1 // script-sections.cc -- linker script SECTIONS for gold
3 // Copyright 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "parameters.h"
39 #include "script-sections.h"
41 // Support for the SECTIONS clause in linker scripts.
46 // A region of memory.
50 Memory_region(const char* name
, size_t namelen
, unsigned int attributes
,
51 Expression
* start
, Expression
* length
)
52 : name_(name
, namelen
),
53 attributes_(attributes
),
62 // Return the name of this region.
65 { return this->name_
; }
67 // Return the start address of this region.
70 { return this->start_
; }
72 // Return the length of this region.
75 { return this->length_
; }
77 // Print the region (when debugging).
81 // Return true if <name,namelen> matches this region.
83 name_match(const char* name
, size_t namelen
)
85 return (this->name_
.length() == namelen
86 && strncmp(this->name_
.c_str(), name
, namelen
) == 0);
90 get_current_address() const
93 script_exp_binary_add(this->start_
,
94 script_exp_integer(this->current_offset_
));
98 increment_offset(std::string section_name
, uint64_t amount
,
99 const Symbol_table
* symtab
, const Layout
* layout
)
101 this->current_offset_
+= amount
;
103 if (this->current_offset_
104 > this->length_
->eval(symtab
, layout
, false))
105 gold_error(_("section %s overflows end of region %s"),
106 section_name
.c_str(), this->name_
.c_str());
109 // Returns true iff there is room left in this region
110 // for AMOUNT more bytes of data.
112 has_room_for(const Symbol_table
* symtab
, const Layout
* layout
,
113 uint64_t amount
) const
115 return (this->current_offset_
+ amount
116 < this->length_
->eval(symtab
, layout
, false));
119 // Return true if the provided section flags
120 // are compatible with this region's attributes.
122 attributes_compatible(elfcpp::Elf_Xword flags
, elfcpp::Elf_Xword type
) const;
125 add_section(Output_section_definition
* sec
, bool vma
)
128 this->vma_sections_
.push_back(sec
);
130 this->lma_sections_
.push_back(sec
);
133 typedef std::vector
<Output_section_definition
*> Section_list
;
135 // Return the start of the list of sections
136 // whose VMAs are taken from this region.
137 Section_list::const_iterator
138 get_vma_section_list_start() const
139 { return this->vma_sections_
.begin(); }
141 // Return the start of the list of sections
142 // whose LMAs are taken from this region.
143 Section_list::const_iterator
144 get_lma_section_list_start() const
145 { return this->lma_sections_
.begin(); }
147 // Return the end of the list of sections
148 // whose VMAs are taken from this region.
149 Section_list::const_iterator
150 get_vma_section_list_end() const
151 { return this->vma_sections_
.end(); }
153 // Return the end of the list of sections
154 // whose LMAs are taken from this region.
155 Section_list::const_iterator
156 get_lma_section_list_end() const
157 { return this->lma_sections_
.end(); }
159 Output_section_definition
*
160 get_last_section() const
161 { return this->last_section_
; }
164 set_last_section(Output_section_definition
* sec
)
165 { this->last_section_
= sec
; }
170 unsigned int attributes_
;
173 // The offset to the next free byte in the region.
174 // Note - for compatibility with GNU LD we only maintain one offset
175 // regardless of whether the region is being used for VMA values,
176 // LMA values, or both.
177 uint64_t current_offset_
;
178 // A list of sections whose VMAs are set inside this region.
179 Section_list vma_sections_
;
180 // A list of sections whose LMAs are set inside this region.
181 Section_list lma_sections_
;
182 // The latest section to make use of this region.
183 Output_section_definition
* last_section_
;
186 // Return true if the provided section flags
187 // are compatible with this region's attributes.
190 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags
,
191 elfcpp::Elf_Xword type
) const
193 unsigned int attrs
= this->attributes_
;
195 // No attributes means that this region is not compatible with anything.
202 switch (attrs
& - attrs
)
205 if ((flags
& elfcpp::SHF_EXECINSTR
) == 0)
210 if ((flags
& elfcpp::SHF_WRITE
) == 0)
215 // All sections are presumed readable.
218 case MEM_ALLOCATABLE
:
219 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
223 case MEM_INITIALIZED
:
224 if ((type
& elfcpp::SHT_NOBITS
) != 0)
228 attrs
&= ~ (attrs
& - attrs
);
235 // Print a memory region.
238 Memory_region::print(FILE* f
) const
240 fprintf(f
, " %s", this->name_
.c_str());
242 unsigned int attrs
= this->attributes_
;
248 switch (attrs
& - attrs
)
250 case MEM_EXECUTABLE
: fputc('x', f
); break;
251 case MEM_WRITEABLE
: fputc('w', f
); break;
252 case MEM_READABLE
: fputc('r', f
); break;
253 case MEM_ALLOCATABLE
: fputc('a', f
); break;
254 case MEM_INITIALIZED
: fputc('i', f
); break;
258 attrs
&= ~ (attrs
& - attrs
);
264 fprintf(f
, " : origin = ");
265 this->start_
->print(f
);
266 fprintf(f
, ", length = ");
267 this->length_
->print(f
);
271 // Manage orphan sections. This is intended to be largely compatible
272 // with the GNU linker. The Linux kernel implicitly relies on
273 // something similar to the GNU linker's orphan placement. We
274 // originally used a simpler scheme here, but it caused the kernel
275 // build to fail, and was also rather inefficient.
277 class Orphan_section_placement
280 typedef Script_sections::Elements_iterator Elements_iterator
;
283 Orphan_section_placement();
285 // Handle an output section during initialization of this mapping.
287 output_section_init(const std::string
& name
, Output_section
*,
288 Elements_iterator location
);
290 // Initialize the last location.
292 last_init(Elements_iterator location
);
294 // Set *PWHERE to the address of an iterator pointing to the
295 // location to use for an orphan section. Return true if the
296 // iterator has a value, false otherwise.
298 find_place(Output_section
*, Elements_iterator
** pwhere
);
300 // Return the iterator being used for sections at the very end of
301 // the linker script.
306 // The places that we specifically recognize. This list is copied
307 // from the GNU linker.
323 // The information we keep for a specific place.
326 // The name of sections for this place.
328 // Whether we have a location for this place.
330 // The iterator for this place.
331 Elements_iterator location
;
334 // Initialize one place element.
336 initialize_place(Place_index
, const char*);
339 Place places_
[PLACE_MAX
];
340 // True if this is the first call to output_section_init.
344 // Initialize Orphan_section_placement.
346 Orphan_section_placement::Orphan_section_placement()
349 this->initialize_place(PLACE_TEXT
, ".text");
350 this->initialize_place(PLACE_RODATA
, ".rodata");
351 this->initialize_place(PLACE_DATA
, ".data");
352 this->initialize_place(PLACE_TLS
, NULL
);
353 this->initialize_place(PLACE_TLS_BSS
, NULL
);
354 this->initialize_place(PLACE_BSS
, ".bss");
355 this->initialize_place(PLACE_REL
, NULL
);
356 this->initialize_place(PLACE_INTERP
, ".interp");
357 this->initialize_place(PLACE_NONALLOC
, NULL
);
358 this->initialize_place(PLACE_LAST
, NULL
);
361 // Initialize one place element.
364 Orphan_section_placement::initialize_place(Place_index index
, const char* name
)
366 this->places_
[index
].name
= name
;
367 this->places_
[index
].have_location
= false;
370 // While initializing the Orphan_section_placement information, this
371 // is called once for each output section named in the linker script.
372 // If we found an output section during the link, it will be passed in
376 Orphan_section_placement::output_section_init(const std::string
& name
,
378 Elements_iterator location
)
380 bool first_init
= this->first_init_
;
381 this->first_init_
= false;
383 for (int i
= 0; i
< PLACE_MAX
; ++i
)
385 if (this->places_
[i
].name
!= NULL
&& this->places_
[i
].name
== name
)
387 if (this->places_
[i
].have_location
)
389 // We have already seen a section with this name.
393 this->places_
[i
].location
= location
;
394 this->places_
[i
].have_location
= true;
396 // If we just found the .bss section, restart the search for
397 // an unallocated section. This follows the GNU linker's
400 this->places_
[PLACE_NONALLOC
].have_location
= false;
406 // Relocation sections.
407 if (!this->places_
[PLACE_REL
].have_location
409 && (os
->type() == elfcpp::SHT_REL
|| os
->type() == elfcpp::SHT_RELA
)
410 && (os
->flags() & elfcpp::SHF_ALLOC
) != 0)
412 this->places_
[PLACE_REL
].location
= location
;
413 this->places_
[PLACE_REL
].have_location
= true;
416 // We find the location for unallocated sections by finding the
417 // first debugging or comment section after the BSS section (if
419 if (!this->places_
[PLACE_NONALLOC
].have_location
420 && (name
== ".comment" || Layout::is_debug_info_section(name
.c_str())))
422 // We add orphan sections after the location in PLACES_. We
423 // want to store unallocated sections before LOCATION. If this
424 // is the very first section, we can't use it.
428 this->places_
[PLACE_NONALLOC
].location
= location
;
429 this->places_
[PLACE_NONALLOC
].have_location
= true;
434 // Initialize the last location.
437 Orphan_section_placement::last_init(Elements_iterator location
)
439 this->places_
[PLACE_LAST
].location
= location
;
440 this->places_
[PLACE_LAST
].have_location
= true;
443 // Set *PWHERE to the address of an iterator pointing to the location
444 // to use for an orphan section. Return true if the iterator has a
445 // value, false otherwise.
448 Orphan_section_placement::find_place(Output_section
* os
,
449 Elements_iterator
** pwhere
)
451 // Figure out where OS should go. This is based on the GNU linker
452 // code. FIXME: The GNU linker handles small data sections
453 // specially, but we don't.
454 elfcpp::Elf_Word type
= os
->type();
455 elfcpp::Elf_Xword flags
= os
->flags();
457 if ((flags
& elfcpp::SHF_ALLOC
) == 0
458 && !Layout::is_debug_info_section(os
->name()))
459 index
= PLACE_NONALLOC
;
460 else if ((flags
& elfcpp::SHF_ALLOC
) == 0)
462 else if (type
== elfcpp::SHT_NOTE
)
463 index
= PLACE_INTERP
;
464 else if ((flags
& elfcpp::SHF_TLS
) != 0)
466 if (type
== elfcpp::SHT_NOBITS
)
467 index
= PLACE_TLS_BSS
;
471 else if (type
== elfcpp::SHT_NOBITS
)
473 else if ((flags
& elfcpp::SHF_WRITE
) != 0)
475 else if (type
== elfcpp::SHT_REL
|| type
== elfcpp::SHT_RELA
)
477 else if ((flags
& elfcpp::SHF_EXECINSTR
) == 0)
478 index
= PLACE_RODATA
;
482 // If we don't have a location yet, try to find one based on a
483 // plausible ordering of sections.
484 if (!this->places_
[index
].have_location
)
509 if (!this->places_
[PLACE_TLS
].have_location
)
513 if (follow
!= PLACE_MAX
&& this->places_
[follow
].have_location
)
515 // Set the location of INDEX to the location of FOLLOW. The
516 // location of INDEX will then be incremented by the caller,
517 // so anything in INDEX will continue to be after anything
519 this->places_
[index
].location
= this->places_
[follow
].location
;
520 this->places_
[index
].have_location
= true;
524 *pwhere
= &this->places_
[index
].location
;
525 bool ret
= this->places_
[index
].have_location
;
527 // The caller will set the location.
528 this->places_
[index
].have_location
= true;
533 // Return the iterator being used for sections at the very end of the
536 Orphan_section_placement::Elements_iterator
537 Orphan_section_placement::last_place() const
539 gold_assert(this->places_
[PLACE_LAST
].have_location
);
540 return this->places_
[PLACE_LAST
].location
;
543 // An element in a SECTIONS clause.
545 class Sections_element
551 virtual ~Sections_element()
554 // Return whether an output section is relro.
559 // Record that an output section is relro.
564 // Create any required output sections. The only real
565 // implementation is in Output_section_definition.
567 create_sections(Layout
*)
570 // Add any symbol being defined to the symbol table.
572 add_symbols_to_table(Symbol_table
*)
575 // Finalize symbols and check assertions.
577 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t*)
580 // Return the output section name to use for an input file name and
581 // section name. This only real implementation is in
582 // Output_section_definition.
584 output_section_name(const char*, const char*, Output_section
***,
585 Script_sections::Section_type
*)
588 // Initialize OSP with an output section.
590 orphan_section_init(Orphan_section_placement
*,
591 Script_sections::Elements_iterator
)
594 // Set section addresses. This includes applying assignments if the
595 // expression is an absolute value.
597 set_section_addresses(Symbol_table
*, Layout
*, uint64_t*, uint64_t*,
601 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
602 // this section is constrained, and the input sections do not match,
603 // return the constraint, and set *POSD.
604 virtual Section_constraint
605 check_constraint(Output_section_definition
**)
606 { return CONSTRAINT_NONE
; }
608 // See if this is the alternate output section for a constrained
609 // output section. If it is, transfer the Output_section and return
610 // true. Otherwise return false.
612 alternate_constraint(Output_section_definition
*, Section_constraint
)
615 // Get the list of segments to use for an allocated section when
616 // using a PHDRS clause. If this is an allocated section, return
617 // the Output_section, and set *PHDRS_LIST (the first parameter) to
618 // the list of PHDRS to which it should be attached. If the PHDRS
619 // were not specified, don't change *PHDRS_LIST. When not returning
620 // NULL, set *ORPHAN (the second parameter) according to whether
621 // this is an orphan section--one that is not mentioned in the
623 virtual Output_section
*
624 allocate_to_segment(String_list
**, bool*)
627 // Look for an output section by name and return the address, the
628 // load address, the alignment, and the size. This is used when an
629 // expression refers to an output section which was not actually
630 // created. This returns true if the section was found, false
631 // otherwise. The only real definition is for
632 // Output_section_definition.
634 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
638 // Return the associated Output_section if there is one.
639 virtual Output_section
*
640 get_output_section() const
643 // Set the section's memory regions.
645 set_memory_region(Memory_region
*, bool)
646 { gold_error(_("Attempt to set a memory region for a non-output section")); }
648 // Print the element for debugging purposes.
650 print(FILE* f
) const = 0;
653 // An assignment in a SECTIONS clause outside of an output section.
655 class Sections_element_assignment
: public Sections_element
658 Sections_element_assignment(const char* name
, size_t namelen
,
659 Expression
* val
, bool provide
, bool hidden
)
660 : assignment_(name
, namelen
, false, val
, provide
, hidden
)
663 // Add the symbol to the symbol table.
665 add_symbols_to_table(Symbol_table
* symtab
)
666 { this->assignment_
.add_to_table(symtab
); }
668 // Finalize the symbol.
670 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
,
673 this->assignment_
.finalize_with_dot(symtab
, layout
, *dot_value
, NULL
);
676 // Set the section address. There is no section here, but if the
677 // value is absolute, we set the symbol. This permits us to use
678 // absolute symbols when setting dot.
680 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
,
681 uint64_t* dot_value
, uint64_t*, uint64_t*)
683 this->assignment_
.set_if_absolute(symtab
, layout
, true, *dot_value
);
686 // Print for debugging.
691 this->assignment_
.print(f
);
695 Symbol_assignment assignment_
;
698 // An assignment to the dot symbol in a SECTIONS clause outside of an
701 class Sections_element_dot_assignment
: public Sections_element
704 Sections_element_dot_assignment(Expression
* val
)
708 // Finalize the symbol.
710 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
,
713 // We ignore the section of the result because outside of an
714 // output section definition the dot symbol is always considered
716 *dot_value
= this->val_
->eval_with_dot(symtab
, layout
, true, *dot_value
,
720 // Update the dot symbol while setting section addresses.
722 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
,
723 uint64_t* dot_value
, uint64_t* dot_alignment
,
724 uint64_t* load_address
)
726 *dot_value
= this->val_
->eval_with_dot(symtab
, layout
, false, *dot_value
,
727 NULL
, NULL
, dot_alignment
);
728 *load_address
= *dot_value
;
731 // Print for debugging.
736 this->val_
->print(f
);
744 // An assertion in a SECTIONS clause outside of an output section.
746 class Sections_element_assertion
: public Sections_element
749 Sections_element_assertion(Expression
* check
, const char* message
,
751 : assertion_(check
, message
, messagelen
)
754 // Check the assertion.
756 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
, uint64_t*)
757 { this->assertion_
.check(symtab
, layout
); }
759 // Print for debugging.
764 this->assertion_
.print(f
);
768 Script_assertion assertion_
;
771 // An element in an output section in a SECTIONS clause.
773 class Output_section_element
776 // A list of input sections.
777 typedef std::list
<Output_section::Input_section
> Input_section_list
;
779 Output_section_element()
782 virtual ~Output_section_element()
785 // Return whether this element requires an output section to exist.
787 needs_output_section() const
790 // Add any symbol being defined to the symbol table.
792 add_symbols_to_table(Symbol_table
*)
795 // Finalize symbols and check assertions.
797 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t*, Output_section
**)
800 // Return whether this element matches FILE_NAME and SECTION_NAME.
801 // The only real implementation is in Output_section_element_input.
803 match_name(const char*, const char*) const
806 // Set section addresses. This includes applying assignments if the
807 // expression is an absolute value.
809 set_section_addresses(Symbol_table
*, Layout
*, Output_section
*, uint64_t,
810 uint64_t*, uint64_t*, Output_section
**, std::string
*,
814 // Print the element for debugging purposes.
816 print(FILE* f
) const = 0;
819 // Return a fill string that is LENGTH bytes long, filling it with
822 get_fill_string(const std::string
* fill
, section_size_type length
) const;
826 Output_section_element::get_fill_string(const std::string
* fill
,
827 section_size_type length
) const
829 std::string this_fill
;
830 this_fill
.reserve(length
);
831 while (this_fill
.length() + fill
->length() <= length
)
833 if (this_fill
.length() < length
)
834 this_fill
.append(*fill
, 0, length
- this_fill
.length());
838 // A symbol assignment in an output section.
840 class Output_section_element_assignment
: public Output_section_element
843 Output_section_element_assignment(const char* name
, size_t namelen
,
844 Expression
* val
, bool provide
,
846 : assignment_(name
, namelen
, false, val
, provide
, hidden
)
849 // Add the symbol to the symbol table.
851 add_symbols_to_table(Symbol_table
* symtab
)
852 { this->assignment_
.add_to_table(symtab
); }
854 // Finalize the symbol.
856 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
,
857 uint64_t* dot_value
, Output_section
** dot_section
)
859 this->assignment_
.finalize_with_dot(symtab
, layout
, *dot_value
,
863 // Set the section address. There is no section here, but if the
864 // value is absolute, we set the symbol. This permits us to use
865 // absolute symbols when setting dot.
867 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
, Output_section
*,
868 uint64_t, uint64_t* dot_value
, uint64_t*,
869 Output_section
**, std::string
*, Input_section_list
*)
871 this->assignment_
.set_if_absolute(symtab
, layout
, true, *dot_value
);
874 // Print for debugging.
879 this->assignment_
.print(f
);
883 Symbol_assignment assignment_
;
886 // An assignment to the dot symbol in an output section.
888 class Output_section_element_dot_assignment
: public Output_section_element
891 Output_section_element_dot_assignment(Expression
* val
)
895 // Finalize the symbol.
897 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
,
898 uint64_t* dot_value
, Output_section
** dot_section
)
900 *dot_value
= this->val_
->eval_with_dot(symtab
, layout
, true, *dot_value
,
901 *dot_section
, dot_section
, NULL
);
904 // Update the dot symbol while setting section addresses.
906 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
, Output_section
*,
907 uint64_t, uint64_t* dot_value
, uint64_t*,
908 Output_section
**, std::string
*, Input_section_list
*);
910 // Print for debugging.
915 this->val_
->print(f
);
923 // Update the dot symbol while setting section addresses.
926 Output_section_element_dot_assignment::set_section_addresses(
927 Symbol_table
* symtab
,
929 Output_section
* output_section
,
932 uint64_t* dot_alignment
,
933 Output_section
** dot_section
,
937 uint64_t next_dot
= this->val_
->eval_with_dot(symtab
, layout
, false,
938 *dot_value
, *dot_section
,
939 dot_section
, dot_alignment
);
940 if (next_dot
< *dot_value
)
941 gold_error(_("dot may not move backward"));
942 if (next_dot
> *dot_value
&& output_section
!= NULL
)
944 section_size_type length
= convert_to_section_size_type(next_dot
946 Output_section_data
* posd
;
948 posd
= new Output_data_zero_fill(length
, 0);
951 std::string this_fill
= this->get_fill_string(fill
, length
);
952 posd
= new Output_data_const(this_fill
, 0);
954 output_section
->add_output_section_data(posd
);
955 layout
->new_output_section_data_from_script(posd
);
957 *dot_value
= next_dot
;
960 // An assertion in an output section.
962 class Output_section_element_assertion
: public Output_section_element
965 Output_section_element_assertion(Expression
* check
, const char* message
,
967 : assertion_(check
, message
, messagelen
)
974 this->assertion_
.print(f
);
978 Script_assertion assertion_
;
981 // We use a special instance of Output_section_data to handle BYTE,
982 // SHORT, etc. This permits forward references to symbols in the
985 class Output_data_expression
: public Output_section_data
988 Output_data_expression(int size
, bool is_signed
, Expression
* val
,
989 const Symbol_table
* symtab
, const Layout
* layout
,
990 uint64_t dot_value
, Output_section
* dot_section
)
991 : Output_section_data(size
, 0, true),
992 is_signed_(is_signed
), val_(val
), symtab_(symtab
),
993 layout_(layout
), dot_value_(dot_value
), dot_section_(dot_section
)
997 // Write the data to the output file.
999 do_write(Output_file
*);
1001 // Write the data to a buffer.
1003 do_write_to_buffer(unsigned char*);
1005 // Write to a map file.
1007 do_print_to_mapfile(Mapfile
* mapfile
) const
1008 { mapfile
->print_output_data(this, _("** expression")); }
1011 template<bool big_endian
>
1013 endian_write_to_buffer(uint64_t, unsigned char*);
1017 const Symbol_table
* symtab_
;
1018 const Layout
* layout_
;
1019 uint64_t dot_value_
;
1020 Output_section
* dot_section_
;
1023 // Write the data element to the output file.
1026 Output_data_expression::do_write(Output_file
* of
)
1028 unsigned char* view
= of
->get_output_view(this->offset(), this->data_size());
1029 this->write_to_buffer(view
);
1030 of
->write_output_view(this->offset(), this->data_size(), view
);
1033 // Write the data element to a buffer.
1036 Output_data_expression::do_write_to_buffer(unsigned char* buf
)
1038 uint64_t val
= this->val_
->eval_with_dot(this->symtab_
, this->layout_
,
1039 true, this->dot_value_
,
1040 this->dot_section_
, NULL
, NULL
);
1042 if (parameters
->target().is_big_endian())
1043 this->endian_write_to_buffer
<true>(val
, buf
);
1045 this->endian_write_to_buffer
<false>(val
, buf
);
1048 template<bool big_endian
>
1050 Output_data_expression::endian_write_to_buffer(uint64_t val
,
1053 switch (this->data_size())
1056 elfcpp::Swap_unaligned
<8, big_endian
>::writeval(buf
, val
);
1059 elfcpp::Swap_unaligned
<16, big_endian
>::writeval(buf
, val
);
1062 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(buf
, val
);
1065 if (parameters
->target().get_size() == 32)
1068 if (this->is_signed_
&& (val
& 0x80000000) != 0)
1069 val
|= 0xffffffff00000000LL
;
1071 elfcpp::Swap_unaligned
<64, big_endian
>::writeval(buf
, val
);
1078 // A data item in an output section.
1080 class Output_section_element_data
: public Output_section_element
1083 Output_section_element_data(int size
, bool is_signed
, Expression
* val
)
1084 : size_(size
), is_signed_(is_signed
), val_(val
)
1087 // If there is a data item, then we must create an output section.
1089 needs_output_section() const
1092 // Finalize symbols--we just need to update dot.
1094 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t* dot_value
,
1096 { *dot_value
+= this->size_
; }
1098 // Store the value in the section.
1100 set_section_addresses(Symbol_table
*, Layout
*, Output_section
*, uint64_t,
1101 uint64_t* dot_value
, uint64_t*, Output_section
**,
1102 std::string
*, Input_section_list
*);
1104 // Print for debugging.
1109 // The size in bytes.
1111 // Whether the value is signed.
1117 // Store the value in the section.
1120 Output_section_element_data::set_section_addresses(
1121 Symbol_table
* symtab
,
1125 uint64_t* dot_value
,
1127 Output_section
** dot_section
,
1129 Input_section_list
*)
1131 gold_assert(os
!= NULL
);
1132 Output_data_expression
* expression
=
1133 new Output_data_expression(this->size_
, this->is_signed_
, this->val_
,
1134 symtab
, layout
, *dot_value
, *dot_section
);
1135 os
->add_output_section_data(expression
);
1136 layout
->new_output_section_data_from_script(expression
);
1137 *dot_value
+= this->size_
;
1140 // Print for debugging.
1143 Output_section_element_data::print(FILE* f
) const
1146 switch (this->size_
)
1158 if (this->is_signed_
)
1166 fprintf(f
, " %s(", s
);
1167 this->val_
->print(f
);
1171 // A fill value setting in an output section.
1173 class Output_section_element_fill
: public Output_section_element
1176 Output_section_element_fill(Expression
* val
)
1180 // Update the fill value while setting section addresses.
1182 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
, Output_section
*,
1183 uint64_t, uint64_t* dot_value
, uint64_t*,
1184 Output_section
** dot_section
,
1185 std::string
* fill
, Input_section_list
*)
1187 Output_section
* fill_section
;
1188 uint64_t fill_val
= this->val_
->eval_with_dot(symtab
, layout
, false,
1189 *dot_value
, *dot_section
,
1190 &fill_section
, NULL
);
1191 if (fill_section
!= NULL
)
1192 gold_warning(_("fill value is not absolute"));
1193 // FIXME: The GNU linker supports fill values of arbitrary length.
1194 unsigned char fill_buff
[4];
1195 elfcpp::Swap_unaligned
<32, true>::writeval(fill_buff
, fill_val
);
1196 fill
->assign(reinterpret_cast<char*>(fill_buff
), 4);
1199 // Print for debugging.
1201 print(FILE* f
) const
1203 fprintf(f
, " FILL(");
1204 this->val_
->print(f
);
1209 // The new fill value.
1213 // An input section specification in an output section
1215 class Output_section_element_input
: public Output_section_element
1218 Output_section_element_input(const Input_section_spec
* spec
, bool keep
);
1220 // Finalize symbols--just update the value of the dot symbol.
1222 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t* dot_value
,
1223 Output_section
** dot_section
)
1225 *dot_value
= this->final_dot_value_
;
1226 *dot_section
= this->final_dot_section_
;
1229 // See whether we match FILE_NAME and SECTION_NAME as an input
1232 match_name(const char* file_name
, const char* section_name
) const;
1234 // Set the section address.
1236 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
, Output_section
*,
1237 uint64_t subalign
, uint64_t* dot_value
, uint64_t*,
1238 Output_section
**, std::string
* fill
,
1239 Input_section_list
*);
1241 // Print for debugging.
1243 print(FILE* f
) const;
1246 // An input section pattern.
1247 struct Input_section_pattern
1249 std::string pattern
;
1250 bool pattern_is_wildcard
;
1253 Input_section_pattern(const char* patterna
, size_t patternlena
,
1254 Sort_wildcard sorta
)
1255 : pattern(patterna
, patternlena
),
1256 pattern_is_wildcard(is_wildcard_string(this->pattern
.c_str())),
1261 typedef std::vector
<Input_section_pattern
> Input_section_patterns
;
1263 // Filename_exclusions is a pair of filename pattern and a bool
1264 // indicating whether the filename is a wildcard.
1265 typedef std::vector
<std::pair
<std::string
, bool> > Filename_exclusions
;
1267 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1268 // indicates whether this is a wildcard pattern.
1270 match(const char* string
, const char* pattern
, bool is_wildcard_pattern
)
1272 return (is_wildcard_pattern
1273 ? fnmatch(pattern
, string
, 0) == 0
1274 : strcmp(string
, pattern
) == 0);
1277 // See if we match a file name.
1279 match_file_name(const char* file_name
) const;
1281 // The file name pattern. If this is the empty string, we match all
1283 std::string filename_pattern_
;
1284 // Whether the file name pattern is a wildcard.
1285 bool filename_is_wildcard_
;
1286 // How the file names should be sorted. This may only be
1287 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1288 Sort_wildcard filename_sort_
;
1289 // The list of file names to exclude.
1290 Filename_exclusions filename_exclusions_
;
1291 // The list of input section patterns.
1292 Input_section_patterns input_section_patterns_
;
1293 // Whether to keep this section when garbage collecting.
1295 // The value of dot after including all matching sections.
1296 uint64_t final_dot_value_
;
1297 // The section where dot is defined after including all matching
1299 Output_section
* final_dot_section_
;
1302 // Construct Output_section_element_input. The parser records strings
1303 // as pointers into a copy of the script file, which will go away when
1304 // parsing is complete. We make sure they are in std::string objects.
1306 Output_section_element_input::Output_section_element_input(
1307 const Input_section_spec
* spec
,
1309 : filename_pattern_(),
1310 filename_is_wildcard_(false),
1311 filename_sort_(spec
->file
.sort
),
1312 filename_exclusions_(),
1313 input_section_patterns_(),
1315 final_dot_value_(0),
1316 final_dot_section_(NULL
)
1318 // The filename pattern "*" is common, and matches all files. Turn
1319 // it into the empty string.
1320 if (spec
->file
.name
.length
!= 1 || spec
->file
.name
.value
[0] != '*')
1321 this->filename_pattern_
.assign(spec
->file
.name
.value
,
1322 spec
->file
.name
.length
);
1323 this->filename_is_wildcard_
= is_wildcard_string(this->filename_pattern_
.c_str());
1325 if (spec
->input_sections
.exclude
!= NULL
)
1327 for (String_list::const_iterator p
=
1328 spec
->input_sections
.exclude
->begin();
1329 p
!= spec
->input_sections
.exclude
->end();
1332 bool is_wildcard
= is_wildcard_string((*p
).c_str());
1333 this->filename_exclusions_
.push_back(std::make_pair(*p
,
1338 if (spec
->input_sections
.sections
!= NULL
)
1340 Input_section_patterns
& isp(this->input_section_patterns_
);
1341 for (String_sort_list::const_iterator p
=
1342 spec
->input_sections
.sections
->begin();
1343 p
!= spec
->input_sections
.sections
->end();
1345 isp
.push_back(Input_section_pattern(p
->name
.value
, p
->name
.length
,
1350 // See whether we match FILE_NAME.
1353 Output_section_element_input::match_file_name(const char* file_name
) const
1355 if (!this->filename_pattern_
.empty())
1357 // If we were called with no filename, we refuse to match a
1358 // pattern which requires a file name.
1359 if (file_name
== NULL
)
1362 if (!match(file_name
, this->filename_pattern_
.c_str(),
1363 this->filename_is_wildcard_
))
1367 if (file_name
!= NULL
)
1369 // Now we have to see whether FILE_NAME matches one of the
1370 // exclusion patterns, if any.
1371 for (Filename_exclusions::const_iterator p
=
1372 this->filename_exclusions_
.begin();
1373 p
!= this->filename_exclusions_
.end();
1376 if (match(file_name
, p
->first
.c_str(), p
->second
))
1384 // See whether we match FILE_NAME and SECTION_NAME.
1387 Output_section_element_input::match_name(const char* file_name
,
1388 const char* section_name
) const
1390 if (!this->match_file_name(file_name
))
1393 // If there are no section name patterns, then we match.
1394 if (this->input_section_patterns_
.empty())
1397 // See whether we match the section name patterns.
1398 for (Input_section_patterns::const_iterator p
=
1399 this->input_section_patterns_
.begin();
1400 p
!= this->input_section_patterns_
.end();
1403 if (match(section_name
, p
->pattern
.c_str(), p
->pattern_is_wildcard
))
1407 // We didn't match any section names, so we didn't match.
1411 // Information we use to sort the input sections.
1413 class Input_section_info
1416 Input_section_info(const Output_section::Input_section
& input_section
)
1417 : input_section_(input_section
), section_name_(),
1418 size_(0), addralign_(1)
1421 // Return the simple input section.
1422 const Output_section::Input_section
&
1423 input_section() const
1424 { return this->input_section_
; }
1426 // Return the object.
1429 { return this->input_section_
.relobj(); }
1431 // Return the section index.
1434 { return this->input_section_
.shndx(); }
1436 // Return the section name.
1438 section_name() const
1439 { return this->section_name_
; }
1441 // Set the section name.
1443 set_section_name(const std::string name
)
1444 { this->section_name_
= name
; }
1446 // Return the section size.
1449 { return this->size_
; }
1451 // Set the section size.
1453 set_size(uint64_t size
)
1454 { this->size_
= size
; }
1456 // Return the address alignment.
1459 { return this->addralign_
; }
1461 // Set the address alignment.
1463 set_addralign(uint64_t addralign
)
1464 { this->addralign_
= addralign
; }
1467 // Input section, can be a relaxed section.
1468 Output_section::Input_section input_section_
;
1469 // Name of the section.
1470 std::string section_name_
;
1473 // Address alignment.
1474 uint64_t addralign_
;
1477 // A class to sort the input sections.
1479 class Input_section_sorter
1482 Input_section_sorter(Sort_wildcard filename_sort
, Sort_wildcard section_sort
)
1483 : filename_sort_(filename_sort
), section_sort_(section_sort
)
1487 operator()(const Input_section_info
&, const Input_section_info
&) const;
1490 Sort_wildcard filename_sort_
;
1491 Sort_wildcard section_sort_
;
1495 Input_section_sorter::operator()(const Input_section_info
& isi1
,
1496 const Input_section_info
& isi2
) const
1498 if (this->section_sort_
== SORT_WILDCARD_BY_NAME
1499 || this->section_sort_
== SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1500 || (this->section_sort_
== SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1501 && isi1
.addralign() == isi2
.addralign()))
1503 if (isi1
.section_name() != isi2
.section_name())
1504 return isi1
.section_name() < isi2
.section_name();
1506 if (this->section_sort_
== SORT_WILDCARD_BY_ALIGNMENT
1507 || this->section_sort_
== SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1508 || this->section_sort_
== SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
)
1510 if (isi1
.addralign() != isi2
.addralign())
1511 return isi1
.addralign() < isi2
.addralign();
1513 if (this->filename_sort_
== SORT_WILDCARD_BY_NAME
)
1515 if (isi1
.relobj()->name() != isi2
.relobj()->name())
1516 return (isi1
.relobj()->name() < isi2
.relobj()->name());
1519 // Otherwise we leave them in the same order.
1523 // Set the section address. Look in INPUT_SECTIONS for sections which
1524 // match this spec, sort them as specified, and add them to the output
1528 Output_section_element_input::set_section_addresses(
1531 Output_section
* output_section
,
1533 uint64_t* dot_value
,
1535 Output_section
** dot_section
,
1537 Input_section_list
* input_sections
)
1539 // We build a list of sections which match each
1540 // Input_section_pattern.
1542 typedef std::vector
<std::vector
<Input_section_info
> > Matching_sections
;
1543 size_t input_pattern_count
= this->input_section_patterns_
.size();
1544 if (input_pattern_count
== 0)
1545 input_pattern_count
= 1;
1546 Matching_sections
matching_sections(input_pattern_count
);
1548 // Look through the list of sections for this output section. Add
1549 // each one which matches to one of the elements of
1550 // MATCHING_SECTIONS.
1552 Input_section_list::iterator p
= input_sections
->begin();
1553 while (p
!= input_sections
->end())
1555 Relobj
* relobj
= p
->relobj();
1556 unsigned int shndx
= p
->shndx();
1557 Input_section_info
isi(*p
);
1559 // Calling section_name and section_addralign is not very
1562 // Lock the object so that we can get information about the
1563 // section. This is OK since we know we are single-threaded
1566 const Task
* task
= reinterpret_cast<const Task
*>(-1);
1567 Task_lock_obj
<Object
> tl(task
, relobj
);
1569 isi
.set_section_name(relobj
->section_name(shndx
));
1570 if (p
->is_relaxed_input_section())
1572 // We use current data size because relaxed section sizes may not
1573 // have finalized yet.
1574 isi
.set_size(p
->relaxed_input_section()->current_data_size());
1575 isi
.set_addralign(p
->relaxed_input_section()->addralign());
1579 isi
.set_size(relobj
->section_size(shndx
));
1580 isi
.set_addralign(relobj
->section_addralign(shndx
));
1584 if (!this->match_file_name(relobj
->name().c_str()))
1586 else if (this->input_section_patterns_
.empty())
1588 matching_sections
[0].push_back(isi
);
1589 p
= input_sections
->erase(p
);
1594 for (i
= 0; i
< input_pattern_count
; ++i
)
1596 const Input_section_pattern
&
1597 isp(this->input_section_patterns_
[i
]);
1598 if (match(isi
.section_name().c_str(), isp
.pattern
.c_str(),
1599 isp
.pattern_is_wildcard
))
1603 if (i
>= this->input_section_patterns_
.size())
1607 matching_sections
[i
].push_back(isi
);
1608 p
= input_sections
->erase(p
);
1613 // Look through MATCHING_SECTIONS. Sort each one as specified,
1614 // using a stable sort so that we get the default order when
1615 // sections are otherwise equal. Add each input section to the
1618 uint64_t dot
= *dot_value
;
1619 for (size_t i
= 0; i
< input_pattern_count
; ++i
)
1621 if (matching_sections
[i
].empty())
1624 gold_assert(output_section
!= NULL
);
1626 const Input_section_pattern
& isp(this->input_section_patterns_
[i
]);
1627 if (isp
.sort
!= SORT_WILDCARD_NONE
1628 || this->filename_sort_
!= SORT_WILDCARD_NONE
)
1629 std::stable_sort(matching_sections
[i
].begin(),
1630 matching_sections
[i
].end(),
1631 Input_section_sorter(this->filename_sort_
,
1634 for (std::vector
<Input_section_info
>::const_iterator p
=
1635 matching_sections
[i
].begin();
1636 p
!= matching_sections
[i
].end();
1639 // Override the original address alignment if SUBALIGN is specified
1640 // and is greater than the original alignment. We need to make a
1641 // copy of the input section to modify the alignment.
1642 Output_section::Input_section
sis(p
->input_section());
1644 uint64_t this_subalign
= sis
.addralign();
1645 if (!sis
.is_input_section())
1646 sis
.output_section_data()->finalize_data_size();
1647 uint64_t data_size
= sis
.data_size();
1648 if (this_subalign
< subalign
)
1650 this_subalign
= subalign
;
1651 sis
.set_addralign(subalign
);
1654 uint64_t address
= align_address(dot
, this_subalign
);
1656 if (address
> dot
&& !fill
->empty())
1658 section_size_type length
=
1659 convert_to_section_size_type(address
- dot
);
1660 std::string this_fill
= this->get_fill_string(fill
, length
);
1661 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
1662 output_section
->add_output_section_data(posd
);
1663 layout
->new_output_section_data_from_script(posd
);
1666 output_section
->add_script_input_section(sis
);
1667 dot
= address
+ data_size
;
1671 // An SHF_TLS/SHT_NOBITS section does not take up any
1673 if (output_section
== NULL
1674 || (output_section
->flags() & elfcpp::SHF_TLS
) == 0
1675 || output_section
->type() != elfcpp::SHT_NOBITS
)
1678 this->final_dot_value_
= *dot_value
;
1679 this->final_dot_section_
= *dot_section
;
1682 // Print for debugging.
1685 Output_section_element_input::print(FILE* f
) const
1690 fprintf(f
, "KEEP(");
1692 if (!this->filename_pattern_
.empty())
1694 bool need_close_paren
= false;
1695 switch (this->filename_sort_
)
1697 case SORT_WILDCARD_NONE
:
1699 case SORT_WILDCARD_BY_NAME
:
1700 fprintf(f
, "SORT_BY_NAME(");
1701 need_close_paren
= true;
1707 fprintf(f
, "%s", this->filename_pattern_
.c_str());
1709 if (need_close_paren
)
1713 if (!this->input_section_patterns_
.empty()
1714 || !this->filename_exclusions_
.empty())
1718 bool need_space
= false;
1719 if (!this->filename_exclusions_
.empty())
1721 fprintf(f
, "EXCLUDE_FILE(");
1722 bool need_comma
= false;
1723 for (Filename_exclusions::const_iterator p
=
1724 this->filename_exclusions_
.begin();
1725 p
!= this->filename_exclusions_
.end();
1730 fprintf(f
, "%s", p
->first
.c_str());
1737 for (Input_section_patterns::const_iterator p
=
1738 this->input_section_patterns_
.begin();
1739 p
!= this->input_section_patterns_
.end();
1745 int close_parens
= 0;
1748 case SORT_WILDCARD_NONE
:
1750 case SORT_WILDCARD_BY_NAME
:
1751 fprintf(f
, "SORT_BY_NAME(");
1754 case SORT_WILDCARD_BY_ALIGNMENT
:
1755 fprintf(f
, "SORT_BY_ALIGNMENT(");
1758 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
:
1759 fprintf(f
, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1762 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
:
1763 fprintf(f
, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1770 fprintf(f
, "%s", p
->pattern
.c_str());
1772 for (int i
= 0; i
< close_parens
; ++i
)
1787 // An output section.
1789 class Output_section_definition
: public Sections_element
1792 typedef Output_section_element::Input_section_list Input_section_list
;
1794 Output_section_definition(const char* name
, size_t namelen
,
1795 const Parser_output_section_header
* header
);
1797 // Finish the output section with the information in the trailer.
1799 finish(const Parser_output_section_trailer
* trailer
);
1801 // Add a symbol to be defined.
1803 add_symbol_assignment(const char* name
, size_t length
, Expression
* value
,
1804 bool provide
, bool hidden
);
1806 // Add an assignment to the special dot symbol.
1808 add_dot_assignment(Expression
* value
);
1810 // Add an assertion.
1812 add_assertion(Expression
* check
, const char* message
, size_t messagelen
);
1814 // Add a data item to the current output section.
1816 add_data(int size
, bool is_signed
, Expression
* val
);
1818 // Add a setting for the fill value.
1820 add_fill(Expression
* val
);
1822 // Add an input section specification.
1824 add_input_section(const Input_section_spec
* spec
, bool keep
);
1826 // Return whether the output section is relro.
1829 { return this->is_relro_
; }
1831 // Record that the output section is relro.
1834 { this->is_relro_
= true; }
1836 // Create any required output sections.
1838 create_sections(Layout
*);
1840 // Add any symbols being defined to the symbol table.
1842 add_symbols_to_table(Symbol_table
* symtab
);
1844 // Finalize symbols and check assertions.
1846 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t*);
1848 // Return the output section name to use for an input file name and
1851 output_section_name(const char* file_name
, const char* section_name
,
1852 Output_section
***, Script_sections::Section_type
*);
1854 // Initialize OSP with an output section.
1856 orphan_section_init(Orphan_section_placement
* osp
,
1857 Script_sections::Elements_iterator p
)
1858 { osp
->output_section_init(this->name_
, this->output_section_
, p
); }
1860 // Set the section address.
1862 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
,
1863 uint64_t* dot_value
, uint64_t*,
1864 uint64_t* load_address
);
1866 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1867 // this section is constrained, and the input sections do not match,
1868 // return the constraint, and set *POSD.
1870 check_constraint(Output_section_definition
** posd
);
1872 // See if this is the alternate output section for a constrained
1873 // output section. If it is, transfer the Output_section and return
1874 // true. Otherwise return false.
1876 alternate_constraint(Output_section_definition
*, Section_constraint
);
1878 // Get the list of segments to use for an allocated section when
1879 // using a PHDRS clause.
1881 allocate_to_segment(String_list
** phdrs_list
, bool* orphan
);
1883 // Look for an output section by name and return the address, the
1884 // load address, the alignment, and the size. This is used when an
1885 // expression refers to an output section which was not actually
1886 // created. This returns true if the section was found, false
1889 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1892 // Return the associated Output_section if there is one.
1894 get_output_section() const
1895 { return this->output_section_
; }
1897 // Print the contents to the FILE. This is for debugging.
1901 // Return the output section type if specified or Script_sections::ST_NONE.
1902 Script_sections::Section_type
1903 section_type() const;
1905 // Store the memory region to use.
1907 set_memory_region(Memory_region
*, bool set_vma
);
1910 set_section_vma(Expression
* address
)
1911 { this->address_
= address
; }
1914 set_section_lma(Expression
* address
)
1915 { this->load_address_
= address
; }
1918 get_section_name() const
1919 { return this->name_
; }
1923 script_section_type_name(Script_section_type
);
1925 typedef std::vector
<Output_section_element
*> Output_section_elements
;
1927 // The output section name.
1929 // The address. This may be NULL.
1930 Expression
* address_
;
1931 // The load address. This may be NULL.
1932 Expression
* load_address_
;
1933 // The alignment. This may be NULL.
1935 // The input section alignment. This may be NULL.
1936 Expression
* subalign_
;
1937 // The constraint, if any.
1938 Section_constraint constraint_
;
1939 // The fill value. This may be NULL.
1941 // The list of segments this section should go into. This may be
1943 String_list
* phdrs_
;
1944 // The list of elements defining the section.
1945 Output_section_elements elements_
;
1946 // The Output_section created for this definition. This will be
1947 // NULL if none was created.
1948 Output_section
* output_section_
;
1949 // The address after it has been evaluated.
1950 uint64_t evaluated_address_
;
1951 // The load address after it has been evaluated.
1952 uint64_t evaluated_load_address_
;
1953 // The alignment after it has been evaluated.
1954 uint64_t evaluated_addralign_
;
1955 // The output section is relro.
1957 // The output section type if specified.
1958 enum Script_section_type script_section_type_
;
1963 Output_section_definition::Output_section_definition(
1966 const Parser_output_section_header
* header
)
1967 : name_(name
, namelen
),
1968 address_(header
->address
),
1969 load_address_(header
->load_address
),
1970 align_(header
->align
),
1971 subalign_(header
->subalign
),
1972 constraint_(header
->constraint
),
1976 output_section_(NULL
),
1977 evaluated_address_(0),
1978 evaluated_load_address_(0),
1979 evaluated_addralign_(0),
1981 script_section_type_(header
->section_type
)
1985 // Finish an output section.
1988 Output_section_definition::finish(const Parser_output_section_trailer
* trailer
)
1990 this->fill_
= trailer
->fill
;
1991 this->phdrs_
= trailer
->phdrs
;
1994 // Add a symbol to be defined.
1997 Output_section_definition::add_symbol_assignment(const char* name
,
2003 Output_section_element
* p
= new Output_section_element_assignment(name
,
2008 this->elements_
.push_back(p
);
2011 // Add an assignment to the special dot symbol.
2014 Output_section_definition::add_dot_assignment(Expression
* value
)
2016 Output_section_element
* p
= new Output_section_element_dot_assignment(value
);
2017 this->elements_
.push_back(p
);
2020 // Add an assertion.
2023 Output_section_definition::add_assertion(Expression
* check
,
2024 const char* message
,
2027 Output_section_element
* p
= new Output_section_element_assertion(check
,
2030 this->elements_
.push_back(p
);
2033 // Add a data item to the current output section.
2036 Output_section_definition::add_data(int size
, bool is_signed
, Expression
* val
)
2038 Output_section_element
* p
= new Output_section_element_data(size
, is_signed
,
2040 this->elements_
.push_back(p
);
2043 // Add a setting for the fill value.
2046 Output_section_definition::add_fill(Expression
* val
)
2048 Output_section_element
* p
= new Output_section_element_fill(val
);
2049 this->elements_
.push_back(p
);
2052 // Add an input section specification.
2055 Output_section_definition::add_input_section(const Input_section_spec
* spec
,
2058 Output_section_element
* p
= new Output_section_element_input(spec
, keep
);
2059 this->elements_
.push_back(p
);
2062 // Create any required output sections. We need an output section if
2063 // there is a data statement here.
2066 Output_section_definition::create_sections(Layout
* layout
)
2068 if (this->output_section_
!= NULL
)
2070 for (Output_section_elements::const_iterator p
= this->elements_
.begin();
2071 p
!= this->elements_
.end();
2074 if ((*p
)->needs_output_section())
2076 const char* name
= this->name_
.c_str();
2077 this->output_section_
=
2078 layout
->make_output_section_for_script(name
, this->section_type());
2084 // Add any symbols being defined to the symbol table.
2087 Output_section_definition::add_symbols_to_table(Symbol_table
* symtab
)
2089 for (Output_section_elements::iterator p
= this->elements_
.begin();
2090 p
!= this->elements_
.end();
2092 (*p
)->add_symbols_to_table(symtab
);
2095 // Finalize symbols and check assertions.
2098 Output_section_definition::finalize_symbols(Symbol_table
* symtab
,
2099 const Layout
* layout
,
2100 uint64_t* dot_value
)
2102 if (this->output_section_
!= NULL
)
2103 *dot_value
= this->output_section_
->address();
2106 uint64_t address
= *dot_value
;
2107 if (this->address_
!= NULL
)
2109 address
= this->address_
->eval_with_dot(symtab
, layout
, true,
2113 if (this->align_
!= NULL
)
2115 uint64_t align
= this->align_
->eval_with_dot(symtab
, layout
, true,
2118 address
= align_address(address
, align
);
2120 *dot_value
= address
;
2123 Output_section
* dot_section
= this->output_section_
;
2124 for (Output_section_elements::iterator p
= this->elements_
.begin();
2125 p
!= this->elements_
.end();
2127 (*p
)->finalize_symbols(symtab
, layout
, dot_value
, &dot_section
);
2130 // Return the output section name to use for an input section name.
2133 Output_section_definition::output_section_name(
2134 const char* file_name
,
2135 const char* section_name
,
2136 Output_section
*** slot
,
2137 Script_sections::Section_type
* psection_type
)
2139 // Ask each element whether it matches NAME.
2140 for (Output_section_elements::const_iterator p
= this->elements_
.begin();
2141 p
!= this->elements_
.end();
2144 if ((*p
)->match_name(file_name
, section_name
))
2146 // We found a match for NAME, which means that it should go
2147 // into this output section.
2148 *slot
= &this->output_section_
;
2149 *psection_type
= this->section_type();
2150 return this->name_
.c_str();
2154 // We don't know about this section name.
2158 // Return true if memory from START to START + LENGTH is contained
2159 // within a memory region.
2162 Script_sections::block_in_region(Symbol_table
* symtab
, Layout
* layout
,
2163 uint64_t start
, uint64_t length
) const
2165 if (this->memory_regions_
== NULL
)
2168 for (Memory_regions::const_iterator mr
= this->memory_regions_
->begin();
2169 mr
!= this->memory_regions_
->end();
2172 uint64_t s
= (*mr
)->start_address()->eval(symtab
, layout
, false);
2173 uint64_t l
= (*mr
)->length()->eval(symtab
, layout
, false);
2176 && (s
+ l
) >= (start
+ length
))
2183 // Find a memory region that should be used by a given output SECTION.
2184 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2185 // that used the return memory region.
2188 Script_sections::find_memory_region(
2189 Output_section_definition
* section
,
2190 bool find_vma_region
,
2191 Output_section_definition
** previous_section_return
)
2193 if (previous_section_return
!= NULL
)
2194 * previous_section_return
= NULL
;
2196 // Walk the memory regions specified in this script, if any.
2197 if (this->memory_regions_
== NULL
)
2200 // The /DISCARD/ section never gets assigned to any region.
2201 if (section
->get_section_name() == "/DISCARD/")
2204 Memory_region
* first_match
= NULL
;
2206 // First check to see if a region has been assigned to this section.
2207 for (Memory_regions::const_iterator mr
= this->memory_regions_
->begin();
2208 mr
!= this->memory_regions_
->end();
2211 if (find_vma_region
)
2213 for (Memory_region::Section_list::const_iterator s
=
2214 (*mr
)->get_vma_section_list_start();
2215 s
!= (*mr
)->get_vma_section_list_end();
2217 if ((*s
) == section
)
2219 (*mr
)->set_last_section(section
);
2225 for (Memory_region::Section_list::const_iterator s
=
2226 (*mr
)->get_lma_section_list_start();
2227 s
!= (*mr
)->get_lma_section_list_end();
2229 if ((*s
) == section
)
2231 (*mr
)->set_last_section(section
);
2236 // Make a note of the first memory region whose attributes
2237 // are compatible with the section. If we do not find an
2238 // explicit region assignment, then we will return this region.
2239 Output_section
* out_sec
= section
->get_output_section();
2240 if (first_match
== NULL
2242 && (*mr
)->attributes_compatible(out_sec
->flags(),
2247 // With LMA computations, if an explicit region has not been specified then
2248 // we will want to set the difference between the VMA and the LMA of the
2249 // section were searching for to be the same as the difference between the
2250 // VMA and LMA of the last section to be added to first matched region.
2251 // Hence, if it was asked for, we return a pointer to the last section
2252 // known to be used by the first matched region.
2253 if (first_match
!= NULL
2254 && previous_section_return
!= NULL
)
2255 *previous_section_return
= first_match
->get_last_section();
2260 // Set the section address. Note that the OUTPUT_SECTION_ field will
2261 // be NULL if no input sections were mapped to this output section.
2262 // We still have to adjust dot and process symbol assignments.
2265 Output_section_definition::set_section_addresses(Symbol_table
* symtab
,
2267 uint64_t* dot_value
,
2268 uint64_t* dot_alignment
,
2269 uint64_t* load_address
)
2271 Memory_region
* vma_region
= NULL
;
2272 Memory_region
* lma_region
= NULL
;
2273 Script_sections
* script_sections
=
2274 layout
->script_options()->script_sections();
2276 uint64_t old_dot_value
= *dot_value
;
2277 uint64_t old_load_address
= *load_address
;
2279 // Decide the start address for the section. The algorithm is:
2280 // 1) If an address has been specified in a linker script, use that.
2281 // 2) Otherwise if a memory region has been specified for the section,
2282 // use the next free address in the region.
2283 // 3) Otherwise if memory regions have been specified find the first
2284 // region whose attributes are compatible with this section and
2285 // install it into that region.
2286 // 4) Otherwise use the current location counter.
2288 if (this->output_section_
!= NULL
2289 // Check for --section-start.
2290 && parameters
->options().section_start(this->output_section_
->name(),
2293 else if (this->address_
== NULL
)
2295 vma_region
= script_sections
->find_memory_region(this, true, NULL
);
2297 if (vma_region
!= NULL
)
2298 address
= vma_region
->get_current_address()->eval(symtab
, layout
,
2301 address
= *dot_value
;
2304 address
= this->address_
->eval_with_dot(symtab
, layout
, true,
2305 *dot_value
, NULL
, NULL
,
2308 if (this->align_
== NULL
)
2310 if (this->output_section_
== NULL
)
2313 align
= this->output_section_
->addralign();
2317 Output_section
* align_section
;
2318 align
= this->align_
->eval_with_dot(symtab
, layout
, true, *dot_value
,
2319 NULL
, &align_section
, NULL
);
2320 if (align_section
!= NULL
)
2321 gold_warning(_("alignment of section %s is not absolute"),
2322 this->name_
.c_str());
2323 if (this->output_section_
!= NULL
)
2324 this->output_section_
->set_addralign(align
);
2327 address
= align_address(address
, align
);
2329 uint64_t start_address
= address
;
2331 *dot_value
= address
;
2333 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2334 // forced to zero, regardless of what the linker script wants.
2335 if (this->output_section_
!= NULL
2336 && ((this->output_section_
->flags() & elfcpp::SHF_ALLOC
) != 0
2337 || this->output_section_
->is_noload()))
2338 this->output_section_
->set_address(address
);
2340 this->evaluated_address_
= address
;
2341 this->evaluated_addralign_
= align
;
2345 if (this->load_address_
== NULL
)
2347 Output_section_definition
* previous_section
;
2349 // Determine if an LMA region has been set for this section.
2350 lma_region
= script_sections
->find_memory_region(this, false,
2353 if (lma_region
!= NULL
)
2355 if (previous_section
== NULL
)
2356 // The LMA address was explicitly set to the given region.
2357 laddr
= lma_region
->get_current_address()->eval(symtab
, layout
,
2361 // We are not going to use the discovered lma_region, so
2362 // make sure that we do not update it in the code below.
2365 if (this->address_
!= NULL
|| previous_section
== this)
2367 // Either an explicit VMA address has been set, or an
2368 // explicit VMA region has been set, so set the LMA equal to
2374 // The LMA address was not explicitly or implicitly set.
2376 // We have been given the first memory region that is
2377 // compatible with the current section and a pointer to the
2378 // last section to use this region. Set the LMA of this
2379 // section so that the difference between its' VMA and LMA
2380 // is the same as the difference between the VMA and LMA of
2381 // the last section in the given region.
2382 laddr
= address
+ (previous_section
->evaluated_load_address_
2383 - previous_section
->evaluated_address_
);
2387 if (this->output_section_
!= NULL
)
2388 this->output_section_
->set_load_address(laddr
);
2392 // Do not set the load address of the output section, if one exists.
2393 // This allows future sections to determine what the load address
2394 // should be. If none is ever set, it will default to being the
2395 // same as the vma address.
2401 laddr
= this->load_address_
->eval_with_dot(symtab
, layout
, true,
2403 this->output_section_
,
2405 if (this->output_section_
!= NULL
)
2406 this->output_section_
->set_load_address(laddr
);
2409 this->evaluated_load_address_
= laddr
;
2412 if (this->subalign_
== NULL
)
2416 Output_section
* subalign_section
;
2417 subalign
= this->subalign_
->eval_with_dot(symtab
, layout
, true,
2419 &subalign_section
, NULL
);
2420 if (subalign_section
!= NULL
)
2421 gold_warning(_("subalign of section %s is not absolute"),
2422 this->name_
.c_str());
2426 if (this->fill_
!= NULL
)
2428 // FIXME: The GNU linker supports fill values of arbitrary
2430 Output_section
* fill_section
;
2431 uint64_t fill_val
= this->fill_
->eval_with_dot(symtab
, layout
, true,
2433 NULL
, &fill_section
,
2435 if (fill_section
!= NULL
)
2436 gold_warning(_("fill of section %s is not absolute"),
2437 this->name_
.c_str());
2438 unsigned char fill_buff
[4];
2439 elfcpp::Swap_unaligned
<32, true>::writeval(fill_buff
, fill_val
);
2440 fill
.assign(reinterpret_cast<char*>(fill_buff
), 4);
2443 Input_section_list input_sections
;
2444 if (this->output_section_
!= NULL
)
2446 // Get the list of input sections attached to this output
2447 // section. This will leave the output section with only
2448 // Output_section_data entries.
2449 address
+= this->output_section_
->get_input_sections(address
,
2452 *dot_value
= address
;
2455 Output_section
* dot_section
= this->output_section_
;
2456 for (Output_section_elements::iterator p
= this->elements_
.begin();
2457 p
!= this->elements_
.end();
2459 (*p
)->set_section_addresses(symtab
, layout
, this->output_section_
,
2460 subalign
, dot_value
, dot_alignment
,
2461 &dot_section
, &fill
, &input_sections
);
2463 gold_assert(input_sections
.empty());
2465 if (vma_region
!= NULL
)
2467 // Update the VMA region being used by the section now that we know how
2468 // big it is. Use the current address in the region, rather than
2469 // start_address because that might have been aligned upwards and we
2470 // need to allow for the padding.
2471 Expression
* addr
= vma_region
->get_current_address();
2472 uint64_t size
= *dot_value
- addr
->eval(symtab
, layout
, false);
2474 vma_region
->increment_offset(this->get_section_name(), size
,
2478 // If the LMA region is different from the VMA region, then increment the
2479 // offset there as well. Note that we use the same "dot_value -
2480 // start_address" formula that is used in the load_address assignment below.
2481 if (lma_region
!= NULL
&& lma_region
!= vma_region
)
2482 lma_region
->increment_offset(this->get_section_name(),
2483 *dot_value
- start_address
,
2486 // Compute the load address for the following section.
2487 if (this->output_section_
== NULL
)
2488 *load_address
= *dot_value
;
2489 else if (this->load_address_
== NULL
)
2491 if (lma_region
== NULL
)
2492 *load_address
= *dot_value
;
2495 lma_region
->get_current_address()->eval(symtab
, layout
, false);
2498 *load_address
= (this->output_section_
->load_address()
2499 + (*dot_value
- start_address
));
2501 if (this->output_section_
!= NULL
)
2503 if (this->is_relro_
)
2504 this->output_section_
->set_is_relro();
2506 this->output_section_
->clear_is_relro();
2508 // If this is a NOLOAD section, keep dot and load address unchanged.
2509 if (this->output_section_
->is_noload())
2511 *dot_value
= old_dot_value
;
2512 *load_address
= old_load_address
;
2517 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2518 // this section is constrained, and the input sections do not match,
2519 // return the constraint, and set *POSD.
2522 Output_section_definition::check_constraint(Output_section_definition
** posd
)
2524 switch (this->constraint_
)
2526 case CONSTRAINT_NONE
:
2527 return CONSTRAINT_NONE
;
2529 case CONSTRAINT_ONLY_IF_RO
:
2530 if (this->output_section_
!= NULL
2531 && (this->output_section_
->flags() & elfcpp::SHF_WRITE
) != 0)
2534 return CONSTRAINT_ONLY_IF_RO
;
2536 return CONSTRAINT_NONE
;
2538 case CONSTRAINT_ONLY_IF_RW
:
2539 if (this->output_section_
!= NULL
2540 && (this->output_section_
->flags() & elfcpp::SHF_WRITE
) == 0)
2543 return CONSTRAINT_ONLY_IF_RW
;
2545 return CONSTRAINT_NONE
;
2547 case CONSTRAINT_SPECIAL
:
2548 if (this->output_section_
!= NULL
)
2549 gold_error(_("SPECIAL constraints are not implemented"));
2550 return CONSTRAINT_NONE
;
2557 // See if this is the alternate output section for a constrained
2558 // output section. If it is, transfer the Output_section and return
2559 // true. Otherwise return false.
2562 Output_section_definition::alternate_constraint(
2563 Output_section_definition
* posd
,
2564 Section_constraint constraint
)
2566 if (this->name_
!= posd
->name_
)
2571 case CONSTRAINT_ONLY_IF_RO
:
2572 if (this->constraint_
!= CONSTRAINT_ONLY_IF_RW
)
2576 case CONSTRAINT_ONLY_IF_RW
:
2577 if (this->constraint_
!= CONSTRAINT_ONLY_IF_RO
)
2585 // We have found the alternate constraint. We just need to move
2586 // over the Output_section. When constraints are used properly,
2587 // THIS should not have an output_section pointer, as all the input
2588 // sections should have matched the other definition.
2590 if (this->output_section_
!= NULL
)
2591 gold_error(_("mismatched definition for constrained sections"));
2593 this->output_section_
= posd
->output_section_
;
2594 posd
->output_section_
= NULL
;
2596 if (this->is_relro_
)
2597 this->output_section_
->set_is_relro();
2599 this->output_section_
->clear_is_relro();
2604 // Get the list of segments to use for an allocated section when using
2608 Output_section_definition::allocate_to_segment(String_list
** phdrs_list
,
2611 // Update phdrs_list even if we don't have an output section. It
2612 // might be used by the following sections.
2613 if (this->phdrs_
!= NULL
)
2614 *phdrs_list
= this->phdrs_
;
2616 if (this->output_section_
== NULL
)
2618 if ((this->output_section_
->flags() & elfcpp::SHF_ALLOC
) == 0)
2621 return this->output_section_
;
2624 // Look for an output section by name and return the address, the load
2625 // address, the alignment, and the size. This is used when an
2626 // expression refers to an output section which was not actually
2627 // created. This returns true if the section was found, false
2631 Output_section_definition::get_output_section_info(const char* name
,
2633 uint64_t* load_address
,
2634 uint64_t* addralign
,
2635 uint64_t* size
) const
2637 if (this->name_
!= name
)
2640 if (this->output_section_
!= NULL
)
2642 *address
= this->output_section_
->address();
2643 if (this->output_section_
->has_load_address())
2644 *load_address
= this->output_section_
->load_address();
2646 *load_address
= *address
;
2647 *addralign
= this->output_section_
->addralign();
2648 *size
= this->output_section_
->current_data_size();
2652 *address
= this->evaluated_address_
;
2653 *load_address
= this->evaluated_load_address_
;
2654 *addralign
= this->evaluated_addralign_
;
2661 // Print for debugging.
2664 Output_section_definition::print(FILE* f
) const
2666 fprintf(f
, " %s ", this->name_
.c_str());
2668 if (this->address_
!= NULL
)
2670 this->address_
->print(f
);
2674 if (this->script_section_type_
!= SCRIPT_SECTION_TYPE_NONE
)
2676 this->script_section_type_name(this->script_section_type_
));
2680 if (this->load_address_
!= NULL
)
2683 this->load_address_
->print(f
);
2687 if (this->align_
!= NULL
)
2689 fprintf(f
, "ALIGN(");
2690 this->align_
->print(f
);
2694 if (this->subalign_
!= NULL
)
2696 fprintf(f
, "SUBALIGN(");
2697 this->subalign_
->print(f
);
2703 for (Output_section_elements::const_iterator p
= this->elements_
.begin();
2704 p
!= this->elements_
.end();
2710 if (this->fill_
!= NULL
)
2713 this->fill_
->print(f
);
2716 if (this->phdrs_
!= NULL
)
2718 for (String_list::const_iterator p
= this->phdrs_
->begin();
2719 p
!= this->phdrs_
->end();
2721 fprintf(f
, " :%s", p
->c_str());
2727 Script_sections::Section_type
2728 Output_section_definition::section_type() const
2730 switch (this->script_section_type_
)
2732 case SCRIPT_SECTION_TYPE_NONE
:
2733 return Script_sections::ST_NONE
;
2734 case SCRIPT_SECTION_TYPE_NOLOAD
:
2735 return Script_sections::ST_NOLOAD
;
2736 case SCRIPT_SECTION_TYPE_COPY
:
2737 case SCRIPT_SECTION_TYPE_DSECT
:
2738 case SCRIPT_SECTION_TYPE_INFO
:
2739 case SCRIPT_SECTION_TYPE_OVERLAY
:
2740 // There are not really support so we treat them as ST_NONE. The
2741 // parse should have issued errors for them already.
2742 return Script_sections::ST_NONE
;
2748 // Return the name of a script section type.
2751 Output_section_definition::script_section_type_name(
2752 Script_section_type script_section_type
)
2754 switch (script_section_type
)
2756 case SCRIPT_SECTION_TYPE_NONE
:
2758 case SCRIPT_SECTION_TYPE_NOLOAD
:
2760 case SCRIPT_SECTION_TYPE_DSECT
:
2762 case SCRIPT_SECTION_TYPE_COPY
:
2764 case SCRIPT_SECTION_TYPE_INFO
:
2766 case SCRIPT_SECTION_TYPE_OVERLAY
:
2774 Output_section_definition::set_memory_region(Memory_region
* mr
, bool set_vma
)
2776 gold_assert(mr
!= NULL
);
2777 // Add the current section to the specified region's list.
2778 mr
->add_section(this, set_vma
);
2781 // An output section created to hold orphaned input sections. These
2782 // do not actually appear in linker scripts. However, for convenience
2783 // when setting the output section addresses, we put a marker to these
2784 // sections in the appropriate place in the list of SECTIONS elements.
2786 class Orphan_output_section
: public Sections_element
2789 Orphan_output_section(Output_section
* os
)
2793 // Return whether the orphan output section is relro. We can just
2794 // check the output section because we always set the flag, if
2795 // needed, just after we create the Orphan_output_section.
2798 { return this->os_
->is_relro(); }
2800 // Initialize OSP with an output section. This should have been
2803 orphan_section_init(Orphan_section_placement
*,
2804 Script_sections::Elements_iterator
)
2805 { gold_unreachable(); }
2807 // Set section addresses.
2809 set_section_addresses(Symbol_table
*, Layout
*, uint64_t*, uint64_t*,
2812 // Get the list of segments to use for an allocated section when
2813 // using a PHDRS clause.
2815 allocate_to_segment(String_list
**, bool*);
2817 // Return the associated Output_section.
2819 get_output_section() const
2820 { return this->os_
; }
2822 // Print for debugging.
2824 print(FILE* f
) const
2826 fprintf(f
, " marker for orphaned output section %s\n",
2831 Output_section
* os_
;
2834 // Set section addresses.
2837 Orphan_output_section::set_section_addresses(Symbol_table
*, Layout
*,
2838 uint64_t* dot_value
,
2840 uint64_t* load_address
)
2842 typedef std::list
<Output_section::Input_section
> Input_section_list
;
2844 bool have_load_address
= *load_address
!= *dot_value
;
2846 uint64_t address
= *dot_value
;
2847 address
= align_address(address
, this->os_
->addralign());
2849 if ((this->os_
->flags() & elfcpp::SHF_ALLOC
) != 0)
2851 this->os_
->set_address(address
);
2852 if (have_load_address
)
2853 this->os_
->set_load_address(align_address(*load_address
,
2854 this->os_
->addralign()));
2857 Input_section_list input_sections
;
2858 address
+= this->os_
->get_input_sections(address
, "", &input_sections
);
2860 for (Input_section_list::iterator p
= input_sections
.begin();
2861 p
!= input_sections
.end();
2864 uint64_t addralign
= p
->addralign();
2865 if (!p
->is_input_section())
2866 p
->output_section_data()->finalize_data_size();
2867 uint64_t size
= p
->data_size();
2868 address
= align_address(address
, addralign
);
2869 this->os_
->add_script_input_section(*p
);
2873 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2874 if (this->os_
== NULL
2875 || (this->os_
->flags() & elfcpp::SHF_TLS
) == 0
2876 || this->os_
->type() != elfcpp::SHT_NOBITS
)
2878 if (!have_load_address
)
2879 *load_address
= address
;
2881 *load_address
+= address
- *dot_value
;
2883 *dot_value
= address
;
2887 // Get the list of segments to use for an allocated section when using
2888 // a PHDRS clause. If this is an allocated section, return the
2889 // Output_section. We don't change the list of segments.
2892 Orphan_output_section::allocate_to_segment(String_list
**, bool* orphan
)
2894 if ((this->os_
->flags() & elfcpp::SHF_ALLOC
) == 0)
2900 // Class Phdrs_element. A program header from a PHDRS clause.
2905 Phdrs_element(const char* name
, size_t namelen
, unsigned int type
,
2906 bool includes_filehdr
, bool includes_phdrs
,
2907 bool is_flags_valid
, unsigned int flags
,
2908 Expression
* load_address
)
2909 : name_(name
, namelen
), type_(type
), includes_filehdr_(includes_filehdr
),
2910 includes_phdrs_(includes_phdrs
), is_flags_valid_(is_flags_valid
),
2911 flags_(flags
), load_address_(load_address
), load_address_value_(0),
2915 // Return the name of this segment.
2918 { return this->name_
; }
2920 // Return the type of the segment.
2923 { return this->type_
; }
2925 // Whether to include the file header.
2927 includes_filehdr() const
2928 { return this->includes_filehdr_
; }
2930 // Whether to include the program headers.
2932 includes_phdrs() const
2933 { return this->includes_phdrs_
; }
2935 // Return whether there is a load address.
2937 has_load_address() const
2938 { return this->load_address_
!= NULL
; }
2940 // Evaluate the load address expression if there is one.
2942 eval_load_address(Symbol_table
* symtab
, Layout
* layout
)
2944 if (this->load_address_
!= NULL
)
2945 this->load_address_value_
= this->load_address_
->eval(symtab
, layout
,
2949 // Return the load address.
2951 load_address() const
2953 gold_assert(this->load_address_
!= NULL
);
2954 return this->load_address_value_
;
2957 // Create the segment.
2959 create_segment(Layout
* layout
)
2961 this->segment_
= layout
->make_output_segment(this->type_
, this->flags_
);
2962 return this->segment_
;
2965 // Return the segment.
2968 { return this->segment_
; }
2970 // Release the segment.
2973 { this->segment_
= NULL
; }
2975 // Set the segment flags if appropriate.
2977 set_flags_if_valid()
2979 if (this->is_flags_valid_
)
2980 this->segment_
->set_flags(this->flags_
);
2983 // Print for debugging.
2988 // The name used in the script.
2990 // The type of the segment (PT_LOAD, etc.).
2992 // Whether this segment includes the file header.
2993 bool includes_filehdr_
;
2994 // Whether this segment includes the section headers.
2995 bool includes_phdrs_
;
2996 // Whether the flags were explicitly specified.
2997 bool is_flags_valid_
;
2998 // The flags for this segment (PF_R, etc.) if specified.
2999 unsigned int flags_
;
3000 // The expression for the load address for this segment. This may
3002 Expression
* load_address_
;
3003 // The actual load address from evaluating the expression.
3004 uint64_t load_address_value_
;
3005 // The segment itself.
3006 Output_segment
* segment_
;
3009 // Print for debugging.
3012 Phdrs_element::print(FILE* f
) const
3014 fprintf(f
, " %s 0x%x", this->name_
.c_str(), this->type_
);
3015 if (this->includes_filehdr_
)
3016 fprintf(f
, " FILEHDR");
3017 if (this->includes_phdrs_
)
3018 fprintf(f
, " PHDRS");
3019 if (this->is_flags_valid_
)
3020 fprintf(f
, " FLAGS(%u)", this->flags_
);
3021 if (this->load_address_
!= NULL
)
3024 this->load_address_
->print(f
);
3030 // Add a memory region.
3033 Script_sections::add_memory_region(const char* name
, size_t namelen
,
3034 unsigned int attributes
,
3035 Expression
* start
, Expression
* length
)
3037 if (this->memory_regions_
== NULL
)
3038 this->memory_regions_
= new Memory_regions();
3039 else if (this->find_memory_region(name
, namelen
))
3041 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen
),
3043 // FIXME: Add a GOLD extension to allow multiple regions with the same
3044 // name. This would amount to a single region covering disjoint blocks
3045 // of memory, which is useful for embedded devices.
3048 // FIXME: Check the length and start values. Currently we allow
3049 // non-constant expressions for these values, whereas LD does not.
3051 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3052 // describe a region that packs from the end address going down, rather
3053 // than the start address going up. This would be useful for embedded
3056 this->memory_regions_
->push_back(new Memory_region(name
, namelen
, attributes
,
3060 // Find a memory region.
3063 Script_sections::find_memory_region(const char* name
, size_t namelen
)
3065 if (this->memory_regions_
== NULL
)
3068 for (Memory_regions::const_iterator m
= this->memory_regions_
->begin();
3069 m
!= this->memory_regions_
->end();
3071 if ((*m
)->name_match(name
, namelen
))
3077 // Find a memory region's origin.
3080 Script_sections::find_memory_region_origin(const char* name
, size_t namelen
)
3082 Memory_region
* mr
= find_memory_region(name
, namelen
);
3086 return mr
->start_address();
3089 // Find a memory region's length.
3092 Script_sections::find_memory_region_length(const char* name
, size_t namelen
)
3094 Memory_region
* mr
= find_memory_region(name
, namelen
);
3098 return mr
->length();
3101 // Set the memory region to use for the current section.
3104 Script_sections::set_memory_region(Memory_region
* mr
, bool set_vma
)
3106 gold_assert(!this->sections_elements_
->empty());
3107 this->sections_elements_
->back()->set_memory_region(mr
, set_vma
);
3110 // Class Script_sections.
3112 Script_sections::Script_sections()
3113 : saw_sections_clause_(false),
3114 in_sections_clause_(false),
3115 sections_elements_(NULL
),
3116 output_section_(NULL
),
3117 memory_regions_(NULL
),
3118 phdrs_elements_(NULL
),
3119 orphan_section_placement_(NULL
),
3120 data_segment_align_start_(),
3121 saw_data_segment_align_(false),
3122 saw_relro_end_(false),
3123 saw_segment_start_expression_(false)
3127 // Start a SECTIONS clause.
3130 Script_sections::start_sections()
3132 gold_assert(!this->in_sections_clause_
&& this->output_section_
== NULL
);
3133 this->saw_sections_clause_
= true;
3134 this->in_sections_clause_
= true;
3135 if (this->sections_elements_
== NULL
)
3136 this->sections_elements_
= new Sections_elements
;
3139 // Finish a SECTIONS clause.
3142 Script_sections::finish_sections()
3144 gold_assert(this->in_sections_clause_
&& this->output_section_
== NULL
);
3145 this->in_sections_clause_
= false;
3148 // Add a symbol to be defined.
3151 Script_sections::add_symbol_assignment(const char* name
, size_t length
,
3152 Expression
* val
, bool provide
,
3155 if (this->output_section_
!= NULL
)
3156 this->output_section_
->add_symbol_assignment(name
, length
, val
,
3160 Sections_element
* p
= new Sections_element_assignment(name
, length
,
3163 this->sections_elements_
->push_back(p
);
3167 // Add an assignment to the special dot symbol.
3170 Script_sections::add_dot_assignment(Expression
* val
)
3172 if (this->output_section_
!= NULL
)
3173 this->output_section_
->add_dot_assignment(val
);
3176 // The GNU linker permits assignments to . to appears outside of
3177 // a SECTIONS clause, and treats it as appearing inside, so
3178 // sections_elements_ may be NULL here.
3179 if (this->sections_elements_
== NULL
)
3181 this->sections_elements_
= new Sections_elements
;
3182 this->saw_sections_clause_
= true;
3185 Sections_element
* p
= new Sections_element_dot_assignment(val
);
3186 this->sections_elements_
->push_back(p
);
3190 // Add an assertion.
3193 Script_sections::add_assertion(Expression
* check
, const char* message
,
3196 if (this->output_section_
!= NULL
)
3197 this->output_section_
->add_assertion(check
, message
, messagelen
);
3200 Sections_element
* p
= new Sections_element_assertion(check
, message
,
3202 this->sections_elements_
->push_back(p
);
3206 // Start processing entries for an output section.
3209 Script_sections::start_output_section(
3212 const Parser_output_section_header
* header
)
3214 Output_section_definition
* posd
= new Output_section_definition(name
,
3217 this->sections_elements_
->push_back(posd
);
3218 gold_assert(this->output_section_
== NULL
);
3219 this->output_section_
= posd
;
3222 // Stop processing entries for an output section.
3225 Script_sections::finish_output_section(
3226 const Parser_output_section_trailer
* trailer
)
3228 gold_assert(this->output_section_
!= NULL
);
3229 this->output_section_
->finish(trailer
);
3230 this->output_section_
= NULL
;
3233 // Add a data item to the current output section.
3236 Script_sections::add_data(int size
, bool is_signed
, Expression
* val
)
3238 gold_assert(this->output_section_
!= NULL
);
3239 this->output_section_
->add_data(size
, is_signed
, val
);
3242 // Add a fill value setting to the current output section.
3245 Script_sections::add_fill(Expression
* val
)
3247 gold_assert(this->output_section_
!= NULL
);
3248 this->output_section_
->add_fill(val
);
3251 // Add an input section specification to the current output section.
3254 Script_sections::add_input_section(const Input_section_spec
* spec
, bool keep
)
3256 gold_assert(this->output_section_
!= NULL
);
3257 this->output_section_
->add_input_section(spec
, keep
);
3260 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3261 // subsequent output sections may be relro.
3264 Script_sections::data_segment_align()
3266 if (this->saw_data_segment_align_
)
3267 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3268 gold_assert(!this->sections_elements_
->empty());
3269 Sections_elements::iterator p
= this->sections_elements_
->end();
3271 this->data_segment_align_start_
= p
;
3272 this->saw_data_segment_align_
= true;
3275 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3276 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3279 Script_sections::data_segment_relro_end()
3281 if (this->saw_relro_end_
)
3282 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3283 "in a linker script"));
3284 this->saw_relro_end_
= true;
3286 if (!this->saw_data_segment_align_
)
3287 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3290 Sections_elements::iterator p
= this->data_segment_align_start_
;
3291 for (++p
; p
!= this->sections_elements_
->end(); ++p
)
3292 (*p
)->set_is_relro();
3296 // Create any required sections.
3299 Script_sections::create_sections(Layout
* layout
)
3301 if (!this->saw_sections_clause_
)
3303 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3304 p
!= this->sections_elements_
->end();
3306 (*p
)->create_sections(layout
);
3309 // Add any symbols we are defining to the symbol table.
3312 Script_sections::add_symbols_to_table(Symbol_table
* symtab
)
3314 if (!this->saw_sections_clause_
)
3316 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3317 p
!= this->sections_elements_
->end();
3319 (*p
)->add_symbols_to_table(symtab
);
3322 // Finalize symbols and check assertions.
3325 Script_sections::finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
)
3327 if (!this->saw_sections_clause_
)
3329 uint64_t dot_value
= 0;
3330 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3331 p
!= this->sections_elements_
->end();
3333 (*p
)->finalize_symbols(symtab
, layout
, &dot_value
);
3336 // Return the name of the output section to use for an input file name
3337 // and section name.
3340 Script_sections::output_section_name(
3341 const char* file_name
,
3342 const char* section_name
,
3343 Output_section
*** output_section_slot
,
3344 Script_sections::Section_type
* psection_type
)
3346 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
3347 p
!= this->sections_elements_
->end();
3350 const char* ret
= (*p
)->output_section_name(file_name
, section_name
,
3351 output_section_slot
,
3356 // The special name /DISCARD/ means that the input section
3357 // should be discarded.
3358 if (strcmp(ret
, "/DISCARD/") == 0)
3360 *output_section_slot
= NULL
;
3361 *psection_type
= Script_sections::ST_NONE
;
3368 // If we couldn't find a mapping for the name, the output section
3369 // gets the name of the input section.
3371 *output_section_slot
= NULL
;
3372 *psection_type
= Script_sections::ST_NONE
;
3374 return section_name
;
3377 // Place a marker for an orphan output section into the SECTIONS
3381 Script_sections::place_orphan(Output_section
* os
)
3383 Orphan_section_placement
* osp
= this->orphan_section_placement_
;
3386 // Initialize the Orphan_section_placement structure.
3387 osp
= new Orphan_section_placement();
3388 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3389 p
!= this->sections_elements_
->end();
3391 (*p
)->orphan_section_init(osp
, p
);
3392 gold_assert(!this->sections_elements_
->empty());
3393 Sections_elements::iterator last
= this->sections_elements_
->end();
3395 osp
->last_init(last
);
3396 this->orphan_section_placement_
= osp
;
3399 Orphan_output_section
* orphan
= new Orphan_output_section(os
);
3401 // Look for where to put ORPHAN.
3402 Sections_elements::iterator
* where
;
3403 if (osp
->find_place(os
, &where
))
3405 if ((**where
)->is_relro())
3408 os
->clear_is_relro();
3410 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3411 // so that the next one goes after this one.
3412 Sections_elements::iterator p
= *where
;
3413 gold_assert(p
!= this->sections_elements_
->end());
3415 *where
= this->sections_elements_
->insert(p
, orphan
);
3419 os
->clear_is_relro();
3420 // We don't have a place to put this orphan section. Put it,
3421 // and all other sections like it, at the end, but before the
3422 // sections which always come at the end.
3423 Sections_elements::iterator last
= osp
->last_place();
3424 *where
= this->sections_elements_
->insert(last
, orphan
);
3428 // Set the addresses of all the output sections. Walk through all the
3429 // elements, tracking the dot symbol. Apply assignments which set
3430 // absolute symbol values, in case they are used when setting dot.
3431 // Fill in data statement values. As we find output sections, set the
3432 // address, set the address of all associated input sections, and
3433 // update dot. Return the segment which should hold the file header
3434 // and segment headers, if any.
3437 Script_sections::set_section_addresses(Symbol_table
* symtab
, Layout
* layout
)
3439 gold_assert(this->saw_sections_clause_
);
3441 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3442 // for our representation.
3443 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3444 p
!= this->sections_elements_
->end();
3447 Output_section_definition
* posd
;
3448 Section_constraint failed_constraint
= (*p
)->check_constraint(&posd
);
3449 if (failed_constraint
!= CONSTRAINT_NONE
)
3451 Sections_elements::iterator q
;
3452 for (q
= this->sections_elements_
->begin();
3453 q
!= this->sections_elements_
->end();
3458 if ((*q
)->alternate_constraint(posd
, failed_constraint
))
3463 if (q
== this->sections_elements_
->end())
3464 gold_error(_("no matching section constraint"));
3468 // Force the alignment of the first TLS section to be the maximum
3469 // alignment of all TLS sections.
3470 Output_section
* first_tls
= NULL
;
3471 uint64_t tls_align
= 0;
3472 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
3473 p
!= this->sections_elements_
->end();
3476 Output_section
* os
= (*p
)->get_output_section();
3477 if (os
!= NULL
&& (os
->flags() & elfcpp::SHF_TLS
) != 0)
3479 if (first_tls
== NULL
)
3481 if (os
->addralign() > tls_align
)
3482 tls_align
= os
->addralign();
3485 if (first_tls
!= NULL
)
3486 first_tls
->set_addralign(tls_align
);
3488 // For a relocatable link, we implicitly set dot to zero.
3489 uint64_t dot_value
= 0;
3490 uint64_t dot_alignment
= 0;
3491 uint64_t load_address
= 0;
3493 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3494 // to set section addresses. If the script has any SEGMENT_START
3495 // expression, we do not set the section addresses.
3496 bool use_tsection_options
=
3497 (!this->saw_segment_start_expression_
3498 && (parameters
->options().user_set_Ttext()
3499 || parameters
->options().user_set_Tdata()
3500 || parameters
->options().user_set_Tbss()));
3502 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3503 p
!= this->sections_elements_
->end();
3506 Output_section
* os
= (*p
)->get_output_section();
3508 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3509 // the special sections by names and doing dot assignments.
3510 if (use_tsection_options
3512 && (os
->flags() & elfcpp::SHF_ALLOC
) != 0)
3514 uint64_t new_dot_value
= dot_value
;
3516 if (parameters
->options().user_set_Ttext()
3517 && strcmp(os
->name(), ".text") == 0)
3518 new_dot_value
= parameters
->options().Ttext();
3519 else if (parameters
->options().user_set_Tdata()
3520 && strcmp(os
->name(), ".data") == 0)
3521 new_dot_value
= parameters
->options().Tdata();
3522 else if (parameters
->options().user_set_Tbss()
3523 && strcmp(os
->name(), ".bss") == 0)
3524 new_dot_value
= parameters
->options().Tbss();
3526 // Update dot and load address if necessary.
3527 if (new_dot_value
< dot_value
)
3528 gold_error(_("dot may not move backward"));
3529 else if (new_dot_value
!= dot_value
)
3531 dot_value
= new_dot_value
;
3532 load_address
= new_dot_value
;
3536 (*p
)->set_section_addresses(symtab
, layout
, &dot_value
, &dot_alignment
,
3540 if (this->phdrs_elements_
!= NULL
)
3542 for (Phdrs_elements::iterator p
= this->phdrs_elements_
->begin();
3543 p
!= this->phdrs_elements_
->end();
3545 (*p
)->eval_load_address(symtab
, layout
);
3548 return this->create_segments(layout
, dot_alignment
);
3551 // Sort the sections in order to put them into segments.
3553 class Sort_output_sections
3556 Sort_output_sections(const Script_sections::Sections_elements
* elements
)
3557 : elements_(elements
)
3561 operator()(const Output_section
* os1
, const Output_section
* os2
) const;
3565 script_compare(const Output_section
* os1
, const Output_section
* os2
) const;
3568 const Script_sections::Sections_elements
* elements_
;
3572 Sort_output_sections::operator()(const Output_section
* os1
,
3573 const Output_section
* os2
) const
3575 // Sort first by the load address.
3576 uint64_t lma1
= (os1
->has_load_address()
3577 ? os1
->load_address()
3579 uint64_t lma2
= (os2
->has_load_address()
3580 ? os2
->load_address()
3585 // Then sort by the virtual address.
3586 if (os1
->address() != os2
->address())
3587 return os1
->address() < os2
->address();
3589 // If the linker script says which of these sections is first, go
3590 // with what it says.
3591 int i
= this->script_compare(os1
, os2
);
3595 // Sort PROGBITS before NOBITS.
3596 bool nobits1
= os1
->type() == elfcpp::SHT_NOBITS
;
3597 bool nobits2
= os2
->type() == elfcpp::SHT_NOBITS
;
3598 if (nobits1
!= nobits2
)
3601 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3603 bool tls1
= (os1
->flags() & elfcpp::SHF_TLS
) != 0;
3604 bool tls2
= (os2
->flags() & elfcpp::SHF_TLS
) != 0;
3606 return nobits1
? tls1
: tls2
;
3608 // Sort non-NOLOAD before NOLOAD.
3609 if (os1
->is_noload() && !os2
->is_noload())
3611 if (!os1
->is_noload() && os2
->is_noload())
3614 // The sections seem practically identical. Sort by name to get a
3616 return os1
->name() < os2
->name();
3619 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3620 // if either OS1 or OS2 is not mentioned. This ensures that we keep
3621 // empty sections in the order in which they appear in a linker
3625 Sort_output_sections::script_compare(const Output_section
* os1
,
3626 const Output_section
* os2
) const
3628 if (this->elements_
== NULL
)
3631 bool found_os1
= false;
3632 bool found_os2
= false;
3633 for (Script_sections::Sections_elements::const_iterator
3634 p
= this->elements_
->begin();
3635 p
!= this->elements_
->end();
3638 if (os2
== (*p
)->get_output_section())
3644 else if (os1
== (*p
)->get_output_section())
3655 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3656 // We treat a section with the SHF_TLS flag set as taking up space
3657 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3658 // space for them in the file.
3661 Script_sections::is_bss_section(const Output_section
* os
)
3663 return (os
->type() == elfcpp::SHT_NOBITS
3664 && (os
->flags() & elfcpp::SHF_TLS
) == 0);
3667 // Return the size taken by the file header and the program headers.
3670 Script_sections::total_header_size(Layout
* layout
) const
3672 size_t segment_count
= layout
->segment_count();
3673 size_t file_header_size
;
3674 size_t segment_headers_size
;
3675 if (parameters
->target().get_size() == 32)
3677 file_header_size
= elfcpp::Elf_sizes
<32>::ehdr_size
;
3678 segment_headers_size
= segment_count
* elfcpp::Elf_sizes
<32>::phdr_size
;
3680 else if (parameters
->target().get_size() == 64)
3682 file_header_size
= elfcpp::Elf_sizes
<64>::ehdr_size
;
3683 segment_headers_size
= segment_count
* elfcpp::Elf_sizes
<64>::phdr_size
;
3688 return file_header_size
+ segment_headers_size
;
3691 // Return the amount we have to subtract from the LMA to accommodate
3692 // headers of the given size. The complication is that the file
3693 // header have to be at the start of a page, as otherwise it will not
3694 // be at the start of the file.
3697 Script_sections::header_size_adjustment(uint64_t lma
,
3698 size_t sizeof_headers
) const
3700 const uint64_t abi_pagesize
= parameters
->target().abi_pagesize();
3701 uint64_t hdr_lma
= lma
- sizeof_headers
;
3702 hdr_lma
&= ~(abi_pagesize
- 1);
3703 return lma
- hdr_lma
;
3706 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3707 // the segment which should hold the file header and segment headers,
3711 Script_sections::create_segments(Layout
* layout
, uint64_t dot_alignment
)
3713 gold_assert(this->saw_sections_clause_
);
3715 if (parameters
->options().relocatable())
3718 if (this->saw_phdrs_clause())
3719 return create_segments_from_phdrs_clause(layout
, dot_alignment
);
3721 Layout::Section_list sections
;
3722 layout
->get_allocated_sections(§ions
);
3724 // Sort the sections by address.
3725 std::stable_sort(sections
.begin(), sections
.end(),
3726 Sort_output_sections(this->sections_elements_
));
3728 this->create_note_and_tls_segments(layout
, §ions
);
3730 // Walk through the sections adding them to PT_LOAD segments.
3731 const uint64_t abi_pagesize
= parameters
->target().abi_pagesize();
3732 Output_segment
* first_seg
= NULL
;
3733 Output_segment
* current_seg
= NULL
;
3734 bool is_current_seg_readonly
= true;
3735 Layout::Section_list::iterator plast
= sections
.end();
3736 uint64_t last_vma
= 0;
3737 uint64_t last_lma
= 0;
3738 uint64_t last_size
= 0;
3739 for (Layout::Section_list::iterator p
= sections
.begin();
3740 p
!= sections
.end();
3743 const uint64_t vma
= (*p
)->address();
3744 const uint64_t lma
= ((*p
)->has_load_address()
3745 ? (*p
)->load_address()
3747 const uint64_t size
= (*p
)->current_data_size();
3749 bool need_new_segment
;
3750 if (current_seg
== NULL
)
3751 need_new_segment
= true;
3752 else if (lma
- vma
!= last_lma
- last_vma
)
3754 // This section has a different LMA relationship than the
3755 // last one; we need a new segment.
3756 need_new_segment
= true;
3758 else if (align_address(last_lma
+ last_size
, abi_pagesize
)
3759 < align_address(lma
, abi_pagesize
))
3761 // Putting this section in the segment would require
3763 need_new_segment
= true;
3765 else if (is_bss_section(*plast
) && !is_bss_section(*p
))
3767 // A non-BSS section can not follow a BSS section in the
3769 need_new_segment
= true;
3771 else if (is_current_seg_readonly
3772 && ((*p
)->flags() & elfcpp::SHF_WRITE
) != 0
3773 && !parameters
->options().omagic())
3775 // Don't put a writable section in the same segment as a
3776 // non-writable section.
3777 need_new_segment
= true;
3781 // Otherwise, reuse the existing segment.
3782 need_new_segment
= false;
3785 elfcpp::Elf_Word seg_flags
=
3786 Layout::section_flags_to_segment((*p
)->flags());
3788 if (need_new_segment
)
3790 current_seg
= layout
->make_output_segment(elfcpp::PT_LOAD
,
3792 current_seg
->set_addresses(vma
, lma
);
3793 current_seg
->set_minimum_p_align(dot_alignment
);
3794 if (first_seg
== NULL
)
3795 first_seg
= current_seg
;
3796 is_current_seg_readonly
= true;
3799 current_seg
->add_output_section_to_load(layout
, *p
, seg_flags
);
3801 if (((*p
)->flags() & elfcpp::SHF_WRITE
) != 0)
3802 is_current_seg_readonly
= false;
3810 // An ELF program should work even if the program headers are not in
3811 // a PT_LOAD segment. However, it appears that the Linux kernel
3812 // does not set the AT_PHDR auxiliary entry in that case. It sets
3813 // the load address to p_vaddr - p_offset of the first PT_LOAD
3814 // segment. It then sets AT_PHDR to the load address plus the
3815 // offset to the program headers, e_phoff in the file header. This
3816 // fails when the program headers appear in the file before the
3817 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3818 // segment to hold the file header and the program headers. This is
3819 // effectively what the GNU linker does, and it is slightly more
3820 // efficient in any case. We try to use the first PT_LOAD segment
3821 // if we can, otherwise we make a new one.
3823 if (first_seg
== NULL
)
3826 // -n or -N mean that the program is not demand paged and there is
3827 // no need to put the program headers in a PT_LOAD segment.
3828 if (parameters
->options().nmagic() || parameters
->options().omagic())
3831 size_t sizeof_headers
= this->total_header_size(layout
);
3833 uint64_t vma
= first_seg
->vaddr();
3834 uint64_t lma
= first_seg
->paddr();
3836 uint64_t subtract
= this->header_size_adjustment(lma
, sizeof_headers
);
3838 if ((lma
& (abi_pagesize
- 1)) >= sizeof_headers
)
3840 first_seg
->set_addresses(vma
- subtract
, lma
- subtract
);
3844 // If there is no room to squeeze in the headers, then punt. The
3845 // resulting executable probably won't run on GNU/Linux, but we
3846 // trust that the user knows what they are doing.
3847 if (lma
< subtract
|| vma
< subtract
)
3850 // If memory regions have been specified and the address range
3851 // we are about to use is not contained within any region then
3852 // issue a warning message about the segment we are going to
3853 // create. It will be outside of any region and so possibly
3854 // using non-existent or protected memory. We test LMA rather
3855 // than VMA since we assume that the headers will never be
3857 if (this->memory_regions_
!= NULL
3858 && !this->block_in_region (NULL
, layout
, lma
- subtract
, subtract
))
3859 gold_warning(_("creating a segment to contain the file and program"
3860 " headers outside of any MEMORY region"));
3862 Output_segment
* load_seg
= layout
->make_output_segment(elfcpp::PT_LOAD
,
3864 load_seg
->set_addresses(vma
- subtract
, lma
- subtract
);
3869 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3870 // segment if there are any SHT_TLS sections.
3873 Script_sections::create_note_and_tls_segments(
3875 const Layout::Section_list
* sections
)
3877 gold_assert(!this->saw_phdrs_clause());
3879 bool saw_tls
= false;
3880 for (Layout::Section_list::const_iterator p
= sections
->begin();
3881 p
!= sections
->end();
3884 if ((*p
)->type() == elfcpp::SHT_NOTE
)
3886 elfcpp::Elf_Word seg_flags
=
3887 Layout::section_flags_to_segment((*p
)->flags());
3888 Output_segment
* oseg
= layout
->make_output_segment(elfcpp::PT_NOTE
,
3890 oseg
->add_output_section_to_nonload(*p
, seg_flags
);
3892 // Incorporate any subsequent SHT_NOTE sections, in the
3893 // hopes that the script is sensible.
3894 Layout::Section_list::const_iterator pnext
= p
+ 1;
3895 while (pnext
!= sections
->end()
3896 && (*pnext
)->type() == elfcpp::SHT_NOTE
)
3898 seg_flags
= Layout::section_flags_to_segment((*pnext
)->flags());
3899 oseg
->add_output_section_to_nonload(*pnext
, seg_flags
);
3905 if (((*p
)->flags() & elfcpp::SHF_TLS
) != 0)
3908 gold_error(_("TLS sections are not adjacent"));
3910 elfcpp::Elf_Word seg_flags
=
3911 Layout::section_flags_to_segment((*p
)->flags());
3912 Output_segment
* oseg
= layout
->make_output_segment(elfcpp::PT_TLS
,
3914 oseg
->add_output_section_to_nonload(*p
, seg_flags
);
3916 Layout::Section_list::const_iterator pnext
= p
+ 1;
3917 while (pnext
!= sections
->end()
3918 && ((*pnext
)->flags() & elfcpp::SHF_TLS
) != 0)
3920 seg_flags
= Layout::section_flags_to_segment((*pnext
)->flags());
3921 oseg
->add_output_section_to_nonload(*pnext
, seg_flags
);
3931 // Add a program header. The PHDRS clause is syntactically distinct
3932 // from the SECTIONS clause, but we implement it with the SECTIONS
3933 // support because PHDRS is useless if there is no SECTIONS clause.
3936 Script_sections::add_phdr(const char* name
, size_t namelen
, unsigned int type
,
3937 bool includes_filehdr
, bool includes_phdrs
,
3938 bool is_flags_valid
, unsigned int flags
,
3939 Expression
* load_address
)
3941 if (this->phdrs_elements_
== NULL
)
3942 this->phdrs_elements_
= new Phdrs_elements();
3943 this->phdrs_elements_
->push_back(new Phdrs_element(name
, namelen
, type
,
3946 is_flags_valid
, flags
,
3950 // Return the number of segments we expect to create based on the
3951 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
3954 Script_sections::expected_segment_count(const Layout
* layout
) const
3956 if (this->saw_phdrs_clause())
3957 return this->phdrs_elements_
->size();
3959 Layout::Section_list sections
;
3960 layout
->get_allocated_sections(§ions
);
3962 // We assume that we will need two PT_LOAD segments.
3965 bool saw_note
= false;
3966 bool saw_tls
= false;
3967 for (Layout::Section_list::const_iterator p
= sections
.begin();
3968 p
!= sections
.end();
3971 if ((*p
)->type() == elfcpp::SHT_NOTE
)
3973 // Assume that all note sections will fit into a single
3981 else if (((*p
)->flags() & elfcpp::SHF_TLS
) != 0)
3983 // There can only be one PT_TLS segment.
3995 // Create the segments from a PHDRS clause. Return the segment which
3996 // should hold the file header and program headers, if any.
3999 Script_sections::create_segments_from_phdrs_clause(Layout
* layout
,
4000 uint64_t dot_alignment
)
4002 this->attach_sections_using_phdrs_clause(layout
);
4003 return this->set_phdrs_clause_addresses(layout
, dot_alignment
);
4006 // Create the segments from the PHDRS clause, and put the output
4007 // sections in them.
4010 Script_sections::attach_sections_using_phdrs_clause(Layout
* layout
)
4012 typedef std::map
<std::string
, Output_segment
*> Name_to_segment
;
4013 Name_to_segment name_to_segment
;
4014 for (Phdrs_elements::const_iterator p
= this->phdrs_elements_
->begin();
4015 p
!= this->phdrs_elements_
->end();
4017 name_to_segment
[(*p
)->name()] = (*p
)->create_segment(layout
);
4019 // Walk through the output sections and attach them to segments.
4020 // Output sections in the script which do not list segments are
4021 // attached to the same set of segments as the immediately preceding
4024 String_list
* phdr_names
= NULL
;
4025 bool load_segments_only
= false;
4026 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
4027 p
!= this->sections_elements_
->end();
4031 String_list
* old_phdr_names
= phdr_names
;
4032 Output_section
* os
= (*p
)->allocate_to_segment(&phdr_names
, &orphan
);
4036 if (phdr_names
== NULL
)
4038 gold_error(_("allocated section not in any segment"));
4042 // We see a list of segments names. Disable PT_LOAD segment only
4044 if (old_phdr_names
!= phdr_names
)
4045 load_segments_only
= false;
4047 // If this is an orphan section--one that was not explicitly
4048 // mentioned in the linker script--then it should not inherit
4049 // any segment type other than PT_LOAD. Otherwise, e.g., the
4050 // PT_INTERP segment will pick up following orphan sections,
4051 // which does not make sense. If this is not an orphan section,
4052 // we trust the linker script.
4055 // Enable PT_LOAD segments only filtering until we see another
4056 // list of segment names.
4057 load_segments_only
= true;
4060 bool in_load_segment
= false;
4061 for (String_list::const_iterator q
= phdr_names
->begin();
4062 q
!= phdr_names
->end();
4065 Name_to_segment::const_iterator r
= name_to_segment
.find(*q
);
4066 if (r
== name_to_segment
.end())
4067 gold_error(_("no segment %s"), q
->c_str());
4070 if (load_segments_only
4071 && r
->second
->type() != elfcpp::PT_LOAD
)
4074 elfcpp::Elf_Word seg_flags
=
4075 Layout::section_flags_to_segment(os
->flags());
4077 if (r
->second
->type() != elfcpp::PT_LOAD
)
4078 r
->second
->add_output_section_to_nonload(os
, seg_flags
);
4081 r
->second
->add_output_section_to_load(layout
, os
, seg_flags
);
4082 if (in_load_segment
)
4083 gold_error(_("section in two PT_LOAD segments"));
4084 in_load_segment
= true;
4089 if (!in_load_segment
)
4090 gold_error(_("allocated section not in any PT_LOAD segment"));
4094 // Set the addresses for segments created from a PHDRS clause. Return
4095 // the segment which should hold the file header and program headers,
4099 Script_sections::set_phdrs_clause_addresses(Layout
* layout
,
4100 uint64_t dot_alignment
)
4102 Output_segment
* load_seg
= NULL
;
4103 for (Phdrs_elements::const_iterator p
= this->phdrs_elements_
->begin();
4104 p
!= this->phdrs_elements_
->end();
4107 // Note that we have to set the flags after adding the output
4108 // sections to the segment, as adding an output segment can
4109 // change the flags.
4110 (*p
)->set_flags_if_valid();
4112 Output_segment
* oseg
= (*p
)->segment();
4114 if (oseg
->type() != elfcpp::PT_LOAD
)
4116 // The addresses of non-PT_LOAD segments are set from the
4117 // PT_LOAD segments.
4118 if ((*p
)->has_load_address())
4119 gold_error(_("may only specify load address for PT_LOAD segment"));
4123 oseg
->set_minimum_p_align(dot_alignment
);
4125 // The output sections should have addresses from the SECTIONS
4126 // clause. The addresses don't have to be in order, so find the
4127 // one with the lowest load address. Use that to set the
4128 // address of the segment.
4130 Output_section
* osec
= oseg
->section_with_lowest_load_address();
4133 oseg
->set_addresses(0, 0);
4137 uint64_t vma
= osec
->address();
4138 uint64_t lma
= osec
->has_load_address() ? osec
->load_address() : vma
;
4140 // Override the load address of the section with the load
4141 // address specified for the segment.
4142 if ((*p
)->has_load_address())
4144 if (osec
->has_load_address())
4145 gold_warning(_("PHDRS load address overrides "
4146 "section %s load address"),
4149 lma
= (*p
)->load_address();
4152 bool headers
= (*p
)->includes_filehdr() && (*p
)->includes_phdrs();
4153 if (!headers
&& ((*p
)->includes_filehdr() || (*p
)->includes_phdrs()))
4155 // We could support this if we wanted to.
4156 gold_error(_("using only one of FILEHDR and PHDRS is "
4157 "not currently supported"));
4161 size_t sizeof_headers
= this->total_header_size(layout
);
4162 uint64_t subtract
= this->header_size_adjustment(lma
,
4164 if (lma
>= subtract
&& vma
>= subtract
)
4171 gold_error(_("sections loaded on first page without room "
4172 "for file and program headers "
4173 "are not supported"));
4176 if (load_seg
!= NULL
)
4177 gold_error(_("using FILEHDR and PHDRS on more than one "
4178 "PT_LOAD segment is not currently supported"));
4182 oseg
->set_addresses(vma
, lma
);
4188 // Add the file header and segment headers to non-load segments
4189 // specified in the PHDRS clause.
4192 Script_sections::put_headers_in_phdrs(Output_data
* file_header
,
4193 Output_data
* segment_headers
)
4195 gold_assert(this->saw_phdrs_clause());
4196 for (Phdrs_elements::iterator p
= this->phdrs_elements_
->begin();
4197 p
!= this->phdrs_elements_
->end();
4200 if ((*p
)->type() != elfcpp::PT_LOAD
)
4202 if ((*p
)->includes_phdrs())
4203 (*p
)->segment()->add_initial_output_data(segment_headers
);
4204 if ((*p
)->includes_filehdr())
4205 (*p
)->segment()->add_initial_output_data(file_header
);
4210 // Look for an output section by name and return the address, the load
4211 // address, the alignment, and the size. This is used when an
4212 // expression refers to an output section which was not actually
4213 // created. This returns true if the section was found, false
4217 Script_sections::get_output_section_info(const char* name
, uint64_t* address
,
4218 uint64_t* load_address
,
4219 uint64_t* addralign
,
4220 uint64_t* size
) const
4222 if (!this->saw_sections_clause_
)
4224 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
4225 p
!= this->sections_elements_
->end();
4227 if ((*p
)->get_output_section_info(name
, address
, load_address
, addralign
,
4233 // Release all Output_segments. This remove all pointers to all
4237 Script_sections::release_segments()
4239 if (this->saw_phdrs_clause())
4241 for (Phdrs_elements::const_iterator p
= this->phdrs_elements_
->begin();
4242 p
!= this->phdrs_elements_
->end();
4244 (*p
)->release_segment();
4248 // Print the SECTIONS clause to F for debugging.
4251 Script_sections::print(FILE* f
) const
4253 if (this->phdrs_elements_
!= NULL
)
4255 fprintf(f
, "PHDRS {\n");
4256 for (Phdrs_elements::const_iterator p
= this->phdrs_elements_
->begin();
4257 p
!= this->phdrs_elements_
->end();
4263 if (this->memory_regions_
!= NULL
)
4265 fprintf(f
, "MEMORY {\n");
4266 for (Memory_regions::const_iterator m
= this->memory_regions_
->begin();
4267 m
!= this->memory_regions_
->end();
4273 if (!this->saw_sections_clause_
)
4276 fprintf(f
, "SECTIONS {\n");
4278 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
4279 p
!= this->sections_elements_
->end();
4286 } // End namespace gold.