;
7980 amt
= finfo
.symbuf_size
;
7981 amt
*= bed
->s
->sizeof_sym
;
7982 finfo
.symbuf
= bfd_malloc (amt
);
7983 if (finfo
.symbuf
== NULL
)
7985 if (elf_numsections (abfd
) > SHN_LORESERVE
)
7987 /* Wild guess at number of output symbols. realloc'd as needed. */
7988 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
7989 finfo
.shndxbuf_size
= amt
;
7990 amt
*= sizeof (Elf_External_Sym_Shndx
);
7991 finfo
.symshndxbuf
= bfd_zmalloc (amt
);
7992 if (finfo
.symshndxbuf
== NULL
)
7996 /* Start writing out the symbol table. The first symbol is always a
7998 if (info
->strip
!= strip_all
8001 elfsym
.st_value
= 0;
8004 elfsym
.st_other
= 0;
8005 elfsym
.st_shndx
= SHN_UNDEF
;
8006 if (! elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
8011 /* Output a symbol for each section. We output these even if we are
8012 discarding local symbols, since they are used for relocs. These
8013 symbols have no names. We store the index of each one in the
8014 index field of the section, so that we can find it again when
8015 outputting relocs. */
8016 if (info
->strip
!= strip_all
8020 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
8021 elfsym
.st_other
= 0;
8022 for (i
= 1; i
< elf_numsections (abfd
); i
++)
8024 o
= bfd_section_from_elf_index (abfd
, i
);
8026 o
->target_index
= bfd_get_symcount (abfd
);
8027 elfsym
.st_shndx
= i
;
8028 if (info
->relocatable
|| o
== NULL
)
8029 elfsym
.st_value
= 0;
8031 elfsym
.st_value
= o
->vma
;
8032 if (! elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
))
8034 if (i
== SHN_LORESERVE
- 1)
8035 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
8039 /* Allocate some memory to hold information read in from the input
8041 if (max_contents_size
!= 0)
8043 finfo
.contents
= bfd_malloc (max_contents_size
);
8044 if (finfo
.contents
== NULL
)
8048 if (max_external_reloc_size
!= 0)
8050 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
8051 if (finfo
.external_relocs
== NULL
)
8055 if (max_internal_reloc_count
!= 0)
8057 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8058 amt
*= sizeof (Elf_Internal_Rela
);
8059 finfo
.internal_relocs
= bfd_malloc (amt
);
8060 if (finfo
.internal_relocs
== NULL
)
8064 if (max_sym_count
!= 0)
8066 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
8067 finfo
.external_syms
= bfd_malloc (amt
);
8068 if (finfo
.external_syms
== NULL
)
8071 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
8072 finfo
.internal_syms
= bfd_malloc (amt
);
8073 if (finfo
.internal_syms
== NULL
)
8076 amt
= max_sym_count
* sizeof (long);
8077 finfo
.indices
= bfd_malloc (amt
);
8078 if (finfo
.indices
== NULL
)
8081 amt
= max_sym_count
* sizeof (asection
*);
8082 finfo
.sections
= bfd_malloc (amt
);
8083 if (finfo
.sections
== NULL
)
8087 if (max_sym_shndx_count
!= 0)
8089 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
8090 finfo
.locsym_shndx
= bfd_malloc (amt
);
8091 if (finfo
.locsym_shndx
== NULL
)
8095 if (elf_hash_table (info
)->tls_sec
)
8097 bfd_vma base
, end
= 0;
8100 for (sec
= elf_hash_table (info
)->tls_sec
;
8101 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
8104 bfd_vma size
= sec
->size
;
8106 if (size
== 0 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
8108 struct bfd_link_order
*o
;
8110 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
8111 if (size
< o
->offset
+ o
->size
)
8112 size
= o
->offset
+ o
->size
;
8114 end
= sec
->vma
+ size
;
8116 base
= elf_hash_table (info
)->tls_sec
->vma
;
8117 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
8118 elf_hash_table (info
)->tls_size
= end
- base
;
8121 /* Reorder SHF_LINK_ORDER sections. */
8122 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8124 if (!elf_fixup_link_order (abfd
, o
))
8128 /* Since ELF permits relocations to be against local symbols, we
8129 must have the local symbols available when we do the relocations.
8130 Since we would rather only read the local symbols once, and we
8131 would rather not keep them in memory, we handle all the
8132 relocations for a single input file at the same time.
8134 Unfortunately, there is no way to know the total number of local
8135 symbols until we have seen all of them, and the local symbol
8136 indices precede the global symbol indices. This means that when
8137 we are generating relocatable output, and we see a reloc against
8138 a global symbol, we can not know the symbol index until we have
8139 finished examining all the local symbols to see which ones we are
8140 going to output. To deal with this, we keep the relocations in
8141 memory, and don't output them until the end of the link. This is
8142 an unfortunate waste of memory, but I don't see a good way around
8143 it. Fortunately, it only happens when performing a relocatable
8144 link, which is not the common case. FIXME: If keep_memory is set
8145 we could write the relocs out and then read them again; I don't
8146 know how bad the memory loss will be. */
8148 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
8149 sub
->output_has_begun
= FALSE
;
8150 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8152 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
8154 if (p
->type
== bfd_indirect_link_order
8155 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
8156 == bfd_target_elf_flavour
)
8157 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
8159 if (! sub
->output_has_begun
)
8161 if (! elf_link_input_bfd (&finfo
, sub
))
8163 sub
->output_has_begun
= TRUE
;
8166 else if (p
->type
== bfd_section_reloc_link_order
8167 || p
->type
== bfd_symbol_reloc_link_order
)
8169 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
8174 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
8180 /* Output any global symbols that got converted to local in a
8181 version script or due to symbol visibility. We do this in a
8182 separate step since ELF requires all local symbols to appear
8183 prior to any global symbols. FIXME: We should only do this if
8184 some global symbols were, in fact, converted to become local.
8185 FIXME: Will this work correctly with the Irix 5 linker? */
8186 eoinfo
.failed
= FALSE
;
8187 eoinfo
.finfo
= &finfo
;
8188 eoinfo
.localsyms
= TRUE
;
8189 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
8194 /* That wrote out all the local symbols. Finish up the symbol table
8195 with the global symbols. Even if we want to strip everything we
8196 can, we still need to deal with those global symbols that got
8197 converted to local in a version script. */
8199 /* The sh_info field records the index of the first non local symbol. */
8200 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
8203 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
8205 Elf_Internal_Sym sym
;
8206 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
8207 long last_local
= 0;
8209 /* Write out the section symbols for the output sections. */
8210 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
8216 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
8219 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
8225 dynindx
= elf_section_data (s
)->dynindx
;
8228 indx
= elf_section_data (s
)->this_idx
;
8229 BFD_ASSERT (indx
> 0);
8230 sym
.st_shndx
= indx
;
8231 sym
.st_value
= s
->vma
;
8232 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
8233 if (last_local
< dynindx
)
8234 last_local
= dynindx
;
8235 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
8239 /* Write out the local dynsyms. */
8240 if (elf_hash_table (info
)->dynlocal
)
8242 struct elf_link_local_dynamic_entry
*e
;
8243 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
8248 sym
.st_size
= e
->isym
.st_size
;
8249 sym
.st_other
= e
->isym
.st_other
;
8251 /* Copy the internal symbol as is.
8252 Note that we saved a word of storage and overwrote
8253 the original st_name with the dynstr_index. */
8256 if (e
->isym
.st_shndx
!= SHN_UNDEF
8257 && (e
->isym
.st_shndx
< SHN_LORESERVE
8258 || e
->isym
.st_shndx
> SHN_HIRESERVE
))
8260 s
= bfd_section_from_elf_index (e
->input_bfd
,
8264 elf_section_data (s
->output_section
)->this_idx
;
8265 sym
.st_value
= (s
->output_section
->vma
8267 + e
->isym
.st_value
);
8270 if (last_local
< e
->dynindx
)
8271 last_local
= e
->dynindx
;
8273 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
8274 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
8278 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
8282 /* We get the global symbols from the hash table. */
8283 eoinfo
.failed
= FALSE
;
8284 eoinfo
.localsyms
= FALSE
;
8285 eoinfo
.finfo
= &finfo
;
8286 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
8291 /* If backend needs to output some symbols not present in the hash
8292 table, do it now. */
8293 if (bed
->elf_backend_output_arch_syms
)
8295 typedef bfd_boolean (*out_sym_func
)
8296 (void *, const char *, Elf_Internal_Sym
*, asection
*,
8297 struct elf_link_hash_entry
*);
8299 if (! ((*bed
->elf_backend_output_arch_syms
)
8300 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
8304 /* Flush all symbols to the file. */
8305 if (! elf_link_flush_output_syms (&finfo
, bed
))
8308 /* Now we know the size of the symtab section. */
8309 off
+= symtab_hdr
->sh_size
;
8311 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
8312 if (symtab_shndx_hdr
->sh_name
!= 0)
8314 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
8315 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
8316 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
8317 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
8318 symtab_shndx_hdr
->sh_size
= amt
;
8320 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
8323 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
8324 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
8329 /* Finish up and write out the symbol string table (.strtab)
8331 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
8332 /* sh_name was set in prep_headers. */
8333 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
8334 symstrtab_hdr
->sh_flags
= 0;
8335 symstrtab_hdr
->sh_addr
= 0;
8336 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
8337 symstrtab_hdr
->sh_entsize
= 0;
8338 symstrtab_hdr
->sh_link
= 0;
8339 symstrtab_hdr
->sh_info
= 0;
8340 /* sh_offset is set just below. */
8341 symstrtab_hdr
->sh_addralign
= 1;
8343 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
8344 elf_tdata (abfd
)->next_file_pos
= off
;
8346 if (bfd_get_symcount (abfd
) > 0)
8348 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
8349 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
8353 /* Adjust the relocs to have the correct symbol indices. */
8354 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8356 if ((o
->flags
& SEC_RELOC
) == 0)
8359 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
8360 elf_section_data (o
)->rel_count
,
8361 elf_section_data (o
)->rel_hashes
);
8362 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
8363 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
8364 elf_section_data (o
)->rel_count2
,
8365 (elf_section_data (o
)->rel_hashes
8366 + elf_section_data (o
)->rel_count
));
8368 /* Set the reloc_count field to 0 to prevent write_relocs from
8369 trying to swap the relocs out itself. */
8373 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
8374 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
8376 /* If we are linking against a dynamic object, or generating a
8377 shared library, finish up the dynamic linking information. */
8380 bfd_byte
*dyncon
, *dynconend
;
8382 /* Fix up .dynamic entries. */
8383 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
8384 BFD_ASSERT (o
!= NULL
);
8386 dyncon
= o
->contents
;
8387 dynconend
= o
->contents
+ o
->size
;
8388 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
8390 Elf_Internal_Dyn dyn
;
8394 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
8401 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
8403 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
8405 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
8406 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
8409 dyn
.d_un
.d_val
= relativecount
;
8416 name
= info
->init_function
;
8419 name
= info
->fini_function
;
8422 struct elf_link_hash_entry
*h
;
8424 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
8425 FALSE
, FALSE
, TRUE
);
8427 && (h
->root
.type
== bfd_link_hash_defined
8428 || h
->root
.type
== bfd_link_hash_defweak
))
8430 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
8431 o
= h
->root
.u
.def
.section
;
8432 if (o
->output_section
!= NULL
)
8433 dyn
.d_un
.d_val
+= (o
->output_section
->vma
8434 + o
->output_offset
);
8437 /* The symbol is imported from another shared
8438 library and does not apply to this one. */
8446 case DT_PREINIT_ARRAYSZ
:
8447 name
= ".preinit_array";
8449 case DT_INIT_ARRAYSZ
:
8450 name
= ".init_array";
8452 case DT_FINI_ARRAYSZ
:
8453 name
= ".fini_array";
8455 o
= bfd_get_section_by_name (abfd
, name
);
8458 (*_bfd_error_handler
)
8459 (_("%B: could not find output section %s"), abfd
, name
);
8463 (*_bfd_error_handler
)
8464 (_("warning: %s section has zero size"), name
);
8465 dyn
.d_un
.d_val
= o
->size
;
8468 case DT_PREINIT_ARRAY
:
8469 name
= ".preinit_array";
8472 name
= ".init_array";
8475 name
= ".fini_array";
8488 name
= ".gnu.version_d";
8491 name
= ".gnu.version_r";
8494 name
= ".gnu.version";
8496 o
= bfd_get_section_by_name (abfd
, name
);
8499 (*_bfd_error_handler
)
8500 (_("%B: could not find output section %s"), abfd
, name
);
8503 dyn
.d_un
.d_ptr
= o
->vma
;
8510 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
8515 for (i
= 1; i
< elf_numsections (abfd
); i
++)
8517 Elf_Internal_Shdr
*hdr
;
8519 hdr
= elf_elfsections (abfd
)[i
];
8520 if (hdr
->sh_type
== type
8521 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
8523 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
8524 dyn
.d_un
.d_val
+= hdr
->sh_size
;
8527 if (dyn
.d_un
.d_val
== 0
8528 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
8529 dyn
.d_un
.d_val
= hdr
->sh_addr
;
8535 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
8539 /* If we have created any dynamic sections, then output them. */
8542 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
8545 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
8547 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
8549 || o
->output_section
== bfd_abs_section_ptr
)
8551 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
8553 /* At this point, we are only interested in sections
8554 created by _bfd_elf_link_create_dynamic_sections. */
8557 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
8559 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
8561 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
8563 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
8565 if (! bfd_set_section_contents (abfd
, o
->output_section
,
8567 (file_ptr
) o
->output_offset
,
8573 /* The contents of the .dynstr section are actually in a
8575 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
8576 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
8577 || ! _bfd_elf_strtab_emit (abfd
,
8578 elf_hash_table (info
)->dynstr
))
8584 if (info
->relocatable
)
8586 bfd_boolean failed
= FALSE
;
8588 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
8593 /* If we have optimized stabs strings, output them. */
8594 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
8596 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
8600 if (info
->eh_frame_hdr
)
8602 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
8606 if (finfo
.symstrtab
!= NULL
)
8607 _bfd_stringtab_free (finfo
.symstrtab
);
8608 if (finfo
.contents
!= NULL
)
8609 free (finfo
.contents
);
8610 if (finfo
.external_relocs
!= NULL
)
8611 free (finfo
.external_relocs
);
8612 if (finfo
.internal_relocs
!= NULL
)
8613 free (finfo
.internal_relocs
);
8614 if (finfo
.external_syms
!= NULL
)
8615 free (finfo
.external_syms
);
8616 if (finfo
.locsym_shndx
!= NULL
)
8617 free (finfo
.locsym_shndx
);
8618 if (finfo
.internal_syms
!= NULL
)
8619 free (finfo
.internal_syms
);
8620 if (finfo
.indices
!= NULL
)
8621 free (finfo
.indices
);
8622 if (finfo
.sections
!= NULL
)
8623 free (finfo
.sections
);
8624 if (finfo
.symbuf
!= NULL
)
8625 free (finfo
.symbuf
);
8626 if (finfo
.symshndxbuf
!= NULL
)
8627 free (finfo
.symshndxbuf
);
8628 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8630 if ((o
->flags
& SEC_RELOC
) != 0
8631 && elf_section_data (o
)->rel_hashes
!= NULL
)
8632 free (elf_section_data (o
)->rel_hashes
);
8635 elf_tdata (abfd
)->linker
= TRUE
;
8640 if (finfo
.symstrtab
!= NULL
)
8641 _bfd_stringtab_free (finfo
.symstrtab
);
8642 if (finfo
.contents
!= NULL
)
8643 free (finfo
.contents
);
8644 if (finfo
.external_relocs
!= NULL
)
8645 free (finfo
.external_relocs
);
8646 if (finfo
.internal_relocs
!= NULL
)
8647 free (finfo
.internal_relocs
);
8648 if (finfo
.external_syms
!= NULL
)
8649 free (finfo
.external_syms
);
8650 if (finfo
.locsym_shndx
!= NULL
)
8651 free (finfo
.locsym_shndx
);
8652 if (finfo
.internal_syms
!= NULL
)
8653 free (finfo
.internal_syms
);
8654 if (finfo
.indices
!= NULL
)
8655 free (finfo
.indices
);
8656 if (finfo
.sections
!= NULL
)
8657 free (finfo
.sections
);
8658 if (finfo
.symbuf
!= NULL
)
8659 free (finfo
.symbuf
);
8660 if (finfo
.symshndxbuf
!= NULL
)
8661 free (finfo
.symshndxbuf
);
8662 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8664 if ((o
->flags
& SEC_RELOC
) != 0
8665 && elf_section_data (o
)->rel_hashes
!= NULL
)
8666 free (elf_section_data (o
)->rel_hashes
);
8672 /* Garbage collect unused sections. */
8674 /* The mark phase of garbage collection. For a given section, mark
8675 it and any sections in this section's group, and all the sections
8676 which define symbols to which it refers. */
8678 typedef asection
* (*gc_mark_hook_fn
)
8679 (asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
8680 struct elf_link_hash_entry
*, Elf_Internal_Sym
*);
8683 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
8685 gc_mark_hook_fn gc_mark_hook
)
8688 asection
*group_sec
;
8692 /* Mark all the sections in the group. */
8693 group_sec
= elf_section_data (sec
)->next_in_group
;
8694 if (group_sec
&& !group_sec
->gc_mark
)
8695 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
8698 /* Look through the section relocs. */
8700 if ((sec
->flags
& SEC_RELOC
) != 0 && sec
->reloc_count
> 0)
8702 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
8703 Elf_Internal_Shdr
*symtab_hdr
;
8704 struct elf_link_hash_entry
**sym_hashes
;
8707 bfd
*input_bfd
= sec
->owner
;
8708 const struct elf_backend_data
*bed
= get_elf_backend_data (input_bfd
);
8709 Elf_Internal_Sym
*isym
= NULL
;
8712 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8713 sym_hashes
= elf_sym_hashes (input_bfd
);
8715 /* Read the local symbols. */
8716 if (elf_bad_symtab (input_bfd
))
8718 nlocsyms
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8722 extsymoff
= nlocsyms
= symtab_hdr
->sh_info
;
8724 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8725 if (isym
== NULL
&& nlocsyms
!= 0)
8727 isym
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, nlocsyms
, 0,
8733 /* Read the relocations. */
8734 relstart
= _bfd_elf_link_read_relocs (input_bfd
, sec
, NULL
, NULL
,
8736 if (relstart
== NULL
)
8741 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8743 if (bed
->s
->arch_size
== 32)
8748 for (rel
= relstart
; rel
< relend
; rel
++)
8750 unsigned long r_symndx
;
8752 struct elf_link_hash_entry
*h
;
8754 r_symndx
= rel
->r_info
>> r_sym_shift
;
8758 if (r_symndx
>= nlocsyms
8759 || ELF_ST_BIND (isym
[r_symndx
].st_info
) != STB_LOCAL
)
8761 h
= sym_hashes
[r_symndx
- extsymoff
];
8762 while (h
->root
.type
== bfd_link_hash_indirect
8763 || h
->root
.type
== bfd_link_hash_warning
)
8764 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8765 rsec
= (*gc_mark_hook
) (sec
, info
, rel
, h
, NULL
);
8769 rsec
= (*gc_mark_hook
) (sec
, info
, rel
, NULL
, &isym
[r_symndx
]);
8772 if (rsec
&& !rsec
->gc_mark
)
8774 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
8776 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
8785 if (elf_section_data (sec
)->relocs
!= relstart
)
8788 if (isym
!= NULL
&& symtab_hdr
->contents
!= (unsigned char *) isym
)
8790 if (! info
->keep_memory
)
8793 symtab_hdr
->contents
= (unsigned char *) isym
;
8800 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8803 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *idxptr
)
8807 if (h
->root
.type
== bfd_link_hash_warning
)
8808 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8810 if (h
->dynindx
!= -1
8811 && ((h
->root
.type
!= bfd_link_hash_defined
8812 && h
->root
.type
!= bfd_link_hash_defweak
)
8813 || h
->root
.u
.def
.section
->gc_mark
))
8814 h
->dynindx
= (*idx
)++;
8819 /* The sweep phase of garbage collection. Remove all garbage sections. */
8821 typedef bfd_boolean (*gc_sweep_hook_fn
)
8822 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
8825 elf_gc_sweep (struct bfd_link_info
*info
, gc_sweep_hook_fn gc_sweep_hook
)
8829 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
8833 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
8836 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
8838 /* Keep debug and special sections. */
8839 if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
8840 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == 0)
8846 /* Skip sweeping sections already excluded. */
8847 if (o
->flags
& SEC_EXCLUDE
)
8850 /* Since this is early in the link process, it is simple
8851 to remove a section from the output. */
8852 o
->flags
|= SEC_EXCLUDE
;
8854 /* But we also have to update some of the relocation
8855 info we collected before. */
8857 && (o
->flags
& SEC_RELOC
) && o
->reloc_count
> 0)
8859 Elf_Internal_Rela
*internal_relocs
;
8863 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
8865 if (internal_relocs
== NULL
)
8868 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
8870 if (elf_section_data (o
)->relocs
!= internal_relocs
)
8871 free (internal_relocs
);
8879 /* Remove the symbols that were in the swept sections from the dynamic
8880 symbol table. GCFIXME: Anyone know how to get them out of the
8881 static symbol table as well? */
8885 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
, &i
);
8887 elf_hash_table (info
)->dynsymcount
= i
;
8893 /* Propagate collected vtable information. This is called through
8894 elf_link_hash_traverse. */
8897 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
8899 if (h
->root
.type
== bfd_link_hash_warning
)
8900 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8902 /* Those that are not vtables. */
8903 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
8906 /* Those vtables that do not have parents, we cannot merge. */
8907 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
8910 /* If we've already been done, exit. */
8911 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
8914 /* Make sure the parent's table is up to date. */
8915 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
8917 if (h
->vtable
->used
== NULL
)
8919 /* None of this table's entries were referenced. Re-use the
8921 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
8922 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
8927 bfd_boolean
*cu
, *pu
;
8929 /* Or the parent's entries into ours. */
8930 cu
= h
->vtable
->used
;
8932 pu
= h
->vtable
->parent
->vtable
->used
;
8935 const struct elf_backend_data
*bed
;
8936 unsigned int log_file_align
;
8938 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
8939 log_file_align
= bed
->s
->log_file_align
;
8940 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
8955 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
8958 bfd_vma hstart
, hend
;
8959 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
8960 const struct elf_backend_data
*bed
;
8961 unsigned int log_file_align
;
8963 if (h
->root
.type
== bfd_link_hash_warning
)
8964 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8966 /* Take care of both those symbols that do not describe vtables as
8967 well as those that are not loaded. */
8968 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
8971 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
8972 || h
->root
.type
== bfd_link_hash_defweak
);
8974 sec
= h
->root
.u
.def
.section
;
8975 hstart
= h
->root
.u
.def
.value
;
8976 hend
= hstart
+ h
->size
;
8978 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
8980 return *(bfd_boolean
*) okp
= FALSE
;
8981 bed
= get_elf_backend_data (sec
->owner
);
8982 log_file_align
= bed
->s
->log_file_align
;
8984 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8986 for (rel
= relstart
; rel
< relend
; ++rel
)
8987 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
8989 /* If the entry is in use, do nothing. */
8991 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
8993 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
8994 if (h
->vtable
->used
[entry
])
8997 /* Otherwise, kill it. */
8998 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
9004 /* Mark sections containing dynamically referenced symbols. This is called
9005 through elf_link_hash_traverse. */
9008 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
,
9009 void *okp ATTRIBUTE_UNUSED
)
9011 if (h
->root
.type
== bfd_link_hash_warning
)
9012 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9014 if ((h
->root
.type
== bfd_link_hash_defined
9015 || h
->root
.type
== bfd_link_hash_defweak
)
9017 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
9022 /* Mark sections containing global symbols. This is called through
9023 elf_link_hash_traverse. */
9026 elf_mark_used_section (struct elf_link_hash_entry
*h
,
9027 void *data ATTRIBUTE_UNUSED
)
9029 if (h
->root
.type
== bfd_link_hash_warning
)
9030 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9032 if (h
->root
.type
== bfd_link_hash_defined
9033 || h
->root
.type
== bfd_link_hash_defweak
)
9035 asection
*s
= h
->root
.u
.def
.section
;
9036 if (s
!= NULL
&& s
->output_section
!= NULL
)
9037 s
->output_section
->flags
|= SEC_KEEP
;
9043 /* Do mark and sweep of unused sections. */
9046 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
9048 bfd_boolean ok
= TRUE
;
9050 asection
* (*gc_mark_hook
)
9051 (asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
9052 struct elf_link_hash_entry
*h
, Elf_Internal_Sym
*);
9054 if (!info
->gc_sections
)
9056 /* If we are called when info->gc_sections is 0, we will mark
9057 all sections containing global symbols for non-relocatable
9059 if (!info
->relocatable
)
9060 elf_link_hash_traverse (elf_hash_table (info
),
9061 elf_mark_used_section
, NULL
);
9065 if (!get_elf_backend_data (abfd
)->can_gc_sections
9066 || info
->relocatable
9067 || info
->emitrelocations
9069 || !is_elf_hash_table (info
->hash
))
9071 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
9075 /* Apply transitive closure to the vtable entry usage info. */
9076 elf_link_hash_traverse (elf_hash_table (info
),
9077 elf_gc_propagate_vtable_entries_used
,
9082 /* Kill the vtable relocations that were not used. */
9083 elf_link_hash_traverse (elf_hash_table (info
),
9084 elf_gc_smash_unused_vtentry_relocs
,
9089 /* Mark dynamically referenced symbols. */
9090 if (elf_hash_table (info
)->dynamic_sections_created
)
9091 elf_link_hash_traverse (elf_hash_table (info
),
9092 elf_gc_mark_dynamic_ref_symbol
,
9097 /* Grovel through relocs to find out who stays ... */
9098 gc_mark_hook
= get_elf_backend_data (abfd
)->gc_mark_hook
;
9099 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
9103 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
9106 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
9108 if (o
->flags
& SEC_KEEP
)
9110 /* _bfd_elf_discard_section_eh_frame knows how to discard
9111 orphaned FDEs so don't mark sections referenced by the
9112 EH frame section. */
9113 if (strcmp (o
->name
, ".eh_frame") == 0)
9115 else if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
9121 /* ... and mark SEC_EXCLUDE for those that go. */
9122 if (!elf_gc_sweep (info
, get_elf_backend_data (abfd
)->gc_sweep_hook
))
9128 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9131 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
9133 struct elf_link_hash_entry
*h
,
9136 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
9137 struct elf_link_hash_entry
**search
, *child
;
9138 bfd_size_type extsymcount
;
9139 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9141 /* The sh_info field of the symtab header tells us where the
9142 external symbols start. We don't care about the local symbols at
9144 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
9145 if (!elf_bad_symtab (abfd
))
9146 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
9148 sym_hashes
= elf_sym_hashes (abfd
);
9149 sym_hashes_end
= sym_hashes
+ extsymcount
;
9151 /* Hunt down the child symbol, which is in this section at the same
9152 offset as the relocation. */
9153 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
9155 if ((child
= *search
) != NULL
9156 && (child
->root
.type
== bfd_link_hash_defined
9157 || child
->root
.type
== bfd_link_hash_defweak
)
9158 && child
->root
.u
.def
.section
== sec
9159 && child
->root
.u
.def
.value
== offset
)
9163 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
9164 abfd
, sec
, (unsigned long) offset
);
9165 bfd_set_error (bfd_error_invalid_operation
);
9171 child
->vtable
= bfd_zalloc (abfd
, sizeof (*child
->vtable
));
9177 /* This *should* only be the absolute section. It could potentially
9178 be that someone has defined a non-global vtable though, which
9179 would be bad. It isn't worth paging in the local symbols to be
9180 sure though; that case should simply be handled by the assembler. */
9182 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
9185 child
->vtable
->parent
= h
;
9190 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9193 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
9194 asection
*sec ATTRIBUTE_UNUSED
,
9195 struct elf_link_hash_entry
*h
,
9198 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9199 unsigned int log_file_align
= bed
->s
->log_file_align
;
9203 h
->vtable
= bfd_zalloc (abfd
, sizeof (*h
->vtable
));
9208 if (addend
>= h
->vtable
->size
)
9210 size_t size
, bytes
, file_align
;
9211 bfd_boolean
*ptr
= h
->vtable
->used
;
9213 /* While the symbol is undefined, we have to be prepared to handle
9215 file_align
= 1 << log_file_align
;
9216 if (h
->root
.type
== bfd_link_hash_undefined
)
9217 size
= addend
+ file_align
;
9223 /* Oops! We've got a reference past the defined end of
9224 the table. This is probably a bug -- shall we warn? */
9225 size
= addend
+ file_align
;
9228 size
= (size
+ file_align
- 1) & -file_align
;
9230 /* Allocate one extra entry for use as a "done" flag for the
9231 consolidation pass. */
9232 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
9236 ptr
= bfd_realloc (ptr
- 1, bytes
);
9242 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
9243 * sizeof (bfd_boolean
));
9244 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
9248 ptr
= bfd_zmalloc (bytes
);
9253 /* And arrange for that done flag to be at index -1. */
9254 h
->vtable
->used
= ptr
+ 1;
9255 h
->vtable
->size
= size
;
9258 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
9263 struct alloc_got_off_arg
{
9265 unsigned int got_elt_size
;
9268 /* We need a special top-level link routine to convert got reference counts
9269 to real got offsets. */
9272 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
9274 struct alloc_got_off_arg
*gofarg
= arg
;
9276 if (h
->root
.type
== bfd_link_hash_warning
)
9277 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9279 if (h
->got
.refcount
> 0)
9281 h
->got
.offset
= gofarg
->gotoff
;
9282 gofarg
->gotoff
+= gofarg
->got_elt_size
;
9285 h
->got
.offset
= (bfd_vma
) -1;
9290 /* And an accompanying bit to work out final got entry offsets once
9291 we're done. Should be called from final_link. */
9294 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
9295 struct bfd_link_info
*info
)
9298 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9300 unsigned int got_elt_size
= bed
->s
->arch_size
/ 8;
9301 struct alloc_got_off_arg gofarg
;
9303 if (! is_elf_hash_table (info
->hash
))
9306 /* The GOT offset is relative to the .got section, but the GOT header is
9307 put into the .got.plt section, if the backend uses it. */
9308 if (bed
->want_got_plt
)
9311 gotoff
= bed
->got_header_size
;
9313 /* Do the local .got entries first. */
9314 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
9316 bfd_signed_vma
*local_got
;
9317 bfd_size_type j
, locsymcount
;
9318 Elf_Internal_Shdr
*symtab_hdr
;
9320 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
9323 local_got
= elf_local_got_refcounts (i
);
9327 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
9328 if (elf_bad_symtab (i
))
9329 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9331 locsymcount
= symtab_hdr
->sh_info
;
9333 for (j
= 0; j
< locsymcount
; ++j
)
9335 if (local_got
[j
] > 0)
9337 local_got
[j
] = gotoff
;
9338 gotoff
+= got_elt_size
;
9341 local_got
[j
] = (bfd_vma
) -1;
9345 /* Then the global .got entries. .plt refcounts are handled by
9346 adjust_dynamic_symbol */
9347 gofarg
.gotoff
= gotoff
;
9348 gofarg
.got_elt_size
= got_elt_size
;
9349 elf_link_hash_traverse (elf_hash_table (info
),
9350 elf_gc_allocate_got_offsets
,
9355 /* Many folk need no more in the way of final link than this, once
9356 got entry reference counting is enabled. */
9359 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9361 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
9364 /* Invoke the regular ELF backend linker to do all the work. */
9365 return bfd_elf_final_link (abfd
, info
);
9369 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
9371 struct elf_reloc_cookie
*rcookie
= cookie
;
9373 if (rcookie
->bad_symtab
)
9374 rcookie
->rel
= rcookie
->rels
;
9376 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
9378 unsigned long r_symndx
;
9380 if (! rcookie
->bad_symtab
)
9381 if (rcookie
->rel
->r_offset
> offset
)
9383 if (rcookie
->rel
->r_offset
!= offset
)
9386 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
9387 if (r_symndx
== SHN_UNDEF
)
9390 if (r_symndx
>= rcookie
->locsymcount
9391 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
9393 struct elf_link_hash_entry
*h
;
9395 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
9397 while (h
->root
.type
== bfd_link_hash_indirect
9398 || h
->root
.type
== bfd_link_hash_warning
)
9399 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9401 if ((h
->root
.type
== bfd_link_hash_defined
9402 || h
->root
.type
== bfd_link_hash_defweak
)
9403 && elf_discarded_section (h
->root
.u
.def
.section
))
9410 /* It's not a relocation against a global symbol,
9411 but it could be a relocation against a local
9412 symbol for a discarded section. */
9414 Elf_Internal_Sym
*isym
;
9416 /* Need to: get the symbol; get the section. */
9417 isym
= &rcookie
->locsyms
[r_symndx
];
9418 if (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
9420 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
9421 if (isec
!= NULL
&& elf_discarded_section (isec
))
9430 /* Discard unneeded references to discarded sections.
9431 Returns TRUE if any section's size was changed. */
9432 /* This function assumes that the relocations are in sorted order,
9433 which is true for all known assemblers. */
9436 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
9438 struct elf_reloc_cookie cookie
;
9439 asection
*stab
, *eh
;
9440 Elf_Internal_Shdr
*symtab_hdr
;
9441 const struct elf_backend_data
*bed
;
9444 bfd_boolean ret
= FALSE
;
9446 if (info
->traditional_format
9447 || !is_elf_hash_table (info
->hash
))
9450 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
9452 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
9455 bed
= get_elf_backend_data (abfd
);
9457 if ((abfd
->flags
& DYNAMIC
) != 0)
9460 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
9461 if (info
->relocatable
9464 || bfd_is_abs_section (eh
->output_section
))))
9467 stab
= bfd_get_section_by_name (abfd
, ".stab");
9470 || bfd_is_abs_section (stab
->output_section
)
9471 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
9476 && bed
->elf_backend_discard_info
== NULL
)
9479 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9481 cookie
.sym_hashes
= elf_sym_hashes (abfd
);
9482 cookie
.bad_symtab
= elf_bad_symtab (abfd
);
9483 if (cookie
.bad_symtab
)
9485 cookie
.locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9486 cookie
.extsymoff
= 0;
9490 cookie
.locsymcount
= symtab_hdr
->sh_info
;
9491 cookie
.extsymoff
= symtab_hdr
->sh_info
;
9494 if (bed
->s
->arch_size
== 32)
9495 cookie
.r_sym_shift
= 8;
9497 cookie
.r_sym_shift
= 32;
9499 cookie
.locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
9500 if (cookie
.locsyms
== NULL
&& cookie
.locsymcount
!= 0)
9502 cookie
.locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
9503 cookie
.locsymcount
, 0,
9505 if (cookie
.locsyms
== NULL
)
9512 count
= stab
->reloc_count
;
9514 cookie
.rels
= _bfd_elf_link_read_relocs (abfd
, stab
, NULL
, NULL
,
9516 if (cookie
.rels
!= NULL
)
9518 cookie
.rel
= cookie
.rels
;
9519 cookie
.relend
= cookie
.rels
;
9520 cookie
.relend
+= count
* bed
->s
->int_rels_per_ext_rel
;
9521 if (_bfd_discard_section_stabs (abfd
, stab
,
9522 elf_section_data (stab
)->sec_info
,
9523 bfd_elf_reloc_symbol_deleted_p
,
9526 if (elf_section_data (stab
)->relocs
!= cookie
.rels
)
9534 count
= eh
->reloc_count
;
9536 cookie
.rels
= _bfd_elf_link_read_relocs (abfd
, eh
, NULL
, NULL
,
9538 cookie
.rel
= cookie
.rels
;
9539 cookie
.relend
= cookie
.rels
;
9540 if (cookie
.rels
!= NULL
)
9541 cookie
.relend
+= count
* bed
->s
->int_rels_per_ext_rel
;
9543 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
9544 bfd_elf_reloc_symbol_deleted_p
,
9548 if (cookie
.rels
!= NULL
9549 && elf_section_data (eh
)->relocs
!= cookie
.rels
)
9553 if (bed
->elf_backend_discard_info
!= NULL
9554 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
9557 if (cookie
.locsyms
!= NULL
9558 && symtab_hdr
->contents
!= (unsigned char *) cookie
.locsyms
)
9560 if (! info
->keep_memory
)
9561 free (cookie
.locsyms
);
9563 symtab_hdr
->contents
= (unsigned char *) cookie
.locsyms
;
9567 if (info
->eh_frame_hdr
9568 && !info
->relocatable
9569 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
9576 _bfd_elf_section_already_linked (bfd
*abfd
, struct bfd_section
* sec
)
9579 const char *name
, *p
;
9580 struct bfd_section_already_linked
*l
;
9581 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
9584 /* A single member comdat group section may be discarded by a
9585 linkonce section. See below. */
9586 if (sec
->output_section
== bfd_abs_section_ptr
)
9591 /* Check if it belongs to a section group. */
9592 group
= elf_sec_group (sec
);
9594 /* Return if it isn't a linkonce section nor a member of a group. A
9595 comdat group section also has SEC_LINK_ONCE set. */
9596 if ((flags
& SEC_LINK_ONCE
) == 0 && group
== NULL
)
9601 /* If this is the member of a single member comdat group, check if
9602 the group should be discarded. */
9603 if (elf_next_in_group (sec
) == sec
9604 && (group
->flags
& SEC_LINK_ONCE
) != 0)
9610 /* FIXME: When doing a relocatable link, we may have trouble
9611 copying relocations in other sections that refer to local symbols
9612 in the section being discarded. Those relocations will have to
9613 be converted somehow; as of this writing I'm not sure that any of
9614 the backends handle that correctly.
9616 It is tempting to instead not discard link once sections when
9617 doing a relocatable link (technically, they should be discarded
9618 whenever we are building constructors). However, that fails,
9619 because the linker winds up combining all the link once sections
9620 into a single large link once section, which defeats the purpose
9621 of having link once sections in the first place.
9623 Also, not merging link once sections in a relocatable link
9624 causes trouble for MIPS ELF, which relies on link once semantics
9625 to handle the .reginfo section correctly. */
9627 name
= bfd_get_section_name (abfd
, sec
);
9629 if (strncmp (name
, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9630 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
9635 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
9637 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
9639 /* We may have 3 different sections on the list: group section,
9640 comdat section and linkonce section. SEC may be a linkonce or
9641 group section. We match a group section with a group section,
9642 a linkonce section with a linkonce section, and ignore comdat
9644 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
9645 && strcmp (name
, l
->sec
->name
) == 0
9646 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
9648 /* The section has already been linked. See if we should
9650 switch (flags
& SEC_LINK_DUPLICATES
)
9655 case SEC_LINK_DUPLICATES_DISCARD
:
9658 case SEC_LINK_DUPLICATES_ONE_ONLY
:
9659 (*_bfd_error_handler
)
9660 (_("%B: ignoring duplicate section `%A'"),
9664 case SEC_LINK_DUPLICATES_SAME_SIZE
:
9665 if (sec
->size
!= l
->sec
->size
)
9666 (*_bfd_error_handler
)
9667 (_("%B: duplicate section `%A' has different size"),
9671 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
9672 if (sec
->size
!= l
->sec
->size
)
9673 (*_bfd_error_handler
)
9674 (_("%B: duplicate section `%A' has different size"),
9676 else if (sec
->size
!= 0)
9678 bfd_byte
*sec_contents
, *l_sec_contents
;
9680 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
9681 (*_bfd_error_handler
)
9682 (_("%B: warning: could not read contents of section `%A'"),
9684 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
9686 (*_bfd_error_handler
)
9687 (_("%B: warning: could not read contents of section `%A'"),
9688 l
->sec
->owner
, l
->sec
);
9689 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
9690 (*_bfd_error_handler
)
9691 (_("%B: warning: duplicate section `%A' has different contents"),
9695 free (sec_contents
);
9697 free (l_sec_contents
);
9702 /* Set the output_section field so that lang_add_section
9703 does not create a lang_input_section structure for this
9704 section. Since there might be a symbol in the section
9705 being discarded, we must retain a pointer to the section
9706 which we are really going to use. */
9707 sec
->output_section
= bfd_abs_section_ptr
;
9708 sec
->kept_section
= l
->sec
;
9710 if (flags
& SEC_GROUP
)
9712 asection
*first
= elf_next_in_group (sec
);
9713 asection
*s
= first
;
9717 s
->output_section
= bfd_abs_section_ptr
;
9718 /* Record which group discards it. */
9719 s
->kept_section
= l
->sec
;
9720 s
= elf_next_in_group (s
);
9721 /* These lists are circular. */
9733 /* If this is the member of a single member comdat group and the
9734 group hasn't be discarded, we check if it matches a linkonce
9735 section. We only record the discarded comdat group. Otherwise
9736 the undiscarded group will be discarded incorrectly later since
9737 itself has been recorded. */
9738 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
9739 if ((l
->sec
->flags
& SEC_GROUP
) == 0
9740 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
9741 && bfd_elf_match_symbols_in_sections (l
->sec
,
9742 elf_next_in_group (sec
)))
9744 elf_next_in_group (sec
)->output_section
= bfd_abs_section_ptr
;
9745 elf_next_in_group (sec
)->kept_section
= l
->sec
;
9746 group
->output_section
= bfd_abs_section_ptr
;
9753 /* There is no direct match. But for linkonce section, we should
9754 check if there is a match with comdat group member. We always
9755 record the linkonce section, discarded or not. */
9756 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
9757 if (l
->sec
->flags
& SEC_GROUP
)
9759 asection
*first
= elf_next_in_group (l
->sec
);
9762 && elf_next_in_group (first
) == first
9763 && bfd_elf_match_symbols_in_sections (first
, sec
))
9765 sec
->output_section
= bfd_abs_section_ptr
;
9766 sec
->kept_section
= l
->sec
;
9771 /* This is the first section with this name. Record it. */
9772 bfd_section_already_linked_table_insert (already_linked_list
, sec
);
9775 /* Set NAME to VAL if the symbol exists and is undefined. */
9778 _bfd_elf_provide_symbol (struct bfd_link_info
*info
, const char *name
,
9781 struct elf_link_hash_entry
*h
;
9782 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
,
9784 if (h
!= NULL
&& h
->root
.type
== bfd_link_hash_undefined
)
9786 h
->root
.type
= bfd_link_hash_defined
;
9787 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
9788 h
->root
.u
.def
.value
= val
;
9790 h
->type
= STT_OBJECT
;
9791 h
->other
= STV_HIDDEN
| (h
->other
& ~ ELF_ST_VISIBILITY (-1));
9792 h
->forced_local
= 1;