* config/tc-arm.c (warn_deprecated_sp): New macro.
[binutils.git] / gas / config / tc-arm.c
bloba1e5d12ccb0255702655a75aa110341175bead1f
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
11 This file is part of GAS, the GNU Assembler.
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
28 #include <limits.h>
29 #include <stdarg.h>
30 #define NO_RELOC 0
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
36 #include "opcode/arm.h"
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
43 #include "dwarf2dbg.h"
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
49 /* This structure holds the unwinding state. */
51 static struct
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
80 /* Bit N indicates that an R_ARM_NONE relocation has been output for
81 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
82 emitted only once per section, to save unnecessary bloat. */
83 static unsigned int marked_pr_dependency = 0;
85 #endif /* OBJ_ELF */
87 /* Results from operand parsing worker functions. */
89 typedef enum
91 PARSE_OPERAND_SUCCESS,
92 PARSE_OPERAND_FAIL,
93 PARSE_OPERAND_FAIL_NO_BACKTRACK
94 } parse_operand_result;
96 enum arm_float_abi
98 ARM_FLOAT_ABI_HARD,
99 ARM_FLOAT_ABI_SOFTFP,
100 ARM_FLOAT_ABI_SOFT
103 /* Types of processor to assemble for. */
104 #ifndef CPU_DEFAULT
105 #if defined __XSCALE__
106 #define CPU_DEFAULT ARM_ARCH_XSCALE
107 #else
108 #if defined __thumb__
109 #define CPU_DEFAULT ARM_ARCH_V5T
110 #endif
111 #endif
112 #endif
114 #ifndef FPU_DEFAULT
115 # ifdef TE_LINUX
116 # define FPU_DEFAULT FPU_ARCH_FPA
117 # elif defined (TE_NetBSD)
118 # ifdef OBJ_ELF
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
120 # else
121 /* Legacy a.out format. */
122 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
123 # endif
124 # elif defined (TE_VXWORKS)
125 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
126 # else
127 /* For backwards compatibility, default to FPA. */
128 # define FPU_DEFAULT FPU_ARCH_FPA
129 # endif
130 #endif /* ifndef FPU_DEFAULT */
132 #define streq(a, b) (strcmp (a, b) == 0)
134 static arm_feature_set cpu_variant;
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
149 /* Variables that we set while parsing command-line options. Once all
150 options have been read we re-process these values to set the real
151 assembly flags. */
152 static const arm_feature_set *legacy_cpu = NULL;
153 static const arm_feature_set *legacy_fpu = NULL;
155 static const arm_feature_set *mcpu_cpu_opt = NULL;
156 static const arm_feature_set *mcpu_fpu_opt = NULL;
157 static const arm_feature_set *march_cpu_opt = NULL;
158 static const arm_feature_set *march_fpu_opt = NULL;
159 static const arm_feature_set *mfpu_opt = NULL;
160 static const arm_feature_set *object_arch = NULL;
162 /* Constants for known architecture features. */
163 static const arm_feature_set fpu_default = FPU_DEFAULT;
164 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
165 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
166 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
167 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
168 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
169 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
170 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
171 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
173 #ifdef CPU_DEFAULT
174 static const arm_feature_set cpu_default = CPU_DEFAULT;
175 #endif
177 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
178 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
179 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
180 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
181 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
182 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
183 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
184 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
185 static const arm_feature_set arm_ext_v4t_5 =
186 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
187 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
188 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
189 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
190 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
191 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
192 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
193 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
194 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
195 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
196 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
197 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
198 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
199 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
200 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
201 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
202 static const arm_feature_set arm_ext_m =
203 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
205 static const arm_feature_set arm_arch_any = ARM_ANY;
206 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
207 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
208 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210 static const arm_feature_set arm_cext_iwmmxt2 =
211 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
212 static const arm_feature_set arm_cext_iwmmxt =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
214 static const arm_feature_set arm_cext_xscale =
215 ARM_FEATURE (0, ARM_CEXT_XSCALE);
216 static const arm_feature_set arm_cext_maverick =
217 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
218 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
219 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
220 static const arm_feature_set fpu_vfp_ext_v1xd =
221 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
222 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
223 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
224 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
225 static const arm_feature_set fpu_vfp_ext_d32 =
226 ARM_FEATURE (0, FPU_VFP_EXT_D32);
227 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
228 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
229 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
230 static const arm_feature_set fpu_neon_fp16 = ARM_FEATURE (0, FPU_NEON_FP16);
232 static int mfloat_abi_opt = -1;
233 /* Record user cpu selection for object attributes. */
234 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
235 /* Must be long enough to hold any of the names in arm_cpus. */
236 static char selected_cpu_name[16];
237 #ifdef OBJ_ELF
238 # ifdef EABI_DEFAULT
239 static int meabi_flags = EABI_DEFAULT;
240 # else
241 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
242 # endif
244 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
246 bfd_boolean
247 arm_is_eabi (void)
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
251 #endif
253 #ifdef OBJ_ELF
254 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
255 symbolS * GOT_symbol;
256 #endif
258 /* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262 static int thumb_mode = 0;
263 /* A value distinct from the possible values for thumb_mode that we
264 can use to record whether thumb_mode has been copied into the
265 tc_frag_data field of a frag. */
266 #define MODE_RECORDED (1 << 4)
268 /* If unified_syntax is true, we are processing the new unified
269 ARM/Thumb syntax. Important differences from the old ARM mode:
271 - Immediate operands do not require a # prefix.
272 - Conditional affixes always appear at the end of the
273 instruction. (For backward compatibility, those instructions
274 that formerly had them in the middle, continue to accept them
275 there.)
276 - The IT instruction may appear, and if it does is validated
277 against subsequent conditional affixes. It does not generate
278 machine code.
280 Important differences from the old Thumb mode:
282 - Immediate operands do not require a # prefix.
283 - Most of the V6T2 instructions are only available in unified mode.
284 - The .N and .W suffixes are recognized and honored (it is an error
285 if they cannot be honored).
286 - All instructions set the flags if and only if they have an 's' affix.
287 - Conditional affixes may be used. They are validated against
288 preceding IT instructions. Unlike ARM mode, you cannot use a
289 conditional affix except in the scope of an IT instruction. */
291 static bfd_boolean unified_syntax = FALSE;
293 enum neon_el_type
295 NT_invtype,
296 NT_untyped,
297 NT_integer,
298 NT_float,
299 NT_poly,
300 NT_signed,
301 NT_unsigned
304 struct neon_type_el
306 enum neon_el_type type;
307 unsigned size;
310 #define NEON_MAX_TYPE_ELS 4
312 struct neon_type
314 struct neon_type_el el[NEON_MAX_TYPE_ELS];
315 unsigned elems;
318 struct arm_it
320 const char * error;
321 unsigned long instruction;
322 int size;
323 int size_req;
324 int cond;
325 /* "uncond_value" is set to the value in place of the conditional field in
326 unconditional versions of the instruction, or -1 if nothing is
327 appropriate. */
328 int uncond_value;
329 struct neon_type vectype;
330 /* Set to the opcode if the instruction needs relaxation.
331 Zero if the instruction is not relaxed. */
332 unsigned long relax;
333 struct
335 bfd_reloc_code_real_type type;
336 expressionS exp;
337 int pc_rel;
338 } reloc;
340 struct
342 unsigned reg;
343 signed int imm;
344 struct neon_type_el vectype;
345 unsigned present : 1; /* Operand present. */
346 unsigned isreg : 1; /* Operand was a register. */
347 unsigned immisreg : 1; /* .imm field is a second register. */
348 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
349 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
350 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
351 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
352 instructions. This allows us to disambiguate ARM <-> vector insns. */
353 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
354 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
355 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
356 unsigned issingle : 1; /* Operand is VFP single-precision register. */
357 unsigned hasreloc : 1; /* Operand has relocation suffix. */
358 unsigned writeback : 1; /* Operand has trailing ! */
359 unsigned preind : 1; /* Preindexed address. */
360 unsigned postind : 1; /* Postindexed address. */
361 unsigned negative : 1; /* Index register was negated. */
362 unsigned shifted : 1; /* Shift applied to operation. */
363 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
364 } operands[6];
367 static struct arm_it inst;
369 #define NUM_FLOAT_VALS 8
371 const char * fp_const[] =
373 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
376 /* Number of littlenums required to hold an extended precision number. */
377 #define MAX_LITTLENUMS 6
379 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
381 #define FAIL (-1)
382 #define SUCCESS (0)
384 #define SUFF_S 1
385 #define SUFF_D 2
386 #define SUFF_E 3
387 #define SUFF_P 4
389 #define CP_T_X 0x00008000
390 #define CP_T_Y 0x00400000
392 #define CONDS_BIT 0x00100000
393 #define LOAD_BIT 0x00100000
395 #define DOUBLE_LOAD_FLAG 0x00000001
397 struct asm_cond
399 const char * template;
400 unsigned long value;
403 #define COND_ALWAYS 0xE
405 struct asm_psr
407 const char *template;
408 unsigned long field;
411 struct asm_barrier_opt
413 const char *template;
414 unsigned long value;
417 /* The bit that distinguishes CPSR and SPSR. */
418 #define SPSR_BIT (1 << 22)
420 /* The individual PSR flag bits. */
421 #define PSR_c (1 << 16)
422 #define PSR_x (1 << 17)
423 #define PSR_s (1 << 18)
424 #define PSR_f (1 << 19)
426 struct reloc_entry
428 char *name;
429 bfd_reloc_code_real_type reloc;
432 enum vfp_reg_pos
434 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
435 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
438 enum vfp_ldstm_type
440 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
443 /* Bits for DEFINED field in neon_typed_alias. */
444 #define NTA_HASTYPE 1
445 #define NTA_HASINDEX 2
447 struct neon_typed_alias
449 unsigned char defined;
450 unsigned char index;
451 struct neon_type_el eltype;
454 /* ARM register categories. This includes coprocessor numbers and various
455 architecture extensions' registers. */
456 enum arm_reg_type
458 REG_TYPE_RN,
459 REG_TYPE_CP,
460 REG_TYPE_CN,
461 REG_TYPE_FN,
462 REG_TYPE_VFS,
463 REG_TYPE_VFD,
464 REG_TYPE_NQ,
465 REG_TYPE_VFSD,
466 REG_TYPE_NDQ,
467 REG_TYPE_NSDQ,
468 REG_TYPE_VFC,
469 REG_TYPE_MVF,
470 REG_TYPE_MVD,
471 REG_TYPE_MVFX,
472 REG_TYPE_MVDX,
473 REG_TYPE_MVAX,
474 REG_TYPE_DSPSC,
475 REG_TYPE_MMXWR,
476 REG_TYPE_MMXWC,
477 REG_TYPE_MMXWCG,
478 REG_TYPE_XSCALE,
481 /* Structure for a hash table entry for a register.
482 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
483 information which states whether a vector type or index is specified (for a
484 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
485 struct reg_entry
487 const char *name;
488 unsigned char number;
489 unsigned char type;
490 unsigned char builtin;
491 struct neon_typed_alias *neon;
494 /* Diagnostics used when we don't get a register of the expected type. */
495 const char *const reg_expected_msgs[] =
497 N_("ARM register expected"),
498 N_("bad or missing co-processor number"),
499 N_("co-processor register expected"),
500 N_("FPA register expected"),
501 N_("VFP single precision register expected"),
502 N_("VFP/Neon double precision register expected"),
503 N_("Neon quad precision register expected"),
504 N_("VFP single or double precision register expected"),
505 N_("Neon double or quad precision register expected"),
506 N_("VFP single, double or Neon quad precision register expected"),
507 N_("VFP system register expected"),
508 N_("Maverick MVF register expected"),
509 N_("Maverick MVD register expected"),
510 N_("Maverick MVFX register expected"),
511 N_("Maverick MVDX register expected"),
512 N_("Maverick MVAX register expected"),
513 N_("Maverick DSPSC register expected"),
514 N_("iWMMXt data register expected"),
515 N_("iWMMXt control register expected"),
516 N_("iWMMXt scalar register expected"),
517 N_("XScale accumulator register expected"),
520 /* Some well known registers that we refer to directly elsewhere. */
521 #define REG_SP 13
522 #define REG_LR 14
523 #define REG_PC 15
525 /* ARM instructions take 4bytes in the object file, Thumb instructions
526 take 2: */
527 #define INSN_SIZE 4
529 struct asm_opcode
531 /* Basic string to match. */
532 const char *template;
534 /* Parameters to instruction. */
535 unsigned char operands[8];
537 /* Conditional tag - see opcode_lookup. */
538 unsigned int tag : 4;
540 /* Basic instruction code. */
541 unsigned int avalue : 28;
543 /* Thumb-format instruction code. */
544 unsigned int tvalue;
546 /* Which architecture variant provides this instruction. */
547 const arm_feature_set *avariant;
548 const arm_feature_set *tvariant;
550 /* Function to call to encode instruction in ARM format. */
551 void (* aencode) (void);
553 /* Function to call to encode instruction in Thumb format. */
554 void (* tencode) (void);
557 /* Defines for various bits that we will want to toggle. */
558 #define INST_IMMEDIATE 0x02000000
559 #define OFFSET_REG 0x02000000
560 #define HWOFFSET_IMM 0x00400000
561 #define SHIFT_BY_REG 0x00000010
562 #define PRE_INDEX 0x01000000
563 #define INDEX_UP 0x00800000
564 #define WRITE_BACK 0x00200000
565 #define LDM_TYPE_2_OR_3 0x00400000
566 #define CPSI_MMOD 0x00020000
568 #define LITERAL_MASK 0xf000f000
569 #define OPCODE_MASK 0xfe1fffff
570 #define V4_STR_BIT 0x00000020
572 #define T2_SUBS_PC_LR 0xf3de8f00
574 #define DATA_OP_SHIFT 21
576 #define T2_OPCODE_MASK 0xfe1fffff
577 #define T2_DATA_OP_SHIFT 21
579 /* Codes to distinguish the arithmetic instructions. */
580 #define OPCODE_AND 0
581 #define OPCODE_EOR 1
582 #define OPCODE_SUB 2
583 #define OPCODE_RSB 3
584 #define OPCODE_ADD 4
585 #define OPCODE_ADC 5
586 #define OPCODE_SBC 6
587 #define OPCODE_RSC 7
588 #define OPCODE_TST 8
589 #define OPCODE_TEQ 9
590 #define OPCODE_CMP 10
591 #define OPCODE_CMN 11
592 #define OPCODE_ORR 12
593 #define OPCODE_MOV 13
594 #define OPCODE_BIC 14
595 #define OPCODE_MVN 15
597 #define T2_OPCODE_AND 0
598 #define T2_OPCODE_BIC 1
599 #define T2_OPCODE_ORR 2
600 #define T2_OPCODE_ORN 3
601 #define T2_OPCODE_EOR 4
602 #define T2_OPCODE_ADD 8
603 #define T2_OPCODE_ADC 10
604 #define T2_OPCODE_SBC 11
605 #define T2_OPCODE_SUB 13
606 #define T2_OPCODE_RSB 14
608 #define T_OPCODE_MUL 0x4340
609 #define T_OPCODE_TST 0x4200
610 #define T_OPCODE_CMN 0x42c0
611 #define T_OPCODE_NEG 0x4240
612 #define T_OPCODE_MVN 0x43c0
614 #define T_OPCODE_ADD_R3 0x1800
615 #define T_OPCODE_SUB_R3 0x1a00
616 #define T_OPCODE_ADD_HI 0x4400
617 #define T_OPCODE_ADD_ST 0xb000
618 #define T_OPCODE_SUB_ST 0xb080
619 #define T_OPCODE_ADD_SP 0xa800
620 #define T_OPCODE_ADD_PC 0xa000
621 #define T_OPCODE_ADD_I8 0x3000
622 #define T_OPCODE_SUB_I8 0x3800
623 #define T_OPCODE_ADD_I3 0x1c00
624 #define T_OPCODE_SUB_I3 0x1e00
626 #define T_OPCODE_ASR_R 0x4100
627 #define T_OPCODE_LSL_R 0x4080
628 #define T_OPCODE_LSR_R 0x40c0
629 #define T_OPCODE_ROR_R 0x41c0
630 #define T_OPCODE_ASR_I 0x1000
631 #define T_OPCODE_LSL_I 0x0000
632 #define T_OPCODE_LSR_I 0x0800
634 #define T_OPCODE_MOV_I8 0x2000
635 #define T_OPCODE_CMP_I8 0x2800
636 #define T_OPCODE_CMP_LR 0x4280
637 #define T_OPCODE_MOV_HR 0x4600
638 #define T_OPCODE_CMP_HR 0x4500
640 #define T_OPCODE_LDR_PC 0x4800
641 #define T_OPCODE_LDR_SP 0x9800
642 #define T_OPCODE_STR_SP 0x9000
643 #define T_OPCODE_LDR_IW 0x6800
644 #define T_OPCODE_STR_IW 0x6000
645 #define T_OPCODE_LDR_IH 0x8800
646 #define T_OPCODE_STR_IH 0x8000
647 #define T_OPCODE_LDR_IB 0x7800
648 #define T_OPCODE_STR_IB 0x7000
649 #define T_OPCODE_LDR_RW 0x5800
650 #define T_OPCODE_STR_RW 0x5000
651 #define T_OPCODE_LDR_RH 0x5a00
652 #define T_OPCODE_STR_RH 0x5200
653 #define T_OPCODE_LDR_RB 0x5c00
654 #define T_OPCODE_STR_RB 0x5400
656 #define T_OPCODE_PUSH 0xb400
657 #define T_OPCODE_POP 0xbc00
659 #define T_OPCODE_BRANCH 0xe000
661 #define THUMB_SIZE 2 /* Size of thumb instruction. */
662 #define THUMB_PP_PC_LR 0x0100
663 #define THUMB_LOAD_BIT 0x0800
664 #define THUMB2_LOAD_BIT 0x00100000
666 #define BAD_ARGS _("bad arguments to instruction")
667 #define BAD_SP _("r13 not allowed here")
668 #define BAD_PC _("r15 not allowed here")
669 #define BAD_COND _("instruction cannot be conditional")
670 #define BAD_OVERLAP _("registers may not be the same")
671 #define BAD_HIREG _("lo register required")
672 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
673 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
674 #define BAD_BRANCH _("branch must be last instruction in IT block")
675 #define BAD_NOT_IT _("instruction not allowed in IT block")
676 #define BAD_FPU _("selected FPU does not support instruction")
678 static struct hash_control *arm_ops_hsh;
679 static struct hash_control *arm_cond_hsh;
680 static struct hash_control *arm_shift_hsh;
681 static struct hash_control *arm_psr_hsh;
682 static struct hash_control *arm_v7m_psr_hsh;
683 static struct hash_control *arm_reg_hsh;
684 static struct hash_control *arm_reloc_hsh;
685 static struct hash_control *arm_barrier_opt_hsh;
687 /* Stuff needed to resolve the label ambiguity
690 label: <insn>
691 may differ from:
693 label:
694 <insn> */
696 symbolS * last_label_seen;
697 static int label_is_thumb_function_name = FALSE;
699 /* Literal pool structure. Held on a per-section
700 and per-sub-section basis. */
702 #define MAX_LITERAL_POOL_SIZE 1024
703 typedef struct literal_pool
705 expressionS literals [MAX_LITERAL_POOL_SIZE];
706 unsigned int next_free_entry;
707 unsigned int id;
708 symbolS * symbol;
709 segT section;
710 subsegT sub_section;
711 struct literal_pool * next;
712 } literal_pool;
714 /* Pointer to a linked list of literal pools. */
715 literal_pool * list_of_pools = NULL;
717 /* State variables for IT block handling. */
718 static bfd_boolean current_it_mask = 0;
719 static int current_cc;
721 /* Pure syntax. */
723 /* This array holds the chars that always start a comment. If the
724 pre-processor is disabled, these aren't very useful. */
725 const char comment_chars[] = "@";
727 /* This array holds the chars that only start a comment at the beginning of
728 a line. If the line seems to have the form '# 123 filename'
729 .line and .file directives will appear in the pre-processed output. */
730 /* Note that input_file.c hand checks for '#' at the beginning of the
731 first line of the input file. This is because the compiler outputs
732 #NO_APP at the beginning of its output. */
733 /* Also note that comments like this one will always work. */
734 const char line_comment_chars[] = "#";
736 const char line_separator_chars[] = ";";
738 /* Chars that can be used to separate mant
739 from exp in floating point numbers. */
740 const char EXP_CHARS[] = "eE";
742 /* Chars that mean this number is a floating point constant. */
743 /* As in 0f12.456 */
744 /* or 0d1.2345e12 */
746 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
748 /* Prefix characters that indicate the start of an immediate
749 value. */
750 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
752 /* Separator character handling. */
754 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
756 static inline int
757 skip_past_char (char ** str, char c)
759 if (**str == c)
761 (*str)++;
762 return SUCCESS;
764 else
765 return FAIL;
767 #define skip_past_comma(str) skip_past_char (str, ',')
769 /* Arithmetic expressions (possibly involving symbols). */
771 /* Return TRUE if anything in the expression is a bignum. */
773 static int
774 walk_no_bignums (symbolS * sp)
776 if (symbol_get_value_expression (sp)->X_op == O_big)
777 return 1;
779 if (symbol_get_value_expression (sp)->X_add_symbol)
781 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
782 || (symbol_get_value_expression (sp)->X_op_symbol
783 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
786 return 0;
789 static int in_my_get_expression = 0;
791 /* Third argument to my_get_expression. */
792 #define GE_NO_PREFIX 0
793 #define GE_IMM_PREFIX 1
794 #define GE_OPT_PREFIX 2
795 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
796 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
797 #define GE_OPT_PREFIX_BIG 3
799 static int
800 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
802 char * save_in;
803 segT seg;
805 /* In unified syntax, all prefixes are optional. */
806 if (unified_syntax)
807 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
808 : GE_OPT_PREFIX;
810 switch (prefix_mode)
812 case GE_NO_PREFIX: break;
813 case GE_IMM_PREFIX:
814 if (!is_immediate_prefix (**str))
816 inst.error = _("immediate expression requires a # prefix");
817 return FAIL;
819 (*str)++;
820 break;
821 case GE_OPT_PREFIX:
822 case GE_OPT_PREFIX_BIG:
823 if (is_immediate_prefix (**str))
824 (*str)++;
825 break;
826 default: abort ();
829 memset (ep, 0, sizeof (expressionS));
831 save_in = input_line_pointer;
832 input_line_pointer = *str;
833 in_my_get_expression = 1;
834 seg = expression (ep);
835 in_my_get_expression = 0;
837 if (ep->X_op == O_illegal)
839 /* We found a bad expression in md_operand(). */
840 *str = input_line_pointer;
841 input_line_pointer = save_in;
842 if (inst.error == NULL)
843 inst.error = _("bad expression");
844 return 1;
847 #ifdef OBJ_AOUT
848 if (seg != absolute_section
849 && seg != text_section
850 && seg != data_section
851 && seg != bss_section
852 && seg != undefined_section)
854 inst.error = _("bad segment");
855 *str = input_line_pointer;
856 input_line_pointer = save_in;
857 return 1;
859 #endif
861 /* Get rid of any bignums now, so that we don't generate an error for which
862 we can't establish a line number later on. Big numbers are never valid
863 in instructions, which is where this routine is always called. */
864 if (prefix_mode != GE_OPT_PREFIX_BIG
865 && (ep->X_op == O_big
866 || (ep->X_add_symbol
867 && (walk_no_bignums (ep->X_add_symbol)
868 || (ep->X_op_symbol
869 && walk_no_bignums (ep->X_op_symbol))))))
871 inst.error = _("invalid constant");
872 *str = input_line_pointer;
873 input_line_pointer = save_in;
874 return 1;
877 *str = input_line_pointer;
878 input_line_pointer = save_in;
879 return 0;
882 /* Turn a string in input_line_pointer into a floating point constant
883 of type TYPE, and store the appropriate bytes in *LITP. The number
884 of LITTLENUMS emitted is stored in *SIZEP. An error message is
885 returned, or NULL on OK.
887 Note that fp constants aren't represent in the normal way on the ARM.
888 In big endian mode, things are as expected. However, in little endian
889 mode fp constants are big-endian word-wise, and little-endian byte-wise
890 within the words. For example, (double) 1.1 in big endian mode is
891 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
892 the byte sequence 99 99 f1 3f 9a 99 99 99.
894 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
896 char *
897 md_atof (int type, char * litP, int * sizeP)
899 int prec;
900 LITTLENUM_TYPE words[MAX_LITTLENUMS];
901 char *t;
902 int i;
904 switch (type)
906 case 'f':
907 case 'F':
908 case 's':
909 case 'S':
910 prec = 2;
911 break;
913 case 'd':
914 case 'D':
915 case 'r':
916 case 'R':
917 prec = 4;
918 break;
920 case 'x':
921 case 'X':
922 prec = 5;
923 break;
925 case 'p':
926 case 'P':
927 prec = 5;
928 break;
930 default:
931 *sizeP = 0;
932 return _("Unrecognized or unsupported floating point constant");
935 t = atof_ieee (input_line_pointer, type, words);
936 if (t)
937 input_line_pointer = t;
938 *sizeP = prec * sizeof (LITTLENUM_TYPE);
940 if (target_big_endian)
942 for (i = 0; i < prec; i++)
944 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
945 litP += sizeof (LITTLENUM_TYPE);
948 else
950 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
951 for (i = prec - 1; i >= 0; i--)
953 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
954 litP += sizeof (LITTLENUM_TYPE);
956 else
957 /* For a 4 byte float the order of elements in `words' is 1 0.
958 For an 8 byte float the order is 1 0 3 2. */
959 for (i = 0; i < prec; i += 2)
961 md_number_to_chars (litP, (valueT) words[i + 1],
962 sizeof (LITTLENUM_TYPE));
963 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
964 (valueT) words[i], sizeof (LITTLENUM_TYPE));
965 litP += 2 * sizeof (LITTLENUM_TYPE);
969 return NULL;
972 /* We handle all bad expressions here, so that we can report the faulty
973 instruction in the error message. */
974 void
975 md_operand (expressionS * expr)
977 if (in_my_get_expression)
978 expr->X_op = O_illegal;
981 /* Immediate values. */
983 /* Generic immediate-value read function for use in directives.
984 Accepts anything that 'expression' can fold to a constant.
985 *val receives the number. */
986 #ifdef OBJ_ELF
987 static int
988 immediate_for_directive (int *val)
990 expressionS exp;
991 exp.X_op = O_illegal;
993 if (is_immediate_prefix (*input_line_pointer))
995 input_line_pointer++;
996 expression (&exp);
999 if (exp.X_op != O_constant)
1001 as_bad (_("expected #constant"));
1002 ignore_rest_of_line ();
1003 return FAIL;
1005 *val = exp.X_add_number;
1006 return SUCCESS;
1008 #endif
1010 /* Register parsing. */
1012 /* Generic register parser. CCP points to what should be the
1013 beginning of a register name. If it is indeed a valid register
1014 name, advance CCP over it and return the reg_entry structure;
1015 otherwise return NULL. Does not issue diagnostics. */
1017 static struct reg_entry *
1018 arm_reg_parse_multi (char **ccp)
1020 char *start = *ccp;
1021 char *p;
1022 struct reg_entry *reg;
1024 #ifdef REGISTER_PREFIX
1025 if (*start != REGISTER_PREFIX)
1026 return NULL;
1027 start++;
1028 #endif
1029 #ifdef OPTIONAL_REGISTER_PREFIX
1030 if (*start == OPTIONAL_REGISTER_PREFIX)
1031 start++;
1032 #endif
1034 p = start;
1035 if (!ISALPHA (*p) || !is_name_beginner (*p))
1036 return NULL;
1039 p++;
1040 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1042 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1044 if (!reg)
1045 return NULL;
1047 *ccp = p;
1048 return reg;
1051 static int
1052 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1053 enum arm_reg_type type)
1055 /* Alternative syntaxes are accepted for a few register classes. */
1056 switch (type)
1058 case REG_TYPE_MVF:
1059 case REG_TYPE_MVD:
1060 case REG_TYPE_MVFX:
1061 case REG_TYPE_MVDX:
1062 /* Generic coprocessor register names are allowed for these. */
1063 if (reg && reg->type == REG_TYPE_CN)
1064 return reg->number;
1065 break;
1067 case REG_TYPE_CP:
1068 /* For backward compatibility, a bare number is valid here. */
1070 unsigned long processor = strtoul (start, ccp, 10);
1071 if (*ccp != start && processor <= 15)
1072 return processor;
1075 case REG_TYPE_MMXWC:
1076 /* WC includes WCG. ??? I'm not sure this is true for all
1077 instructions that take WC registers. */
1078 if (reg && reg->type == REG_TYPE_MMXWCG)
1079 return reg->number;
1080 break;
1082 default:
1083 break;
1086 return FAIL;
1089 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1090 return value is the register number or FAIL. */
1092 static int
1093 arm_reg_parse (char **ccp, enum arm_reg_type type)
1095 char *start = *ccp;
1096 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1097 int ret;
1099 /* Do not allow a scalar (reg+index) to parse as a register. */
1100 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1101 return FAIL;
1103 if (reg && reg->type == type)
1104 return reg->number;
1106 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1107 return ret;
1109 *ccp = start;
1110 return FAIL;
1113 /* Parse a Neon type specifier. *STR should point at the leading '.'
1114 character. Does no verification at this stage that the type fits the opcode
1115 properly. E.g.,
1117 .i32.i32.s16
1118 .s32.f32
1119 .u16
1121 Can all be legally parsed by this function.
1123 Fills in neon_type struct pointer with parsed information, and updates STR
1124 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1125 type, FAIL if not. */
1127 static int
1128 parse_neon_type (struct neon_type *type, char **str)
1130 char *ptr = *str;
1132 if (type)
1133 type->elems = 0;
1135 while (type->elems < NEON_MAX_TYPE_ELS)
1137 enum neon_el_type thistype = NT_untyped;
1138 unsigned thissize = -1u;
1140 if (*ptr != '.')
1141 break;
1143 ptr++;
1145 /* Just a size without an explicit type. */
1146 if (ISDIGIT (*ptr))
1147 goto parsesize;
1149 switch (TOLOWER (*ptr))
1151 case 'i': thistype = NT_integer; break;
1152 case 'f': thistype = NT_float; break;
1153 case 'p': thistype = NT_poly; break;
1154 case 's': thistype = NT_signed; break;
1155 case 'u': thistype = NT_unsigned; break;
1156 case 'd':
1157 thistype = NT_float;
1158 thissize = 64;
1159 ptr++;
1160 goto done;
1161 default:
1162 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1163 return FAIL;
1166 ptr++;
1168 /* .f is an abbreviation for .f32. */
1169 if (thistype == NT_float && !ISDIGIT (*ptr))
1170 thissize = 32;
1171 else
1173 parsesize:
1174 thissize = strtoul (ptr, &ptr, 10);
1176 if (thissize != 8 && thissize != 16 && thissize != 32
1177 && thissize != 64)
1179 as_bad (_("bad size %d in type specifier"), thissize);
1180 return FAIL;
1184 done:
1185 if (type)
1187 type->el[type->elems].type = thistype;
1188 type->el[type->elems].size = thissize;
1189 type->elems++;
1193 /* Empty/missing type is not a successful parse. */
1194 if (type->elems == 0)
1195 return FAIL;
1197 *str = ptr;
1199 return SUCCESS;
1202 /* Errors may be set multiple times during parsing or bit encoding
1203 (particularly in the Neon bits), but usually the earliest error which is set
1204 will be the most meaningful. Avoid overwriting it with later (cascading)
1205 errors by calling this function. */
1207 static void
1208 first_error (const char *err)
1210 if (!inst.error)
1211 inst.error = err;
1214 /* Parse a single type, e.g. ".s32", leading period included. */
1215 static int
1216 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1218 char *str = *ccp;
1219 struct neon_type optype;
1221 if (*str == '.')
1223 if (parse_neon_type (&optype, &str) == SUCCESS)
1225 if (optype.elems == 1)
1226 *vectype = optype.el[0];
1227 else
1229 first_error (_("only one type should be specified for operand"));
1230 return FAIL;
1233 else
1235 first_error (_("vector type expected"));
1236 return FAIL;
1239 else
1240 return FAIL;
1242 *ccp = str;
1244 return SUCCESS;
1247 /* Special meanings for indices (which have a range of 0-7), which will fit into
1248 a 4-bit integer. */
1250 #define NEON_ALL_LANES 15
1251 #define NEON_INTERLEAVE_LANES 14
1253 /* Parse either a register or a scalar, with an optional type. Return the
1254 register number, and optionally fill in the actual type of the register
1255 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1256 type/index information in *TYPEINFO. */
1258 static int
1259 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1260 enum arm_reg_type *rtype,
1261 struct neon_typed_alias *typeinfo)
1263 char *str = *ccp;
1264 struct reg_entry *reg = arm_reg_parse_multi (&str);
1265 struct neon_typed_alias atype;
1266 struct neon_type_el parsetype;
1268 atype.defined = 0;
1269 atype.index = -1;
1270 atype.eltype.type = NT_invtype;
1271 atype.eltype.size = -1;
1273 /* Try alternate syntax for some types of register. Note these are mutually
1274 exclusive with the Neon syntax extensions. */
1275 if (reg == NULL)
1277 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1278 if (altreg != FAIL)
1279 *ccp = str;
1280 if (typeinfo)
1281 *typeinfo = atype;
1282 return altreg;
1285 /* Undo polymorphism when a set of register types may be accepted. */
1286 if ((type == REG_TYPE_NDQ
1287 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1288 || (type == REG_TYPE_VFSD
1289 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1290 || (type == REG_TYPE_NSDQ
1291 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1292 || reg->type == REG_TYPE_NQ))
1293 || (type == REG_TYPE_MMXWC
1294 && (reg->type == REG_TYPE_MMXWCG)))
1295 type = reg->type;
1297 if (type != reg->type)
1298 return FAIL;
1300 if (reg->neon)
1301 atype = *reg->neon;
1303 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1305 if ((atype.defined & NTA_HASTYPE) != 0)
1307 first_error (_("can't redefine type for operand"));
1308 return FAIL;
1310 atype.defined |= NTA_HASTYPE;
1311 atype.eltype = parsetype;
1314 if (skip_past_char (&str, '[') == SUCCESS)
1316 if (type != REG_TYPE_VFD)
1318 first_error (_("only D registers may be indexed"));
1319 return FAIL;
1322 if ((atype.defined & NTA_HASINDEX) != 0)
1324 first_error (_("can't change index for operand"));
1325 return FAIL;
1328 atype.defined |= NTA_HASINDEX;
1330 if (skip_past_char (&str, ']') == SUCCESS)
1331 atype.index = NEON_ALL_LANES;
1332 else
1334 expressionS exp;
1336 my_get_expression (&exp, &str, GE_NO_PREFIX);
1338 if (exp.X_op != O_constant)
1340 first_error (_("constant expression required"));
1341 return FAIL;
1344 if (skip_past_char (&str, ']') == FAIL)
1345 return FAIL;
1347 atype.index = exp.X_add_number;
1351 if (typeinfo)
1352 *typeinfo = atype;
1354 if (rtype)
1355 *rtype = type;
1357 *ccp = str;
1359 return reg->number;
1362 /* Like arm_reg_parse, but allow allow the following extra features:
1363 - If RTYPE is non-zero, return the (possibly restricted) type of the
1364 register (e.g. Neon double or quad reg when either has been requested).
1365 - If this is a Neon vector type with additional type information, fill
1366 in the struct pointed to by VECTYPE (if non-NULL).
1367 This function will fault on encountering a scalar. */
1369 static int
1370 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1371 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1373 struct neon_typed_alias atype;
1374 char *str = *ccp;
1375 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1377 if (reg == FAIL)
1378 return FAIL;
1380 /* Do not allow a scalar (reg+index) to parse as a register. */
1381 if ((atype.defined & NTA_HASINDEX) != 0)
1383 first_error (_("register operand expected, but got scalar"));
1384 return FAIL;
1387 if (vectype)
1388 *vectype = atype.eltype;
1390 *ccp = str;
1392 return reg;
1395 #define NEON_SCALAR_REG(X) ((X) >> 4)
1396 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1398 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1399 have enough information to be able to do a good job bounds-checking. So, we
1400 just do easy checks here, and do further checks later. */
1402 static int
1403 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1405 int reg;
1406 char *str = *ccp;
1407 struct neon_typed_alias atype;
1409 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1411 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1412 return FAIL;
1414 if (atype.index == NEON_ALL_LANES)
1416 first_error (_("scalar must have an index"));
1417 return FAIL;
1419 else if (atype.index >= 64 / elsize)
1421 first_error (_("scalar index out of range"));
1422 return FAIL;
1425 if (type)
1426 *type = atype.eltype;
1428 *ccp = str;
1430 return reg * 16 + atype.index;
1433 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1434 static long
1435 parse_reg_list (char ** strp)
1437 char * str = * strp;
1438 long range = 0;
1439 int another_range;
1441 /* We come back here if we get ranges concatenated by '+' or '|'. */
1444 another_range = 0;
1446 if (*str == '{')
1448 int in_range = 0;
1449 int cur_reg = -1;
1451 str++;
1454 int reg;
1456 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1458 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1459 return FAIL;
1462 if (in_range)
1464 int i;
1466 if (reg <= cur_reg)
1468 first_error (_("bad range in register list"));
1469 return FAIL;
1472 for (i = cur_reg + 1; i < reg; i++)
1474 if (range & (1 << i))
1475 as_tsktsk
1476 (_("Warning: duplicated register (r%d) in register list"),
1478 else
1479 range |= 1 << i;
1481 in_range = 0;
1484 if (range & (1 << reg))
1485 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1486 reg);
1487 else if (reg <= cur_reg)
1488 as_tsktsk (_("Warning: register range not in ascending order"));
1490 range |= 1 << reg;
1491 cur_reg = reg;
1493 while (skip_past_comma (&str) != FAIL
1494 || (in_range = 1, *str++ == '-'));
1495 str--;
1497 if (*str++ != '}')
1499 first_error (_("missing `}'"));
1500 return FAIL;
1503 else
1505 expressionS expr;
1507 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1508 return FAIL;
1510 if (expr.X_op == O_constant)
1512 if (expr.X_add_number
1513 != (expr.X_add_number & 0x0000ffff))
1515 inst.error = _("invalid register mask");
1516 return FAIL;
1519 if ((range & expr.X_add_number) != 0)
1521 int regno = range & expr.X_add_number;
1523 regno &= -regno;
1524 regno = (1 << regno) - 1;
1525 as_tsktsk
1526 (_("Warning: duplicated register (r%d) in register list"),
1527 regno);
1530 range |= expr.X_add_number;
1532 else
1534 if (inst.reloc.type != 0)
1536 inst.error = _("expression too complex");
1537 return FAIL;
1540 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1541 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1542 inst.reloc.pc_rel = 0;
1546 if (*str == '|' || *str == '+')
1548 str++;
1549 another_range = 1;
1552 while (another_range);
1554 *strp = str;
1555 return range;
1558 /* Types of registers in a list. */
1560 enum reg_list_els
1562 REGLIST_VFP_S,
1563 REGLIST_VFP_D,
1564 REGLIST_NEON_D
1567 /* Parse a VFP register list. If the string is invalid return FAIL.
1568 Otherwise return the number of registers, and set PBASE to the first
1569 register. Parses registers of type ETYPE.
1570 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1571 - Q registers can be used to specify pairs of D registers
1572 - { } can be omitted from around a singleton register list
1573 FIXME: This is not implemented, as it would require backtracking in
1574 some cases, e.g.:
1575 vtbl.8 d3,d4,d5
1576 This could be done (the meaning isn't really ambiguous), but doesn't
1577 fit in well with the current parsing framework.
1578 - 32 D registers may be used (also true for VFPv3).
1579 FIXME: Types are ignored in these register lists, which is probably a
1580 bug. */
1582 static int
1583 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1585 char *str = *ccp;
1586 int base_reg;
1587 int new_base;
1588 enum arm_reg_type regtype = 0;
1589 int max_regs = 0;
1590 int count = 0;
1591 int warned = 0;
1592 unsigned long mask = 0;
1593 int i;
1595 if (*str != '{')
1597 inst.error = _("expecting {");
1598 return FAIL;
1601 str++;
1603 switch (etype)
1605 case REGLIST_VFP_S:
1606 regtype = REG_TYPE_VFS;
1607 max_regs = 32;
1608 break;
1610 case REGLIST_VFP_D:
1611 regtype = REG_TYPE_VFD;
1612 break;
1614 case REGLIST_NEON_D:
1615 regtype = REG_TYPE_NDQ;
1616 break;
1619 if (etype != REGLIST_VFP_S)
1621 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1622 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1624 max_regs = 32;
1625 if (thumb_mode)
1626 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1627 fpu_vfp_ext_d32);
1628 else
1629 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1630 fpu_vfp_ext_d32);
1632 else
1633 max_regs = 16;
1636 base_reg = max_regs;
1640 int setmask = 1, addregs = 1;
1642 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1644 if (new_base == FAIL)
1646 first_error (_(reg_expected_msgs[regtype]));
1647 return FAIL;
1650 if (new_base >= max_regs)
1652 first_error (_("register out of range in list"));
1653 return FAIL;
1656 /* Note: a value of 2 * n is returned for the register Q<n>. */
1657 if (regtype == REG_TYPE_NQ)
1659 setmask = 3;
1660 addregs = 2;
1663 if (new_base < base_reg)
1664 base_reg = new_base;
1666 if (mask & (setmask << new_base))
1668 first_error (_("invalid register list"));
1669 return FAIL;
1672 if ((mask >> new_base) != 0 && ! warned)
1674 as_tsktsk (_("register list not in ascending order"));
1675 warned = 1;
1678 mask |= setmask << new_base;
1679 count += addregs;
1681 if (*str == '-') /* We have the start of a range expression */
1683 int high_range;
1685 str++;
1687 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1688 == FAIL)
1690 inst.error = gettext (reg_expected_msgs[regtype]);
1691 return FAIL;
1694 if (high_range >= max_regs)
1696 first_error (_("register out of range in list"));
1697 return FAIL;
1700 if (regtype == REG_TYPE_NQ)
1701 high_range = high_range + 1;
1703 if (high_range <= new_base)
1705 inst.error = _("register range not in ascending order");
1706 return FAIL;
1709 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1711 if (mask & (setmask << new_base))
1713 inst.error = _("invalid register list");
1714 return FAIL;
1717 mask |= setmask << new_base;
1718 count += addregs;
1722 while (skip_past_comma (&str) != FAIL);
1724 str++;
1726 /* Sanity check -- should have raised a parse error above. */
1727 if (count == 0 || count > max_regs)
1728 abort ();
1730 *pbase = base_reg;
1732 /* Final test -- the registers must be consecutive. */
1733 mask >>= base_reg;
1734 for (i = 0; i < count; i++)
1736 if ((mask & (1u << i)) == 0)
1738 inst.error = _("non-contiguous register range");
1739 return FAIL;
1743 *ccp = str;
1745 return count;
1748 /* True if two alias types are the same. */
1750 static int
1751 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1753 if (!a && !b)
1754 return 1;
1756 if (!a || !b)
1757 return 0;
1759 if (a->defined != b->defined)
1760 return 0;
1762 if ((a->defined & NTA_HASTYPE) != 0
1763 && (a->eltype.type != b->eltype.type
1764 || a->eltype.size != b->eltype.size))
1765 return 0;
1767 if ((a->defined & NTA_HASINDEX) != 0
1768 && (a->index != b->index))
1769 return 0;
1771 return 1;
1774 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1775 The base register is put in *PBASE.
1776 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1777 the return value.
1778 The register stride (minus one) is put in bit 4 of the return value.
1779 Bits [6:5] encode the list length (minus one).
1780 The type of the list elements is put in *ELTYPE, if non-NULL. */
1782 #define NEON_LANE(X) ((X) & 0xf)
1783 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1784 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1786 static int
1787 parse_neon_el_struct_list (char **str, unsigned *pbase,
1788 struct neon_type_el *eltype)
1790 char *ptr = *str;
1791 int base_reg = -1;
1792 int reg_incr = -1;
1793 int count = 0;
1794 int lane = -1;
1795 int leading_brace = 0;
1796 enum arm_reg_type rtype = REG_TYPE_NDQ;
1797 int addregs = 1;
1798 const char *const incr_error = "register stride must be 1 or 2";
1799 const char *const type_error = "mismatched element/structure types in list";
1800 struct neon_typed_alias firsttype;
1802 if (skip_past_char (&ptr, '{') == SUCCESS)
1803 leading_brace = 1;
1807 struct neon_typed_alias atype;
1808 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1810 if (getreg == FAIL)
1812 first_error (_(reg_expected_msgs[rtype]));
1813 return FAIL;
1816 if (base_reg == -1)
1818 base_reg = getreg;
1819 if (rtype == REG_TYPE_NQ)
1821 reg_incr = 1;
1822 addregs = 2;
1824 firsttype = atype;
1826 else if (reg_incr == -1)
1828 reg_incr = getreg - base_reg;
1829 if (reg_incr < 1 || reg_incr > 2)
1831 first_error (_(incr_error));
1832 return FAIL;
1835 else if (getreg != base_reg + reg_incr * count)
1837 first_error (_(incr_error));
1838 return FAIL;
1841 if (!neon_alias_types_same (&atype, &firsttype))
1843 first_error (_(type_error));
1844 return FAIL;
1847 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1848 modes. */
1849 if (ptr[0] == '-')
1851 struct neon_typed_alias htype;
1852 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1853 if (lane == -1)
1854 lane = NEON_INTERLEAVE_LANES;
1855 else if (lane != NEON_INTERLEAVE_LANES)
1857 first_error (_(type_error));
1858 return FAIL;
1860 if (reg_incr == -1)
1861 reg_incr = 1;
1862 else if (reg_incr != 1)
1864 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1865 return FAIL;
1867 ptr++;
1868 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1869 if (hireg == FAIL)
1871 first_error (_(reg_expected_msgs[rtype]));
1872 return FAIL;
1874 if (!neon_alias_types_same (&htype, &firsttype))
1876 first_error (_(type_error));
1877 return FAIL;
1879 count += hireg + dregs - getreg;
1880 continue;
1883 /* If we're using Q registers, we can't use [] or [n] syntax. */
1884 if (rtype == REG_TYPE_NQ)
1886 count += 2;
1887 continue;
1890 if ((atype.defined & NTA_HASINDEX) != 0)
1892 if (lane == -1)
1893 lane = atype.index;
1894 else if (lane != atype.index)
1896 first_error (_(type_error));
1897 return FAIL;
1900 else if (lane == -1)
1901 lane = NEON_INTERLEAVE_LANES;
1902 else if (lane != NEON_INTERLEAVE_LANES)
1904 first_error (_(type_error));
1905 return FAIL;
1907 count++;
1909 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1911 /* No lane set by [x]. We must be interleaving structures. */
1912 if (lane == -1)
1913 lane = NEON_INTERLEAVE_LANES;
1915 /* Sanity check. */
1916 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1917 || (count > 1 && reg_incr == -1))
1919 first_error (_("error parsing element/structure list"));
1920 return FAIL;
1923 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1925 first_error (_("expected }"));
1926 return FAIL;
1929 if (reg_incr == -1)
1930 reg_incr = 1;
1932 if (eltype)
1933 *eltype = firsttype.eltype;
1935 *pbase = base_reg;
1936 *str = ptr;
1938 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1941 /* Parse an explicit relocation suffix on an expression. This is
1942 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1943 arm_reloc_hsh contains no entries, so this function can only
1944 succeed if there is no () after the word. Returns -1 on error,
1945 BFD_RELOC_UNUSED if there wasn't any suffix. */
1946 static int
1947 parse_reloc (char **str)
1949 struct reloc_entry *r;
1950 char *p, *q;
1952 if (**str != '(')
1953 return BFD_RELOC_UNUSED;
1955 p = *str + 1;
1956 q = p;
1958 while (*q && *q != ')' && *q != ',')
1959 q++;
1960 if (*q != ')')
1961 return -1;
1963 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1964 return -1;
1966 *str = q + 1;
1967 return r->reloc;
1970 /* Directives: register aliases. */
1972 static struct reg_entry *
1973 insert_reg_alias (char *str, int number, int type)
1975 struct reg_entry *new;
1976 const char *name;
1978 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1980 if (new->builtin)
1981 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1983 /* Only warn about a redefinition if it's not defined as the
1984 same register. */
1985 else if (new->number != number || new->type != type)
1986 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1988 return NULL;
1991 name = xstrdup (str);
1992 new = xmalloc (sizeof (struct reg_entry));
1994 new->name = name;
1995 new->number = number;
1996 new->type = type;
1997 new->builtin = FALSE;
1998 new->neon = NULL;
2000 if (hash_insert (arm_reg_hsh, name, (void *) new))
2001 abort ();
2003 return new;
2006 static void
2007 insert_neon_reg_alias (char *str, int number, int type,
2008 struct neon_typed_alias *atype)
2010 struct reg_entry *reg = insert_reg_alias (str, number, type);
2012 if (!reg)
2014 first_error (_("attempt to redefine typed alias"));
2015 return;
2018 if (atype)
2020 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2021 *reg->neon = *atype;
2025 /* Look for the .req directive. This is of the form:
2027 new_register_name .req existing_register_name
2029 If we find one, or if it looks sufficiently like one that we want to
2030 handle any error here, return TRUE. Otherwise return FALSE. */
2032 static bfd_boolean
2033 create_register_alias (char * newname, char *p)
2035 struct reg_entry *old;
2036 char *oldname, *nbuf;
2037 size_t nlen;
2039 /* The input scrubber ensures that whitespace after the mnemonic is
2040 collapsed to single spaces. */
2041 oldname = p;
2042 if (strncmp (oldname, " .req ", 6) != 0)
2043 return FALSE;
2045 oldname += 6;
2046 if (*oldname == '\0')
2047 return FALSE;
2049 old = hash_find (arm_reg_hsh, oldname);
2050 if (!old)
2052 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2053 return TRUE;
2056 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2057 the desired alias name, and p points to its end. If not, then
2058 the desired alias name is in the global original_case_string. */
2059 #ifdef TC_CASE_SENSITIVE
2060 nlen = p - newname;
2061 #else
2062 newname = original_case_string;
2063 nlen = strlen (newname);
2064 #endif
2066 nbuf = alloca (nlen + 1);
2067 memcpy (nbuf, newname, nlen);
2068 nbuf[nlen] = '\0';
2070 /* Create aliases under the new name as stated; an all-lowercase
2071 version of the new name; and an all-uppercase version of the new
2072 name. */
2073 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2075 for (p = nbuf; *p; p++)
2076 *p = TOUPPER (*p);
2078 if (strncmp (nbuf, newname, nlen))
2080 /* If this attempt to create an additional alias fails, do not bother
2081 trying to create the all-lower case alias. We will fail and issue
2082 a second, duplicate error message. This situation arises when the
2083 programmer does something like:
2084 foo .req r0
2085 Foo .req r1
2086 The second .req creates the "Foo" alias but then fails to create
2087 the artificial FOO alias because it has already been created by the
2088 first .req. */
2089 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2090 return TRUE;
2093 for (p = nbuf; *p; p++)
2094 *p = TOLOWER (*p);
2096 if (strncmp (nbuf, newname, nlen))
2097 insert_reg_alias (nbuf, old->number, old->type);
2100 return TRUE;
2103 /* Create a Neon typed/indexed register alias using directives, e.g.:
2104 X .dn d5.s32[1]
2105 Y .qn 6.s16
2106 Z .dn d7
2107 T .dn Z[0]
2108 These typed registers can be used instead of the types specified after the
2109 Neon mnemonic, so long as all operands given have types. Types can also be
2110 specified directly, e.g.:
2111 vadd d0.s32, d1.s32, d2.s32 */
2113 static int
2114 create_neon_reg_alias (char *newname, char *p)
2116 enum arm_reg_type basetype;
2117 struct reg_entry *basereg;
2118 struct reg_entry mybasereg;
2119 struct neon_type ntype;
2120 struct neon_typed_alias typeinfo;
2121 char *namebuf, *nameend;
2122 int namelen;
2124 typeinfo.defined = 0;
2125 typeinfo.eltype.type = NT_invtype;
2126 typeinfo.eltype.size = -1;
2127 typeinfo.index = -1;
2129 nameend = p;
2131 if (strncmp (p, " .dn ", 5) == 0)
2132 basetype = REG_TYPE_VFD;
2133 else if (strncmp (p, " .qn ", 5) == 0)
2134 basetype = REG_TYPE_NQ;
2135 else
2136 return 0;
2138 p += 5;
2140 if (*p == '\0')
2141 return 0;
2143 basereg = arm_reg_parse_multi (&p);
2145 if (basereg && basereg->type != basetype)
2147 as_bad (_("bad type for register"));
2148 return 0;
2151 if (basereg == NULL)
2153 expressionS exp;
2154 /* Try parsing as an integer. */
2155 my_get_expression (&exp, &p, GE_NO_PREFIX);
2156 if (exp.X_op != O_constant)
2158 as_bad (_("expression must be constant"));
2159 return 0;
2161 basereg = &mybasereg;
2162 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2163 : exp.X_add_number;
2164 basereg->neon = 0;
2167 if (basereg->neon)
2168 typeinfo = *basereg->neon;
2170 if (parse_neon_type (&ntype, &p) == SUCCESS)
2172 /* We got a type. */
2173 if (typeinfo.defined & NTA_HASTYPE)
2175 as_bad (_("can't redefine the type of a register alias"));
2176 return 0;
2179 typeinfo.defined |= NTA_HASTYPE;
2180 if (ntype.elems != 1)
2182 as_bad (_("you must specify a single type only"));
2183 return 0;
2185 typeinfo.eltype = ntype.el[0];
2188 if (skip_past_char (&p, '[') == SUCCESS)
2190 expressionS exp;
2191 /* We got a scalar index. */
2193 if (typeinfo.defined & NTA_HASINDEX)
2195 as_bad (_("can't redefine the index of a scalar alias"));
2196 return 0;
2199 my_get_expression (&exp, &p, GE_NO_PREFIX);
2201 if (exp.X_op != O_constant)
2203 as_bad (_("scalar index must be constant"));
2204 return 0;
2207 typeinfo.defined |= NTA_HASINDEX;
2208 typeinfo.index = exp.X_add_number;
2210 if (skip_past_char (&p, ']') == FAIL)
2212 as_bad (_("expecting ]"));
2213 return 0;
2217 namelen = nameend - newname;
2218 namebuf = alloca (namelen + 1);
2219 strncpy (namebuf, newname, namelen);
2220 namebuf[namelen] = '\0';
2222 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2223 typeinfo.defined != 0 ? &typeinfo : NULL);
2225 /* Insert name in all uppercase. */
2226 for (p = namebuf; *p; p++)
2227 *p = TOUPPER (*p);
2229 if (strncmp (namebuf, newname, namelen))
2230 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2231 typeinfo.defined != 0 ? &typeinfo : NULL);
2233 /* Insert name in all lowercase. */
2234 for (p = namebuf; *p; p++)
2235 *p = TOLOWER (*p);
2237 if (strncmp (namebuf, newname, namelen))
2238 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2239 typeinfo.defined != 0 ? &typeinfo : NULL);
2241 return 1;
2244 /* Should never be called, as .req goes between the alias and the
2245 register name, not at the beginning of the line. */
2246 static void
2247 s_req (int a ATTRIBUTE_UNUSED)
2249 as_bad (_("invalid syntax for .req directive"));
2252 static void
2253 s_dn (int a ATTRIBUTE_UNUSED)
2255 as_bad (_("invalid syntax for .dn directive"));
2258 static void
2259 s_qn (int a ATTRIBUTE_UNUSED)
2261 as_bad (_("invalid syntax for .qn directive"));
2264 /* The .unreq directive deletes an alias which was previously defined
2265 by .req. For example:
2267 my_alias .req r11
2268 .unreq my_alias */
2270 static void
2271 s_unreq (int a ATTRIBUTE_UNUSED)
2273 char * name;
2274 char saved_char;
2276 name = input_line_pointer;
2278 while (*input_line_pointer != 0
2279 && *input_line_pointer != ' '
2280 && *input_line_pointer != '\n')
2281 ++input_line_pointer;
2283 saved_char = *input_line_pointer;
2284 *input_line_pointer = 0;
2286 if (!*name)
2287 as_bad (_("invalid syntax for .unreq directive"));
2288 else
2290 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2292 if (!reg)
2293 as_bad (_("unknown register alias '%s'"), name);
2294 else if (reg->builtin)
2295 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2296 name);
2297 else
2299 char * p;
2300 char * nbuf;
2302 hash_delete (arm_reg_hsh, name, FALSE);
2303 free ((char *) reg->name);
2304 if (reg->neon)
2305 free (reg->neon);
2306 free (reg);
2308 /* Also locate the all upper case and all lower case versions.
2309 Do not complain if we cannot find one or the other as it
2310 was probably deleted above. */
2312 nbuf = strdup (name);
2313 for (p = nbuf; *p; p++)
2314 *p = TOUPPER (*p);
2315 reg = hash_find (arm_reg_hsh, nbuf);
2316 if (reg)
2318 hash_delete (arm_reg_hsh, nbuf, FALSE);
2319 free ((char *) reg->name);
2320 if (reg->neon)
2321 free (reg->neon);
2322 free (reg);
2325 for (p = nbuf; *p; p++)
2326 *p = TOLOWER (*p);
2327 reg = hash_find (arm_reg_hsh, nbuf);
2328 if (reg)
2330 hash_delete (arm_reg_hsh, nbuf, FALSE);
2331 free ((char *) reg->name);
2332 if (reg->neon)
2333 free (reg->neon);
2334 free (reg);
2337 free (nbuf);
2341 *input_line_pointer = saved_char;
2342 demand_empty_rest_of_line ();
2345 /* Directives: Instruction set selection. */
2347 #ifdef OBJ_ELF
2348 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2349 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2350 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2351 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2353 static enum mstate mapstate = MAP_UNDEFINED;
2355 void
2356 mapping_state (enum mstate state)
2358 symbolS * symbolP;
2359 const char * symname;
2360 int type;
2362 if (mapstate == state)
2363 /* The mapping symbol has already been emitted.
2364 There is nothing else to do. */
2365 return;
2367 mapstate = state;
2369 switch (state)
2371 case MAP_DATA:
2372 symname = "$d";
2373 type = BSF_NO_FLAGS;
2374 break;
2375 case MAP_ARM:
2376 symname = "$a";
2377 type = BSF_NO_FLAGS;
2378 break;
2379 case MAP_THUMB:
2380 symname = "$t";
2381 type = BSF_NO_FLAGS;
2382 break;
2383 case MAP_UNDEFINED:
2384 return;
2385 default:
2386 abort ();
2389 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2391 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2392 symbol_table_insert (symbolP);
2393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2395 switch (state)
2397 case MAP_ARM:
2398 THUMB_SET_FUNC (symbolP, 0);
2399 ARM_SET_THUMB (symbolP, 0);
2400 ARM_SET_INTERWORK (symbolP, support_interwork);
2401 break;
2403 case MAP_THUMB:
2404 THUMB_SET_FUNC (symbolP, 1);
2405 ARM_SET_THUMB (symbolP, 1);
2406 ARM_SET_INTERWORK (symbolP, support_interwork);
2407 break;
2409 case MAP_DATA:
2410 default:
2411 return;
2414 #else
2415 #define mapping_state(x) /* nothing */
2416 #endif
2418 /* Find the real, Thumb encoded start of a Thumb function. */
2420 static symbolS *
2421 find_real_start (symbolS * symbolP)
2423 char * real_start;
2424 const char * name = S_GET_NAME (symbolP);
2425 symbolS * new_target;
2427 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2428 #define STUB_NAME ".real_start_of"
2430 if (name == NULL)
2431 abort ();
2433 /* The compiler may generate BL instructions to local labels because
2434 it needs to perform a branch to a far away location. These labels
2435 do not have a corresponding ".real_start_of" label. We check
2436 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2437 the ".real_start_of" convention for nonlocal branches. */
2438 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2439 return symbolP;
2441 real_start = ACONCAT ((STUB_NAME, name, NULL));
2442 new_target = symbol_find (real_start);
2444 if (new_target == NULL)
2446 as_warn (_("Failed to find real start of function: %s\n"), name);
2447 new_target = symbolP;
2450 return new_target;
2453 static void
2454 opcode_select (int width)
2456 switch (width)
2458 case 16:
2459 if (! thumb_mode)
2461 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2462 as_bad (_("selected processor does not support THUMB opcodes"));
2464 thumb_mode = 1;
2465 /* No need to force the alignment, since we will have been
2466 coming from ARM mode, which is word-aligned. */
2467 record_alignment (now_seg, 1);
2469 mapping_state (MAP_THUMB);
2470 break;
2472 case 32:
2473 if (thumb_mode)
2475 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2476 as_bad (_("selected processor does not support ARM opcodes"));
2478 thumb_mode = 0;
2480 if (!need_pass_2)
2481 frag_align (2, 0, 0);
2483 record_alignment (now_seg, 1);
2485 mapping_state (MAP_ARM);
2486 break;
2488 default:
2489 as_bad (_("invalid instruction size selected (%d)"), width);
2493 static void
2494 s_arm (int ignore ATTRIBUTE_UNUSED)
2496 opcode_select (32);
2497 demand_empty_rest_of_line ();
2500 static void
2501 s_thumb (int ignore ATTRIBUTE_UNUSED)
2503 opcode_select (16);
2504 demand_empty_rest_of_line ();
2507 static void
2508 s_code (int unused ATTRIBUTE_UNUSED)
2510 int temp;
2512 temp = get_absolute_expression ();
2513 switch (temp)
2515 case 16:
2516 case 32:
2517 opcode_select (temp);
2518 break;
2520 default:
2521 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2525 static void
2526 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2528 /* If we are not already in thumb mode go into it, EVEN if
2529 the target processor does not support thumb instructions.
2530 This is used by gcc/config/arm/lib1funcs.asm for example
2531 to compile interworking support functions even if the
2532 target processor should not support interworking. */
2533 if (! thumb_mode)
2535 thumb_mode = 2;
2536 record_alignment (now_seg, 1);
2539 demand_empty_rest_of_line ();
2542 static void
2543 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2545 s_thumb (0);
2547 /* The following label is the name/address of the start of a Thumb function.
2548 We need to know this for the interworking support. */
2549 label_is_thumb_function_name = TRUE;
2552 /* Perform a .set directive, but also mark the alias as
2553 being a thumb function. */
2555 static void
2556 s_thumb_set (int equiv)
2558 /* XXX the following is a duplicate of the code for s_set() in read.c
2559 We cannot just call that code as we need to get at the symbol that
2560 is created. */
2561 char * name;
2562 char delim;
2563 char * end_name;
2564 symbolS * symbolP;
2566 /* Especial apologies for the random logic:
2567 This just grew, and could be parsed much more simply!
2568 Dean - in haste. */
2569 name = input_line_pointer;
2570 delim = get_symbol_end ();
2571 end_name = input_line_pointer;
2572 *end_name = delim;
2574 if (*input_line_pointer != ',')
2576 *end_name = 0;
2577 as_bad (_("expected comma after name \"%s\""), name);
2578 *end_name = delim;
2579 ignore_rest_of_line ();
2580 return;
2583 input_line_pointer++;
2584 *end_name = 0;
2586 if (name[0] == '.' && name[1] == '\0')
2588 /* XXX - this should not happen to .thumb_set. */
2589 abort ();
2592 if ((symbolP = symbol_find (name)) == NULL
2593 && (symbolP = md_undefined_symbol (name)) == NULL)
2595 #ifndef NO_LISTING
2596 /* When doing symbol listings, play games with dummy fragments living
2597 outside the normal fragment chain to record the file and line info
2598 for this symbol. */
2599 if (listing & LISTING_SYMBOLS)
2601 extern struct list_info_struct * listing_tail;
2602 fragS * dummy_frag = xmalloc (sizeof (fragS));
2604 memset (dummy_frag, 0, sizeof (fragS));
2605 dummy_frag->fr_type = rs_fill;
2606 dummy_frag->line = listing_tail;
2607 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2608 dummy_frag->fr_symbol = symbolP;
2610 else
2611 #endif
2612 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2614 #ifdef OBJ_COFF
2615 /* "set" symbols are local unless otherwise specified. */
2616 SF_SET_LOCAL (symbolP);
2617 #endif /* OBJ_COFF */
2618 } /* Make a new symbol. */
2620 symbol_table_insert (symbolP);
2622 * end_name = delim;
2624 if (equiv
2625 && S_IS_DEFINED (symbolP)
2626 && S_GET_SEGMENT (symbolP) != reg_section)
2627 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2629 pseudo_set (symbolP);
2631 demand_empty_rest_of_line ();
2633 /* XXX Now we come to the Thumb specific bit of code. */
2635 THUMB_SET_FUNC (symbolP, 1);
2636 ARM_SET_THUMB (symbolP, 1);
2637 #if defined OBJ_ELF || defined OBJ_COFF
2638 ARM_SET_INTERWORK (symbolP, support_interwork);
2639 #endif
2642 /* Directives: Mode selection. */
2644 /* .syntax [unified|divided] - choose the new unified syntax
2645 (same for Arm and Thumb encoding, modulo slight differences in what
2646 can be represented) or the old divergent syntax for each mode. */
2647 static void
2648 s_syntax (int unused ATTRIBUTE_UNUSED)
2650 char *name, delim;
2652 name = input_line_pointer;
2653 delim = get_symbol_end ();
2655 if (!strcasecmp (name, "unified"))
2656 unified_syntax = TRUE;
2657 else if (!strcasecmp (name, "divided"))
2658 unified_syntax = FALSE;
2659 else
2661 as_bad (_("unrecognized syntax mode \"%s\""), name);
2662 return;
2664 *input_line_pointer = delim;
2665 demand_empty_rest_of_line ();
2668 /* Directives: sectioning and alignment. */
2670 /* Same as s_align_ptwo but align 0 => align 2. */
2672 static void
2673 s_align (int unused ATTRIBUTE_UNUSED)
2675 int temp;
2676 bfd_boolean fill_p;
2677 long temp_fill;
2678 long max_alignment = 15;
2680 temp = get_absolute_expression ();
2681 if (temp > max_alignment)
2682 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2683 else if (temp < 0)
2685 as_bad (_("alignment negative. 0 assumed."));
2686 temp = 0;
2689 if (*input_line_pointer == ',')
2691 input_line_pointer++;
2692 temp_fill = get_absolute_expression ();
2693 fill_p = TRUE;
2695 else
2697 fill_p = FALSE;
2698 temp_fill = 0;
2701 if (!temp)
2702 temp = 2;
2704 /* Only make a frag if we HAVE to. */
2705 if (temp && !need_pass_2)
2707 if (!fill_p && subseg_text_p (now_seg))
2708 frag_align_code (temp, 0);
2709 else
2710 frag_align (temp, (int) temp_fill, 0);
2712 demand_empty_rest_of_line ();
2714 record_alignment (now_seg, temp);
2717 static void
2718 s_bss (int ignore ATTRIBUTE_UNUSED)
2720 /* We don't support putting frags in the BSS segment, we fake it by
2721 marking in_bss, then looking at s_skip for clues. */
2722 subseg_set (bss_section, 0);
2723 demand_empty_rest_of_line ();
2724 mapping_state (MAP_DATA);
2727 static void
2728 s_even (int ignore ATTRIBUTE_UNUSED)
2730 /* Never make frag if expect extra pass. */
2731 if (!need_pass_2)
2732 frag_align (1, 0, 0);
2734 record_alignment (now_seg, 1);
2736 demand_empty_rest_of_line ();
2739 /* Directives: Literal pools. */
2741 static literal_pool *
2742 find_literal_pool (void)
2744 literal_pool * pool;
2746 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2748 if (pool->section == now_seg
2749 && pool->sub_section == now_subseg)
2750 break;
2753 return pool;
2756 static literal_pool *
2757 find_or_make_literal_pool (void)
2759 /* Next literal pool ID number. */
2760 static unsigned int latest_pool_num = 1;
2761 literal_pool * pool;
2763 pool = find_literal_pool ();
2765 if (pool == NULL)
2767 /* Create a new pool. */
2768 pool = xmalloc (sizeof (* pool));
2769 if (! pool)
2770 return NULL;
2772 pool->next_free_entry = 0;
2773 pool->section = now_seg;
2774 pool->sub_section = now_subseg;
2775 pool->next = list_of_pools;
2776 pool->symbol = NULL;
2778 /* Add it to the list. */
2779 list_of_pools = pool;
2782 /* New pools, and emptied pools, will have a NULL symbol. */
2783 if (pool->symbol == NULL)
2785 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2786 (valueT) 0, &zero_address_frag);
2787 pool->id = latest_pool_num ++;
2790 /* Done. */
2791 return pool;
2794 /* Add the literal in the global 'inst'
2795 structure to the relevant literal pool. */
2797 static int
2798 add_to_lit_pool (void)
2800 literal_pool * pool;
2801 unsigned int entry;
2803 pool = find_or_make_literal_pool ();
2805 /* Check if this literal value is already in the pool. */
2806 for (entry = 0; entry < pool->next_free_entry; entry ++)
2808 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2809 && (inst.reloc.exp.X_op == O_constant)
2810 && (pool->literals[entry].X_add_number
2811 == inst.reloc.exp.X_add_number)
2812 && (pool->literals[entry].X_unsigned
2813 == inst.reloc.exp.X_unsigned))
2814 break;
2816 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2817 && (inst.reloc.exp.X_op == O_symbol)
2818 && (pool->literals[entry].X_add_number
2819 == inst.reloc.exp.X_add_number)
2820 && (pool->literals[entry].X_add_symbol
2821 == inst.reloc.exp.X_add_symbol)
2822 && (pool->literals[entry].X_op_symbol
2823 == inst.reloc.exp.X_op_symbol))
2824 break;
2827 /* Do we need to create a new entry? */
2828 if (entry == pool->next_free_entry)
2830 if (entry >= MAX_LITERAL_POOL_SIZE)
2832 inst.error = _("literal pool overflow");
2833 return FAIL;
2836 pool->literals[entry] = inst.reloc.exp;
2837 pool->next_free_entry += 1;
2840 inst.reloc.exp.X_op = O_symbol;
2841 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2842 inst.reloc.exp.X_add_symbol = pool->symbol;
2844 return SUCCESS;
2847 /* Can't use symbol_new here, so have to create a symbol and then at
2848 a later date assign it a value. Thats what these functions do. */
2850 static void
2851 symbol_locate (symbolS * symbolP,
2852 const char * name, /* It is copied, the caller can modify. */
2853 segT segment, /* Segment identifier (SEG_<something>). */
2854 valueT valu, /* Symbol value. */
2855 fragS * frag) /* Associated fragment. */
2857 unsigned int name_length;
2858 char * preserved_copy_of_name;
2860 name_length = strlen (name) + 1; /* +1 for \0. */
2861 obstack_grow (&notes, name, name_length);
2862 preserved_copy_of_name = obstack_finish (&notes);
2864 #ifdef tc_canonicalize_symbol_name
2865 preserved_copy_of_name =
2866 tc_canonicalize_symbol_name (preserved_copy_of_name);
2867 #endif
2869 S_SET_NAME (symbolP, preserved_copy_of_name);
2871 S_SET_SEGMENT (symbolP, segment);
2872 S_SET_VALUE (symbolP, valu);
2873 symbol_clear_list_pointers (symbolP);
2875 symbol_set_frag (symbolP, frag);
2877 /* Link to end of symbol chain. */
2879 extern int symbol_table_frozen;
2881 if (symbol_table_frozen)
2882 abort ();
2885 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2887 obj_symbol_new_hook (symbolP);
2889 #ifdef tc_symbol_new_hook
2890 tc_symbol_new_hook (symbolP);
2891 #endif
2893 #ifdef DEBUG_SYMS
2894 verify_symbol_chain (symbol_rootP, symbol_lastP);
2895 #endif /* DEBUG_SYMS */
2899 static void
2900 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2902 unsigned int entry;
2903 literal_pool * pool;
2904 char sym_name[20];
2906 pool = find_literal_pool ();
2907 if (pool == NULL
2908 || pool->symbol == NULL
2909 || pool->next_free_entry == 0)
2910 return;
2912 mapping_state (MAP_DATA);
2914 /* Align pool as you have word accesses.
2915 Only make a frag if we have to. */
2916 if (!need_pass_2)
2917 frag_align (2, 0, 0);
2919 record_alignment (now_seg, 2);
2921 sprintf (sym_name, "$$lit_\002%x", pool->id);
2923 symbol_locate (pool->symbol, sym_name, now_seg,
2924 (valueT) frag_now_fix (), frag_now);
2925 symbol_table_insert (pool->symbol);
2927 ARM_SET_THUMB (pool->symbol, thumb_mode);
2929 #if defined OBJ_COFF || defined OBJ_ELF
2930 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2931 #endif
2933 for (entry = 0; entry < pool->next_free_entry; entry ++)
2934 /* First output the expression in the instruction to the pool. */
2935 emit_expr (&(pool->literals[entry]), 4); /* .word */
2937 /* Mark the pool as empty. */
2938 pool->next_free_entry = 0;
2939 pool->symbol = NULL;
2942 #ifdef OBJ_ELF
2943 /* Forward declarations for functions below, in the MD interface
2944 section. */
2945 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2946 static valueT create_unwind_entry (int);
2947 static void start_unwind_section (const segT, int);
2948 static void add_unwind_opcode (valueT, int);
2949 static void flush_pending_unwind (void);
2951 /* Directives: Data. */
2953 static void
2954 s_arm_elf_cons (int nbytes)
2956 expressionS exp;
2958 #ifdef md_flush_pending_output
2959 md_flush_pending_output ();
2960 #endif
2962 if (is_it_end_of_statement ())
2964 demand_empty_rest_of_line ();
2965 return;
2968 #ifdef md_cons_align
2969 md_cons_align (nbytes);
2970 #endif
2972 mapping_state (MAP_DATA);
2975 int reloc;
2976 char *base = input_line_pointer;
2978 expression (& exp);
2980 if (exp.X_op != O_symbol)
2981 emit_expr (&exp, (unsigned int) nbytes);
2982 else
2984 char *before_reloc = input_line_pointer;
2985 reloc = parse_reloc (&input_line_pointer);
2986 if (reloc == -1)
2988 as_bad (_("unrecognized relocation suffix"));
2989 ignore_rest_of_line ();
2990 return;
2992 else if (reloc == BFD_RELOC_UNUSED)
2993 emit_expr (&exp, (unsigned int) nbytes);
2994 else
2996 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2997 int size = bfd_get_reloc_size (howto);
2999 if (reloc == BFD_RELOC_ARM_PLT32)
3001 as_bad (_("(plt) is only valid on branch targets"));
3002 reloc = BFD_RELOC_UNUSED;
3003 size = 0;
3006 if (size > nbytes)
3007 as_bad (_("%s relocations do not fit in %d bytes"),
3008 howto->name, nbytes);
3009 else
3011 /* We've parsed an expression stopping at O_symbol.
3012 But there may be more expression left now that we
3013 have parsed the relocation marker. Parse it again.
3014 XXX Surely there is a cleaner way to do this. */
3015 char *p = input_line_pointer;
3016 int offset;
3017 char *save_buf = alloca (input_line_pointer - base);
3018 memcpy (save_buf, base, input_line_pointer - base);
3019 memmove (base + (input_line_pointer - before_reloc),
3020 base, before_reloc - base);
3022 input_line_pointer = base + (input_line_pointer-before_reloc);
3023 expression (&exp);
3024 memcpy (base, save_buf, p - base);
3026 offset = nbytes - size;
3027 p = frag_more ((int) nbytes);
3028 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3029 size, &exp, 0, reloc);
3034 while (*input_line_pointer++ == ',');
3036 /* Put terminator back into stream. */
3037 input_line_pointer --;
3038 demand_empty_rest_of_line ();
3042 /* Parse a .rel31 directive. */
3044 static void
3045 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3047 expressionS exp;
3048 char *p;
3049 valueT highbit;
3051 highbit = 0;
3052 if (*input_line_pointer == '1')
3053 highbit = 0x80000000;
3054 else if (*input_line_pointer != '0')
3055 as_bad (_("expected 0 or 1"));
3057 input_line_pointer++;
3058 if (*input_line_pointer != ',')
3059 as_bad (_("missing comma"));
3060 input_line_pointer++;
3062 #ifdef md_flush_pending_output
3063 md_flush_pending_output ();
3064 #endif
3066 #ifdef md_cons_align
3067 md_cons_align (4);
3068 #endif
3070 mapping_state (MAP_DATA);
3072 expression (&exp);
3074 p = frag_more (4);
3075 md_number_to_chars (p, highbit, 4);
3076 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3077 BFD_RELOC_ARM_PREL31);
3079 demand_empty_rest_of_line ();
3082 /* Directives: AEABI stack-unwind tables. */
3084 /* Parse an unwind_fnstart directive. Simply records the current location. */
3086 static void
3087 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3089 demand_empty_rest_of_line ();
3090 /* Mark the start of the function. */
3091 unwind.proc_start = expr_build_dot ();
3093 /* Reset the rest of the unwind info. */
3094 unwind.opcode_count = 0;
3095 unwind.table_entry = NULL;
3096 unwind.personality_routine = NULL;
3097 unwind.personality_index = -1;
3098 unwind.frame_size = 0;
3099 unwind.fp_offset = 0;
3100 unwind.fp_reg = REG_SP;
3101 unwind.fp_used = 0;
3102 unwind.sp_restored = 0;
3106 /* Parse a handlerdata directive. Creates the exception handling table entry
3107 for the function. */
3109 static void
3110 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3112 demand_empty_rest_of_line ();
3113 if (unwind.table_entry)
3114 as_bad (_("duplicate .handlerdata directive"));
3116 create_unwind_entry (1);
3119 /* Parse an unwind_fnend directive. Generates the index table entry. */
3121 static void
3122 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3124 long where;
3125 char *ptr;
3126 valueT val;
3128 demand_empty_rest_of_line ();
3130 /* Add eh table entry. */
3131 if (unwind.table_entry == NULL)
3132 val = create_unwind_entry (0);
3133 else
3134 val = 0;
3136 /* Add index table entry. This is two words. */
3137 start_unwind_section (unwind.saved_seg, 1);
3138 frag_align (2, 0, 0);
3139 record_alignment (now_seg, 2);
3141 ptr = frag_more (8);
3142 where = frag_now_fix () - 8;
3144 /* Self relative offset of the function start. */
3145 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3146 BFD_RELOC_ARM_PREL31);
3148 /* Indicate dependency on EHABI-defined personality routines to the
3149 linker, if it hasn't been done already. */
3150 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3151 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3153 static const char *const name[] =
3155 "__aeabi_unwind_cpp_pr0",
3156 "__aeabi_unwind_cpp_pr1",
3157 "__aeabi_unwind_cpp_pr2"
3159 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3160 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3161 marked_pr_dependency |= 1 << unwind.personality_index;
3162 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3163 = marked_pr_dependency;
3166 if (val)
3167 /* Inline exception table entry. */
3168 md_number_to_chars (ptr + 4, val, 4);
3169 else
3170 /* Self relative offset of the table entry. */
3171 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3172 BFD_RELOC_ARM_PREL31);
3174 /* Restore the original section. */
3175 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3179 /* Parse an unwind_cantunwind directive. */
3181 static void
3182 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3184 demand_empty_rest_of_line ();
3185 if (unwind.personality_routine || unwind.personality_index != -1)
3186 as_bad (_("personality routine specified for cantunwind frame"));
3188 unwind.personality_index = -2;
3192 /* Parse a personalityindex directive. */
3194 static void
3195 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3197 expressionS exp;
3199 if (unwind.personality_routine || unwind.personality_index != -1)
3200 as_bad (_("duplicate .personalityindex directive"));
3202 expression (&exp);
3204 if (exp.X_op != O_constant
3205 || exp.X_add_number < 0 || exp.X_add_number > 15)
3207 as_bad (_("bad personality routine number"));
3208 ignore_rest_of_line ();
3209 return;
3212 unwind.personality_index = exp.X_add_number;
3214 demand_empty_rest_of_line ();
3218 /* Parse a personality directive. */
3220 static void
3221 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3223 char *name, *p, c;
3225 if (unwind.personality_routine || unwind.personality_index != -1)
3226 as_bad (_("duplicate .personality directive"));
3228 name = input_line_pointer;
3229 c = get_symbol_end ();
3230 p = input_line_pointer;
3231 unwind.personality_routine = symbol_find_or_make (name);
3232 *p = c;
3233 demand_empty_rest_of_line ();
3237 /* Parse a directive saving core registers. */
3239 static void
3240 s_arm_unwind_save_core (void)
3242 valueT op;
3243 long range;
3244 int n;
3246 range = parse_reg_list (&input_line_pointer);
3247 if (range == FAIL)
3249 as_bad (_("expected register list"));
3250 ignore_rest_of_line ();
3251 return;
3254 demand_empty_rest_of_line ();
3256 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3257 into .unwind_save {..., sp...}. We aren't bothered about the value of
3258 ip because it is clobbered by calls. */
3259 if (unwind.sp_restored && unwind.fp_reg == 12
3260 && (range & 0x3000) == 0x1000)
3262 unwind.opcode_count--;
3263 unwind.sp_restored = 0;
3264 range = (range | 0x2000) & ~0x1000;
3265 unwind.pending_offset = 0;
3268 /* Pop r4-r15. */
3269 if (range & 0xfff0)
3271 /* See if we can use the short opcodes. These pop a block of up to 8
3272 registers starting with r4, plus maybe r14. */
3273 for (n = 0; n < 8; n++)
3275 /* Break at the first non-saved register. */
3276 if ((range & (1 << (n + 4))) == 0)
3277 break;
3279 /* See if there are any other bits set. */
3280 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3282 /* Use the long form. */
3283 op = 0x8000 | ((range >> 4) & 0xfff);
3284 add_unwind_opcode (op, 2);
3286 else
3288 /* Use the short form. */
3289 if (range & 0x4000)
3290 op = 0xa8; /* Pop r14. */
3291 else
3292 op = 0xa0; /* Do not pop r14. */
3293 op |= (n - 1);
3294 add_unwind_opcode (op, 1);
3298 /* Pop r0-r3. */
3299 if (range & 0xf)
3301 op = 0xb100 | (range & 0xf);
3302 add_unwind_opcode (op, 2);
3305 /* Record the number of bytes pushed. */
3306 for (n = 0; n < 16; n++)
3308 if (range & (1 << n))
3309 unwind.frame_size += 4;
3314 /* Parse a directive saving FPA registers. */
3316 static void
3317 s_arm_unwind_save_fpa (int reg)
3319 expressionS exp;
3320 int num_regs;
3321 valueT op;
3323 /* Get Number of registers to transfer. */
3324 if (skip_past_comma (&input_line_pointer) != FAIL)
3325 expression (&exp);
3326 else
3327 exp.X_op = O_illegal;
3329 if (exp.X_op != O_constant)
3331 as_bad (_("expected , <constant>"));
3332 ignore_rest_of_line ();
3333 return;
3336 num_regs = exp.X_add_number;
3338 if (num_regs < 1 || num_regs > 4)
3340 as_bad (_("number of registers must be in the range [1:4]"));
3341 ignore_rest_of_line ();
3342 return;
3345 demand_empty_rest_of_line ();
3347 if (reg == 4)
3349 /* Short form. */
3350 op = 0xb4 | (num_regs - 1);
3351 add_unwind_opcode (op, 1);
3353 else
3355 /* Long form. */
3356 op = 0xc800 | (reg << 4) | (num_regs - 1);
3357 add_unwind_opcode (op, 2);
3359 unwind.frame_size += num_regs * 12;
3363 /* Parse a directive saving VFP registers for ARMv6 and above. */
3365 static void
3366 s_arm_unwind_save_vfp_armv6 (void)
3368 int count;
3369 unsigned int start;
3370 valueT op;
3371 int num_vfpv3_regs = 0;
3372 int num_regs_below_16;
3374 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3375 if (count == FAIL)
3377 as_bad (_("expected register list"));
3378 ignore_rest_of_line ();
3379 return;
3382 demand_empty_rest_of_line ();
3384 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3385 than FSTMX/FLDMX-style ones). */
3387 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3388 if (start >= 16)
3389 num_vfpv3_regs = count;
3390 else if (start + count > 16)
3391 num_vfpv3_regs = start + count - 16;
3393 if (num_vfpv3_regs > 0)
3395 int start_offset = start > 16 ? start - 16 : 0;
3396 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3397 add_unwind_opcode (op, 2);
3400 /* Generate opcode for registers numbered in the range 0 .. 15. */
3401 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3402 assert (num_regs_below_16 + num_vfpv3_regs == count);
3403 if (num_regs_below_16 > 0)
3405 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3406 add_unwind_opcode (op, 2);
3409 unwind.frame_size += count * 8;
3413 /* Parse a directive saving VFP registers for pre-ARMv6. */
3415 static void
3416 s_arm_unwind_save_vfp (void)
3418 int count;
3419 unsigned int reg;
3420 valueT op;
3422 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3423 if (count == FAIL)
3425 as_bad (_("expected register list"));
3426 ignore_rest_of_line ();
3427 return;
3430 demand_empty_rest_of_line ();
3432 if (reg == 8)
3434 /* Short form. */
3435 op = 0xb8 | (count - 1);
3436 add_unwind_opcode (op, 1);
3438 else
3440 /* Long form. */
3441 op = 0xb300 | (reg << 4) | (count - 1);
3442 add_unwind_opcode (op, 2);
3444 unwind.frame_size += count * 8 + 4;
3448 /* Parse a directive saving iWMMXt data registers. */
3450 static void
3451 s_arm_unwind_save_mmxwr (void)
3453 int reg;
3454 int hi_reg;
3455 int i;
3456 unsigned mask = 0;
3457 valueT op;
3459 if (*input_line_pointer == '{')
3460 input_line_pointer++;
3464 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3466 if (reg == FAIL)
3468 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3469 goto error;
3472 if (mask >> reg)
3473 as_tsktsk (_("register list not in ascending order"));
3474 mask |= 1 << reg;
3476 if (*input_line_pointer == '-')
3478 input_line_pointer++;
3479 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3480 if (hi_reg == FAIL)
3482 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3483 goto error;
3485 else if (reg >= hi_reg)
3487 as_bad (_("bad register range"));
3488 goto error;
3490 for (; reg < hi_reg; reg++)
3491 mask |= 1 << reg;
3494 while (skip_past_comma (&input_line_pointer) != FAIL);
3496 if (*input_line_pointer == '}')
3497 input_line_pointer++;
3499 demand_empty_rest_of_line ();
3501 /* Generate any deferred opcodes because we're going to be looking at
3502 the list. */
3503 flush_pending_unwind ();
3505 for (i = 0; i < 16; i++)
3507 if (mask & (1 << i))
3508 unwind.frame_size += 8;
3511 /* Attempt to combine with a previous opcode. We do this because gcc
3512 likes to output separate unwind directives for a single block of
3513 registers. */
3514 if (unwind.opcode_count > 0)
3516 i = unwind.opcodes[unwind.opcode_count - 1];
3517 if ((i & 0xf8) == 0xc0)
3519 i &= 7;
3520 /* Only merge if the blocks are contiguous. */
3521 if (i < 6)
3523 if ((mask & 0xfe00) == (1 << 9))
3525 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3526 unwind.opcode_count--;
3529 else if (i == 6 && unwind.opcode_count >= 2)
3531 i = unwind.opcodes[unwind.opcode_count - 2];
3532 reg = i >> 4;
3533 i &= 0xf;
3535 op = 0xffff << (reg - 1);
3536 if (reg > 0
3537 && ((mask & op) == (1u << (reg - 1))))
3539 op = (1 << (reg + i + 1)) - 1;
3540 op &= ~((1 << reg) - 1);
3541 mask |= op;
3542 unwind.opcode_count -= 2;
3548 hi_reg = 15;
3549 /* We want to generate opcodes in the order the registers have been
3550 saved, ie. descending order. */
3551 for (reg = 15; reg >= -1; reg--)
3553 /* Save registers in blocks. */
3554 if (reg < 0
3555 || !(mask & (1 << reg)))
3557 /* We found an unsaved reg. Generate opcodes to save the
3558 preceding block. */
3559 if (reg != hi_reg)
3561 if (reg == 9)
3563 /* Short form. */
3564 op = 0xc0 | (hi_reg - 10);
3565 add_unwind_opcode (op, 1);
3567 else
3569 /* Long form. */
3570 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3571 add_unwind_opcode (op, 2);
3574 hi_reg = reg - 1;
3578 return;
3579 error:
3580 ignore_rest_of_line ();
3583 static void
3584 s_arm_unwind_save_mmxwcg (void)
3586 int reg;
3587 int hi_reg;
3588 unsigned mask = 0;
3589 valueT op;
3591 if (*input_line_pointer == '{')
3592 input_line_pointer++;
3596 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3598 if (reg == FAIL)
3600 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3601 goto error;
3604 reg -= 8;
3605 if (mask >> reg)
3606 as_tsktsk (_("register list not in ascending order"));
3607 mask |= 1 << reg;
3609 if (*input_line_pointer == '-')
3611 input_line_pointer++;
3612 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3613 if (hi_reg == FAIL)
3615 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3616 goto error;
3618 else if (reg >= hi_reg)
3620 as_bad (_("bad register range"));
3621 goto error;
3623 for (; reg < hi_reg; reg++)
3624 mask |= 1 << reg;
3627 while (skip_past_comma (&input_line_pointer) != FAIL);
3629 if (*input_line_pointer == '}')
3630 input_line_pointer++;
3632 demand_empty_rest_of_line ();
3634 /* Generate any deferred opcodes because we're going to be looking at
3635 the list. */
3636 flush_pending_unwind ();
3638 for (reg = 0; reg < 16; reg++)
3640 if (mask & (1 << reg))
3641 unwind.frame_size += 4;
3643 op = 0xc700 | mask;
3644 add_unwind_opcode (op, 2);
3645 return;
3646 error:
3647 ignore_rest_of_line ();
3651 /* Parse an unwind_save directive.
3652 If the argument is non-zero, this is a .vsave directive. */
3654 static void
3655 s_arm_unwind_save (int arch_v6)
3657 char *peek;
3658 struct reg_entry *reg;
3659 bfd_boolean had_brace = FALSE;
3661 /* Figure out what sort of save we have. */
3662 peek = input_line_pointer;
3664 if (*peek == '{')
3666 had_brace = TRUE;
3667 peek++;
3670 reg = arm_reg_parse_multi (&peek);
3672 if (!reg)
3674 as_bad (_("register expected"));
3675 ignore_rest_of_line ();
3676 return;
3679 switch (reg->type)
3681 case REG_TYPE_FN:
3682 if (had_brace)
3684 as_bad (_("FPA .unwind_save does not take a register list"));
3685 ignore_rest_of_line ();
3686 return;
3688 input_line_pointer = peek;
3689 s_arm_unwind_save_fpa (reg->number);
3690 return;
3692 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3693 case REG_TYPE_VFD:
3694 if (arch_v6)
3695 s_arm_unwind_save_vfp_armv6 ();
3696 else
3697 s_arm_unwind_save_vfp ();
3698 return;
3699 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3700 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3702 default:
3703 as_bad (_(".unwind_save does not support this kind of register"));
3704 ignore_rest_of_line ();
3709 /* Parse an unwind_movsp directive. */
3711 static void
3712 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3714 int reg;
3715 valueT op;
3716 int offset;
3718 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3719 if (reg == FAIL)
3721 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
3722 ignore_rest_of_line ();
3723 return;
3726 /* Optional constant. */
3727 if (skip_past_comma (&input_line_pointer) != FAIL)
3729 if (immediate_for_directive (&offset) == FAIL)
3730 return;
3732 else
3733 offset = 0;
3735 demand_empty_rest_of_line ();
3737 if (reg == REG_SP || reg == REG_PC)
3739 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3740 return;
3743 if (unwind.fp_reg != REG_SP)
3744 as_bad (_("unexpected .unwind_movsp directive"));
3746 /* Generate opcode to restore the value. */
3747 op = 0x90 | reg;
3748 add_unwind_opcode (op, 1);
3750 /* Record the information for later. */
3751 unwind.fp_reg = reg;
3752 unwind.fp_offset = unwind.frame_size - offset;
3753 unwind.sp_restored = 1;
3756 /* Parse an unwind_pad directive. */
3758 static void
3759 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3761 int offset;
3763 if (immediate_for_directive (&offset) == FAIL)
3764 return;
3766 if (offset & 3)
3768 as_bad (_("stack increment must be multiple of 4"));
3769 ignore_rest_of_line ();
3770 return;
3773 /* Don't generate any opcodes, just record the details for later. */
3774 unwind.frame_size += offset;
3775 unwind.pending_offset += offset;
3777 demand_empty_rest_of_line ();
3780 /* Parse an unwind_setfp directive. */
3782 static void
3783 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3785 int sp_reg;
3786 int fp_reg;
3787 int offset;
3789 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3790 if (skip_past_comma (&input_line_pointer) == FAIL)
3791 sp_reg = FAIL;
3792 else
3793 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3795 if (fp_reg == FAIL || sp_reg == FAIL)
3797 as_bad (_("expected <reg>, <reg>"));
3798 ignore_rest_of_line ();
3799 return;
3802 /* Optional constant. */
3803 if (skip_past_comma (&input_line_pointer) != FAIL)
3805 if (immediate_for_directive (&offset) == FAIL)
3806 return;
3808 else
3809 offset = 0;
3811 demand_empty_rest_of_line ();
3813 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
3815 as_bad (_("register must be either sp or set by a previous"
3816 "unwind_movsp directive"));
3817 return;
3820 /* Don't generate any opcodes, just record the information for later. */
3821 unwind.fp_reg = fp_reg;
3822 unwind.fp_used = 1;
3823 if (sp_reg == REG_SP)
3824 unwind.fp_offset = unwind.frame_size - offset;
3825 else
3826 unwind.fp_offset -= offset;
3829 /* Parse an unwind_raw directive. */
3831 static void
3832 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3834 expressionS exp;
3835 /* This is an arbitrary limit. */
3836 unsigned char op[16];
3837 int count;
3839 expression (&exp);
3840 if (exp.X_op == O_constant
3841 && skip_past_comma (&input_line_pointer) != FAIL)
3843 unwind.frame_size += exp.X_add_number;
3844 expression (&exp);
3846 else
3847 exp.X_op = O_illegal;
3849 if (exp.X_op != O_constant)
3851 as_bad (_("expected <offset>, <opcode>"));
3852 ignore_rest_of_line ();
3853 return;
3856 count = 0;
3858 /* Parse the opcode. */
3859 for (;;)
3861 if (count >= 16)
3863 as_bad (_("unwind opcode too long"));
3864 ignore_rest_of_line ();
3866 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3868 as_bad (_("invalid unwind opcode"));
3869 ignore_rest_of_line ();
3870 return;
3872 op[count++] = exp.X_add_number;
3874 /* Parse the next byte. */
3875 if (skip_past_comma (&input_line_pointer) == FAIL)
3876 break;
3878 expression (&exp);
3881 /* Add the opcode bytes in reverse order. */
3882 while (count--)
3883 add_unwind_opcode (op[count], 1);
3885 demand_empty_rest_of_line ();
3889 /* Parse a .eabi_attribute directive. */
3891 static void
3892 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3894 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
3896 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
3897 attributes_set_explicitly[tag] = 1;
3899 #endif /* OBJ_ELF */
3901 static void s_arm_arch (int);
3902 static void s_arm_object_arch (int);
3903 static void s_arm_cpu (int);
3904 static void s_arm_fpu (int);
3906 #ifdef TE_PE
3908 static void
3909 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3911 expressionS exp;
3915 expression (&exp);
3916 if (exp.X_op == O_symbol)
3917 exp.X_op = O_secrel;
3919 emit_expr (&exp, 4);
3921 while (*input_line_pointer++ == ',');
3923 input_line_pointer--;
3924 demand_empty_rest_of_line ();
3926 #endif /* TE_PE */
3928 /* This table describes all the machine specific pseudo-ops the assembler
3929 has to support. The fields are:
3930 pseudo-op name without dot
3931 function to call to execute this pseudo-op
3932 Integer arg to pass to the function. */
3934 const pseudo_typeS md_pseudo_table[] =
3936 /* Never called because '.req' does not start a line. */
3937 { "req", s_req, 0 },
3938 /* Following two are likewise never called. */
3939 { "dn", s_dn, 0 },
3940 { "qn", s_qn, 0 },
3941 { "unreq", s_unreq, 0 },
3942 { "bss", s_bss, 0 },
3943 { "align", s_align, 0 },
3944 { "arm", s_arm, 0 },
3945 { "thumb", s_thumb, 0 },
3946 { "code", s_code, 0 },
3947 { "force_thumb", s_force_thumb, 0 },
3948 { "thumb_func", s_thumb_func, 0 },
3949 { "thumb_set", s_thumb_set, 0 },
3950 { "even", s_even, 0 },
3951 { "ltorg", s_ltorg, 0 },
3952 { "pool", s_ltorg, 0 },
3953 { "syntax", s_syntax, 0 },
3954 { "cpu", s_arm_cpu, 0 },
3955 { "arch", s_arm_arch, 0 },
3956 { "object_arch", s_arm_object_arch, 0 },
3957 { "fpu", s_arm_fpu, 0 },
3958 #ifdef OBJ_ELF
3959 { "word", s_arm_elf_cons, 4 },
3960 { "long", s_arm_elf_cons, 4 },
3961 { "rel31", s_arm_rel31, 0 },
3962 { "fnstart", s_arm_unwind_fnstart, 0 },
3963 { "fnend", s_arm_unwind_fnend, 0 },
3964 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3965 { "personality", s_arm_unwind_personality, 0 },
3966 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3967 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3968 { "save", s_arm_unwind_save, 0 },
3969 { "vsave", s_arm_unwind_save, 1 },
3970 { "movsp", s_arm_unwind_movsp, 0 },
3971 { "pad", s_arm_unwind_pad, 0 },
3972 { "setfp", s_arm_unwind_setfp, 0 },
3973 { "unwind_raw", s_arm_unwind_raw, 0 },
3974 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3975 #else
3976 { "word", cons, 4},
3978 /* These are used for dwarf. */
3979 {"2byte", cons, 2},
3980 {"4byte", cons, 4},
3981 {"8byte", cons, 8},
3982 /* These are used for dwarf2. */
3983 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3984 { "loc", dwarf2_directive_loc, 0 },
3985 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3986 #endif
3987 { "extend", float_cons, 'x' },
3988 { "ldouble", float_cons, 'x' },
3989 { "packed", float_cons, 'p' },
3990 #ifdef TE_PE
3991 {"secrel32", pe_directive_secrel, 0},
3992 #endif
3993 { 0, 0, 0 }
3996 /* Parser functions used exclusively in instruction operands. */
3998 /* Generic immediate-value read function for use in insn parsing.
3999 STR points to the beginning of the immediate (the leading #);
4000 VAL receives the value; if the value is outside [MIN, MAX]
4001 issue an error. PREFIX_OPT is true if the immediate prefix is
4002 optional. */
4004 static int
4005 parse_immediate (char **str, int *val, int min, int max,
4006 bfd_boolean prefix_opt)
4008 expressionS exp;
4009 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4010 if (exp.X_op != O_constant)
4012 inst.error = _("constant expression required");
4013 return FAIL;
4016 if (exp.X_add_number < min || exp.X_add_number > max)
4018 inst.error = _("immediate value out of range");
4019 return FAIL;
4022 *val = exp.X_add_number;
4023 return SUCCESS;
4026 /* Less-generic immediate-value read function with the possibility of loading a
4027 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4028 instructions. Puts the result directly in inst.operands[i]. */
4030 static int
4031 parse_big_immediate (char **str, int i)
4033 expressionS exp;
4034 char *ptr = *str;
4036 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4038 if (exp.X_op == O_constant)
4040 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4041 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4042 O_constant. We have to be careful not to break compilation for
4043 32-bit X_add_number, though. */
4044 if ((exp.X_add_number & ~0xffffffffl) != 0)
4046 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4047 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4048 inst.operands[i].regisimm = 1;
4051 else if (exp.X_op == O_big
4052 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4053 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4055 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4056 /* Bignums have their least significant bits in
4057 generic_bignum[0]. Make sure we put 32 bits in imm and
4058 32 bits in reg, in a (hopefully) portable way. */
4059 assert (parts != 0);
4060 inst.operands[i].imm = 0;
4061 for (j = 0; j < parts; j++, idx++)
4062 inst.operands[i].imm |= generic_bignum[idx]
4063 << (LITTLENUM_NUMBER_OF_BITS * j);
4064 inst.operands[i].reg = 0;
4065 for (j = 0; j < parts; j++, idx++)
4066 inst.operands[i].reg |= generic_bignum[idx]
4067 << (LITTLENUM_NUMBER_OF_BITS * j);
4068 inst.operands[i].regisimm = 1;
4070 else
4071 return FAIL;
4073 *str = ptr;
4075 return SUCCESS;
4078 /* Returns the pseudo-register number of an FPA immediate constant,
4079 or FAIL if there isn't a valid constant here. */
4081 static int
4082 parse_fpa_immediate (char ** str)
4084 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4085 char * save_in;
4086 expressionS exp;
4087 int i;
4088 int j;
4090 /* First try and match exact strings, this is to guarantee
4091 that some formats will work even for cross assembly. */
4093 for (i = 0; fp_const[i]; i++)
4095 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4097 char *start = *str;
4099 *str += strlen (fp_const[i]);
4100 if (is_end_of_line[(unsigned char) **str])
4101 return i + 8;
4102 *str = start;
4106 /* Just because we didn't get a match doesn't mean that the constant
4107 isn't valid, just that it is in a format that we don't
4108 automatically recognize. Try parsing it with the standard
4109 expression routines. */
4111 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4113 /* Look for a raw floating point number. */
4114 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4115 && is_end_of_line[(unsigned char) *save_in])
4117 for (i = 0; i < NUM_FLOAT_VALS; i++)
4119 for (j = 0; j < MAX_LITTLENUMS; j++)
4121 if (words[j] != fp_values[i][j])
4122 break;
4125 if (j == MAX_LITTLENUMS)
4127 *str = save_in;
4128 return i + 8;
4133 /* Try and parse a more complex expression, this will probably fail
4134 unless the code uses a floating point prefix (eg "0f"). */
4135 save_in = input_line_pointer;
4136 input_line_pointer = *str;
4137 if (expression (&exp) == absolute_section
4138 && exp.X_op == O_big
4139 && exp.X_add_number < 0)
4141 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4142 Ditto for 15. */
4143 if (gen_to_words (words, 5, (long) 15) == 0)
4145 for (i = 0; i < NUM_FLOAT_VALS; i++)
4147 for (j = 0; j < MAX_LITTLENUMS; j++)
4149 if (words[j] != fp_values[i][j])
4150 break;
4153 if (j == MAX_LITTLENUMS)
4155 *str = input_line_pointer;
4156 input_line_pointer = save_in;
4157 return i + 8;
4163 *str = input_line_pointer;
4164 input_line_pointer = save_in;
4165 inst.error = _("invalid FPA immediate expression");
4166 return FAIL;
4169 /* Returns 1 if a number has "quarter-precision" float format
4170 0baBbbbbbc defgh000 00000000 00000000. */
4172 static int
4173 is_quarter_float (unsigned imm)
4175 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4176 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4179 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4180 0baBbbbbbc defgh000 00000000 00000000.
4181 The zero and minus-zero cases need special handling, since they can't be
4182 encoded in the "quarter-precision" float format, but can nonetheless be
4183 loaded as integer constants. */
4185 static unsigned
4186 parse_qfloat_immediate (char **ccp, int *immed)
4188 char *str = *ccp;
4189 char *fpnum;
4190 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4191 int found_fpchar = 0;
4193 skip_past_char (&str, '#');
4195 /* We must not accidentally parse an integer as a floating-point number. Make
4196 sure that the value we parse is not an integer by checking for special
4197 characters '.' or 'e'.
4198 FIXME: This is a horrible hack, but doing better is tricky because type
4199 information isn't in a very usable state at parse time. */
4200 fpnum = str;
4201 skip_whitespace (fpnum);
4203 if (strncmp (fpnum, "0x", 2) == 0)
4204 return FAIL;
4205 else
4207 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4208 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4210 found_fpchar = 1;
4211 break;
4214 if (!found_fpchar)
4215 return FAIL;
4218 if ((str = atof_ieee (str, 's', words)) != NULL)
4220 unsigned fpword = 0;
4221 int i;
4223 /* Our FP word must be 32 bits (single-precision FP). */
4224 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4226 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4227 fpword |= words[i];
4230 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4231 *immed = fpword;
4232 else
4233 return FAIL;
4235 *ccp = str;
4237 return SUCCESS;
4240 return FAIL;
4243 /* Shift operands. */
4244 enum shift_kind
4246 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4249 struct asm_shift_name
4251 const char *name;
4252 enum shift_kind kind;
4255 /* Third argument to parse_shift. */
4256 enum parse_shift_mode
4258 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4259 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4260 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4261 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4262 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4265 /* Parse a <shift> specifier on an ARM data processing instruction.
4266 This has three forms:
4268 (LSL|LSR|ASL|ASR|ROR) Rs
4269 (LSL|LSR|ASL|ASR|ROR) #imm
4272 Note that ASL is assimilated to LSL in the instruction encoding, and
4273 RRX to ROR #0 (which cannot be written as such). */
4275 static int
4276 parse_shift (char **str, int i, enum parse_shift_mode mode)
4278 const struct asm_shift_name *shift_name;
4279 enum shift_kind shift;
4280 char *s = *str;
4281 char *p = s;
4282 int reg;
4284 for (p = *str; ISALPHA (*p); p++)
4287 if (p == *str)
4289 inst.error = _("shift expression expected");
4290 return FAIL;
4293 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4295 if (shift_name == NULL)
4297 inst.error = _("shift expression expected");
4298 return FAIL;
4301 shift = shift_name->kind;
4303 switch (mode)
4305 case NO_SHIFT_RESTRICT:
4306 case SHIFT_IMMEDIATE: break;
4308 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4309 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4311 inst.error = _("'LSL' or 'ASR' required");
4312 return FAIL;
4314 break;
4316 case SHIFT_LSL_IMMEDIATE:
4317 if (shift != SHIFT_LSL)
4319 inst.error = _("'LSL' required");
4320 return FAIL;
4322 break;
4324 case SHIFT_ASR_IMMEDIATE:
4325 if (shift != SHIFT_ASR)
4327 inst.error = _("'ASR' required");
4328 return FAIL;
4330 break;
4332 default: abort ();
4335 if (shift != SHIFT_RRX)
4337 /* Whitespace can appear here if the next thing is a bare digit. */
4338 skip_whitespace (p);
4340 if (mode == NO_SHIFT_RESTRICT
4341 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4343 inst.operands[i].imm = reg;
4344 inst.operands[i].immisreg = 1;
4346 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4347 return FAIL;
4349 inst.operands[i].shift_kind = shift;
4350 inst.operands[i].shifted = 1;
4351 *str = p;
4352 return SUCCESS;
4355 /* Parse a <shifter_operand> for an ARM data processing instruction:
4357 #<immediate>
4358 #<immediate>, <rotate>
4359 <Rm>
4360 <Rm>, <shift>
4362 where <shift> is defined by parse_shift above, and <rotate> is a
4363 multiple of 2 between 0 and 30. Validation of immediate operands
4364 is deferred to md_apply_fix. */
4366 static int
4367 parse_shifter_operand (char **str, int i)
4369 int value;
4370 expressionS expr;
4372 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4374 inst.operands[i].reg = value;
4375 inst.operands[i].isreg = 1;
4377 /* parse_shift will override this if appropriate */
4378 inst.reloc.exp.X_op = O_constant;
4379 inst.reloc.exp.X_add_number = 0;
4381 if (skip_past_comma (str) == FAIL)
4382 return SUCCESS;
4384 /* Shift operation on register. */
4385 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4388 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4389 return FAIL;
4391 if (skip_past_comma (str) == SUCCESS)
4393 /* #x, y -- ie explicit rotation by Y. */
4394 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4395 return FAIL;
4397 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4399 inst.error = _("constant expression expected");
4400 return FAIL;
4403 value = expr.X_add_number;
4404 if (value < 0 || value > 30 || value % 2 != 0)
4406 inst.error = _("invalid rotation");
4407 return FAIL;
4409 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4411 inst.error = _("invalid constant");
4412 return FAIL;
4415 /* Convert to decoded value. md_apply_fix will put it back. */
4416 inst.reloc.exp.X_add_number
4417 = (((inst.reloc.exp.X_add_number << (32 - value))
4418 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4421 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4422 inst.reloc.pc_rel = 0;
4423 return SUCCESS;
4426 /* Group relocation information. Each entry in the table contains the
4427 textual name of the relocation as may appear in assembler source
4428 and must end with a colon.
4429 Along with this textual name are the relocation codes to be used if
4430 the corresponding instruction is an ALU instruction (ADD or SUB only),
4431 an LDR, an LDRS, or an LDC. */
4433 struct group_reloc_table_entry
4435 const char *name;
4436 int alu_code;
4437 int ldr_code;
4438 int ldrs_code;
4439 int ldc_code;
4442 typedef enum
4444 /* Varieties of non-ALU group relocation. */
4446 GROUP_LDR,
4447 GROUP_LDRS,
4448 GROUP_LDC
4449 } group_reloc_type;
4451 static struct group_reloc_table_entry group_reloc_table[] =
4452 { /* Program counter relative: */
4453 { "pc_g0_nc",
4454 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4455 0, /* LDR */
4456 0, /* LDRS */
4457 0 }, /* LDC */
4458 { "pc_g0",
4459 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4460 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4461 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4462 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4463 { "pc_g1_nc",
4464 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4465 0, /* LDR */
4466 0, /* LDRS */
4467 0 }, /* LDC */
4468 { "pc_g1",
4469 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4470 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4471 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4472 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4473 { "pc_g2",
4474 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4475 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4476 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4477 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4478 /* Section base relative */
4479 { "sb_g0_nc",
4480 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4481 0, /* LDR */
4482 0, /* LDRS */
4483 0 }, /* LDC */
4484 { "sb_g0",
4485 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4486 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4487 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4488 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4489 { "sb_g1_nc",
4490 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4491 0, /* LDR */
4492 0, /* LDRS */
4493 0 }, /* LDC */
4494 { "sb_g1",
4495 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4496 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4497 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4498 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4499 { "sb_g2",
4500 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4501 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4502 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4503 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4505 /* Given the address of a pointer pointing to the textual name of a group
4506 relocation as may appear in assembler source, attempt to find its details
4507 in group_reloc_table. The pointer will be updated to the character after
4508 the trailing colon. On failure, FAIL will be returned; SUCCESS
4509 otherwise. On success, *entry will be updated to point at the relevant
4510 group_reloc_table entry. */
4512 static int
4513 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4515 unsigned int i;
4516 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4518 int length = strlen (group_reloc_table[i].name);
4520 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4521 && (*str)[length] == ':')
4523 *out = &group_reloc_table[i];
4524 *str += (length + 1);
4525 return SUCCESS;
4529 return FAIL;
4532 /* Parse a <shifter_operand> for an ARM data processing instruction
4533 (as for parse_shifter_operand) where group relocations are allowed:
4535 #<immediate>
4536 #<immediate>, <rotate>
4537 #:<group_reloc>:<expression>
4538 <Rm>
4539 <Rm>, <shift>
4541 where <group_reloc> is one of the strings defined in group_reloc_table.
4542 The hashes are optional.
4544 Everything else is as for parse_shifter_operand. */
4546 static parse_operand_result
4547 parse_shifter_operand_group_reloc (char **str, int i)
4549 /* Determine if we have the sequence of characters #: or just :
4550 coming next. If we do, then we check for a group relocation.
4551 If we don't, punt the whole lot to parse_shifter_operand. */
4553 if (((*str)[0] == '#' && (*str)[1] == ':')
4554 || (*str)[0] == ':')
4556 struct group_reloc_table_entry *entry;
4558 if ((*str)[0] == '#')
4559 (*str) += 2;
4560 else
4561 (*str)++;
4563 /* Try to parse a group relocation. Anything else is an error. */
4564 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4566 inst.error = _("unknown group relocation");
4567 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4570 /* We now have the group relocation table entry corresponding to
4571 the name in the assembler source. Next, we parse the expression. */
4572 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4573 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4575 /* Record the relocation type (always the ALU variant here). */
4576 inst.reloc.type = entry->alu_code;
4577 assert (inst.reloc.type != 0);
4579 return PARSE_OPERAND_SUCCESS;
4581 else
4582 return parse_shifter_operand (str, i) == SUCCESS
4583 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4585 /* Never reached. */
4588 /* Parse all forms of an ARM address expression. Information is written
4589 to inst.operands[i] and/or inst.reloc.
4591 Preindexed addressing (.preind=1):
4593 [Rn, #offset] .reg=Rn .reloc.exp=offset
4594 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4595 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4596 .shift_kind=shift .reloc.exp=shift_imm
4598 These three may have a trailing ! which causes .writeback to be set also.
4600 Postindexed addressing (.postind=1, .writeback=1):
4602 [Rn], #offset .reg=Rn .reloc.exp=offset
4603 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4604 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4605 .shift_kind=shift .reloc.exp=shift_imm
4607 Unindexed addressing (.preind=0, .postind=0):
4609 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4611 Other:
4613 [Rn]{!} shorthand for [Rn,#0]{!}
4614 =immediate .isreg=0 .reloc.exp=immediate
4615 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4617 It is the caller's responsibility to check for addressing modes not
4618 supported by the instruction, and to set inst.reloc.type. */
4620 static parse_operand_result
4621 parse_address_main (char **str, int i, int group_relocations,
4622 group_reloc_type group_type)
4624 char *p = *str;
4625 int reg;
4627 if (skip_past_char (&p, '[') == FAIL)
4629 if (skip_past_char (&p, '=') == FAIL)
4631 /* bare address - translate to PC-relative offset */
4632 inst.reloc.pc_rel = 1;
4633 inst.operands[i].reg = REG_PC;
4634 inst.operands[i].isreg = 1;
4635 inst.operands[i].preind = 1;
4637 /* else a load-constant pseudo op, no special treatment needed here */
4639 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4640 return PARSE_OPERAND_FAIL;
4642 *str = p;
4643 return PARSE_OPERAND_SUCCESS;
4646 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4648 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4649 return PARSE_OPERAND_FAIL;
4651 inst.operands[i].reg = reg;
4652 inst.operands[i].isreg = 1;
4654 if (skip_past_comma (&p) == SUCCESS)
4656 inst.operands[i].preind = 1;
4658 if (*p == '+') p++;
4659 else if (*p == '-') p++, inst.operands[i].negative = 1;
4661 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4663 inst.operands[i].imm = reg;
4664 inst.operands[i].immisreg = 1;
4666 if (skip_past_comma (&p) == SUCCESS)
4667 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4668 return PARSE_OPERAND_FAIL;
4670 else if (skip_past_char (&p, ':') == SUCCESS)
4672 /* FIXME: '@' should be used here, but it's filtered out by generic
4673 code before we get to see it here. This may be subject to
4674 change. */
4675 expressionS exp;
4676 my_get_expression (&exp, &p, GE_NO_PREFIX);
4677 if (exp.X_op != O_constant)
4679 inst.error = _("alignment must be constant");
4680 return PARSE_OPERAND_FAIL;
4682 inst.operands[i].imm = exp.X_add_number << 8;
4683 inst.operands[i].immisalign = 1;
4684 /* Alignments are not pre-indexes. */
4685 inst.operands[i].preind = 0;
4687 else
4689 if (inst.operands[i].negative)
4691 inst.operands[i].negative = 0;
4692 p--;
4695 if (group_relocations
4696 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4698 struct group_reloc_table_entry *entry;
4700 /* Skip over the #: or : sequence. */
4701 if (*p == '#')
4702 p += 2;
4703 else
4704 p++;
4706 /* Try to parse a group relocation. Anything else is an
4707 error. */
4708 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4710 inst.error = _("unknown group relocation");
4711 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4714 /* We now have the group relocation table entry corresponding to
4715 the name in the assembler source. Next, we parse the
4716 expression. */
4717 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4718 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4720 /* Record the relocation type. */
4721 switch (group_type)
4723 case GROUP_LDR:
4724 inst.reloc.type = entry->ldr_code;
4725 break;
4727 case GROUP_LDRS:
4728 inst.reloc.type = entry->ldrs_code;
4729 break;
4731 case GROUP_LDC:
4732 inst.reloc.type = entry->ldc_code;
4733 break;
4735 default:
4736 assert (0);
4739 if (inst.reloc.type == 0)
4741 inst.error = _("this group relocation is not allowed on this instruction");
4742 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4745 else
4746 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4747 return PARSE_OPERAND_FAIL;
4751 if (skip_past_char (&p, ']') == FAIL)
4753 inst.error = _("']' expected");
4754 return PARSE_OPERAND_FAIL;
4757 if (skip_past_char (&p, '!') == SUCCESS)
4758 inst.operands[i].writeback = 1;
4760 else if (skip_past_comma (&p) == SUCCESS)
4762 if (skip_past_char (&p, '{') == SUCCESS)
4764 /* [Rn], {expr} - unindexed, with option */
4765 if (parse_immediate (&p, &inst.operands[i].imm,
4766 0, 255, TRUE) == FAIL)
4767 return PARSE_OPERAND_FAIL;
4769 if (skip_past_char (&p, '}') == FAIL)
4771 inst.error = _("'}' expected at end of 'option' field");
4772 return PARSE_OPERAND_FAIL;
4774 if (inst.operands[i].preind)
4776 inst.error = _("cannot combine index with option");
4777 return PARSE_OPERAND_FAIL;
4779 *str = p;
4780 return PARSE_OPERAND_SUCCESS;
4782 else
4784 inst.operands[i].postind = 1;
4785 inst.operands[i].writeback = 1;
4787 if (inst.operands[i].preind)
4789 inst.error = _("cannot combine pre- and post-indexing");
4790 return PARSE_OPERAND_FAIL;
4793 if (*p == '+') p++;
4794 else if (*p == '-') p++, inst.operands[i].negative = 1;
4796 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4798 /* We might be using the immediate for alignment already. If we
4799 are, OR the register number into the low-order bits. */
4800 if (inst.operands[i].immisalign)
4801 inst.operands[i].imm |= reg;
4802 else
4803 inst.operands[i].imm = reg;
4804 inst.operands[i].immisreg = 1;
4806 if (skip_past_comma (&p) == SUCCESS)
4807 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4808 return PARSE_OPERAND_FAIL;
4810 else
4812 if (inst.operands[i].negative)
4814 inst.operands[i].negative = 0;
4815 p--;
4817 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4818 return PARSE_OPERAND_FAIL;
4823 /* If at this point neither .preind nor .postind is set, we have a
4824 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4825 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4827 inst.operands[i].preind = 1;
4828 inst.reloc.exp.X_op = O_constant;
4829 inst.reloc.exp.X_add_number = 0;
4831 *str = p;
4832 return PARSE_OPERAND_SUCCESS;
4835 static int
4836 parse_address (char **str, int i)
4838 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4839 ? SUCCESS : FAIL;
4842 static parse_operand_result
4843 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4845 return parse_address_main (str, i, 1, type);
4848 /* Parse an operand for a MOVW or MOVT instruction. */
4849 static int
4850 parse_half (char **str)
4852 char * p;
4854 p = *str;
4855 skip_past_char (&p, '#');
4856 if (strncasecmp (p, ":lower16:", 9) == 0)
4857 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4858 else if (strncasecmp (p, ":upper16:", 9) == 0)
4859 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4861 if (inst.reloc.type != BFD_RELOC_UNUSED)
4863 p += 9;
4864 skip_whitespace (p);
4867 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4868 return FAIL;
4870 if (inst.reloc.type == BFD_RELOC_UNUSED)
4872 if (inst.reloc.exp.X_op != O_constant)
4874 inst.error = _("constant expression expected");
4875 return FAIL;
4877 if (inst.reloc.exp.X_add_number < 0
4878 || inst.reloc.exp.X_add_number > 0xffff)
4880 inst.error = _("immediate value out of range");
4881 return FAIL;
4884 *str = p;
4885 return SUCCESS;
4888 /* Miscellaneous. */
4890 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4891 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4892 static int
4893 parse_psr (char **str)
4895 char *p;
4896 unsigned long psr_field;
4897 const struct asm_psr *psr;
4898 char *start;
4900 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4901 feature for ease of use and backwards compatibility. */
4902 p = *str;
4903 if (strncasecmp (p, "SPSR", 4) == 0)
4904 psr_field = SPSR_BIT;
4905 else if (strncasecmp (p, "CPSR", 4) == 0)
4906 psr_field = 0;
4907 else
4909 start = p;
4911 p++;
4912 while (ISALNUM (*p) || *p == '_');
4914 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4915 if (!psr)
4916 return FAIL;
4918 *str = p;
4919 return psr->field;
4922 p += 4;
4923 if (*p == '_')
4925 /* A suffix follows. */
4926 p++;
4927 start = p;
4930 p++;
4931 while (ISALNUM (*p) || *p == '_');
4933 psr = hash_find_n (arm_psr_hsh, start, p - start);
4934 if (!psr)
4935 goto error;
4937 psr_field |= psr->field;
4939 else
4941 if (ISALNUM (*p))
4942 goto error; /* Garbage after "[CS]PSR". */
4944 psr_field |= (PSR_c | PSR_f);
4946 *str = p;
4947 return psr_field;
4949 error:
4950 inst.error = _("flag for {c}psr instruction expected");
4951 return FAIL;
4954 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4955 value suitable for splatting into the AIF field of the instruction. */
4957 static int
4958 parse_cps_flags (char **str)
4960 int val = 0;
4961 int saw_a_flag = 0;
4962 char *s = *str;
4964 for (;;)
4965 switch (*s++)
4967 case '\0': case ',':
4968 goto done;
4970 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4971 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4972 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4974 default:
4975 inst.error = _("unrecognized CPS flag");
4976 return FAIL;
4979 done:
4980 if (saw_a_flag == 0)
4982 inst.error = _("missing CPS flags");
4983 return FAIL;
4986 *str = s - 1;
4987 return val;
4990 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4991 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4993 static int
4994 parse_endian_specifier (char **str)
4996 int little_endian;
4997 char *s = *str;
4999 if (strncasecmp (s, "BE", 2))
5000 little_endian = 0;
5001 else if (strncasecmp (s, "LE", 2))
5002 little_endian = 1;
5003 else
5005 inst.error = _("valid endian specifiers are be or le");
5006 return FAIL;
5009 if (ISALNUM (s[2]) || s[2] == '_')
5011 inst.error = _("valid endian specifiers are be or le");
5012 return FAIL;
5015 *str = s + 2;
5016 return little_endian;
5019 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5020 value suitable for poking into the rotate field of an sxt or sxta
5021 instruction, or FAIL on error. */
5023 static int
5024 parse_ror (char **str)
5026 int rot;
5027 char *s = *str;
5029 if (strncasecmp (s, "ROR", 3) == 0)
5030 s += 3;
5031 else
5033 inst.error = _("missing rotation field after comma");
5034 return FAIL;
5037 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5038 return FAIL;
5040 switch (rot)
5042 case 0: *str = s; return 0x0;
5043 case 8: *str = s; return 0x1;
5044 case 16: *str = s; return 0x2;
5045 case 24: *str = s; return 0x3;
5047 default:
5048 inst.error = _("rotation can only be 0, 8, 16, or 24");
5049 return FAIL;
5053 /* Parse a conditional code (from conds[] below). The value returned is in the
5054 range 0 .. 14, or FAIL. */
5055 static int
5056 parse_cond (char **str)
5058 char *q;
5059 const struct asm_cond *c;
5060 int n;
5061 /* Condition codes are always 2 characters, so matching up to
5062 3 characters is sufficient. */
5063 char cond[3];
5065 q = *str;
5066 n = 0;
5067 while (ISALPHA (*q) && n < 3)
5069 cond[n] = TOLOWER(*q);
5070 q++;
5071 n++;
5074 c = hash_find_n (arm_cond_hsh, cond, n);
5075 if (!c)
5077 inst.error = _("condition required");
5078 return FAIL;
5081 *str = q;
5082 return c->value;
5085 /* Parse an option for a barrier instruction. Returns the encoding for the
5086 option, or FAIL. */
5087 static int
5088 parse_barrier (char **str)
5090 char *p, *q;
5091 const struct asm_barrier_opt *o;
5093 p = q = *str;
5094 while (ISALPHA (*q))
5095 q++;
5097 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5098 if (!o)
5099 return FAIL;
5101 *str = q;
5102 return o->value;
5105 /* Parse the operands of a table branch instruction. Similar to a memory
5106 operand. */
5107 static int
5108 parse_tb (char **str)
5110 char * p = *str;
5111 int reg;
5113 if (skip_past_char (&p, '[') == FAIL)
5115 inst.error = _("'[' expected");
5116 return FAIL;
5119 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5121 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5122 return FAIL;
5124 inst.operands[0].reg = reg;
5126 if (skip_past_comma (&p) == FAIL)
5128 inst.error = _("',' expected");
5129 return FAIL;
5132 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5134 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5135 return FAIL;
5137 inst.operands[0].imm = reg;
5139 if (skip_past_comma (&p) == SUCCESS)
5141 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5142 return FAIL;
5143 if (inst.reloc.exp.X_add_number != 1)
5145 inst.error = _("invalid shift");
5146 return FAIL;
5148 inst.operands[0].shifted = 1;
5151 if (skip_past_char (&p, ']') == FAIL)
5153 inst.error = _("']' expected");
5154 return FAIL;
5156 *str = p;
5157 return SUCCESS;
5160 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5161 information on the types the operands can take and how they are encoded.
5162 Up to four operands may be read; this function handles setting the
5163 ".present" field for each read operand itself.
5164 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5165 else returns FAIL. */
5167 static int
5168 parse_neon_mov (char **str, int *which_operand)
5170 int i = *which_operand, val;
5171 enum arm_reg_type rtype;
5172 char *ptr = *str;
5173 struct neon_type_el optype;
5175 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5177 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5178 inst.operands[i].reg = val;
5179 inst.operands[i].isscalar = 1;
5180 inst.operands[i].vectype = optype;
5181 inst.operands[i++].present = 1;
5183 if (skip_past_comma (&ptr) == FAIL)
5184 goto wanted_comma;
5186 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5187 goto wanted_arm;
5189 inst.operands[i].reg = val;
5190 inst.operands[i].isreg = 1;
5191 inst.operands[i].present = 1;
5193 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5194 != FAIL)
5196 /* Cases 0, 1, 2, 3, 5 (D only). */
5197 if (skip_past_comma (&ptr) == FAIL)
5198 goto wanted_comma;
5200 inst.operands[i].reg = val;
5201 inst.operands[i].isreg = 1;
5202 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5203 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5204 inst.operands[i].isvec = 1;
5205 inst.operands[i].vectype = optype;
5206 inst.operands[i++].present = 1;
5208 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5210 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5211 Case 13: VMOV <Sd>, <Rm> */
5212 inst.operands[i].reg = val;
5213 inst.operands[i].isreg = 1;
5214 inst.operands[i].present = 1;
5216 if (rtype == REG_TYPE_NQ)
5218 first_error (_("can't use Neon quad register here"));
5219 return FAIL;
5221 else if (rtype != REG_TYPE_VFS)
5223 i++;
5224 if (skip_past_comma (&ptr) == FAIL)
5225 goto wanted_comma;
5226 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5227 goto wanted_arm;
5228 inst.operands[i].reg = val;
5229 inst.operands[i].isreg = 1;
5230 inst.operands[i].present = 1;
5233 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5234 &optype)) != FAIL)
5236 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5237 Case 1: VMOV<c><q> <Dd>, <Dm>
5238 Case 8: VMOV.F32 <Sd>, <Sm>
5239 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5241 inst.operands[i].reg = val;
5242 inst.operands[i].isreg = 1;
5243 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5244 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5245 inst.operands[i].isvec = 1;
5246 inst.operands[i].vectype = optype;
5247 inst.operands[i].present = 1;
5249 if (skip_past_comma (&ptr) == SUCCESS)
5251 /* Case 15. */
5252 i++;
5254 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5255 goto wanted_arm;
5257 inst.operands[i].reg = val;
5258 inst.operands[i].isreg = 1;
5259 inst.operands[i++].present = 1;
5261 if (skip_past_comma (&ptr) == FAIL)
5262 goto wanted_comma;
5264 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5265 goto wanted_arm;
5267 inst.operands[i].reg = val;
5268 inst.operands[i].isreg = 1;
5269 inst.operands[i++].present = 1;
5272 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5273 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5274 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5275 Case 10: VMOV.F32 <Sd>, #<imm>
5276 Case 11: VMOV.F64 <Dd>, #<imm> */
5277 inst.operands[i].immisfloat = 1;
5278 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5279 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5280 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5282 else
5284 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5285 return FAIL;
5288 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5290 /* Cases 6, 7. */
5291 inst.operands[i].reg = val;
5292 inst.operands[i].isreg = 1;
5293 inst.operands[i++].present = 1;
5295 if (skip_past_comma (&ptr) == FAIL)
5296 goto wanted_comma;
5298 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5300 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5301 inst.operands[i].reg = val;
5302 inst.operands[i].isscalar = 1;
5303 inst.operands[i].present = 1;
5304 inst.operands[i].vectype = optype;
5306 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5308 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5309 inst.operands[i].reg = val;
5310 inst.operands[i].isreg = 1;
5311 inst.operands[i++].present = 1;
5313 if (skip_past_comma (&ptr) == FAIL)
5314 goto wanted_comma;
5316 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5317 == FAIL)
5319 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5320 return FAIL;
5323 inst.operands[i].reg = val;
5324 inst.operands[i].isreg = 1;
5325 inst.operands[i].isvec = 1;
5326 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5327 inst.operands[i].vectype = optype;
5328 inst.operands[i].present = 1;
5330 if (rtype == REG_TYPE_VFS)
5332 /* Case 14. */
5333 i++;
5334 if (skip_past_comma (&ptr) == FAIL)
5335 goto wanted_comma;
5336 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5337 &optype)) == FAIL)
5339 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5340 return FAIL;
5342 inst.operands[i].reg = val;
5343 inst.operands[i].isreg = 1;
5344 inst.operands[i].isvec = 1;
5345 inst.operands[i].issingle = 1;
5346 inst.operands[i].vectype = optype;
5347 inst.operands[i].present = 1;
5350 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5351 != FAIL)
5353 /* Case 13. */
5354 inst.operands[i].reg = val;
5355 inst.operands[i].isreg = 1;
5356 inst.operands[i].isvec = 1;
5357 inst.operands[i].issingle = 1;
5358 inst.operands[i].vectype = optype;
5359 inst.operands[i++].present = 1;
5362 else
5364 first_error (_("parse error"));
5365 return FAIL;
5368 /* Successfully parsed the operands. Update args. */
5369 *which_operand = i;
5370 *str = ptr;
5371 return SUCCESS;
5373 wanted_comma:
5374 first_error (_("expected comma"));
5375 return FAIL;
5377 wanted_arm:
5378 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5379 return FAIL;
5382 /* Matcher codes for parse_operands. */
5383 enum operand_parse_code
5385 OP_stop, /* end of line */
5387 OP_RR, /* ARM register */
5388 OP_RRnpc, /* ARM register, not r15 */
5389 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5390 OP_RRw, /* ARM register, not r15, optional trailing ! */
5391 OP_RCP, /* Coprocessor number */
5392 OP_RCN, /* Coprocessor register */
5393 OP_RF, /* FPA register */
5394 OP_RVS, /* VFP single precision register */
5395 OP_RVD, /* VFP double precision register (0..15) */
5396 OP_RND, /* Neon double precision register (0..31) */
5397 OP_RNQ, /* Neon quad precision register */
5398 OP_RVSD, /* VFP single or double precision register */
5399 OP_RNDQ, /* Neon double or quad precision register */
5400 OP_RNSDQ, /* Neon single, double or quad precision register */
5401 OP_RNSC, /* Neon scalar D[X] */
5402 OP_RVC, /* VFP control register */
5403 OP_RMF, /* Maverick F register */
5404 OP_RMD, /* Maverick D register */
5405 OP_RMFX, /* Maverick FX register */
5406 OP_RMDX, /* Maverick DX register */
5407 OP_RMAX, /* Maverick AX register */
5408 OP_RMDS, /* Maverick DSPSC register */
5409 OP_RIWR, /* iWMMXt wR register */
5410 OP_RIWC, /* iWMMXt wC register */
5411 OP_RIWG, /* iWMMXt wCG register */
5412 OP_RXA, /* XScale accumulator register */
5414 OP_REGLST, /* ARM register list */
5415 OP_VRSLST, /* VFP single-precision register list */
5416 OP_VRDLST, /* VFP double-precision register list */
5417 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5418 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5419 OP_NSTRLST, /* Neon element/structure list */
5421 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5422 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5423 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5424 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5425 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5426 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5427 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5428 OP_VMOV, /* Neon VMOV operands. */
5429 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5430 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5431 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5433 OP_I0, /* immediate zero */
5434 OP_I7, /* immediate value 0 .. 7 */
5435 OP_I15, /* 0 .. 15 */
5436 OP_I16, /* 1 .. 16 */
5437 OP_I16z, /* 0 .. 16 */
5438 OP_I31, /* 0 .. 31 */
5439 OP_I31w, /* 0 .. 31, optional trailing ! */
5440 OP_I32, /* 1 .. 32 */
5441 OP_I32z, /* 0 .. 32 */
5442 OP_I63, /* 0 .. 63 */
5443 OP_I63s, /* -64 .. 63 */
5444 OP_I64, /* 1 .. 64 */
5445 OP_I64z, /* 0 .. 64 */
5446 OP_I255, /* 0 .. 255 */
5448 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5449 OP_I7b, /* 0 .. 7 */
5450 OP_I15b, /* 0 .. 15 */
5451 OP_I31b, /* 0 .. 31 */
5453 OP_SH, /* shifter operand */
5454 OP_SHG, /* shifter operand with possible group relocation */
5455 OP_ADDR, /* Memory address expression (any mode) */
5456 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5457 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5458 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5459 OP_EXP, /* arbitrary expression */
5460 OP_EXPi, /* same, with optional immediate prefix */
5461 OP_EXPr, /* same, with optional relocation suffix */
5462 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5464 OP_CPSF, /* CPS flags */
5465 OP_ENDI, /* Endianness specifier */
5466 OP_PSR, /* CPSR/SPSR mask for msr */
5467 OP_COND, /* conditional code */
5468 OP_TB, /* Table branch. */
5470 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5471 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5473 OP_RRnpc_I0, /* ARM register or literal 0 */
5474 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5475 OP_RR_EXi, /* ARM register or expression with imm prefix */
5476 OP_RF_IF, /* FPA register or immediate */
5477 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5478 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5480 /* Optional operands. */
5481 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5482 OP_oI31b, /* 0 .. 31 */
5483 OP_oI32b, /* 1 .. 32 */
5484 OP_oIffffb, /* 0 .. 65535 */
5485 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5487 OP_oRR, /* ARM register */
5488 OP_oRRnpc, /* ARM register, not the PC */
5489 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5490 OP_oRND, /* Optional Neon double precision register */
5491 OP_oRNQ, /* Optional Neon quad precision register */
5492 OP_oRNDQ, /* Optional Neon double or quad precision register */
5493 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5494 OP_oSHll, /* LSL immediate */
5495 OP_oSHar, /* ASR immediate */
5496 OP_oSHllar, /* LSL or ASR immediate */
5497 OP_oROR, /* ROR 0/8/16/24 */
5498 OP_oBARRIER, /* Option argument for a barrier instruction. */
5500 OP_FIRST_OPTIONAL = OP_oI7b
5503 /* Generic instruction operand parser. This does no encoding and no
5504 semantic validation; it merely squirrels values away in the inst
5505 structure. Returns SUCCESS or FAIL depending on whether the
5506 specified grammar matched. */
5507 static int
5508 parse_operands (char *str, const unsigned char *pattern)
5510 unsigned const char *upat = pattern;
5511 char *backtrack_pos = 0;
5512 const char *backtrack_error = 0;
5513 int i, val, backtrack_index = 0;
5514 enum arm_reg_type rtype;
5515 parse_operand_result result;
5517 #define po_char_or_fail(chr) do { \
5518 if (skip_past_char (&str, chr) == FAIL) \
5519 goto bad_args; \
5520 } while (0)
5522 #define po_reg_or_fail(regtype) do { \
5523 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5524 &inst.operands[i].vectype); \
5525 if (val == FAIL) \
5527 first_error (_(reg_expected_msgs[regtype])); \
5528 goto failure; \
5530 inst.operands[i].reg = val; \
5531 inst.operands[i].isreg = 1; \
5532 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5533 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5534 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5535 || rtype == REG_TYPE_VFD \
5536 || rtype == REG_TYPE_NQ); \
5537 } while (0)
5539 #define po_reg_or_goto(regtype, label) do { \
5540 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5541 &inst.operands[i].vectype); \
5542 if (val == FAIL) \
5543 goto label; \
5545 inst.operands[i].reg = val; \
5546 inst.operands[i].isreg = 1; \
5547 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5548 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5549 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5550 || rtype == REG_TYPE_VFD \
5551 || rtype == REG_TYPE_NQ); \
5552 } while (0)
5554 #define po_imm_or_fail(min, max, popt) do { \
5555 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5556 goto failure; \
5557 inst.operands[i].imm = val; \
5558 } while (0)
5560 #define po_scalar_or_goto(elsz, label) do { \
5561 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5562 if (val == FAIL) \
5563 goto label; \
5564 inst.operands[i].reg = val; \
5565 inst.operands[i].isscalar = 1; \
5566 } while (0)
5568 #define po_misc_or_fail(expr) do { \
5569 if (expr) \
5570 goto failure; \
5571 } while (0)
5573 #define po_misc_or_fail_no_backtrack(expr) do { \
5574 result = expr; \
5575 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5576 backtrack_pos = 0; \
5577 if (result != PARSE_OPERAND_SUCCESS) \
5578 goto failure; \
5579 } while (0)
5581 skip_whitespace (str);
5583 for (i = 0; upat[i] != OP_stop; i++)
5585 if (upat[i] >= OP_FIRST_OPTIONAL)
5587 /* Remember where we are in case we need to backtrack. */
5588 assert (!backtrack_pos);
5589 backtrack_pos = str;
5590 backtrack_error = inst.error;
5591 backtrack_index = i;
5594 if (i > 0 && (i > 1 || inst.operands[0].present))
5595 po_char_or_fail (',');
5597 switch (upat[i])
5599 /* Registers */
5600 case OP_oRRnpc:
5601 case OP_RRnpc:
5602 case OP_oRR:
5603 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5604 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5605 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5606 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5607 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5608 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5609 case OP_oRND:
5610 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5611 case OP_RVC:
5612 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5613 break;
5614 /* Also accept generic coprocessor regs for unknown registers. */
5615 coproc_reg:
5616 po_reg_or_fail (REG_TYPE_CN);
5617 break;
5618 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5619 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5620 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5621 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5622 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5623 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5624 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5625 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5626 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5627 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5628 case OP_oRNQ:
5629 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5630 case OP_oRNDQ:
5631 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5632 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5633 case OP_oRNSDQ:
5634 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5636 /* Neon scalar. Using an element size of 8 means that some invalid
5637 scalars are accepted here, so deal with those in later code. */
5638 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5640 /* WARNING: We can expand to two operands here. This has the potential
5641 to totally confuse the backtracking mechanism! It will be OK at
5642 least as long as we don't try to use optional args as well,
5643 though. */
5644 case OP_NILO:
5646 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5647 inst.operands[i].present = 1;
5648 i++;
5649 skip_past_comma (&str);
5650 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5651 break;
5652 one_reg_only:
5653 /* Optional register operand was omitted. Unfortunately, it's in
5654 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5655 here (this is a bit grotty). */
5656 inst.operands[i] = inst.operands[i-1];
5657 inst.operands[i-1].present = 0;
5658 break;
5659 try_imm:
5660 /* There's a possibility of getting a 64-bit immediate here, so
5661 we need special handling. */
5662 if (parse_big_immediate (&str, i) == FAIL)
5664 inst.error = _("immediate value is out of range");
5665 goto failure;
5668 break;
5670 case OP_RNDQ_I0:
5672 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5673 break;
5674 try_imm0:
5675 po_imm_or_fail (0, 0, TRUE);
5677 break;
5679 case OP_RVSD_I0:
5680 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5681 break;
5683 case OP_RR_RNSC:
5685 po_scalar_or_goto (8, try_rr);
5686 break;
5687 try_rr:
5688 po_reg_or_fail (REG_TYPE_RN);
5690 break;
5692 case OP_RNSDQ_RNSC:
5694 po_scalar_or_goto (8, try_nsdq);
5695 break;
5696 try_nsdq:
5697 po_reg_or_fail (REG_TYPE_NSDQ);
5699 break;
5701 case OP_RNDQ_RNSC:
5703 po_scalar_or_goto (8, try_ndq);
5704 break;
5705 try_ndq:
5706 po_reg_or_fail (REG_TYPE_NDQ);
5708 break;
5710 case OP_RND_RNSC:
5712 po_scalar_or_goto (8, try_vfd);
5713 break;
5714 try_vfd:
5715 po_reg_or_fail (REG_TYPE_VFD);
5717 break;
5719 case OP_VMOV:
5720 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5721 not careful then bad things might happen. */
5722 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5723 break;
5725 case OP_RNDQ_IMVNb:
5727 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5728 break;
5729 try_mvnimm:
5730 /* There's a possibility of getting a 64-bit immediate here, so
5731 we need special handling. */
5732 if (parse_big_immediate (&str, i) == FAIL)
5734 inst.error = _("immediate value is out of range");
5735 goto failure;
5738 break;
5740 case OP_RNDQ_I63b:
5742 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5743 break;
5744 try_shimm:
5745 po_imm_or_fail (0, 63, TRUE);
5747 break;
5749 case OP_RRnpcb:
5750 po_char_or_fail ('[');
5751 po_reg_or_fail (REG_TYPE_RN);
5752 po_char_or_fail (']');
5753 break;
5755 case OP_RRw:
5756 case OP_oRRw:
5757 po_reg_or_fail (REG_TYPE_RN);
5758 if (skip_past_char (&str, '!') == SUCCESS)
5759 inst.operands[i].writeback = 1;
5760 break;
5762 /* Immediates */
5763 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5764 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5765 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5766 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5767 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5768 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5769 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5770 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5771 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5772 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5773 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5774 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5776 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5777 case OP_oI7b:
5778 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5779 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5780 case OP_oI31b:
5781 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5782 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5783 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5785 /* Immediate variants */
5786 case OP_oI255c:
5787 po_char_or_fail ('{');
5788 po_imm_or_fail (0, 255, TRUE);
5789 po_char_or_fail ('}');
5790 break;
5792 case OP_I31w:
5793 /* The expression parser chokes on a trailing !, so we have
5794 to find it first and zap it. */
5796 char *s = str;
5797 while (*s && *s != ',')
5798 s++;
5799 if (s[-1] == '!')
5801 s[-1] = '\0';
5802 inst.operands[i].writeback = 1;
5804 po_imm_or_fail (0, 31, TRUE);
5805 if (str == s - 1)
5806 str = s;
5808 break;
5810 /* Expressions */
5811 case OP_EXPi: EXPi:
5812 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5813 GE_OPT_PREFIX));
5814 break;
5816 case OP_EXP:
5817 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5818 GE_NO_PREFIX));
5819 break;
5821 case OP_EXPr: EXPr:
5822 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5823 GE_NO_PREFIX));
5824 if (inst.reloc.exp.X_op == O_symbol)
5826 val = parse_reloc (&str);
5827 if (val == -1)
5829 inst.error = _("unrecognized relocation suffix");
5830 goto failure;
5832 else if (val != BFD_RELOC_UNUSED)
5834 inst.operands[i].imm = val;
5835 inst.operands[i].hasreloc = 1;
5838 break;
5840 /* Operand for MOVW or MOVT. */
5841 case OP_HALF:
5842 po_misc_or_fail (parse_half (&str));
5843 break;
5845 /* Register or expression */
5846 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5847 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5849 /* Register or immediate */
5850 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5851 I0: po_imm_or_fail (0, 0, FALSE); break;
5853 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5855 if (!is_immediate_prefix (*str))
5856 goto bad_args;
5857 str++;
5858 val = parse_fpa_immediate (&str);
5859 if (val == FAIL)
5860 goto failure;
5861 /* FPA immediates are encoded as registers 8-15.
5862 parse_fpa_immediate has already applied the offset. */
5863 inst.operands[i].reg = val;
5864 inst.operands[i].isreg = 1;
5865 break;
5867 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5868 I32z: po_imm_or_fail (0, 32, FALSE); break;
5870 /* Two kinds of register */
5871 case OP_RIWR_RIWC:
5873 struct reg_entry *rege = arm_reg_parse_multi (&str);
5874 if (!rege
5875 || (rege->type != REG_TYPE_MMXWR
5876 && rege->type != REG_TYPE_MMXWC
5877 && rege->type != REG_TYPE_MMXWCG))
5879 inst.error = _("iWMMXt data or control register expected");
5880 goto failure;
5882 inst.operands[i].reg = rege->number;
5883 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5885 break;
5887 case OP_RIWC_RIWG:
5889 struct reg_entry *rege = arm_reg_parse_multi (&str);
5890 if (!rege
5891 || (rege->type != REG_TYPE_MMXWC
5892 && rege->type != REG_TYPE_MMXWCG))
5894 inst.error = _("iWMMXt control register expected");
5895 goto failure;
5897 inst.operands[i].reg = rege->number;
5898 inst.operands[i].isreg = 1;
5900 break;
5902 /* Misc */
5903 case OP_CPSF: val = parse_cps_flags (&str); break;
5904 case OP_ENDI: val = parse_endian_specifier (&str); break;
5905 case OP_oROR: val = parse_ror (&str); break;
5906 case OP_PSR: val = parse_psr (&str); break;
5907 case OP_COND: val = parse_cond (&str); break;
5908 case OP_oBARRIER:val = parse_barrier (&str); break;
5910 case OP_RVC_PSR:
5911 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5912 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5913 break;
5914 try_psr:
5915 val = parse_psr (&str);
5916 break;
5918 case OP_APSR_RR:
5919 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5920 break;
5921 try_apsr:
5922 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5923 instruction). */
5924 if (strncasecmp (str, "APSR_", 5) == 0)
5926 unsigned found = 0;
5927 str += 5;
5928 while (found < 15)
5929 switch (*str++)
5931 case 'c': found = (found & 1) ? 16 : found | 1; break;
5932 case 'n': found = (found & 2) ? 16 : found | 2; break;
5933 case 'z': found = (found & 4) ? 16 : found | 4; break;
5934 case 'v': found = (found & 8) ? 16 : found | 8; break;
5935 default: found = 16;
5937 if (found != 15)
5938 goto failure;
5939 inst.operands[i].isvec = 1;
5941 else
5942 goto failure;
5943 break;
5945 case OP_TB:
5946 po_misc_or_fail (parse_tb (&str));
5947 break;
5949 /* Register lists */
5950 case OP_REGLST:
5951 val = parse_reg_list (&str);
5952 if (*str == '^')
5954 inst.operands[1].writeback = 1;
5955 str++;
5957 break;
5959 case OP_VRSLST:
5960 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5961 break;
5963 case OP_VRDLST:
5964 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5965 break;
5967 case OP_VRSDLST:
5968 /* Allow Q registers too. */
5969 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5970 REGLIST_NEON_D);
5971 if (val == FAIL)
5973 inst.error = NULL;
5974 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5975 REGLIST_VFP_S);
5976 inst.operands[i].issingle = 1;
5978 break;
5980 case OP_NRDLST:
5981 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5982 REGLIST_NEON_D);
5983 break;
5985 case OP_NSTRLST:
5986 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5987 &inst.operands[i].vectype);
5988 break;
5990 /* Addressing modes */
5991 case OP_ADDR:
5992 po_misc_or_fail (parse_address (&str, i));
5993 break;
5995 case OP_ADDRGLDR:
5996 po_misc_or_fail_no_backtrack (
5997 parse_address_group_reloc (&str, i, GROUP_LDR));
5998 break;
6000 case OP_ADDRGLDRS:
6001 po_misc_or_fail_no_backtrack (
6002 parse_address_group_reloc (&str, i, GROUP_LDRS));
6003 break;
6005 case OP_ADDRGLDC:
6006 po_misc_or_fail_no_backtrack (
6007 parse_address_group_reloc (&str, i, GROUP_LDC));
6008 break;
6010 case OP_SH:
6011 po_misc_or_fail (parse_shifter_operand (&str, i));
6012 break;
6014 case OP_SHG:
6015 po_misc_or_fail_no_backtrack (
6016 parse_shifter_operand_group_reloc (&str, i));
6017 break;
6019 case OP_oSHll:
6020 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6021 break;
6023 case OP_oSHar:
6024 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6025 break;
6027 case OP_oSHllar:
6028 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6029 break;
6031 default:
6032 as_fatal (_("unhandled operand code %d"), upat[i]);
6035 /* Various value-based sanity checks and shared operations. We
6036 do not signal immediate failures for the register constraints;
6037 this allows a syntax error to take precedence. */
6038 switch (upat[i])
6040 case OP_oRRnpc:
6041 case OP_RRnpc:
6042 case OP_RRnpcb:
6043 case OP_RRw:
6044 case OP_oRRw:
6045 case OP_RRnpc_I0:
6046 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6047 inst.error = BAD_PC;
6048 break;
6050 case OP_CPSF:
6051 case OP_ENDI:
6052 case OP_oROR:
6053 case OP_PSR:
6054 case OP_RVC_PSR:
6055 case OP_COND:
6056 case OP_oBARRIER:
6057 case OP_REGLST:
6058 case OP_VRSLST:
6059 case OP_VRDLST:
6060 case OP_VRSDLST:
6061 case OP_NRDLST:
6062 case OP_NSTRLST:
6063 if (val == FAIL)
6064 goto failure;
6065 inst.operands[i].imm = val;
6066 break;
6068 default:
6069 break;
6072 /* If we get here, this operand was successfully parsed. */
6073 inst.operands[i].present = 1;
6074 continue;
6076 bad_args:
6077 inst.error = BAD_ARGS;
6079 failure:
6080 if (!backtrack_pos)
6082 /* The parse routine should already have set inst.error, but set a
6083 default here just in case. */
6084 if (!inst.error)
6085 inst.error = _("syntax error");
6086 return FAIL;
6089 /* Do not backtrack over a trailing optional argument that
6090 absorbed some text. We will only fail again, with the
6091 'garbage following instruction' error message, which is
6092 probably less helpful than the current one. */
6093 if (backtrack_index == i && backtrack_pos != str
6094 && upat[i+1] == OP_stop)
6096 if (!inst.error)
6097 inst.error = _("syntax error");
6098 return FAIL;
6101 /* Try again, skipping the optional argument at backtrack_pos. */
6102 str = backtrack_pos;
6103 inst.error = backtrack_error;
6104 inst.operands[backtrack_index].present = 0;
6105 i = backtrack_index;
6106 backtrack_pos = 0;
6109 /* Check that we have parsed all the arguments. */
6110 if (*str != '\0' && !inst.error)
6111 inst.error = _("garbage following instruction");
6113 return inst.error ? FAIL : SUCCESS;
6116 #undef po_char_or_fail
6117 #undef po_reg_or_fail
6118 #undef po_reg_or_goto
6119 #undef po_imm_or_fail
6120 #undef po_scalar_or_fail
6122 /* Shorthand macro for instruction encoding functions issuing errors. */
6123 #define constraint(expr, err) do { \
6124 if (expr) \
6126 inst.error = err; \
6127 return; \
6129 } while (0)
6131 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6132 instructions are unpredictable if these registers are used. This
6133 is the BadReg predicate in ARM's Thumb-2 documentation. */
6134 #define reject_bad_reg(reg) \
6135 do \
6136 if (reg == REG_SP || reg == REG_PC) \
6138 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6139 return; \
6141 while (0)
6143 /* If REG is R13 (the stack pointer), warn that its use is
6144 deprecated. */
6145 #define warn_deprecated_sp(reg) \
6146 do \
6147 if (warn_on_deprecated && reg == REG_SP) \
6148 as_warn (_("use of r13 is deprecated")); \
6149 while (0)
6151 /* Functions for operand encoding. ARM, then Thumb. */
6153 #define rotate_left(v, n) (v << n | v >> (32 - n))
6155 /* If VAL can be encoded in the immediate field of an ARM instruction,
6156 return the encoded form. Otherwise, return FAIL. */
6158 static unsigned int
6159 encode_arm_immediate (unsigned int val)
6161 unsigned int a, i;
6163 for (i = 0; i < 32; i += 2)
6164 if ((a = rotate_left (val, i)) <= 0xff)
6165 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6167 return FAIL;
6170 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6171 return the encoded form. Otherwise, return FAIL. */
6172 static unsigned int
6173 encode_thumb32_immediate (unsigned int val)
6175 unsigned int a, i;
6177 if (val <= 0xff)
6178 return val;
6180 for (i = 1; i <= 24; i++)
6182 a = val >> i;
6183 if ((val & ~(0xff << i)) == 0)
6184 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6187 a = val & 0xff;
6188 if (val == ((a << 16) | a))
6189 return 0x100 | a;
6190 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6191 return 0x300 | a;
6193 a = val & 0xff00;
6194 if (val == ((a << 16) | a))
6195 return 0x200 | (a >> 8);
6197 return FAIL;
6199 /* Encode a VFP SP or DP register number into inst.instruction. */
6201 static void
6202 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6204 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6205 && reg > 15)
6207 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6209 if (thumb_mode)
6210 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6211 fpu_vfp_ext_d32);
6212 else
6213 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6214 fpu_vfp_ext_d32);
6216 else
6218 first_error (_("D register out of range for selected VFP version"));
6219 return;
6223 switch (pos)
6225 case VFP_REG_Sd:
6226 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6227 break;
6229 case VFP_REG_Sn:
6230 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6231 break;
6233 case VFP_REG_Sm:
6234 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6235 break;
6237 case VFP_REG_Dd:
6238 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6239 break;
6241 case VFP_REG_Dn:
6242 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6243 break;
6245 case VFP_REG_Dm:
6246 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6247 break;
6249 default:
6250 abort ();
6254 /* Encode a <shift> in an ARM-format instruction. The immediate,
6255 if any, is handled by md_apply_fix. */
6256 static void
6257 encode_arm_shift (int i)
6259 if (inst.operands[i].shift_kind == SHIFT_RRX)
6260 inst.instruction |= SHIFT_ROR << 5;
6261 else
6263 inst.instruction |= inst.operands[i].shift_kind << 5;
6264 if (inst.operands[i].immisreg)
6266 inst.instruction |= SHIFT_BY_REG;
6267 inst.instruction |= inst.operands[i].imm << 8;
6269 else
6270 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6274 static void
6275 encode_arm_shifter_operand (int i)
6277 if (inst.operands[i].isreg)
6279 inst.instruction |= inst.operands[i].reg;
6280 encode_arm_shift (i);
6282 else
6283 inst.instruction |= INST_IMMEDIATE;
6286 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6287 static void
6288 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6290 assert (inst.operands[i].isreg);
6291 inst.instruction |= inst.operands[i].reg << 16;
6293 if (inst.operands[i].preind)
6295 if (is_t)
6297 inst.error = _("instruction does not accept preindexed addressing");
6298 return;
6300 inst.instruction |= PRE_INDEX;
6301 if (inst.operands[i].writeback)
6302 inst.instruction |= WRITE_BACK;
6305 else if (inst.operands[i].postind)
6307 assert (inst.operands[i].writeback);
6308 if (is_t)
6309 inst.instruction |= WRITE_BACK;
6311 else /* unindexed - only for coprocessor */
6313 inst.error = _("instruction does not accept unindexed addressing");
6314 return;
6317 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6318 && (((inst.instruction & 0x000f0000) >> 16)
6319 == ((inst.instruction & 0x0000f000) >> 12)))
6320 as_warn ((inst.instruction & LOAD_BIT)
6321 ? _("destination register same as write-back base")
6322 : _("source register same as write-back base"));
6325 /* inst.operands[i] was set up by parse_address. Encode it into an
6326 ARM-format mode 2 load or store instruction. If is_t is true,
6327 reject forms that cannot be used with a T instruction (i.e. not
6328 post-indexed). */
6329 static void
6330 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6332 encode_arm_addr_mode_common (i, is_t);
6334 if (inst.operands[i].immisreg)
6336 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6337 inst.instruction |= inst.operands[i].imm;
6338 if (!inst.operands[i].negative)
6339 inst.instruction |= INDEX_UP;
6340 if (inst.operands[i].shifted)
6342 if (inst.operands[i].shift_kind == SHIFT_RRX)
6343 inst.instruction |= SHIFT_ROR << 5;
6344 else
6346 inst.instruction |= inst.operands[i].shift_kind << 5;
6347 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6351 else /* immediate offset in inst.reloc */
6353 if (inst.reloc.type == BFD_RELOC_UNUSED)
6354 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6358 /* inst.operands[i] was set up by parse_address. Encode it into an
6359 ARM-format mode 3 load or store instruction. Reject forms that
6360 cannot be used with such instructions. If is_t is true, reject
6361 forms that cannot be used with a T instruction (i.e. not
6362 post-indexed). */
6363 static void
6364 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6366 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6368 inst.error = _("instruction does not accept scaled register index");
6369 return;
6372 encode_arm_addr_mode_common (i, is_t);
6374 if (inst.operands[i].immisreg)
6376 inst.instruction |= inst.operands[i].imm;
6377 if (!inst.operands[i].negative)
6378 inst.instruction |= INDEX_UP;
6380 else /* immediate offset in inst.reloc */
6382 inst.instruction |= HWOFFSET_IMM;
6383 if (inst.reloc.type == BFD_RELOC_UNUSED)
6384 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6388 /* inst.operands[i] was set up by parse_address. Encode it into an
6389 ARM-format instruction. Reject all forms which cannot be encoded
6390 into a coprocessor load/store instruction. If wb_ok is false,
6391 reject use of writeback; if unind_ok is false, reject use of
6392 unindexed addressing. If reloc_override is not 0, use it instead
6393 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6394 (in which case it is preserved). */
6396 static int
6397 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6399 inst.instruction |= inst.operands[i].reg << 16;
6401 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6403 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6405 assert (!inst.operands[i].writeback);
6406 if (!unind_ok)
6408 inst.error = _("instruction does not support unindexed addressing");
6409 return FAIL;
6411 inst.instruction |= inst.operands[i].imm;
6412 inst.instruction |= INDEX_UP;
6413 return SUCCESS;
6416 if (inst.operands[i].preind)
6417 inst.instruction |= PRE_INDEX;
6419 if (inst.operands[i].writeback)
6421 if (inst.operands[i].reg == REG_PC)
6423 inst.error = _("pc may not be used with write-back");
6424 return FAIL;
6426 if (!wb_ok)
6428 inst.error = _("instruction does not support writeback");
6429 return FAIL;
6431 inst.instruction |= WRITE_BACK;
6434 if (reloc_override)
6435 inst.reloc.type = reloc_override;
6436 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6437 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6438 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6440 if (thumb_mode)
6441 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6442 else
6443 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6446 return SUCCESS;
6449 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6450 Determine whether it can be performed with a move instruction; if
6451 it can, convert inst.instruction to that move instruction and
6452 return 1; if it can't, convert inst.instruction to a literal-pool
6453 load and return 0. If this is not a valid thing to do in the
6454 current context, set inst.error and return 1.
6456 inst.operands[i] describes the destination register. */
6458 static int
6459 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6461 unsigned long tbit;
6463 if (thumb_p)
6464 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6465 else
6466 tbit = LOAD_BIT;
6468 if ((inst.instruction & tbit) == 0)
6470 inst.error = _("invalid pseudo operation");
6471 return 1;
6473 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6475 inst.error = _("constant expression expected");
6476 return 1;
6478 if (inst.reloc.exp.X_op == O_constant)
6480 if (thumb_p)
6482 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6484 /* This can be done with a mov(1) instruction. */
6485 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6486 inst.instruction |= inst.reloc.exp.X_add_number;
6487 return 1;
6490 else
6492 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6493 if (value != FAIL)
6495 /* This can be done with a mov instruction. */
6496 inst.instruction &= LITERAL_MASK;
6497 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6498 inst.instruction |= value & 0xfff;
6499 return 1;
6502 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6503 if (value != FAIL)
6505 /* This can be done with a mvn instruction. */
6506 inst.instruction &= LITERAL_MASK;
6507 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6508 inst.instruction |= value & 0xfff;
6509 return 1;
6514 if (add_to_lit_pool () == FAIL)
6516 inst.error = _("literal pool insertion failed");
6517 return 1;
6519 inst.operands[1].reg = REG_PC;
6520 inst.operands[1].isreg = 1;
6521 inst.operands[1].preind = 1;
6522 inst.reloc.pc_rel = 1;
6523 inst.reloc.type = (thumb_p
6524 ? BFD_RELOC_ARM_THUMB_OFFSET
6525 : (mode_3
6526 ? BFD_RELOC_ARM_HWLITERAL
6527 : BFD_RELOC_ARM_LITERAL));
6528 return 0;
6531 /* Functions for instruction encoding, sorted by sub-architecture.
6532 First some generics; their names are taken from the conventional
6533 bit positions for register arguments in ARM format instructions. */
6535 static void
6536 do_noargs (void)
6540 static void
6541 do_rd (void)
6543 inst.instruction |= inst.operands[0].reg << 12;
6546 static void
6547 do_rd_rm (void)
6549 inst.instruction |= inst.operands[0].reg << 12;
6550 inst.instruction |= inst.operands[1].reg;
6553 static void
6554 do_rd_rn (void)
6556 inst.instruction |= inst.operands[0].reg << 12;
6557 inst.instruction |= inst.operands[1].reg << 16;
6560 static void
6561 do_rn_rd (void)
6563 inst.instruction |= inst.operands[0].reg << 16;
6564 inst.instruction |= inst.operands[1].reg << 12;
6567 static void
6568 do_rd_rm_rn (void)
6570 unsigned Rn = inst.operands[2].reg;
6571 /* Enforce restrictions on SWP instruction. */
6572 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6573 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6574 _("Rn must not overlap other operands"));
6575 inst.instruction |= inst.operands[0].reg << 12;
6576 inst.instruction |= inst.operands[1].reg;
6577 inst.instruction |= Rn << 16;
6580 static void
6581 do_rd_rn_rm (void)
6583 inst.instruction |= inst.operands[0].reg << 12;
6584 inst.instruction |= inst.operands[1].reg << 16;
6585 inst.instruction |= inst.operands[2].reg;
6588 static void
6589 do_rm_rd_rn (void)
6591 inst.instruction |= inst.operands[0].reg;
6592 inst.instruction |= inst.operands[1].reg << 12;
6593 inst.instruction |= inst.operands[2].reg << 16;
6596 static void
6597 do_imm0 (void)
6599 inst.instruction |= inst.operands[0].imm;
6602 static void
6603 do_rd_cpaddr (void)
6605 inst.instruction |= inst.operands[0].reg << 12;
6606 encode_arm_cp_address (1, TRUE, TRUE, 0);
6609 /* ARM instructions, in alphabetical order by function name (except
6610 that wrapper functions appear immediately after the function they
6611 wrap). */
6613 /* This is a pseudo-op of the form "adr rd, label" to be converted
6614 into a relative address of the form "add rd, pc, #label-.-8". */
6616 static void
6617 do_adr (void)
6619 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6621 /* Frag hacking will turn this into a sub instruction if the offset turns
6622 out to be negative. */
6623 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6624 inst.reloc.pc_rel = 1;
6625 inst.reloc.exp.X_add_number -= 8;
6628 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6629 into a relative address of the form:
6630 add rd, pc, #low(label-.-8)"
6631 add rd, rd, #high(label-.-8)" */
6633 static void
6634 do_adrl (void)
6636 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6638 /* Frag hacking will turn this into a sub instruction if the offset turns
6639 out to be negative. */
6640 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6641 inst.reloc.pc_rel = 1;
6642 inst.size = INSN_SIZE * 2;
6643 inst.reloc.exp.X_add_number -= 8;
6646 static void
6647 do_arit (void)
6649 if (!inst.operands[1].present)
6650 inst.operands[1].reg = inst.operands[0].reg;
6651 inst.instruction |= inst.operands[0].reg << 12;
6652 inst.instruction |= inst.operands[1].reg << 16;
6653 encode_arm_shifter_operand (2);
6656 static void
6657 do_barrier (void)
6659 if (inst.operands[0].present)
6661 constraint ((inst.instruction & 0xf0) != 0x40
6662 && inst.operands[0].imm != 0xf,
6663 _("bad barrier type"));
6664 inst.instruction |= inst.operands[0].imm;
6666 else
6667 inst.instruction |= 0xf;
6670 static void
6671 do_bfc (void)
6673 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6674 constraint (msb > 32, _("bit-field extends past end of register"));
6675 /* The instruction encoding stores the LSB and MSB,
6676 not the LSB and width. */
6677 inst.instruction |= inst.operands[0].reg << 12;
6678 inst.instruction |= inst.operands[1].imm << 7;
6679 inst.instruction |= (msb - 1) << 16;
6682 static void
6683 do_bfi (void)
6685 unsigned int msb;
6687 /* #0 in second position is alternative syntax for bfc, which is
6688 the same instruction but with REG_PC in the Rm field. */
6689 if (!inst.operands[1].isreg)
6690 inst.operands[1].reg = REG_PC;
6692 msb = inst.operands[2].imm + inst.operands[3].imm;
6693 constraint (msb > 32, _("bit-field extends past end of register"));
6694 /* The instruction encoding stores the LSB and MSB,
6695 not the LSB and width. */
6696 inst.instruction |= inst.operands[0].reg << 12;
6697 inst.instruction |= inst.operands[1].reg;
6698 inst.instruction |= inst.operands[2].imm << 7;
6699 inst.instruction |= (msb - 1) << 16;
6702 static void
6703 do_bfx (void)
6705 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6706 _("bit-field extends past end of register"));
6707 inst.instruction |= inst.operands[0].reg << 12;
6708 inst.instruction |= inst.operands[1].reg;
6709 inst.instruction |= inst.operands[2].imm << 7;
6710 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6713 /* ARM V5 breakpoint instruction (argument parse)
6714 BKPT <16 bit unsigned immediate>
6715 Instruction is not conditional.
6716 The bit pattern given in insns[] has the COND_ALWAYS condition,
6717 and it is an error if the caller tried to override that. */
6719 static void
6720 do_bkpt (void)
6722 /* Top 12 of 16 bits to bits 19:8. */
6723 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6725 /* Bottom 4 of 16 bits to bits 3:0. */
6726 inst.instruction |= inst.operands[0].imm & 0xf;
6729 static void
6730 encode_branch (int default_reloc)
6732 if (inst.operands[0].hasreloc)
6734 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6735 _("the only suffix valid here is '(plt)'"));
6736 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6738 else
6740 inst.reloc.type = default_reloc;
6742 inst.reloc.pc_rel = 1;
6745 static void
6746 do_branch (void)
6748 #ifdef OBJ_ELF
6749 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6750 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6751 else
6752 #endif
6753 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6756 static void
6757 do_bl (void)
6759 #ifdef OBJ_ELF
6760 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6762 if (inst.cond == COND_ALWAYS)
6763 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6764 else
6765 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6767 else
6768 #endif
6769 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6772 /* ARM V5 branch-link-exchange instruction (argument parse)
6773 BLX <target_addr> ie BLX(1)
6774 BLX{<condition>} <Rm> ie BLX(2)
6775 Unfortunately, there are two different opcodes for this mnemonic.
6776 So, the insns[].value is not used, and the code here zaps values
6777 into inst.instruction.
6778 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6780 static void
6781 do_blx (void)
6783 if (inst.operands[0].isreg)
6785 /* Arg is a register; the opcode provided by insns[] is correct.
6786 It is not illegal to do "blx pc", just useless. */
6787 if (inst.operands[0].reg == REG_PC)
6788 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6790 inst.instruction |= inst.operands[0].reg;
6792 else
6794 /* Arg is an address; this instruction cannot be executed
6795 conditionally, and the opcode must be adjusted. */
6796 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6797 inst.instruction = 0xfa000000;
6798 #ifdef OBJ_ELF
6799 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6800 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6801 else
6802 #endif
6803 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6807 static void
6808 do_bx (void)
6810 bfd_boolean want_reloc;
6812 if (inst.operands[0].reg == REG_PC)
6813 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6815 inst.instruction |= inst.operands[0].reg;
6816 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
6817 it is for ARMv4t or earlier. */
6818 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
6819 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
6820 want_reloc = TRUE;
6822 #ifdef OBJ_ELF
6823 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
6824 #endif
6825 want_reloc = FALSE;
6827 if (want_reloc)
6828 inst.reloc.type = BFD_RELOC_ARM_V4BX;
6832 /* ARM v5TEJ. Jump to Jazelle code. */
6834 static void
6835 do_bxj (void)
6837 if (inst.operands[0].reg == REG_PC)
6838 as_tsktsk (_("use of r15 in bxj is not really useful"));
6840 inst.instruction |= inst.operands[0].reg;
6843 /* Co-processor data operation:
6844 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6845 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6846 static void
6847 do_cdp (void)
6849 inst.instruction |= inst.operands[0].reg << 8;
6850 inst.instruction |= inst.operands[1].imm << 20;
6851 inst.instruction |= inst.operands[2].reg << 12;
6852 inst.instruction |= inst.operands[3].reg << 16;
6853 inst.instruction |= inst.operands[4].reg;
6854 inst.instruction |= inst.operands[5].imm << 5;
6857 static void
6858 do_cmp (void)
6860 inst.instruction |= inst.operands[0].reg << 16;
6861 encode_arm_shifter_operand (1);
6864 /* Transfer between coprocessor and ARM registers.
6865 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6866 MRC2
6867 MCR{cond}
6868 MCR2
6870 No special properties. */
6872 static void
6873 do_co_reg (void)
6875 unsigned Rd;
6877 Rd = inst.operands[2].reg;
6878 if (thumb_mode)
6880 if (inst.instruction == 0xee000010
6881 || inst.instruction == 0xfe000010)
6882 /* MCR, MCR2 */
6883 reject_bad_reg (Rd);
6884 else
6885 /* MRC, MRC2 */
6886 constraint (Rd == REG_SP, BAD_SP);
6888 else
6890 /* MCR */
6891 if (inst.instruction == 0xe000010)
6892 constraint (Rd == REG_PC, BAD_PC);
6896 inst.instruction |= inst.operands[0].reg << 8;
6897 inst.instruction |= inst.operands[1].imm << 21;
6898 inst.instruction |= Rd << 12;
6899 inst.instruction |= inst.operands[3].reg << 16;
6900 inst.instruction |= inst.operands[4].reg;
6901 inst.instruction |= inst.operands[5].imm << 5;
6904 /* Transfer between coprocessor register and pair of ARM registers.
6905 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6906 MCRR2
6907 MRRC{cond}
6908 MRRC2
6910 Two XScale instructions are special cases of these:
6912 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6913 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6915 Result unpredictable if Rd or Rn is R15. */
6917 static void
6918 do_co_reg2c (void)
6920 unsigned Rd, Rn;
6922 Rd = inst.operands[2].reg;
6923 Rn = inst.operands[3].reg;
6925 if (thumb_mode)
6927 reject_bad_reg (Rd);
6928 reject_bad_reg (Rn);
6930 else
6932 constraint (Rd == REG_PC, BAD_PC);
6933 constraint (Rn == REG_PC, BAD_PC);
6936 inst.instruction |= inst.operands[0].reg << 8;
6937 inst.instruction |= inst.operands[1].imm << 4;
6938 inst.instruction |= Rd << 12;
6939 inst.instruction |= Rn << 16;
6940 inst.instruction |= inst.operands[4].reg;
6943 static void
6944 do_cpsi (void)
6946 inst.instruction |= inst.operands[0].imm << 6;
6947 if (inst.operands[1].present)
6949 inst.instruction |= CPSI_MMOD;
6950 inst.instruction |= inst.operands[1].imm;
6954 static void
6955 do_dbg (void)
6957 inst.instruction |= inst.operands[0].imm;
6960 static void
6961 do_it (void)
6963 /* There is no IT instruction in ARM mode. We
6964 process it but do not generate code for it. */
6965 inst.size = 0;
6968 static void
6969 do_ldmstm (void)
6971 int base_reg = inst.operands[0].reg;
6972 int range = inst.operands[1].imm;
6974 inst.instruction |= base_reg << 16;
6975 inst.instruction |= range;
6977 if (inst.operands[1].writeback)
6978 inst.instruction |= LDM_TYPE_2_OR_3;
6980 if (inst.operands[0].writeback)
6982 inst.instruction |= WRITE_BACK;
6983 /* Check for unpredictable uses of writeback. */
6984 if (inst.instruction & LOAD_BIT)
6986 /* Not allowed in LDM type 2. */
6987 if ((inst.instruction & LDM_TYPE_2_OR_3)
6988 && ((range & (1 << REG_PC)) == 0))
6989 as_warn (_("writeback of base register is UNPREDICTABLE"));
6990 /* Only allowed if base reg not in list for other types. */
6991 else if (range & (1 << base_reg))
6992 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6994 else /* STM. */
6996 /* Not allowed for type 2. */
6997 if (inst.instruction & LDM_TYPE_2_OR_3)
6998 as_warn (_("writeback of base register is UNPREDICTABLE"));
6999 /* Only allowed if base reg not in list, or first in list. */
7000 else if ((range & (1 << base_reg))
7001 && (range & ((1 << base_reg) - 1)))
7002 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7007 /* ARMv5TE load-consecutive (argument parse)
7008 Mode is like LDRH.
7010 LDRccD R, mode
7011 STRccD R, mode. */
7013 static void
7014 do_ldrd (void)
7016 constraint (inst.operands[0].reg % 2 != 0,
7017 _("first destination register must be even"));
7018 constraint (inst.operands[1].present
7019 && inst.operands[1].reg != inst.operands[0].reg + 1,
7020 _("can only load two consecutive registers"));
7021 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7022 constraint (!inst.operands[2].isreg, _("'[' expected"));
7024 if (!inst.operands[1].present)
7025 inst.operands[1].reg = inst.operands[0].reg + 1;
7027 if (inst.instruction & LOAD_BIT)
7029 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7030 register and the first register written; we have to diagnose
7031 overlap between the base and the second register written here. */
7033 if (inst.operands[2].reg == inst.operands[1].reg
7034 && (inst.operands[2].writeback || inst.operands[2].postind))
7035 as_warn (_("base register written back, and overlaps "
7036 "second destination register"));
7038 /* For an index-register load, the index register must not overlap the
7039 destination (even if not write-back). */
7040 else if (inst.operands[2].immisreg
7041 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7042 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7043 as_warn (_("index register overlaps destination register"));
7046 inst.instruction |= inst.operands[0].reg << 12;
7047 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7050 static void
7051 do_ldrex (void)
7053 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7054 || inst.operands[1].postind || inst.operands[1].writeback
7055 || inst.operands[1].immisreg || inst.operands[1].shifted
7056 || inst.operands[1].negative
7057 /* This can arise if the programmer has written
7058 strex rN, rM, foo
7059 or if they have mistakenly used a register name as the last
7060 operand, eg:
7061 strex rN, rM, rX
7062 It is very difficult to distinguish between these two cases
7063 because "rX" might actually be a label. ie the register
7064 name has been occluded by a symbol of the same name. So we
7065 just generate a general 'bad addressing mode' type error
7066 message and leave it up to the programmer to discover the
7067 true cause and fix their mistake. */
7068 || (inst.operands[1].reg == REG_PC),
7069 BAD_ADDR_MODE);
7071 constraint (inst.reloc.exp.X_op != O_constant
7072 || inst.reloc.exp.X_add_number != 0,
7073 _("offset must be zero in ARM encoding"));
7075 inst.instruction |= inst.operands[0].reg << 12;
7076 inst.instruction |= inst.operands[1].reg << 16;
7077 inst.reloc.type = BFD_RELOC_UNUSED;
7080 static void
7081 do_ldrexd (void)
7083 constraint (inst.operands[0].reg % 2 != 0,
7084 _("even register required"));
7085 constraint (inst.operands[1].present
7086 && inst.operands[1].reg != inst.operands[0].reg + 1,
7087 _("can only load two consecutive registers"));
7088 /* If op 1 were present and equal to PC, this function wouldn't
7089 have been called in the first place. */
7090 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7092 inst.instruction |= inst.operands[0].reg << 12;
7093 inst.instruction |= inst.operands[2].reg << 16;
7096 static void
7097 do_ldst (void)
7099 inst.instruction |= inst.operands[0].reg << 12;
7100 if (!inst.operands[1].isreg)
7101 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7102 return;
7103 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7106 static void
7107 do_ldstt (void)
7109 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7110 reject [Rn,...]. */
7111 if (inst.operands[1].preind)
7113 constraint (inst.reloc.exp.X_op != O_constant
7114 || inst.reloc.exp.X_add_number != 0,
7115 _("this instruction requires a post-indexed address"));
7117 inst.operands[1].preind = 0;
7118 inst.operands[1].postind = 1;
7119 inst.operands[1].writeback = 1;
7121 inst.instruction |= inst.operands[0].reg << 12;
7122 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7125 /* Halfword and signed-byte load/store operations. */
7127 static void
7128 do_ldstv4 (void)
7130 inst.instruction |= inst.operands[0].reg << 12;
7131 if (!inst.operands[1].isreg)
7132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7133 return;
7134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7137 static void
7138 do_ldsttv4 (void)
7140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7141 reject [Rn,...]. */
7142 if (inst.operands[1].preind)
7144 constraint (inst.reloc.exp.X_op != O_constant
7145 || inst.reloc.exp.X_add_number != 0,
7146 _("this instruction requires a post-indexed address"));
7148 inst.operands[1].preind = 0;
7149 inst.operands[1].postind = 1;
7150 inst.operands[1].writeback = 1;
7152 inst.instruction |= inst.operands[0].reg << 12;
7153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7156 /* Co-processor register load/store.
7157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7158 static void
7159 do_lstc (void)
7161 inst.instruction |= inst.operands[0].reg << 8;
7162 inst.instruction |= inst.operands[1].reg << 12;
7163 encode_arm_cp_address (2, TRUE, TRUE, 0);
7166 static void
7167 do_mlas (void)
7169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7170 if (inst.operands[0].reg == inst.operands[1].reg
7171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7172 && !(inst.instruction & 0x00400000))
7173 as_tsktsk (_("Rd and Rm should be different in mla"));
7175 inst.instruction |= inst.operands[0].reg << 16;
7176 inst.instruction |= inst.operands[1].reg;
7177 inst.instruction |= inst.operands[2].reg << 8;
7178 inst.instruction |= inst.operands[3].reg << 12;
7181 static void
7182 do_mov (void)
7184 inst.instruction |= inst.operands[0].reg << 12;
7185 encode_arm_shifter_operand (1);
7188 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7189 static void
7190 do_mov16 (void)
7192 bfd_vma imm;
7193 bfd_boolean top;
7195 top = (inst.instruction & 0x00400000) != 0;
7196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7197 _(":lower16: not allowed this instruction"));
7198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7199 _(":upper16: not allowed instruction"));
7200 inst.instruction |= inst.operands[0].reg << 12;
7201 if (inst.reloc.type == BFD_RELOC_UNUSED)
7203 imm = inst.reloc.exp.X_add_number;
7204 /* The value is in two pieces: 0:11, 16:19. */
7205 inst.instruction |= (imm & 0x00000fff);
7206 inst.instruction |= (imm & 0x0000f000) << 4;
7210 static void do_vfp_nsyn_opcode (const char *);
7212 static int
7213 do_vfp_nsyn_mrs (void)
7215 if (inst.operands[0].isvec)
7217 if (inst.operands[1].reg != 1)
7218 first_error (_("operand 1 must be FPSCR"));
7219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7221 do_vfp_nsyn_opcode ("fmstat");
7223 else if (inst.operands[1].isvec)
7224 do_vfp_nsyn_opcode ("fmrx");
7225 else
7226 return FAIL;
7228 return SUCCESS;
7231 static int
7232 do_vfp_nsyn_msr (void)
7234 if (inst.operands[0].isvec)
7235 do_vfp_nsyn_opcode ("fmxr");
7236 else
7237 return FAIL;
7239 return SUCCESS;
7242 static void
7243 do_mrs (void)
7245 if (do_vfp_nsyn_mrs () == SUCCESS)
7246 return;
7248 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7249 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7250 != (PSR_c|PSR_f),
7251 _("'CPSR' or 'SPSR' expected"));
7252 inst.instruction |= inst.operands[0].reg << 12;
7253 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7256 /* Two possible forms:
7257 "{C|S}PSR_<field>, Rm",
7258 "{C|S}PSR_f, #expression". */
7260 static void
7261 do_msr (void)
7263 if (do_vfp_nsyn_msr () == SUCCESS)
7264 return;
7266 inst.instruction |= inst.operands[0].imm;
7267 if (inst.operands[1].isreg)
7268 inst.instruction |= inst.operands[1].reg;
7269 else
7271 inst.instruction |= INST_IMMEDIATE;
7272 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7273 inst.reloc.pc_rel = 0;
7277 static void
7278 do_mul (void)
7280 if (!inst.operands[2].present)
7281 inst.operands[2].reg = inst.operands[0].reg;
7282 inst.instruction |= inst.operands[0].reg << 16;
7283 inst.instruction |= inst.operands[1].reg;
7284 inst.instruction |= inst.operands[2].reg << 8;
7286 if (inst.operands[0].reg == inst.operands[1].reg
7287 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7288 as_tsktsk (_("Rd and Rm should be different in mul"));
7291 /* Long Multiply Parser
7292 UMULL RdLo, RdHi, Rm, Rs
7293 SMULL RdLo, RdHi, Rm, Rs
7294 UMLAL RdLo, RdHi, Rm, Rs
7295 SMLAL RdLo, RdHi, Rm, Rs. */
7297 static void
7298 do_mull (void)
7300 inst.instruction |= inst.operands[0].reg << 12;
7301 inst.instruction |= inst.operands[1].reg << 16;
7302 inst.instruction |= inst.operands[2].reg;
7303 inst.instruction |= inst.operands[3].reg << 8;
7305 /* rdhi and rdlo must be different. */
7306 if (inst.operands[0].reg == inst.operands[1].reg)
7307 as_tsktsk (_("rdhi and rdlo must be different"));
7309 /* rdhi, rdlo and rm must all be different before armv6. */
7310 if ((inst.operands[0].reg == inst.operands[2].reg
7311 || inst.operands[1].reg == inst.operands[2].reg)
7312 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7313 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7316 static void
7317 do_nop (void)
7319 if (inst.operands[0].present)
7321 /* Architectural NOP hints are CPSR sets with no bits selected. */
7322 inst.instruction &= 0xf0000000;
7323 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7327 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7328 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7329 Condition defaults to COND_ALWAYS.
7330 Error if Rd, Rn or Rm are R15. */
7332 static void
7333 do_pkhbt (void)
7335 inst.instruction |= inst.operands[0].reg << 12;
7336 inst.instruction |= inst.operands[1].reg << 16;
7337 inst.instruction |= inst.operands[2].reg;
7338 if (inst.operands[3].present)
7339 encode_arm_shift (3);
7342 /* ARM V6 PKHTB (Argument Parse). */
7344 static void
7345 do_pkhtb (void)
7347 if (!inst.operands[3].present)
7349 /* If the shift specifier is omitted, turn the instruction
7350 into pkhbt rd, rm, rn. */
7351 inst.instruction &= 0xfff00010;
7352 inst.instruction |= inst.operands[0].reg << 12;
7353 inst.instruction |= inst.operands[1].reg;
7354 inst.instruction |= inst.operands[2].reg << 16;
7356 else
7358 inst.instruction |= inst.operands[0].reg << 12;
7359 inst.instruction |= inst.operands[1].reg << 16;
7360 inst.instruction |= inst.operands[2].reg;
7361 encode_arm_shift (3);
7365 /* ARMv5TE: Preload-Cache
7367 PLD <addr_mode>
7369 Syntactically, like LDR with B=1, W=0, L=1. */
7371 static void
7372 do_pld (void)
7374 constraint (!inst.operands[0].isreg,
7375 _("'[' expected after PLD mnemonic"));
7376 constraint (inst.operands[0].postind,
7377 _("post-indexed expression used in preload instruction"));
7378 constraint (inst.operands[0].writeback,
7379 _("writeback used in preload instruction"));
7380 constraint (!inst.operands[0].preind,
7381 _("unindexed addressing used in preload instruction"));
7382 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7385 /* ARMv7: PLI <addr_mode> */
7386 static void
7387 do_pli (void)
7389 constraint (!inst.operands[0].isreg,
7390 _("'[' expected after PLI mnemonic"));
7391 constraint (inst.operands[0].postind,
7392 _("post-indexed expression used in preload instruction"));
7393 constraint (inst.operands[0].writeback,
7394 _("writeback used in preload instruction"));
7395 constraint (!inst.operands[0].preind,
7396 _("unindexed addressing used in preload instruction"));
7397 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7398 inst.instruction &= ~PRE_INDEX;
7401 static void
7402 do_push_pop (void)
7404 inst.operands[1] = inst.operands[0];
7405 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7406 inst.operands[0].isreg = 1;
7407 inst.operands[0].writeback = 1;
7408 inst.operands[0].reg = REG_SP;
7409 do_ldmstm ();
7412 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7413 word at the specified address and the following word
7414 respectively.
7415 Unconditionally executed.
7416 Error if Rn is R15. */
7418 static void
7419 do_rfe (void)
7421 inst.instruction |= inst.operands[0].reg << 16;
7422 if (inst.operands[0].writeback)
7423 inst.instruction |= WRITE_BACK;
7426 /* ARM V6 ssat (argument parse). */
7428 static void
7429 do_ssat (void)
7431 inst.instruction |= inst.operands[0].reg << 12;
7432 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7433 inst.instruction |= inst.operands[2].reg;
7435 if (inst.operands[3].present)
7436 encode_arm_shift (3);
7439 /* ARM V6 usat (argument parse). */
7441 static void
7442 do_usat (void)
7444 inst.instruction |= inst.operands[0].reg << 12;
7445 inst.instruction |= inst.operands[1].imm << 16;
7446 inst.instruction |= inst.operands[2].reg;
7448 if (inst.operands[3].present)
7449 encode_arm_shift (3);
7452 /* ARM V6 ssat16 (argument parse). */
7454 static void
7455 do_ssat16 (void)
7457 inst.instruction |= inst.operands[0].reg << 12;
7458 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7459 inst.instruction |= inst.operands[2].reg;
7462 static void
7463 do_usat16 (void)
7465 inst.instruction |= inst.operands[0].reg << 12;
7466 inst.instruction |= inst.operands[1].imm << 16;
7467 inst.instruction |= inst.operands[2].reg;
7470 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7471 preserving the other bits.
7473 setend <endian_specifier>, where <endian_specifier> is either
7474 BE or LE. */
7476 static void
7477 do_setend (void)
7479 if (inst.operands[0].imm)
7480 inst.instruction |= 0x200;
7483 static void
7484 do_shift (void)
7486 unsigned int Rm = (inst.operands[1].present
7487 ? inst.operands[1].reg
7488 : inst.operands[0].reg);
7490 inst.instruction |= inst.operands[0].reg << 12;
7491 inst.instruction |= Rm;
7492 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7494 inst.instruction |= inst.operands[2].reg << 8;
7495 inst.instruction |= SHIFT_BY_REG;
7497 else
7498 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7501 static void
7502 do_smc (void)
7504 inst.reloc.type = BFD_RELOC_ARM_SMC;
7505 inst.reloc.pc_rel = 0;
7508 static void
7509 do_swi (void)
7511 inst.reloc.type = BFD_RELOC_ARM_SWI;
7512 inst.reloc.pc_rel = 0;
7515 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7516 SMLAxy{cond} Rd,Rm,Rs,Rn
7517 SMLAWy{cond} Rd,Rm,Rs,Rn
7518 Error if any register is R15. */
7520 static void
7521 do_smla (void)
7523 inst.instruction |= inst.operands[0].reg << 16;
7524 inst.instruction |= inst.operands[1].reg;
7525 inst.instruction |= inst.operands[2].reg << 8;
7526 inst.instruction |= inst.operands[3].reg << 12;
7529 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7530 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7531 Error if any register is R15.
7532 Warning if Rdlo == Rdhi. */
7534 static void
7535 do_smlal (void)
7537 inst.instruction |= inst.operands[0].reg << 12;
7538 inst.instruction |= inst.operands[1].reg << 16;
7539 inst.instruction |= inst.operands[2].reg;
7540 inst.instruction |= inst.operands[3].reg << 8;
7542 if (inst.operands[0].reg == inst.operands[1].reg)
7543 as_tsktsk (_("rdhi and rdlo must be different"));
7546 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7547 SMULxy{cond} Rd,Rm,Rs
7548 Error if any register is R15. */
7550 static void
7551 do_smul (void)
7553 inst.instruction |= inst.operands[0].reg << 16;
7554 inst.instruction |= inst.operands[1].reg;
7555 inst.instruction |= inst.operands[2].reg << 8;
7558 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7559 the same for both ARM and Thumb-2. */
7561 static void
7562 do_srs (void)
7564 int reg;
7566 if (inst.operands[0].present)
7568 reg = inst.operands[0].reg;
7569 constraint (reg != REG_SP, _("SRS base register must be r13"));
7571 else
7572 reg = REG_SP;
7574 inst.instruction |= reg << 16;
7575 inst.instruction |= inst.operands[1].imm;
7576 if (inst.operands[0].writeback || inst.operands[1].writeback)
7577 inst.instruction |= WRITE_BACK;
7580 /* ARM V6 strex (argument parse). */
7582 static void
7583 do_strex (void)
7585 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7586 || inst.operands[2].postind || inst.operands[2].writeback
7587 || inst.operands[2].immisreg || inst.operands[2].shifted
7588 || inst.operands[2].negative
7589 /* See comment in do_ldrex(). */
7590 || (inst.operands[2].reg == REG_PC),
7591 BAD_ADDR_MODE);
7593 constraint (inst.operands[0].reg == inst.operands[1].reg
7594 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7596 constraint (inst.reloc.exp.X_op != O_constant
7597 || inst.reloc.exp.X_add_number != 0,
7598 _("offset must be zero in ARM encoding"));
7600 inst.instruction |= inst.operands[0].reg << 12;
7601 inst.instruction |= inst.operands[1].reg;
7602 inst.instruction |= inst.operands[2].reg << 16;
7603 inst.reloc.type = BFD_RELOC_UNUSED;
7606 static void
7607 do_strexd (void)
7609 constraint (inst.operands[1].reg % 2 != 0,
7610 _("even register required"));
7611 constraint (inst.operands[2].present
7612 && inst.operands[2].reg != inst.operands[1].reg + 1,
7613 _("can only store two consecutive registers"));
7614 /* If op 2 were present and equal to PC, this function wouldn't
7615 have been called in the first place. */
7616 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7618 constraint (inst.operands[0].reg == inst.operands[1].reg
7619 || inst.operands[0].reg == inst.operands[1].reg + 1
7620 || inst.operands[0].reg == inst.operands[3].reg,
7621 BAD_OVERLAP);
7623 inst.instruction |= inst.operands[0].reg << 12;
7624 inst.instruction |= inst.operands[1].reg;
7625 inst.instruction |= inst.operands[3].reg << 16;
7628 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7629 extends it to 32-bits, and adds the result to a value in another
7630 register. You can specify a rotation by 0, 8, 16, or 24 bits
7631 before extracting the 16-bit value.
7632 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7633 Condition defaults to COND_ALWAYS.
7634 Error if any register uses R15. */
7636 static void
7637 do_sxtah (void)
7639 inst.instruction |= inst.operands[0].reg << 12;
7640 inst.instruction |= inst.operands[1].reg << 16;
7641 inst.instruction |= inst.operands[2].reg;
7642 inst.instruction |= inst.operands[3].imm << 10;
7645 /* ARM V6 SXTH.
7647 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7648 Condition defaults to COND_ALWAYS.
7649 Error if any register uses R15. */
7651 static void
7652 do_sxth (void)
7654 inst.instruction |= inst.operands[0].reg << 12;
7655 inst.instruction |= inst.operands[1].reg;
7656 inst.instruction |= inst.operands[2].imm << 10;
7659 /* VFP instructions. In a logical order: SP variant first, monad
7660 before dyad, arithmetic then move then load/store. */
7662 static void
7663 do_vfp_sp_monadic (void)
7665 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7666 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7669 static void
7670 do_vfp_sp_dyadic (void)
7672 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7673 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7674 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7677 static void
7678 do_vfp_sp_compare_z (void)
7680 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7683 static void
7684 do_vfp_dp_sp_cvt (void)
7686 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7687 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7690 static void
7691 do_vfp_sp_dp_cvt (void)
7693 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7694 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7697 static void
7698 do_vfp_reg_from_sp (void)
7700 inst.instruction |= inst.operands[0].reg << 12;
7701 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7704 static void
7705 do_vfp_reg2_from_sp2 (void)
7707 constraint (inst.operands[2].imm != 2,
7708 _("only two consecutive VFP SP registers allowed here"));
7709 inst.instruction |= inst.operands[0].reg << 12;
7710 inst.instruction |= inst.operands[1].reg << 16;
7711 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7714 static void
7715 do_vfp_sp_from_reg (void)
7717 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7718 inst.instruction |= inst.operands[1].reg << 12;
7721 static void
7722 do_vfp_sp2_from_reg2 (void)
7724 constraint (inst.operands[0].imm != 2,
7725 _("only two consecutive VFP SP registers allowed here"));
7726 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7727 inst.instruction |= inst.operands[1].reg << 12;
7728 inst.instruction |= inst.operands[2].reg << 16;
7731 static void
7732 do_vfp_sp_ldst (void)
7734 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7735 encode_arm_cp_address (1, FALSE, TRUE, 0);
7738 static void
7739 do_vfp_dp_ldst (void)
7741 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7742 encode_arm_cp_address (1, FALSE, TRUE, 0);
7746 static void
7747 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7749 if (inst.operands[0].writeback)
7750 inst.instruction |= WRITE_BACK;
7751 else
7752 constraint (ldstm_type != VFP_LDSTMIA,
7753 _("this addressing mode requires base-register writeback"));
7754 inst.instruction |= inst.operands[0].reg << 16;
7755 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7756 inst.instruction |= inst.operands[1].imm;
7759 static void
7760 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7762 int count;
7764 if (inst.operands[0].writeback)
7765 inst.instruction |= WRITE_BACK;
7766 else
7767 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7768 _("this addressing mode requires base-register writeback"));
7770 inst.instruction |= inst.operands[0].reg << 16;
7771 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7773 count = inst.operands[1].imm << 1;
7774 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7775 count += 1;
7777 inst.instruction |= count;
7780 static void
7781 do_vfp_sp_ldstmia (void)
7783 vfp_sp_ldstm (VFP_LDSTMIA);
7786 static void
7787 do_vfp_sp_ldstmdb (void)
7789 vfp_sp_ldstm (VFP_LDSTMDB);
7792 static void
7793 do_vfp_dp_ldstmia (void)
7795 vfp_dp_ldstm (VFP_LDSTMIA);
7798 static void
7799 do_vfp_dp_ldstmdb (void)
7801 vfp_dp_ldstm (VFP_LDSTMDB);
7804 static void
7805 do_vfp_xp_ldstmia (void)
7807 vfp_dp_ldstm (VFP_LDSTMIAX);
7810 static void
7811 do_vfp_xp_ldstmdb (void)
7813 vfp_dp_ldstm (VFP_LDSTMDBX);
7816 static void
7817 do_vfp_dp_rd_rm (void)
7819 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7820 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7823 static void
7824 do_vfp_dp_rn_rd (void)
7826 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7827 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7830 static void
7831 do_vfp_dp_rd_rn (void)
7833 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7834 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7837 static void
7838 do_vfp_dp_rd_rn_rm (void)
7840 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7841 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7842 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7845 static void
7846 do_vfp_dp_rd (void)
7848 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7851 static void
7852 do_vfp_dp_rm_rd_rn (void)
7854 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7855 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7856 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7859 /* VFPv3 instructions. */
7860 static void
7861 do_vfp_sp_const (void)
7863 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7864 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7865 inst.instruction |= (inst.operands[1].imm & 0x0f);
7868 static void
7869 do_vfp_dp_const (void)
7871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7872 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7873 inst.instruction |= (inst.operands[1].imm & 0x0f);
7876 static void
7877 vfp_conv (int srcsize)
7879 unsigned immbits = srcsize - inst.operands[1].imm;
7880 inst.instruction |= (immbits & 1) << 5;
7881 inst.instruction |= (immbits >> 1);
7884 static void
7885 do_vfp_sp_conv_16 (void)
7887 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7888 vfp_conv (16);
7891 static void
7892 do_vfp_dp_conv_16 (void)
7894 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7895 vfp_conv (16);
7898 static void
7899 do_vfp_sp_conv_32 (void)
7901 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7902 vfp_conv (32);
7905 static void
7906 do_vfp_dp_conv_32 (void)
7908 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7909 vfp_conv (32);
7912 /* FPA instructions. Also in a logical order. */
7914 static void
7915 do_fpa_cmp (void)
7917 inst.instruction |= inst.operands[0].reg << 16;
7918 inst.instruction |= inst.operands[1].reg;
7921 static void
7922 do_fpa_ldmstm (void)
7924 inst.instruction |= inst.operands[0].reg << 12;
7925 switch (inst.operands[1].imm)
7927 case 1: inst.instruction |= CP_T_X; break;
7928 case 2: inst.instruction |= CP_T_Y; break;
7929 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7930 case 4: break;
7931 default: abort ();
7934 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7936 /* The instruction specified "ea" or "fd", so we can only accept
7937 [Rn]{!}. The instruction does not really support stacking or
7938 unstacking, so we have to emulate these by setting appropriate
7939 bits and offsets. */
7940 constraint (inst.reloc.exp.X_op != O_constant
7941 || inst.reloc.exp.X_add_number != 0,
7942 _("this instruction does not support indexing"));
7944 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7945 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7947 if (!(inst.instruction & INDEX_UP))
7948 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7950 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7952 inst.operands[2].preind = 0;
7953 inst.operands[2].postind = 1;
7957 encode_arm_cp_address (2, TRUE, TRUE, 0);
7960 /* iWMMXt instructions: strictly in alphabetical order. */
7962 static void
7963 do_iwmmxt_tandorc (void)
7965 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7968 static void
7969 do_iwmmxt_textrc (void)
7971 inst.instruction |= inst.operands[0].reg << 12;
7972 inst.instruction |= inst.operands[1].imm;
7975 static void
7976 do_iwmmxt_textrm (void)
7978 inst.instruction |= inst.operands[0].reg << 12;
7979 inst.instruction |= inst.operands[1].reg << 16;
7980 inst.instruction |= inst.operands[2].imm;
7983 static void
7984 do_iwmmxt_tinsr (void)
7986 inst.instruction |= inst.operands[0].reg << 16;
7987 inst.instruction |= inst.operands[1].reg << 12;
7988 inst.instruction |= inst.operands[2].imm;
7991 static void
7992 do_iwmmxt_tmia (void)
7994 inst.instruction |= inst.operands[0].reg << 5;
7995 inst.instruction |= inst.operands[1].reg;
7996 inst.instruction |= inst.operands[2].reg << 12;
7999 static void
8000 do_iwmmxt_waligni (void)
8002 inst.instruction |= inst.operands[0].reg << 12;
8003 inst.instruction |= inst.operands[1].reg << 16;
8004 inst.instruction |= inst.operands[2].reg;
8005 inst.instruction |= inst.operands[3].imm << 20;
8008 static void
8009 do_iwmmxt_wmerge (void)
8011 inst.instruction |= inst.operands[0].reg << 12;
8012 inst.instruction |= inst.operands[1].reg << 16;
8013 inst.instruction |= inst.operands[2].reg;
8014 inst.instruction |= inst.operands[3].imm << 21;
8017 static void
8018 do_iwmmxt_wmov (void)
8020 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8021 inst.instruction |= inst.operands[0].reg << 12;
8022 inst.instruction |= inst.operands[1].reg << 16;
8023 inst.instruction |= inst.operands[1].reg;
8026 static void
8027 do_iwmmxt_wldstbh (void)
8029 int reloc;
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 if (thumb_mode)
8032 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8033 else
8034 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8035 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8038 static void
8039 do_iwmmxt_wldstw (void)
8041 /* RIWR_RIWC clears .isreg for a control register. */
8042 if (!inst.operands[0].isreg)
8044 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8045 inst.instruction |= 0xf0000000;
8048 inst.instruction |= inst.operands[0].reg << 12;
8049 encode_arm_cp_address (1, TRUE, TRUE, 0);
8052 static void
8053 do_iwmmxt_wldstd (void)
8055 inst.instruction |= inst.operands[0].reg << 12;
8056 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8057 && inst.operands[1].immisreg)
8059 inst.instruction &= ~0x1a000ff;
8060 inst.instruction |= (0xf << 28);
8061 if (inst.operands[1].preind)
8062 inst.instruction |= PRE_INDEX;
8063 if (!inst.operands[1].negative)
8064 inst.instruction |= INDEX_UP;
8065 if (inst.operands[1].writeback)
8066 inst.instruction |= WRITE_BACK;
8067 inst.instruction |= inst.operands[1].reg << 16;
8068 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8069 inst.instruction |= inst.operands[1].imm;
8071 else
8072 encode_arm_cp_address (1, TRUE, FALSE, 0);
8075 static void
8076 do_iwmmxt_wshufh (void)
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[1].reg << 16;
8080 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8081 inst.instruction |= (inst.operands[2].imm & 0x0f);
8084 static void
8085 do_iwmmxt_wzero (void)
8087 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8088 inst.instruction |= inst.operands[0].reg;
8089 inst.instruction |= inst.operands[0].reg << 12;
8090 inst.instruction |= inst.operands[0].reg << 16;
8093 static void
8094 do_iwmmxt_wrwrwr_or_imm5 (void)
8096 if (inst.operands[2].isreg)
8097 do_rd_rn_rm ();
8098 else {
8099 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8100 _("immediate operand requires iWMMXt2"));
8101 do_rd_rn ();
8102 if (inst.operands[2].imm == 0)
8104 switch ((inst.instruction >> 20) & 0xf)
8106 case 4:
8107 case 5:
8108 case 6:
8109 case 7:
8110 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8111 inst.operands[2].imm = 16;
8112 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8113 break;
8114 case 8:
8115 case 9:
8116 case 10:
8117 case 11:
8118 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8119 inst.operands[2].imm = 32;
8120 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8121 break;
8122 case 12:
8123 case 13:
8124 case 14:
8125 case 15:
8127 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8128 unsigned long wrn;
8129 wrn = (inst.instruction >> 16) & 0xf;
8130 inst.instruction &= 0xff0fff0f;
8131 inst.instruction |= wrn;
8132 /* Bail out here; the instruction is now assembled. */
8133 return;
8137 /* Map 32 -> 0, etc. */
8138 inst.operands[2].imm &= 0x1f;
8139 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8143 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8144 operations first, then control, shift, and load/store. */
8146 /* Insns like "foo X,Y,Z". */
8148 static void
8149 do_mav_triple (void)
8151 inst.instruction |= inst.operands[0].reg << 16;
8152 inst.instruction |= inst.operands[1].reg;
8153 inst.instruction |= inst.operands[2].reg << 12;
8156 /* Insns like "foo W,X,Y,Z".
8157 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8159 static void
8160 do_mav_quad (void)
8162 inst.instruction |= inst.operands[0].reg << 5;
8163 inst.instruction |= inst.operands[1].reg << 12;
8164 inst.instruction |= inst.operands[2].reg << 16;
8165 inst.instruction |= inst.operands[3].reg;
8168 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8169 static void
8170 do_mav_dspsc (void)
8172 inst.instruction |= inst.operands[1].reg << 12;
8175 /* Maverick shift immediate instructions.
8176 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8177 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8179 static void
8180 do_mav_shift (void)
8182 int imm = inst.operands[2].imm;
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 inst.instruction |= inst.operands[1].reg << 16;
8187 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8188 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8189 Bit 4 should be 0. */
8190 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8192 inst.instruction |= imm;
8195 /* XScale instructions. Also sorted arithmetic before move. */
8197 /* Xscale multiply-accumulate (argument parse)
8198 MIAcc acc0,Rm,Rs
8199 MIAPHcc acc0,Rm,Rs
8200 MIAxycc acc0,Rm,Rs. */
8202 static void
8203 do_xsc_mia (void)
8205 inst.instruction |= inst.operands[1].reg;
8206 inst.instruction |= inst.operands[2].reg << 12;
8209 /* Xscale move-accumulator-register (argument parse)
8211 MARcc acc0,RdLo,RdHi. */
8213 static void
8214 do_xsc_mar (void)
8216 inst.instruction |= inst.operands[1].reg << 12;
8217 inst.instruction |= inst.operands[2].reg << 16;
8220 /* Xscale move-register-accumulator (argument parse)
8222 MRAcc RdLo,RdHi,acc0. */
8224 static void
8225 do_xsc_mra (void)
8227 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8228 inst.instruction |= inst.operands[0].reg << 12;
8229 inst.instruction |= inst.operands[1].reg << 16;
8232 /* Encoding functions relevant only to Thumb. */
8234 /* inst.operands[i] is a shifted-register operand; encode
8235 it into inst.instruction in the format used by Thumb32. */
8237 static void
8238 encode_thumb32_shifted_operand (int i)
8240 unsigned int value = inst.reloc.exp.X_add_number;
8241 unsigned int shift = inst.operands[i].shift_kind;
8243 constraint (inst.operands[i].immisreg,
8244 _("shift by register not allowed in thumb mode"));
8245 inst.instruction |= inst.operands[i].reg;
8246 if (shift == SHIFT_RRX)
8247 inst.instruction |= SHIFT_ROR << 4;
8248 else
8250 constraint (inst.reloc.exp.X_op != O_constant,
8251 _("expression too complex"));
8253 constraint (value > 32
8254 || (value == 32 && (shift == SHIFT_LSL
8255 || shift == SHIFT_ROR)),
8256 _("shift expression is too large"));
8258 if (value == 0)
8259 shift = SHIFT_LSL;
8260 else if (value == 32)
8261 value = 0;
8263 inst.instruction |= shift << 4;
8264 inst.instruction |= (value & 0x1c) << 10;
8265 inst.instruction |= (value & 0x03) << 6;
8270 /* inst.operands[i] was set up by parse_address. Encode it into a
8271 Thumb32 format load or store instruction. Reject forms that cannot
8272 be used with such instructions. If is_t is true, reject forms that
8273 cannot be used with a T instruction; if is_d is true, reject forms
8274 that cannot be used with a D instruction. */
8276 static void
8277 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8279 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8281 constraint (!inst.operands[i].isreg,
8282 _("Instruction does not support =N addresses"));
8284 inst.instruction |= inst.operands[i].reg << 16;
8285 if (inst.operands[i].immisreg)
8287 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8288 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8289 constraint (inst.operands[i].negative,
8290 _("Thumb does not support negative register indexing"));
8291 constraint (inst.operands[i].postind,
8292 _("Thumb does not support register post-indexing"));
8293 constraint (inst.operands[i].writeback,
8294 _("Thumb does not support register indexing with writeback"));
8295 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8296 _("Thumb supports only LSL in shifted register indexing"));
8298 inst.instruction |= inst.operands[i].imm;
8299 if (inst.operands[i].shifted)
8301 constraint (inst.reloc.exp.X_op != O_constant,
8302 _("expression too complex"));
8303 constraint (inst.reloc.exp.X_add_number < 0
8304 || inst.reloc.exp.X_add_number > 3,
8305 _("shift out of range"));
8306 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8308 inst.reloc.type = BFD_RELOC_UNUSED;
8310 else if (inst.operands[i].preind)
8312 constraint (is_pc && inst.operands[i].writeback,
8313 _("cannot use writeback with PC-relative addressing"));
8314 constraint (is_t && inst.operands[i].writeback,
8315 _("cannot use writeback with this instruction"));
8317 if (is_d)
8319 inst.instruction |= 0x01000000;
8320 if (inst.operands[i].writeback)
8321 inst.instruction |= 0x00200000;
8323 else
8325 inst.instruction |= 0x00000c00;
8326 if (inst.operands[i].writeback)
8327 inst.instruction |= 0x00000100;
8329 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8331 else if (inst.operands[i].postind)
8333 assert (inst.operands[i].writeback);
8334 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8335 constraint (is_t, _("cannot use post-indexing with this instruction"));
8337 if (is_d)
8338 inst.instruction |= 0x00200000;
8339 else
8340 inst.instruction |= 0x00000900;
8341 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8343 else /* unindexed - only for coprocessor */
8344 inst.error = _("instruction does not accept unindexed addressing");
8347 /* Table of Thumb instructions which exist in both 16- and 32-bit
8348 encodings (the latter only in post-V6T2 cores). The index is the
8349 value used in the insns table below. When there is more than one
8350 possible 16-bit encoding for the instruction, this table always
8351 holds variant (1).
8352 Also contains several pseudo-instructions used during relaxation. */
8353 #define T16_32_TAB \
8354 X(adc, 4140, eb400000), \
8355 X(adcs, 4140, eb500000), \
8356 X(add, 1c00, eb000000), \
8357 X(adds, 1c00, eb100000), \
8358 X(addi, 0000, f1000000), \
8359 X(addis, 0000, f1100000), \
8360 X(add_pc,000f, f20f0000), \
8361 X(add_sp,000d, f10d0000), \
8362 X(adr, 000f, f20f0000), \
8363 X(and, 4000, ea000000), \
8364 X(ands, 4000, ea100000), \
8365 X(asr, 1000, fa40f000), \
8366 X(asrs, 1000, fa50f000), \
8367 X(b, e000, f000b000), \
8368 X(bcond, d000, f0008000), \
8369 X(bic, 4380, ea200000), \
8370 X(bics, 4380, ea300000), \
8371 X(cmn, 42c0, eb100f00), \
8372 X(cmp, 2800, ebb00f00), \
8373 X(cpsie, b660, f3af8400), \
8374 X(cpsid, b670, f3af8600), \
8375 X(cpy, 4600, ea4f0000), \
8376 X(dec_sp,80dd, f1ad0d00), \
8377 X(eor, 4040, ea800000), \
8378 X(eors, 4040, ea900000), \
8379 X(inc_sp,00dd, f10d0d00), \
8380 X(ldmia, c800, e8900000), \
8381 X(ldr, 6800, f8500000), \
8382 X(ldrb, 7800, f8100000), \
8383 X(ldrh, 8800, f8300000), \
8384 X(ldrsb, 5600, f9100000), \
8385 X(ldrsh, 5e00, f9300000), \
8386 X(ldr_pc,4800, f85f0000), \
8387 X(ldr_pc2,4800, f85f0000), \
8388 X(ldr_sp,9800, f85d0000), \
8389 X(lsl, 0000, fa00f000), \
8390 X(lsls, 0000, fa10f000), \
8391 X(lsr, 0800, fa20f000), \
8392 X(lsrs, 0800, fa30f000), \
8393 X(mov, 2000, ea4f0000), \
8394 X(movs, 2000, ea5f0000), \
8395 X(mul, 4340, fb00f000), \
8396 X(muls, 4340, ffffffff), /* no 32b muls */ \
8397 X(mvn, 43c0, ea6f0000), \
8398 X(mvns, 43c0, ea7f0000), \
8399 X(neg, 4240, f1c00000), /* rsb #0 */ \
8400 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8401 X(orr, 4300, ea400000), \
8402 X(orrs, 4300, ea500000), \
8403 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8404 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8405 X(rev, ba00, fa90f080), \
8406 X(rev16, ba40, fa90f090), \
8407 X(revsh, bac0, fa90f0b0), \
8408 X(ror, 41c0, fa60f000), \
8409 X(rors, 41c0, fa70f000), \
8410 X(sbc, 4180, eb600000), \
8411 X(sbcs, 4180, eb700000), \
8412 X(stmia, c000, e8800000), \
8413 X(str, 6000, f8400000), \
8414 X(strb, 7000, f8000000), \
8415 X(strh, 8000, f8200000), \
8416 X(str_sp,9000, f84d0000), \
8417 X(sub, 1e00, eba00000), \
8418 X(subs, 1e00, ebb00000), \
8419 X(subi, 8000, f1a00000), \
8420 X(subis, 8000, f1b00000), \
8421 X(sxtb, b240, fa4ff080), \
8422 X(sxth, b200, fa0ff080), \
8423 X(tst, 4200, ea100f00), \
8424 X(uxtb, b2c0, fa5ff080), \
8425 X(uxth, b280, fa1ff080), \
8426 X(nop, bf00, f3af8000), \
8427 X(yield, bf10, f3af8001), \
8428 X(wfe, bf20, f3af8002), \
8429 X(wfi, bf30, f3af8003), \
8430 X(sev, bf40, f3af9004), /* typo, 8004? */
8432 /* To catch errors in encoding functions, the codes are all offset by
8433 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8434 as 16-bit instructions. */
8435 #define X(a,b,c) T_MNEM_##a
8436 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8437 #undef X
8439 #define X(a,b,c) 0x##b
8440 static const unsigned short thumb_op16[] = { T16_32_TAB };
8441 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8442 #undef X
8444 #define X(a,b,c) 0x##c
8445 static const unsigned int thumb_op32[] = { T16_32_TAB };
8446 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8447 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8448 #undef X
8449 #undef T16_32_TAB
8451 /* Thumb instruction encoders, in alphabetical order. */
8453 /* ADDW or SUBW. */
8454 static void
8455 do_t_add_sub_w (void)
8457 int Rd, Rn;
8459 Rd = inst.operands[0].reg;
8460 Rn = inst.operands[1].reg;
8462 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this is the
8463 SP-{plus,minute}-immediate form of the instruction. */
8464 reject_bad_reg (Rd);
8466 inst.instruction |= (Rn << 16) | (Rd << 8);
8467 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8470 /* Parse an add or subtract instruction. We get here with inst.instruction
8471 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8473 static void
8474 do_t_add_sub (void)
8476 int Rd, Rs, Rn;
8478 Rd = inst.operands[0].reg;
8479 Rs = (inst.operands[1].present
8480 ? inst.operands[1].reg /* Rd, Rs, foo */
8481 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8483 if (unified_syntax)
8485 bfd_boolean flags;
8486 bfd_boolean narrow;
8487 int opcode;
8489 flags = (inst.instruction == T_MNEM_adds
8490 || inst.instruction == T_MNEM_subs);
8491 if (flags)
8492 narrow = (current_it_mask == 0);
8493 else
8494 narrow = (current_it_mask != 0);
8495 if (!inst.operands[2].isreg)
8497 int add;
8499 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8501 add = (inst.instruction == T_MNEM_add
8502 || inst.instruction == T_MNEM_adds);
8503 opcode = 0;
8504 if (inst.size_req != 4)
8506 /* Attempt to use a narrow opcode, with relaxation if
8507 appropriate. */
8508 if (Rd == REG_SP && Rs == REG_SP && !flags)
8509 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8510 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8511 opcode = T_MNEM_add_sp;
8512 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8513 opcode = T_MNEM_add_pc;
8514 else if (Rd <= 7 && Rs <= 7 && narrow)
8516 if (flags)
8517 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8518 else
8519 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8521 if (opcode)
8523 inst.instruction = THUMB_OP16(opcode);
8524 inst.instruction |= (Rd << 4) | Rs;
8525 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8526 if (inst.size_req != 2)
8527 inst.relax = opcode;
8529 else
8530 constraint (inst.size_req == 2, BAD_HIREG);
8532 if (inst.size_req == 4
8533 || (inst.size_req != 2 && !opcode))
8535 if (Rd == REG_PC)
8537 constraint (add, BAD_PC);
8538 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8539 _("only SUBS PC, LR, #const allowed"));
8540 constraint (inst.reloc.exp.X_op != O_constant,
8541 _("expression too complex"));
8542 constraint (inst.reloc.exp.X_add_number < 0
8543 || inst.reloc.exp.X_add_number > 0xff,
8544 _("immediate value out of range"));
8545 inst.instruction = T2_SUBS_PC_LR
8546 | inst.reloc.exp.X_add_number;
8547 inst.reloc.type = BFD_RELOC_UNUSED;
8548 return;
8550 else if (Rs == REG_PC)
8552 /* Always use addw/subw. */
8553 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8554 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8556 else
8558 inst.instruction = THUMB_OP32 (inst.instruction);
8559 inst.instruction = (inst.instruction & 0xe1ffffff)
8560 | 0x10000000;
8561 if (flags)
8562 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8563 else
8564 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8566 inst.instruction |= Rd << 8;
8567 inst.instruction |= Rs << 16;
8570 else
8572 Rn = inst.operands[2].reg;
8573 /* See if we can do this with a 16-bit instruction. */
8574 if (!inst.operands[2].shifted && inst.size_req != 4)
8576 if (Rd > 7 || Rs > 7 || Rn > 7)
8577 narrow = FALSE;
8579 if (narrow)
8581 inst.instruction = ((inst.instruction == T_MNEM_adds
8582 || inst.instruction == T_MNEM_add)
8583 ? T_OPCODE_ADD_R3
8584 : T_OPCODE_SUB_R3);
8585 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8586 return;
8589 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
8591 /* Thumb-1 cores (except v6-M) require at least one high
8592 register in a narrow non flag setting add. */
8593 if (Rd > 7 || Rn > 7
8594 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8595 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
8597 if (Rd == Rn)
8599 Rn = Rs;
8600 Rs = Rd;
8602 inst.instruction = T_OPCODE_ADD_HI;
8603 inst.instruction |= (Rd & 8) << 4;
8604 inst.instruction |= (Rd & 7);
8605 inst.instruction |= Rn << 3;
8606 return;
8611 constraint (Rd == REG_PC, BAD_PC);
8612 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8613 constraint (Rs == REG_PC, BAD_PC);
8614 reject_bad_reg (Rn);
8616 /* If we get here, it can't be done in 16 bits. */
8617 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8618 _("shift must be constant"));
8619 inst.instruction = THUMB_OP32 (inst.instruction);
8620 inst.instruction |= Rd << 8;
8621 inst.instruction |= Rs << 16;
8622 encode_thumb32_shifted_operand (2);
8625 else
8627 constraint (inst.instruction == T_MNEM_adds
8628 || inst.instruction == T_MNEM_subs,
8629 BAD_THUMB32);
8631 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8633 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8634 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8635 BAD_HIREG);
8637 inst.instruction = (inst.instruction == T_MNEM_add
8638 ? 0x0000 : 0x8000);
8639 inst.instruction |= (Rd << 4) | Rs;
8640 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8641 return;
8644 Rn = inst.operands[2].reg;
8645 constraint (inst.operands[2].shifted, _("unshifted register required"));
8647 /* We now have Rd, Rs, and Rn set to registers. */
8648 if (Rd > 7 || Rs > 7 || Rn > 7)
8650 /* Can't do this for SUB. */
8651 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8652 inst.instruction = T_OPCODE_ADD_HI;
8653 inst.instruction |= (Rd & 8) << 4;
8654 inst.instruction |= (Rd & 7);
8655 if (Rs == Rd)
8656 inst.instruction |= Rn << 3;
8657 else if (Rn == Rd)
8658 inst.instruction |= Rs << 3;
8659 else
8660 constraint (1, _("dest must overlap one source register"));
8662 else
8664 inst.instruction = (inst.instruction == T_MNEM_add
8665 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8666 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8671 static void
8672 do_t_adr (void)
8674 unsigned Rd;
8676 Rd = inst.operands[0].reg;
8677 reject_bad_reg (Rd);
8679 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
8681 /* Defer to section relaxation. */
8682 inst.relax = inst.instruction;
8683 inst.instruction = THUMB_OP16 (inst.instruction);
8684 inst.instruction |= Rd << 4;
8686 else if (unified_syntax && inst.size_req != 2)
8688 /* Generate a 32-bit opcode. */
8689 inst.instruction = THUMB_OP32 (inst.instruction);
8690 inst.instruction |= Rd << 8;
8691 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8692 inst.reloc.pc_rel = 1;
8694 else
8696 /* Generate a 16-bit opcode. */
8697 inst.instruction = THUMB_OP16 (inst.instruction);
8698 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8699 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8700 inst.reloc.pc_rel = 1;
8702 inst.instruction |= Rd << 4;
8706 /* Arithmetic instructions for which there is just one 16-bit
8707 instruction encoding, and it allows only two low registers.
8708 For maximal compatibility with ARM syntax, we allow three register
8709 operands even when Thumb-32 instructions are not available, as long
8710 as the first two are identical. For instance, both "sbc r0,r1" and
8711 "sbc r0,r0,r1" are allowed. */
8712 static void
8713 do_t_arit3 (void)
8715 int Rd, Rs, Rn;
8717 Rd = inst.operands[0].reg;
8718 Rs = (inst.operands[1].present
8719 ? inst.operands[1].reg /* Rd, Rs, foo */
8720 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8721 Rn = inst.operands[2].reg;
8723 reject_bad_reg (Rd);
8724 reject_bad_reg (Rs);
8725 if (inst.operands[2].isreg)
8726 reject_bad_reg (Rn);
8728 if (unified_syntax)
8730 if (!inst.operands[2].isreg)
8732 /* For an immediate, we always generate a 32-bit opcode;
8733 section relaxation will shrink it later if possible. */
8734 inst.instruction = THUMB_OP32 (inst.instruction);
8735 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8736 inst.instruction |= Rd << 8;
8737 inst.instruction |= Rs << 16;
8738 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8740 else
8742 bfd_boolean narrow;
8744 /* See if we can do this with a 16-bit instruction. */
8745 if (THUMB_SETS_FLAGS (inst.instruction))
8746 narrow = current_it_mask == 0;
8747 else
8748 narrow = current_it_mask != 0;
8750 if (Rd > 7 || Rn > 7 || Rs > 7)
8751 narrow = FALSE;
8752 if (inst.operands[2].shifted)
8753 narrow = FALSE;
8754 if (inst.size_req == 4)
8755 narrow = FALSE;
8757 if (narrow
8758 && Rd == Rs)
8760 inst.instruction = THUMB_OP16 (inst.instruction);
8761 inst.instruction |= Rd;
8762 inst.instruction |= Rn << 3;
8763 return;
8766 /* If we get here, it can't be done in 16 bits. */
8767 constraint (inst.operands[2].shifted
8768 && inst.operands[2].immisreg,
8769 _("shift must be constant"));
8770 inst.instruction = THUMB_OP32 (inst.instruction);
8771 inst.instruction |= Rd << 8;
8772 inst.instruction |= Rs << 16;
8773 encode_thumb32_shifted_operand (2);
8776 else
8778 /* On its face this is a lie - the instruction does set the
8779 flags. However, the only supported mnemonic in this mode
8780 says it doesn't. */
8781 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8783 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8784 _("unshifted register required"));
8785 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8786 constraint (Rd != Rs,
8787 _("dest and source1 must be the same register"));
8789 inst.instruction = THUMB_OP16 (inst.instruction);
8790 inst.instruction |= Rd;
8791 inst.instruction |= Rn << 3;
8795 /* Similarly, but for instructions where the arithmetic operation is
8796 commutative, so we can allow either of them to be different from
8797 the destination operand in a 16-bit instruction. For instance, all
8798 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8799 accepted. */
8800 static void
8801 do_t_arit3c (void)
8803 int Rd, Rs, Rn;
8805 Rd = inst.operands[0].reg;
8806 Rs = (inst.operands[1].present
8807 ? inst.operands[1].reg /* Rd, Rs, foo */
8808 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8809 Rn = inst.operands[2].reg;
8811 reject_bad_reg (Rd);
8812 reject_bad_reg (Rs);
8813 if (inst.operands[2].isreg)
8814 reject_bad_reg (Rn);
8816 if (unified_syntax)
8818 if (!inst.operands[2].isreg)
8820 /* For an immediate, we always generate a 32-bit opcode;
8821 section relaxation will shrink it later if possible. */
8822 inst.instruction = THUMB_OP32 (inst.instruction);
8823 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8824 inst.instruction |= Rd << 8;
8825 inst.instruction |= Rs << 16;
8826 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8828 else
8830 bfd_boolean narrow;
8832 /* See if we can do this with a 16-bit instruction. */
8833 if (THUMB_SETS_FLAGS (inst.instruction))
8834 narrow = current_it_mask == 0;
8835 else
8836 narrow = current_it_mask != 0;
8838 if (Rd > 7 || Rn > 7 || Rs > 7)
8839 narrow = FALSE;
8840 if (inst.operands[2].shifted)
8841 narrow = FALSE;
8842 if (inst.size_req == 4)
8843 narrow = FALSE;
8845 if (narrow)
8847 if (Rd == Rs)
8849 inst.instruction = THUMB_OP16 (inst.instruction);
8850 inst.instruction |= Rd;
8851 inst.instruction |= Rn << 3;
8852 return;
8854 if (Rd == Rn)
8856 inst.instruction = THUMB_OP16 (inst.instruction);
8857 inst.instruction |= Rd;
8858 inst.instruction |= Rs << 3;
8859 return;
8863 /* If we get here, it can't be done in 16 bits. */
8864 constraint (inst.operands[2].shifted
8865 && inst.operands[2].immisreg,
8866 _("shift must be constant"));
8867 inst.instruction = THUMB_OP32 (inst.instruction);
8868 inst.instruction |= Rd << 8;
8869 inst.instruction |= Rs << 16;
8870 encode_thumb32_shifted_operand (2);
8873 else
8875 /* On its face this is a lie - the instruction does set the
8876 flags. However, the only supported mnemonic in this mode
8877 says it doesn't. */
8878 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8880 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8881 _("unshifted register required"));
8882 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8884 inst.instruction = THUMB_OP16 (inst.instruction);
8885 inst.instruction |= Rd;
8887 if (Rd == Rs)
8888 inst.instruction |= Rn << 3;
8889 else if (Rd == Rn)
8890 inst.instruction |= Rs << 3;
8891 else
8892 constraint (1, _("dest must overlap one source register"));
8896 static void
8897 do_t_barrier (void)
8899 if (inst.operands[0].present)
8901 constraint ((inst.instruction & 0xf0) != 0x40
8902 && inst.operands[0].imm != 0xf,
8903 _("bad barrier type"));
8904 inst.instruction |= inst.operands[0].imm;
8906 else
8907 inst.instruction |= 0xf;
8910 static void
8911 do_t_bfc (void)
8913 unsigned Rd;
8914 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8915 constraint (msb > 32, _("bit-field extends past end of register"));
8916 /* The instruction encoding stores the LSB and MSB,
8917 not the LSB and width. */
8918 Rd = inst.operands[0].reg;
8919 reject_bad_reg (Rd);
8920 inst.instruction |= Rd << 8;
8921 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8922 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8923 inst.instruction |= msb - 1;
8926 static void
8927 do_t_bfi (void)
8929 int Rd, Rn;
8930 unsigned int msb;
8932 Rd = inst.operands[0].reg;
8933 reject_bad_reg (Rd);
8935 /* #0 in second position is alternative syntax for bfc, which is
8936 the same instruction but with REG_PC in the Rm field. */
8937 if (!inst.operands[1].isreg)
8938 Rn = REG_PC;
8939 else
8941 Rn = inst.operands[1].reg;
8942 reject_bad_reg (Rn);
8945 msb = inst.operands[2].imm + inst.operands[3].imm;
8946 constraint (msb > 32, _("bit-field extends past end of register"));
8947 /* The instruction encoding stores the LSB and MSB,
8948 not the LSB and width. */
8949 inst.instruction |= Rd << 8;
8950 inst.instruction |= Rn << 16;
8951 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8952 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8953 inst.instruction |= msb - 1;
8956 static void
8957 do_t_bfx (void)
8959 unsigned Rd, Rn;
8961 Rd = inst.operands[0].reg;
8962 Rn = inst.operands[1].reg;
8964 reject_bad_reg (Rd);
8965 reject_bad_reg (Rn);
8967 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8968 _("bit-field extends past end of register"));
8969 inst.instruction |= Rd << 8;
8970 inst.instruction |= Rn << 16;
8971 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8972 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8973 inst.instruction |= inst.operands[3].imm - 1;
8976 /* ARM V5 Thumb BLX (argument parse)
8977 BLX <target_addr> which is BLX(1)
8978 BLX <Rm> which is BLX(2)
8979 Unfortunately, there are two different opcodes for this mnemonic.
8980 So, the insns[].value is not used, and the code here zaps values
8981 into inst.instruction.
8983 ??? How to take advantage of the additional two bits of displacement
8984 available in Thumb32 mode? Need new relocation? */
8986 static void
8987 do_t_blx (void)
8989 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8990 if (inst.operands[0].isreg)
8992 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8993 /* We have a register, so this is BLX(2). */
8994 inst.instruction |= inst.operands[0].reg << 3;
8996 else
8998 /* No register. This must be BLX(1). */
8999 inst.instruction = 0xf000e800;
9000 #ifdef OBJ_ELF
9001 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9002 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9003 else
9004 #endif
9005 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9006 inst.reloc.pc_rel = 1;
9010 static void
9011 do_t_branch (void)
9013 int opcode;
9014 int cond;
9016 if (current_it_mask)
9018 /* Conditional branches inside IT blocks are encoded as unconditional
9019 branches. */
9020 cond = COND_ALWAYS;
9021 /* A branch must be the last instruction in an IT block. */
9022 constraint (current_it_mask != 0x10, BAD_BRANCH);
9024 else
9025 cond = inst.cond;
9027 if (cond != COND_ALWAYS)
9028 opcode = T_MNEM_bcond;
9029 else
9030 opcode = inst.instruction;
9032 if (unified_syntax && inst.size_req == 4)
9034 inst.instruction = THUMB_OP32(opcode);
9035 if (cond == COND_ALWAYS)
9036 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9037 else
9039 assert (cond != 0xF);
9040 inst.instruction |= cond << 22;
9041 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9044 else
9046 inst.instruction = THUMB_OP16(opcode);
9047 if (cond == COND_ALWAYS)
9048 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9049 else
9051 inst.instruction |= cond << 8;
9052 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9054 /* Allow section relaxation. */
9055 if (unified_syntax && inst.size_req != 2)
9056 inst.relax = opcode;
9059 inst.reloc.pc_rel = 1;
9062 static void
9063 do_t_bkpt (void)
9065 constraint (inst.cond != COND_ALWAYS,
9066 _("instruction is always unconditional"));
9067 if (inst.operands[0].present)
9069 constraint (inst.operands[0].imm > 255,
9070 _("immediate value out of range"));
9071 inst.instruction |= inst.operands[0].imm;
9075 static void
9076 do_t_branch23 (void)
9078 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9079 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9080 inst.reloc.pc_rel = 1;
9082 /* If the destination of the branch is a defined symbol which does not have
9083 the THUMB_FUNC attribute, then we must be calling a function which has
9084 the (interfacearm) attribute. We look for the Thumb entry point to that
9085 function and change the branch to refer to that function instead. */
9086 if ( inst.reloc.exp.X_op == O_symbol
9087 && inst.reloc.exp.X_add_symbol != NULL
9088 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9089 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9090 inst.reloc.exp.X_add_symbol =
9091 find_real_start (inst.reloc.exp.X_add_symbol);
9094 static void
9095 do_t_bx (void)
9097 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9098 inst.instruction |= inst.operands[0].reg << 3;
9099 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9100 should cause the alignment to be checked once it is known. This is
9101 because BX PC only works if the instruction is word aligned. */
9104 static void
9105 do_t_bxj (void)
9107 int Rm;
9109 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
9110 Rm = inst.operands[0].reg;
9111 reject_bad_reg (Rm);
9112 inst.instruction |= Rm << 16;
9115 static void
9116 do_t_clz (void)
9118 unsigned Rd;
9119 unsigned Rm;
9121 Rd = inst.operands[0].reg;
9122 Rm = inst.operands[1].reg;
9124 reject_bad_reg (Rd);
9125 reject_bad_reg (Rm);
9127 inst.instruction |= Rd << 8;
9128 inst.instruction |= Rm << 16;
9129 inst.instruction |= Rm;
9132 static void
9133 do_t_cps (void)
9135 constraint (current_it_mask, BAD_NOT_IT);
9136 inst.instruction |= inst.operands[0].imm;
9139 static void
9140 do_t_cpsi (void)
9142 constraint (current_it_mask, BAD_NOT_IT);
9143 if (unified_syntax
9144 && (inst.operands[1].present || inst.size_req == 4)
9145 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9147 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9148 inst.instruction = 0xf3af8000;
9149 inst.instruction |= imod << 9;
9150 inst.instruction |= inst.operands[0].imm << 5;
9151 if (inst.operands[1].present)
9152 inst.instruction |= 0x100 | inst.operands[1].imm;
9154 else
9156 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9157 && (inst.operands[0].imm & 4),
9158 _("selected processor does not support 'A' form "
9159 "of this instruction"));
9160 constraint (inst.operands[1].present || inst.size_req == 4,
9161 _("Thumb does not support the 2-argument "
9162 "form of this instruction"));
9163 inst.instruction |= inst.operands[0].imm;
9167 /* THUMB CPY instruction (argument parse). */
9169 static void
9170 do_t_cpy (void)
9172 if (inst.size_req == 4)
9174 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9175 inst.instruction |= inst.operands[0].reg << 8;
9176 inst.instruction |= inst.operands[1].reg;
9178 else
9180 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9181 inst.instruction |= (inst.operands[0].reg & 0x7);
9182 inst.instruction |= inst.operands[1].reg << 3;
9186 static void
9187 do_t_cbz (void)
9189 constraint (current_it_mask, BAD_NOT_IT);
9190 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9191 inst.instruction |= inst.operands[0].reg;
9192 inst.reloc.pc_rel = 1;
9193 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9196 static void
9197 do_t_dbg (void)
9199 inst.instruction |= inst.operands[0].imm;
9202 static void
9203 do_t_div (void)
9205 unsigned Rd, Rn, Rm;
9207 Rd = inst.operands[0].reg;
9208 Rn = (inst.operands[1].present
9209 ? inst.operands[1].reg : Rd);
9210 Rm = inst.operands[2].reg;
9212 reject_bad_reg (Rd);
9213 reject_bad_reg (Rn);
9214 reject_bad_reg (Rm);
9216 inst.instruction |= Rd << 8;
9217 inst.instruction |= Rn << 16;
9218 inst.instruction |= Rm;
9221 static void
9222 do_t_hint (void)
9224 if (unified_syntax && inst.size_req == 4)
9225 inst.instruction = THUMB_OP32 (inst.instruction);
9226 else
9227 inst.instruction = THUMB_OP16 (inst.instruction);
9230 static void
9231 do_t_it (void)
9233 unsigned int cond = inst.operands[0].imm;
9235 constraint (current_it_mask, BAD_NOT_IT);
9236 current_it_mask = (inst.instruction & 0xf) | 0x10;
9237 current_cc = cond;
9239 /* If the condition is a negative condition, invert the mask. */
9240 if ((cond & 0x1) == 0x0)
9242 unsigned int mask = inst.instruction & 0x000f;
9244 if ((mask & 0x7) == 0)
9245 /* no conversion needed */;
9246 else if ((mask & 0x3) == 0)
9247 mask ^= 0x8;
9248 else if ((mask & 0x1) == 0)
9249 mask ^= 0xC;
9250 else
9251 mask ^= 0xE;
9253 inst.instruction &= 0xfff0;
9254 inst.instruction |= mask;
9257 inst.instruction |= cond << 4;
9260 /* Helper function used for both push/pop and ldm/stm. */
9261 static void
9262 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9264 bfd_boolean load;
9266 load = (inst.instruction & (1 << 20)) != 0;
9268 if (mask & (1 << 13))
9269 inst.error = _("SP not allowed in register list");
9270 if (load)
9272 if (mask & (1 << 14)
9273 && mask & (1 << 15))
9274 inst.error = _("LR and PC should not both be in register list");
9276 if ((mask & (1 << base)) != 0
9277 && writeback)
9278 as_warn (_("base register should not be in register list "
9279 "when written back"));
9281 else
9283 if (mask & (1 << 15))
9284 inst.error = _("PC not allowed in register list");
9286 if (mask & (1 << base))
9287 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9290 if ((mask & (mask - 1)) == 0)
9292 /* Single register transfers implemented as str/ldr. */
9293 if (writeback)
9295 if (inst.instruction & (1 << 23))
9296 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9297 else
9298 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9300 else
9302 if (inst.instruction & (1 << 23))
9303 inst.instruction = 0x00800000; /* ia -> [base] */
9304 else
9305 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9308 inst.instruction |= 0xf8400000;
9309 if (load)
9310 inst.instruction |= 0x00100000;
9312 mask = ffs (mask) - 1;
9313 mask <<= 12;
9315 else if (writeback)
9316 inst.instruction |= WRITE_BACK;
9318 inst.instruction |= mask;
9319 inst.instruction |= base << 16;
9322 static void
9323 do_t_ldmstm (void)
9325 /* This really doesn't seem worth it. */
9326 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9327 _("expression too complex"));
9328 constraint (inst.operands[1].writeback,
9329 _("Thumb load/store multiple does not support {reglist}^"));
9331 if (unified_syntax)
9333 bfd_boolean narrow;
9334 unsigned mask;
9336 narrow = FALSE;
9337 /* See if we can use a 16-bit instruction. */
9338 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9339 && inst.size_req != 4
9340 && !(inst.operands[1].imm & ~0xff))
9342 mask = 1 << inst.operands[0].reg;
9344 if (inst.operands[0].reg <= 7
9345 && (inst.instruction == T_MNEM_stmia
9346 ? inst.operands[0].writeback
9347 : (inst.operands[0].writeback
9348 == !(inst.operands[1].imm & mask))))
9350 if (inst.instruction == T_MNEM_stmia
9351 && (inst.operands[1].imm & mask)
9352 && (inst.operands[1].imm & (mask - 1)))
9353 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9354 inst.operands[0].reg);
9356 inst.instruction = THUMB_OP16 (inst.instruction);
9357 inst.instruction |= inst.operands[0].reg << 8;
9358 inst.instruction |= inst.operands[1].imm;
9359 narrow = TRUE;
9361 else if (inst.operands[0] .reg == REG_SP
9362 && inst.operands[0].writeback)
9364 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9365 ? T_MNEM_push : T_MNEM_pop);
9366 inst.instruction |= inst.operands[1].imm;
9367 narrow = TRUE;
9371 if (!narrow)
9373 if (inst.instruction < 0xffff)
9374 inst.instruction = THUMB_OP32 (inst.instruction);
9376 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9377 inst.operands[0].writeback);
9380 else
9382 constraint (inst.operands[0].reg > 7
9383 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9384 constraint (inst.instruction != T_MNEM_ldmia
9385 && inst.instruction != T_MNEM_stmia,
9386 _("Thumb-2 instruction only valid in unified syntax"));
9387 if (inst.instruction == T_MNEM_stmia)
9389 if (!inst.operands[0].writeback)
9390 as_warn (_("this instruction will write back the base register"));
9391 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9392 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9393 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9394 inst.operands[0].reg);
9396 else
9398 if (!inst.operands[0].writeback
9399 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9400 as_warn (_("this instruction will write back the base register"));
9401 else if (inst.operands[0].writeback
9402 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9403 as_warn (_("this instruction will not write back the base register"));
9406 inst.instruction = THUMB_OP16 (inst.instruction);
9407 inst.instruction |= inst.operands[0].reg << 8;
9408 inst.instruction |= inst.operands[1].imm;
9412 static void
9413 do_t_ldrex (void)
9415 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9416 || inst.operands[1].postind || inst.operands[1].writeback
9417 || inst.operands[1].immisreg || inst.operands[1].shifted
9418 || inst.operands[1].negative,
9419 BAD_ADDR_MODE);
9421 inst.instruction |= inst.operands[0].reg << 12;
9422 inst.instruction |= inst.operands[1].reg << 16;
9423 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9426 static void
9427 do_t_ldrexd (void)
9429 if (!inst.operands[1].present)
9431 constraint (inst.operands[0].reg == REG_LR,
9432 _("r14 not allowed as first register "
9433 "when second register is omitted"));
9434 inst.operands[1].reg = inst.operands[0].reg + 1;
9436 constraint (inst.operands[0].reg == inst.operands[1].reg,
9437 BAD_OVERLAP);
9439 inst.instruction |= inst.operands[0].reg << 12;
9440 inst.instruction |= inst.operands[1].reg << 8;
9441 inst.instruction |= inst.operands[2].reg << 16;
9444 static void
9445 do_t_ldst (void)
9447 unsigned long opcode;
9448 int Rn;
9450 opcode = inst.instruction;
9451 if (unified_syntax)
9453 if (!inst.operands[1].isreg)
9455 if (opcode <= 0xffff)
9456 inst.instruction = THUMB_OP32 (opcode);
9457 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9458 return;
9460 if (inst.operands[1].isreg
9461 && !inst.operands[1].writeback
9462 && !inst.operands[1].shifted && !inst.operands[1].postind
9463 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9464 && opcode <= 0xffff
9465 && inst.size_req != 4)
9467 /* Insn may have a 16-bit form. */
9468 Rn = inst.operands[1].reg;
9469 if (inst.operands[1].immisreg)
9471 inst.instruction = THUMB_OP16 (opcode);
9472 /* [Rn, Rik] */
9473 if (Rn <= 7 && inst.operands[1].imm <= 7)
9474 goto op16;
9476 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9477 && opcode != T_MNEM_ldrsb)
9478 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9479 || (Rn == REG_SP && opcode == T_MNEM_str))
9481 /* [Rn, #const] */
9482 if (Rn > 7)
9484 if (Rn == REG_PC)
9486 if (inst.reloc.pc_rel)
9487 opcode = T_MNEM_ldr_pc2;
9488 else
9489 opcode = T_MNEM_ldr_pc;
9491 else
9493 if (opcode == T_MNEM_ldr)
9494 opcode = T_MNEM_ldr_sp;
9495 else
9496 opcode = T_MNEM_str_sp;
9498 inst.instruction = inst.operands[0].reg << 8;
9500 else
9502 inst.instruction = inst.operands[0].reg;
9503 inst.instruction |= inst.operands[1].reg << 3;
9505 inst.instruction |= THUMB_OP16 (opcode);
9506 if (inst.size_req == 2)
9507 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9508 else
9509 inst.relax = opcode;
9510 return;
9513 /* Definitely a 32-bit variant. */
9514 inst.instruction = THUMB_OP32 (opcode);
9515 inst.instruction |= inst.operands[0].reg << 12;
9516 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9517 return;
9520 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9522 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9524 /* Only [Rn,Rm] is acceptable. */
9525 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9526 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9527 || inst.operands[1].postind || inst.operands[1].shifted
9528 || inst.operands[1].negative,
9529 _("Thumb does not support this addressing mode"));
9530 inst.instruction = THUMB_OP16 (inst.instruction);
9531 goto op16;
9534 inst.instruction = THUMB_OP16 (inst.instruction);
9535 if (!inst.operands[1].isreg)
9536 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9537 return;
9539 constraint (!inst.operands[1].preind
9540 || inst.operands[1].shifted
9541 || inst.operands[1].writeback,
9542 _("Thumb does not support this addressing mode"));
9543 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9545 constraint (inst.instruction & 0x0600,
9546 _("byte or halfword not valid for base register"));
9547 constraint (inst.operands[1].reg == REG_PC
9548 && !(inst.instruction & THUMB_LOAD_BIT),
9549 _("r15 based store not allowed"));
9550 constraint (inst.operands[1].immisreg,
9551 _("invalid base register for register offset"));
9553 if (inst.operands[1].reg == REG_PC)
9554 inst.instruction = T_OPCODE_LDR_PC;
9555 else if (inst.instruction & THUMB_LOAD_BIT)
9556 inst.instruction = T_OPCODE_LDR_SP;
9557 else
9558 inst.instruction = T_OPCODE_STR_SP;
9560 inst.instruction |= inst.operands[0].reg << 8;
9561 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9562 return;
9565 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9566 if (!inst.operands[1].immisreg)
9568 /* Immediate offset. */
9569 inst.instruction |= inst.operands[0].reg;
9570 inst.instruction |= inst.operands[1].reg << 3;
9571 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9572 return;
9575 /* Register offset. */
9576 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9577 constraint (inst.operands[1].negative,
9578 _("Thumb does not support this addressing mode"));
9580 op16:
9581 switch (inst.instruction)
9583 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9584 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9585 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9586 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9587 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9588 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9589 case 0x5600 /* ldrsb */:
9590 case 0x5e00 /* ldrsh */: break;
9591 default: abort ();
9594 inst.instruction |= inst.operands[0].reg;
9595 inst.instruction |= inst.operands[1].reg << 3;
9596 inst.instruction |= inst.operands[1].imm << 6;
9599 static void
9600 do_t_ldstd (void)
9602 if (!inst.operands[1].present)
9604 inst.operands[1].reg = inst.operands[0].reg + 1;
9605 constraint (inst.operands[0].reg == REG_LR,
9606 _("r14 not allowed here"));
9608 inst.instruction |= inst.operands[0].reg << 12;
9609 inst.instruction |= inst.operands[1].reg << 8;
9610 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9613 static void
9614 do_t_ldstt (void)
9616 inst.instruction |= inst.operands[0].reg << 12;
9617 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9620 static void
9621 do_t_mla (void)
9623 unsigned Rd, Rn, Rm, Ra;
9625 Rd = inst.operands[0].reg;
9626 Rn = inst.operands[1].reg;
9627 Rm = inst.operands[2].reg;
9628 Ra = inst.operands[3].reg;
9630 reject_bad_reg (Rd);
9631 reject_bad_reg (Rn);
9632 reject_bad_reg (Rm);
9633 reject_bad_reg (Ra);
9635 inst.instruction |= Rd << 8;
9636 inst.instruction |= Rn << 16;
9637 inst.instruction |= Rm;
9638 inst.instruction |= Ra << 12;
9641 static void
9642 do_t_mlal (void)
9644 unsigned RdLo, RdHi, Rn, Rm;
9646 RdLo = inst.operands[0].reg;
9647 RdHi = inst.operands[1].reg;
9648 Rn = inst.operands[2].reg;
9649 Rm = inst.operands[3].reg;
9651 reject_bad_reg (RdLo);
9652 reject_bad_reg (RdHi);
9653 reject_bad_reg (Rn);
9654 reject_bad_reg (Rm);
9656 inst.instruction |= RdLo << 12;
9657 inst.instruction |= RdHi << 8;
9658 inst.instruction |= Rn << 16;
9659 inst.instruction |= Rm;
9662 static void
9663 do_t_mov_cmp (void)
9665 unsigned Rn, Rm;
9667 Rn = inst.operands[0].reg;
9668 Rm = inst.operands[1].reg;
9670 if (unified_syntax)
9672 int r0off = (inst.instruction == T_MNEM_mov
9673 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9674 unsigned long opcode;
9675 bfd_boolean narrow;
9676 bfd_boolean low_regs;
9678 low_regs = (Rn <= 7 && Rm <= 7);
9679 opcode = inst.instruction;
9680 if (current_it_mask)
9681 narrow = opcode != T_MNEM_movs;
9682 else
9683 narrow = opcode != T_MNEM_movs || low_regs;
9684 if (inst.size_req == 4
9685 || inst.operands[1].shifted)
9686 narrow = FALSE;
9688 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9689 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9690 && !inst.operands[1].shifted
9691 && Rn == REG_PC
9692 && Rm == REG_LR)
9694 inst.instruction = T2_SUBS_PC_LR;
9695 return;
9698 if (opcode == T_MNEM_cmp)
9700 constraint (Rn == REG_PC, BAD_PC);
9701 if (narrow)
9703 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
9704 but valid. */
9705 warn_deprecated_sp (Rm);
9706 /* R15 was documented as a valid choice for Rm in ARMv6,
9707 but as UNPREDICTABLE in ARMv7. ARM's proprietary
9708 tools reject R15, so we do too. */
9709 constraint (Rm == REG_PC, BAD_PC);
9711 else
9712 reject_bad_reg (Rm);
9714 else if (opcode == T_MNEM_mov
9715 || opcode == T_MNEM_movs)
9717 if (inst.operands[1].isreg)
9719 if (opcode == T_MNEM_movs)
9721 reject_bad_reg (Rn);
9722 reject_bad_reg (Rm);
9724 else if ((Rn == REG_SP || Rn == REG_PC)
9725 && (Rm == REG_SP || Rm == REG_PC))
9726 reject_bad_reg (Rm);
9728 else
9729 reject_bad_reg (Rn);
9732 if (!inst.operands[1].isreg)
9734 /* Immediate operand. */
9735 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9736 narrow = 0;
9737 if (low_regs && narrow)
9739 inst.instruction = THUMB_OP16 (opcode);
9740 inst.instruction |= Rn << 8;
9741 if (inst.size_req == 2)
9742 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9743 else
9744 inst.relax = opcode;
9746 else
9748 inst.instruction = THUMB_OP32 (inst.instruction);
9749 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9750 inst.instruction |= Rn << r0off;
9751 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9754 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9755 && (inst.instruction == T_MNEM_mov
9756 || inst.instruction == T_MNEM_movs))
9758 /* Register shifts are encoded as separate shift instructions. */
9759 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9761 if (current_it_mask)
9762 narrow = !flags;
9763 else
9764 narrow = flags;
9766 if (inst.size_req == 4)
9767 narrow = FALSE;
9769 if (!low_regs || inst.operands[1].imm > 7)
9770 narrow = FALSE;
9772 if (Rn != Rm)
9773 narrow = FALSE;
9775 switch (inst.operands[1].shift_kind)
9777 case SHIFT_LSL:
9778 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9779 break;
9780 case SHIFT_ASR:
9781 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9782 break;
9783 case SHIFT_LSR:
9784 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9785 break;
9786 case SHIFT_ROR:
9787 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9788 break;
9789 default:
9790 abort ();
9793 inst.instruction = opcode;
9794 if (narrow)
9796 inst.instruction |= Rn;
9797 inst.instruction |= inst.operands[1].imm << 3;
9799 else
9801 if (flags)
9802 inst.instruction |= CONDS_BIT;
9804 inst.instruction |= Rn << 8;
9805 inst.instruction |= Rm << 16;
9806 inst.instruction |= inst.operands[1].imm;
9809 else if (!narrow)
9811 /* Some mov with immediate shift have narrow variants.
9812 Register shifts are handled above. */
9813 if (low_regs && inst.operands[1].shifted
9814 && (inst.instruction == T_MNEM_mov
9815 || inst.instruction == T_MNEM_movs))
9817 if (current_it_mask)
9818 narrow = (inst.instruction == T_MNEM_mov);
9819 else
9820 narrow = (inst.instruction == T_MNEM_movs);
9823 if (narrow)
9825 switch (inst.operands[1].shift_kind)
9827 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9828 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9829 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9830 default: narrow = FALSE; break;
9834 if (narrow)
9836 inst.instruction |= Rn;
9837 inst.instruction |= Rm << 3;
9838 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9840 else
9842 inst.instruction = THUMB_OP32 (inst.instruction);
9843 inst.instruction |= Rn << r0off;
9844 encode_thumb32_shifted_operand (1);
9847 else
9848 switch (inst.instruction)
9850 case T_MNEM_mov:
9851 inst.instruction = T_OPCODE_MOV_HR;
9852 inst.instruction |= (Rn & 0x8) << 4;
9853 inst.instruction |= (Rn & 0x7);
9854 inst.instruction |= Rm << 3;
9855 break;
9857 case T_MNEM_movs:
9858 /* We know we have low registers at this point.
9859 Generate ADD Rd, Rs, #0. */
9860 inst.instruction = T_OPCODE_ADD_I3;
9861 inst.instruction |= Rn;
9862 inst.instruction |= Rm << 3;
9863 break;
9865 case T_MNEM_cmp:
9866 if (low_regs)
9868 inst.instruction = T_OPCODE_CMP_LR;
9869 inst.instruction |= Rn;
9870 inst.instruction |= Rm << 3;
9872 else
9874 inst.instruction = T_OPCODE_CMP_HR;
9875 inst.instruction |= (Rn & 0x8) << 4;
9876 inst.instruction |= (Rn & 0x7);
9877 inst.instruction |= Rm << 3;
9879 break;
9881 return;
9884 inst.instruction = THUMB_OP16 (inst.instruction);
9885 if (inst.operands[1].isreg)
9887 if (Rn < 8 && Rm < 8)
9889 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9890 since a MOV instruction produces unpredictable results. */
9891 if (inst.instruction == T_OPCODE_MOV_I8)
9892 inst.instruction = T_OPCODE_ADD_I3;
9893 else
9894 inst.instruction = T_OPCODE_CMP_LR;
9896 inst.instruction |= Rn;
9897 inst.instruction |= Rm << 3;
9899 else
9901 if (inst.instruction == T_OPCODE_MOV_I8)
9902 inst.instruction = T_OPCODE_MOV_HR;
9903 else
9904 inst.instruction = T_OPCODE_CMP_HR;
9905 do_t_cpy ();
9908 else
9910 constraint (Rn > 7,
9911 _("only lo regs allowed with immediate"));
9912 inst.instruction |= Rn << 8;
9913 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9917 static void
9918 do_t_mov16 (void)
9920 unsigned Rd;
9921 bfd_vma imm;
9922 bfd_boolean top;
9924 top = (inst.instruction & 0x00800000) != 0;
9925 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9927 constraint (top, _(":lower16: not allowed this instruction"));
9928 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9930 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9932 constraint (!top, _(":upper16: not allowed this instruction"));
9933 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9936 Rd = inst.operands[0].reg;
9937 reject_bad_reg (Rd);
9939 inst.instruction |= Rd << 8;
9940 if (inst.reloc.type == BFD_RELOC_UNUSED)
9942 imm = inst.reloc.exp.X_add_number;
9943 inst.instruction |= (imm & 0xf000) << 4;
9944 inst.instruction |= (imm & 0x0800) << 15;
9945 inst.instruction |= (imm & 0x0700) << 4;
9946 inst.instruction |= (imm & 0x00ff);
9950 static void
9951 do_t_mvn_tst (void)
9953 unsigned Rn, Rm;
9955 Rn = inst.operands[0].reg;
9956 Rm = inst.operands[1].reg;
9958 if (inst.instruction == T_MNEM_cmp
9959 || inst.instruction == T_MNEM_cmn)
9960 constraint (Rn == REG_PC, BAD_PC);
9961 else
9962 reject_bad_reg (Rn);
9963 reject_bad_reg (Rm);
9965 if (unified_syntax)
9967 int r0off = (inst.instruction == T_MNEM_mvn
9968 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9969 bfd_boolean narrow;
9971 if (inst.size_req == 4
9972 || inst.instruction > 0xffff
9973 || inst.operands[1].shifted
9974 || Rn > 7 || Rm > 7)
9975 narrow = FALSE;
9976 else if (inst.instruction == T_MNEM_cmn)
9977 narrow = TRUE;
9978 else if (THUMB_SETS_FLAGS (inst.instruction))
9979 narrow = (current_it_mask == 0);
9980 else
9981 narrow = (current_it_mask != 0);
9983 if (!inst.operands[1].isreg)
9985 /* For an immediate, we always generate a 32-bit opcode;
9986 section relaxation will shrink it later if possible. */
9987 if (inst.instruction < 0xffff)
9988 inst.instruction = THUMB_OP32 (inst.instruction);
9989 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9990 inst.instruction |= Rn << r0off;
9991 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9993 else
9995 /* See if we can do this with a 16-bit instruction. */
9996 if (narrow)
9998 inst.instruction = THUMB_OP16 (inst.instruction);
9999 inst.instruction |= Rn;
10000 inst.instruction |= Rm << 3;
10002 else
10004 constraint (inst.operands[1].shifted
10005 && inst.operands[1].immisreg,
10006 _("shift must be constant"));
10007 if (inst.instruction < 0xffff)
10008 inst.instruction = THUMB_OP32 (inst.instruction);
10009 inst.instruction |= Rn << r0off;
10010 encode_thumb32_shifted_operand (1);
10014 else
10016 constraint (inst.instruction > 0xffff
10017 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10018 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10019 _("unshifted register required"));
10020 constraint (Rn > 7 || Rm > 7,
10021 BAD_HIREG);
10023 inst.instruction = THUMB_OP16 (inst.instruction);
10024 inst.instruction |= Rn;
10025 inst.instruction |= Rm << 3;
10029 static void
10030 do_t_mrs (void)
10032 unsigned Rd;
10033 int flags;
10035 if (do_vfp_nsyn_mrs () == SUCCESS)
10036 return;
10038 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10039 if (flags == 0)
10041 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10042 _("selected processor does not support "
10043 "requested special purpose register"));
10045 else
10047 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10048 _("selected processor does not support "
10049 "requested special purpose register"));
10050 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10051 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10052 _("'CPSR' or 'SPSR' expected"));
10055 Rd = inst.operands[0].reg;
10056 reject_bad_reg (Rd);
10058 inst.instruction |= Rd << 8;
10059 inst.instruction |= (flags & SPSR_BIT) >> 2;
10060 inst.instruction |= inst.operands[1].imm & 0xff;
10063 static void
10064 do_t_msr (void)
10066 int flags;
10067 unsigned Rn;
10069 if (do_vfp_nsyn_msr () == SUCCESS)
10070 return;
10072 constraint (!inst.operands[1].isreg,
10073 _("Thumb encoding does not support an immediate here"));
10074 flags = inst.operands[0].imm;
10075 if (flags & ~0xff)
10077 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10078 _("selected processor does not support "
10079 "requested special purpose register"));
10081 else
10083 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10084 _("selected processor does not support "
10085 "requested special purpose register"));
10086 flags |= PSR_f;
10089 Rn = inst.operands[1].reg;
10090 reject_bad_reg (Rn);
10092 inst.instruction |= (flags & SPSR_BIT) >> 2;
10093 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10094 inst.instruction |= (flags & 0xff);
10095 inst.instruction |= Rn << 16;
10098 static void
10099 do_t_mul (void)
10101 bfd_boolean narrow;
10102 unsigned Rd, Rn, Rm;
10104 if (!inst.operands[2].present)
10105 inst.operands[2].reg = inst.operands[0].reg;
10107 Rd = inst.operands[0].reg;
10108 Rn = inst.operands[1].reg;
10109 Rm = inst.operands[2].reg;
10111 if (unified_syntax)
10113 if (inst.size_req == 4
10114 || (Rd != Rn
10115 && Rd != Rm)
10116 || Rn > 7
10117 || Rm > 7)
10118 narrow = FALSE;
10119 else if (inst.instruction == T_MNEM_muls)
10120 narrow = (current_it_mask == 0);
10121 else
10122 narrow = (current_it_mask != 0);
10124 else
10126 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10127 constraint (Rn > 7 || Rm > 7,
10128 BAD_HIREG);
10129 narrow = TRUE;
10132 if (narrow)
10134 /* 16-bit MULS/Conditional MUL. */
10135 inst.instruction = THUMB_OP16 (inst.instruction);
10136 inst.instruction |= Rd;
10138 if (Rd == Rn)
10139 inst.instruction |= Rm << 3;
10140 else if (Rd == Rm)
10141 inst.instruction |= Rn << 3;
10142 else
10143 constraint (1, _("dest must overlap one source register"));
10145 else
10147 constraint(inst.instruction != T_MNEM_mul,
10148 _("Thumb-2 MUL must not set flags"));
10149 /* 32-bit MUL. */
10150 inst.instruction = THUMB_OP32 (inst.instruction);
10151 inst.instruction |= Rd << 8;
10152 inst.instruction |= Rn << 16;
10153 inst.instruction |= Rm << 0;
10155 reject_bad_reg (Rd);
10156 reject_bad_reg (Rn);
10157 reject_bad_reg (Rm);
10161 static void
10162 do_t_mull (void)
10164 unsigned RdLo, RdHi, Rn, Rm;
10166 RdLo = inst.operands[0].reg;
10167 RdHi = inst.operands[1].reg;
10168 Rn = inst.operands[2].reg;
10169 Rm = inst.operands[3].reg;
10171 reject_bad_reg (RdLo);
10172 reject_bad_reg (RdHi);
10173 reject_bad_reg (Rn);
10174 reject_bad_reg (Rm);
10176 inst.instruction |= RdLo << 12;
10177 inst.instruction |= RdHi << 8;
10178 inst.instruction |= Rn << 16;
10179 inst.instruction |= Rm;
10181 if (RdLo == RdHi)
10182 as_tsktsk (_("rdhi and rdlo must be different"));
10185 static void
10186 do_t_nop (void)
10188 if (unified_syntax)
10190 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10192 inst.instruction = THUMB_OP32 (inst.instruction);
10193 inst.instruction |= inst.operands[0].imm;
10195 else
10197 /* PR9722: Check for Thumb2 availability before
10198 generating a thumb2 nop instruction. */
10199 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10201 inst.instruction = THUMB_OP16 (inst.instruction);
10202 inst.instruction |= inst.operands[0].imm << 4;
10204 else
10205 inst.instruction = 0x46c0;
10208 else
10210 constraint (inst.operands[0].present,
10211 _("Thumb does not support NOP with hints"));
10212 inst.instruction = 0x46c0;
10216 static void
10217 do_t_neg (void)
10219 if (unified_syntax)
10221 bfd_boolean narrow;
10223 if (THUMB_SETS_FLAGS (inst.instruction))
10224 narrow = (current_it_mask == 0);
10225 else
10226 narrow = (current_it_mask != 0);
10227 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10228 narrow = FALSE;
10229 if (inst.size_req == 4)
10230 narrow = FALSE;
10232 if (!narrow)
10234 inst.instruction = THUMB_OP32 (inst.instruction);
10235 inst.instruction |= inst.operands[0].reg << 8;
10236 inst.instruction |= inst.operands[1].reg << 16;
10238 else
10240 inst.instruction = THUMB_OP16 (inst.instruction);
10241 inst.instruction |= inst.operands[0].reg;
10242 inst.instruction |= inst.operands[1].reg << 3;
10245 else
10247 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10248 BAD_HIREG);
10249 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10251 inst.instruction = THUMB_OP16 (inst.instruction);
10252 inst.instruction |= inst.operands[0].reg;
10253 inst.instruction |= inst.operands[1].reg << 3;
10257 static void
10258 do_t_orn (void)
10260 unsigned Rd, Rn;
10262 Rd = inst.operands[0].reg;
10263 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10265 reject_bad_reg (Rd);
10266 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10267 reject_bad_reg (Rn);
10269 inst.instruction |= Rd << 8;
10270 inst.instruction |= Rn << 16;
10272 if (!inst.operands[2].isreg)
10274 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10275 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10277 else
10279 unsigned Rm;
10281 Rm = inst.operands[2].reg;
10282 reject_bad_reg (Rm);
10284 constraint (inst.operands[2].shifted
10285 && inst.operands[2].immisreg,
10286 _("shift must be constant"));
10287 encode_thumb32_shifted_operand (2);
10291 static void
10292 do_t_pkhbt (void)
10294 unsigned Rd, Rn, Rm;
10296 Rd = inst.operands[0].reg;
10297 Rn = inst.operands[1].reg;
10298 Rm = inst.operands[2].reg;
10300 reject_bad_reg (Rd);
10301 reject_bad_reg (Rn);
10302 reject_bad_reg (Rm);
10304 inst.instruction |= Rd << 8;
10305 inst.instruction |= Rn << 16;
10306 inst.instruction |= Rm;
10307 if (inst.operands[3].present)
10309 unsigned int val = inst.reloc.exp.X_add_number;
10310 constraint (inst.reloc.exp.X_op != O_constant,
10311 _("expression too complex"));
10312 inst.instruction |= (val & 0x1c) << 10;
10313 inst.instruction |= (val & 0x03) << 6;
10317 static void
10318 do_t_pkhtb (void)
10320 if (!inst.operands[3].present)
10321 inst.instruction &= ~0x00000020;
10322 do_t_pkhbt ();
10325 static void
10326 do_t_pld (void)
10328 if (inst.operands[0].immisreg)
10329 reject_bad_reg (inst.operands[0].imm);
10331 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10334 static void
10335 do_t_push_pop (void)
10337 unsigned mask;
10339 constraint (inst.operands[0].writeback,
10340 _("push/pop do not support {reglist}^"));
10341 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10342 _("expression too complex"));
10344 mask = inst.operands[0].imm;
10345 if ((mask & ~0xff) == 0)
10346 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10347 else if ((inst.instruction == T_MNEM_push
10348 && (mask & ~0xff) == 1 << REG_LR)
10349 || (inst.instruction == T_MNEM_pop
10350 && (mask & ~0xff) == 1 << REG_PC))
10352 inst.instruction = THUMB_OP16 (inst.instruction);
10353 inst.instruction |= THUMB_PP_PC_LR;
10354 inst.instruction |= mask & 0xff;
10356 else if (unified_syntax)
10358 inst.instruction = THUMB_OP32 (inst.instruction);
10359 encode_thumb2_ldmstm (13, mask, TRUE);
10361 else
10363 inst.error = _("invalid register list to push/pop instruction");
10364 return;
10368 static void
10369 do_t_rbit (void)
10371 unsigned Rd, Rm;
10373 Rd = inst.operands[0].reg;
10374 Rm = inst.operands[1].reg;
10376 reject_bad_reg (Rd);
10377 reject_bad_reg (Rm);
10379 inst.instruction |= Rd << 8;
10380 inst.instruction |= Rm << 16;
10381 inst.instruction |= Rm;
10384 static void
10385 do_t_rev (void)
10387 unsigned Rd, Rm;
10389 Rd = inst.operands[0].reg;
10390 Rm = inst.operands[1].reg;
10392 reject_bad_reg (Rd);
10393 reject_bad_reg (Rm);
10395 if (Rd <= 7 && Rm <= 7
10396 && inst.size_req != 4)
10398 inst.instruction = THUMB_OP16 (inst.instruction);
10399 inst.instruction |= Rd;
10400 inst.instruction |= Rm << 3;
10402 else if (unified_syntax)
10404 inst.instruction = THUMB_OP32 (inst.instruction);
10405 inst.instruction |= Rd << 8;
10406 inst.instruction |= Rm << 16;
10407 inst.instruction |= Rm;
10409 else
10410 inst.error = BAD_HIREG;
10413 static void
10414 do_t_rrx (void)
10416 unsigned Rd, Rm;
10418 Rd = inst.operands[0].reg;
10419 Rm = inst.operands[1].reg;
10421 reject_bad_reg (Rd);
10422 reject_bad_reg (Rm);
10424 inst.instruction |= Rd << 8;
10425 inst.instruction |= Rm;
10428 static void
10429 do_t_rsb (void)
10431 unsigned Rd, Rs;
10433 Rd = inst.operands[0].reg;
10434 Rs = (inst.operands[1].present
10435 ? inst.operands[1].reg /* Rd, Rs, foo */
10436 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10438 reject_bad_reg (Rd);
10439 reject_bad_reg (Rs);
10440 if (inst.operands[2].isreg)
10441 reject_bad_reg (inst.operands[2].reg);
10443 inst.instruction |= Rd << 8;
10444 inst.instruction |= Rs << 16;
10445 if (!inst.operands[2].isreg)
10447 bfd_boolean narrow;
10449 if ((inst.instruction & 0x00100000) != 0)
10450 narrow = (current_it_mask == 0);
10451 else
10452 narrow = (current_it_mask != 0);
10454 if (Rd > 7 || Rs > 7)
10455 narrow = FALSE;
10457 if (inst.size_req == 4 || !unified_syntax)
10458 narrow = FALSE;
10460 if (inst.reloc.exp.X_op != O_constant
10461 || inst.reloc.exp.X_add_number != 0)
10462 narrow = FALSE;
10464 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10465 relaxation, but it doesn't seem worth the hassle. */
10466 if (narrow)
10468 inst.reloc.type = BFD_RELOC_UNUSED;
10469 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10470 inst.instruction |= Rs << 3;
10471 inst.instruction |= Rd;
10473 else
10475 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10476 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10479 else
10480 encode_thumb32_shifted_operand (2);
10483 static void
10484 do_t_setend (void)
10486 constraint (current_it_mask, BAD_NOT_IT);
10487 if (inst.operands[0].imm)
10488 inst.instruction |= 0x8;
10491 static void
10492 do_t_shift (void)
10494 if (!inst.operands[1].present)
10495 inst.operands[1].reg = inst.operands[0].reg;
10497 if (unified_syntax)
10499 bfd_boolean narrow;
10500 int shift_kind;
10502 switch (inst.instruction)
10504 case T_MNEM_asr:
10505 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10506 case T_MNEM_lsl:
10507 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10508 case T_MNEM_lsr:
10509 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10510 case T_MNEM_ror:
10511 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10512 default: abort ();
10515 if (THUMB_SETS_FLAGS (inst.instruction))
10516 narrow = (current_it_mask == 0);
10517 else
10518 narrow = (current_it_mask != 0);
10519 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10520 narrow = FALSE;
10521 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10522 narrow = FALSE;
10523 if (inst.operands[2].isreg
10524 && (inst.operands[1].reg != inst.operands[0].reg
10525 || inst.operands[2].reg > 7))
10526 narrow = FALSE;
10527 if (inst.size_req == 4)
10528 narrow = FALSE;
10530 reject_bad_reg (inst.operands[0].reg);
10531 reject_bad_reg (inst.operands[1].reg);
10533 if (!narrow)
10535 if (inst.operands[2].isreg)
10537 reject_bad_reg (inst.operands[2].reg);
10538 inst.instruction = THUMB_OP32 (inst.instruction);
10539 inst.instruction |= inst.operands[0].reg << 8;
10540 inst.instruction |= inst.operands[1].reg << 16;
10541 inst.instruction |= inst.operands[2].reg;
10543 else
10545 inst.operands[1].shifted = 1;
10546 inst.operands[1].shift_kind = shift_kind;
10547 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10548 ? T_MNEM_movs : T_MNEM_mov);
10549 inst.instruction |= inst.operands[0].reg << 8;
10550 encode_thumb32_shifted_operand (1);
10551 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10552 inst.reloc.type = BFD_RELOC_UNUSED;
10555 else
10557 if (inst.operands[2].isreg)
10559 switch (shift_kind)
10561 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10562 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10563 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10564 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10565 default: abort ();
10568 inst.instruction |= inst.operands[0].reg;
10569 inst.instruction |= inst.operands[2].reg << 3;
10571 else
10573 switch (shift_kind)
10575 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10576 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10577 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10578 default: abort ();
10580 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10581 inst.instruction |= inst.operands[0].reg;
10582 inst.instruction |= inst.operands[1].reg << 3;
10586 else
10588 constraint (inst.operands[0].reg > 7
10589 || inst.operands[1].reg > 7, BAD_HIREG);
10590 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10592 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10594 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10595 constraint (inst.operands[0].reg != inst.operands[1].reg,
10596 _("source1 and dest must be same register"));
10598 switch (inst.instruction)
10600 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10601 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10602 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10603 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10604 default: abort ();
10607 inst.instruction |= inst.operands[0].reg;
10608 inst.instruction |= inst.operands[2].reg << 3;
10610 else
10612 switch (inst.instruction)
10614 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10615 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10616 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10617 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10618 default: abort ();
10620 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10621 inst.instruction |= inst.operands[0].reg;
10622 inst.instruction |= inst.operands[1].reg << 3;
10627 static void
10628 do_t_simd (void)
10630 unsigned Rd, Rn, Rm;
10632 Rd = inst.operands[0].reg;
10633 Rn = inst.operands[1].reg;
10634 Rm = inst.operands[2].reg;
10636 reject_bad_reg (Rd);
10637 reject_bad_reg (Rn);
10638 reject_bad_reg (Rm);
10640 inst.instruction |= Rd << 8;
10641 inst.instruction |= Rn << 16;
10642 inst.instruction |= Rm;
10645 static void
10646 do_t_smc (void)
10648 unsigned int value = inst.reloc.exp.X_add_number;
10649 constraint (inst.reloc.exp.X_op != O_constant,
10650 _("expression too complex"));
10651 inst.reloc.type = BFD_RELOC_UNUSED;
10652 inst.instruction |= (value & 0xf000) >> 12;
10653 inst.instruction |= (value & 0x0ff0);
10654 inst.instruction |= (value & 0x000f) << 16;
10657 static void
10658 do_t_ssat (void)
10660 unsigned Rd, Rn;
10662 Rd = inst.operands[0].reg;
10663 Rn = inst.operands[2].reg;
10665 reject_bad_reg (Rd);
10666 reject_bad_reg (Rn);
10668 inst.instruction |= Rd << 8;
10669 inst.instruction |= inst.operands[1].imm - 1;
10670 inst.instruction |= Rn << 16;
10672 if (inst.operands[3].present)
10674 constraint (inst.reloc.exp.X_op != O_constant,
10675 _("expression too complex"));
10677 if (inst.reloc.exp.X_add_number != 0)
10679 if (inst.operands[3].shift_kind == SHIFT_ASR)
10680 inst.instruction |= 0x00200000; /* sh bit */
10681 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10682 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10684 inst.reloc.type = BFD_RELOC_UNUSED;
10688 static void
10689 do_t_ssat16 (void)
10691 unsigned Rd, Rn;
10693 Rd = inst.operands[0].reg;
10694 Rn = inst.operands[2].reg;
10696 reject_bad_reg (Rd);
10697 reject_bad_reg (Rn);
10699 inst.instruction |= Rd << 8;
10700 inst.instruction |= inst.operands[1].imm - 1;
10701 inst.instruction |= Rn << 16;
10704 static void
10705 do_t_strex (void)
10707 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10708 || inst.operands[2].postind || inst.operands[2].writeback
10709 || inst.operands[2].immisreg || inst.operands[2].shifted
10710 || inst.operands[2].negative,
10711 BAD_ADDR_MODE);
10713 inst.instruction |= inst.operands[0].reg << 8;
10714 inst.instruction |= inst.operands[1].reg << 12;
10715 inst.instruction |= inst.operands[2].reg << 16;
10716 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10719 static void
10720 do_t_strexd (void)
10722 if (!inst.operands[2].present)
10723 inst.operands[2].reg = inst.operands[1].reg + 1;
10725 constraint (inst.operands[0].reg == inst.operands[1].reg
10726 || inst.operands[0].reg == inst.operands[2].reg
10727 || inst.operands[0].reg == inst.operands[3].reg
10728 || inst.operands[1].reg == inst.operands[2].reg,
10729 BAD_OVERLAP);
10731 inst.instruction |= inst.operands[0].reg;
10732 inst.instruction |= inst.operands[1].reg << 12;
10733 inst.instruction |= inst.operands[2].reg << 8;
10734 inst.instruction |= inst.operands[3].reg << 16;
10737 static void
10738 do_t_sxtah (void)
10740 unsigned Rd, Rn, Rm;
10742 Rd = inst.operands[0].reg;
10743 Rn = inst.operands[1].reg;
10744 Rm = inst.operands[2].reg;
10746 reject_bad_reg (Rd);
10747 reject_bad_reg (Rn);
10748 reject_bad_reg (Rm);
10750 inst.instruction |= Rd << 8;
10751 inst.instruction |= Rn << 16;
10752 inst.instruction |= Rm;
10753 inst.instruction |= inst.operands[3].imm << 4;
10756 static void
10757 do_t_sxth (void)
10759 unsigned Rd, Rm;
10761 Rd = inst.operands[0].reg;
10762 Rm = inst.operands[1].reg;
10764 reject_bad_reg (Rd);
10765 reject_bad_reg (Rm);
10767 if (inst.instruction <= 0xffff && inst.size_req != 4
10768 && Rd <= 7 && Rm <= 7
10769 && (!inst.operands[2].present || inst.operands[2].imm == 0))
10771 inst.instruction = THUMB_OP16 (inst.instruction);
10772 inst.instruction |= Rd;
10773 inst.instruction |= Rm << 3;
10775 else if (unified_syntax)
10777 if (inst.instruction <= 0xffff)
10778 inst.instruction = THUMB_OP32 (inst.instruction);
10779 inst.instruction |= Rd << 8;
10780 inst.instruction |= Rm;
10781 inst.instruction |= inst.operands[2].imm << 4;
10783 else
10785 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10786 _("Thumb encoding does not support rotation"));
10787 constraint (1, BAD_HIREG);
10791 static void
10792 do_t_swi (void)
10794 inst.reloc.type = BFD_RELOC_ARM_SWI;
10797 static void
10798 do_t_tb (void)
10800 unsigned Rn, Rm;
10801 int half;
10803 half = (inst.instruction & 0x10) != 0;
10804 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10805 constraint (inst.operands[0].immisreg,
10806 _("instruction requires register index"));
10808 Rn = inst.operands[0].reg;
10809 Rm = inst.operands[0].imm;
10811 constraint (Rn == REG_SP, BAD_SP);
10812 reject_bad_reg (Rm);
10814 constraint (!half && inst.operands[0].shifted,
10815 _("instruction does not allow shifted index"));
10816 inst.instruction |= (Rn << 16) | Rm;
10819 static void
10820 do_t_usat (void)
10822 unsigned Rd, Rn;
10824 Rd = inst.operands[0].reg;
10825 Rn = inst.operands[2].reg;
10827 reject_bad_reg (Rd);
10828 reject_bad_reg (Rn);
10830 inst.instruction |= Rd << 8;
10831 inst.instruction |= inst.operands[1].imm;
10832 inst.instruction |= Rn << 16;
10834 if (inst.operands[3].present)
10836 constraint (inst.reloc.exp.X_op != O_constant,
10837 _("expression too complex"));
10838 if (inst.reloc.exp.X_add_number != 0)
10840 if (inst.operands[3].shift_kind == SHIFT_ASR)
10841 inst.instruction |= 0x00200000; /* sh bit */
10843 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10844 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10846 inst.reloc.type = BFD_RELOC_UNUSED;
10850 static void
10851 do_t_usat16 (void)
10853 unsigned Rd, Rn;
10855 Rd = inst.operands[0].reg;
10856 Rn = inst.operands[2].reg;
10858 reject_bad_reg (Rd);
10859 reject_bad_reg (Rn);
10861 inst.instruction |= Rd << 8;
10862 inst.instruction |= inst.operands[1].imm;
10863 inst.instruction |= Rn << 16;
10866 /* Neon instruction encoder helpers. */
10868 /* Encodings for the different types for various Neon opcodes. */
10870 /* An "invalid" code for the following tables. */
10871 #define N_INV -1u
10873 struct neon_tab_entry
10875 unsigned integer;
10876 unsigned float_or_poly;
10877 unsigned scalar_or_imm;
10880 /* Map overloaded Neon opcodes to their respective encodings. */
10881 #define NEON_ENC_TAB \
10882 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10883 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10884 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10885 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10886 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10887 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10888 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10889 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10890 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10891 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10892 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10893 /* Register variants of the following two instructions are encoded as
10894 vcge / vcgt with the operands reversed. */ \
10895 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10896 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
10897 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10898 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10899 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10900 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10901 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10902 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10903 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10904 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10905 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10906 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10907 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10908 X(vshl, 0x0000400, N_INV, 0x0800510), \
10909 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10910 X(vand, 0x0000110, N_INV, 0x0800030), \
10911 X(vbic, 0x0100110, N_INV, 0x0800030), \
10912 X(veor, 0x1000110, N_INV, N_INV), \
10913 X(vorn, 0x0300110, N_INV, 0x0800010), \
10914 X(vorr, 0x0200110, N_INV, 0x0800010), \
10915 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10916 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10917 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10918 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10919 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10920 X(vst1, 0x0000000, 0x0800000, N_INV), \
10921 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10922 X(vst2, 0x0000100, 0x0800100, N_INV), \
10923 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10924 X(vst3, 0x0000200, 0x0800200, N_INV), \
10925 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10926 X(vst4, 0x0000300, 0x0800300, N_INV), \
10927 X(vmovn, 0x1b20200, N_INV, N_INV), \
10928 X(vtrn, 0x1b20080, N_INV, N_INV), \
10929 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10930 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10931 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10932 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10933 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10934 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10935 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10936 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10937 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10939 enum neon_opc
10941 #define X(OPC,I,F,S) N_MNEM_##OPC
10942 NEON_ENC_TAB
10943 #undef X
10946 static const struct neon_tab_entry neon_enc_tab[] =
10948 #define X(OPC,I,F,S) { (I), (F), (S) }
10949 NEON_ENC_TAB
10950 #undef X
10953 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10954 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10955 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10956 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10957 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10958 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10959 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10960 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10961 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10962 #define NEON_ENC_SINGLE(X) \
10963 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10964 #define NEON_ENC_DOUBLE(X) \
10965 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10967 /* Define shapes for instruction operands. The following mnemonic characters
10968 are used in this table:
10970 F - VFP S<n> register
10971 D - Neon D<n> register
10972 Q - Neon Q<n> register
10973 I - Immediate
10974 S - Scalar
10975 R - ARM register
10976 L - D<n> register list
10978 This table is used to generate various data:
10979 - enumerations of the form NS_DDR to be used as arguments to
10980 neon_select_shape.
10981 - a table classifying shapes into single, double, quad, mixed.
10982 - a table used to drive neon_select_shape. */
10984 #define NEON_SHAPE_DEF \
10985 X(3, (D, D, D), DOUBLE), \
10986 X(3, (Q, Q, Q), QUAD), \
10987 X(3, (D, D, I), DOUBLE), \
10988 X(3, (Q, Q, I), QUAD), \
10989 X(3, (D, D, S), DOUBLE), \
10990 X(3, (Q, Q, S), QUAD), \
10991 X(2, (D, D), DOUBLE), \
10992 X(2, (Q, Q), QUAD), \
10993 X(2, (D, S), DOUBLE), \
10994 X(2, (Q, S), QUAD), \
10995 X(2, (D, R), DOUBLE), \
10996 X(2, (Q, R), QUAD), \
10997 X(2, (D, I), DOUBLE), \
10998 X(2, (Q, I), QUAD), \
10999 X(3, (D, L, D), DOUBLE), \
11000 X(2, (D, Q), MIXED), \
11001 X(2, (Q, D), MIXED), \
11002 X(3, (D, Q, I), MIXED), \
11003 X(3, (Q, D, I), MIXED), \
11004 X(3, (Q, D, D), MIXED), \
11005 X(3, (D, Q, Q), MIXED), \
11006 X(3, (Q, Q, D), MIXED), \
11007 X(3, (Q, D, S), MIXED), \
11008 X(3, (D, Q, S), MIXED), \
11009 X(4, (D, D, D, I), DOUBLE), \
11010 X(4, (Q, Q, Q, I), QUAD), \
11011 X(2, (F, F), SINGLE), \
11012 X(3, (F, F, F), SINGLE), \
11013 X(2, (F, I), SINGLE), \
11014 X(2, (F, D), MIXED), \
11015 X(2, (D, F), MIXED), \
11016 X(3, (F, F, I), MIXED), \
11017 X(4, (R, R, F, F), SINGLE), \
11018 X(4, (F, F, R, R), SINGLE), \
11019 X(3, (D, R, R), DOUBLE), \
11020 X(3, (R, R, D), DOUBLE), \
11021 X(2, (S, R), SINGLE), \
11022 X(2, (R, S), SINGLE), \
11023 X(2, (F, R), SINGLE), \
11024 X(2, (R, F), SINGLE)
11026 #define S2(A,B) NS_##A##B
11027 #define S3(A,B,C) NS_##A##B##C
11028 #define S4(A,B,C,D) NS_##A##B##C##D
11030 #define X(N, L, C) S##N L
11032 enum neon_shape
11034 NEON_SHAPE_DEF,
11035 NS_NULL
11038 #undef X
11039 #undef S2
11040 #undef S3
11041 #undef S4
11043 enum neon_shape_class
11045 SC_SINGLE,
11046 SC_DOUBLE,
11047 SC_QUAD,
11048 SC_MIXED
11051 #define X(N, L, C) SC_##C
11053 static enum neon_shape_class neon_shape_class[] =
11055 NEON_SHAPE_DEF
11058 #undef X
11060 enum neon_shape_el
11062 SE_F,
11063 SE_D,
11064 SE_Q,
11065 SE_I,
11066 SE_S,
11067 SE_R,
11068 SE_L
11071 /* Register widths of above. */
11072 static unsigned neon_shape_el_size[] =
11076 128,
11083 struct neon_shape_info
11085 unsigned els;
11086 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11089 #define S2(A,B) { SE_##A, SE_##B }
11090 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11091 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11093 #define X(N, L, C) { N, S##N L }
11095 static struct neon_shape_info neon_shape_tab[] =
11097 NEON_SHAPE_DEF
11100 #undef X
11101 #undef S2
11102 #undef S3
11103 #undef S4
11105 /* Bit masks used in type checking given instructions.
11106 'N_EQK' means the type must be the same as (or based on in some way) the key
11107 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11108 set, various other bits can be set as well in order to modify the meaning of
11109 the type constraint. */
11111 enum neon_type_mask
11113 N_S8 = 0x0000001,
11114 N_S16 = 0x0000002,
11115 N_S32 = 0x0000004,
11116 N_S64 = 0x0000008,
11117 N_U8 = 0x0000010,
11118 N_U16 = 0x0000020,
11119 N_U32 = 0x0000040,
11120 N_U64 = 0x0000080,
11121 N_I8 = 0x0000100,
11122 N_I16 = 0x0000200,
11123 N_I32 = 0x0000400,
11124 N_I64 = 0x0000800,
11125 N_8 = 0x0001000,
11126 N_16 = 0x0002000,
11127 N_32 = 0x0004000,
11128 N_64 = 0x0008000,
11129 N_P8 = 0x0010000,
11130 N_P16 = 0x0020000,
11131 N_F16 = 0x0040000,
11132 N_F32 = 0x0080000,
11133 N_F64 = 0x0100000,
11134 N_KEY = 0x1000000, /* key element (main type specifier). */
11135 N_EQK = 0x2000000, /* given operand has the same type & size as the key. */
11136 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11137 N_DBL = 0x0000001, /* if N_EQK, this operand is twice the size. */
11138 N_HLF = 0x0000002, /* if N_EQK, this operand is half the size. */
11139 N_SGN = 0x0000004, /* if N_EQK, this operand is forced to be signed. */
11140 N_UNS = 0x0000008, /* if N_EQK, this operand is forced to be unsigned. */
11141 N_INT = 0x0000010, /* if N_EQK, this operand is forced to be integer. */
11142 N_FLT = 0x0000020, /* if N_EQK, this operand is forced to be float. */
11143 N_SIZ = 0x0000040, /* if N_EQK, this operand is forced to be size-only. */
11144 N_UTYP = 0,
11145 N_MAX_NONSPECIAL = N_F64
11148 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11150 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11151 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11152 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11153 #define N_SUF_32 (N_SU_32 | N_F32)
11154 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11155 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11157 /* Pass this as the first type argument to neon_check_type to ignore types
11158 altogether. */
11159 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11161 /* Select a "shape" for the current instruction (describing register types or
11162 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11163 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11164 function of operand parsing, so this function doesn't need to be called.
11165 Shapes should be listed in order of decreasing length. */
11167 static enum neon_shape
11168 neon_select_shape (enum neon_shape shape, ...)
11170 va_list ap;
11171 enum neon_shape first_shape = shape;
11173 /* Fix missing optional operands. FIXME: we don't know at this point how
11174 many arguments we should have, so this makes the assumption that we have
11175 > 1. This is true of all current Neon opcodes, I think, but may not be
11176 true in the future. */
11177 if (!inst.operands[1].present)
11178 inst.operands[1] = inst.operands[0];
11180 va_start (ap, shape);
11182 for (; shape != NS_NULL; shape = va_arg (ap, int))
11184 unsigned j;
11185 int matches = 1;
11187 for (j = 0; j < neon_shape_tab[shape].els; j++)
11189 if (!inst.operands[j].present)
11191 matches = 0;
11192 break;
11195 switch (neon_shape_tab[shape].el[j])
11197 case SE_F:
11198 if (!(inst.operands[j].isreg
11199 && inst.operands[j].isvec
11200 && inst.operands[j].issingle
11201 && !inst.operands[j].isquad))
11202 matches = 0;
11203 break;
11205 case SE_D:
11206 if (!(inst.operands[j].isreg
11207 && inst.operands[j].isvec
11208 && !inst.operands[j].isquad
11209 && !inst.operands[j].issingle))
11210 matches = 0;
11211 break;
11213 case SE_R:
11214 if (!(inst.operands[j].isreg
11215 && !inst.operands[j].isvec))
11216 matches = 0;
11217 break;
11219 case SE_Q:
11220 if (!(inst.operands[j].isreg
11221 && inst.operands[j].isvec
11222 && inst.operands[j].isquad
11223 && !inst.operands[j].issingle))
11224 matches = 0;
11225 break;
11227 case SE_I:
11228 if (!(!inst.operands[j].isreg
11229 && !inst.operands[j].isscalar))
11230 matches = 0;
11231 break;
11233 case SE_S:
11234 if (!(!inst.operands[j].isreg
11235 && inst.operands[j].isscalar))
11236 matches = 0;
11237 break;
11239 case SE_L:
11240 break;
11243 if (matches)
11244 break;
11247 va_end (ap);
11249 if (shape == NS_NULL && first_shape != NS_NULL)
11250 first_error (_("invalid instruction shape"));
11252 return shape;
11255 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11256 means the Q bit should be set). */
11258 static int
11259 neon_quad (enum neon_shape shape)
11261 return neon_shape_class[shape] == SC_QUAD;
11264 static void
11265 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11266 unsigned *g_size)
11268 /* Allow modification to be made to types which are constrained to be
11269 based on the key element, based on bits set alongside N_EQK. */
11270 if ((typebits & N_EQK) != 0)
11272 if ((typebits & N_HLF) != 0)
11273 *g_size /= 2;
11274 else if ((typebits & N_DBL) != 0)
11275 *g_size *= 2;
11276 if ((typebits & N_SGN) != 0)
11277 *g_type = NT_signed;
11278 else if ((typebits & N_UNS) != 0)
11279 *g_type = NT_unsigned;
11280 else if ((typebits & N_INT) != 0)
11281 *g_type = NT_integer;
11282 else if ((typebits & N_FLT) != 0)
11283 *g_type = NT_float;
11284 else if ((typebits & N_SIZ) != 0)
11285 *g_type = NT_untyped;
11289 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11290 operand type, i.e. the single type specified in a Neon instruction when it
11291 is the only one given. */
11293 static struct neon_type_el
11294 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11296 struct neon_type_el dest = *key;
11298 assert ((thisarg & N_EQK) != 0);
11300 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11302 return dest;
11305 /* Convert Neon type and size into compact bitmask representation. */
11307 static enum neon_type_mask
11308 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11310 switch (type)
11312 case NT_untyped:
11313 switch (size)
11315 case 8: return N_8;
11316 case 16: return N_16;
11317 case 32: return N_32;
11318 case 64: return N_64;
11319 default: ;
11321 break;
11323 case NT_integer:
11324 switch (size)
11326 case 8: return N_I8;
11327 case 16: return N_I16;
11328 case 32: return N_I32;
11329 case 64: return N_I64;
11330 default: ;
11332 break;
11334 case NT_float:
11335 switch (size)
11337 case 16: return N_F16;
11338 case 32: return N_F32;
11339 case 64: return N_F64;
11340 default: ;
11342 break;
11344 case NT_poly:
11345 switch (size)
11347 case 8: return N_P8;
11348 case 16: return N_P16;
11349 default: ;
11351 break;
11353 case NT_signed:
11354 switch (size)
11356 case 8: return N_S8;
11357 case 16: return N_S16;
11358 case 32: return N_S32;
11359 case 64: return N_S64;
11360 default: ;
11362 break;
11364 case NT_unsigned:
11365 switch (size)
11367 case 8: return N_U8;
11368 case 16: return N_U16;
11369 case 32: return N_U32;
11370 case 64: return N_U64;
11371 default: ;
11373 break;
11375 default: ;
11378 return N_UTYP;
11381 /* Convert compact Neon bitmask type representation to a type and size. Only
11382 handles the case where a single bit is set in the mask. */
11384 static int
11385 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11386 enum neon_type_mask mask)
11388 if ((mask & N_EQK) != 0)
11389 return FAIL;
11391 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11392 *size = 8;
11393 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11394 *size = 16;
11395 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11396 *size = 32;
11397 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11398 *size = 64;
11399 else
11400 return FAIL;
11402 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11403 *type = NT_signed;
11404 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11405 *type = NT_unsigned;
11406 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11407 *type = NT_integer;
11408 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11409 *type = NT_untyped;
11410 else if ((mask & (N_P8 | N_P16)) != 0)
11411 *type = NT_poly;
11412 else if ((mask & (N_F32 | N_F64)) != 0)
11413 *type = NT_float;
11414 else
11415 return FAIL;
11417 return SUCCESS;
11420 /* Modify a bitmask of allowed types. This is only needed for type
11421 relaxation. */
11423 static unsigned
11424 modify_types_allowed (unsigned allowed, unsigned mods)
11426 unsigned size;
11427 enum neon_el_type type;
11428 unsigned destmask;
11429 int i;
11431 destmask = 0;
11433 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11435 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11437 neon_modify_type_size (mods, &type, &size);
11438 destmask |= type_chk_of_el_type (type, size);
11442 return destmask;
11445 /* Check type and return type classification.
11446 The manual states (paraphrase): If one datatype is given, it indicates the
11447 type given in:
11448 - the second operand, if there is one
11449 - the operand, if there is no second operand
11450 - the result, if there are no operands.
11451 This isn't quite good enough though, so we use a concept of a "key" datatype
11452 which is set on a per-instruction basis, which is the one which matters when
11453 only one data type is written.
11454 Note: this function has side-effects (e.g. filling in missing operands). All
11455 Neon instructions should call it before performing bit encoding. */
11457 static struct neon_type_el
11458 neon_check_type (unsigned els, enum neon_shape ns, ...)
11460 va_list ap;
11461 unsigned i, pass, key_el = 0;
11462 unsigned types[NEON_MAX_TYPE_ELS];
11463 enum neon_el_type k_type = NT_invtype;
11464 unsigned k_size = -1u;
11465 struct neon_type_el badtype = {NT_invtype, -1};
11466 unsigned key_allowed = 0;
11468 /* Optional registers in Neon instructions are always (not) in operand 1.
11469 Fill in the missing operand here, if it was omitted. */
11470 if (els > 1 && !inst.operands[1].present)
11471 inst.operands[1] = inst.operands[0];
11473 /* Suck up all the varargs. */
11474 va_start (ap, ns);
11475 for (i = 0; i < els; i++)
11477 unsigned thisarg = va_arg (ap, unsigned);
11478 if (thisarg == N_IGNORE_TYPE)
11480 va_end (ap);
11481 return badtype;
11483 types[i] = thisarg;
11484 if ((thisarg & N_KEY) != 0)
11485 key_el = i;
11487 va_end (ap);
11489 if (inst.vectype.elems > 0)
11490 for (i = 0; i < els; i++)
11491 if (inst.operands[i].vectype.type != NT_invtype)
11493 first_error (_("types specified in both the mnemonic and operands"));
11494 return badtype;
11497 /* Duplicate inst.vectype elements here as necessary.
11498 FIXME: No idea if this is exactly the same as the ARM assembler,
11499 particularly when an insn takes one register and one non-register
11500 operand. */
11501 if (inst.vectype.elems == 1 && els > 1)
11503 unsigned j;
11504 inst.vectype.elems = els;
11505 inst.vectype.el[key_el] = inst.vectype.el[0];
11506 for (j = 0; j < els; j++)
11507 if (j != key_el)
11508 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11509 types[j]);
11511 else if (inst.vectype.elems == 0 && els > 0)
11513 unsigned j;
11514 /* No types were given after the mnemonic, so look for types specified
11515 after each operand. We allow some flexibility here; as long as the
11516 "key" operand has a type, we can infer the others. */
11517 for (j = 0; j < els; j++)
11518 if (inst.operands[j].vectype.type != NT_invtype)
11519 inst.vectype.el[j] = inst.operands[j].vectype;
11521 if (inst.operands[key_el].vectype.type != NT_invtype)
11523 for (j = 0; j < els; j++)
11524 if (inst.operands[j].vectype.type == NT_invtype)
11525 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11526 types[j]);
11528 else
11530 first_error (_("operand types can't be inferred"));
11531 return badtype;
11534 else if (inst.vectype.elems != els)
11536 first_error (_("type specifier has the wrong number of parts"));
11537 return badtype;
11540 for (pass = 0; pass < 2; pass++)
11542 for (i = 0; i < els; i++)
11544 unsigned thisarg = types[i];
11545 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11546 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11547 enum neon_el_type g_type = inst.vectype.el[i].type;
11548 unsigned g_size = inst.vectype.el[i].size;
11550 /* Decay more-specific signed & unsigned types to sign-insensitive
11551 integer types if sign-specific variants are unavailable. */
11552 if ((g_type == NT_signed || g_type == NT_unsigned)
11553 && (types_allowed & N_SU_ALL) == 0)
11554 g_type = NT_integer;
11556 /* If only untyped args are allowed, decay any more specific types to
11557 them. Some instructions only care about signs for some element
11558 sizes, so handle that properly. */
11559 if ((g_size == 8 && (types_allowed & N_8) != 0)
11560 || (g_size == 16 && (types_allowed & N_16) != 0)
11561 || (g_size == 32 && (types_allowed & N_32) != 0)
11562 || (g_size == 64 && (types_allowed & N_64) != 0))
11563 g_type = NT_untyped;
11565 if (pass == 0)
11567 if ((thisarg & N_KEY) != 0)
11569 k_type = g_type;
11570 k_size = g_size;
11571 key_allowed = thisarg & ~N_KEY;
11574 else
11576 if ((thisarg & N_VFP) != 0)
11578 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11579 unsigned regwidth = neon_shape_el_size[regshape], match;
11581 /* In VFP mode, operands must match register widths. If we
11582 have a key operand, use its width, else use the width of
11583 the current operand. */
11584 if (k_size != -1u)
11585 match = k_size;
11586 else
11587 match = g_size;
11589 if (regwidth != match)
11591 first_error (_("operand size must match register width"));
11592 return badtype;
11596 if ((thisarg & N_EQK) == 0)
11598 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11600 if ((given_type & types_allowed) == 0)
11602 first_error (_("bad type in Neon instruction"));
11603 return badtype;
11606 else
11608 enum neon_el_type mod_k_type = k_type;
11609 unsigned mod_k_size = k_size;
11610 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11611 if (g_type != mod_k_type || g_size != mod_k_size)
11613 first_error (_("inconsistent types in Neon instruction"));
11614 return badtype;
11621 return inst.vectype.el[key_el];
11624 /* Neon-style VFP instruction forwarding. */
11626 /* Thumb VFP instructions have 0xE in the condition field. */
11628 static void
11629 do_vfp_cond_or_thumb (void)
11631 if (thumb_mode)
11632 inst.instruction |= 0xe0000000;
11633 else
11634 inst.instruction |= inst.cond << 28;
11637 /* Look up and encode a simple mnemonic, for use as a helper function for the
11638 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11639 etc. It is assumed that operand parsing has already been done, and that the
11640 operands are in the form expected by the given opcode (this isn't necessarily
11641 the same as the form in which they were parsed, hence some massaging must
11642 take place before this function is called).
11643 Checks current arch version against that in the looked-up opcode. */
11645 static void
11646 do_vfp_nsyn_opcode (const char *opname)
11648 const struct asm_opcode *opcode;
11650 opcode = hash_find (arm_ops_hsh, opname);
11652 if (!opcode)
11653 abort ();
11655 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11656 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11657 _(BAD_FPU));
11659 if (thumb_mode)
11661 inst.instruction = opcode->tvalue;
11662 opcode->tencode ();
11664 else
11666 inst.instruction = (inst.cond << 28) | opcode->avalue;
11667 opcode->aencode ();
11671 static void
11672 do_vfp_nsyn_add_sub (enum neon_shape rs)
11674 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11676 if (rs == NS_FFF)
11678 if (is_add)
11679 do_vfp_nsyn_opcode ("fadds");
11680 else
11681 do_vfp_nsyn_opcode ("fsubs");
11683 else
11685 if (is_add)
11686 do_vfp_nsyn_opcode ("faddd");
11687 else
11688 do_vfp_nsyn_opcode ("fsubd");
11692 /* Check operand types to see if this is a VFP instruction, and if so call
11693 PFN (). */
11695 static int
11696 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11698 enum neon_shape rs;
11699 struct neon_type_el et;
11701 switch (args)
11703 case 2:
11704 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11705 et = neon_check_type (2, rs,
11706 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11707 break;
11709 case 3:
11710 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11711 et = neon_check_type (3, rs,
11712 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11713 break;
11715 default:
11716 abort ();
11719 if (et.type != NT_invtype)
11721 pfn (rs);
11722 return SUCCESS;
11724 else
11725 inst.error = NULL;
11727 return FAIL;
11730 static void
11731 do_vfp_nsyn_mla_mls (enum neon_shape rs)
11733 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11735 if (rs == NS_FFF)
11737 if (is_mla)
11738 do_vfp_nsyn_opcode ("fmacs");
11739 else
11740 do_vfp_nsyn_opcode ("fmscs");
11742 else
11744 if (is_mla)
11745 do_vfp_nsyn_opcode ("fmacd");
11746 else
11747 do_vfp_nsyn_opcode ("fmscd");
11751 static void
11752 do_vfp_nsyn_mul (enum neon_shape rs)
11754 if (rs == NS_FFF)
11755 do_vfp_nsyn_opcode ("fmuls");
11756 else
11757 do_vfp_nsyn_opcode ("fmuld");
11760 static void
11761 do_vfp_nsyn_abs_neg (enum neon_shape rs)
11763 int is_neg = (inst.instruction & 0x80) != 0;
11764 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11766 if (rs == NS_FF)
11768 if (is_neg)
11769 do_vfp_nsyn_opcode ("fnegs");
11770 else
11771 do_vfp_nsyn_opcode ("fabss");
11773 else
11775 if (is_neg)
11776 do_vfp_nsyn_opcode ("fnegd");
11777 else
11778 do_vfp_nsyn_opcode ("fabsd");
11782 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11783 insns belong to Neon, and are handled elsewhere. */
11785 static void
11786 do_vfp_nsyn_ldm_stm (int is_dbmode)
11788 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11789 if (is_ldm)
11791 if (is_dbmode)
11792 do_vfp_nsyn_opcode ("fldmdbs");
11793 else
11794 do_vfp_nsyn_opcode ("fldmias");
11796 else
11798 if (is_dbmode)
11799 do_vfp_nsyn_opcode ("fstmdbs");
11800 else
11801 do_vfp_nsyn_opcode ("fstmias");
11805 static void
11806 do_vfp_nsyn_sqrt (void)
11808 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11809 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11811 if (rs == NS_FF)
11812 do_vfp_nsyn_opcode ("fsqrts");
11813 else
11814 do_vfp_nsyn_opcode ("fsqrtd");
11817 static void
11818 do_vfp_nsyn_div (void)
11820 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11821 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11822 N_F32 | N_F64 | N_KEY | N_VFP);
11824 if (rs == NS_FFF)
11825 do_vfp_nsyn_opcode ("fdivs");
11826 else
11827 do_vfp_nsyn_opcode ("fdivd");
11830 static void
11831 do_vfp_nsyn_nmul (void)
11833 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11834 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11835 N_F32 | N_F64 | N_KEY | N_VFP);
11837 if (rs == NS_FFF)
11839 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11840 do_vfp_sp_dyadic ();
11842 else
11844 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11845 do_vfp_dp_rd_rn_rm ();
11847 do_vfp_cond_or_thumb ();
11850 static void
11851 do_vfp_nsyn_cmp (void)
11853 if (inst.operands[1].isreg)
11855 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11856 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11858 if (rs == NS_FF)
11860 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11861 do_vfp_sp_monadic ();
11863 else
11865 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11866 do_vfp_dp_rd_rm ();
11869 else
11871 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11872 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11874 switch (inst.instruction & 0x0fffffff)
11876 case N_MNEM_vcmp:
11877 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11878 break;
11879 case N_MNEM_vcmpe:
11880 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11881 break;
11882 default:
11883 abort ();
11886 if (rs == NS_FI)
11888 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11889 do_vfp_sp_compare_z ();
11891 else
11893 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11894 do_vfp_dp_rd ();
11897 do_vfp_cond_or_thumb ();
11900 static void
11901 nsyn_insert_sp (void)
11903 inst.operands[1] = inst.operands[0];
11904 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11905 inst.operands[0].reg = REG_SP;
11906 inst.operands[0].isreg = 1;
11907 inst.operands[0].writeback = 1;
11908 inst.operands[0].present = 1;
11911 static void
11912 do_vfp_nsyn_push (void)
11914 nsyn_insert_sp ();
11915 if (inst.operands[1].issingle)
11916 do_vfp_nsyn_opcode ("fstmdbs");
11917 else
11918 do_vfp_nsyn_opcode ("fstmdbd");
11921 static void
11922 do_vfp_nsyn_pop (void)
11924 nsyn_insert_sp ();
11925 if (inst.operands[1].issingle)
11926 do_vfp_nsyn_opcode ("fldmias");
11927 else
11928 do_vfp_nsyn_opcode ("fldmiad");
11931 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11932 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11934 static unsigned
11935 neon_dp_fixup (unsigned i)
11937 if (thumb_mode)
11939 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11940 if (i & (1 << 24))
11941 i |= 1 << 28;
11943 i &= ~(1 << 24);
11945 i |= 0xef000000;
11947 else
11948 i |= 0xf2000000;
11950 return i;
11953 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11954 (0, 1, 2, 3). */
11956 static unsigned
11957 neon_logbits (unsigned x)
11959 return ffs (x) - 4;
11962 #define LOW4(R) ((R) & 0xf)
11963 #define HI1(R) (((R) >> 4) & 1)
11965 /* Encode insns with bit pattern:
11967 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11968 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11970 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11971 different meaning for some instruction. */
11973 static void
11974 neon_three_same (int isquad, int ubit, int size)
11976 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11977 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11978 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11979 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11980 inst.instruction |= LOW4 (inst.operands[2].reg);
11981 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11982 inst.instruction |= (isquad != 0) << 6;
11983 inst.instruction |= (ubit != 0) << 24;
11984 if (size != -1)
11985 inst.instruction |= neon_logbits (size) << 20;
11987 inst.instruction = neon_dp_fixup (inst.instruction);
11990 /* Encode instructions of the form:
11992 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11993 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11995 Don't write size if SIZE == -1. */
11997 static void
11998 neon_two_same (int qbit, int ubit, int size)
12000 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12001 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12002 inst.instruction |= LOW4 (inst.operands[1].reg);
12003 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12004 inst.instruction |= (qbit != 0) << 6;
12005 inst.instruction |= (ubit != 0) << 24;
12007 if (size != -1)
12008 inst.instruction |= neon_logbits (size) << 18;
12010 inst.instruction = neon_dp_fixup (inst.instruction);
12013 /* Neon instruction encoders, in approximate order of appearance. */
12015 static void
12016 do_neon_dyadic_i_su (void)
12018 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12019 struct neon_type_el et = neon_check_type (3, rs,
12020 N_EQK, N_EQK, N_SU_32 | N_KEY);
12021 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12024 static void
12025 do_neon_dyadic_i64_su (void)
12027 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12028 struct neon_type_el et = neon_check_type (3, rs,
12029 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12030 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12033 static void
12034 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12035 unsigned immbits)
12037 unsigned size = et.size >> 3;
12038 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12039 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12040 inst.instruction |= LOW4 (inst.operands[1].reg);
12041 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12042 inst.instruction |= (isquad != 0) << 6;
12043 inst.instruction |= immbits << 16;
12044 inst.instruction |= (size >> 3) << 7;
12045 inst.instruction |= (size & 0x7) << 19;
12046 if (write_ubit)
12047 inst.instruction |= (uval != 0) << 24;
12049 inst.instruction = neon_dp_fixup (inst.instruction);
12052 static void
12053 do_neon_shl_imm (void)
12055 if (!inst.operands[2].isreg)
12057 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12058 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12059 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12060 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12062 else
12064 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12065 struct neon_type_el et = neon_check_type (3, rs,
12066 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12067 unsigned int tmp;
12069 /* VSHL/VQSHL 3-register variants have syntax such as:
12070 vshl.xx Dd, Dm, Dn
12071 whereas other 3-register operations encoded by neon_three_same have
12072 syntax like:
12073 vadd.xx Dd, Dn, Dm
12074 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12075 here. */
12076 tmp = inst.operands[2].reg;
12077 inst.operands[2].reg = inst.operands[1].reg;
12078 inst.operands[1].reg = tmp;
12079 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12080 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12084 static void
12085 do_neon_qshl_imm (void)
12087 if (!inst.operands[2].isreg)
12089 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12090 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12092 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12093 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12094 inst.operands[2].imm);
12096 else
12098 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12099 struct neon_type_el et = neon_check_type (3, rs,
12100 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12101 unsigned int tmp;
12103 /* See note in do_neon_shl_imm. */
12104 tmp = inst.operands[2].reg;
12105 inst.operands[2].reg = inst.operands[1].reg;
12106 inst.operands[1].reg = tmp;
12107 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12108 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12112 static void
12113 do_neon_rshl (void)
12115 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12116 struct neon_type_el et = neon_check_type (3, rs,
12117 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12118 unsigned int tmp;
12120 tmp = inst.operands[2].reg;
12121 inst.operands[2].reg = inst.operands[1].reg;
12122 inst.operands[1].reg = tmp;
12123 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12126 static int
12127 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12129 /* Handle .I8 pseudo-instructions. */
12130 if (size == 8)
12132 /* Unfortunately, this will make everything apart from zero out-of-range.
12133 FIXME is this the intended semantics? There doesn't seem much point in
12134 accepting .I8 if so. */
12135 immediate |= immediate << 8;
12136 size = 16;
12139 if (size >= 32)
12141 if (immediate == (immediate & 0x000000ff))
12143 *immbits = immediate;
12144 return 0x1;
12146 else if (immediate == (immediate & 0x0000ff00))
12148 *immbits = immediate >> 8;
12149 return 0x3;
12151 else if (immediate == (immediate & 0x00ff0000))
12153 *immbits = immediate >> 16;
12154 return 0x5;
12156 else if (immediate == (immediate & 0xff000000))
12158 *immbits = immediate >> 24;
12159 return 0x7;
12161 if ((immediate & 0xffff) != (immediate >> 16))
12162 goto bad_immediate;
12163 immediate &= 0xffff;
12166 if (immediate == (immediate & 0x000000ff))
12168 *immbits = immediate;
12169 return 0x9;
12171 else if (immediate == (immediate & 0x0000ff00))
12173 *immbits = immediate >> 8;
12174 return 0xb;
12177 bad_immediate:
12178 first_error (_("immediate value out of range"));
12179 return FAIL;
12182 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12183 A, B, C, D. */
12185 static int
12186 neon_bits_same_in_bytes (unsigned imm)
12188 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12189 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12190 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12191 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12194 /* For immediate of above form, return 0bABCD. */
12196 static unsigned
12197 neon_squash_bits (unsigned imm)
12199 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12200 | ((imm & 0x01000000) >> 21);
12203 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12205 static unsigned
12206 neon_qfloat_bits (unsigned imm)
12208 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12211 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12212 the instruction. *OP is passed as the initial value of the op field, and
12213 may be set to a different value depending on the constant (i.e.
12214 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12215 MVN). If the immediate looks like a repeated pattern then also
12216 try smaller element sizes. */
12218 static int
12219 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12220 unsigned *immbits, int *op, int size,
12221 enum neon_el_type type)
12223 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12224 float. */
12225 if (type == NT_float && !float_p)
12226 return FAIL;
12228 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12230 if (size != 32 || *op == 1)
12231 return FAIL;
12232 *immbits = neon_qfloat_bits (immlo);
12233 return 0xf;
12236 if (size == 64)
12238 if (neon_bits_same_in_bytes (immhi)
12239 && neon_bits_same_in_bytes (immlo))
12241 if (*op == 1)
12242 return FAIL;
12243 *immbits = (neon_squash_bits (immhi) << 4)
12244 | neon_squash_bits (immlo);
12245 *op = 1;
12246 return 0xe;
12249 if (immhi != immlo)
12250 return FAIL;
12253 if (size >= 32)
12255 if (immlo == (immlo & 0x000000ff))
12257 *immbits = immlo;
12258 return 0x0;
12260 else if (immlo == (immlo & 0x0000ff00))
12262 *immbits = immlo >> 8;
12263 return 0x2;
12265 else if (immlo == (immlo & 0x00ff0000))
12267 *immbits = immlo >> 16;
12268 return 0x4;
12270 else if (immlo == (immlo & 0xff000000))
12272 *immbits = immlo >> 24;
12273 return 0x6;
12275 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12277 *immbits = (immlo >> 8) & 0xff;
12278 return 0xc;
12280 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12282 *immbits = (immlo >> 16) & 0xff;
12283 return 0xd;
12286 if ((immlo & 0xffff) != (immlo >> 16))
12287 return FAIL;
12288 immlo &= 0xffff;
12291 if (size >= 16)
12293 if (immlo == (immlo & 0x000000ff))
12295 *immbits = immlo;
12296 return 0x8;
12298 else if (immlo == (immlo & 0x0000ff00))
12300 *immbits = immlo >> 8;
12301 return 0xa;
12304 if ((immlo & 0xff) != (immlo >> 8))
12305 return FAIL;
12306 immlo &= 0xff;
12309 if (immlo == (immlo & 0x000000ff))
12311 /* Don't allow MVN with 8-bit immediate. */
12312 if (*op == 1)
12313 return FAIL;
12314 *immbits = immlo;
12315 return 0xe;
12318 return FAIL;
12321 /* Write immediate bits [7:0] to the following locations:
12323 |28/24|23 19|18 16|15 4|3 0|
12324 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12326 This function is used by VMOV/VMVN/VORR/VBIC. */
12328 static void
12329 neon_write_immbits (unsigned immbits)
12331 inst.instruction |= immbits & 0xf;
12332 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12333 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12336 /* Invert low-order SIZE bits of XHI:XLO. */
12338 static void
12339 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12341 unsigned immlo = xlo ? *xlo : 0;
12342 unsigned immhi = xhi ? *xhi : 0;
12344 switch (size)
12346 case 8:
12347 immlo = (~immlo) & 0xff;
12348 break;
12350 case 16:
12351 immlo = (~immlo) & 0xffff;
12352 break;
12354 case 64:
12355 immhi = (~immhi) & 0xffffffff;
12356 /* fall through. */
12358 case 32:
12359 immlo = (~immlo) & 0xffffffff;
12360 break;
12362 default:
12363 abort ();
12366 if (xlo)
12367 *xlo = immlo;
12369 if (xhi)
12370 *xhi = immhi;
12373 static void
12374 do_neon_logic (void)
12376 if (inst.operands[2].present && inst.operands[2].isreg)
12378 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12379 neon_check_type (3, rs, N_IGNORE_TYPE);
12380 /* U bit and size field were set as part of the bitmask. */
12381 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12382 neon_three_same (neon_quad (rs), 0, -1);
12384 else
12386 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12387 struct neon_type_el et = neon_check_type (2, rs,
12388 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12389 enum neon_opc opcode = inst.instruction & 0x0fffffff;
12390 unsigned immbits;
12391 int cmode;
12393 if (et.type == NT_invtype)
12394 return;
12396 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12398 immbits = inst.operands[1].imm;
12399 if (et.size == 64)
12401 /* .i64 is a pseudo-op, so the immediate must be a repeating
12402 pattern. */
12403 if (immbits != (inst.operands[1].regisimm ?
12404 inst.operands[1].reg : 0))
12406 /* Set immbits to an invalid constant. */
12407 immbits = 0xdeadbeef;
12411 switch (opcode)
12413 case N_MNEM_vbic:
12414 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12415 break;
12417 case N_MNEM_vorr:
12418 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12419 break;
12421 case N_MNEM_vand:
12422 /* Pseudo-instruction for VBIC. */
12423 neon_invert_size (&immbits, 0, et.size);
12424 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12425 break;
12427 case N_MNEM_vorn:
12428 /* Pseudo-instruction for VORR. */
12429 neon_invert_size (&immbits, 0, et.size);
12430 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12431 break;
12433 default:
12434 abort ();
12437 if (cmode == FAIL)
12438 return;
12440 inst.instruction |= neon_quad (rs) << 6;
12441 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12442 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12443 inst.instruction |= cmode << 8;
12444 neon_write_immbits (immbits);
12446 inst.instruction = neon_dp_fixup (inst.instruction);
12450 static void
12451 do_neon_bitfield (void)
12453 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12454 neon_check_type (3, rs, N_IGNORE_TYPE);
12455 neon_three_same (neon_quad (rs), 0, -1);
12458 static void
12459 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12460 unsigned destbits)
12462 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12463 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12464 types | N_KEY);
12465 if (et.type == NT_float)
12467 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12468 neon_three_same (neon_quad (rs), 0, -1);
12470 else
12472 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12473 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12477 static void
12478 do_neon_dyadic_if_su (void)
12480 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12483 static void
12484 do_neon_dyadic_if_su_d (void)
12486 /* This version only allow D registers, but that constraint is enforced during
12487 operand parsing so we don't need to do anything extra here. */
12488 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12491 static void
12492 do_neon_dyadic_if_i_d (void)
12494 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12495 affected if we specify unsigned args. */
12496 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12499 enum vfp_or_neon_is_neon_bits
12501 NEON_CHECK_CC = 1,
12502 NEON_CHECK_ARCH = 2
12505 /* Call this function if an instruction which may have belonged to the VFP or
12506 Neon instruction sets, but turned out to be a Neon instruction (due to the
12507 operand types involved, etc.). We have to check and/or fix-up a couple of
12508 things:
12510 - Make sure the user hasn't attempted to make a Neon instruction
12511 conditional.
12512 - Alter the value in the condition code field if necessary.
12513 - Make sure that the arch supports Neon instructions.
12515 Which of these operations take place depends on bits from enum
12516 vfp_or_neon_is_neon_bits.
12518 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12519 current instruction's condition is COND_ALWAYS, the condition field is
12520 changed to inst.uncond_value. This is necessary because instructions shared
12521 between VFP and Neon may be conditional for the VFP variants only, and the
12522 unconditional Neon version must have, e.g., 0xF in the condition field. */
12524 static int
12525 vfp_or_neon_is_neon (unsigned check)
12527 /* Conditions are always legal in Thumb mode (IT blocks). */
12528 if (!thumb_mode && (check & NEON_CHECK_CC))
12530 if (inst.cond != COND_ALWAYS)
12532 first_error (_(BAD_COND));
12533 return FAIL;
12535 if (inst.uncond_value != -1)
12536 inst.instruction |= inst.uncond_value << 28;
12539 if ((check & NEON_CHECK_ARCH)
12540 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12542 first_error (_(BAD_FPU));
12543 return FAIL;
12546 return SUCCESS;
12549 static void
12550 do_neon_addsub_if_i (void)
12552 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12553 return;
12555 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12556 return;
12558 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12559 affected if we specify unsigned args. */
12560 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12563 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12564 result to be:
12565 V<op> A,B (A is operand 0, B is operand 2)
12566 to mean:
12567 V<op> A,B,A
12568 not:
12569 V<op> A,B,B
12570 so handle that case specially. */
12572 static void
12573 neon_exchange_operands (void)
12575 void *scratch = alloca (sizeof (inst.operands[0]));
12576 if (inst.operands[1].present)
12578 /* Swap operands[1] and operands[2]. */
12579 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12580 inst.operands[1] = inst.operands[2];
12581 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12583 else
12585 inst.operands[1] = inst.operands[2];
12586 inst.operands[2] = inst.operands[0];
12590 static void
12591 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12593 if (inst.operands[2].isreg)
12595 if (invert)
12596 neon_exchange_operands ();
12597 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12599 else
12601 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12602 struct neon_type_el et = neon_check_type (2, rs,
12603 N_EQK | N_SIZ, immtypes | N_KEY);
12605 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12606 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12607 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12608 inst.instruction |= LOW4 (inst.operands[1].reg);
12609 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12610 inst.instruction |= neon_quad (rs) << 6;
12611 inst.instruction |= (et.type == NT_float) << 10;
12612 inst.instruction |= neon_logbits (et.size) << 18;
12614 inst.instruction = neon_dp_fixup (inst.instruction);
12618 static void
12619 do_neon_cmp (void)
12621 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12624 static void
12625 do_neon_cmp_inv (void)
12627 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12630 static void
12631 do_neon_ceq (void)
12633 neon_compare (N_IF_32, N_IF_32, FALSE);
12636 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
12637 scalars, which are encoded in 5 bits, M : Rm.
12638 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12639 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12640 index in M. */
12642 static unsigned
12643 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12645 unsigned regno = NEON_SCALAR_REG (scalar);
12646 unsigned elno = NEON_SCALAR_INDEX (scalar);
12648 switch (elsize)
12650 case 16:
12651 if (regno > 7 || elno > 3)
12652 goto bad_scalar;
12653 return regno | (elno << 3);
12655 case 32:
12656 if (regno > 15 || elno > 1)
12657 goto bad_scalar;
12658 return regno | (elno << 4);
12660 default:
12661 bad_scalar:
12662 first_error (_("scalar out of range for multiply instruction"));
12665 return 0;
12668 /* Encode multiply / multiply-accumulate scalar instructions. */
12670 static void
12671 neon_mul_mac (struct neon_type_el et, int ubit)
12673 unsigned scalar;
12675 /* Give a more helpful error message if we have an invalid type. */
12676 if (et.type == NT_invtype)
12677 return;
12679 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
12680 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12681 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12682 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12683 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12684 inst.instruction |= LOW4 (scalar);
12685 inst.instruction |= HI1 (scalar) << 5;
12686 inst.instruction |= (et.type == NT_float) << 8;
12687 inst.instruction |= neon_logbits (et.size) << 20;
12688 inst.instruction |= (ubit != 0) << 24;
12690 inst.instruction = neon_dp_fixup (inst.instruction);
12693 static void
12694 do_neon_mac_maybe_scalar (void)
12696 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12697 return;
12699 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12700 return;
12702 if (inst.operands[2].isscalar)
12704 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12705 struct neon_type_el et = neon_check_type (3, rs,
12706 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12707 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12708 neon_mul_mac (et, neon_quad (rs));
12710 else
12712 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12713 affected if we specify unsigned args. */
12714 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12718 static void
12719 do_neon_tst (void)
12721 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12722 struct neon_type_el et = neon_check_type (3, rs,
12723 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
12724 neon_three_same (neon_quad (rs), 0, et.size);
12727 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
12728 same types as the MAC equivalents. The polynomial type for this instruction
12729 is encoded the same as the integer type. */
12731 static void
12732 do_neon_mul (void)
12734 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12735 return;
12737 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12738 return;
12740 if (inst.operands[2].isscalar)
12741 do_neon_mac_maybe_scalar ();
12742 else
12743 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
12746 static void
12747 do_neon_qdmulh (void)
12749 if (inst.operands[2].isscalar)
12751 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12752 struct neon_type_el et = neon_check_type (3, rs,
12753 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12754 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12755 neon_mul_mac (et, neon_quad (rs));
12757 else
12759 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12760 struct neon_type_el et = neon_check_type (3, rs,
12761 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12762 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12763 /* The U bit (rounding) comes from bit mask. */
12764 neon_three_same (neon_quad (rs), 0, et.size);
12768 static void
12769 do_neon_fcmp_absolute (void)
12771 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12772 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12773 /* Size field comes from bit mask. */
12774 neon_three_same (neon_quad (rs), 1, -1);
12777 static void
12778 do_neon_fcmp_absolute_inv (void)
12780 neon_exchange_operands ();
12781 do_neon_fcmp_absolute ();
12784 static void
12785 do_neon_step (void)
12787 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12788 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12789 neon_three_same (neon_quad (rs), 0, -1);
12792 static void
12793 do_neon_abs_neg (void)
12795 enum neon_shape rs;
12796 struct neon_type_el et;
12798 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12799 return;
12801 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12802 return;
12804 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12805 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12807 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12808 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12809 inst.instruction |= LOW4 (inst.operands[1].reg);
12810 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12811 inst.instruction |= neon_quad (rs) << 6;
12812 inst.instruction |= (et.type == NT_float) << 10;
12813 inst.instruction |= neon_logbits (et.size) << 18;
12815 inst.instruction = neon_dp_fixup (inst.instruction);
12818 static void
12819 do_neon_sli (void)
12821 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12822 struct neon_type_el et = neon_check_type (2, rs,
12823 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12824 int imm = inst.operands[2].imm;
12825 constraint (imm < 0 || (unsigned)imm >= et.size,
12826 _("immediate out of range for insert"));
12827 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12830 static void
12831 do_neon_sri (void)
12833 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12834 struct neon_type_el et = neon_check_type (2, rs,
12835 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12836 int imm = inst.operands[2].imm;
12837 constraint (imm < 1 || (unsigned)imm > et.size,
12838 _("immediate out of range for insert"));
12839 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
12842 static void
12843 do_neon_qshlu_imm (void)
12845 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12846 struct neon_type_el et = neon_check_type (2, rs,
12847 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12848 int imm = inst.operands[2].imm;
12849 constraint (imm < 0 || (unsigned)imm >= et.size,
12850 _("immediate out of range for shift"));
12851 /* Only encodes the 'U present' variant of the instruction.
12852 In this case, signed types have OP (bit 8) set to 0.
12853 Unsigned types have OP set to 1. */
12854 inst.instruction |= (et.type == NT_unsigned) << 8;
12855 /* The rest of the bits are the same as other immediate shifts. */
12856 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12859 static void
12860 do_neon_qmovn (void)
12862 struct neon_type_el et = neon_check_type (2, NS_DQ,
12863 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12864 /* Saturating move where operands can be signed or unsigned, and the
12865 destination has the same signedness. */
12866 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12867 if (et.type == NT_unsigned)
12868 inst.instruction |= 0xc0;
12869 else
12870 inst.instruction |= 0x80;
12871 neon_two_same (0, 1, et.size / 2);
12874 static void
12875 do_neon_qmovun (void)
12877 struct neon_type_el et = neon_check_type (2, NS_DQ,
12878 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12879 /* Saturating move with unsigned results. Operands must be signed. */
12880 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12881 neon_two_same (0, 1, et.size / 2);
12884 static void
12885 do_neon_rshift_sat_narrow (void)
12887 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12888 or unsigned. If operands are unsigned, results must also be unsigned. */
12889 struct neon_type_el et = neon_check_type (2, NS_DQI,
12890 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12891 int imm = inst.operands[2].imm;
12892 /* This gets the bounds check, size encoding and immediate bits calculation
12893 right. */
12894 et.size /= 2;
12896 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12897 VQMOVN.I<size> <Dd>, <Qm>. */
12898 if (imm == 0)
12900 inst.operands[2].present = 0;
12901 inst.instruction = N_MNEM_vqmovn;
12902 do_neon_qmovn ();
12903 return;
12906 constraint (imm < 1 || (unsigned)imm > et.size,
12907 _("immediate out of range"));
12908 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12911 static void
12912 do_neon_rshift_sat_narrow_u (void)
12914 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12915 or unsigned. If operands are unsigned, results must also be unsigned. */
12916 struct neon_type_el et = neon_check_type (2, NS_DQI,
12917 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12918 int imm = inst.operands[2].imm;
12919 /* This gets the bounds check, size encoding and immediate bits calculation
12920 right. */
12921 et.size /= 2;
12923 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12924 VQMOVUN.I<size> <Dd>, <Qm>. */
12925 if (imm == 0)
12927 inst.operands[2].present = 0;
12928 inst.instruction = N_MNEM_vqmovun;
12929 do_neon_qmovun ();
12930 return;
12933 constraint (imm < 1 || (unsigned)imm > et.size,
12934 _("immediate out of range"));
12935 /* FIXME: The manual is kind of unclear about what value U should have in
12936 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12937 must be 1. */
12938 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12941 static void
12942 do_neon_movn (void)
12944 struct neon_type_el et = neon_check_type (2, NS_DQ,
12945 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12946 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12947 neon_two_same (0, 1, et.size / 2);
12950 static void
12951 do_neon_rshift_narrow (void)
12953 struct neon_type_el et = neon_check_type (2, NS_DQI,
12954 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12955 int imm = inst.operands[2].imm;
12956 /* This gets the bounds check, size encoding and immediate bits calculation
12957 right. */
12958 et.size /= 2;
12960 /* If immediate is zero then we are a pseudo-instruction for
12961 VMOVN.I<size> <Dd>, <Qm> */
12962 if (imm == 0)
12964 inst.operands[2].present = 0;
12965 inst.instruction = N_MNEM_vmovn;
12966 do_neon_movn ();
12967 return;
12970 constraint (imm < 1 || (unsigned)imm > et.size,
12971 _("immediate out of range for narrowing operation"));
12972 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12975 static void
12976 do_neon_shll (void)
12978 /* FIXME: Type checking when lengthening. */
12979 struct neon_type_el et = neon_check_type (2, NS_QDI,
12980 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12981 unsigned imm = inst.operands[2].imm;
12983 if (imm == et.size)
12985 /* Maximum shift variant. */
12986 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12987 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12988 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12989 inst.instruction |= LOW4 (inst.operands[1].reg);
12990 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12991 inst.instruction |= neon_logbits (et.size) << 18;
12993 inst.instruction = neon_dp_fixup (inst.instruction);
12995 else
12997 /* A more-specific type check for non-max versions. */
12998 et = neon_check_type (2, NS_QDI,
12999 N_EQK | N_DBL, N_SU_32 | N_KEY);
13000 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13001 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13005 /* Check the various types for the VCVT instruction, and return which version
13006 the current instruction is. */
13008 static int
13009 neon_cvt_flavour (enum neon_shape rs)
13011 #define CVT_VAR(C,X,Y) \
13012 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13013 if (et.type != NT_invtype) \
13015 inst.error = NULL; \
13016 return (C); \
13018 struct neon_type_el et;
13019 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13020 || rs == NS_FF) ? N_VFP : 0;
13021 /* The instruction versions which take an immediate take one register
13022 argument, which is extended to the width of the full register. Thus the
13023 "source" and "destination" registers must have the same width. Hack that
13024 here by making the size equal to the key (wider, in this case) operand. */
13025 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13027 CVT_VAR (0, N_S32, N_F32);
13028 CVT_VAR (1, N_U32, N_F32);
13029 CVT_VAR (2, N_F32, N_S32);
13030 CVT_VAR (3, N_F32, N_U32);
13031 /* Half-precision conversions. */
13032 CVT_VAR (4, N_F32, N_F16);
13033 CVT_VAR (5, N_F16, N_F32);
13035 whole_reg = N_VFP;
13037 /* VFP instructions. */
13038 CVT_VAR (6, N_F32, N_F64);
13039 CVT_VAR (7, N_F64, N_F32);
13040 CVT_VAR (8, N_S32, N_F64 | key);
13041 CVT_VAR (9, N_U32, N_F64 | key);
13042 CVT_VAR (10, N_F64 | key, N_S32);
13043 CVT_VAR (11, N_F64 | key, N_U32);
13044 /* VFP instructions with bitshift. */
13045 CVT_VAR (12, N_F32 | key, N_S16);
13046 CVT_VAR (13, N_F32 | key, N_U16);
13047 CVT_VAR (14, N_F64 | key, N_S16);
13048 CVT_VAR (15, N_F64 | key, N_U16);
13049 CVT_VAR (16, N_S16, N_F32 | key);
13050 CVT_VAR (17, N_U16, N_F32 | key);
13051 CVT_VAR (18, N_S16, N_F64 | key);
13052 CVT_VAR (19, N_U16, N_F64 | key);
13054 return -1;
13055 #undef CVT_VAR
13058 /* Neon-syntax VFP conversions. */
13060 static void
13061 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13063 const char *opname = 0;
13065 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13067 /* Conversions with immediate bitshift. */
13068 const char *enc[] =
13070 "ftosls",
13071 "ftouls",
13072 "fsltos",
13073 "fultos",
13074 NULL,
13075 NULL,
13076 NULL,
13077 NULL,
13078 "ftosld",
13079 "ftould",
13080 "fsltod",
13081 "fultod",
13082 "fshtos",
13083 "fuhtos",
13084 "fshtod",
13085 "fuhtod",
13086 "ftoshs",
13087 "ftouhs",
13088 "ftoshd",
13089 "ftouhd"
13092 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13094 opname = enc[flavour];
13095 constraint (inst.operands[0].reg != inst.operands[1].reg,
13096 _("operands 0 and 1 must be the same register"));
13097 inst.operands[1] = inst.operands[2];
13098 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13101 else
13103 /* Conversions without bitshift. */
13104 const char *enc[] =
13106 "ftosis",
13107 "ftouis",
13108 "fsitos",
13109 "fuitos",
13110 "NULL",
13111 "NULL",
13112 "fcvtsd",
13113 "fcvtds",
13114 "ftosid",
13115 "ftouid",
13116 "fsitod",
13117 "fuitod"
13120 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13121 opname = enc[flavour];
13124 if (opname)
13125 do_vfp_nsyn_opcode (opname);
13128 static void
13129 do_vfp_nsyn_cvtz (void)
13131 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13132 int flavour = neon_cvt_flavour (rs);
13133 const char *enc[] =
13135 "ftosizs",
13136 "ftouizs",
13137 NULL,
13138 NULL,
13139 NULL,
13140 NULL,
13141 NULL,
13142 NULL,
13143 "ftosizd",
13144 "ftouizd"
13147 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13148 do_vfp_nsyn_opcode (enc[flavour]);
13151 static void
13152 do_neon_cvt (void)
13154 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13155 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13156 int flavour = neon_cvt_flavour (rs);
13158 /* VFP rather than Neon conversions. */
13159 if (flavour >= 6)
13161 do_vfp_nsyn_cvt (rs, flavour);
13162 return;
13165 switch (rs)
13167 case NS_DDI:
13168 case NS_QQI:
13170 unsigned immbits;
13171 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13173 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13174 return;
13176 /* Fixed-point conversion with #0 immediate is encoded as an
13177 integer conversion. */
13178 if (inst.operands[2].present && inst.operands[2].imm == 0)
13179 goto int_encode;
13180 immbits = 32 - inst.operands[2].imm;
13181 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13182 if (flavour != -1)
13183 inst.instruction |= enctab[flavour];
13184 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13185 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13186 inst.instruction |= LOW4 (inst.operands[1].reg);
13187 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13188 inst.instruction |= neon_quad (rs) << 6;
13189 inst.instruction |= 1 << 21;
13190 inst.instruction |= immbits << 16;
13192 inst.instruction = neon_dp_fixup (inst.instruction);
13194 break;
13196 case NS_DD:
13197 case NS_QQ:
13198 int_encode:
13200 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13202 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13204 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13205 return;
13207 if (flavour != -1)
13208 inst.instruction |= enctab[flavour];
13210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13211 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13212 inst.instruction |= LOW4 (inst.operands[1].reg);
13213 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13214 inst.instruction |= neon_quad (rs) << 6;
13215 inst.instruction |= 2 << 18;
13217 inst.instruction = neon_dp_fixup (inst.instruction);
13219 break;
13221 /* Half-precision conversions for Advanced SIMD -- neon. */
13222 case NS_QD:
13223 case NS_DQ:
13225 if ((rs == NS_DQ)
13226 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13228 as_bad (_("operand size must match register width"));
13229 break;
13232 if ((rs == NS_QD)
13233 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13235 as_bad (_("operand size must match register width"));
13236 break;
13239 if (rs == NS_DQ)
13240 inst.instruction = 0x3b60600;
13241 else
13242 inst.instruction = 0x3b60700;
13244 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13245 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13246 inst.instruction |= LOW4 (inst.operands[1].reg);
13247 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13248 inst.instruction = neon_dp_fixup (inst.instruction);
13249 break;
13251 default:
13252 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13253 do_vfp_nsyn_cvt (rs, flavour);
13257 static void
13258 do_neon_cvtb (void)
13260 inst.instruction = 0xeb20a40;
13262 /* The sizes are attached to the mnemonic. */
13263 if (inst.vectype.el[0].type != NT_invtype
13264 && inst.vectype.el[0].size == 16)
13265 inst.instruction |= 0x00010000;
13267 /* Programmer's syntax: the sizes are attached to the operands. */
13268 else if (inst.operands[0].vectype.type != NT_invtype
13269 && inst.operands[0].vectype.size == 16)
13270 inst.instruction |= 0x00010000;
13272 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13273 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13274 do_vfp_cond_or_thumb ();
13278 static void
13279 do_neon_cvtt (void)
13281 do_neon_cvtb ();
13282 inst.instruction |= 0x80;
13285 static void
13286 neon_move_immediate (void)
13288 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13289 struct neon_type_el et = neon_check_type (2, rs,
13290 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13291 unsigned immlo, immhi = 0, immbits;
13292 int op, cmode, float_p;
13294 constraint (et.type == NT_invtype,
13295 _("operand size must be specified for immediate VMOV"));
13297 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13298 op = (inst.instruction & (1 << 5)) != 0;
13300 immlo = inst.operands[1].imm;
13301 if (inst.operands[1].regisimm)
13302 immhi = inst.operands[1].reg;
13304 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13305 _("immediate has bits set outside the operand size"));
13307 float_p = inst.operands[1].immisfloat;
13309 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
13310 et.size, et.type)) == FAIL)
13312 /* Invert relevant bits only. */
13313 neon_invert_size (&immlo, &immhi, et.size);
13314 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13315 with one or the other; those cases are caught by
13316 neon_cmode_for_move_imm. */
13317 op = !op;
13318 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13319 &op, et.size, et.type)) == FAIL)
13321 first_error (_("immediate out of range"));
13322 return;
13326 inst.instruction &= ~(1 << 5);
13327 inst.instruction |= op << 5;
13329 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13330 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13331 inst.instruction |= neon_quad (rs) << 6;
13332 inst.instruction |= cmode << 8;
13334 neon_write_immbits (immbits);
13337 static void
13338 do_neon_mvn (void)
13340 if (inst.operands[1].isreg)
13342 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13344 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13345 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13346 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13347 inst.instruction |= LOW4 (inst.operands[1].reg);
13348 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13349 inst.instruction |= neon_quad (rs) << 6;
13351 else
13353 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13354 neon_move_immediate ();
13357 inst.instruction = neon_dp_fixup (inst.instruction);
13360 /* Encode instructions of form:
13362 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13363 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13365 static void
13366 neon_mixed_length (struct neon_type_el et, unsigned size)
13368 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13369 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13370 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13371 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13372 inst.instruction |= LOW4 (inst.operands[2].reg);
13373 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13374 inst.instruction |= (et.type == NT_unsigned) << 24;
13375 inst.instruction |= neon_logbits (size) << 20;
13377 inst.instruction = neon_dp_fixup (inst.instruction);
13380 static void
13381 do_neon_dyadic_long (void)
13383 /* FIXME: Type checking for lengthening op. */
13384 struct neon_type_el et = neon_check_type (3, NS_QDD,
13385 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13386 neon_mixed_length (et, et.size);
13389 static void
13390 do_neon_abal (void)
13392 struct neon_type_el et = neon_check_type (3, NS_QDD,
13393 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13394 neon_mixed_length (et, et.size);
13397 static void
13398 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13400 if (inst.operands[2].isscalar)
13402 struct neon_type_el et = neon_check_type (3, NS_QDS,
13403 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
13404 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13405 neon_mul_mac (et, et.type == NT_unsigned);
13407 else
13409 struct neon_type_el et = neon_check_type (3, NS_QDD,
13410 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13411 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13412 neon_mixed_length (et, et.size);
13416 static void
13417 do_neon_mac_maybe_scalar_long (void)
13419 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13422 static void
13423 do_neon_dyadic_wide (void)
13425 struct neon_type_el et = neon_check_type (3, NS_QQD,
13426 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13427 neon_mixed_length (et, et.size);
13430 static void
13431 do_neon_dyadic_narrow (void)
13433 struct neon_type_el et = neon_check_type (3, NS_QDD,
13434 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
13435 /* Operand sign is unimportant, and the U bit is part of the opcode,
13436 so force the operand type to integer. */
13437 et.type = NT_integer;
13438 neon_mixed_length (et, et.size / 2);
13441 static void
13442 do_neon_mul_sat_scalar_long (void)
13444 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13447 static void
13448 do_neon_vmull (void)
13450 if (inst.operands[2].isscalar)
13451 do_neon_mac_maybe_scalar_long ();
13452 else
13454 struct neon_type_el et = neon_check_type (3, NS_QDD,
13455 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13456 if (et.type == NT_poly)
13457 inst.instruction = NEON_ENC_POLY (inst.instruction);
13458 else
13459 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13460 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13461 zero. Should be OK as-is. */
13462 neon_mixed_length (et, et.size);
13466 static void
13467 do_neon_ext (void)
13469 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
13470 struct neon_type_el et = neon_check_type (3, rs,
13471 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13472 unsigned imm = (inst.operands[3].imm * et.size) / 8;
13474 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13475 _("shift out of range"));
13476 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13477 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13478 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13479 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13480 inst.instruction |= LOW4 (inst.operands[2].reg);
13481 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13482 inst.instruction |= neon_quad (rs) << 6;
13483 inst.instruction |= imm << 8;
13485 inst.instruction = neon_dp_fixup (inst.instruction);
13488 static void
13489 do_neon_rev (void)
13491 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13492 struct neon_type_el et = neon_check_type (2, rs,
13493 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13494 unsigned op = (inst.instruction >> 7) & 3;
13495 /* N (width of reversed regions) is encoded as part of the bitmask. We
13496 extract it here to check the elements to be reversed are smaller.
13497 Otherwise we'd get a reserved instruction. */
13498 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13499 assert (elsize != 0);
13500 constraint (et.size >= elsize,
13501 _("elements must be smaller than reversal region"));
13502 neon_two_same (neon_quad (rs), 1, et.size);
13505 static void
13506 do_neon_dup (void)
13508 if (inst.operands[1].isscalar)
13510 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
13511 struct neon_type_el et = neon_check_type (2, rs,
13512 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13513 unsigned sizebits = et.size >> 3;
13514 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
13515 int logsize = neon_logbits (et.size);
13516 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
13518 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13519 return;
13521 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13522 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13523 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13524 inst.instruction |= LOW4 (dm);
13525 inst.instruction |= HI1 (dm) << 5;
13526 inst.instruction |= neon_quad (rs) << 6;
13527 inst.instruction |= x << 17;
13528 inst.instruction |= sizebits << 16;
13530 inst.instruction = neon_dp_fixup (inst.instruction);
13532 else
13534 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13535 struct neon_type_el et = neon_check_type (2, rs,
13536 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13537 /* Duplicate ARM register to lanes of vector. */
13538 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13539 switch (et.size)
13541 case 8: inst.instruction |= 0x400000; break;
13542 case 16: inst.instruction |= 0x000020; break;
13543 case 32: inst.instruction |= 0x000000; break;
13544 default: break;
13546 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13547 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13548 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
13549 inst.instruction |= neon_quad (rs) << 21;
13550 /* The encoding for this instruction is identical for the ARM and Thumb
13551 variants, except for the condition field. */
13552 do_vfp_cond_or_thumb ();
13556 /* VMOV has particularly many variations. It can be one of:
13557 0. VMOV<c><q> <Qd>, <Qm>
13558 1. VMOV<c><q> <Dd>, <Dm>
13559 (Register operations, which are VORR with Rm = Rn.)
13560 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13561 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13562 (Immediate loads.)
13563 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13564 (ARM register to scalar.)
13565 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13566 (Two ARM registers to vector.)
13567 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13568 (Scalar to ARM register.)
13569 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13570 (Vector to two ARM registers.)
13571 8. VMOV.F32 <Sd>, <Sm>
13572 9. VMOV.F64 <Dd>, <Dm>
13573 (VFP register moves.)
13574 10. VMOV.F32 <Sd>, #imm
13575 11. VMOV.F64 <Dd>, #imm
13576 (VFP float immediate load.)
13577 12. VMOV <Rd>, <Sm>
13578 (VFP single to ARM reg.)
13579 13. VMOV <Sd>, <Rm>
13580 (ARM reg to VFP single.)
13581 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13582 (Two ARM regs to two VFP singles.)
13583 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13584 (Two VFP singles to two ARM regs.)
13586 These cases can be disambiguated using neon_select_shape, except cases 1/9
13587 and 3/11 which depend on the operand type too.
13589 All the encoded bits are hardcoded by this function.
13591 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13592 Cases 5, 7 may be used with VFPv2 and above.
13594 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13595 can specify a type where it doesn't make sense to, and is ignored). */
13597 static void
13598 do_neon_mov (void)
13600 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13601 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13602 NS_NULL);
13603 struct neon_type_el et;
13604 const char *ldconst = 0;
13606 switch (rs)
13608 case NS_DD: /* case 1/9. */
13609 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13610 /* It is not an error here if no type is given. */
13611 inst.error = NULL;
13612 if (et.type == NT_float && et.size == 64)
13614 do_vfp_nsyn_opcode ("fcpyd");
13615 break;
13617 /* fall through. */
13619 case NS_QQ: /* case 0/1. */
13621 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13622 return;
13623 /* The architecture manual I have doesn't explicitly state which
13624 value the U bit should have for register->register moves, but
13625 the equivalent VORR instruction has U = 0, so do that. */
13626 inst.instruction = 0x0200110;
13627 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13628 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13629 inst.instruction |= LOW4 (inst.operands[1].reg);
13630 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13631 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13632 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13633 inst.instruction |= neon_quad (rs) << 6;
13635 inst.instruction = neon_dp_fixup (inst.instruction);
13637 break;
13639 case NS_DI: /* case 3/11. */
13640 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13641 inst.error = NULL;
13642 if (et.type == NT_float && et.size == 64)
13644 /* case 11 (fconstd). */
13645 ldconst = "fconstd";
13646 goto encode_fconstd;
13648 /* fall through. */
13650 case NS_QI: /* case 2/3. */
13651 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13652 return;
13653 inst.instruction = 0x0800010;
13654 neon_move_immediate ();
13655 inst.instruction = neon_dp_fixup (inst.instruction);
13656 break;
13658 case NS_SR: /* case 4. */
13660 unsigned bcdebits = 0;
13661 struct neon_type_el et = neon_check_type (2, NS_NULL,
13662 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13663 int logsize = neon_logbits (et.size);
13664 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13665 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13667 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13668 _(BAD_FPU));
13669 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13670 && et.size != 32, _(BAD_FPU));
13671 constraint (et.type == NT_invtype, _("bad type for scalar"));
13672 constraint (x >= 64 / et.size, _("scalar index out of range"));
13674 switch (et.size)
13676 case 8: bcdebits = 0x8; break;
13677 case 16: bcdebits = 0x1; break;
13678 case 32: bcdebits = 0x0; break;
13679 default: ;
13682 bcdebits |= x << logsize;
13684 inst.instruction = 0xe000b10;
13685 do_vfp_cond_or_thumb ();
13686 inst.instruction |= LOW4 (dn) << 16;
13687 inst.instruction |= HI1 (dn) << 7;
13688 inst.instruction |= inst.operands[1].reg << 12;
13689 inst.instruction |= (bcdebits & 3) << 5;
13690 inst.instruction |= (bcdebits >> 2) << 21;
13692 break;
13694 case NS_DRR: /* case 5 (fmdrr). */
13695 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13696 _(BAD_FPU));
13698 inst.instruction = 0xc400b10;
13699 do_vfp_cond_or_thumb ();
13700 inst.instruction |= LOW4 (inst.operands[0].reg);
13701 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13702 inst.instruction |= inst.operands[1].reg << 12;
13703 inst.instruction |= inst.operands[2].reg << 16;
13704 break;
13706 case NS_RS: /* case 6. */
13708 struct neon_type_el et = neon_check_type (2, NS_NULL,
13709 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13710 unsigned logsize = neon_logbits (et.size);
13711 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13712 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13713 unsigned abcdebits = 0;
13715 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13716 _(BAD_FPU));
13717 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13718 && et.size != 32, _(BAD_FPU));
13719 constraint (et.type == NT_invtype, _("bad type for scalar"));
13720 constraint (x >= 64 / et.size, _("scalar index out of range"));
13722 switch (et.size)
13724 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13725 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13726 case 32: abcdebits = 0x00; break;
13727 default: ;
13730 abcdebits |= x << logsize;
13731 inst.instruction = 0xe100b10;
13732 do_vfp_cond_or_thumb ();
13733 inst.instruction |= LOW4 (dn) << 16;
13734 inst.instruction |= HI1 (dn) << 7;
13735 inst.instruction |= inst.operands[0].reg << 12;
13736 inst.instruction |= (abcdebits & 3) << 5;
13737 inst.instruction |= (abcdebits >> 2) << 21;
13739 break;
13741 case NS_RRD: /* case 7 (fmrrd). */
13742 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13743 _(BAD_FPU));
13745 inst.instruction = 0xc500b10;
13746 do_vfp_cond_or_thumb ();
13747 inst.instruction |= inst.operands[0].reg << 12;
13748 inst.instruction |= inst.operands[1].reg << 16;
13749 inst.instruction |= LOW4 (inst.operands[2].reg);
13750 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13751 break;
13753 case NS_FF: /* case 8 (fcpys). */
13754 do_vfp_nsyn_opcode ("fcpys");
13755 break;
13757 case NS_FI: /* case 10 (fconsts). */
13758 ldconst = "fconsts";
13759 encode_fconstd:
13760 if (is_quarter_float (inst.operands[1].imm))
13762 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13763 do_vfp_nsyn_opcode (ldconst);
13765 else
13766 first_error (_("immediate out of range"));
13767 break;
13769 case NS_RF: /* case 12 (fmrs). */
13770 do_vfp_nsyn_opcode ("fmrs");
13771 break;
13773 case NS_FR: /* case 13 (fmsr). */
13774 do_vfp_nsyn_opcode ("fmsr");
13775 break;
13777 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13778 (one of which is a list), but we have parsed four. Do some fiddling to
13779 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13780 expect. */
13781 case NS_RRFF: /* case 14 (fmrrs). */
13782 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13783 _("VFP registers must be adjacent"));
13784 inst.operands[2].imm = 2;
13785 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13786 do_vfp_nsyn_opcode ("fmrrs");
13787 break;
13789 case NS_FFRR: /* case 15 (fmsrr). */
13790 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13791 _("VFP registers must be adjacent"));
13792 inst.operands[1] = inst.operands[2];
13793 inst.operands[2] = inst.operands[3];
13794 inst.operands[0].imm = 2;
13795 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13796 do_vfp_nsyn_opcode ("fmsrr");
13797 break;
13799 default:
13800 abort ();
13804 static void
13805 do_neon_rshift_round_imm (void)
13807 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13808 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13809 int imm = inst.operands[2].imm;
13811 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13812 if (imm == 0)
13814 inst.operands[2].present = 0;
13815 do_neon_mov ();
13816 return;
13819 constraint (imm < 1 || (unsigned)imm > et.size,
13820 _("immediate out of range for shift"));
13821 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13822 et.size - imm);
13825 static void
13826 do_neon_movl (void)
13828 struct neon_type_el et = neon_check_type (2, NS_QD,
13829 N_EQK | N_DBL, N_SU_32 | N_KEY);
13830 unsigned sizebits = et.size >> 3;
13831 inst.instruction |= sizebits << 19;
13832 neon_two_same (0, et.type == NT_unsigned, -1);
13835 static void
13836 do_neon_trn (void)
13838 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13839 struct neon_type_el et = neon_check_type (2, rs,
13840 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13841 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13842 neon_two_same (neon_quad (rs), 1, et.size);
13845 static void
13846 do_neon_zip_uzp (void)
13848 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13849 struct neon_type_el et = neon_check_type (2, rs,
13850 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13851 if (rs == NS_DD && et.size == 32)
13853 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13854 inst.instruction = N_MNEM_vtrn;
13855 do_neon_trn ();
13856 return;
13858 neon_two_same (neon_quad (rs), 1, et.size);
13861 static void
13862 do_neon_sat_abs_neg (void)
13864 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13865 struct neon_type_el et = neon_check_type (2, rs,
13866 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13867 neon_two_same (neon_quad (rs), 1, et.size);
13870 static void
13871 do_neon_pair_long (void)
13873 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13874 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13875 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13876 inst.instruction |= (et.type == NT_unsigned) << 7;
13877 neon_two_same (neon_quad (rs), 1, et.size);
13880 static void
13881 do_neon_recip_est (void)
13883 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13884 struct neon_type_el et = neon_check_type (2, rs,
13885 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13886 inst.instruction |= (et.type == NT_float) << 8;
13887 neon_two_same (neon_quad (rs), 1, et.size);
13890 static void
13891 do_neon_cls (void)
13893 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13894 struct neon_type_el et = neon_check_type (2, rs,
13895 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13896 neon_two_same (neon_quad (rs), 1, et.size);
13899 static void
13900 do_neon_clz (void)
13902 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13903 struct neon_type_el et = neon_check_type (2, rs,
13904 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
13905 neon_two_same (neon_quad (rs), 1, et.size);
13908 static void
13909 do_neon_cnt (void)
13911 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13912 struct neon_type_el et = neon_check_type (2, rs,
13913 N_EQK | N_INT, N_8 | N_KEY);
13914 neon_two_same (neon_quad (rs), 1, et.size);
13917 static void
13918 do_neon_swp (void)
13920 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13921 neon_two_same (neon_quad (rs), 1, -1);
13924 static void
13925 do_neon_tbl_tbx (void)
13927 unsigned listlenbits;
13928 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
13930 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13932 first_error (_("bad list length for table lookup"));
13933 return;
13936 listlenbits = inst.operands[1].imm - 1;
13937 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13938 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13939 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13940 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13941 inst.instruction |= LOW4 (inst.operands[2].reg);
13942 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13943 inst.instruction |= listlenbits << 8;
13945 inst.instruction = neon_dp_fixup (inst.instruction);
13948 static void
13949 do_neon_ldm_stm (void)
13951 /* P, U and L bits are part of bitmask. */
13952 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13953 unsigned offsetbits = inst.operands[1].imm * 2;
13955 if (inst.operands[1].issingle)
13957 do_vfp_nsyn_ldm_stm (is_dbmode);
13958 return;
13961 constraint (is_dbmode && !inst.operands[0].writeback,
13962 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13964 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13965 _("register list must contain at least 1 and at most 16 "
13966 "registers"));
13968 inst.instruction |= inst.operands[0].reg << 16;
13969 inst.instruction |= inst.operands[0].writeback << 21;
13970 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13971 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13973 inst.instruction |= offsetbits;
13975 do_vfp_cond_or_thumb ();
13978 static void
13979 do_neon_ldr_str (void)
13981 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13983 if (inst.operands[0].issingle)
13985 if (is_ldr)
13986 do_vfp_nsyn_opcode ("flds");
13987 else
13988 do_vfp_nsyn_opcode ("fsts");
13990 else
13992 if (is_ldr)
13993 do_vfp_nsyn_opcode ("fldd");
13994 else
13995 do_vfp_nsyn_opcode ("fstd");
13999 /* "interleave" version also handles non-interleaving register VLD1/VST1
14000 instructions. */
14002 static void
14003 do_neon_ld_st_interleave (void)
14005 struct neon_type_el et = neon_check_type (1, NS_NULL,
14006 N_8 | N_16 | N_32 | N_64);
14007 unsigned alignbits = 0;
14008 unsigned idx;
14009 /* The bits in this table go:
14010 0: register stride of one (0) or two (1)
14011 1,2: register list length, minus one (1, 2, 3, 4).
14012 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14013 We use -1 for invalid entries. */
14014 const int typetable[] =
14016 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14017 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14018 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14019 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14021 int typebits;
14023 if (et.type == NT_invtype)
14024 return;
14026 if (inst.operands[1].immisalign)
14027 switch (inst.operands[1].imm >> 8)
14029 case 64: alignbits = 1; break;
14030 case 128:
14031 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14032 goto bad_alignment;
14033 alignbits = 2;
14034 break;
14035 case 256:
14036 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14037 goto bad_alignment;
14038 alignbits = 3;
14039 break;
14040 default:
14041 bad_alignment:
14042 first_error (_("bad alignment"));
14043 return;
14046 inst.instruction |= alignbits << 4;
14047 inst.instruction |= neon_logbits (et.size) << 6;
14049 /* Bits [4:6] of the immediate in a list specifier encode register stride
14050 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14051 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14052 up the right value for "type" in a table based on this value and the given
14053 list style, then stick it back. */
14054 idx = ((inst.operands[0].imm >> 4) & 7)
14055 | (((inst.instruction >> 8) & 3) << 3);
14057 typebits = typetable[idx];
14059 constraint (typebits == -1, _("bad list type for instruction"));
14061 inst.instruction &= ~0xf00;
14062 inst.instruction |= typebits << 8;
14065 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14066 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14067 otherwise. The variable arguments are a list of pairs of legal (size, align)
14068 values, terminated with -1. */
14070 static int
14071 neon_alignment_bit (int size, int align, int *do_align, ...)
14073 va_list ap;
14074 int result = FAIL, thissize, thisalign;
14076 if (!inst.operands[1].immisalign)
14078 *do_align = 0;
14079 return SUCCESS;
14082 va_start (ap, do_align);
14086 thissize = va_arg (ap, int);
14087 if (thissize == -1)
14088 break;
14089 thisalign = va_arg (ap, int);
14091 if (size == thissize && align == thisalign)
14092 result = SUCCESS;
14094 while (result != SUCCESS);
14096 va_end (ap);
14098 if (result == SUCCESS)
14099 *do_align = 1;
14100 else
14101 first_error (_("unsupported alignment for instruction"));
14103 return result;
14106 static void
14107 do_neon_ld_st_lane (void)
14109 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14110 int align_good, do_align = 0;
14111 int logsize = neon_logbits (et.size);
14112 int align = inst.operands[1].imm >> 8;
14113 int n = (inst.instruction >> 8) & 3;
14114 int max_el = 64 / et.size;
14116 if (et.type == NT_invtype)
14117 return;
14119 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14120 _("bad list length"));
14121 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14122 _("scalar index out of range"));
14123 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14124 && et.size == 8,
14125 _("stride of 2 unavailable when element size is 8"));
14127 switch (n)
14129 case 0: /* VLD1 / VST1. */
14130 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14131 32, 32, -1);
14132 if (align_good == FAIL)
14133 return;
14134 if (do_align)
14136 unsigned alignbits = 0;
14137 switch (et.size)
14139 case 16: alignbits = 0x1; break;
14140 case 32: alignbits = 0x3; break;
14141 default: ;
14143 inst.instruction |= alignbits << 4;
14145 break;
14147 case 1: /* VLD2 / VST2. */
14148 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14149 32, 64, -1);
14150 if (align_good == FAIL)
14151 return;
14152 if (do_align)
14153 inst.instruction |= 1 << 4;
14154 break;
14156 case 2: /* VLD3 / VST3. */
14157 constraint (inst.operands[1].immisalign,
14158 _("can't use alignment with this instruction"));
14159 break;
14161 case 3: /* VLD4 / VST4. */
14162 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14163 16, 64, 32, 64, 32, 128, -1);
14164 if (align_good == FAIL)
14165 return;
14166 if (do_align)
14168 unsigned alignbits = 0;
14169 switch (et.size)
14171 case 8: alignbits = 0x1; break;
14172 case 16: alignbits = 0x1; break;
14173 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14174 default: ;
14176 inst.instruction |= alignbits << 4;
14178 break;
14180 default: ;
14183 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14184 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14185 inst.instruction |= 1 << (4 + logsize);
14187 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14188 inst.instruction |= logsize << 10;
14191 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14193 static void
14194 do_neon_ld_dup (void)
14196 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14197 int align_good, do_align = 0;
14199 if (et.type == NT_invtype)
14200 return;
14202 switch ((inst.instruction >> 8) & 3)
14204 case 0: /* VLD1. */
14205 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14206 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14207 &do_align, 16, 16, 32, 32, -1);
14208 if (align_good == FAIL)
14209 return;
14210 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14212 case 1: break;
14213 case 2: inst.instruction |= 1 << 5; break;
14214 default: first_error (_("bad list length")); return;
14216 inst.instruction |= neon_logbits (et.size) << 6;
14217 break;
14219 case 1: /* VLD2. */
14220 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14221 &do_align, 8, 16, 16, 32, 32, 64, -1);
14222 if (align_good == FAIL)
14223 return;
14224 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14225 _("bad list length"));
14226 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14227 inst.instruction |= 1 << 5;
14228 inst.instruction |= neon_logbits (et.size) << 6;
14229 break;
14231 case 2: /* VLD3. */
14232 constraint (inst.operands[1].immisalign,
14233 _("can't use alignment with this instruction"));
14234 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14235 _("bad list length"));
14236 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14237 inst.instruction |= 1 << 5;
14238 inst.instruction |= neon_logbits (et.size) << 6;
14239 break;
14241 case 3: /* VLD4. */
14243 int align = inst.operands[1].imm >> 8;
14244 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14245 16, 64, 32, 64, 32, 128, -1);
14246 if (align_good == FAIL)
14247 return;
14248 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14249 _("bad list length"));
14250 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14251 inst.instruction |= 1 << 5;
14252 if (et.size == 32 && align == 128)
14253 inst.instruction |= 0x3 << 6;
14254 else
14255 inst.instruction |= neon_logbits (et.size) << 6;
14257 break;
14259 default: ;
14262 inst.instruction |= do_align << 4;
14265 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14266 apart from bits [11:4]. */
14268 static void
14269 do_neon_ldx_stx (void)
14271 switch (NEON_LANE (inst.operands[0].imm))
14273 case NEON_INTERLEAVE_LANES:
14274 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14275 do_neon_ld_st_interleave ();
14276 break;
14278 case NEON_ALL_LANES:
14279 inst.instruction = NEON_ENC_DUP (inst.instruction);
14280 do_neon_ld_dup ();
14281 break;
14283 default:
14284 inst.instruction = NEON_ENC_LANE (inst.instruction);
14285 do_neon_ld_st_lane ();
14288 /* L bit comes from bit mask. */
14289 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14290 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14291 inst.instruction |= inst.operands[1].reg << 16;
14293 if (inst.operands[1].postind)
14295 int postreg = inst.operands[1].imm & 0xf;
14296 constraint (!inst.operands[1].immisreg,
14297 _("post-index must be a register"));
14298 constraint (postreg == 0xd || postreg == 0xf,
14299 _("bad register for post-index"));
14300 inst.instruction |= postreg;
14302 else if (inst.operands[1].writeback)
14304 inst.instruction |= 0xd;
14306 else
14307 inst.instruction |= 0xf;
14309 if (thumb_mode)
14310 inst.instruction |= 0xf9000000;
14311 else
14312 inst.instruction |= 0xf4000000;
14315 /* Overall per-instruction processing. */
14317 /* We need to be able to fix up arbitrary expressions in some statements.
14318 This is so that we can handle symbols that are an arbitrary distance from
14319 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14320 which returns part of an address in a form which will be valid for
14321 a data instruction. We do this by pushing the expression into a symbol
14322 in the expr_section, and creating a fix for that. */
14324 static void
14325 fix_new_arm (fragS * frag,
14326 int where,
14327 short int size,
14328 expressionS * exp,
14329 int pc_rel,
14330 int reloc)
14332 fixS * new_fix;
14334 switch (exp->X_op)
14336 case O_constant:
14337 case O_symbol:
14338 case O_add:
14339 case O_subtract:
14340 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
14341 break;
14343 default:
14344 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
14345 pc_rel, reloc);
14346 break;
14349 /* Mark whether the fix is to a THUMB instruction, or an ARM
14350 instruction. */
14351 new_fix->tc_fix_data = thumb_mode;
14354 /* Create a frg for an instruction requiring relaxation. */
14355 static void
14356 output_relax_insn (void)
14358 char * to;
14359 symbolS *sym;
14360 int offset;
14362 /* The size of the instruction is unknown, so tie the debug info to the
14363 start of the instruction. */
14364 dwarf2_emit_insn (0);
14366 switch (inst.reloc.exp.X_op)
14368 case O_symbol:
14369 sym = inst.reloc.exp.X_add_symbol;
14370 offset = inst.reloc.exp.X_add_number;
14371 break;
14372 case O_constant:
14373 sym = NULL;
14374 offset = inst.reloc.exp.X_add_number;
14375 break;
14376 default:
14377 sym = make_expr_symbol (&inst.reloc.exp);
14378 offset = 0;
14379 break;
14381 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14382 inst.relax, sym, offset, NULL/*offset, opcode*/);
14383 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
14386 /* Write a 32-bit thumb instruction to buf. */
14387 static void
14388 put_thumb32_insn (char * buf, unsigned long insn)
14390 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14391 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14394 static void
14395 output_inst (const char * str)
14397 char * to = NULL;
14399 if (inst.error)
14401 as_bad ("%s -- `%s'", inst.error, str);
14402 return;
14404 if (inst.relax)
14406 output_relax_insn ();
14407 return;
14409 if (inst.size == 0)
14410 return;
14412 to = frag_more (inst.size);
14413 /* PR 9814: Record the thumb mode into the current frag so that we know
14414 what type of NOP padding to use, if necessary. We override any previous
14415 setting so that if the mode has changed then the NOPS that we use will
14416 match the encoding of the last instruction in the frag. */
14417 frag_now->tc_frag_data = thumb_mode | MODE_RECORDED;
14419 if (thumb_mode && (inst.size > THUMB_SIZE))
14421 assert (inst.size == (2 * THUMB_SIZE));
14422 put_thumb32_insn (to, inst.instruction);
14424 else if (inst.size > INSN_SIZE)
14426 assert (inst.size == (2 * INSN_SIZE));
14427 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14428 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
14430 else
14431 md_number_to_chars (to, inst.instruction, inst.size);
14433 if (inst.reloc.type != BFD_RELOC_UNUSED)
14434 fix_new_arm (frag_now, to - frag_now->fr_literal,
14435 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14436 inst.reloc.type);
14438 dwarf2_emit_insn (inst.size);
14441 /* Tag values used in struct asm_opcode's tag field. */
14442 enum opcode_tag
14444 OT_unconditional, /* Instruction cannot be conditionalized.
14445 The ARM condition field is still 0xE. */
14446 OT_unconditionalF, /* Instruction cannot be conditionalized
14447 and carries 0xF in its ARM condition field. */
14448 OT_csuffix, /* Instruction takes a conditional suffix. */
14449 OT_csuffixF, /* Some forms of the instruction take a conditional
14450 suffix, others place 0xF where the condition field
14451 would be. */
14452 OT_cinfix3, /* Instruction takes a conditional infix,
14453 beginning at character index 3. (In
14454 unified mode, it becomes a suffix.) */
14455 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14456 tsts, cmps, cmns, and teqs. */
14457 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14458 character index 3, even in unified mode. Used for
14459 legacy instructions where suffix and infix forms
14460 may be ambiguous. */
14461 OT_csuf_or_in3, /* Instruction takes either a conditional
14462 suffix or an infix at character index 3. */
14463 OT_odd_infix_unc, /* This is the unconditional variant of an
14464 instruction that takes a conditional infix
14465 at an unusual position. In unified mode,
14466 this variant will accept a suffix. */
14467 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14468 are the conditional variants of instructions that
14469 take conditional infixes in unusual positions.
14470 The infix appears at character index
14471 (tag - OT_odd_infix_0). These are not accepted
14472 in unified mode. */
14475 /* Subroutine of md_assemble, responsible for looking up the primary
14476 opcode from the mnemonic the user wrote. STR points to the
14477 beginning of the mnemonic.
14479 This is not simply a hash table lookup, because of conditional
14480 variants. Most instructions have conditional variants, which are
14481 expressed with a _conditional affix_ to the mnemonic. If we were
14482 to encode each conditional variant as a literal string in the opcode
14483 table, it would have approximately 20,000 entries.
14485 Most mnemonics take this affix as a suffix, and in unified syntax,
14486 'most' is upgraded to 'all'. However, in the divided syntax, some
14487 instructions take the affix as an infix, notably the s-variants of
14488 the arithmetic instructions. Of those instructions, all but six
14489 have the infix appear after the third character of the mnemonic.
14491 Accordingly, the algorithm for looking up primary opcodes given
14492 an identifier is:
14494 1. Look up the identifier in the opcode table.
14495 If we find a match, go to step U.
14497 2. Look up the last two characters of the identifier in the
14498 conditions table. If we find a match, look up the first N-2
14499 characters of the identifier in the opcode table. If we
14500 find a match, go to step CE.
14502 3. Look up the fourth and fifth characters of the identifier in
14503 the conditions table. If we find a match, extract those
14504 characters from the identifier, and look up the remaining
14505 characters in the opcode table. If we find a match, go
14506 to step CM.
14508 4. Fail.
14510 U. Examine the tag field of the opcode structure, in case this is
14511 one of the six instructions with its conditional infix in an
14512 unusual place. If it is, the tag tells us where to find the
14513 infix; look it up in the conditions table and set inst.cond
14514 accordingly. Otherwise, this is an unconditional instruction.
14515 Again set inst.cond accordingly. Return the opcode structure.
14517 CE. Examine the tag field to make sure this is an instruction that
14518 should receive a conditional suffix. If it is not, fail.
14519 Otherwise, set inst.cond from the suffix we already looked up,
14520 and return the opcode structure.
14522 CM. Examine the tag field to make sure this is an instruction that
14523 should receive a conditional infix after the third character.
14524 If it is not, fail. Otherwise, undo the edits to the current
14525 line of input and proceed as for case CE. */
14527 static const struct asm_opcode *
14528 opcode_lookup (char **str)
14530 char *end, *base;
14531 char *affix;
14532 const struct asm_opcode *opcode;
14533 const struct asm_cond *cond;
14534 char save[2];
14535 bfd_boolean neon_supported;
14537 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
14539 /* Scan up to the end of the mnemonic, which must end in white space,
14540 '.' (in unified mode, or for Neon instructions), or end of string. */
14541 for (base = end = *str; *end != '\0'; end++)
14542 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
14543 break;
14545 if (end == base)
14546 return 0;
14548 /* Handle a possible width suffix and/or Neon type suffix. */
14549 if (end[0] == '.')
14551 int offset = 2;
14553 /* The .w and .n suffixes are only valid if the unified syntax is in
14554 use. */
14555 if (unified_syntax && end[1] == 'w')
14556 inst.size_req = 4;
14557 else if (unified_syntax && end[1] == 'n')
14558 inst.size_req = 2;
14559 else
14560 offset = 0;
14562 inst.vectype.elems = 0;
14564 *str = end + offset;
14566 if (end[offset] == '.')
14568 /* See if we have a Neon type suffix (possible in either unified or
14569 non-unified ARM syntax mode). */
14570 if (parse_neon_type (&inst.vectype, str) == FAIL)
14571 return 0;
14573 else if (end[offset] != '\0' && end[offset] != ' ')
14574 return 0;
14576 else
14577 *str = end;
14579 /* Look for unaffixed or special-case affixed mnemonic. */
14580 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14581 if (opcode)
14583 /* step U */
14584 if (opcode->tag < OT_odd_infix_0)
14586 inst.cond = COND_ALWAYS;
14587 return opcode;
14590 if (warn_on_deprecated && unified_syntax)
14591 as_warn (_("conditional infixes are deprecated in unified syntax"));
14592 affix = base + (opcode->tag - OT_odd_infix_0);
14593 cond = hash_find_n (arm_cond_hsh, affix, 2);
14594 assert (cond);
14596 inst.cond = cond->value;
14597 return opcode;
14600 /* Cannot have a conditional suffix on a mnemonic of less than two
14601 characters. */
14602 if (end - base < 3)
14603 return 0;
14605 /* Look for suffixed mnemonic. */
14606 affix = end - 2;
14607 cond = hash_find_n (arm_cond_hsh, affix, 2);
14608 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14609 if (opcode && cond)
14611 /* step CE */
14612 switch (opcode->tag)
14614 case OT_cinfix3_legacy:
14615 /* Ignore conditional suffixes matched on infix only mnemonics. */
14616 break;
14618 case OT_cinfix3:
14619 case OT_cinfix3_deprecated:
14620 case OT_odd_infix_unc:
14621 if (!unified_syntax)
14622 return 0;
14623 /* else fall through */
14625 case OT_csuffix:
14626 case OT_csuffixF:
14627 case OT_csuf_or_in3:
14628 inst.cond = cond->value;
14629 return opcode;
14631 case OT_unconditional:
14632 case OT_unconditionalF:
14633 if (thumb_mode)
14635 inst.cond = cond->value;
14637 else
14639 /* delayed diagnostic */
14640 inst.error = BAD_COND;
14641 inst.cond = COND_ALWAYS;
14643 return opcode;
14645 default:
14646 return 0;
14650 /* Cannot have a usual-position infix on a mnemonic of less than
14651 six characters (five would be a suffix). */
14652 if (end - base < 6)
14653 return 0;
14655 /* Look for infixed mnemonic in the usual position. */
14656 affix = base + 3;
14657 cond = hash_find_n (arm_cond_hsh, affix, 2);
14658 if (!cond)
14659 return 0;
14661 memcpy (save, affix, 2);
14662 memmove (affix, affix + 2, (end - affix) - 2);
14663 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14664 memmove (affix + 2, affix, (end - affix) - 2);
14665 memcpy (affix, save, 2);
14667 if (opcode
14668 && (opcode->tag == OT_cinfix3
14669 || opcode->tag == OT_cinfix3_deprecated
14670 || opcode->tag == OT_csuf_or_in3
14671 || opcode->tag == OT_cinfix3_legacy))
14673 /* step CM */
14674 if (warn_on_deprecated && unified_syntax
14675 && (opcode->tag == OT_cinfix3
14676 || opcode->tag == OT_cinfix3_deprecated))
14677 as_warn (_("conditional infixes are deprecated in unified syntax"));
14679 inst.cond = cond->value;
14680 return opcode;
14683 return 0;
14686 void
14687 md_assemble (char *str)
14689 char *p = str;
14690 const struct asm_opcode * opcode;
14692 /* Align the previous label if needed. */
14693 if (last_label_seen != NULL)
14695 symbol_set_frag (last_label_seen, frag_now);
14696 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14697 S_SET_SEGMENT (last_label_seen, now_seg);
14700 memset (&inst, '\0', sizeof (inst));
14701 inst.reloc.type = BFD_RELOC_UNUSED;
14703 opcode = opcode_lookup (&p);
14704 if (!opcode)
14706 /* It wasn't an instruction, but it might be a register alias of
14707 the form alias .req reg, or a Neon .dn/.qn directive. */
14708 if (!create_register_alias (str, p)
14709 && !create_neon_reg_alias (str, p))
14710 as_bad (_("bad instruction `%s'"), str);
14712 return;
14715 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
14716 as_warn (_("s suffix on comparison instruction is deprecated"));
14718 /* The value which unconditional instructions should have in place of the
14719 condition field. */
14720 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14722 if (thumb_mode)
14724 arm_feature_set variant;
14726 variant = cpu_variant;
14727 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
14728 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14729 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
14730 /* Check that this instruction is supported for this CPU. */
14731 if (!opcode->tvariant
14732 || (thumb_mode == 1
14733 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
14735 as_bad (_("selected processor does not support `%s'"), str);
14736 return;
14738 if (inst.cond != COND_ALWAYS && !unified_syntax
14739 && opcode->tencode != do_t_branch)
14741 as_bad (_("Thumb does not support conditional execution"));
14742 return;
14745 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14747 /* Implicit require narrow instructions on Thumb-1. This avoids
14748 relaxation accidentally introducing Thumb-2 instructions. */
14749 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
14750 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
14751 inst.size_req = 2;
14754 /* Check conditional suffixes. */
14755 if (current_it_mask)
14757 int cond;
14758 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
14759 current_it_mask <<= 1;
14760 current_it_mask &= 0x1f;
14761 /* The BKPT instruction is unconditional even in an IT block. */
14762 if (!inst.error
14763 && cond != inst.cond && opcode->tencode != do_t_bkpt)
14765 as_bad (_("incorrect condition in IT block"));
14766 return;
14769 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14771 as_bad (_("thumb conditional instruction not in IT block"));
14772 return;
14775 mapping_state (MAP_THUMB);
14776 inst.instruction = opcode->tvalue;
14778 if (!parse_operands (p, opcode->operands))
14779 opcode->tencode ();
14781 /* Clear current_it_mask at the end of an IT block. */
14782 if (current_it_mask == 0x10)
14783 current_it_mask = 0;
14785 if (!(inst.error || inst.relax))
14787 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14788 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14789 if (inst.size_req && inst.size_req != inst.size)
14791 as_bad (_("cannot honor width suffix -- `%s'"), str);
14792 return;
14796 /* Something has gone badly wrong if we try to relax a fixed size
14797 instruction. */
14798 assert (inst.size_req == 0 || !inst.relax);
14800 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14801 *opcode->tvariant);
14802 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
14803 set those bits when Thumb-2 32-bit instructions are seen. ie.
14804 anything other than bl/blx and v6-M instructions.
14805 This is overly pessimistic for relaxable instructions. */
14806 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14807 || inst.relax)
14808 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
14809 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14810 arm_ext_v6t2);
14812 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
14814 bfd_boolean is_bx;
14816 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
14817 is_bx = (opcode->aencode == do_bx);
14819 /* Check that this instruction is supported for this CPU. */
14820 if (!(is_bx && fix_v4bx)
14821 && !(opcode->avariant &&
14822 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
14824 as_bad (_("selected processor does not support `%s'"), str);
14825 return;
14827 if (inst.size_req)
14829 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14830 return;
14833 mapping_state (MAP_ARM);
14834 inst.instruction = opcode->avalue;
14835 if (opcode->tag == OT_unconditionalF)
14836 inst.instruction |= 0xF << 28;
14837 else
14838 inst.instruction |= inst.cond << 28;
14839 inst.size = INSN_SIZE;
14840 if (!parse_operands (p, opcode->operands))
14841 opcode->aencode ();
14842 /* Arm mode bx is marked as both v4T and v5 because it's still required
14843 on a hypothetical non-thumb v5 core. */
14844 if (is_bx)
14845 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
14846 else
14847 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14848 *opcode->avariant);
14850 else
14852 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14853 "-- `%s'"), str);
14854 return;
14856 output_inst (str);
14859 /* Various frobbings of labels and their addresses. */
14861 void
14862 arm_start_line_hook (void)
14864 last_label_seen = NULL;
14867 void
14868 arm_frob_label (symbolS * sym)
14870 last_label_seen = sym;
14872 ARM_SET_THUMB (sym, thumb_mode);
14874 #if defined OBJ_COFF || defined OBJ_ELF
14875 ARM_SET_INTERWORK (sym, support_interwork);
14876 #endif
14878 /* Note - do not allow local symbols (.Lxxx) to be labelled
14879 as Thumb functions. This is because these labels, whilst
14880 they exist inside Thumb code, are not the entry points for
14881 possible ARM->Thumb calls. Also, these labels can be used
14882 as part of a computed goto or switch statement. eg gcc
14883 can generate code that looks like this:
14885 ldr r2, [pc, .Laaa]
14886 lsl r3, r3, #2
14887 ldr r2, [r3, r2]
14888 mov pc, r2
14890 .Lbbb: .word .Lxxx
14891 .Lccc: .word .Lyyy
14892 ..etc...
14893 .Laaa: .word Lbbb
14895 The first instruction loads the address of the jump table.
14896 The second instruction converts a table index into a byte offset.
14897 The third instruction gets the jump address out of the table.
14898 The fourth instruction performs the jump.
14900 If the address stored at .Laaa is that of a symbol which has the
14901 Thumb_Func bit set, then the linker will arrange for this address
14902 to have the bottom bit set, which in turn would mean that the
14903 address computation performed by the third instruction would end
14904 up with the bottom bit set. Since the ARM is capable of unaligned
14905 word loads, the instruction would then load the incorrect address
14906 out of the jump table, and chaos would ensue. */
14907 if (label_is_thumb_function_name
14908 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14909 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
14911 /* When the address of a Thumb function is taken the bottom
14912 bit of that address should be set. This will allow
14913 interworking between Arm and Thumb functions to work
14914 correctly. */
14916 THUMB_SET_FUNC (sym, 1);
14918 label_is_thumb_function_name = FALSE;
14921 dwarf2_emit_label (sym);
14925 arm_data_in_code (void)
14927 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
14929 *input_line_pointer = '/';
14930 input_line_pointer += 5;
14931 *input_line_pointer = 0;
14932 return 1;
14935 return 0;
14938 char *
14939 arm_canonicalize_symbol_name (char * name)
14941 int len;
14943 if (thumb_mode && (len = strlen (name)) > 5
14944 && streq (name + len - 5, "/data"))
14945 *(name + len - 5) = 0;
14947 return name;
14950 /* Table of all register names defined by default. The user can
14951 define additional names with .req. Note that all register names
14952 should appear in both upper and lowercase variants. Some registers
14953 also have mixed-case names. */
14955 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
14956 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
14957 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
14958 #define REGSET(p,t) \
14959 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14960 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14961 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14962 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
14963 #define REGSETH(p,t) \
14964 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14965 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14966 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14967 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14968 #define REGSET2(p,t) \
14969 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14970 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14971 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14972 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14974 static const struct reg_entry reg_names[] =
14976 /* ARM integer registers. */
14977 REGSET(r, RN), REGSET(R, RN),
14979 /* ATPCS synonyms. */
14980 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14981 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14982 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14984 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14985 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14986 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14988 /* Well-known aliases. */
14989 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14990 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14992 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14993 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14995 /* Coprocessor numbers. */
14996 REGSET(p, CP), REGSET(P, CP),
14998 /* Coprocessor register numbers. The "cr" variants are for backward
14999 compatibility. */
15000 REGSET(c, CN), REGSET(C, CN),
15001 REGSET(cr, CN), REGSET(CR, CN),
15003 /* FPA registers. */
15004 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15005 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15007 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15008 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15010 /* VFP SP registers. */
15011 REGSET(s,VFS), REGSET(S,VFS),
15012 REGSETH(s,VFS), REGSETH(S,VFS),
15014 /* VFP DP Registers. */
15015 REGSET(d,VFD), REGSET(D,VFD),
15016 /* Extra Neon DP registers. */
15017 REGSETH(d,VFD), REGSETH(D,VFD),
15019 /* Neon QP registers. */
15020 REGSET2(q,NQ), REGSET2(Q,NQ),
15022 /* VFP control registers. */
15023 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15024 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
15025 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15026 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15027 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15028 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
15030 /* Maverick DSP coprocessor registers. */
15031 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15032 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15034 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15035 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15036 REGDEF(dspsc,0,DSPSC),
15038 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15039 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15040 REGDEF(DSPSC,0,DSPSC),
15042 /* iWMMXt data registers - p0, c0-15. */
15043 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15045 /* iWMMXt control registers - p1, c0-3. */
15046 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15047 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15048 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15049 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15051 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15052 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15053 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15054 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15055 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15057 /* XScale accumulator registers. */
15058 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15060 #undef REGDEF
15061 #undef REGNUM
15062 #undef REGSET
15064 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15065 within psr_required_here. */
15066 static const struct asm_psr psrs[] =
15068 /* Backward compatibility notation. Note that "all" is no longer
15069 truly all possible PSR bits. */
15070 {"all", PSR_c | PSR_f},
15071 {"flg", PSR_f},
15072 {"ctl", PSR_c},
15074 /* Individual flags. */
15075 {"f", PSR_f},
15076 {"c", PSR_c},
15077 {"x", PSR_x},
15078 {"s", PSR_s},
15079 /* Combinations of flags. */
15080 {"fs", PSR_f | PSR_s},
15081 {"fx", PSR_f | PSR_x},
15082 {"fc", PSR_f | PSR_c},
15083 {"sf", PSR_s | PSR_f},
15084 {"sx", PSR_s | PSR_x},
15085 {"sc", PSR_s | PSR_c},
15086 {"xf", PSR_x | PSR_f},
15087 {"xs", PSR_x | PSR_s},
15088 {"xc", PSR_x | PSR_c},
15089 {"cf", PSR_c | PSR_f},
15090 {"cs", PSR_c | PSR_s},
15091 {"cx", PSR_c | PSR_x},
15092 {"fsx", PSR_f | PSR_s | PSR_x},
15093 {"fsc", PSR_f | PSR_s | PSR_c},
15094 {"fxs", PSR_f | PSR_x | PSR_s},
15095 {"fxc", PSR_f | PSR_x | PSR_c},
15096 {"fcs", PSR_f | PSR_c | PSR_s},
15097 {"fcx", PSR_f | PSR_c | PSR_x},
15098 {"sfx", PSR_s | PSR_f | PSR_x},
15099 {"sfc", PSR_s | PSR_f | PSR_c},
15100 {"sxf", PSR_s | PSR_x | PSR_f},
15101 {"sxc", PSR_s | PSR_x | PSR_c},
15102 {"scf", PSR_s | PSR_c | PSR_f},
15103 {"scx", PSR_s | PSR_c | PSR_x},
15104 {"xfs", PSR_x | PSR_f | PSR_s},
15105 {"xfc", PSR_x | PSR_f | PSR_c},
15106 {"xsf", PSR_x | PSR_s | PSR_f},
15107 {"xsc", PSR_x | PSR_s | PSR_c},
15108 {"xcf", PSR_x | PSR_c | PSR_f},
15109 {"xcs", PSR_x | PSR_c | PSR_s},
15110 {"cfs", PSR_c | PSR_f | PSR_s},
15111 {"cfx", PSR_c | PSR_f | PSR_x},
15112 {"csf", PSR_c | PSR_s | PSR_f},
15113 {"csx", PSR_c | PSR_s | PSR_x},
15114 {"cxf", PSR_c | PSR_x | PSR_f},
15115 {"cxs", PSR_c | PSR_x | PSR_s},
15116 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15117 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15118 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15119 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15120 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15121 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15122 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15123 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15124 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
15125 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
15126 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
15127 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
15128 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
15129 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
15130 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
15131 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
15132 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
15133 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
15134 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
15135 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
15136 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
15137 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
15138 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
15139 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
15142 /* Table of V7M psr names. */
15143 static const struct asm_psr v7m_psrs[] =
15145 {"apsr", 0 }, {"APSR", 0 },
15146 {"iapsr", 1 }, {"IAPSR", 1 },
15147 {"eapsr", 2 }, {"EAPSR", 2 },
15148 {"psr", 3 }, {"PSR", 3 },
15149 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
15150 {"ipsr", 5 }, {"IPSR", 5 },
15151 {"epsr", 6 }, {"EPSR", 6 },
15152 {"iepsr", 7 }, {"IEPSR", 7 },
15153 {"msp", 8 }, {"MSP", 8 },
15154 {"psp", 9 }, {"PSP", 9 },
15155 {"primask", 16}, {"PRIMASK", 16},
15156 {"basepri", 17}, {"BASEPRI", 17},
15157 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
15158 {"faultmask", 19}, {"FAULTMASK", 19},
15159 {"control", 20}, {"CONTROL", 20}
15162 /* Table of all shift-in-operand names. */
15163 static const struct asm_shift_name shift_names [] =
15165 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
15166 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
15167 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
15168 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
15169 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
15170 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
15173 /* Table of all explicit relocation names. */
15174 #ifdef OBJ_ELF
15175 static struct reloc_entry reloc_names[] =
15177 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
15178 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
15179 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
15180 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
15181 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
15182 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
15183 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
15184 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
15185 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
15186 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
15187 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
15189 #endif
15191 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
15192 static const struct asm_cond conds[] =
15194 {"eq", 0x0},
15195 {"ne", 0x1},
15196 {"cs", 0x2}, {"hs", 0x2},
15197 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
15198 {"mi", 0x4},
15199 {"pl", 0x5},
15200 {"vs", 0x6},
15201 {"vc", 0x7},
15202 {"hi", 0x8},
15203 {"ls", 0x9},
15204 {"ge", 0xa},
15205 {"lt", 0xb},
15206 {"gt", 0xc},
15207 {"le", 0xd},
15208 {"al", 0xe}
15211 static struct asm_barrier_opt barrier_opt_names[] =
15213 { "sy", 0xf },
15214 { "un", 0x7 },
15215 { "st", 0xe },
15216 { "unst", 0x6 }
15219 /* Table of ARM-format instructions. */
15221 /* Macros for gluing together operand strings. N.B. In all cases
15222 other than OPS0, the trailing OP_stop comes from default
15223 zero-initialization of the unspecified elements of the array. */
15224 #define OPS0() { OP_stop, }
15225 #define OPS1(a) { OP_##a, }
15226 #define OPS2(a,b) { OP_##a,OP_##b, }
15227 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
15228 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
15229 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
15230 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
15232 /* These macros abstract out the exact format of the mnemonic table and
15233 save some repeated characters. */
15235 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
15236 #define TxCE(mnem, op, top, nops, ops, ae, te) \
15237 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
15238 THUMB_VARIANT, do_##ae, do_##te }
15240 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
15241 a T_MNEM_xyz enumerator. */
15242 #define TCE(mnem, aop, top, nops, ops, ae, te) \
15243 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
15244 #define tCE(mnem, aop, top, nops, ops, ae, te) \
15245 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15247 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
15248 infix after the third character. */
15249 #define TxC3(mnem, op, top, nops, ops, ae, te) \
15250 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
15251 THUMB_VARIANT, do_##ae, do_##te }
15252 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
15253 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
15254 THUMB_VARIANT, do_##ae, do_##te }
15255 #define TC3(mnem, aop, top, nops, ops, ae, te) \
15256 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
15257 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
15258 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
15259 #define tC3(mnem, aop, top, nops, ops, ae, te) \
15260 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15261 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
15262 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
15264 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
15265 appear in the condition table. */
15266 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
15267 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
15268 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
15270 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
15271 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
15272 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
15273 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
15274 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
15275 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
15276 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
15277 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
15278 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
15279 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
15280 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
15281 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
15282 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
15283 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
15284 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
15285 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
15286 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
15287 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
15288 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
15289 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
15291 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
15292 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
15293 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
15294 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
15296 /* Mnemonic that cannot be conditionalized. The ARM condition-code
15297 field is still 0xE. Many of the Thumb variants can be executed
15298 conditionally, so this is checked separately. */
15299 #define TUE(mnem, op, top, nops, ops, ae, te) \
15300 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
15301 THUMB_VARIANT, do_##ae, do_##te }
15303 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
15304 condition code field. */
15305 #define TUF(mnem, op, top, nops, ops, ae, te) \
15306 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
15307 THUMB_VARIANT, do_##ae, do_##te }
15309 /* ARM-only variants of all the above. */
15310 #define CE(mnem, op, nops, ops, ae) \
15311 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15313 #define C3(mnem, op, nops, ops, ae) \
15314 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15316 /* Legacy mnemonics that always have conditional infix after the third
15317 character. */
15318 #define CL(mnem, op, nops, ops, ae) \
15319 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15320 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15322 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
15323 #define cCE(mnem, op, nops, ops, ae) \
15324 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15326 /* Legacy coprocessor instructions where conditional infix and conditional
15327 suffix are ambiguous. For consistency this includes all FPA instructions,
15328 not just the potentially ambiguous ones. */
15329 #define cCL(mnem, op, nops, ops, ae) \
15330 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
15331 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15333 /* Coprocessor, takes either a suffix or a position-3 infix
15334 (for an FPA corner case). */
15335 #define C3E(mnem, op, nops, ops, ae) \
15336 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
15337 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
15339 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
15340 { #m1 #m2 #m3, OPS##nops ops, \
15341 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
15342 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
15344 #define CM(m1, m2, op, nops, ops, ae) \
15345 xCM_(m1, , m2, op, nops, ops, ae), \
15346 xCM_(m1, eq, m2, op, nops, ops, ae), \
15347 xCM_(m1, ne, m2, op, nops, ops, ae), \
15348 xCM_(m1, cs, m2, op, nops, ops, ae), \
15349 xCM_(m1, hs, m2, op, nops, ops, ae), \
15350 xCM_(m1, cc, m2, op, nops, ops, ae), \
15351 xCM_(m1, ul, m2, op, nops, ops, ae), \
15352 xCM_(m1, lo, m2, op, nops, ops, ae), \
15353 xCM_(m1, mi, m2, op, nops, ops, ae), \
15354 xCM_(m1, pl, m2, op, nops, ops, ae), \
15355 xCM_(m1, vs, m2, op, nops, ops, ae), \
15356 xCM_(m1, vc, m2, op, nops, ops, ae), \
15357 xCM_(m1, hi, m2, op, nops, ops, ae), \
15358 xCM_(m1, ls, m2, op, nops, ops, ae), \
15359 xCM_(m1, ge, m2, op, nops, ops, ae), \
15360 xCM_(m1, lt, m2, op, nops, ops, ae), \
15361 xCM_(m1, gt, m2, op, nops, ops, ae), \
15362 xCM_(m1, le, m2, op, nops, ops, ae), \
15363 xCM_(m1, al, m2, op, nops, ops, ae)
15365 #define UE(mnem, op, nops, ops, ae) \
15366 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
15368 #define UF(mnem, op, nops, ops, ae) \
15369 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
15371 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
15372 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
15373 use the same encoding function for each. */
15374 #define NUF(mnem, op, nops, ops, enc) \
15375 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
15376 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15378 /* Neon data processing, version which indirects through neon_enc_tab for
15379 the various overloaded versions of opcodes. */
15380 #define nUF(mnem, op, nops, ops, enc) \
15381 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
15382 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15384 /* Neon insn with conditional suffix for the ARM version, non-overloaded
15385 version. */
15386 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
15387 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
15388 THUMB_VARIANT, do_##enc, do_##enc }
15390 #define NCE(mnem, op, nops, ops, enc) \
15391 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
15393 #define NCEF(mnem, op, nops, ops, enc) \
15394 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
15396 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
15397 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
15398 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
15399 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15401 #define nCE(mnem, op, nops, ops, enc) \
15402 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
15404 #define nCEF(mnem, op, nops, ops, enc) \
15405 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
15407 #define do_0 0
15409 /* Thumb-only, unconditional. */
15410 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
15412 static const struct asm_opcode insns[] =
15414 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
15415 #define THUMB_VARIANT &arm_ext_v4t
15416 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
15417 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
15418 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
15419 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
15420 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
15421 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
15422 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
15423 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
15424 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
15425 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
15426 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
15427 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
15428 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
15429 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
15430 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
15431 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
15433 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
15434 for setting PSR flag bits. They are obsolete in V6 and do not
15435 have Thumb equivalents. */
15436 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
15437 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
15438 CL(tstp, 110f000, 2, (RR, SH), cmp),
15439 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
15440 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
15441 CL(cmpp, 150f000, 2, (RR, SH), cmp),
15442 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
15443 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
15444 CL(cmnp, 170f000, 2, (RR, SH), cmp),
15446 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
15447 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
15448 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
15449 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
15451 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
15452 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15453 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
15454 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15456 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15457 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15458 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15459 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15460 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15461 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15463 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
15464 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
15465 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
15466 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
15468 /* Pseudo ops. */
15469 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
15470 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
15471 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
15473 /* Thumb-compatibility pseudo ops. */
15474 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
15475 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
15476 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
15477 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
15478 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
15479 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
15480 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
15481 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
15482 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
15483 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
15484 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
15485 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
15487 /* These may simplify to neg. */
15488 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
15489 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
15491 #undef THUMB_VARIANT
15492 #define THUMB_VARIANT &arm_ext_v6
15493 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
15495 /* V1 instructions with no Thumb analogue prior to V6T2. */
15496 #undef THUMB_VARIANT
15497 #define THUMB_VARIANT &arm_ext_v6t2
15498 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
15499 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
15500 CL(teqp, 130f000, 2, (RR, SH), cmp),
15502 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
15503 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
15504 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
15505 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
15507 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15508 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15510 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15511 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15513 /* V1 instructions with no Thumb analogue at all. */
15514 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
15515 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
15517 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
15518 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
15519 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
15520 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
15521 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
15522 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
15523 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
15524 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
15526 #undef ARM_VARIANT
15527 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
15528 #undef THUMB_VARIANT
15529 #define THUMB_VARIANT &arm_ext_v4t
15530 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15531 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15533 #undef THUMB_VARIANT
15534 #define THUMB_VARIANT &arm_ext_v6t2
15535 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15536 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
15538 /* Generic coprocessor instructions. */
15539 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15540 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15541 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15542 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15543 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15544 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15545 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15547 #undef ARM_VARIANT
15548 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
15549 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15550 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15552 #undef ARM_VARIANT
15553 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
15554 #undef THUMB_VARIANT
15555 #define THUMB_VARIANT &arm_ext_msr
15556 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15557 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
15559 #undef ARM_VARIANT
15560 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
15561 #undef THUMB_VARIANT
15562 #define THUMB_VARIANT &arm_ext_v6t2
15563 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15564 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15565 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15566 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15567 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15568 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15569 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15570 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15572 #undef ARM_VARIANT
15573 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
15574 #undef THUMB_VARIANT
15575 #define THUMB_VARIANT &arm_ext_v4t
15576 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15577 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15578 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15579 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15580 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15581 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15583 #undef ARM_VARIANT
15584 #define ARM_VARIANT &arm_ext_v4t_5
15585 /* ARM Architecture 4T. */
15586 /* Note: bx (and blx) are required on V5, even if the processor does
15587 not support Thumb. */
15588 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15590 #undef ARM_VARIANT
15591 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
15592 #undef THUMB_VARIANT
15593 #define THUMB_VARIANT &arm_ext_v5t
15594 /* Note: blx has 2 variants; the .value coded here is for
15595 BLX(2). Only this variant has conditional execution. */
15596 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15597 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15599 #undef THUMB_VARIANT
15600 #define THUMB_VARIANT &arm_ext_v6t2
15601 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
15602 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15603 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15604 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15605 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15606 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15607 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15608 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15610 #undef ARM_VARIANT
15611 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
15612 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15613 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15614 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15615 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15617 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15618 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15620 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15621 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15622 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15623 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15625 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15626 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15627 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15628 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15630 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15631 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15633 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15634 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15635 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15636 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15638 #undef ARM_VARIANT
15639 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
15640 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
15641 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15642 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15644 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15645 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15647 #undef ARM_VARIANT
15648 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
15649 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15651 #undef ARM_VARIANT
15652 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
15653 #undef THUMB_VARIANT
15654 #define THUMB_VARIANT &arm_ext_v6
15655 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15656 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15657 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15658 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15659 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15660 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15661 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15662 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15663 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15664 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15666 #undef THUMB_VARIANT
15667 #define THUMB_VARIANT &arm_ext_v6t2
15668 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
15669 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
15670 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15671 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15673 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15674 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15676 /* ARM V6 not included in V7M (eg. integer SIMD). */
15677 #undef THUMB_VARIANT
15678 #define THUMB_VARIANT &arm_ext_v6_notm
15679 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
15680 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15681 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15682 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15683 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15684 TCE(qasx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15685 /* Old name for QASX. */
15686 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15687 TCE(qsax, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15688 /* Old name for QSAX. */
15689 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15690 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15691 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15692 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15693 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15694 TCE(sasx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15695 /* Old name for SASX. */
15696 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15697 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15698 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15699 TCE(shasx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15700 /* Old name for SHASX. */
15701 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15702 TCE(shsax, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15703 /* Old name for SHSAX. */
15704 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15705 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15706 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15707 TCE(ssax, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15708 /* Old name for SSAX. */
15709 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15710 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15711 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15712 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15713 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15714 TCE(uasx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15715 /* Old name for UASX. */
15716 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15717 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15718 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15719 TCE(uhasx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15720 /* Old name for UHASX. */
15721 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15722 TCE(uhsax, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15723 /* Old name for UHSAX. */
15724 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15725 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15726 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15727 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15728 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15729 TCE(uqasx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15730 /* Old name for UQASX. */
15731 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15732 TCE(uqsax, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15733 /* Old name for UQSAX. */
15734 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15735 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15736 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15737 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15738 TCE(usax, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15739 /* Old name for USAX. */
15740 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15741 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15742 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15743 UF(rfeib, 9900a00, 1, (RRw), rfe),
15744 UF(rfeda, 8100a00, 1, (RRw), rfe),
15745 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15746 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15747 UF(rfefa, 9900a00, 1, (RRw), rfe),
15748 UF(rfeea, 8100a00, 1, (RRw), rfe),
15749 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15750 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15751 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15752 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15753 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15754 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15755 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15756 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15757 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15758 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15759 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15760 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15761 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15762 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15763 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15764 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15765 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15766 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15767 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15768 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15769 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15770 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15771 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15772 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15773 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15774 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15775 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15776 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15777 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15778 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15779 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15780 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
15781 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
15782 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15783 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15784 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15785 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15787 #undef ARM_VARIANT
15788 #define ARM_VARIANT &arm_ext_v6k
15789 #undef THUMB_VARIANT
15790 #define THUMB_VARIANT &arm_ext_v6k
15791 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15792 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15793 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15794 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15796 #undef THUMB_VARIANT
15797 #define THUMB_VARIANT &arm_ext_v6_notm
15798 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15799 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15801 #undef THUMB_VARIANT
15802 #define THUMB_VARIANT &arm_ext_v6t2
15803 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15804 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15805 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15806 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15807 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15809 #undef ARM_VARIANT
15810 #define ARM_VARIANT &arm_ext_v6z
15811 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
15813 #undef ARM_VARIANT
15814 #define ARM_VARIANT &arm_ext_v6t2
15815 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15816 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15817 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15818 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15820 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15821 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15822 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
15823 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
15825 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15826 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15827 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15828 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15830 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15831 UT(cbz, b100, 2, (RR, EXP), t_cbz),
15832 /* ARM does not really have an IT instruction, so always allow it. */
15833 #undef ARM_VARIANT
15834 #define ARM_VARIANT &arm_ext_v1
15835 TUE(it, 0, bf08, 1, (COND), it, t_it),
15836 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15837 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15838 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15839 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15840 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15841 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15842 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15843 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15844 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15845 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15846 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15847 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15848 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15849 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15850 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
15851 TC3(rrx, 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
15852 TC3(rrxs, 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
15854 /* Thumb2 only instructions. */
15855 #undef ARM_VARIANT
15856 #define ARM_VARIANT NULL
15858 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15859 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15860 TCE(orn, 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
15861 TCE(orns, 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
15862 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15863 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15865 /* Thumb-2 hardware division instructions (R and M profiles only). */
15866 #undef THUMB_VARIANT
15867 #define THUMB_VARIANT &arm_ext_div
15868 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15869 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15871 /* ARM V6M/V7 instructions. */
15872 #undef ARM_VARIANT
15873 #define ARM_VARIANT &arm_ext_barrier
15874 #undef THUMB_VARIANT
15875 #define THUMB_VARIANT &arm_ext_barrier
15876 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15877 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15878 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15880 /* ARM V7 instructions. */
15881 #undef ARM_VARIANT
15882 #define ARM_VARIANT &arm_ext_v7
15883 #undef THUMB_VARIANT
15884 #define THUMB_VARIANT &arm_ext_v7
15885 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15886 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15888 #undef ARM_VARIANT
15889 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
15890 cCE(wfs, e200110, 1, (RR), rd),
15891 cCE(rfs, e300110, 1, (RR), rd),
15892 cCE(wfc, e400110, 1, (RR), rd),
15893 cCE(rfc, e500110, 1, (RR), rd),
15895 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15896 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15897 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15898 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
15900 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15901 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15902 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15903 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
15905 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15906 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15907 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15908 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15909 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15910 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15911 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15912 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15913 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15914 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15915 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15916 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15918 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15919 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15920 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15921 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15922 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15923 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15924 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15925 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15926 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15927 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15928 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15929 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15931 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15932 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15933 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15934 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15935 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15936 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15937 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15938 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15939 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15940 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15941 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15942 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15944 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15945 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15946 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15947 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15948 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15949 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15950 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15951 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15952 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15953 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15954 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15955 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15957 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15958 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15959 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15960 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15961 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15962 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15963 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15964 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15965 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15966 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15967 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15968 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15970 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15971 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15972 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15973 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15974 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15975 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15976 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15977 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15978 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15979 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15980 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15981 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15983 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15984 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15985 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15986 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15987 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15988 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15989 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15990 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15991 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15992 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15993 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15994 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15996 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15997 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15998 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15999 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
16000 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
16001 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
16002 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
16003 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
16004 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
16005 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
16006 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
16007 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
16009 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
16010 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
16011 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
16012 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
16013 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
16014 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
16015 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
16016 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
16017 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
16018 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
16019 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
16020 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
16022 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
16023 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
16024 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
16025 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
16026 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
16027 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
16028 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
16029 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
16030 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
16031 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
16032 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
16033 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
16035 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
16036 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
16037 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
16038 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
16039 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
16040 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
16041 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
16042 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
16043 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
16044 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
16045 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
16046 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
16048 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
16049 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
16050 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
16051 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
16052 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
16053 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
16054 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
16055 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
16056 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
16057 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
16058 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
16059 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
16061 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
16062 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
16063 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
16064 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
16065 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
16066 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
16067 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
16068 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
16069 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
16070 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
16071 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
16072 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
16074 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
16075 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
16076 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
16077 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
16078 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
16079 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
16080 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
16081 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
16082 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
16083 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
16084 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
16085 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
16087 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
16088 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
16089 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
16090 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
16091 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
16092 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
16093 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
16094 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
16095 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
16096 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
16097 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
16098 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
16100 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
16101 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
16102 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
16103 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
16104 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
16105 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
16106 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
16107 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
16108 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
16109 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
16110 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
16111 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
16113 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
16114 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
16115 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
16116 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
16117 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
16118 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16119 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16120 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16121 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
16122 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
16123 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
16124 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
16126 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
16127 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
16128 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
16129 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
16130 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
16131 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16132 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16133 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16134 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
16135 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
16136 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
16137 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
16139 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
16140 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
16141 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
16142 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
16143 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
16144 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16145 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16146 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16147 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
16148 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
16149 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
16150 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
16152 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
16153 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
16154 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
16155 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
16156 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
16157 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16158 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16159 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16160 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
16161 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
16162 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
16163 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
16165 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
16166 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
16167 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
16168 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
16169 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
16170 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16171 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16172 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16173 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
16174 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
16175 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
16176 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
16178 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
16179 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
16180 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
16181 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
16182 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
16183 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16184 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16185 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16186 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
16187 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
16188 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
16189 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
16191 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
16192 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
16193 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
16194 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
16195 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
16196 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16197 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16198 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16199 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
16200 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
16201 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
16202 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
16204 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
16205 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
16206 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
16207 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
16208 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
16209 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16210 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16211 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16212 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
16213 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
16214 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
16215 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
16217 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
16218 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
16219 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
16220 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
16221 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
16222 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16223 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16224 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16225 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
16226 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
16227 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
16228 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
16230 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
16231 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
16232 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
16233 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
16234 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
16235 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16236 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16237 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16238 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
16239 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
16240 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
16241 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
16243 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16244 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16245 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16246 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16247 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16248 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16249 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16250 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16251 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16252 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16253 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16254 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16256 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16257 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16258 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16259 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16260 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16261 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16262 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16263 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16264 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16265 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16266 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16267 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16269 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
16270 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
16271 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
16272 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
16273 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
16274 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16275 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16276 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16277 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
16278 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
16279 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
16280 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
16282 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
16283 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
16284 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
16285 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
16287 cCL(flts, e000110, 2, (RF, RR), rn_rd),
16288 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
16289 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
16290 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
16291 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
16292 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
16293 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
16294 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
16295 cCL(flte, e080110, 2, (RF, RR), rn_rd),
16296 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
16297 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
16298 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
16300 /* The implementation of the FIX instruction is broken on some
16301 assemblers, in that it accepts a precision specifier as well as a
16302 rounding specifier, despite the fact that this is meaningless.
16303 To be more compatible, we accept it as well, though of course it
16304 does not set any bits. */
16305 cCE(fix, e100110, 2, (RR, RF), rd_rm),
16306 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
16307 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
16308 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
16309 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
16310 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
16311 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
16312 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
16313 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
16314 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
16315 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
16316 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
16317 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
16319 /* Instructions that were new with the real FPA, call them V2. */
16320 #undef ARM_VARIANT
16321 #define ARM_VARIANT &fpu_fpa_ext_v2
16322 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16323 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16324 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16325 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16326 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16327 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
16329 #undef ARM_VARIANT
16330 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
16331 /* Moves and type conversions. */
16332 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
16333 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
16334 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
16335 cCE(fmstat, ef1fa10, 0, (), noargs),
16336 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
16337 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
16338 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
16339 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
16340 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
16341 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
16342 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
16343 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
16345 /* Memory operations. */
16346 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
16347 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
16348 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16349 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16350 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16351 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16352 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16353 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16354 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16355 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16356 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16357 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
16358 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16359 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
16360 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16361 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
16362 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16363 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
16365 /* Monadic operations. */
16366 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
16367 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
16368 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
16370 /* Dyadic operations. */
16371 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16372 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16373 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16374 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16375 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16376 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16377 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16378 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16379 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
16381 /* Comparisons. */
16382 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
16383 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
16384 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
16385 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
16387 #undef ARM_VARIANT
16388 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
16389 /* Moves and type conversions. */
16390 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16391 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
16392 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
16393 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
16394 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
16395 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
16396 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
16397 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
16398 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
16399 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
16400 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
16401 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
16402 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
16404 /* Memory operations. */
16405 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
16406 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
16407 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16408 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16409 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16410 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16411 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16412 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16413 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16414 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16416 /* Monadic operations. */
16417 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16418 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16419 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16421 /* Dyadic operations. */
16422 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16423 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16424 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16425 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16426 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16427 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16428 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16429 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16430 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16432 /* Comparisons. */
16433 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16434 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
16435 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16436 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
16438 #undef ARM_VARIANT
16439 #define ARM_VARIANT &fpu_vfp_ext_v2
16440 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
16441 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
16442 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
16443 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
16445 /* Instructions which may belong to either the Neon or VFP instruction sets.
16446 Individual encoder functions perform additional architecture checks. */
16447 #undef ARM_VARIANT
16448 #define ARM_VARIANT &fpu_vfp_ext_v1xd
16449 #undef THUMB_VARIANT
16450 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
16451 /* These mnemonics are unique to VFP. */
16452 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
16453 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
16454 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16455 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16456 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16457 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16458 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16459 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
16460 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
16461 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
16463 /* Mnemonics shared by Neon and VFP. */
16464 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
16465 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16466 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16468 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16469 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16471 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16472 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16474 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16475 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16476 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16477 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16478 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16479 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16480 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16481 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16483 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
16484 nCEF(vcvtb, vcvt, 2, (RVS, RVS), neon_cvtb),
16485 nCEF(vcvtt, vcvt, 2, (RVS, RVS), neon_cvtt),
16488 /* NOTE: All VMOV encoding is special-cased! */
16489 NCE(vmov, 0, 1, (VMOV), neon_mov),
16490 NCE(vmovq, 0, 1, (VMOV), neon_mov),
16492 #undef THUMB_VARIANT
16493 #define THUMB_VARIANT &fpu_neon_ext_v1
16494 #undef ARM_VARIANT
16495 #define ARM_VARIANT &fpu_neon_ext_v1
16496 /* Data processing with three registers of the same length. */
16497 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
16498 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
16499 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
16500 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16501 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16502 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16503 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16504 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16505 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16506 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
16507 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16508 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16509 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16510 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16511 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16512 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16513 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16514 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16515 /* If not immediate, fall back to neon_dyadic_i64_su.
16516 shl_imm should accept I8 I16 I32 I64,
16517 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
16518 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
16519 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
16520 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
16521 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
16522 /* Logic ops, types optional & ignored. */
16523 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
16524 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
16525 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
16526 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
16527 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
16528 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
16529 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
16530 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
16531 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
16532 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
16533 /* Bitfield ops, untyped. */
16534 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16535 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16536 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16537 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16538 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16539 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16540 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
16541 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16542 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16543 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16544 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16545 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16546 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16547 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
16548 back to neon_dyadic_if_su. */
16549 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16550 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16551 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16552 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16553 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16554 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16555 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16556 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16557 /* Comparison. Type I8 I16 I32 F32. */
16558 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
16559 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
16560 /* As above, D registers only. */
16561 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16562 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16563 /* Int and float variants, signedness unimportant. */
16564 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16565 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16566 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
16567 /* Add/sub take types I8 I16 I32 I64 F32. */
16568 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16569 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16570 /* vtst takes sizes 8, 16, 32. */
16571 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
16572 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
16573 /* VMUL takes I8 I16 I32 F32 P8. */
16574 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
16575 /* VQD{R}MULH takes S16 S32. */
16576 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16577 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16578 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16579 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16580 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16581 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16582 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16583 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16584 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16585 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16586 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16587 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16588 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16589 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16590 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16591 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16593 /* Two address, int/float. Types S8 S16 S32 F32. */
16594 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
16595 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16597 /* Data processing with two registers and a shift amount. */
16598 /* Right shifts, and variants with rounding.
16599 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16600 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16601 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16602 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16603 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16604 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16605 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16606 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16607 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16608 /* Shift and insert. Sizes accepted 8 16 32 64. */
16609 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16610 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16611 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16612 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16613 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16614 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16615 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16616 /* Right shift immediate, saturating & narrowing, with rounding variants.
16617 Types accepted S16 S32 S64 U16 U32 U64. */
16618 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16619 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16620 /* As above, unsigned. Types accepted S16 S32 S64. */
16621 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16622 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16623 /* Right shift narrowing. Types accepted I16 I32 I64. */
16624 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16625 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16626 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16627 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16628 /* CVT with optional immediate for fixed-point variant. */
16629 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
16631 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16632 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16634 /* Data processing, three registers of different lengths. */
16635 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16636 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16637 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16638 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16639 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16640 /* If not scalar, fall back to neon_dyadic_long.
16641 Vector types as above, scalar types S16 S32 U16 U32. */
16642 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16643 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16644 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16645 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16646 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16647 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16648 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16649 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16650 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16651 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16652 /* Saturating doubling multiplies. Types S16 S32. */
16653 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16654 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16655 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16656 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16657 S16 S32 U16 U32. */
16658 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16660 /* Extract. Size 8. */
16661 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16662 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
16664 /* Two registers, miscellaneous. */
16665 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16666 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16667 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16668 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16669 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16670 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16671 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16672 /* Vector replicate. Sizes 8 16 32. */
16673 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16674 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16675 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16676 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16677 /* VMOVN. Types I16 I32 I64. */
16678 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16679 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16680 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16681 /* VQMOVUN. Types S16 S32 S64. */
16682 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16683 /* VZIP / VUZP. Sizes 8 16 32. */
16684 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16685 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16686 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16687 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16688 /* VQABS / VQNEG. Types S8 S16 S32. */
16689 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16690 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16691 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16692 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16693 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16694 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16695 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16696 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16697 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16698 /* Reciprocal estimates. Types U32 F32. */
16699 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16700 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16701 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16702 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16703 /* VCLS. Types S8 S16 S32. */
16704 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16705 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16706 /* VCLZ. Types I8 I16 I32. */
16707 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16708 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16709 /* VCNT. Size 8. */
16710 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16711 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16712 /* Two address, untyped. */
16713 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16714 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16715 /* VTRN. Sizes 8 16 32. */
16716 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16717 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16719 /* Table lookup. Size 8. */
16720 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16721 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16723 #undef THUMB_VARIANT
16724 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16725 #undef ARM_VARIANT
16726 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
16727 /* Neon element/structure load/store. */
16728 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16729 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16730 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16731 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16732 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16733 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16734 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16735 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16737 #undef THUMB_VARIANT
16738 #define THUMB_VARIANT &fpu_vfp_ext_v3
16739 #undef ARM_VARIANT
16740 #define ARM_VARIANT &fpu_vfp_ext_v3
16741 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16742 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16743 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16744 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16745 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16746 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16747 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16748 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16749 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16750 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16751 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16752 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16753 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16754 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16755 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16756 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16757 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16758 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16760 #undef THUMB_VARIANT
16761 #undef ARM_VARIANT
16762 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
16763 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16764 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16765 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16766 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16767 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16768 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16769 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16770 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
16772 #undef ARM_VARIANT
16773 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
16774 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16775 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16776 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16777 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16778 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16779 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16780 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16781 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16782 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16783 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16784 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16785 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16786 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16787 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16788 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16789 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16790 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16791 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16792 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
16793 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16794 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16795 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16796 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16797 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16798 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16799 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16800 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16801 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16802 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
16803 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
16804 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16805 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16806 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16807 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16808 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16809 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16810 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16811 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16812 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16813 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16814 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16815 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16816 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16817 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16818 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16819 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16820 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16821 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16822 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16823 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16824 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16825 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16826 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16827 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16828 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16829 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16830 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16831 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16832 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16833 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16834 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16835 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16836 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16837 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16838 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16839 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16840 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16841 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16842 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16843 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16844 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16845 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16846 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16847 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16848 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16849 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16850 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16851 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16852 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16853 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16854 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16855 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16856 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16857 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16858 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16859 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16860 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16861 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16862 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16863 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16864 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16865 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16866 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16867 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16868 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16869 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16870 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16871 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16872 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16873 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16874 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16875 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16876 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16877 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16878 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16879 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16880 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16881 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16882 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16883 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16884 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
16885 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16886 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16887 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16888 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16889 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16890 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16891 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16892 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16893 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16894 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16895 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16896 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16897 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16898 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16899 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16900 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16901 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16902 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16903 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16904 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16905 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16906 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16907 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16908 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16909 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16910 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16911 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16912 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16913 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16914 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16915 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16916 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16917 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16918 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16919 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16920 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16921 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16922 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16923 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16924 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16925 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16926 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16927 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16928 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16929 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16930 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16931 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16932 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16933 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16934 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16935 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
16937 #undef ARM_VARIANT
16938 #define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16939 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16940 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16941 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16942 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16943 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16944 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16945 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16946 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16947 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16948 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16949 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16950 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16951 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16952 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16953 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16954 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16955 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16956 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16957 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16958 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16959 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16960 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16961 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16962 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16963 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16964 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16965 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16966 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16967 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16968 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16969 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16970 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16971 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16972 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16973 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16974 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16975 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16976 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16977 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16978 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16979 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16980 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16981 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16982 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16983 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16984 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16985 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16986 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16987 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16988 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16989 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16990 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16991 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16992 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16993 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16994 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16995 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16997 #undef ARM_VARIANT
16998 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
16999 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17000 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17001 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17002 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17003 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17004 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17005 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17006 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17007 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
17008 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
17009 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
17010 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
17011 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
17012 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
17013 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
17014 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
17015 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
17016 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
17017 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
17018 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
17019 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
17020 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
17021 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
17022 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
17023 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
17024 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
17025 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
17026 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
17027 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17028 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
17029 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
17030 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
17031 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
17032 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
17033 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
17034 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
17035 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
17036 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
17037 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
17038 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
17039 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
17040 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
17041 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
17042 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
17043 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17044 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17045 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17046 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17047 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17048 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17049 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
17050 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
17051 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
17052 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
17053 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
17054 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
17055 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
17056 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
17057 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
17058 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
17059 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
17060 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
17061 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
17062 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
17063 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17064 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17065 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17066 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17067 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17068 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17069 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17070 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17071 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17072 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17073 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17074 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17076 #undef ARM_VARIANT
17077 #undef THUMB_VARIANT
17078 #undef TCE
17079 #undef TCM
17080 #undef TUE
17081 #undef TUF
17082 #undef TCC
17083 #undef cCE
17084 #undef cCL
17085 #undef C3E
17086 #undef CE
17087 #undef CM
17088 #undef UE
17089 #undef UF
17090 #undef UT
17091 #undef NUF
17092 #undef nUF
17093 #undef NCE
17094 #undef nCE
17095 #undef OPS0
17096 #undef OPS1
17097 #undef OPS2
17098 #undef OPS3
17099 #undef OPS4
17100 #undef OPS5
17101 #undef OPS6
17102 #undef do_0
17104 /* MD interface: bits in the object file. */
17106 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
17107 for use in the a.out file, and stores them in the array pointed to by buf.
17108 This knows about the endian-ness of the target machine and does
17109 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
17110 2 (short) and 4 (long) Floating numbers are put out as a series of
17111 LITTLENUMS (shorts, here at least). */
17113 void
17114 md_number_to_chars (char * buf, valueT val, int n)
17116 if (target_big_endian)
17117 number_to_chars_bigendian (buf, val, n);
17118 else
17119 number_to_chars_littleendian (buf, val, n);
17122 static valueT
17123 md_chars_to_number (char * buf, int n)
17125 valueT result = 0;
17126 unsigned char * where = (unsigned char *) buf;
17128 if (target_big_endian)
17130 while (n--)
17132 result <<= 8;
17133 result |= (*where++ & 255);
17136 else
17138 while (n--)
17140 result <<= 8;
17141 result |= (where[n] & 255);
17145 return result;
17148 /* MD interface: Sections. */
17150 /* Estimate the size of a frag before relaxing. Assume everything fits in
17151 2 bytes. */
17154 md_estimate_size_before_relax (fragS * fragp,
17155 segT segtype ATTRIBUTE_UNUSED)
17157 fragp->fr_var = 2;
17158 return 2;
17161 /* Convert a machine dependent frag. */
17163 void
17164 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
17166 unsigned long insn;
17167 unsigned long old_op;
17168 char *buf;
17169 expressionS exp;
17170 fixS *fixp;
17171 int reloc_type;
17172 int pc_rel;
17173 int opcode;
17175 buf = fragp->fr_literal + fragp->fr_fix;
17177 old_op = bfd_get_16(abfd, buf);
17178 if (fragp->fr_symbol)
17180 exp.X_op = O_symbol;
17181 exp.X_add_symbol = fragp->fr_symbol;
17183 else
17185 exp.X_op = O_constant;
17187 exp.X_add_number = fragp->fr_offset;
17188 opcode = fragp->fr_subtype;
17189 switch (opcode)
17191 case T_MNEM_ldr_pc:
17192 case T_MNEM_ldr_pc2:
17193 case T_MNEM_ldr_sp:
17194 case T_MNEM_str_sp:
17195 case T_MNEM_ldr:
17196 case T_MNEM_ldrb:
17197 case T_MNEM_ldrh:
17198 case T_MNEM_str:
17199 case T_MNEM_strb:
17200 case T_MNEM_strh:
17201 if (fragp->fr_var == 4)
17203 insn = THUMB_OP32 (opcode);
17204 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
17206 insn |= (old_op & 0x700) << 4;
17208 else
17210 insn |= (old_op & 7) << 12;
17211 insn |= (old_op & 0x38) << 13;
17213 insn |= 0x00000c00;
17214 put_thumb32_insn (buf, insn);
17215 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
17217 else
17219 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
17221 pc_rel = (opcode == T_MNEM_ldr_pc2);
17222 break;
17223 case T_MNEM_adr:
17224 if (fragp->fr_var == 4)
17226 insn = THUMB_OP32 (opcode);
17227 insn |= (old_op & 0xf0) << 4;
17228 put_thumb32_insn (buf, insn);
17229 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
17231 else
17233 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17234 exp.X_add_number -= 4;
17236 pc_rel = 1;
17237 break;
17238 case T_MNEM_mov:
17239 case T_MNEM_movs:
17240 case T_MNEM_cmp:
17241 case T_MNEM_cmn:
17242 if (fragp->fr_var == 4)
17244 int r0off = (opcode == T_MNEM_mov
17245 || opcode == T_MNEM_movs) ? 0 : 8;
17246 insn = THUMB_OP32 (opcode);
17247 insn = (insn & 0xe1ffffff) | 0x10000000;
17248 insn |= (old_op & 0x700) << r0off;
17249 put_thumb32_insn (buf, insn);
17250 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
17252 else
17254 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
17256 pc_rel = 0;
17257 break;
17258 case T_MNEM_b:
17259 if (fragp->fr_var == 4)
17261 insn = THUMB_OP32(opcode);
17262 put_thumb32_insn (buf, insn);
17263 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
17265 else
17266 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
17267 pc_rel = 1;
17268 break;
17269 case T_MNEM_bcond:
17270 if (fragp->fr_var == 4)
17272 insn = THUMB_OP32(opcode);
17273 insn |= (old_op & 0xf00) << 14;
17274 put_thumb32_insn (buf, insn);
17275 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
17277 else
17278 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
17279 pc_rel = 1;
17280 break;
17281 case T_MNEM_add_sp:
17282 case T_MNEM_add_pc:
17283 case T_MNEM_inc_sp:
17284 case T_MNEM_dec_sp:
17285 if (fragp->fr_var == 4)
17287 /* ??? Choose between add and addw. */
17288 insn = THUMB_OP32 (opcode);
17289 insn |= (old_op & 0xf0) << 4;
17290 put_thumb32_insn (buf, insn);
17291 if (opcode == T_MNEM_add_pc)
17292 reloc_type = BFD_RELOC_ARM_T32_IMM12;
17293 else
17294 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
17296 else
17297 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17298 pc_rel = 0;
17299 break;
17301 case T_MNEM_addi:
17302 case T_MNEM_addis:
17303 case T_MNEM_subi:
17304 case T_MNEM_subis:
17305 if (fragp->fr_var == 4)
17307 insn = THUMB_OP32 (opcode);
17308 insn |= (old_op & 0xf0) << 4;
17309 insn |= (old_op & 0xf) << 16;
17310 put_thumb32_insn (buf, insn);
17311 if (insn & (1 << 20))
17312 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
17313 else
17314 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
17316 else
17317 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
17318 pc_rel = 0;
17319 break;
17320 default:
17321 abort ();
17323 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
17324 reloc_type);
17325 fixp->fx_file = fragp->fr_file;
17326 fixp->fx_line = fragp->fr_line;
17327 fragp->fr_fix += fragp->fr_var;
17330 /* Return the size of a relaxable immediate operand instruction.
17331 SHIFT and SIZE specify the form of the allowable immediate. */
17332 static int
17333 relax_immediate (fragS *fragp, int size, int shift)
17335 offsetT offset;
17336 offsetT mask;
17337 offsetT low;
17339 /* ??? Should be able to do better than this. */
17340 if (fragp->fr_symbol)
17341 return 4;
17343 low = (1 << shift) - 1;
17344 mask = (1 << (shift + size)) - (1 << shift);
17345 offset = fragp->fr_offset;
17346 /* Force misaligned offsets to 32-bit variant. */
17347 if (offset & low)
17348 return 4;
17349 if (offset & ~mask)
17350 return 4;
17351 return 2;
17354 /* Get the address of a symbol during relaxation. */
17355 static addressT
17356 relaxed_symbol_addr (fragS *fragp, long stretch)
17358 fragS *sym_frag;
17359 addressT addr;
17360 symbolS *sym;
17362 sym = fragp->fr_symbol;
17363 sym_frag = symbol_get_frag (sym);
17364 know (S_GET_SEGMENT (sym) != absolute_section
17365 || sym_frag == &zero_address_frag);
17366 addr = S_GET_VALUE (sym) + fragp->fr_offset;
17368 /* If frag has yet to be reached on this pass, assume it will
17369 move by STRETCH just as we did. If this is not so, it will
17370 be because some frag between grows, and that will force
17371 another pass. */
17373 if (stretch != 0
17374 && sym_frag->relax_marker != fragp->relax_marker)
17376 fragS *f;
17378 /* Adjust stretch for any alignment frag. Note that if have
17379 been expanding the earlier code, the symbol may be
17380 defined in what appears to be an earlier frag. FIXME:
17381 This doesn't handle the fr_subtype field, which specifies
17382 a maximum number of bytes to skip when doing an
17383 alignment. */
17384 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17386 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17388 if (stretch < 0)
17389 stretch = - ((- stretch)
17390 & ~ ((1 << (int) f->fr_offset) - 1));
17391 else
17392 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17393 if (stretch == 0)
17394 break;
17397 if (f != NULL)
17398 addr += stretch;
17401 return addr;
17404 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
17405 load. */
17406 static int
17407 relax_adr (fragS *fragp, asection *sec, long stretch)
17409 addressT addr;
17410 offsetT val;
17412 /* Assume worst case for symbols not known to be in the same section. */
17413 if (!S_IS_DEFINED (fragp->fr_symbol)
17414 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17415 return 4;
17417 val = relaxed_symbol_addr (fragp, stretch);
17418 addr = fragp->fr_address + fragp->fr_fix;
17419 addr = (addr + 4) & ~3;
17420 /* Force misaligned targets to 32-bit variant. */
17421 if (val & 3)
17422 return 4;
17423 val -= addr;
17424 if (val < 0 || val > 1020)
17425 return 4;
17426 return 2;
17429 /* Return the size of a relaxable add/sub immediate instruction. */
17430 static int
17431 relax_addsub (fragS *fragp, asection *sec)
17433 char *buf;
17434 int op;
17436 buf = fragp->fr_literal + fragp->fr_fix;
17437 op = bfd_get_16(sec->owner, buf);
17438 if ((op & 0xf) == ((op >> 4) & 0xf))
17439 return relax_immediate (fragp, 8, 0);
17440 else
17441 return relax_immediate (fragp, 3, 0);
17445 /* Return the size of a relaxable branch instruction. BITS is the
17446 size of the offset field in the narrow instruction. */
17448 static int
17449 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
17451 addressT addr;
17452 offsetT val;
17453 offsetT limit;
17455 /* Assume worst case for symbols not known to be in the same section. */
17456 if (!S_IS_DEFINED (fragp->fr_symbol)
17457 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17458 return 4;
17460 val = relaxed_symbol_addr (fragp, stretch);
17461 addr = fragp->fr_address + fragp->fr_fix + 4;
17462 val -= addr;
17464 /* Offset is a signed value *2 */
17465 limit = 1 << bits;
17466 if (val >= limit || val < -limit)
17467 return 4;
17468 return 2;
17472 /* Relax a machine dependent frag. This returns the amount by which
17473 the current size of the frag should change. */
17476 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
17478 int oldsize;
17479 int newsize;
17481 oldsize = fragp->fr_var;
17482 switch (fragp->fr_subtype)
17484 case T_MNEM_ldr_pc2:
17485 newsize = relax_adr (fragp, sec, stretch);
17486 break;
17487 case T_MNEM_ldr_pc:
17488 case T_MNEM_ldr_sp:
17489 case T_MNEM_str_sp:
17490 newsize = relax_immediate (fragp, 8, 2);
17491 break;
17492 case T_MNEM_ldr:
17493 case T_MNEM_str:
17494 newsize = relax_immediate (fragp, 5, 2);
17495 break;
17496 case T_MNEM_ldrh:
17497 case T_MNEM_strh:
17498 newsize = relax_immediate (fragp, 5, 1);
17499 break;
17500 case T_MNEM_ldrb:
17501 case T_MNEM_strb:
17502 newsize = relax_immediate (fragp, 5, 0);
17503 break;
17504 case T_MNEM_adr:
17505 newsize = relax_adr (fragp, sec, stretch);
17506 break;
17507 case T_MNEM_mov:
17508 case T_MNEM_movs:
17509 case T_MNEM_cmp:
17510 case T_MNEM_cmn:
17511 newsize = relax_immediate (fragp, 8, 0);
17512 break;
17513 case T_MNEM_b:
17514 newsize = relax_branch (fragp, sec, 11, stretch);
17515 break;
17516 case T_MNEM_bcond:
17517 newsize = relax_branch (fragp, sec, 8, stretch);
17518 break;
17519 case T_MNEM_add_sp:
17520 case T_MNEM_add_pc:
17521 newsize = relax_immediate (fragp, 8, 2);
17522 break;
17523 case T_MNEM_inc_sp:
17524 case T_MNEM_dec_sp:
17525 newsize = relax_immediate (fragp, 7, 2);
17526 break;
17527 case T_MNEM_addi:
17528 case T_MNEM_addis:
17529 case T_MNEM_subi:
17530 case T_MNEM_subis:
17531 newsize = relax_addsub (fragp, sec);
17532 break;
17533 default:
17534 abort ();
17537 fragp->fr_var = newsize;
17538 /* Freeze wide instructions that are at or before the same location as
17539 in the previous pass. This avoids infinite loops.
17540 Don't freeze them unconditionally because targets may be artificially
17541 misaligned by the expansion of preceding frags. */
17542 if (stretch <= 0 && newsize > 2)
17544 md_convert_frag (sec->owner, sec, fragp);
17545 frag_wane (fragp);
17548 return newsize - oldsize;
17551 /* Round up a section size to the appropriate boundary. */
17553 valueT
17554 md_section_align (segT segment ATTRIBUTE_UNUSED,
17555 valueT size)
17557 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
17558 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
17560 /* For a.out, force the section size to be aligned. If we don't do
17561 this, BFD will align it for us, but it will not write out the
17562 final bytes of the section. This may be a bug in BFD, but it is
17563 easier to fix it here since that is how the other a.out targets
17564 work. */
17565 int align;
17567 align = bfd_get_section_alignment (stdoutput, segment);
17568 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
17570 #endif
17572 return size;
17575 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
17576 of an rs_align_code fragment. */
17578 void
17579 arm_handle_align (fragS * fragP)
17581 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
17582 static char const thumb_noop[2] = { 0xc0, 0x46 };
17583 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
17584 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
17586 int bytes, fix, noop_size;
17587 char * p;
17588 const char * noop;
17590 if (fragP->fr_type != rs_align_code)
17591 return;
17593 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17594 p = fragP->fr_literal + fragP->fr_fix;
17595 fix = 0;
17597 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17598 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
17600 assert ((fragP->tc_frag_data & MODE_RECORDED) != 0);
17602 if (fragP->tc_frag_data & (~ MODE_RECORDED))
17604 if (target_big_endian)
17605 noop = thumb_bigend_noop;
17606 else
17607 noop = thumb_noop;
17608 noop_size = sizeof (thumb_noop);
17610 else
17612 if (target_big_endian)
17613 noop = arm_bigend_noop;
17614 else
17615 noop = arm_noop;
17616 noop_size = sizeof (arm_noop);
17619 if (bytes & (noop_size - 1))
17621 fix = bytes & (noop_size - 1);
17622 memset (p, 0, fix);
17623 p += fix;
17624 bytes -= fix;
17627 while (bytes >= noop_size)
17629 memcpy (p, noop, noop_size);
17630 p += noop_size;
17631 bytes -= noop_size;
17632 fix += noop_size;
17635 fragP->fr_fix += fix;
17636 fragP->fr_var = noop_size;
17639 /* Called from md_do_align. Used to create an alignment
17640 frag in a code section. */
17642 void
17643 arm_frag_align_code (int n, int max)
17645 char * p;
17647 /* We assume that there will never be a requirement
17648 to support alignments greater than 32 bytes. */
17649 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17650 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
17652 p = frag_var (rs_align_code,
17653 MAX_MEM_FOR_RS_ALIGN_CODE,
17655 (relax_substateT) max,
17656 (symbolS *) NULL,
17657 (offsetT) n,
17658 (char *) NULL);
17659 *p = 0;
17662 /* Perform target specific initialisation of a frag.
17663 Note - despite the name this initialisation is not done when the frag
17664 is created, but only when its type is assigned. A frag can be created
17665 and used a long time before its type is set, so beware of assuming that
17666 this initialisationis performed first. */
17668 void
17669 arm_init_frag (fragS * fragP)
17671 /* If the current ARM vs THUMB mode has not already
17672 been recorded into this frag then do so now. */
17673 if ((fragP->tc_frag_data & MODE_RECORDED) == 0)
17674 fragP->tc_frag_data = thumb_mode | MODE_RECORDED;
17677 #ifdef OBJ_ELF
17678 /* When we change sections we need to issue a new mapping symbol. */
17680 void
17681 arm_elf_change_section (void)
17683 flagword flags;
17684 segment_info_type *seginfo;
17686 /* Link an unlinked unwind index table section to the .text section. */
17687 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17688 && elf_linked_to_section (now_seg) == NULL)
17689 elf_linked_to_section (now_seg) = text_section;
17691 if (!SEG_NORMAL (now_seg))
17692 return;
17694 flags = bfd_get_section_flags (stdoutput, now_seg);
17696 /* We can ignore sections that only contain debug info. */
17697 if ((flags & SEC_ALLOC) == 0)
17698 return;
17700 seginfo = seg_info (now_seg);
17701 mapstate = seginfo->tc_segment_info_data.mapstate;
17702 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
17706 arm_elf_section_type (const char * str, size_t len)
17708 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17709 return SHT_ARM_EXIDX;
17711 return -1;
17714 /* Code to deal with unwinding tables. */
17716 static void add_unwind_adjustsp (offsetT);
17718 /* Generate any deferred unwind frame offset. */
17720 static void
17721 flush_pending_unwind (void)
17723 offsetT offset;
17725 offset = unwind.pending_offset;
17726 unwind.pending_offset = 0;
17727 if (offset != 0)
17728 add_unwind_adjustsp (offset);
17731 /* Add an opcode to this list for this function. Two-byte opcodes should
17732 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17733 order. */
17735 static void
17736 add_unwind_opcode (valueT op, int length)
17738 /* Add any deferred stack adjustment. */
17739 if (unwind.pending_offset)
17740 flush_pending_unwind ();
17742 unwind.sp_restored = 0;
17744 if (unwind.opcode_count + length > unwind.opcode_alloc)
17746 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17747 if (unwind.opcodes)
17748 unwind.opcodes = xrealloc (unwind.opcodes,
17749 unwind.opcode_alloc);
17750 else
17751 unwind.opcodes = xmalloc (unwind.opcode_alloc);
17753 while (length > 0)
17755 length--;
17756 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17757 op >>= 8;
17758 unwind.opcode_count++;
17762 /* Add unwind opcodes to adjust the stack pointer. */
17764 static void
17765 add_unwind_adjustsp (offsetT offset)
17767 valueT op;
17769 if (offset > 0x200)
17771 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17772 char bytes[5];
17773 int n;
17774 valueT o;
17776 /* Long form: 0xb2, uleb128. */
17777 /* This might not fit in a word so add the individual bytes,
17778 remembering the list is built in reverse order. */
17779 o = (valueT) ((offset - 0x204) >> 2);
17780 if (o == 0)
17781 add_unwind_opcode (0, 1);
17783 /* Calculate the uleb128 encoding of the offset. */
17784 n = 0;
17785 while (o)
17787 bytes[n] = o & 0x7f;
17788 o >>= 7;
17789 if (o)
17790 bytes[n] |= 0x80;
17791 n++;
17793 /* Add the insn. */
17794 for (; n; n--)
17795 add_unwind_opcode (bytes[n - 1], 1);
17796 add_unwind_opcode (0xb2, 1);
17798 else if (offset > 0x100)
17800 /* Two short opcodes. */
17801 add_unwind_opcode (0x3f, 1);
17802 op = (offset - 0x104) >> 2;
17803 add_unwind_opcode (op, 1);
17805 else if (offset > 0)
17807 /* Short opcode. */
17808 op = (offset - 4) >> 2;
17809 add_unwind_opcode (op, 1);
17811 else if (offset < 0)
17813 offset = -offset;
17814 while (offset > 0x100)
17816 add_unwind_opcode (0x7f, 1);
17817 offset -= 0x100;
17819 op = ((offset - 4) >> 2) | 0x40;
17820 add_unwind_opcode (op, 1);
17824 /* Finish the list of unwind opcodes for this function. */
17825 static void
17826 finish_unwind_opcodes (void)
17828 valueT op;
17830 if (unwind.fp_used)
17832 /* Adjust sp as necessary. */
17833 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17834 flush_pending_unwind ();
17836 /* After restoring sp from the frame pointer. */
17837 op = 0x90 | unwind.fp_reg;
17838 add_unwind_opcode (op, 1);
17840 else
17841 flush_pending_unwind ();
17845 /* Start an exception table entry. If idx is nonzero this is an index table
17846 entry. */
17848 static void
17849 start_unwind_section (const segT text_seg, int idx)
17851 const char * text_name;
17852 const char * prefix;
17853 const char * prefix_once;
17854 const char * group_name;
17855 size_t prefix_len;
17856 size_t text_len;
17857 char * sec_name;
17858 size_t sec_name_len;
17859 int type;
17860 int flags;
17861 int linkonce;
17863 if (idx)
17865 prefix = ELF_STRING_ARM_unwind;
17866 prefix_once = ELF_STRING_ARM_unwind_once;
17867 type = SHT_ARM_EXIDX;
17869 else
17871 prefix = ELF_STRING_ARM_unwind_info;
17872 prefix_once = ELF_STRING_ARM_unwind_info_once;
17873 type = SHT_PROGBITS;
17876 text_name = segment_name (text_seg);
17877 if (streq (text_name, ".text"))
17878 text_name = "";
17880 if (strncmp (text_name, ".gnu.linkonce.t.",
17881 strlen (".gnu.linkonce.t.")) == 0)
17883 prefix = prefix_once;
17884 text_name += strlen (".gnu.linkonce.t.");
17887 prefix_len = strlen (prefix);
17888 text_len = strlen (text_name);
17889 sec_name_len = prefix_len + text_len;
17890 sec_name = xmalloc (sec_name_len + 1);
17891 memcpy (sec_name, prefix, prefix_len);
17892 memcpy (sec_name + prefix_len, text_name, text_len);
17893 sec_name[prefix_len + text_len] = '\0';
17895 flags = SHF_ALLOC;
17896 linkonce = 0;
17897 group_name = 0;
17899 /* Handle COMDAT group. */
17900 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
17902 group_name = elf_group_name (text_seg);
17903 if (group_name == NULL)
17905 as_bad (_("Group section `%s' has no group signature"),
17906 segment_name (text_seg));
17907 ignore_rest_of_line ();
17908 return;
17910 flags |= SHF_GROUP;
17911 linkonce = 1;
17914 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
17916 /* Set the section link for index tables. */
17917 if (idx)
17918 elf_linked_to_section (now_seg) = text_seg;
17922 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17923 personality routine data. Returns zero, or the index table value for
17924 and inline entry. */
17926 static valueT
17927 create_unwind_entry (int have_data)
17929 int size;
17930 addressT where;
17931 char *ptr;
17932 /* The current word of data. */
17933 valueT data;
17934 /* The number of bytes left in this word. */
17935 int n;
17937 finish_unwind_opcodes ();
17939 /* Remember the current text section. */
17940 unwind.saved_seg = now_seg;
17941 unwind.saved_subseg = now_subseg;
17943 start_unwind_section (now_seg, 0);
17945 if (unwind.personality_routine == NULL)
17947 if (unwind.personality_index == -2)
17949 if (have_data)
17950 as_bad (_("handlerdata in cantunwind frame"));
17951 return 1; /* EXIDX_CANTUNWIND. */
17954 /* Use a default personality routine if none is specified. */
17955 if (unwind.personality_index == -1)
17957 if (unwind.opcode_count > 3)
17958 unwind.personality_index = 1;
17959 else
17960 unwind.personality_index = 0;
17963 /* Space for the personality routine entry. */
17964 if (unwind.personality_index == 0)
17966 if (unwind.opcode_count > 3)
17967 as_bad (_("too many unwind opcodes for personality routine 0"));
17969 if (!have_data)
17971 /* All the data is inline in the index table. */
17972 data = 0x80;
17973 n = 3;
17974 while (unwind.opcode_count > 0)
17976 unwind.opcode_count--;
17977 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17978 n--;
17981 /* Pad with "finish" opcodes. */
17982 while (n--)
17983 data = (data << 8) | 0xb0;
17985 return data;
17987 size = 0;
17989 else
17990 /* We get two opcodes "free" in the first word. */
17991 size = unwind.opcode_count - 2;
17993 else
17994 /* An extra byte is required for the opcode count. */
17995 size = unwind.opcode_count + 1;
17997 size = (size + 3) >> 2;
17998 if (size > 0xff)
17999 as_bad (_("too many unwind opcodes"));
18001 frag_align (2, 0, 0);
18002 record_alignment (now_seg, 2);
18003 unwind.table_entry = expr_build_dot ();
18005 /* Allocate the table entry. */
18006 ptr = frag_more ((size << 2) + 4);
18007 where = frag_now_fix () - ((size << 2) + 4);
18009 switch (unwind.personality_index)
18011 case -1:
18012 /* ??? Should this be a PLT generating relocation? */
18013 /* Custom personality routine. */
18014 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
18015 BFD_RELOC_ARM_PREL31);
18017 where += 4;
18018 ptr += 4;
18020 /* Set the first byte to the number of additional words. */
18021 data = size - 1;
18022 n = 3;
18023 break;
18025 /* ABI defined personality routines. */
18026 case 0:
18027 /* Three opcodes bytes are packed into the first word. */
18028 data = 0x80;
18029 n = 3;
18030 break;
18032 case 1:
18033 case 2:
18034 /* The size and first two opcode bytes go in the first word. */
18035 data = ((0x80 + unwind.personality_index) << 8) | size;
18036 n = 2;
18037 break;
18039 default:
18040 /* Should never happen. */
18041 abort ();
18044 /* Pack the opcodes into words (MSB first), reversing the list at the same
18045 time. */
18046 while (unwind.opcode_count > 0)
18048 if (n == 0)
18050 md_number_to_chars (ptr, data, 4);
18051 ptr += 4;
18052 n = 4;
18053 data = 0;
18055 unwind.opcode_count--;
18056 n--;
18057 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18060 /* Finish off the last word. */
18061 if (n < 4)
18063 /* Pad with "finish" opcodes. */
18064 while (n--)
18065 data = (data << 8) | 0xb0;
18067 md_number_to_chars (ptr, data, 4);
18070 if (!have_data)
18072 /* Add an empty descriptor if there is no user-specified data. */
18073 ptr = frag_more (4);
18074 md_number_to_chars (ptr, 0, 4);
18077 return 0;
18081 /* Initialize the DWARF-2 unwind information for this procedure. */
18083 void
18084 tc_arm_frame_initial_instructions (void)
18086 cfi_add_CFA_def_cfa (REG_SP, 0);
18088 #endif /* OBJ_ELF */
18090 /* Convert REGNAME to a DWARF-2 register number. */
18093 tc_arm_regname_to_dw2regnum (char *regname)
18095 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
18097 if (reg == FAIL)
18098 return -1;
18100 return reg;
18103 #ifdef TE_PE
18104 void
18105 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
18107 expressionS expr;
18109 expr.X_op = O_secrel;
18110 expr.X_add_symbol = symbol;
18111 expr.X_add_number = 0;
18112 emit_expr (&expr, size);
18114 #endif
18116 /* MD interface: Symbol and relocation handling. */
18118 /* Return the address within the segment that a PC-relative fixup is
18119 relative to. For ARM, PC-relative fixups applied to instructions
18120 are generally relative to the location of the fixup plus 8 bytes.
18121 Thumb branches are offset by 4, and Thumb loads relative to PC
18122 require special handling. */
18124 long
18125 md_pcrel_from_section (fixS * fixP, segT seg)
18127 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
18129 /* If this is pc-relative and we are going to emit a relocation
18130 then we just want to put out any pipeline compensation that the linker
18131 will need. Otherwise we want to use the calculated base.
18132 For WinCE we skip the bias for externals as well, since this
18133 is how the MS ARM-CE assembler behaves and we want to be compatible. */
18134 if (fixP->fx_pcrel
18135 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
18136 || (arm_force_relocation (fixP)
18137 #ifdef TE_WINCE
18138 && !S_IS_EXTERNAL (fixP->fx_addsy)
18139 #endif
18141 base = 0;
18143 switch (fixP->fx_r_type)
18145 /* PC relative addressing on the Thumb is slightly odd as the
18146 bottom two bits of the PC are forced to zero for the
18147 calculation. This happens *after* application of the
18148 pipeline offset. However, Thumb adrl already adjusts for
18149 this, so we need not do it again. */
18150 case BFD_RELOC_ARM_THUMB_ADD:
18151 return base & ~3;
18153 case BFD_RELOC_ARM_THUMB_OFFSET:
18154 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18155 case BFD_RELOC_ARM_T32_ADD_PC12:
18156 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
18157 return (base + 4) & ~3;
18159 /* Thumb branches are simply offset by +4. */
18160 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18161 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18162 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18163 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18164 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18165 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18166 case BFD_RELOC_THUMB_PCREL_BLX:
18167 return base + 4;
18169 /* ARM mode branches are offset by +8. However, the Windows CE
18170 loader expects the relocation not to take this into account. */
18171 case BFD_RELOC_ARM_PCREL_BRANCH:
18172 case BFD_RELOC_ARM_PCREL_CALL:
18173 case BFD_RELOC_ARM_PCREL_JUMP:
18174 case BFD_RELOC_ARM_PCREL_BLX:
18175 case BFD_RELOC_ARM_PLT32:
18176 #ifdef TE_WINCE
18177 /* When handling fixups immediately, because we have already
18178 discovered the value of a symbol, or the address of the frag involved
18179 we must account for the offset by +8, as the OS loader will never see the reloc.
18180 see fixup_segment() in write.c
18181 The S_IS_EXTERNAL test handles the case of global symbols.
18182 Those need the calculated base, not just the pipe compensation the linker will need. */
18183 if (fixP->fx_pcrel
18184 && fixP->fx_addsy != NULL
18185 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
18186 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
18187 return base + 8;
18188 return base;
18189 #else
18190 return base + 8;
18191 #endif
18193 /* ARM mode loads relative to PC are also offset by +8. Unlike
18194 branches, the Windows CE loader *does* expect the relocation
18195 to take this into account. */
18196 case BFD_RELOC_ARM_OFFSET_IMM:
18197 case BFD_RELOC_ARM_OFFSET_IMM8:
18198 case BFD_RELOC_ARM_HWLITERAL:
18199 case BFD_RELOC_ARM_LITERAL:
18200 case BFD_RELOC_ARM_CP_OFF_IMM:
18201 return base + 8;
18204 /* Other PC-relative relocations are un-offset. */
18205 default:
18206 return base;
18210 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
18211 Otherwise we have no need to default values of symbols. */
18213 symbolS *
18214 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
18216 #ifdef OBJ_ELF
18217 if (name[0] == '_' && name[1] == 'G'
18218 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
18220 if (!GOT_symbol)
18222 if (symbol_find (name))
18223 as_bad (_("GOT already in the symbol table"));
18225 GOT_symbol = symbol_new (name, undefined_section,
18226 (valueT) 0, & zero_address_frag);
18229 return GOT_symbol;
18231 #endif
18233 return 0;
18236 /* Subroutine of md_apply_fix. Check to see if an immediate can be
18237 computed as two separate immediate values, added together. We
18238 already know that this value cannot be computed by just one ARM
18239 instruction. */
18241 static unsigned int
18242 validate_immediate_twopart (unsigned int val,
18243 unsigned int * highpart)
18245 unsigned int a;
18246 unsigned int i;
18248 for (i = 0; i < 32; i += 2)
18249 if (((a = rotate_left (val, i)) & 0xff) != 0)
18251 if (a & 0xff00)
18253 if (a & ~ 0xffff)
18254 continue;
18255 * highpart = (a >> 8) | ((i + 24) << 7);
18257 else if (a & 0xff0000)
18259 if (a & 0xff000000)
18260 continue;
18261 * highpart = (a >> 16) | ((i + 16) << 7);
18263 else
18265 assert (a & 0xff000000);
18266 * highpart = (a >> 24) | ((i + 8) << 7);
18269 return (a & 0xff) | (i << 7);
18272 return FAIL;
18275 static int
18276 validate_offset_imm (unsigned int val, int hwse)
18278 if ((hwse && val > 255) || val > 4095)
18279 return FAIL;
18280 return val;
18283 /* Subroutine of md_apply_fix. Do those data_ops which can take a
18284 negative immediate constant by altering the instruction. A bit of
18285 a hack really.
18286 MOV <-> MVN
18287 AND <-> BIC
18288 ADC <-> SBC
18289 by inverting the second operand, and
18290 ADD <-> SUB
18291 CMP <-> CMN
18292 by negating the second operand. */
18294 static int
18295 negate_data_op (unsigned long * instruction,
18296 unsigned long value)
18298 int op, new_inst;
18299 unsigned long negated, inverted;
18301 negated = encode_arm_immediate (-value);
18302 inverted = encode_arm_immediate (~value);
18304 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
18305 switch (op)
18307 /* First negates. */
18308 case OPCODE_SUB: /* ADD <-> SUB */
18309 new_inst = OPCODE_ADD;
18310 value = negated;
18311 break;
18313 case OPCODE_ADD:
18314 new_inst = OPCODE_SUB;
18315 value = negated;
18316 break;
18318 case OPCODE_CMP: /* CMP <-> CMN */
18319 new_inst = OPCODE_CMN;
18320 value = negated;
18321 break;
18323 case OPCODE_CMN:
18324 new_inst = OPCODE_CMP;
18325 value = negated;
18326 break;
18328 /* Now Inverted ops. */
18329 case OPCODE_MOV: /* MOV <-> MVN */
18330 new_inst = OPCODE_MVN;
18331 value = inverted;
18332 break;
18334 case OPCODE_MVN:
18335 new_inst = OPCODE_MOV;
18336 value = inverted;
18337 break;
18339 case OPCODE_AND: /* AND <-> BIC */
18340 new_inst = OPCODE_BIC;
18341 value = inverted;
18342 break;
18344 case OPCODE_BIC:
18345 new_inst = OPCODE_AND;
18346 value = inverted;
18347 break;
18349 case OPCODE_ADC: /* ADC <-> SBC */
18350 new_inst = OPCODE_SBC;
18351 value = inverted;
18352 break;
18354 case OPCODE_SBC:
18355 new_inst = OPCODE_ADC;
18356 value = inverted;
18357 break;
18359 /* We cannot do anything. */
18360 default:
18361 return FAIL;
18364 if (value == (unsigned) FAIL)
18365 return FAIL;
18367 *instruction &= OPCODE_MASK;
18368 *instruction |= new_inst << DATA_OP_SHIFT;
18369 return value;
18372 /* Like negate_data_op, but for Thumb-2. */
18374 static unsigned int
18375 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
18377 int op, new_inst;
18378 int rd;
18379 unsigned int negated, inverted;
18381 negated = encode_thumb32_immediate (-value);
18382 inverted = encode_thumb32_immediate (~value);
18384 rd = (*instruction >> 8) & 0xf;
18385 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
18386 switch (op)
18388 /* ADD <-> SUB. Includes CMP <-> CMN. */
18389 case T2_OPCODE_SUB:
18390 new_inst = T2_OPCODE_ADD;
18391 value = negated;
18392 break;
18394 case T2_OPCODE_ADD:
18395 new_inst = T2_OPCODE_SUB;
18396 value = negated;
18397 break;
18399 /* ORR <-> ORN. Includes MOV <-> MVN. */
18400 case T2_OPCODE_ORR:
18401 new_inst = T2_OPCODE_ORN;
18402 value = inverted;
18403 break;
18405 case T2_OPCODE_ORN:
18406 new_inst = T2_OPCODE_ORR;
18407 value = inverted;
18408 break;
18410 /* AND <-> BIC. TST has no inverted equivalent. */
18411 case T2_OPCODE_AND:
18412 new_inst = T2_OPCODE_BIC;
18413 if (rd == 15)
18414 value = FAIL;
18415 else
18416 value = inverted;
18417 break;
18419 case T2_OPCODE_BIC:
18420 new_inst = T2_OPCODE_AND;
18421 value = inverted;
18422 break;
18424 /* ADC <-> SBC */
18425 case T2_OPCODE_ADC:
18426 new_inst = T2_OPCODE_SBC;
18427 value = inverted;
18428 break;
18430 case T2_OPCODE_SBC:
18431 new_inst = T2_OPCODE_ADC;
18432 value = inverted;
18433 break;
18435 /* We cannot do anything. */
18436 default:
18437 return FAIL;
18440 if (value == (unsigned int)FAIL)
18441 return FAIL;
18443 *instruction &= T2_OPCODE_MASK;
18444 *instruction |= new_inst << T2_DATA_OP_SHIFT;
18445 return value;
18448 /* Read a 32-bit thumb instruction from buf. */
18449 static unsigned long
18450 get_thumb32_insn (char * buf)
18452 unsigned long insn;
18453 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
18454 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18456 return insn;
18460 /* We usually want to set the low bit on the address of thumb function
18461 symbols. In particular .word foo - . should have the low bit set.
18462 Generic code tries to fold the difference of two symbols to
18463 a constant. Prevent this and force a relocation when the first symbols
18464 is a thumb function. */
18466 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
18468 if (op == O_subtract
18469 && l->X_op == O_symbol
18470 && r->X_op == O_symbol
18471 && THUMB_IS_FUNC (l->X_add_symbol))
18473 l->X_op = O_subtract;
18474 l->X_op_symbol = r->X_add_symbol;
18475 l->X_add_number -= r->X_add_number;
18476 return 1;
18478 /* Process as normal. */
18479 return 0;
18482 void
18483 md_apply_fix (fixS * fixP,
18484 valueT * valP,
18485 segT seg)
18487 offsetT value = * valP;
18488 offsetT newval;
18489 unsigned int newimm;
18490 unsigned long temp;
18491 int sign;
18492 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
18494 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
18496 /* Note whether this will delete the relocation. */
18498 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
18499 fixP->fx_done = 1;
18501 /* On a 64-bit host, silently truncate 'value' to 32 bits for
18502 consistency with the behaviour on 32-bit hosts. Remember value
18503 for emit_reloc. */
18504 value &= 0xffffffff;
18505 value ^= 0x80000000;
18506 value -= 0x80000000;
18508 *valP = value;
18509 fixP->fx_addnumber = value;
18511 /* Same treatment for fixP->fx_offset. */
18512 fixP->fx_offset &= 0xffffffff;
18513 fixP->fx_offset ^= 0x80000000;
18514 fixP->fx_offset -= 0x80000000;
18516 switch (fixP->fx_r_type)
18518 case BFD_RELOC_NONE:
18519 /* This will need to go in the object file. */
18520 fixP->fx_done = 0;
18521 break;
18523 case BFD_RELOC_ARM_IMMEDIATE:
18524 /* We claim that this fixup has been processed here,
18525 even if in fact we generate an error because we do
18526 not have a reloc for it, so tc_gen_reloc will reject it. */
18527 fixP->fx_done = 1;
18529 if (fixP->fx_addsy
18530 && ! S_IS_DEFINED (fixP->fx_addsy))
18532 as_bad_where (fixP->fx_file, fixP->fx_line,
18533 _("undefined symbol %s used as an immediate value"),
18534 S_GET_NAME (fixP->fx_addsy));
18535 break;
18538 newimm = encode_arm_immediate (value);
18539 temp = md_chars_to_number (buf, INSN_SIZE);
18541 /* If the instruction will fail, see if we can fix things up by
18542 changing the opcode. */
18543 if (newimm == (unsigned int) FAIL
18544 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
18546 as_bad_where (fixP->fx_file, fixP->fx_line,
18547 _("invalid constant (%lx) after fixup"),
18548 (unsigned long) value);
18549 break;
18552 newimm |= (temp & 0xfffff000);
18553 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18554 break;
18556 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18558 unsigned int highpart = 0;
18559 unsigned int newinsn = 0xe1a00000; /* nop. */
18561 newimm = encode_arm_immediate (value);
18562 temp = md_chars_to_number (buf, INSN_SIZE);
18564 /* If the instruction will fail, see if we can fix things up by
18565 changing the opcode. */
18566 if (newimm == (unsigned int) FAIL
18567 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
18569 /* No ? OK - try using two ADD instructions to generate
18570 the value. */
18571 newimm = validate_immediate_twopart (value, & highpart);
18573 /* Yes - then make sure that the second instruction is
18574 also an add. */
18575 if (newimm != (unsigned int) FAIL)
18576 newinsn = temp;
18577 /* Still No ? Try using a negated value. */
18578 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
18579 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
18580 /* Otherwise - give up. */
18581 else
18583 as_bad_where (fixP->fx_file, fixP->fx_line,
18584 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
18585 (long) value);
18586 break;
18589 /* Replace the first operand in the 2nd instruction (which
18590 is the PC) with the destination register. We have
18591 already added in the PC in the first instruction and we
18592 do not want to do it again. */
18593 newinsn &= ~ 0xf0000;
18594 newinsn |= ((newinsn & 0x0f000) << 4);
18597 newimm |= (temp & 0xfffff000);
18598 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18600 highpart |= (newinsn & 0xfffff000);
18601 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18603 break;
18605 case BFD_RELOC_ARM_OFFSET_IMM:
18606 if (!fixP->fx_done && seg->use_rela_p)
18607 value = 0;
18609 case BFD_RELOC_ARM_LITERAL:
18610 sign = value >= 0;
18612 if (value < 0)
18613 value = - value;
18615 if (validate_offset_imm (value, 0) == FAIL)
18617 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18618 as_bad_where (fixP->fx_file, fixP->fx_line,
18619 _("invalid literal constant: pool needs to be closer"));
18620 else
18621 as_bad_where (fixP->fx_file, fixP->fx_line,
18622 _("bad immediate value for offset (%ld)"),
18623 (long) value);
18624 break;
18627 newval = md_chars_to_number (buf, INSN_SIZE);
18628 newval &= 0xff7ff000;
18629 newval |= value | (sign ? INDEX_UP : 0);
18630 md_number_to_chars (buf, newval, INSN_SIZE);
18631 break;
18633 case BFD_RELOC_ARM_OFFSET_IMM8:
18634 case BFD_RELOC_ARM_HWLITERAL:
18635 sign = value >= 0;
18637 if (value < 0)
18638 value = - value;
18640 if (validate_offset_imm (value, 1) == FAIL)
18642 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18643 as_bad_where (fixP->fx_file, fixP->fx_line,
18644 _("invalid literal constant: pool needs to be closer"));
18645 else
18646 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
18647 (long) value);
18648 break;
18651 newval = md_chars_to_number (buf, INSN_SIZE);
18652 newval &= 0xff7ff0f0;
18653 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18654 md_number_to_chars (buf, newval, INSN_SIZE);
18655 break;
18657 case BFD_RELOC_ARM_T32_OFFSET_U8:
18658 if (value < 0 || value > 1020 || value % 4 != 0)
18659 as_bad_where (fixP->fx_file, fixP->fx_line,
18660 _("bad immediate value for offset (%ld)"), (long) value);
18661 value /= 4;
18663 newval = md_chars_to_number (buf+2, THUMB_SIZE);
18664 newval |= value;
18665 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18666 break;
18668 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18669 /* This is a complicated relocation used for all varieties of Thumb32
18670 load/store instruction with immediate offset:
18672 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18673 *4, optional writeback(W)
18674 (doubleword load/store)
18676 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18677 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18678 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18679 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18680 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18682 Uppercase letters indicate bits that are already encoded at
18683 this point. Lowercase letters are our problem. For the
18684 second block of instructions, the secondary opcode nybble
18685 (bits 8..11) is present, and bit 23 is zero, even if this is
18686 a PC-relative operation. */
18687 newval = md_chars_to_number (buf, THUMB_SIZE);
18688 newval <<= 16;
18689 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
18691 if ((newval & 0xf0000000) == 0xe0000000)
18693 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18694 if (value >= 0)
18695 newval |= (1 << 23);
18696 else
18697 value = -value;
18698 if (value % 4 != 0)
18700 as_bad_where (fixP->fx_file, fixP->fx_line,
18701 _("offset not a multiple of 4"));
18702 break;
18704 value /= 4;
18705 if (value > 0xff)
18707 as_bad_where (fixP->fx_file, fixP->fx_line,
18708 _("offset out of range"));
18709 break;
18711 newval &= ~0xff;
18713 else if ((newval & 0x000f0000) == 0x000f0000)
18715 /* PC-relative, 12-bit offset. */
18716 if (value >= 0)
18717 newval |= (1 << 23);
18718 else
18719 value = -value;
18720 if (value > 0xfff)
18722 as_bad_where (fixP->fx_file, fixP->fx_line,
18723 _("offset out of range"));
18724 break;
18726 newval &= ~0xfff;
18728 else if ((newval & 0x00000100) == 0x00000100)
18730 /* Writeback: 8-bit, +/- offset. */
18731 if (value >= 0)
18732 newval |= (1 << 9);
18733 else
18734 value = -value;
18735 if (value > 0xff)
18737 as_bad_where (fixP->fx_file, fixP->fx_line,
18738 _("offset out of range"));
18739 break;
18741 newval &= ~0xff;
18743 else if ((newval & 0x00000f00) == 0x00000e00)
18745 /* T-instruction: positive 8-bit offset. */
18746 if (value < 0 || value > 0xff)
18748 as_bad_where (fixP->fx_file, fixP->fx_line,
18749 _("offset out of range"));
18750 break;
18752 newval &= ~0xff;
18753 newval |= value;
18755 else
18757 /* Positive 12-bit or negative 8-bit offset. */
18758 int limit;
18759 if (value >= 0)
18761 newval |= (1 << 23);
18762 limit = 0xfff;
18764 else
18766 value = -value;
18767 limit = 0xff;
18769 if (value > limit)
18771 as_bad_where (fixP->fx_file, fixP->fx_line,
18772 _("offset out of range"));
18773 break;
18775 newval &= ~limit;
18778 newval |= value;
18779 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18780 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18781 break;
18783 case BFD_RELOC_ARM_SHIFT_IMM:
18784 newval = md_chars_to_number (buf, INSN_SIZE);
18785 if (((unsigned long) value) > 32
18786 || (value == 32
18787 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18789 as_bad_where (fixP->fx_file, fixP->fx_line,
18790 _("shift expression is too large"));
18791 break;
18794 if (value == 0)
18795 /* Shifts of zero must be done as lsl. */
18796 newval &= ~0x60;
18797 else if (value == 32)
18798 value = 0;
18799 newval &= 0xfffff07f;
18800 newval |= (value & 0x1f) << 7;
18801 md_number_to_chars (buf, newval, INSN_SIZE);
18802 break;
18804 case BFD_RELOC_ARM_T32_IMMEDIATE:
18805 case BFD_RELOC_ARM_T32_ADD_IMM:
18806 case BFD_RELOC_ARM_T32_IMM12:
18807 case BFD_RELOC_ARM_T32_ADD_PC12:
18808 /* We claim that this fixup has been processed here,
18809 even if in fact we generate an error because we do
18810 not have a reloc for it, so tc_gen_reloc will reject it. */
18811 fixP->fx_done = 1;
18813 if (fixP->fx_addsy
18814 && ! S_IS_DEFINED (fixP->fx_addsy))
18816 as_bad_where (fixP->fx_file, fixP->fx_line,
18817 _("undefined symbol %s used as an immediate value"),
18818 S_GET_NAME (fixP->fx_addsy));
18819 break;
18822 newval = md_chars_to_number (buf, THUMB_SIZE);
18823 newval <<= 16;
18824 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
18826 newimm = FAIL;
18827 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18828 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18830 newimm = encode_thumb32_immediate (value);
18831 if (newimm == (unsigned int) FAIL)
18832 newimm = thumb32_negate_data_op (&newval, value);
18834 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18835 && newimm == (unsigned int) FAIL)
18837 /* Turn add/sum into addw/subw. */
18838 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18839 newval = (newval & 0xfeffffff) | 0x02000000;
18841 /* 12 bit immediate for addw/subw. */
18842 if (value < 0)
18844 value = -value;
18845 newval ^= 0x00a00000;
18847 if (value > 0xfff)
18848 newimm = (unsigned int) FAIL;
18849 else
18850 newimm = value;
18853 if (newimm == (unsigned int)FAIL)
18855 as_bad_where (fixP->fx_file, fixP->fx_line,
18856 _("invalid constant (%lx) after fixup"),
18857 (unsigned long) value);
18858 break;
18861 newval |= (newimm & 0x800) << 15;
18862 newval |= (newimm & 0x700) << 4;
18863 newval |= (newimm & 0x0ff);
18865 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18866 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18867 break;
18869 case BFD_RELOC_ARM_SMC:
18870 if (((unsigned long) value) > 0xffff)
18871 as_bad_where (fixP->fx_file, fixP->fx_line,
18872 _("invalid smc expression"));
18873 newval = md_chars_to_number (buf, INSN_SIZE);
18874 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18875 md_number_to_chars (buf, newval, INSN_SIZE);
18876 break;
18878 case BFD_RELOC_ARM_SWI:
18879 if (fixP->tc_fix_data != 0)
18881 if (((unsigned long) value) > 0xff)
18882 as_bad_where (fixP->fx_file, fixP->fx_line,
18883 _("invalid swi expression"));
18884 newval = md_chars_to_number (buf, THUMB_SIZE);
18885 newval |= value;
18886 md_number_to_chars (buf, newval, THUMB_SIZE);
18888 else
18890 if (((unsigned long) value) > 0x00ffffff)
18891 as_bad_where (fixP->fx_file, fixP->fx_line,
18892 _("invalid swi expression"));
18893 newval = md_chars_to_number (buf, INSN_SIZE);
18894 newval |= value;
18895 md_number_to_chars (buf, newval, INSN_SIZE);
18897 break;
18899 case BFD_RELOC_ARM_MULTI:
18900 if (((unsigned long) value) > 0xffff)
18901 as_bad_where (fixP->fx_file, fixP->fx_line,
18902 _("invalid expression in load/store multiple"));
18903 newval = value | md_chars_to_number (buf, INSN_SIZE);
18904 md_number_to_chars (buf, newval, INSN_SIZE);
18905 break;
18907 #ifdef OBJ_ELF
18908 case BFD_RELOC_ARM_PCREL_CALL:
18909 newval = md_chars_to_number (buf, INSN_SIZE);
18910 if ((newval & 0xf0000000) == 0xf0000000)
18911 temp = 1;
18912 else
18913 temp = 3;
18914 goto arm_branch_common;
18916 case BFD_RELOC_ARM_PCREL_JUMP:
18917 case BFD_RELOC_ARM_PLT32:
18918 #endif
18919 case BFD_RELOC_ARM_PCREL_BRANCH:
18920 temp = 3;
18921 goto arm_branch_common;
18923 case BFD_RELOC_ARM_PCREL_BLX:
18924 temp = 1;
18925 arm_branch_common:
18926 /* We are going to store value (shifted right by two) in the
18927 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18928 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18929 also be be clear. */
18930 if (value & temp)
18931 as_bad_where (fixP->fx_file, fixP->fx_line,
18932 _("misaligned branch destination"));
18933 if ((value & (offsetT)0xfe000000) != (offsetT)0
18934 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18935 as_bad_where (fixP->fx_file, fixP->fx_line,
18936 _("branch out of range"));
18938 if (fixP->fx_done || !seg->use_rela_p)
18940 newval = md_chars_to_number (buf, INSN_SIZE);
18941 newval |= (value >> 2) & 0x00ffffff;
18942 /* Set the H bit on BLX instructions. */
18943 if (temp == 1)
18945 if (value & 2)
18946 newval |= 0x01000000;
18947 else
18948 newval &= ~0x01000000;
18950 md_number_to_chars (buf, newval, INSN_SIZE);
18952 break;
18954 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18955 /* CBZ can only branch forward. */
18957 /* Attempts to use CBZ to branch to the next instruction
18958 (which, strictly speaking, are prohibited) will be turned into
18959 no-ops.
18961 FIXME: It may be better to remove the instruction completely and
18962 perform relaxation. */
18963 if (value == -2)
18965 newval = md_chars_to_number (buf, THUMB_SIZE);
18966 newval = 0xbf00; /* NOP encoding T1 */
18967 md_number_to_chars (buf, newval, THUMB_SIZE);
18969 else
18971 if (value & ~0x7e)
18972 as_bad_where (fixP->fx_file, fixP->fx_line,
18973 _("branch out of range"));
18975 if (fixP->fx_done || !seg->use_rela_p)
18977 newval = md_chars_to_number (buf, THUMB_SIZE);
18978 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18979 md_number_to_chars (buf, newval, THUMB_SIZE);
18982 break;
18984 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
18985 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18986 as_bad_where (fixP->fx_file, fixP->fx_line,
18987 _("branch out of range"));
18989 if (fixP->fx_done || !seg->use_rela_p)
18991 newval = md_chars_to_number (buf, THUMB_SIZE);
18992 newval |= (value & 0x1ff) >> 1;
18993 md_number_to_chars (buf, newval, THUMB_SIZE);
18995 break;
18997 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
18998 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18999 as_bad_where (fixP->fx_file, fixP->fx_line,
19000 _("branch out of range"));
19002 if (fixP->fx_done || !seg->use_rela_p)
19004 newval = md_chars_to_number (buf, THUMB_SIZE);
19005 newval |= (value & 0xfff) >> 1;
19006 md_number_to_chars (buf, newval, THUMB_SIZE);
19008 break;
19010 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19011 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
19012 as_bad_where (fixP->fx_file, fixP->fx_line,
19013 _("conditional branch out of range"));
19015 if (fixP->fx_done || !seg->use_rela_p)
19017 offsetT newval2;
19018 addressT S, J1, J2, lo, hi;
19020 S = (value & 0x00100000) >> 20;
19021 J2 = (value & 0x00080000) >> 19;
19022 J1 = (value & 0x00040000) >> 18;
19023 hi = (value & 0x0003f000) >> 12;
19024 lo = (value & 0x00000ffe) >> 1;
19026 newval = md_chars_to_number (buf, THUMB_SIZE);
19027 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19028 newval |= (S << 10) | hi;
19029 newval2 |= (J1 << 13) | (J2 << 11) | lo;
19030 md_number_to_chars (buf, newval, THUMB_SIZE);
19031 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19033 break;
19035 case BFD_RELOC_THUMB_PCREL_BLX:
19036 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19037 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
19038 as_bad_where (fixP->fx_file, fixP->fx_line,
19039 _("branch out of range"));
19041 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
19042 /* For a BLX instruction, make sure that the relocation is rounded up
19043 to a word boundary. This follows the semantics of the instruction
19044 which specifies that bit 1 of the target address will come from bit
19045 1 of the base address. */
19046 value = (value + 1) & ~ 1;
19048 if (fixP->fx_done || !seg->use_rela_p)
19050 offsetT newval2;
19052 newval = md_chars_to_number (buf, THUMB_SIZE);
19053 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19054 newval |= (value & 0x7fffff) >> 12;
19055 newval2 |= (value & 0xfff) >> 1;
19056 md_number_to_chars (buf, newval, THUMB_SIZE);
19057 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19059 break;
19061 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19062 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
19063 as_bad_where (fixP->fx_file, fixP->fx_line,
19064 _("branch out of range"));
19066 if (fixP->fx_done || !seg->use_rela_p)
19068 offsetT newval2;
19069 addressT S, I1, I2, lo, hi;
19071 S = (value & 0x01000000) >> 24;
19072 I1 = (value & 0x00800000) >> 23;
19073 I2 = (value & 0x00400000) >> 22;
19074 hi = (value & 0x003ff000) >> 12;
19075 lo = (value & 0x00000ffe) >> 1;
19077 I1 = !(I1 ^ S);
19078 I2 = !(I2 ^ S);
19080 newval = md_chars_to_number (buf, THUMB_SIZE);
19081 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19082 newval |= (S << 10) | hi;
19083 newval2 |= (I1 << 13) | (I2 << 11) | lo;
19084 md_number_to_chars (buf, newval, THUMB_SIZE);
19085 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19087 break;
19089 case BFD_RELOC_8:
19090 if (fixP->fx_done || !seg->use_rela_p)
19091 md_number_to_chars (buf, value, 1);
19092 break;
19094 case BFD_RELOC_16:
19095 if (fixP->fx_done || !seg->use_rela_p)
19096 md_number_to_chars (buf, value, 2);
19097 break;
19099 #ifdef OBJ_ELF
19100 case BFD_RELOC_ARM_TLS_GD32:
19101 case BFD_RELOC_ARM_TLS_LE32:
19102 case BFD_RELOC_ARM_TLS_IE32:
19103 case BFD_RELOC_ARM_TLS_LDM32:
19104 case BFD_RELOC_ARM_TLS_LDO32:
19105 S_SET_THREAD_LOCAL (fixP->fx_addsy);
19106 /* fall through */
19108 case BFD_RELOC_ARM_GOT32:
19109 case BFD_RELOC_ARM_GOTOFF:
19110 case BFD_RELOC_ARM_TARGET2:
19111 if (fixP->fx_done || !seg->use_rela_p)
19112 md_number_to_chars (buf, 0, 4);
19113 break;
19114 #endif
19116 case BFD_RELOC_RVA:
19117 case BFD_RELOC_32:
19118 case BFD_RELOC_ARM_TARGET1:
19119 case BFD_RELOC_ARM_ROSEGREL32:
19120 case BFD_RELOC_ARM_SBREL32:
19121 case BFD_RELOC_32_PCREL:
19122 #ifdef TE_PE
19123 case BFD_RELOC_32_SECREL:
19124 #endif
19125 if (fixP->fx_done || !seg->use_rela_p)
19126 #ifdef TE_WINCE
19127 /* For WinCE we only do this for pcrel fixups. */
19128 if (fixP->fx_done || fixP->fx_pcrel)
19129 #endif
19130 md_number_to_chars (buf, value, 4);
19131 break;
19133 #ifdef OBJ_ELF
19134 case BFD_RELOC_ARM_PREL31:
19135 if (fixP->fx_done || !seg->use_rela_p)
19137 newval = md_chars_to_number (buf, 4) & 0x80000000;
19138 if ((value ^ (value >> 1)) & 0x40000000)
19140 as_bad_where (fixP->fx_file, fixP->fx_line,
19141 _("rel31 relocation overflow"));
19143 newval |= value & 0x7fffffff;
19144 md_number_to_chars (buf, newval, 4);
19146 break;
19147 #endif
19149 case BFD_RELOC_ARM_CP_OFF_IMM:
19150 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19151 if (value < -1023 || value > 1023 || (value & 3))
19152 as_bad_where (fixP->fx_file, fixP->fx_line,
19153 _("co-processor offset out of range"));
19154 cp_off_common:
19155 sign = value >= 0;
19156 if (value < 0)
19157 value = -value;
19158 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
19159 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
19160 newval = md_chars_to_number (buf, INSN_SIZE);
19161 else
19162 newval = get_thumb32_insn (buf);
19163 newval &= 0xff7fff00;
19164 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
19165 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
19166 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
19167 md_number_to_chars (buf, newval, INSN_SIZE);
19168 else
19169 put_thumb32_insn (buf, newval);
19170 break;
19172 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
19173 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
19174 if (value < -255 || value > 255)
19175 as_bad_where (fixP->fx_file, fixP->fx_line,
19176 _("co-processor offset out of range"));
19177 value *= 4;
19178 goto cp_off_common;
19180 case BFD_RELOC_ARM_THUMB_OFFSET:
19181 newval = md_chars_to_number (buf, THUMB_SIZE);
19182 /* Exactly what ranges, and where the offset is inserted depends
19183 on the type of instruction, we can establish this from the
19184 top 4 bits. */
19185 switch (newval >> 12)
19187 case 4: /* PC load. */
19188 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
19189 forced to zero for these loads; md_pcrel_from has already
19190 compensated for this. */
19191 if (value & 3)
19192 as_bad_where (fixP->fx_file, fixP->fx_line,
19193 _("invalid offset, target not word aligned (0x%08lX)"),
19194 (((unsigned long) fixP->fx_frag->fr_address
19195 + (unsigned long) fixP->fx_where) & ~3)
19196 + (unsigned long) value);
19198 if (value & ~0x3fc)
19199 as_bad_where (fixP->fx_file, fixP->fx_line,
19200 _("invalid offset, value too big (0x%08lX)"),
19201 (long) value);
19203 newval |= value >> 2;
19204 break;
19206 case 9: /* SP load/store. */
19207 if (value & ~0x3fc)
19208 as_bad_where (fixP->fx_file, fixP->fx_line,
19209 _("invalid offset, value too big (0x%08lX)"),
19210 (long) value);
19211 newval |= value >> 2;
19212 break;
19214 case 6: /* Word load/store. */
19215 if (value & ~0x7c)
19216 as_bad_where (fixP->fx_file, fixP->fx_line,
19217 _("invalid offset, value too big (0x%08lX)"),
19218 (long) value);
19219 newval |= value << 4; /* 6 - 2. */
19220 break;
19222 case 7: /* Byte load/store. */
19223 if (value & ~0x1f)
19224 as_bad_where (fixP->fx_file, fixP->fx_line,
19225 _("invalid offset, value too big (0x%08lX)"),
19226 (long) value);
19227 newval |= value << 6;
19228 break;
19230 case 8: /* Halfword load/store. */
19231 if (value & ~0x3e)
19232 as_bad_where (fixP->fx_file, fixP->fx_line,
19233 _("invalid offset, value too big (0x%08lX)"),
19234 (long) value);
19235 newval |= value << 5; /* 6 - 1. */
19236 break;
19238 default:
19239 as_bad_where (fixP->fx_file, fixP->fx_line,
19240 "Unable to process relocation for thumb opcode: %lx",
19241 (unsigned long) newval);
19242 break;
19244 md_number_to_chars (buf, newval, THUMB_SIZE);
19245 break;
19247 case BFD_RELOC_ARM_THUMB_ADD:
19248 /* This is a complicated relocation, since we use it for all of
19249 the following immediate relocations:
19251 3bit ADD/SUB
19252 8bit ADD/SUB
19253 9bit ADD/SUB SP word-aligned
19254 10bit ADD PC/SP word-aligned
19256 The type of instruction being processed is encoded in the
19257 instruction field:
19259 0x8000 SUB
19260 0x00F0 Rd
19261 0x000F Rs
19263 newval = md_chars_to_number (buf, THUMB_SIZE);
19265 int rd = (newval >> 4) & 0xf;
19266 int rs = newval & 0xf;
19267 int subtract = !!(newval & 0x8000);
19269 /* Check for HI regs, only very restricted cases allowed:
19270 Adjusting SP, and using PC or SP to get an address. */
19271 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
19272 || (rs > 7 && rs != REG_SP && rs != REG_PC))
19273 as_bad_where (fixP->fx_file, fixP->fx_line,
19274 _("invalid Hi register with immediate"));
19276 /* If value is negative, choose the opposite instruction. */
19277 if (value < 0)
19279 value = -value;
19280 subtract = !subtract;
19281 if (value < 0)
19282 as_bad_where (fixP->fx_file, fixP->fx_line,
19283 _("immediate value out of range"));
19286 if (rd == REG_SP)
19288 if (value & ~0x1fc)
19289 as_bad_where (fixP->fx_file, fixP->fx_line,
19290 _("invalid immediate for stack address calculation"));
19291 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
19292 newval |= value >> 2;
19294 else if (rs == REG_PC || rs == REG_SP)
19296 if (subtract || value & ~0x3fc)
19297 as_bad_where (fixP->fx_file, fixP->fx_line,
19298 _("invalid immediate for address calculation (value = 0x%08lX)"),
19299 (unsigned long) value);
19300 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
19301 newval |= rd << 8;
19302 newval |= value >> 2;
19304 else if (rs == rd)
19306 if (value & ~0xff)
19307 as_bad_where (fixP->fx_file, fixP->fx_line,
19308 _("immediate value out of range"));
19309 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
19310 newval |= (rd << 8) | value;
19312 else
19314 if (value & ~0x7)
19315 as_bad_where (fixP->fx_file, fixP->fx_line,
19316 _("immediate value out of range"));
19317 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
19318 newval |= rd | (rs << 3) | (value << 6);
19321 md_number_to_chars (buf, newval, THUMB_SIZE);
19322 break;
19324 case BFD_RELOC_ARM_THUMB_IMM:
19325 newval = md_chars_to_number (buf, THUMB_SIZE);
19326 if (value < 0 || value > 255)
19327 as_bad_where (fixP->fx_file, fixP->fx_line,
19328 _("invalid immediate: %ld is out of range"),
19329 (long) value);
19330 newval |= value;
19331 md_number_to_chars (buf, newval, THUMB_SIZE);
19332 break;
19334 case BFD_RELOC_ARM_THUMB_SHIFT:
19335 /* 5bit shift value (0..32). LSL cannot take 32. */
19336 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
19337 temp = newval & 0xf800;
19338 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
19339 as_bad_where (fixP->fx_file, fixP->fx_line,
19340 _("invalid shift value: %ld"), (long) value);
19341 /* Shifts of zero must be encoded as LSL. */
19342 if (value == 0)
19343 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
19344 /* Shifts of 32 are encoded as zero. */
19345 else if (value == 32)
19346 value = 0;
19347 newval |= value << 6;
19348 md_number_to_chars (buf, newval, THUMB_SIZE);
19349 break;
19351 case BFD_RELOC_VTABLE_INHERIT:
19352 case BFD_RELOC_VTABLE_ENTRY:
19353 fixP->fx_done = 0;
19354 return;
19356 case BFD_RELOC_ARM_MOVW:
19357 case BFD_RELOC_ARM_MOVT:
19358 case BFD_RELOC_ARM_THUMB_MOVW:
19359 case BFD_RELOC_ARM_THUMB_MOVT:
19360 if (fixP->fx_done || !seg->use_rela_p)
19362 /* REL format relocations are limited to a 16-bit addend. */
19363 if (!fixP->fx_done)
19365 if (value < -0x8000 || value > 0x7fff)
19366 as_bad_where (fixP->fx_file, fixP->fx_line,
19367 _("offset out of range"));
19369 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
19370 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
19372 value >>= 16;
19375 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
19376 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
19378 newval = get_thumb32_insn (buf);
19379 newval &= 0xfbf08f00;
19380 newval |= (value & 0xf000) << 4;
19381 newval |= (value & 0x0800) << 15;
19382 newval |= (value & 0x0700) << 4;
19383 newval |= (value & 0x00ff);
19384 put_thumb32_insn (buf, newval);
19386 else
19388 newval = md_chars_to_number (buf, 4);
19389 newval &= 0xfff0f000;
19390 newval |= value & 0x0fff;
19391 newval |= (value & 0xf000) << 4;
19392 md_number_to_chars (buf, newval, 4);
19395 return;
19397 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19398 case BFD_RELOC_ARM_ALU_PC_G0:
19399 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19400 case BFD_RELOC_ARM_ALU_PC_G1:
19401 case BFD_RELOC_ARM_ALU_PC_G2:
19402 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19403 case BFD_RELOC_ARM_ALU_SB_G0:
19404 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19405 case BFD_RELOC_ARM_ALU_SB_G1:
19406 case BFD_RELOC_ARM_ALU_SB_G2:
19407 assert (!fixP->fx_done);
19408 if (!seg->use_rela_p)
19410 bfd_vma insn;
19411 bfd_vma encoded_addend;
19412 bfd_vma addend_abs = abs (value);
19414 /* Check that the absolute value of the addend can be
19415 expressed as an 8-bit constant plus a rotation. */
19416 encoded_addend = encode_arm_immediate (addend_abs);
19417 if (encoded_addend == (unsigned int) FAIL)
19418 as_bad_where (fixP->fx_file, fixP->fx_line,
19419 _("the offset 0x%08lX is not representable"),
19420 (unsigned long) addend_abs);
19422 /* Extract the instruction. */
19423 insn = md_chars_to_number (buf, INSN_SIZE);
19425 /* If the addend is positive, use an ADD instruction.
19426 Otherwise use a SUB. Take care not to destroy the S bit. */
19427 insn &= 0xff1fffff;
19428 if (value < 0)
19429 insn |= 1 << 22;
19430 else
19431 insn |= 1 << 23;
19433 /* Place the encoded addend into the first 12 bits of the
19434 instruction. */
19435 insn &= 0xfffff000;
19436 insn |= encoded_addend;
19438 /* Update the instruction. */
19439 md_number_to_chars (buf, insn, INSN_SIZE);
19441 break;
19443 case BFD_RELOC_ARM_LDR_PC_G0:
19444 case BFD_RELOC_ARM_LDR_PC_G1:
19445 case BFD_RELOC_ARM_LDR_PC_G2:
19446 case BFD_RELOC_ARM_LDR_SB_G0:
19447 case BFD_RELOC_ARM_LDR_SB_G1:
19448 case BFD_RELOC_ARM_LDR_SB_G2:
19449 assert (!fixP->fx_done);
19450 if (!seg->use_rela_p)
19452 bfd_vma insn;
19453 bfd_vma addend_abs = abs (value);
19455 /* Check that the absolute value of the addend can be
19456 encoded in 12 bits. */
19457 if (addend_abs >= 0x1000)
19458 as_bad_where (fixP->fx_file, fixP->fx_line,
19459 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
19460 (unsigned long) addend_abs);
19462 /* Extract the instruction. */
19463 insn = md_chars_to_number (buf, INSN_SIZE);
19465 /* If the addend is negative, clear bit 23 of the instruction.
19466 Otherwise set it. */
19467 if (value < 0)
19468 insn &= ~(1 << 23);
19469 else
19470 insn |= 1 << 23;
19472 /* Place the absolute value of the addend into the first 12 bits
19473 of the instruction. */
19474 insn &= 0xfffff000;
19475 insn |= addend_abs;
19477 /* Update the instruction. */
19478 md_number_to_chars (buf, insn, INSN_SIZE);
19480 break;
19482 case BFD_RELOC_ARM_LDRS_PC_G0:
19483 case BFD_RELOC_ARM_LDRS_PC_G1:
19484 case BFD_RELOC_ARM_LDRS_PC_G2:
19485 case BFD_RELOC_ARM_LDRS_SB_G0:
19486 case BFD_RELOC_ARM_LDRS_SB_G1:
19487 case BFD_RELOC_ARM_LDRS_SB_G2:
19488 assert (!fixP->fx_done);
19489 if (!seg->use_rela_p)
19491 bfd_vma insn;
19492 bfd_vma addend_abs = abs (value);
19494 /* Check that the absolute value of the addend can be
19495 encoded in 8 bits. */
19496 if (addend_abs >= 0x100)
19497 as_bad_where (fixP->fx_file, fixP->fx_line,
19498 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
19499 (unsigned long) addend_abs);
19501 /* Extract the instruction. */
19502 insn = md_chars_to_number (buf, INSN_SIZE);
19504 /* If the addend is negative, clear bit 23 of the instruction.
19505 Otherwise set it. */
19506 if (value < 0)
19507 insn &= ~(1 << 23);
19508 else
19509 insn |= 1 << 23;
19511 /* Place the first four bits of the absolute value of the addend
19512 into the first 4 bits of the instruction, and the remaining
19513 four into bits 8 .. 11. */
19514 insn &= 0xfffff0f0;
19515 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
19517 /* Update the instruction. */
19518 md_number_to_chars (buf, insn, INSN_SIZE);
19520 break;
19522 case BFD_RELOC_ARM_LDC_PC_G0:
19523 case BFD_RELOC_ARM_LDC_PC_G1:
19524 case BFD_RELOC_ARM_LDC_PC_G2:
19525 case BFD_RELOC_ARM_LDC_SB_G0:
19526 case BFD_RELOC_ARM_LDC_SB_G1:
19527 case BFD_RELOC_ARM_LDC_SB_G2:
19528 assert (!fixP->fx_done);
19529 if (!seg->use_rela_p)
19531 bfd_vma insn;
19532 bfd_vma addend_abs = abs (value);
19534 /* Check that the absolute value of the addend is a multiple of
19535 four and, when divided by four, fits in 8 bits. */
19536 if (addend_abs & 0x3)
19537 as_bad_where (fixP->fx_file, fixP->fx_line,
19538 _("bad offset 0x%08lX (must be word-aligned)"),
19539 (unsigned long) addend_abs);
19541 if ((addend_abs >> 2) > 0xff)
19542 as_bad_where (fixP->fx_file, fixP->fx_line,
19543 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
19544 (unsigned long) addend_abs);
19546 /* Extract the instruction. */
19547 insn = md_chars_to_number (buf, INSN_SIZE);
19549 /* If the addend is negative, clear bit 23 of the instruction.
19550 Otherwise set it. */
19551 if (value < 0)
19552 insn &= ~(1 << 23);
19553 else
19554 insn |= 1 << 23;
19556 /* Place the addend (divided by four) into the first eight
19557 bits of the instruction. */
19558 insn &= 0xfffffff0;
19559 insn |= addend_abs >> 2;
19561 /* Update the instruction. */
19562 md_number_to_chars (buf, insn, INSN_SIZE);
19564 break;
19566 case BFD_RELOC_ARM_V4BX:
19567 /* This will need to go in the object file. */
19568 fixP->fx_done = 0;
19569 break;
19571 case BFD_RELOC_UNUSED:
19572 default:
19573 as_bad_where (fixP->fx_file, fixP->fx_line,
19574 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
19578 /* Translate internal representation of relocation info to BFD target
19579 format. */
19581 arelent *
19582 tc_gen_reloc (asection *section, fixS *fixp)
19584 arelent * reloc;
19585 bfd_reloc_code_real_type code;
19587 reloc = xmalloc (sizeof (arelent));
19589 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
19590 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
19591 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
19593 if (fixp->fx_pcrel)
19595 if (section->use_rela_p)
19596 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
19597 else
19598 fixp->fx_offset = reloc->address;
19600 reloc->addend = fixp->fx_offset;
19602 switch (fixp->fx_r_type)
19604 case BFD_RELOC_8:
19605 if (fixp->fx_pcrel)
19607 code = BFD_RELOC_8_PCREL;
19608 break;
19611 case BFD_RELOC_16:
19612 if (fixp->fx_pcrel)
19614 code = BFD_RELOC_16_PCREL;
19615 break;
19618 case BFD_RELOC_32:
19619 if (fixp->fx_pcrel)
19621 code = BFD_RELOC_32_PCREL;
19622 break;
19625 case BFD_RELOC_ARM_MOVW:
19626 if (fixp->fx_pcrel)
19628 code = BFD_RELOC_ARM_MOVW_PCREL;
19629 break;
19632 case BFD_RELOC_ARM_MOVT:
19633 if (fixp->fx_pcrel)
19635 code = BFD_RELOC_ARM_MOVT_PCREL;
19636 break;
19639 case BFD_RELOC_ARM_THUMB_MOVW:
19640 if (fixp->fx_pcrel)
19642 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19643 break;
19646 case BFD_RELOC_ARM_THUMB_MOVT:
19647 if (fixp->fx_pcrel)
19649 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19650 break;
19653 case BFD_RELOC_NONE:
19654 case BFD_RELOC_ARM_PCREL_BRANCH:
19655 case BFD_RELOC_ARM_PCREL_BLX:
19656 case BFD_RELOC_RVA:
19657 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19658 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19659 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19660 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19661 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19662 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19663 case BFD_RELOC_THUMB_PCREL_BLX:
19664 case BFD_RELOC_VTABLE_ENTRY:
19665 case BFD_RELOC_VTABLE_INHERIT:
19666 #ifdef TE_PE
19667 case BFD_RELOC_32_SECREL:
19668 #endif
19669 code = fixp->fx_r_type;
19670 break;
19672 case BFD_RELOC_ARM_LITERAL:
19673 case BFD_RELOC_ARM_HWLITERAL:
19674 /* If this is called then the a literal has
19675 been referenced across a section boundary. */
19676 as_bad_where (fixp->fx_file, fixp->fx_line,
19677 _("literal referenced across section boundary"));
19678 return NULL;
19680 #ifdef OBJ_ELF
19681 case BFD_RELOC_ARM_GOT32:
19682 case BFD_RELOC_ARM_GOTOFF:
19683 case BFD_RELOC_ARM_PLT32:
19684 case BFD_RELOC_ARM_TARGET1:
19685 case BFD_RELOC_ARM_ROSEGREL32:
19686 case BFD_RELOC_ARM_SBREL32:
19687 case BFD_RELOC_ARM_PREL31:
19688 case BFD_RELOC_ARM_TARGET2:
19689 case BFD_RELOC_ARM_TLS_LE32:
19690 case BFD_RELOC_ARM_TLS_LDO32:
19691 case BFD_RELOC_ARM_PCREL_CALL:
19692 case BFD_RELOC_ARM_PCREL_JUMP:
19693 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19694 case BFD_RELOC_ARM_ALU_PC_G0:
19695 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19696 case BFD_RELOC_ARM_ALU_PC_G1:
19697 case BFD_RELOC_ARM_ALU_PC_G2:
19698 case BFD_RELOC_ARM_LDR_PC_G0:
19699 case BFD_RELOC_ARM_LDR_PC_G1:
19700 case BFD_RELOC_ARM_LDR_PC_G2:
19701 case BFD_RELOC_ARM_LDRS_PC_G0:
19702 case BFD_RELOC_ARM_LDRS_PC_G1:
19703 case BFD_RELOC_ARM_LDRS_PC_G2:
19704 case BFD_RELOC_ARM_LDC_PC_G0:
19705 case BFD_RELOC_ARM_LDC_PC_G1:
19706 case BFD_RELOC_ARM_LDC_PC_G2:
19707 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19708 case BFD_RELOC_ARM_ALU_SB_G0:
19709 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19710 case BFD_RELOC_ARM_ALU_SB_G1:
19711 case BFD_RELOC_ARM_ALU_SB_G2:
19712 case BFD_RELOC_ARM_LDR_SB_G0:
19713 case BFD_RELOC_ARM_LDR_SB_G1:
19714 case BFD_RELOC_ARM_LDR_SB_G2:
19715 case BFD_RELOC_ARM_LDRS_SB_G0:
19716 case BFD_RELOC_ARM_LDRS_SB_G1:
19717 case BFD_RELOC_ARM_LDRS_SB_G2:
19718 case BFD_RELOC_ARM_LDC_SB_G0:
19719 case BFD_RELOC_ARM_LDC_SB_G1:
19720 case BFD_RELOC_ARM_LDC_SB_G2:
19721 case BFD_RELOC_ARM_V4BX:
19722 code = fixp->fx_r_type;
19723 break;
19725 case BFD_RELOC_ARM_TLS_GD32:
19726 case BFD_RELOC_ARM_TLS_IE32:
19727 case BFD_RELOC_ARM_TLS_LDM32:
19728 /* BFD will include the symbol's address in the addend.
19729 But we don't want that, so subtract it out again here. */
19730 if (!S_IS_COMMON (fixp->fx_addsy))
19731 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19732 code = fixp->fx_r_type;
19733 break;
19734 #endif
19736 case BFD_RELOC_ARM_IMMEDIATE:
19737 as_bad_where (fixp->fx_file, fixp->fx_line,
19738 _("internal relocation (type: IMMEDIATE) not fixed up"));
19739 return NULL;
19741 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19742 as_bad_where (fixp->fx_file, fixp->fx_line,
19743 _("ADRL used for a symbol not defined in the same file"));
19744 return NULL;
19746 case BFD_RELOC_ARM_OFFSET_IMM:
19747 if (section->use_rela_p)
19749 code = fixp->fx_r_type;
19750 break;
19753 if (fixp->fx_addsy != NULL
19754 && !S_IS_DEFINED (fixp->fx_addsy)
19755 && S_IS_LOCAL (fixp->fx_addsy))
19757 as_bad_where (fixp->fx_file, fixp->fx_line,
19758 _("undefined local label `%s'"),
19759 S_GET_NAME (fixp->fx_addsy));
19760 return NULL;
19763 as_bad_where (fixp->fx_file, fixp->fx_line,
19764 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19765 return NULL;
19767 default:
19769 char * type;
19771 switch (fixp->fx_r_type)
19773 case BFD_RELOC_NONE: type = "NONE"; break;
19774 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19775 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
19776 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
19777 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19778 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19779 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
19780 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
19781 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19782 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19783 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19784 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19785 default: type = _("<unknown>"); break;
19787 as_bad_where (fixp->fx_file, fixp->fx_line,
19788 _("cannot represent %s relocation in this object file format"),
19789 type);
19790 return NULL;
19794 #ifdef OBJ_ELF
19795 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19796 && GOT_symbol
19797 && fixp->fx_addsy == GOT_symbol)
19799 code = BFD_RELOC_ARM_GOTPC;
19800 reloc->addend = fixp->fx_offset = reloc->address;
19802 #endif
19804 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
19806 if (reloc->howto == NULL)
19808 as_bad_where (fixp->fx_file, fixp->fx_line,
19809 _("cannot represent %s relocation in this object file format"),
19810 bfd_get_reloc_code_name (code));
19811 return NULL;
19814 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19815 vtable entry to be used in the relocation's section offset. */
19816 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19817 reloc->address = fixp->fx_offset;
19819 return reloc;
19822 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
19824 void
19825 cons_fix_new_arm (fragS * frag,
19826 int where,
19827 int size,
19828 expressionS * exp)
19830 bfd_reloc_code_real_type type;
19831 int pcrel = 0;
19833 /* Pick a reloc.
19834 FIXME: @@ Should look at CPU word size. */
19835 switch (size)
19837 case 1:
19838 type = BFD_RELOC_8;
19839 break;
19840 case 2:
19841 type = BFD_RELOC_16;
19842 break;
19843 case 4:
19844 default:
19845 type = BFD_RELOC_32;
19846 break;
19847 case 8:
19848 type = BFD_RELOC_64;
19849 break;
19852 #ifdef TE_PE
19853 if (exp->X_op == O_secrel)
19855 exp->X_op = O_symbol;
19856 type = BFD_RELOC_32_SECREL;
19858 #endif
19860 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19863 #if defined OBJ_COFF || defined OBJ_ELF
19864 void
19865 arm_validate_fix (fixS * fixP)
19867 /* If the destination of the branch is a defined symbol which does not have
19868 the THUMB_FUNC attribute, then we must be calling a function which has
19869 the (interfacearm) attribute. We look for the Thumb entry point to that
19870 function and change the branch to refer to that function instead. */
19871 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19872 && fixP->fx_addsy != NULL
19873 && S_IS_DEFINED (fixP->fx_addsy)
19874 && ! THUMB_IS_FUNC (fixP->fx_addsy))
19876 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
19879 #endif
19882 arm_force_relocation (struct fix * fixp)
19884 #if defined (OBJ_COFF) && defined (TE_PE)
19885 if (fixp->fx_r_type == BFD_RELOC_RVA)
19886 return 1;
19887 #endif
19889 /* Resolve these relocations even if the symbol is extern or weak. */
19890 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19891 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
19892 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
19893 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
19894 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19895 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19896 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
19897 return 0;
19899 /* Always leave these relocations for the linker. */
19900 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19901 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19902 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19903 return 1;
19905 /* Always generate relocations against function symbols. */
19906 if (fixp->fx_r_type == BFD_RELOC_32
19907 && fixp->fx_addsy
19908 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19909 return 1;
19911 return generic_force_reloc (fixp);
19914 #if defined (OBJ_ELF) || defined (OBJ_COFF)
19915 /* Relocations against function names must be left unadjusted,
19916 so that the linker can use this information to generate interworking
19917 stubs. The MIPS version of this function
19918 also prevents relocations that are mips-16 specific, but I do not
19919 know why it does this.
19921 FIXME:
19922 There is one other problem that ought to be addressed here, but
19923 which currently is not: Taking the address of a label (rather
19924 than a function) and then later jumping to that address. Such
19925 addresses also ought to have their bottom bit set (assuming that
19926 they reside in Thumb code), but at the moment they will not. */
19928 bfd_boolean
19929 arm_fix_adjustable (fixS * fixP)
19931 if (fixP->fx_addsy == NULL)
19932 return 1;
19934 /* Preserve relocations against symbols with function type. */
19935 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19936 return 0;
19938 if (THUMB_IS_FUNC (fixP->fx_addsy)
19939 && fixP->fx_subsy == NULL)
19940 return 0;
19942 /* We need the symbol name for the VTABLE entries. */
19943 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19944 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19945 return 0;
19947 /* Don't allow symbols to be discarded on GOT related relocs. */
19948 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19949 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19950 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19951 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19952 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19953 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19954 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19955 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19956 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19957 return 0;
19959 /* Similarly for group relocations. */
19960 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19961 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19962 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19963 return 0;
19965 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
19966 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
19967 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
19968 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
19969 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
19970 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
19971 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
19972 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
19973 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
19974 return 0;
19976 return 1;
19978 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19980 #ifdef OBJ_ELF
19982 const char *
19983 elf32_arm_target_format (void)
19985 #ifdef TE_SYMBIAN
19986 return (target_big_endian
19987 ? "elf32-bigarm-symbian"
19988 : "elf32-littlearm-symbian");
19989 #elif defined (TE_VXWORKS)
19990 return (target_big_endian
19991 ? "elf32-bigarm-vxworks"
19992 : "elf32-littlearm-vxworks");
19993 #else
19994 if (target_big_endian)
19995 return "elf32-bigarm";
19996 else
19997 return "elf32-littlearm";
19998 #endif
20001 void
20002 armelf_frob_symbol (symbolS * symp,
20003 int * puntp)
20005 elf_frob_symbol (symp, puntp);
20007 #endif
20009 /* MD interface: Finalization. */
20011 /* A good place to do this, although this was probably not intended
20012 for this kind of use. We need to dump the literal pool before
20013 references are made to a null symbol pointer. */
20015 void
20016 arm_cleanup (void)
20018 literal_pool * pool;
20020 for (pool = list_of_pools; pool; pool = pool->next)
20022 /* Put it at the end of the relevant section. */
20023 subseg_set (pool->section, pool->sub_section);
20024 #ifdef OBJ_ELF
20025 arm_elf_change_section ();
20026 #endif
20027 s_ltorg (0);
20031 /* Adjust the symbol table. This marks Thumb symbols as distinct from
20032 ARM ones. */
20034 void
20035 arm_adjust_symtab (void)
20037 #ifdef OBJ_COFF
20038 symbolS * sym;
20040 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
20042 if (ARM_IS_THUMB (sym))
20044 if (THUMB_IS_FUNC (sym))
20046 /* Mark the symbol as a Thumb function. */
20047 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
20048 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
20049 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
20051 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
20052 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
20053 else
20054 as_bad (_("%s: unexpected function type: %d"),
20055 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
20057 else switch (S_GET_STORAGE_CLASS (sym))
20059 case C_EXT:
20060 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
20061 break;
20062 case C_STAT:
20063 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
20064 break;
20065 case C_LABEL:
20066 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
20067 break;
20068 default:
20069 /* Do nothing. */
20070 break;
20074 if (ARM_IS_INTERWORK (sym))
20075 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
20077 #endif
20078 #ifdef OBJ_ELF
20079 symbolS * sym;
20080 char bind;
20082 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
20084 if (ARM_IS_THUMB (sym))
20086 elf_symbol_type * elf_sym;
20088 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
20089 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
20091 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
20092 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
20094 /* If it's a .thumb_func, declare it as so,
20095 otherwise tag label as .code 16. */
20096 if (THUMB_IS_FUNC (sym))
20097 elf_sym->internal_elf_sym.st_info =
20098 ELF_ST_INFO (bind, STT_ARM_TFUNC);
20099 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20100 elf_sym->internal_elf_sym.st_info =
20101 ELF_ST_INFO (bind, STT_ARM_16BIT);
20105 #endif
20108 /* MD interface: Initialization. */
20110 static void
20111 set_constant_flonums (void)
20113 int i;
20115 for (i = 0; i < NUM_FLOAT_VALS; i++)
20116 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
20117 abort ();
20120 /* Auto-select Thumb mode if it's the only available instruction set for the
20121 given architecture. */
20123 static void
20124 autoselect_thumb_from_cpu_variant (void)
20126 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
20127 opcode_select (16);
20130 void
20131 md_begin (void)
20133 unsigned mach;
20134 unsigned int i;
20136 if ( (arm_ops_hsh = hash_new ()) == NULL
20137 || (arm_cond_hsh = hash_new ()) == NULL
20138 || (arm_shift_hsh = hash_new ()) == NULL
20139 || (arm_psr_hsh = hash_new ()) == NULL
20140 || (arm_v7m_psr_hsh = hash_new ()) == NULL
20141 || (arm_reg_hsh = hash_new ()) == NULL
20142 || (arm_reloc_hsh = hash_new ()) == NULL
20143 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
20144 as_fatal (_("virtual memory exhausted"));
20146 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
20147 hash_insert (arm_ops_hsh, insns[i].template, (void *) (insns + i));
20148 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
20149 hash_insert (arm_cond_hsh, conds[i].template, (void *) (conds + i));
20150 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
20151 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
20152 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
20153 hash_insert (arm_psr_hsh, psrs[i].template, (void *) (psrs + i));
20154 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
20155 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (void *) (v7m_psrs + i));
20156 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
20157 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
20158 for (i = 0;
20159 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
20160 i++)
20161 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
20162 (void *) (barrier_opt_names + i));
20163 #ifdef OBJ_ELF
20164 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
20165 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
20166 #endif
20168 set_constant_flonums ();
20170 /* Set the cpu variant based on the command-line options. We prefer
20171 -mcpu= over -march= if both are set (as for GCC); and we prefer
20172 -mfpu= over any other way of setting the floating point unit.
20173 Use of legacy options with new options are faulted. */
20174 if (legacy_cpu)
20176 if (mcpu_cpu_opt || march_cpu_opt)
20177 as_bad (_("use of old and new-style options to set CPU type"));
20179 mcpu_cpu_opt = legacy_cpu;
20181 else if (!mcpu_cpu_opt)
20182 mcpu_cpu_opt = march_cpu_opt;
20184 if (legacy_fpu)
20186 if (mfpu_opt)
20187 as_bad (_("use of old and new-style options to set FPU type"));
20189 mfpu_opt = legacy_fpu;
20191 else if (!mfpu_opt)
20193 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
20194 /* Some environments specify a default FPU. If they don't, infer it
20195 from the processor. */
20196 if (mcpu_fpu_opt)
20197 mfpu_opt = mcpu_fpu_opt;
20198 else
20199 mfpu_opt = march_fpu_opt;
20200 #else
20201 mfpu_opt = &fpu_default;
20202 #endif
20205 if (!mfpu_opt)
20207 if (mcpu_cpu_opt != NULL)
20208 mfpu_opt = &fpu_default;
20209 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
20210 mfpu_opt = &fpu_arch_vfp_v2;
20211 else
20212 mfpu_opt = &fpu_arch_fpa;
20215 #ifdef CPU_DEFAULT
20216 if (!mcpu_cpu_opt)
20218 mcpu_cpu_opt = &cpu_default;
20219 selected_cpu = cpu_default;
20221 #else
20222 if (mcpu_cpu_opt)
20223 selected_cpu = *mcpu_cpu_opt;
20224 else
20225 mcpu_cpu_opt = &arm_arch_any;
20226 #endif
20228 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20230 autoselect_thumb_from_cpu_variant ();
20232 arm_arch_used = thumb_arch_used = arm_arch_none;
20234 #if defined OBJ_COFF || defined OBJ_ELF
20236 unsigned int flags = 0;
20238 #if defined OBJ_ELF
20239 flags = meabi_flags;
20241 switch (meabi_flags)
20243 case EF_ARM_EABI_UNKNOWN:
20244 #endif
20245 /* Set the flags in the private structure. */
20246 if (uses_apcs_26) flags |= F_APCS26;
20247 if (support_interwork) flags |= F_INTERWORK;
20248 if (uses_apcs_float) flags |= F_APCS_FLOAT;
20249 if (pic_code) flags |= F_PIC;
20250 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
20251 flags |= F_SOFT_FLOAT;
20253 switch (mfloat_abi_opt)
20255 case ARM_FLOAT_ABI_SOFT:
20256 case ARM_FLOAT_ABI_SOFTFP:
20257 flags |= F_SOFT_FLOAT;
20258 break;
20260 case ARM_FLOAT_ABI_HARD:
20261 if (flags & F_SOFT_FLOAT)
20262 as_bad (_("hard-float conflicts with specified fpu"));
20263 break;
20266 /* Using pure-endian doubles (even if soft-float). */
20267 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
20268 flags |= F_VFP_FLOAT;
20270 #if defined OBJ_ELF
20271 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
20272 flags |= EF_ARM_MAVERICK_FLOAT;
20273 break;
20275 case EF_ARM_EABI_VER4:
20276 case EF_ARM_EABI_VER5:
20277 /* No additional flags to set. */
20278 break;
20280 default:
20281 abort ();
20283 #endif
20284 bfd_set_private_flags (stdoutput, flags);
20286 /* We have run out flags in the COFF header to encode the
20287 status of ATPCS support, so instead we create a dummy,
20288 empty, debug section called .arm.atpcs. */
20289 if (atpcs)
20291 asection * sec;
20293 sec = bfd_make_section (stdoutput, ".arm.atpcs");
20295 if (sec != NULL)
20297 bfd_set_section_flags
20298 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
20299 bfd_set_section_size (stdoutput, sec, 0);
20300 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
20304 #endif
20306 /* Record the CPU type as well. */
20307 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
20308 mach = bfd_mach_arm_iWMMXt2;
20309 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
20310 mach = bfd_mach_arm_iWMMXt;
20311 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
20312 mach = bfd_mach_arm_XScale;
20313 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
20314 mach = bfd_mach_arm_ep9312;
20315 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
20316 mach = bfd_mach_arm_5TE;
20317 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
20319 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
20320 mach = bfd_mach_arm_5T;
20321 else
20322 mach = bfd_mach_arm_5;
20324 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
20326 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
20327 mach = bfd_mach_arm_4T;
20328 else
20329 mach = bfd_mach_arm_4;
20331 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
20332 mach = bfd_mach_arm_3M;
20333 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
20334 mach = bfd_mach_arm_3;
20335 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
20336 mach = bfd_mach_arm_2a;
20337 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
20338 mach = bfd_mach_arm_2;
20339 else
20340 mach = bfd_mach_arm_unknown;
20342 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
20345 /* Command line processing. */
20347 /* md_parse_option
20348 Invocation line includes a switch not recognized by the base assembler.
20349 See if it's a processor-specific option.
20351 This routine is somewhat complicated by the need for backwards
20352 compatibility (since older releases of gcc can't be changed).
20353 The new options try to make the interface as compatible as
20354 possible with GCC.
20356 New options (supported) are:
20358 -mcpu=<cpu name> Assemble for selected processor
20359 -march=<architecture name> Assemble for selected architecture
20360 -mfpu=<fpu architecture> Assemble for selected FPU.
20361 -EB/-mbig-endian Big-endian
20362 -EL/-mlittle-endian Little-endian
20363 -k Generate PIC code
20364 -mthumb Start in Thumb mode
20365 -mthumb-interwork Code supports ARM/Thumb interworking
20367 -m[no-]warn-deprecated Warn about deprecated features
20369 For now we will also provide support for:
20371 -mapcs-32 32-bit Program counter
20372 -mapcs-26 26-bit Program counter
20373 -macps-float Floats passed in FP registers
20374 -mapcs-reentrant Reentrant code
20375 -matpcs
20376 (sometime these will probably be replaced with -mapcs=<list of options>
20377 and -matpcs=<list of options>)
20379 The remaining options are only supported for back-wards compatibility.
20380 Cpu variants, the arm part is optional:
20381 -m[arm]1 Currently not supported.
20382 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
20383 -m[arm]3 Arm 3 processor
20384 -m[arm]6[xx], Arm 6 processors
20385 -m[arm]7[xx][t][[d]m] Arm 7 processors
20386 -m[arm]8[10] Arm 8 processors
20387 -m[arm]9[20][tdmi] Arm 9 processors
20388 -mstrongarm[110[0]] StrongARM processors
20389 -mxscale XScale processors
20390 -m[arm]v[2345[t[e]]] Arm architectures
20391 -mall All (except the ARM1)
20392 FP variants:
20393 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
20394 -mfpe-old (No float load/store multiples)
20395 -mvfpxd VFP Single precision
20396 -mvfp All VFP
20397 -mno-fpu Disable all floating point instructions
20399 The following CPU names are recognized:
20400 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
20401 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
20402 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
20403 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
20404 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
20405 arm10t arm10e, arm1020t, arm1020e, arm10200e,
20406 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
20410 const char * md_shortopts = "m:k";
20412 #ifdef ARM_BI_ENDIAN
20413 #define OPTION_EB (OPTION_MD_BASE + 0)
20414 #define OPTION_EL (OPTION_MD_BASE + 1)
20415 #else
20416 #if TARGET_BYTES_BIG_ENDIAN
20417 #define OPTION_EB (OPTION_MD_BASE + 0)
20418 #else
20419 #define OPTION_EL (OPTION_MD_BASE + 1)
20420 #endif
20421 #endif
20422 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
20424 struct option md_longopts[] =
20426 #ifdef OPTION_EB
20427 {"EB", no_argument, NULL, OPTION_EB},
20428 #endif
20429 #ifdef OPTION_EL
20430 {"EL", no_argument, NULL, OPTION_EL},
20431 #endif
20432 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
20433 {NULL, no_argument, NULL, 0}
20436 size_t md_longopts_size = sizeof (md_longopts);
20438 struct arm_option_table
20440 char *option; /* Option name to match. */
20441 char *help; /* Help information. */
20442 int *var; /* Variable to change. */
20443 int value; /* What to change it to. */
20444 char *deprecated; /* If non-null, print this message. */
20447 struct arm_option_table arm_opts[] =
20449 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
20450 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
20451 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
20452 &support_interwork, 1, NULL},
20453 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
20454 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
20455 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
20456 1, NULL},
20457 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
20458 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
20459 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
20460 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
20461 NULL},
20463 /* These are recognized by the assembler, but have no affect on code. */
20464 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
20465 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
20467 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
20468 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
20469 &warn_on_deprecated, 0, NULL},
20470 {NULL, NULL, NULL, 0, NULL}
20473 struct arm_legacy_option_table
20475 char *option; /* Option name to match. */
20476 const arm_feature_set **var; /* Variable to change. */
20477 const arm_feature_set value; /* What to change it to. */
20478 char *deprecated; /* If non-null, print this message. */
20481 const struct arm_legacy_option_table arm_legacy_opts[] =
20483 /* DON'T add any new processors to this list -- we want the whole list
20484 to go away... Add them to the processors table instead. */
20485 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20486 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20487 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20488 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20489 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20490 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20491 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20492 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20493 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20494 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20495 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20496 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20497 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20498 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20499 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20500 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20501 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20502 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20503 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20504 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20505 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20506 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20507 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20508 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20509 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20510 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20511 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20512 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20513 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20514 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20515 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20516 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20517 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20518 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20519 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20520 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20521 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20522 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20523 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20524 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20525 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20526 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20527 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20528 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20529 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20530 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20531 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20532 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20533 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20534 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20535 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20536 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20537 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20538 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20539 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20540 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20541 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20542 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20543 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20544 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20545 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20546 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20547 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20548 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20549 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20550 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20551 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20552 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20553 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
20554 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
20555 N_("use -mcpu=strongarm110")},
20556 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
20557 N_("use -mcpu=strongarm1100")},
20558 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
20559 N_("use -mcpu=strongarm1110")},
20560 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
20561 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
20562 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
20564 /* Architecture variants -- don't add any more to this list either. */
20565 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20566 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20567 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20568 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20569 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20570 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20571 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20572 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20573 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20574 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20575 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20576 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20577 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20578 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20579 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20580 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20581 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20582 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20584 /* Floating point variants -- don't add any more to this list either. */
20585 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
20586 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
20587 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
20588 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
20589 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
20591 {NULL, NULL, ARM_ARCH_NONE, NULL}
20594 struct arm_cpu_option_table
20596 char *name;
20597 const arm_feature_set value;
20598 /* For some CPUs we assume an FPU unless the user explicitly sets
20599 -mfpu=... */
20600 const arm_feature_set default_fpu;
20601 /* The canonical name of the CPU, or NULL to use NAME converted to upper
20602 case. */
20603 const char *canonical_name;
20606 /* This list should, at a minimum, contain all the cpu names
20607 recognized by GCC. */
20608 static const struct arm_cpu_option_table arm_cpus[] =
20610 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
20611 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
20612 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
20613 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20614 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20615 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20616 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20617 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20618 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20619 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20620 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20621 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20622 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20623 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20624 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20625 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20626 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20627 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20628 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20629 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20630 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20631 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20632 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20633 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20634 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20635 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20636 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20637 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20638 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20639 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20640 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20641 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20642 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20643 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20644 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20645 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20646 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20647 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20648 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20649 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20650 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20651 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20652 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20653 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20654 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20655 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20656 /* For V5 or later processors we default to using VFP; but the user
20657 should really set the FPU type explicitly. */
20658 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20659 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20660 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20661 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20662 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20663 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20664 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20665 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20666 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20667 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20668 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20669 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20670 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20671 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20672 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20673 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20674 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20675 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20676 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20677 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20678 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20679 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
20680 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20681 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20682 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20683 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20684 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20685 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20686 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20687 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20688 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20689 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20690 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
20691 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20692 | FPU_NEON_EXT_V1),
20693 NULL},
20694 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20695 | FPU_NEON_EXT_V1),
20696 NULL},
20697 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20698 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
20699 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
20700 /* ??? XSCALE is really an architecture. */
20701 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20702 /* ??? iwmmxt is not a processor. */
20703 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
20704 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
20705 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20706 /* Maverick */
20707 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20708 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
20711 struct arm_arch_option_table
20713 char *name;
20714 const arm_feature_set value;
20715 const arm_feature_set default_fpu;
20718 /* This list should, at a minimum, contain all the architecture names
20719 recognized by GCC. */
20720 static const struct arm_arch_option_table arm_archs[] =
20722 {"all", ARM_ANY, FPU_ARCH_FPA},
20723 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20724 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20725 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20726 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20727 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20728 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20729 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20730 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20731 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20732 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20733 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20734 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20735 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20736 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20737 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20738 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20739 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20740 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20741 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20742 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20743 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20744 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20745 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20746 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20747 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
20748 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
20749 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
20750 /* The official spelling of the ARMv7 profile variants is the dashed form.
20751 Accept the non-dashed form for compatibility with old toolchains. */
20752 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20753 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20754 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20755 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20756 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20757 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20758 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20759 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
20760 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
20761 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
20764 /* ISA extensions in the co-processor space. */
20765 struct arm_option_cpu_value_table
20767 char *name;
20768 const arm_feature_set value;
20771 static const struct arm_option_cpu_value_table arm_extensions[] =
20773 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20774 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20775 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
20776 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
20777 {NULL, ARM_ARCH_NONE}
20780 /* This list should, at a minimum, contain all the fpu names
20781 recognized by GCC. */
20782 static const struct arm_option_cpu_value_table arm_fpus[] =
20784 {"softfpa", FPU_NONE},
20785 {"fpe", FPU_ARCH_FPE},
20786 {"fpe2", FPU_ARCH_FPE},
20787 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20788 {"fpa", FPU_ARCH_FPA},
20789 {"fpa10", FPU_ARCH_FPA},
20790 {"fpa11", FPU_ARCH_FPA},
20791 {"arm7500fe", FPU_ARCH_FPA},
20792 {"softvfp", FPU_ARCH_VFP},
20793 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20794 {"vfp", FPU_ARCH_VFP_V2},
20795 {"vfp9", FPU_ARCH_VFP_V2},
20796 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
20797 {"vfp10", FPU_ARCH_VFP_V2},
20798 {"vfp10-r0", FPU_ARCH_VFP_V1},
20799 {"vfpxd", FPU_ARCH_VFP_V1xD},
20800 {"vfpv2", FPU_ARCH_VFP_V2},
20801 {"vfpv3", FPU_ARCH_VFP_V3},
20802 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
20803 {"arm1020t", FPU_ARCH_VFP_V1},
20804 {"arm1020e", FPU_ARCH_VFP_V2},
20805 {"arm1136jfs", FPU_ARCH_VFP_V2},
20806 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20807 {"maverick", FPU_ARCH_MAVERICK},
20808 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
20809 {"neon-fp16", FPU_ARCH_NEON_FP16},
20810 {NULL, ARM_ARCH_NONE}
20813 struct arm_option_value_table
20815 char *name;
20816 long value;
20819 static const struct arm_option_value_table arm_float_abis[] =
20821 {"hard", ARM_FLOAT_ABI_HARD},
20822 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20823 {"soft", ARM_FLOAT_ABI_SOFT},
20824 {NULL, 0}
20827 #ifdef OBJ_ELF
20828 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
20829 static const struct arm_option_value_table arm_eabis[] =
20831 {"gnu", EF_ARM_EABI_UNKNOWN},
20832 {"4", EF_ARM_EABI_VER4},
20833 {"5", EF_ARM_EABI_VER5},
20834 {NULL, 0}
20836 #endif
20838 struct arm_long_option_table
20840 char * option; /* Substring to match. */
20841 char * help; /* Help information. */
20842 int (* func) (char * subopt); /* Function to decode sub-option. */
20843 char * deprecated; /* If non-null, print this message. */
20846 static int
20847 arm_parse_extension (char * str, const arm_feature_set **opt_p)
20849 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20851 /* Copy the feature set, so that we can modify it. */
20852 *ext_set = **opt_p;
20853 *opt_p = ext_set;
20855 while (str != NULL && *str != 0)
20857 const struct arm_option_cpu_value_table * opt;
20858 char * ext;
20859 int optlen;
20861 if (*str != '+')
20863 as_bad (_("invalid architectural extension"));
20864 return 0;
20867 str++;
20868 ext = strchr (str, '+');
20870 if (ext != NULL)
20871 optlen = ext - str;
20872 else
20873 optlen = strlen (str);
20875 if (optlen == 0)
20877 as_bad (_("missing architectural extension"));
20878 return 0;
20881 for (opt = arm_extensions; opt->name != NULL; opt++)
20882 if (strncmp (opt->name, str, optlen) == 0)
20884 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
20885 break;
20888 if (opt->name == NULL)
20890 as_bad (_("unknown architectural extension `%s'"), str);
20891 return 0;
20894 str = ext;
20897 return 1;
20900 static int
20901 arm_parse_cpu (char * str)
20903 const struct arm_cpu_option_table * opt;
20904 char * ext = strchr (str, '+');
20905 int optlen;
20907 if (ext != NULL)
20908 optlen = ext - str;
20909 else
20910 optlen = strlen (str);
20912 if (optlen == 0)
20914 as_bad (_("missing cpu name `%s'"), str);
20915 return 0;
20918 for (opt = arm_cpus; opt->name != NULL; opt++)
20919 if (strncmp (opt->name, str, optlen) == 0)
20921 mcpu_cpu_opt = &opt->value;
20922 mcpu_fpu_opt = &opt->default_fpu;
20923 if (opt->canonical_name)
20924 strcpy (selected_cpu_name, opt->canonical_name);
20925 else
20927 int i;
20928 for (i = 0; i < optlen; i++)
20929 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20930 selected_cpu_name[i] = 0;
20933 if (ext != NULL)
20934 return arm_parse_extension (ext, &mcpu_cpu_opt);
20936 return 1;
20939 as_bad (_("unknown cpu `%s'"), str);
20940 return 0;
20943 static int
20944 arm_parse_arch (char * str)
20946 const struct arm_arch_option_table *opt;
20947 char *ext = strchr (str, '+');
20948 int optlen;
20950 if (ext != NULL)
20951 optlen = ext - str;
20952 else
20953 optlen = strlen (str);
20955 if (optlen == 0)
20957 as_bad (_("missing architecture name `%s'"), str);
20958 return 0;
20961 for (opt = arm_archs; opt->name != NULL; opt++)
20962 if (streq (opt->name, str))
20964 march_cpu_opt = &opt->value;
20965 march_fpu_opt = &opt->default_fpu;
20966 strcpy (selected_cpu_name, opt->name);
20968 if (ext != NULL)
20969 return arm_parse_extension (ext, &march_cpu_opt);
20971 return 1;
20974 as_bad (_("unknown architecture `%s'\n"), str);
20975 return 0;
20978 static int
20979 arm_parse_fpu (char * str)
20981 const struct arm_option_cpu_value_table * opt;
20983 for (opt = arm_fpus; opt->name != NULL; opt++)
20984 if (streq (opt->name, str))
20986 mfpu_opt = &opt->value;
20987 return 1;
20990 as_bad (_("unknown floating point format `%s'\n"), str);
20991 return 0;
20994 static int
20995 arm_parse_float_abi (char * str)
20997 const struct arm_option_value_table * opt;
20999 for (opt = arm_float_abis; opt->name != NULL; opt++)
21000 if (streq (opt->name, str))
21002 mfloat_abi_opt = opt->value;
21003 return 1;
21006 as_bad (_("unknown floating point abi `%s'\n"), str);
21007 return 0;
21010 #ifdef OBJ_ELF
21011 static int
21012 arm_parse_eabi (char * str)
21014 const struct arm_option_value_table *opt;
21016 for (opt = arm_eabis; opt->name != NULL; opt++)
21017 if (streq (opt->name, str))
21019 meabi_flags = opt->value;
21020 return 1;
21022 as_bad (_("unknown EABI `%s'\n"), str);
21023 return 0;
21025 #endif
21027 struct arm_long_option_table arm_long_opts[] =
21029 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
21030 arm_parse_cpu, NULL},
21031 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
21032 arm_parse_arch, NULL},
21033 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
21034 arm_parse_fpu, NULL},
21035 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
21036 arm_parse_float_abi, NULL},
21037 #ifdef OBJ_ELF
21038 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
21039 arm_parse_eabi, NULL},
21040 #endif
21041 {NULL, NULL, 0, NULL}
21045 md_parse_option (int c, char * arg)
21047 struct arm_option_table *opt;
21048 const struct arm_legacy_option_table *fopt;
21049 struct arm_long_option_table *lopt;
21051 switch (c)
21053 #ifdef OPTION_EB
21054 case OPTION_EB:
21055 target_big_endian = 1;
21056 break;
21057 #endif
21059 #ifdef OPTION_EL
21060 case OPTION_EL:
21061 target_big_endian = 0;
21062 break;
21063 #endif
21065 case OPTION_FIX_V4BX:
21066 fix_v4bx = TRUE;
21067 break;
21069 case 'a':
21070 /* Listing option. Just ignore these, we don't support additional
21071 ones. */
21072 return 0;
21074 default:
21075 for (opt = arm_opts; opt->option != NULL; opt++)
21077 if (c == opt->option[0]
21078 && ((arg == NULL && opt->option[1] == 0)
21079 || streq (arg, opt->option + 1)))
21081 /* If the option is deprecated, tell the user. */
21082 if (warn_on_deprecated && opt->deprecated != NULL)
21083 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
21084 arg ? arg : "", _(opt->deprecated));
21086 if (opt->var != NULL)
21087 *opt->var = opt->value;
21089 return 1;
21093 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
21095 if (c == fopt->option[0]
21096 && ((arg == NULL && fopt->option[1] == 0)
21097 || streq (arg, fopt->option + 1)))
21099 /* If the option is deprecated, tell the user. */
21100 if (warn_on_deprecated && fopt->deprecated != NULL)
21101 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
21102 arg ? arg : "", _(fopt->deprecated));
21104 if (fopt->var != NULL)
21105 *fopt->var = &fopt->value;
21107 return 1;
21111 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
21113 /* These options are expected to have an argument. */
21114 if (c == lopt->option[0]
21115 && arg != NULL
21116 && strncmp (arg, lopt->option + 1,
21117 strlen (lopt->option + 1)) == 0)
21119 /* If the option is deprecated, tell the user. */
21120 if (warn_on_deprecated && lopt->deprecated != NULL)
21121 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
21122 _(lopt->deprecated));
21124 /* Call the sup-option parser. */
21125 return lopt->func (arg + strlen (lopt->option) - 1);
21129 return 0;
21132 return 1;
21135 void
21136 md_show_usage (FILE * fp)
21138 struct arm_option_table *opt;
21139 struct arm_long_option_table *lopt;
21141 fprintf (fp, _(" ARM-specific assembler options:\n"));
21143 for (opt = arm_opts; opt->option != NULL; opt++)
21144 if (opt->help != NULL)
21145 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
21147 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
21148 if (lopt->help != NULL)
21149 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
21151 #ifdef OPTION_EB
21152 fprintf (fp, _("\
21153 -EB assemble code for a big-endian cpu\n"));
21154 #endif
21156 #ifdef OPTION_EL
21157 fprintf (fp, _("\
21158 -EL assemble code for a little-endian cpu\n"));
21159 #endif
21161 fprintf (fp, _("\
21162 --fix-v4bx Allow BX in ARMv4 code\n"));
21166 #ifdef OBJ_ELF
21167 typedef struct
21169 int val;
21170 arm_feature_set flags;
21171 } cpu_arch_ver_table;
21173 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
21174 least features first. */
21175 static const cpu_arch_ver_table cpu_arch_ver[] =
21177 {1, ARM_ARCH_V4},
21178 {2, ARM_ARCH_V4T},
21179 {3, ARM_ARCH_V5},
21180 {3, ARM_ARCH_V5T},
21181 {4, ARM_ARCH_V5TE},
21182 {5, ARM_ARCH_V5TEJ},
21183 {6, ARM_ARCH_V6},
21184 {7, ARM_ARCH_V6Z},
21185 {9, ARM_ARCH_V6K},
21186 {11, ARM_ARCH_V6M},
21187 {8, ARM_ARCH_V6T2},
21188 {10, ARM_ARCH_V7A},
21189 {10, ARM_ARCH_V7R},
21190 {10, ARM_ARCH_V7M},
21191 {0, ARM_ARCH_NONE}
21194 /* Set an attribute if it has not already been set by the user. */
21195 static void
21196 aeabi_set_attribute_int (int tag, int value)
21198 if (tag < 1
21199 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
21200 || !attributes_set_explicitly[tag])
21201 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
21204 static void
21205 aeabi_set_attribute_string (int tag, const char *value)
21207 if (tag < 1
21208 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
21209 || !attributes_set_explicitly[tag])
21210 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
21213 /* Set the public EABI object attributes. */
21214 static void
21215 aeabi_set_public_attributes (void)
21217 int arch;
21218 arm_feature_set flags;
21219 arm_feature_set tmp;
21220 const cpu_arch_ver_table *p;
21222 /* Choose the architecture based on the capabilities of the requested cpu
21223 (if any) and/or the instructions actually used. */
21224 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
21225 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
21226 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
21227 /*Allow the user to override the reported architecture. */
21228 if (object_arch)
21230 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
21231 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
21234 tmp = flags;
21235 arch = 0;
21236 for (p = cpu_arch_ver; p->val; p++)
21238 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
21240 arch = p->val;
21241 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
21245 /* Tag_CPU_name. */
21246 if (selected_cpu_name[0])
21248 char *p;
21250 p = selected_cpu_name;
21251 if (strncmp (p, "armv", 4) == 0)
21253 int i;
21255 p += 4;
21256 for (i = 0; p[i]; i++)
21257 p[i] = TOUPPER (p[i]);
21259 aeabi_set_attribute_string (Tag_CPU_name, p);
21261 /* Tag_CPU_arch. */
21262 aeabi_set_attribute_int (Tag_CPU_arch, arch);
21263 /* Tag_CPU_arch_profile. */
21264 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
21265 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
21266 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
21267 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
21268 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
21269 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
21270 /* Tag_ARM_ISA_use. */
21271 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
21272 || arch == 0)
21273 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
21274 /* Tag_THUMB_ISA_use. */
21275 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
21276 || arch == 0)
21277 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
21278 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
21279 /* Tag_VFP_arch. */
21280 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
21281 aeabi_set_attribute_int (Tag_VFP_arch, 3);
21282 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
21283 aeabi_set_attribute_int (Tag_VFP_arch, 4);
21284 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
21285 aeabi_set_attribute_int (Tag_VFP_arch, 2);
21286 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
21287 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
21288 aeabi_set_attribute_int (Tag_VFP_arch, 1);
21289 /* Tag_WMMX_arch. */
21290 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
21291 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
21292 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
21293 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
21294 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
21295 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
21296 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
21297 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
21298 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_fp16))
21299 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
21302 /* Add the default contents for the .ARM.attributes section. */
21303 void
21304 arm_md_end (void)
21306 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21307 return;
21309 aeabi_set_public_attributes ();
21311 #endif /* OBJ_ELF */
21314 /* Parse a .cpu directive. */
21316 static void
21317 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
21319 const struct arm_cpu_option_table *opt;
21320 char *name;
21321 char saved_char;
21323 name = input_line_pointer;
21324 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
21325 input_line_pointer++;
21326 saved_char = *input_line_pointer;
21327 *input_line_pointer = 0;
21329 /* Skip the first "all" entry. */
21330 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
21331 if (streq (opt->name, name))
21333 mcpu_cpu_opt = &opt->value;
21334 selected_cpu = opt->value;
21335 if (opt->canonical_name)
21336 strcpy (selected_cpu_name, opt->canonical_name);
21337 else
21339 int i;
21340 for (i = 0; opt->name[i]; i++)
21341 selected_cpu_name[i] = TOUPPER (opt->name[i]);
21342 selected_cpu_name[i] = 0;
21344 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21345 *input_line_pointer = saved_char;
21346 demand_empty_rest_of_line ();
21347 return;
21349 as_bad (_("unknown cpu `%s'"), name);
21350 *input_line_pointer = saved_char;
21351 ignore_rest_of_line ();
21355 /* Parse a .arch directive. */
21357 static void
21358 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
21360 const struct arm_arch_option_table *opt;
21361 char saved_char;
21362 char *name;
21364 name = input_line_pointer;
21365 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
21366 input_line_pointer++;
21367 saved_char = *input_line_pointer;
21368 *input_line_pointer = 0;
21370 /* Skip the first "all" entry. */
21371 for (opt = arm_archs + 1; opt->name != NULL; opt++)
21372 if (streq (opt->name, name))
21374 mcpu_cpu_opt = &opt->value;
21375 selected_cpu = opt->value;
21376 strcpy (selected_cpu_name, opt->name);
21377 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21378 *input_line_pointer = saved_char;
21379 demand_empty_rest_of_line ();
21380 return;
21383 as_bad (_("unknown architecture `%s'\n"), name);
21384 *input_line_pointer = saved_char;
21385 ignore_rest_of_line ();
21389 /* Parse a .object_arch directive. */
21391 static void
21392 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
21394 const struct arm_arch_option_table *opt;
21395 char saved_char;
21396 char *name;
21398 name = input_line_pointer;
21399 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
21400 input_line_pointer++;
21401 saved_char = *input_line_pointer;
21402 *input_line_pointer = 0;
21404 /* Skip the first "all" entry. */
21405 for (opt = arm_archs + 1; opt->name != NULL; opt++)
21406 if (streq (opt->name, name))
21408 object_arch = &opt->value;
21409 *input_line_pointer = saved_char;
21410 demand_empty_rest_of_line ();
21411 return;
21414 as_bad (_("unknown architecture `%s'\n"), name);
21415 *input_line_pointer = saved_char;
21416 ignore_rest_of_line ();
21419 /* Parse a .fpu directive. */
21421 static void
21422 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
21424 const struct arm_option_cpu_value_table *opt;
21425 char saved_char;
21426 char *name;
21428 name = input_line_pointer;
21429 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
21430 input_line_pointer++;
21431 saved_char = *input_line_pointer;
21432 *input_line_pointer = 0;
21434 for (opt = arm_fpus; opt->name != NULL; opt++)
21435 if (streq (opt->name, name))
21437 mfpu_opt = &opt->value;
21438 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21439 *input_line_pointer = saved_char;
21440 demand_empty_rest_of_line ();
21441 return;
21444 as_bad (_("unknown floating point format `%s'\n"), name);
21445 *input_line_pointer = saved_char;
21446 ignore_rest_of_line ();
21449 /* Copy symbol information. */
21451 void
21452 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
21454 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
21457 #ifdef OBJ_ELF
21458 /* Given a symbolic attribute NAME, return the proper integer value.
21459 Returns -1 if the attribute is not known. */
21462 arm_convert_symbolic_attribute (const char *name)
21464 static const struct
21466 const char * name;
21467 const int tag;
21469 attribute_table[] =
21471 /* When you modify this table you should
21472 also modify the list in doc/c-arm.texi. */
21473 #define T(tag) {#tag, tag}
21474 T (Tag_CPU_raw_name),
21475 T (Tag_CPU_name),
21476 T (Tag_CPU_arch),
21477 T (Tag_CPU_arch_profile),
21478 T (Tag_ARM_ISA_use),
21479 T (Tag_THUMB_ISA_use),
21480 T (Tag_VFP_arch),
21481 T (Tag_WMMX_arch),
21482 T (Tag_Advanced_SIMD_arch),
21483 T (Tag_PCS_config),
21484 T (Tag_ABI_PCS_R9_use),
21485 T (Tag_ABI_PCS_RW_data),
21486 T (Tag_ABI_PCS_RO_data),
21487 T (Tag_ABI_PCS_GOT_use),
21488 T (Tag_ABI_PCS_wchar_t),
21489 T (Tag_ABI_FP_rounding),
21490 T (Tag_ABI_FP_denormal),
21491 T (Tag_ABI_FP_exceptions),
21492 T (Tag_ABI_FP_user_exceptions),
21493 T (Tag_ABI_FP_number_model),
21494 T (Tag_ABI_align8_needed),
21495 T (Tag_ABI_align8_preserved),
21496 T (Tag_ABI_enum_size),
21497 T (Tag_ABI_HardFP_use),
21498 T (Tag_ABI_VFP_args),
21499 T (Tag_ABI_WMMX_args),
21500 T (Tag_ABI_optimization_goals),
21501 T (Tag_ABI_FP_optimization_goals),
21502 T (Tag_compatibility),
21503 T (Tag_CPU_unaligned_access),
21504 T (Tag_VFP_HP_extension),
21505 T (Tag_ABI_FP_16bit_format),
21506 T (Tag_nodefaults),
21507 T (Tag_also_compatible_with),
21508 T (Tag_conformance),
21509 T (Tag_T2EE_use),
21510 T (Tag_Virtualization_use),
21511 T (Tag_MPextension_use)
21512 #undef T
21514 unsigned int i;
21516 if (name == NULL)
21517 return -1;
21519 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
21520 if (strcmp (name, attribute_table[i].name) == 0)
21521 return attribute_table[i].tag;
21523 return -1;
21525 #endif /* OBJ_ELF */