Add support for storing local symbols in a small structure to save
[binutils.git] / gas / config / tc-d30v.c
blob8e93f2ad446a22b3d5c707755ed13880bd763359
1 /* tc-d30v.c -- Assembler code for the Mitsubishi D30V
3 Copyright (C) 1997, 1998, 1999 Free Software Foundation.
5 This file is part of GAS, the GNU Assembler.
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <stdio.h>
23 #include <ctype.h>
24 #include "as.h"
25 #include "subsegs.h"
26 #include "opcode/d30v.h"
28 const char comment_chars[] = ";";
29 const char line_comment_chars[] = "#";
30 const char line_separator_chars[] = "";
31 const char *md_shortopts = "OnNcC";
32 const char EXP_CHARS[] = "eE";
33 const char FLT_CHARS[] = "dD";
35 #define NOP_MULTIPLY 1
36 #define NOP_ALL 2
37 static int warn_nops = 0;
38 static int Optimizing = 0;
39 static int warn_register_name_conflicts = 1;
41 #define FORCE_SHORT 1
42 #define FORCE_LONG 2
44 /* EXEC types. */
45 typedef enum _exec_type
47 EXEC_UNKNOWN, /* no order specified */
48 EXEC_PARALLEL, /* done in parallel (FM=00) */
49 EXEC_SEQ, /* sequential (FM=01) */
50 EXEC_REVSEQ /* reverse sequential (FM=10) */
51 } exec_type_enum;
53 /* fixups */
54 #define MAX_INSN_FIXUPS (5)
55 struct d30v_fixup
57 expressionS exp;
58 int operand;
59 int pcrel;
60 int size;
61 bfd_reloc_code_real_type reloc;
64 typedef struct _fixups
66 int fc;
67 struct d30v_fixup fix[MAX_INSN_FIXUPS];
68 struct _fixups *next;
69 } Fixups;
71 static Fixups FixUps[2];
72 static Fixups *fixups;
74 /* Whether current and previous instruction are word multiply insns. */
75 static int cur_mul32_p = 0;
76 static int prev_mul32_p = 0;
78 /* The flag_explicitly_parallel is true iff the instruction being assembled
79 has been explicitly written as a parallel short-instruction pair by the
80 human programmer. It is used in parallel_ok() to distinguish between
81 those dangerous parallelizations attempted by the human, which are to be
82 allowed, and those attempted by the assembler, which are not. It is set
83 from md_assemble(). */
84 static int flag_explicitly_parallel = 0;
85 static int flag_xp_state = 0;
87 /* Whether current and previous left sub-instruction disables
88 execution of right sub-instruction. */
89 static int cur_left_kills_right_p = 0;
90 static int prev_left_kills_right_p = 0;
92 /* The known current alignment of the current section. */
93 static int d30v_current_align;
94 static segT d30v_current_align_seg;
96 /* The last seen label in the current section. This is used to auto-align
97 labels preceeding instructions. */
98 static symbolS *d30v_last_label;
100 /* Two nops */
101 #define NOP_LEFT ((long long) NOP << 32)
102 #define NOP_RIGHT ((long long) NOP)
103 #define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT)
105 /* local functions */
106 static int reg_name_search PARAMS ((char *name));
107 static int register_name PARAMS ((expressionS *expressionP));
108 static int check_range PARAMS ((unsigned long num, int bits, int flags));
109 static int postfix PARAMS ((char *p));
110 static bfd_reloc_code_real_type get_reloc PARAMS ((struct d30v_operand *op, int rel_flag));
111 static int get_operands PARAMS ((expressionS exp[], int cmp_hack));
112 static struct d30v_format *find_format PARAMS ((struct d30v_opcode *opcode,
113 expressionS ops[],int fsize, int cmp_hack));
114 static long long build_insn PARAMS ((struct d30v_insn *opcode, expressionS *opers));
115 static void write_long PARAMS ((struct d30v_insn *opcode, long long insn, Fixups *fx));
116 static void write_1_short PARAMS ((struct d30v_insn *opcode, long long insn,
117 Fixups *fx, int use_sequential));
118 static int write_2_short PARAMS ((struct d30v_insn *opcode1, long long insn1,
119 struct d30v_insn *opcode2, long long insn2, exec_type_enum exec_type, Fixups *fx));
120 static long long do_assemble PARAMS ((char *str, struct d30v_insn *opcode,
121 int shortp, int is_parallel));
122 static int parallel_ok PARAMS ((struct d30v_insn *opcode1, unsigned long insn1,
123 struct d30v_insn *opcode2, unsigned long insn2,
124 exec_type_enum exec_type));
125 static void d30v_number_to_chars PARAMS ((char *buf, long long value, int nbytes));
126 static void check_size PARAMS ((long value, int bits, char *file, int line));
127 static void d30v_align PARAMS ((int, char *, symbolS *));
128 static void s_d30v_align PARAMS ((int));
129 static void s_d30v_text PARAMS ((int));
130 static void s_d30v_data PARAMS ((int));
131 static void s_d30v_section PARAMS ((int));
133 struct option md_longopts[] = {
134 {NULL, no_argument, NULL, 0}
136 size_t md_longopts_size = sizeof(md_longopts);
139 /* The target specific pseudo-ops which we support. */
140 const pseudo_typeS md_pseudo_table[] =
142 { "word", cons, 4 },
143 { "hword", cons, 2 },
144 { "align", s_d30v_align, 0 },
145 { "text", s_d30v_text, 0 },
146 { "data", s_d30v_data, 0 },
147 { "section", s_d30v_section, 0 },
148 { "section.s", s_d30v_section, 0 },
149 { "sect", s_d30v_section, 0 },
150 { "sect.s", s_d30v_section, 0 },
151 { NULL, NULL, 0 }
154 /* Opcode hash table. */
155 static struct hash_control *d30v_hash;
157 /* reg_name_search does a binary search of the pre_defined_registers
158 array to see if "name" is a valid regiter name. Returns the register
159 number from the array on success, or -1 on failure. */
161 static int
162 reg_name_search (name)
163 char *name;
165 int middle, low, high;
166 int cmp;
168 low = 0;
169 high = reg_name_cnt () - 1;
173 middle = (low + high) / 2;
174 cmp = strcasecmp (name, pre_defined_registers[middle].name);
175 if (cmp < 0)
176 high = middle - 1;
177 else if (cmp > 0)
178 low = middle + 1;
179 else
181 if (symbol_find (name) != NULL)
183 if (warn_register_name_conflicts)
184 as_warn (_("Register name %s conflicts with symbol of the same name"),
185 name);
188 return pre_defined_registers[middle].value;
191 while (low <= high);
193 return -1;
196 /* register_name() checks the string at input_line_pointer
197 to see if it is a valid register name. */
199 static int
200 register_name (expressionP)
201 expressionS *expressionP;
203 int reg_number;
204 char c, *p = input_line_pointer;
206 while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')')
207 p++;
209 c = *p;
210 if (c)
211 *p++ = 0;
213 /* look to see if it's in the register table */
214 reg_number = reg_name_search (input_line_pointer);
215 if (reg_number >= 0)
217 expressionP->X_op = O_register;
218 /* temporarily store a pointer to the string here */
219 expressionP->X_op_symbol = (symbolS *)input_line_pointer;
220 expressionP->X_add_number = reg_number;
221 input_line_pointer = p;
222 return 1;
224 if (c)
225 *(p-1) = c;
226 return 0;
230 static int
231 check_range (num, bits, flags)
232 unsigned long num;
233 int bits;
234 int flags;
236 long min, max;
237 int retval=0;
239 /* don't bother checking 32-bit values */
240 if (bits == 32)
241 return 0;
243 if (flags & OPERAND_SHIFT)
245 /* We know that all shifts are right by three bits.... */
247 if (flags & OPERAND_SIGNED)
248 num = (unsigned long) (((/*signed*/ long) num) >> 3);
249 else
250 num >>= 3;
253 if (flags & OPERAND_SIGNED)
255 max = (1 << (bits - 1))-1;
256 min = - (1 << (bits - 1));
257 if (((long)num > max) || ((long)num < min))
258 retval = 1;
260 else
262 max = (1 << bits) - 1;
263 min = 0;
264 if ((num > max) || (num < min))
265 retval = 1;
268 return retval;
272 void
273 md_show_usage (stream)
274 FILE *stream;
276 fprintf (stream, _("\nD30V options:\n\
277 -O Make adjacent short instructions parallel if possible.\n\
278 -n Warn about all NOPs inserted by the assembler.\n\
279 -N Warn about NOPs inserted after word multiplies.\n\
280 -c Warn about symbols whoes names match register names.\n\
281 -C Opposite of -C. -c is the default.\n"));
285 md_parse_option (c, arg)
286 int c;
287 char *arg;
289 switch (c)
291 /* Optimize. Will attempt to parallelize operations */
292 case 'O':
293 Optimizing = 1;
294 break;
296 /* Warn about all NOPS that the assembler inserts. */
297 case 'n':
298 warn_nops = NOP_ALL;
299 break;
301 /* Warn about the NOPS that the assembler inserts because of the
302 multiply hazard. */
303 case 'N':
304 warn_nops = NOP_MULTIPLY;
305 break;
307 case 'c':
308 warn_register_name_conflicts = 1;
309 break;
311 case 'C':
312 warn_register_name_conflicts = 0;
313 break;
315 default:
316 return 0;
318 return 1;
321 symbolS *
322 md_undefined_symbol (name)
323 char *name;
325 return 0;
328 /* Turn a string in input_line_pointer into a floating point constant of type
329 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
330 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
332 char *
333 md_atof (type, litP, sizeP)
334 int type;
335 char *litP;
336 int *sizeP;
338 int prec;
339 LITTLENUM_TYPE words[4];
340 char *t;
341 int i;
343 switch (type)
345 case 'f':
346 prec = 2;
347 break;
348 case 'd':
349 prec = 4;
350 break;
351 default:
352 *sizeP = 0;
353 return _("bad call to md_atof");
356 t = atof_ieee (input_line_pointer, type, words);
357 if (t)
358 input_line_pointer = t;
360 *sizeP = prec * 2;
362 for (i = 0; i < prec; i++)
364 md_number_to_chars (litP, (valueT) words[i], 2);
365 litP += 2;
367 return NULL;
370 void
371 md_convert_frag (abfd, sec, fragP)
372 bfd *abfd;
373 asection *sec;
374 fragS *fragP;
376 abort ();
379 valueT
380 md_section_align (seg, addr)
381 asection *seg;
382 valueT addr;
384 int align = bfd_get_section_alignment (stdoutput, seg);
385 return ((addr + (1 << align) - 1) & (-1 << align));
389 void
390 md_begin ()
392 struct d30v_opcode * opcode;
393 d30v_hash = hash_new ();
395 /* Insert opcode names into a hash table. */
396 for (opcode = (struct d30v_opcode *)d30v_opcode_table; opcode->name; opcode++)
397 hash_insert (d30v_hash, opcode->name, (char *) opcode);
399 fixups = &FixUps[0];
400 FixUps[0].next = &FixUps[1];
401 FixUps[1].next = &FixUps[0];
403 d30v_current_align_seg = now_seg;
407 /* this function removes the postincrement or postdecrement
408 operator ( '+' or '-' ) from an expression */
410 static int postfix (p)
411 char *p;
413 while (*p != '-' && *p != '+')
415 if (*p==0 || *p=='\n' || *p=='\r' || *p==' ' || *p==',')
416 break;
417 p++;
420 if (*p == '-')
422 *p = ' ';
423 return (-1);
425 if (*p == '+')
427 *p = ' ';
428 return (1);
431 return (0);
435 static bfd_reloc_code_real_type
436 get_reloc (op, rel_flag)
437 struct d30v_operand *op;
438 int rel_flag;
440 switch (op->bits)
442 case 6:
443 if (op->flags & OPERAND_SHIFT)
444 return BFD_RELOC_D30V_9_PCREL;
445 else
446 return BFD_RELOC_D30V_6;
447 break;
448 case 12:
449 if (!(op->flags & OPERAND_SHIFT))
450 as_warn (_("unexpected 12-bit reloc type"));
451 if (rel_flag == RELOC_PCREL)
452 return BFD_RELOC_D30V_15_PCREL;
453 else
454 return BFD_RELOC_D30V_15;
455 case 18:
456 if (!(op->flags & OPERAND_SHIFT))
457 as_warn (_("unexpected 18-bit reloc type"));
458 if (rel_flag == RELOC_PCREL)
459 return BFD_RELOC_D30V_21_PCREL;
460 else
461 return BFD_RELOC_D30V_21;
462 case 32:
463 if (rel_flag == RELOC_PCREL)
464 return BFD_RELOC_D30V_32_PCREL;
465 else
466 return BFD_RELOC_D30V_32;
467 default:
468 return 0;
472 /* get_operands parses a string of operands and returns
473 an array of expressions */
475 static int
476 get_operands (exp, cmp_hack)
477 expressionS exp[];
478 int cmp_hack;
480 char *p = input_line_pointer;
481 int numops = 0;
482 int post = 0;
484 if (cmp_hack)
486 exp[numops].X_op = O_absent;
487 exp[numops++].X_add_number = cmp_hack - 1;
490 while (*p)
492 while (*p == ' ' || *p == '\t' || *p == ',')
493 p++;
494 if (*p==0 || *p=='\n' || *p=='\r')
495 break;
497 if (*p == '@')
499 p++;
500 exp[numops].X_op = O_absent;
501 if (*p == '(')
503 p++;
504 exp[numops].X_add_number = OPERAND_ATPAR;
505 post = postfix (p);
507 else if (*p == '-')
509 p++;
510 exp[numops].X_add_number = OPERAND_ATMINUS;
512 else
514 exp[numops].X_add_number = OPERAND_ATSIGN;
515 post = postfix (p);
517 numops++;
518 continue;
521 if (*p == ')')
523 /* just skip the trailing paren */
524 p++;
525 continue;
528 input_line_pointer = p;
530 /* check to see if it might be a register name */
531 if (!register_name (&exp[numops]))
533 /* parse as an expression */
534 expression (&exp[numops]);
537 if (exp[numops].X_op == O_illegal)
538 as_bad (_("illegal operand"));
539 else if (exp[numops].X_op == O_absent)
540 as_bad (_("missing operand"));
542 numops++;
543 p = input_line_pointer;
545 switch (post)
547 case -1: /* postdecrement mode */
548 exp[numops].X_op = O_absent;
549 exp[numops++].X_add_number = OPERAND_MINUS;
550 break;
551 case 1: /* postincrement mode */
552 exp[numops].X_op = O_absent;
553 exp[numops++].X_add_number = OPERAND_PLUS;
554 break;
556 post = 0;
559 exp[numops].X_op = 0;
560 return (numops);
563 /* build_insn generates the instruction. It does everything */
564 /* but write the FM bits. */
566 static long long
567 build_insn (opcode, opers)
568 struct d30v_insn *opcode;
569 expressionS *opers;
571 int i, length, bits, shift, flags;
572 unsigned int number, id=0;
573 long long insn;
574 struct d30v_opcode *op = opcode->op;
575 struct d30v_format *form = opcode->form;
577 insn = opcode->ecc << 28 | op->op1 << 25 | op->op2 << 20 | form->modifier << 18;
579 for (i=0; form->operands[i]; i++)
581 flags = d30v_operand_table[form->operands[i]].flags;
583 /* must be a register or number */
584 if (!(flags & OPERAND_REG) && !(flags & OPERAND_NUM) &&
585 !(flags & OPERAND_NAME) && !(flags & OPERAND_SPECIAL))
586 continue;
588 bits = d30v_operand_table[form->operands[i]].bits;
589 if (flags & OPERAND_SHIFT)
590 bits += 3;
592 length = d30v_operand_table[form->operands[i]].length;
593 shift = 12 - d30v_operand_table[form->operands[i]].position;
594 if (opers[i].X_op != O_symbol)
595 number = opers[i].X_add_number;
596 else
597 number = 0;
598 if (flags & OPERAND_REG)
600 /* check for mvfsys or mvtsys control registers */
601 if (flags & OPERAND_CONTROL && (number & 0x7f) > MAX_CONTROL_REG)
603 /* PSWL or PSWH */
604 id = (number & 0x7f) - MAX_CONTROL_REG;
605 number = 0;
607 else if (number & OPERAND_FLAG)
609 id = 3; /* number is a flag register */
611 number &= 0x7F;
613 else if (flags & OPERAND_SPECIAL)
615 number = id;
618 if (opers[i].X_op != O_register && opers[i].X_op != O_constant && !(flags & OPERAND_NAME))
620 /* now create a fixup */
622 if (fixups->fc >= MAX_INSN_FIXUPS)
623 as_fatal (_("too many fixups"));
625 fixups->fix[fixups->fc].reloc =
626 get_reloc ((struct d30v_operand *)&d30v_operand_table[form->operands[i]], op->reloc_flag);
627 fixups->fix[fixups->fc].size = 4;
628 fixups->fix[fixups->fc].exp = opers[i];
629 fixups->fix[fixups->fc].operand = form->operands[i];
630 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_D30V_9_PCREL)
631 fixups->fix[fixups->fc].pcrel = RELOC_PCREL;
632 else
633 fixups->fix[fixups->fc].pcrel = op->reloc_flag;
634 (fixups->fc)++;
637 /* truncate to the proper number of bits */
638 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
639 as_bad (_("operand out of range: %d"),number);
640 if (bits < 31)
641 number &= 0x7FFFFFFF >> (31 - bits);
642 if (flags & OPERAND_SHIFT)
643 number >>= 3;
644 if (bits == 32)
646 /* it's a LONG instruction */
647 insn |= (number >> 26); /* top 6 bits */
648 insn <<= 32; /* shift the first word over */
649 insn |= ((number & 0x03FC0000) << 2); /* next 8 bits */
650 insn |= number & 0x0003FFFF; /* bottom 18 bits */
652 else
653 insn |= number << shift;
655 return insn;
659 /* write out a long form instruction */
660 static void
661 write_long (opcode, insn, fx)
662 struct d30v_insn *opcode;
663 long long insn;
664 Fixups *fx;
666 int i, where;
667 char *f = frag_more (8);
669 insn |= FM11;
670 d30v_number_to_chars (f, insn, 8);
672 for (i=0; i < fx->fc; i++)
674 if (fx->fix[i].reloc)
676 where = f - frag_now->fr_literal;
677 fix_new_exp (frag_now,
678 where,
679 fx->fix[i].size,
680 &(fx->fix[i].exp),
681 fx->fix[i].pcrel,
682 fx->fix[i].reloc);
685 fx->fc = 0;
689 /* Write out a short form instruction by itself. */
690 static void
691 write_1_short (opcode, insn, fx, use_sequential)
692 struct d30v_insn *opcode;
693 long long insn;
694 Fixups *fx;
695 int use_sequential;
697 char *f = frag_more (8);
698 int i, where;
700 if (warn_nops == NOP_ALL)
701 as_warn (_("%s NOP inserted"), use_sequential ?
702 _("sequential") : _("parallel"));
704 /* The other container needs to be NOP. */
705 if (use_sequential)
707 /* Use a sequential NOP rather than a parallel one,
708 as the current instruction is a FLAG_MUL32 type one
709 and the next instruction is a load. */
711 /* According to 4.3.1: for FM=01, sub-instructions performed
712 only by IU cannot be encoded in L-container. */
714 if (opcode->op->unit == IU)
715 insn |= FM10 | NOP_LEFT; /* right then left */
716 else
717 insn = FM01 | (insn << 32) | NOP_RIGHT; /* left then right */
719 else
721 /* According to 4.3.1: for FM=00, sub-instructions performed
722 only by IU cannot be encoded in L-container. */
724 if (opcode->op->unit == IU)
725 insn |= FM00 | NOP_LEFT; /* right container */
726 else
727 insn = FM00 | (insn << 32) | NOP_RIGHT; /* left container */
730 d30v_number_to_chars (f, insn, 8);
732 for (i=0; i < fx->fc; i++)
734 if (fx->fix[i].reloc)
736 where = f - frag_now->fr_literal;
737 fix_new_exp (frag_now,
738 where,
739 fx->fix[i].size,
740 &(fx->fix[i].exp),
741 fx->fix[i].pcrel,
742 fx->fix[i].reloc);
745 fx->fc = 0;
748 /* Write out a short form instruction if possible.
749 Return number of instructions not written out. */
750 static int
751 write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
752 struct d30v_insn *opcode1, *opcode2;
753 long long insn1, insn2;
754 exec_type_enum exec_type;
755 Fixups *fx;
757 long long insn = NOP2;
758 char *f;
759 int i,j, where;
761 if (exec_type == EXEC_SEQ
762 && (opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR))
763 && ((opcode1->op->flags_used & FLAG_DELAY) == 0)
764 && ((opcode1->ecc == ECC_AL) || ! Optimizing))
766 /* Unconditional, non-delayed branches kill instructions in
767 the right bin. Conditional branches don't always but if
768 we are not optimizing, then we have been asked to produce
769 an error about such constructs. For the purposes of this
770 test, subroutine calls are considered to be branches. */
771 write_1_short (opcode1, insn1, fx->next, false);
772 return 1;
775 /* Note: we do not have to worry about subroutine calls occuring
776 in the right hand container. The return address is always
777 aligned to the next 64 bit boundary, be that 64 or 32 bit away. */
779 switch (exec_type)
781 case EXEC_UNKNOWN: /* Order not specified. */
782 if (Optimizing
783 && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type)
784 && ! ( (opcode1->op->unit == EITHER_BUT_PREFER_MU
785 || opcode1->op->unit == MU)
787 ( opcode2->op->unit == EITHER_BUT_PREFER_MU
788 || opcode2->op->unit == MU)))
790 /* parallel */
791 exec_type = EXEC_PARALLEL;
793 if (opcode1->op->unit == IU
794 || opcode2->op->unit == MU
795 || opcode2->op->unit == EITHER_BUT_PREFER_MU)
796 insn = FM00 | (insn2 << 32) | insn1;
797 else
799 insn = FM00 | (insn1 << 32) | insn2;
800 fx = fx->next;
803 else if (opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR)
804 && ((opcode1->op->flags_used & FLAG_DELAY) == 0)
805 && ((opcode1->ecc == ECC_AL) || ! Optimizing))
807 /* We must emit (non-delayed) branch type instructions
808 on their own with nothing in the right container. */
809 write_1_short (opcode1, insn1, fx->next, false);
810 return 1;
812 else if (prev_left_kills_right_p)
814 /* The left instruction kils the right slot, so we
815 must leave it empty. */
816 write_1_short (opcode1, insn1, fx->next, false);
817 return 1;
819 else if (opcode1->op->unit == IU
820 || (opcode1->op->unit == EITHER
821 && opcode2->op->unit == EITHER_BUT_PREFER_MU))
823 /* reverse sequential */
824 insn = FM10 | (insn2 << 32) | insn1;
825 exec_type = EXEC_REVSEQ;
827 else
829 /* sequential */
830 insn = FM01 | (insn1 << 32) | insn2;
831 fx = fx->next;
832 exec_type = EXEC_SEQ;
834 break;
836 case EXEC_PARALLEL: /* parallel */
837 flag_explicitly_parallel = flag_xp_state;
838 if (! parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
839 as_bad (_("Instructions may not be executed in parallel"));
840 else if (opcode1->op->unit == IU)
842 if (opcode2->op->unit == IU)
843 as_bad (_("Two IU instructions may not be executed in parallel"));
844 as_warn (_("Swapping instruction order"));
845 insn = FM00 | (insn2 << 32) | insn1;
847 else if (opcode2->op->unit == MU)
849 if (opcode1->op->unit == MU)
850 as_bad (_("Two MU instructions may not be executed in parallel"));
851 else if (opcode1->op->unit == EITHER_BUT_PREFER_MU)
852 as_warn (_("Executing %s in IU may not work"), opcode1->op->name);
853 as_warn (_("Swapping instruction order"));
854 insn = FM00 | (insn2 << 32) | insn1;
856 else
858 if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
859 as_warn (_("Executing %s in IU may not work"), opcode2->op->name);
861 insn = FM00 | (insn1 << 32) | insn2;
862 fx = fx->next;
864 flag_explicitly_parallel = 0;
865 break;
867 case EXEC_SEQ: /* sequential */
868 if (opcode1->op->unit == IU)
869 as_bad (_("IU instruction may not be in the left container"));
870 if (prev_left_kills_right_p)
871 as_bad (_("special left instruction `%s' kills instruction "
872 "`%s' in right container"),
873 opcode1->op->name, opcode2->op->name);
874 if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
875 as_warn (_("Executing %s in IU may not work"), opcode2->op->name);
876 insn = FM01 | (insn1 << 32) | insn2;
877 fx = fx->next;
878 break;
880 case EXEC_REVSEQ: /* reverse sequential */
881 if (opcode2->op->unit == MU)
882 as_bad (_("MU instruction may not be in the right container"));
883 if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
884 as_warn (_("Executing %s in IU may not work"), opcode2->op->name);
885 insn = FM10 | (insn1 << 32) | insn2;
886 fx = fx->next;
887 break;
889 default:
890 as_fatal (_("unknown execution type passed to write_2_short()"));
893 /* printf ("writing out %llx\n",insn); */
894 f = frag_more (8);
895 d30v_number_to_chars (f, insn, 8);
897 /* If the previous instruction was a 32-bit multiply but it is put into a
898 parallel container, mark the current instruction as being a 32-bit
899 multiply. */
900 if (prev_mul32_p && exec_type == EXEC_PARALLEL)
901 cur_mul32_p = 1;
903 for (j=0; j<2; j++)
905 for (i=0; i < fx->fc; i++)
907 if (fx->fix[i].reloc)
909 where = (f - frag_now->fr_literal) + 4*j;
911 fix_new_exp (frag_now,
912 where,
913 fx->fix[i].size,
914 &(fx->fix[i].exp),
915 fx->fix[i].pcrel,
916 fx->fix[i].reloc);
920 fx->fc = 0;
921 fx = fx->next;
924 return 0;
928 /* Check 2 instructions and determine if they can be safely */
929 /* executed in parallel. Returns 1 if they can be. */
930 static int
931 parallel_ok (op1, insn1, op2, insn2, exec_type)
932 struct d30v_insn *op1, *op2;
933 unsigned long insn1, insn2;
934 exec_type_enum exec_type;
936 int i, j, shift, regno, bits, ecc;
937 unsigned long flags, mask, flags_set1, flags_set2, flags_used1, flags_used2;
938 unsigned long ins, mod_reg[2][3], used_reg[2][3], flag_reg[2];
939 struct d30v_format *f;
940 struct d30v_opcode *op;
942 /* section 4.3: both instructions must not be IU or MU only */
943 if ((op1->op->unit == IU && op2->op->unit == IU)
944 || (op1->op->unit == MU && op2->op->unit == MU))
945 return 0;
947 /* first instruction must not be a jump to safely optimize, unless this
948 is an explicit parallel operation. */
949 if (exec_type != EXEC_PARALLEL
950 && (op1->op->flags_used & (FLAG_JMP | FLAG_JSR)))
951 return 0;
953 /* If one instruction is /TX or /XT and the other is /FX or /XF respectively,
954 then it is safe to allow the two to be done as parallel ops, since only
955 one will ever be executed at a time. */
956 if ((op1->ecc == ECC_TX && op2->ecc == ECC_FX)
957 || (op1->ecc == ECC_FX && op2->ecc == ECC_TX)
958 || (op1->ecc == ECC_XT && op2->ecc == ECC_XF)
959 || (op1->ecc == ECC_XF && op2->ecc == ECC_XT))
960 return 1;
962 /* [0] r0-r31
963 [1] r32-r63
964 [2] a0, a1, flag registers */
966 for (j = 0; j < 2; j++)
968 if (j == 0)
970 f = op1->form;
971 op = op1->op;
972 ecc = op1->ecc;
973 ins = insn1;
975 else
977 f = op2->form;
978 op = op2->op;
979 ecc = op2->ecc;
980 ins = insn2;
982 flag_reg[j] = 0;
983 mod_reg[j][0] = mod_reg[j][1] = 0;
984 used_reg[j][0] = used_reg[j][1] = 0;
986 if (flag_explicitly_parallel)
988 /* For human specified parallel instructions we have been asked
989 to ignore the possibility that both instructions could modify
990 bits in the PSW, so we initialise the mod & used arrays to 0.
991 We have been asked, however, to refuse to allow parallel
992 instructions which explicitly set the same flag register,
993 eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test
994 for the use of a flag register and set a bit in the mod or used
995 array appropriately. */
997 mod_reg[j][2] = 0;
998 used_reg[j][2] = 0;
1000 else
1002 mod_reg[j][2] = (op->flags_set & FLAG_ALL);
1003 used_reg[j][2] = (op->flags_used & FLAG_ALL);
1006 /* BSR/JSR always sets R62 */
1007 if (op->flags_used & FLAG_JSR)
1008 mod_reg[j][1] = (1L << (62-32));
1010 /* conditional execution affects the flags_used */
1011 switch (ecc)
1013 case ECC_TX:
1014 case ECC_FX:
1015 used_reg[j][2] |= flag_reg[j] = FLAG_0;
1016 break;
1018 case ECC_XT:
1019 case ECC_XF:
1020 used_reg[j][2] |= flag_reg[j] = FLAG_1;
1021 break;
1023 case ECC_TT:
1024 case ECC_TF:
1025 used_reg[j][2] |= flag_reg[j] = (FLAG_0 | FLAG_1);
1026 break;
1029 for (i = 0; f->operands[i]; i++)
1031 flags = d30v_operand_table[f->operands[i]].flags;
1032 shift = 12 - d30v_operand_table[f->operands[i]].position;
1033 bits = d30v_operand_table[f->operands[i]].bits;
1034 if (bits == 32)
1035 mask = 0xffffffff;
1036 else
1037 mask = 0x7FFFFFFF >> (31 - bits);
1039 if ((flags & OPERAND_PLUS) || (flags & OPERAND_MINUS))
1041 /* this is a post-increment or post-decrement */
1042 /* the previous register needs to be marked as modified */
1044 shift = 12 - d30v_operand_table[f->operands[i-1]].position;
1045 regno = (ins >> shift) & 0x3f;
1046 if (regno >= 32)
1047 mod_reg[j][1] |= 1L << (regno - 32);
1048 else
1049 mod_reg[j][0] |= 1L << regno;
1051 else if (flags & OPERAND_REG)
1053 regno = (ins >> shift) & mask;
1054 /* the memory write functions don't have a destination register */
1055 if ((flags & OPERAND_DEST) && !(op->flags_set & FLAG_MEM))
1057 /* MODIFIED registers and flags */
1058 if (flags & OPERAND_ACC)
1060 if (regno == 0)
1061 mod_reg[j][2] |= FLAG_A0;
1062 else if (regno == 1)
1063 mod_reg[j][2] |= FLAG_A1;
1064 else
1065 abort ();
1067 else if (flags & OPERAND_FLAG)
1068 mod_reg[j][2] |= 1L << regno;
1069 else if (!(flags & OPERAND_CONTROL))
1071 int r, z;
1073 /* need to check if there are two destination */
1074 /* registers, for example ld2w */
1075 if (flags & OPERAND_2REG)
1076 z = 1;
1077 else
1078 z = 0;
1080 for (r = regno; r <= regno + z; r++)
1082 if (r >= 32)
1083 mod_reg[j][1] |= 1L << (r - 32);
1084 else
1085 mod_reg[j][0] |= 1L << r;
1089 else
1091 /* USED, but not modified registers and flags */
1092 if (flags & OPERAND_ACC)
1094 if (regno == 0)
1095 used_reg[j][2] |= FLAG_A0;
1096 else if (regno == 1)
1097 used_reg[j][2] |= FLAG_A1;
1098 else
1099 abort ();
1101 else if (flags & OPERAND_FLAG)
1102 used_reg[j][2] |= 1L << regno;
1103 else if (!(flags & OPERAND_CONTROL))
1105 int r, z;
1107 /* need to check if there are two source */
1108 /* registers, for example st2w */
1109 if (flags & OPERAND_2REG)
1110 z = 1;
1111 else
1112 z = 0;
1114 for (r = regno; r <= regno + z; r++)
1116 if (r >= 32)
1117 used_reg[j][1] |= 1L << (r - 32);
1118 else
1119 used_reg[j][0] |= 1L << r;
1127 flags_set1 = op1->op->flags_set;
1128 flags_set2 = op2->op->flags_set;
1129 flags_used1 = op1->op->flags_used;
1130 flags_used2 = op2->op->flags_used;
1132 /* ST2W/ST4HB combined with ADDppp/SUBppp is illegal. */
1133 if (((flags_set1 & (FLAG_MEM | FLAG_2WORD)) == (FLAG_MEM | FLAG_2WORD)
1134 && (flags_used2 & FLAG_ADDSUBppp) != 0)
1135 || ((flags_set2 & (FLAG_MEM | FLAG_2WORD)) == (FLAG_MEM | FLAG_2WORD)
1136 && (flags_used1 & FLAG_ADDSUBppp) != 0))
1137 return 0;
1139 /* Load instruction combined with half-word multiply is illegal. */
1140 if (((flags_used1 & FLAG_MEM) != 0 && (flags_used2 & FLAG_MUL16))
1141 || ((flags_used2 & FLAG_MEM) != 0 && (flags_used1 & FLAG_MUL16)))
1142 return 0;
1144 /* Specifically allow add || add by removing carry, overflow bits dependency.
1145 This is safe, even if an addc follows since the IU takes the argument in
1146 the right container, and it writes its results last.
1147 However, don't paralellize add followed by addc or sub followed by
1148 subb. */
1150 if (mod_reg[0][2] == FLAG_CVVA && mod_reg[1][2] == FLAG_CVVA
1151 && (used_reg[0][2] & ~flag_reg[0]) == 0
1152 && (used_reg[1][2] & ~flag_reg[1]) == 0
1153 && op1->op->unit == EITHER && op2->op->unit == EITHER)
1155 mod_reg[0][2] = mod_reg[1][2] = 0;
1158 for (j = 0; j < 3; j++)
1160 /* If the second instruction depends on the first, we obviously
1161 cannot parallelize. Note, the mod flag implies use, so
1162 check that as well. */
1163 /* If flag_explicitly_parallel is set, then the case of the
1164 second instruction using a register the first instruction
1165 modifies is assumed to be okay; we trust the human. We
1166 don't trust the human if both instructions modify the same
1167 register but we do trust the human if they modify the same
1168 flags. */
1169 /* We have now been requested not to trust the human if the
1170 instructions modify the same flag registers either. */
1171 if (flag_explicitly_parallel)
1173 if ((mod_reg[0][j] & mod_reg[1][j]) != 0)
1174 return 0;
1176 else
1177 if ((mod_reg[0][j] & (mod_reg[1][j] | used_reg[1][j])) != 0)
1178 return 0;
1181 return 1;
1185 /* This is the main entry point for the machine-dependent assembler. str points to a
1186 machine-dependent instruction. This function is supposed to emit the frags/bytes
1187 it assembles to. For the D30V, it mostly handles the special VLIW parsing and packing
1188 and leaves the difficult stuff to do_assemble(). */
1190 static long long prev_insn = -1;
1191 static struct d30v_insn prev_opcode;
1192 static subsegT prev_subseg;
1193 static segT prev_seg = 0;
1195 void
1196 md_assemble (str)
1197 char *str;
1199 struct d30v_insn opcode;
1200 long long insn;
1201 exec_type_enum extype = EXEC_UNKNOWN; /* execution type; parallel, etc */
1202 static exec_type_enum etype = EXEC_UNKNOWN; /* saved extype. used for multiline instructions */
1203 char *str2;
1205 if ((prev_insn != -1) && prev_seg
1206 && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
1207 d30v_cleanup (false);
1209 if (d30v_current_align < 3)
1210 d30v_align (3, NULL, d30v_last_label);
1211 else if (d30v_current_align > 3)
1212 d30v_current_align = 3;
1213 d30v_last_label = NULL;
1215 flag_explicitly_parallel = 0;
1216 flag_xp_state = 0;
1217 if (etype == EXEC_UNKNOWN)
1219 /* look for the special multiple instruction separators */
1220 str2 = strstr (str, "||");
1221 if (str2)
1223 extype = EXEC_PARALLEL;
1224 flag_xp_state = 1;
1226 else
1228 str2 = strstr (str, "->");
1229 if (str2)
1230 extype = EXEC_SEQ;
1231 else
1233 str2 = strstr (str, "<-");
1234 if (str2)
1235 extype = EXEC_REVSEQ;
1238 /* str2 points to the separator, if one */
1239 if (str2)
1241 *str2 = 0;
1243 /* if two instructions are present and we already have one saved
1244 then first write it out */
1245 d30v_cleanup (false);
1247 /* Assemble first instruction and save it. */
1248 prev_insn = do_assemble (str, &prev_opcode, 1, 0);
1249 if (prev_insn == -1)
1250 as_bad (_("Cannot assemble instruction"));
1251 if (prev_opcode.form != NULL && prev_opcode.form->form >= LONG)
1252 as_bad (_("First opcode is long. Unable to mix instructions as specified."));
1253 fixups = fixups->next;
1254 str = str2 + 2;
1255 prev_seg = now_seg;
1256 prev_subseg = now_subseg;
1260 insn = do_assemble (str, &opcode,
1261 (extype != EXEC_UNKNOWN || etype != EXEC_UNKNOWN),
1262 extype == EXEC_PARALLEL);
1263 if (insn == -1)
1265 if (extype != EXEC_UNKNOWN)
1266 etype = extype;
1267 as_bad (_("Cannot assemble instruction"));
1268 return;
1271 if (etype != EXEC_UNKNOWN)
1273 extype = etype;
1274 etype = EXEC_UNKNOWN;
1277 /* Word multiply instructions must not be followed by either a load or a
1278 16-bit multiply instruction in the next cycle. */
1279 if ( (extype != EXEC_REVSEQ)
1280 && prev_mul32_p
1281 && (opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
1283 /* However, load and multiply should able to be combined in a parallel
1284 operation, so check for that first. */
1285 if (prev_insn != -1
1286 && (opcode.op->flags_used & FLAG_MEM)
1287 && opcode.form->form < LONG
1288 && (extype == EXEC_PARALLEL || (Optimizing && extype == EXEC_UNKNOWN))
1289 && parallel_ok (&prev_opcode, (long)prev_insn,
1290 &opcode, (long)insn, extype)
1291 && write_2_short (&prev_opcode, (long)prev_insn,
1292 &opcode, (long)insn, extype, fixups) == 0)
1294 /* no instructions saved */
1295 prev_insn = -1;
1296 return;
1298 else
1300 /* Can't parallelize, flush previous instruction and emit a word of NOPS,
1301 unless the previous instruction is a NOP, in which case just flush it,
1302 as this will generate a word of NOPs for us. */
1304 if (prev_insn != -1 && (strcmp (prev_opcode.op->name, "nop") == 0))
1305 d30v_cleanup (false);
1306 else
1308 char * f;
1310 if (prev_insn != -1)
1311 d30v_cleanup (true);
1312 else
1314 f = frag_more (8);
1315 d30v_number_to_chars (f, NOP2, 8);
1317 if (warn_nops == NOP_ALL || warn_nops == NOP_MULTIPLY)
1319 if (opcode.op->flags_used & FLAG_MEM)
1320 as_warn (_("word of NOPs added between word multiply and load"));
1321 else
1322 as_warn (_("word of NOPs added between word multiply and 16-bit multiply"));
1327 extype = EXEC_UNKNOWN;
1330 else if ( (extype == EXEC_REVSEQ)
1331 && cur_mul32_p
1332 && (prev_opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
1334 /* Can't parallelize, flush current instruction and add a sequential NOP. */
1335 write_1_short (& opcode, (long) insn, fixups->next->next, true);
1337 /* Make the previous instruction the current one. */
1338 extype = EXEC_UNKNOWN;
1339 insn = prev_insn;
1340 now_seg = prev_seg;
1341 now_subseg = prev_subseg;
1342 prev_insn = -1;
1343 cur_mul32_p = prev_mul32_p;
1344 prev_mul32_p = 0;
1345 memcpy (&opcode, &prev_opcode, sizeof (prev_opcode));
1348 /* If this is a long instruction, write it and any previous short instruction. */
1349 if (opcode.form->form >= LONG)
1351 if (extype != EXEC_UNKNOWN)
1352 as_bad (_("Instruction uses long version, so it cannot be mixed as specified"));
1353 d30v_cleanup (false);
1354 write_long (& opcode, insn, fixups);
1355 prev_insn = -1;
1357 else if ((prev_insn != -1)
1358 && (write_2_short
1359 (& prev_opcode, (long) prev_insn, & opcode,
1360 (long) insn, extype, fixups) == 0))
1362 /* No instructions saved. */
1363 prev_insn = -1;
1365 else
1367 if (extype != EXEC_UNKNOWN)
1368 as_bad (_("Unable to mix instructions as specified"));
1370 /* Save off last instruction so it may be packed on next pass. */
1371 memcpy (&prev_opcode, &opcode, sizeof (prev_opcode));
1372 prev_insn = insn;
1373 prev_seg = now_seg;
1374 prev_subseg = now_subseg;
1375 fixups = fixups->next;
1376 prev_mul32_p = cur_mul32_p;
1381 /* do_assemble assembles a single instruction and returns an opcode */
1382 /* it returns -1 (an invalid opcode) on error */
1384 #define NAME_BUF_LEN 20
1386 static long long
1387 do_assemble (str, opcode, shortp, is_parallel)
1388 char *str;
1389 struct d30v_insn *opcode;
1390 int shortp;
1391 int is_parallel;
1393 unsigned char * op_start;
1394 unsigned char * save;
1395 unsigned char * op_end;
1396 char name [NAME_BUF_LEN];
1397 int cmp_hack;
1398 int nlen = 0;
1399 int fsize = (shortp ? FORCE_SHORT : 0);
1400 expressionS myops [6];
1401 long long insn;
1403 /* Drop leading whitespace */
1404 while (* str == ' ')
1405 str ++;
1407 /* find the opcode end */
1408 for (op_start = op_end = (unsigned char *) (str);
1409 * op_end
1410 && nlen < (NAME_BUF_LEN - 1)
1411 && * op_end != '/'
1412 && !is_end_of_line[*op_end] && *op_end != ' ';
1413 op_end++)
1415 name[nlen] = tolower (op_start[nlen]);
1416 nlen++;
1419 if (nlen == 0)
1420 return -1;
1422 name[nlen] = 0;
1424 /* if there is an execution condition code, handle it */
1425 if (*op_end == '/')
1427 int i = 0;
1428 while ( (i < ECC_MAX) && strncasecmp (d30v_ecc_names[i], op_end + 1, 2))
1429 i++;
1431 if (i == ECC_MAX)
1433 char tmp[4];
1434 strncpy (tmp, op_end + 1, 2);
1435 tmp[2] = 0;
1436 as_bad (_("unknown condition code: %s"),tmp);
1437 return -1;
1439 /* printf ("condition code=%d\n",i); */
1440 opcode->ecc = i;
1441 op_end += 3;
1443 else
1444 opcode->ecc = ECC_AL;
1447 /* CMP and CMPU change their name based on condition codes */
1448 if (!strncmp (name, "cmp", 3))
1450 int p,i;
1451 char **str = (char **)d30v_cc_names;
1452 if (name[3] == 'u')
1453 p = 4;
1454 else
1455 p = 3;
1457 for (i=1; *str && strncmp (*str, & name[p], 2); i++, str++)
1460 /* cmpu only supports some condition codes */
1461 if (p == 4)
1463 if (i < 3 || i > 6)
1465 name[p+2]=0;
1466 as_bad (_("cmpu doesn't support condition code %s"),&name[p]);
1470 if (!*str)
1472 name[p+2]=0;
1473 as_bad (_("unknown condition code: %s"),&name[p]);
1476 cmp_hack = i;
1477 name[p] = 0;
1479 else
1480 cmp_hack = 0;
1482 /* printf("cmp_hack=%d\n",cmp_hack); */
1484 /* need to look for .s or .l */
1485 if (name[nlen-2] == '.')
1487 switch (name[nlen-1])
1489 case 's':
1490 fsize = FORCE_SHORT;
1491 break;
1492 case 'l':
1493 fsize = FORCE_LONG;
1494 break;
1496 name[nlen-2] = 0;
1499 /* find the first opcode with the proper name */
1500 opcode->op = (struct d30v_opcode *)hash_find (d30v_hash, name);
1501 if (opcode->op == NULL)
1503 as_bad (_("unknown opcode: %s"),name);
1504 return -1;
1507 save = input_line_pointer;
1508 input_line_pointer = op_end;
1509 while (!(opcode->form = find_format (opcode->op, myops, fsize, cmp_hack)))
1511 opcode->op++;
1512 if (opcode->op->name == NULL || strcmp (opcode->op->name, name))
1514 as_bad (_("operands for opcode `%s' do not match any valid format"), name);
1515 return -1;
1518 input_line_pointer = save;
1520 insn = build_insn (opcode, myops);
1522 /* Propigate multiply status */
1523 if (insn != -1)
1525 if (is_parallel && prev_mul32_p)
1526 cur_mul32_p = 1;
1527 else
1529 prev_mul32_p = cur_mul32_p;
1530 cur_mul32_p = (opcode->op->flags_used & FLAG_MUL32) != 0;
1534 /* Propagate left_kills_right status */
1535 if (insn != -1)
1537 prev_left_kills_right_p = cur_left_kills_right_p;
1539 if (opcode->op->flags_set & FLAG_LKR)
1541 cur_left_kills_right_p = 1;
1543 if (strcmp (opcode->op->name, "mvtsys") == 0)
1545 /* Left kills right for only mvtsys only for PSW/PSWH/PSWL/flags target. */
1546 if ((myops[0].X_op == O_register) &&
1547 ((myops[0].X_add_number == OPERAND_CONTROL) || /* psw */
1548 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+2) || /* pswh */
1549 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+1) || /* pswl */
1550 (myops[0].X_add_number == OPERAND_FLAG+0) || /* f0 */
1551 (myops[0].X_add_number == OPERAND_FLAG+1) || /* f1 */
1552 (myops[0].X_add_number == OPERAND_FLAG+2) || /* f2 */
1553 (myops[0].X_add_number == OPERAND_FLAG+3) || /* f3 */
1554 (myops[0].X_add_number == OPERAND_FLAG+4) || /* f4 */
1555 (myops[0].X_add_number == OPERAND_FLAG+5) || /* f5 */
1556 (myops[0].X_add_number == OPERAND_FLAG+6) || /* f6 */
1557 (myops[0].X_add_number == OPERAND_FLAG+7))) /* f7 */
1559 cur_left_kills_right_p = 1;
1561 else
1563 /* Other mvtsys target registers don't kill right instruction. */
1564 cur_left_kills_right_p = 0;
1566 } /* mvtsys */
1568 else
1569 cur_left_kills_right_p = 0;
1572 return insn;
1576 /* find_format() gets a pointer to an entry in the format table.
1577 It must look at all formats for an opcode and use the operands
1578 to choose the correct one. Returns NULL on error. */
1580 static struct d30v_format *
1581 find_format (opcode, myops, fsize, cmp_hack)
1582 struct d30v_opcode *opcode;
1583 expressionS myops[];
1584 int fsize;
1585 int cmp_hack;
1587 int numops, match, index, i=0, j, k;
1588 struct d30v_format *fm;
1590 if (opcode == NULL)
1591 return NULL;
1593 /* Get all the operands and save them as expressions. */
1594 numops = get_operands (myops, cmp_hack);
1596 while ((index = opcode->format[i++]) != 0)
1598 if (fsize == FORCE_SHORT && index >= LONG)
1599 continue;
1601 if (fsize == FORCE_LONG && index < LONG)
1602 continue;
1604 fm = (struct d30v_format *)&d30v_format_table[index];
1605 k = index;
1606 while (fm->form == index)
1608 match = 1;
1609 /* Now check the operands for compatibility. */
1610 for (j = 0; match && fm->operands[j]; j++)
1612 int flags = d30v_operand_table[fm->operands[j]].flags;
1613 int bits = d30v_operand_table[fm->operands[j]].bits;
1614 int X_op = myops[j].X_op;
1615 int num = myops[j].X_add_number;
1617 if (flags & OPERAND_SPECIAL)
1618 break;
1619 else if (X_op == O_illegal)
1620 match = 0;
1621 else if (flags & OPERAND_REG)
1623 if (X_op != O_register
1624 || ((flags & OPERAND_ACC) && !(num & OPERAND_ACC))
1625 || (!(flags & OPERAND_ACC) && (num & OPERAND_ACC))
1626 || ((flags & OPERAND_FLAG) && !(num & OPERAND_FLAG))
1627 || (!(flags & (OPERAND_FLAG | OPERAND_CONTROL)) && (num & OPERAND_FLAG))
1628 || ((flags & OPERAND_CONTROL)
1629 && !(num & (OPERAND_CONTROL | OPERAND_FLAG))))
1631 match = 0;
1634 else if (((flags & OPERAND_MINUS)
1635 && (X_op != O_absent || num != OPERAND_MINUS))
1636 || ((flags & OPERAND_PLUS)
1637 && (X_op != O_absent || num != OPERAND_PLUS))
1638 || ((flags & OPERAND_ATMINUS)
1639 && (X_op != O_absent || num != OPERAND_ATMINUS))
1640 || ((flags & OPERAND_ATPAR)
1641 && (X_op != O_absent || num != OPERAND_ATPAR))
1642 || ((flags & OPERAND_ATSIGN)
1643 && (X_op != O_absent || num != OPERAND_ATSIGN)))
1645 match=0;
1647 else if (flags & OPERAND_NUM)
1649 /* A number can be a constant or symbol expression. */
1651 /* If we have found a register name, but that name also
1652 matches a symbol, then re-parse the name as an expression. */
1653 if (X_op == O_register
1654 && symbol_find ((char *) myops[j].X_op_symbol))
1656 input_line_pointer = (char *) myops[j].X_op_symbol;
1657 expression (& myops[j]);
1660 /* Turn an expression into a symbol for later resolution. */
1661 if (X_op != O_absent && X_op != O_constant
1662 && X_op != O_symbol && X_op != O_register
1663 && X_op != O_big)
1665 symbolS *sym = make_expr_symbol (&myops[j]);
1666 myops[j].X_op = X_op = O_symbol;
1667 myops[j].X_add_symbol = sym;
1668 myops[j].X_add_number = num = 0;
1671 if (fm->form >= LONG)
1673 /* If we're testing for a LONG format, either fits. */
1674 if (X_op != O_constant && X_op != O_symbol)
1675 match = 0;
1677 else if (fm->form < LONG
1678 && ((fsize == FORCE_SHORT && X_op == O_symbol)
1679 || (fm->form == SHORT_D2 && j == 0)))
1680 match = 1;
1681 /* This is the tricky part. Will the constant or symbol
1682 fit into the space in the current format? */
1683 else if (X_op == O_constant)
1685 if (check_range (num, bits, flags))
1686 match = 0;
1688 else if (X_op == O_symbol
1689 && S_IS_DEFINED (myops[j].X_add_symbol)
1690 && S_GET_SEGMENT (myops[j].X_add_symbol) == now_seg
1691 && opcode->reloc_flag == RELOC_PCREL)
1693 /* If the symbol is defined, see if the value will fit
1694 into the form we're considering. */
1695 fragS *f;
1696 long value;
1698 /* Calculate the current address by running through the
1699 previous frags and adding our current offset. */
1700 value = 0;
1701 for (f = frchain_now->frch_root; f; f = f->fr_next)
1702 value += f->fr_fix + f->fr_offset;
1703 value = (S_GET_VALUE (myops[j].X_add_symbol) - value
1704 - (obstack_next_free (&frchain_now->frch_obstack)
1705 - frag_now->fr_literal));
1706 if (check_range (value, bits, flags))
1707 match = 0;
1709 else
1710 match = 0;
1713 /* printf("through the loop: match=%d\n",match); */
1714 /* We're only done if the operands matched so far AND there
1715 are no more to check. */
1716 if (match && myops[j].X_op == 0)
1718 /* Final check - issue a warning if an odd numbered register
1719 is used as the first register in an instruction that reads
1720 or writes 2 registers. */
1722 for (j = 0; fm->operands[j]; j++)
1723 if (myops[j].X_op == O_register
1724 && (myops[j].X_add_number & 1)
1725 && (d30v_operand_table[fm->operands[j]].flags & OPERAND_2REG))
1726 as_warn (\
1727 _("Odd numbered register used as target of multi-register instruction"));
1729 return fm;
1731 fm = (struct d30v_format *)&d30v_format_table[++k];
1733 /* printf("trying another format: i=%d\n",i); */
1735 return NULL;
1738 /* if while processing a fixup, a reloc really needs to be created */
1739 /* then it is done here */
1741 arelent *
1742 tc_gen_reloc (seg, fixp)
1743 asection *seg;
1744 fixS *fixp;
1746 arelent *reloc;
1747 reloc = (arelent *) xmalloc (sizeof (arelent));
1748 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
1749 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1750 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1751 if (reloc->howto == (reloc_howto_type *) NULL)
1753 as_bad_where (fixp->fx_file, fixp->fx_line,
1754 _("reloc %d not supported by object file format"), (int)fixp->fx_r_type);
1755 return NULL;
1757 reloc->addend = fixp->fx_addnumber;
1758 return reloc;
1762 md_estimate_size_before_relax (fragp, seg)
1763 fragS *fragp;
1764 asection *seg;
1766 abort ();
1767 return 0;
1770 long
1771 md_pcrel_from_section (fixp, sec)
1772 fixS *fixp;
1773 segT sec;
1775 if (fixp->fx_addsy != (symbolS *)NULL && (!S_IS_DEFINED (fixp->fx_addsy) ||
1776 (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
1777 return 0;
1778 return fixp->fx_frag->fr_address + fixp->fx_where;
1782 md_apply_fix3 (fixp, valuep, seg)
1783 fixS * fixp;
1784 valueT * valuep;
1785 segT seg;
1787 char * where;
1788 unsigned long insn, insn2;
1789 long value;
1791 if (fixp->fx_addsy == (symbolS *) NULL)
1793 value = * valuep;
1794 fixp->fx_done = 1;
1796 else if (fixp->fx_pcrel)
1797 value = * valuep;
1798 else
1800 value = fixp->fx_offset;
1802 if (fixp->fx_subsy != (symbolS *) NULL)
1804 if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
1805 value -= S_GET_VALUE (fixp->fx_subsy);
1806 else
1808 /* We don't actually support subtracting a symbol. */
1809 as_bad_where (fixp->fx_file, fixp->fx_line,
1810 _("expression too complex"));
1815 /* Fetch the instruction, insert the fully resolved operand
1816 value, and stuff the instruction back again. */
1817 where = fixp->fx_frag->fr_literal + fixp->fx_where;
1818 insn = bfd_getb32 ((unsigned char *) where);
1820 switch (fixp->fx_r_type)
1822 case BFD_RELOC_8: /* Check for a bad .byte directive. */
1823 if (fixp->fx_addsy != NULL)
1824 as_bad (_("line %d: unable to place address of symbol '%s' into a byte"),
1825 fixp->fx_line, S_GET_NAME (fixp->fx_addsy));
1826 else if (((unsigned)value) > 0xff)
1827 as_bad (_("line %d: unable to place value %x into a byte"),
1828 fixp->fx_line, value);
1829 else
1830 * (unsigned char *) where = value;
1831 break;
1833 case BFD_RELOC_16: /* Check for a bad .short directive. */
1834 if (fixp->fx_addsy != NULL)
1835 as_bad (_("line %d: unable to place address of symbol '%s' into a short"),
1836 fixp->fx_line, S_GET_NAME (fixp->fx_addsy));
1837 else if (((unsigned)value) > 0xffff)
1838 as_bad (_("line %d: unable to place value %x into a short"),
1839 fixp->fx_line, value);
1840 else
1841 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1842 break;
1844 case BFD_RELOC_64: /* Check for a bad .quad directive. */
1845 if (fixp->fx_addsy != NULL)
1846 as_bad (_("line %d: unable to place address of symbol '%s' into a quad"),
1847 fixp->fx_line, S_GET_NAME (fixp->fx_addsy));
1848 else
1850 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1851 bfd_putb32 (0, ((unsigned char *) where) + 4);
1853 break;
1855 case BFD_RELOC_D30V_6:
1856 check_size (value, 6, fixp->fx_file, fixp->fx_line);
1857 insn |= value & 0x3F;
1858 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1859 break;
1861 case BFD_RELOC_D30V_9_PCREL:
1862 if (fixp->fx_where & 0x7)
1864 if (fixp->fx_done)
1865 value += 4;
1866 else
1867 fixp->fx_r_type = BFD_RELOC_D30V_9_PCREL_R;
1869 check_size (value, 9, fixp->fx_file, fixp->fx_line);
1870 insn |= ((value >> 3) & 0x3F) << 12;
1871 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1872 break;
1874 case BFD_RELOC_D30V_15:
1875 check_size (value, 15, fixp->fx_file, fixp->fx_line);
1876 insn |= (value >> 3) & 0xFFF;
1877 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1878 break;
1880 case BFD_RELOC_D30V_15_PCREL:
1881 if (fixp->fx_where & 0x7)
1883 if (fixp->fx_done)
1884 value += 4;
1885 else
1886 fixp->fx_r_type = BFD_RELOC_D30V_15_PCREL_R;
1888 check_size (value, 15, fixp->fx_file, fixp->fx_line);
1889 insn |= (value >> 3) & 0xFFF;
1890 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1891 break;
1893 case BFD_RELOC_D30V_21:
1894 check_size (value, 21, fixp->fx_file, fixp->fx_line);
1895 insn |= (value >> 3) & 0x3FFFF;
1896 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1897 break;
1899 case BFD_RELOC_D30V_21_PCREL:
1900 if (fixp->fx_where & 0x7)
1902 if (fixp->fx_done)
1903 value += 4;
1904 else
1905 fixp->fx_r_type = BFD_RELOC_D30V_21_PCREL_R;
1907 check_size (value, 21, fixp->fx_file, fixp->fx_line);
1908 insn |= (value >> 3) & 0x3FFFF;
1909 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1910 break;
1912 case BFD_RELOC_D30V_32:
1913 insn2 = bfd_getb32 ((unsigned char *) where + 4);
1914 insn |= (value >> 26) & 0x3F; /* top 6 bits */
1915 insn2 |= ((value & 0x03FC0000) << 2); /* next 8 bits */
1916 insn2 |= value & 0x0003FFFF; /* bottom 18 bits */
1917 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1918 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
1919 break;
1921 case BFD_RELOC_D30V_32_PCREL:
1922 insn2 = bfd_getb32 ((unsigned char *) where + 4);
1923 insn |= (value >> 26) & 0x3F; /* top 6 bits */
1924 insn2 |= ((value & 0x03FC0000) << 2); /* next 8 bits */
1925 insn2 |= value & 0x0003FFFF; /* bottom 18 bits */
1926 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1927 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
1928 break;
1930 case BFD_RELOC_32:
1931 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1932 break;
1934 default:
1935 as_bad (_("line %d: unknown relocation type: 0x%x"),
1936 fixp->fx_line,fixp->fx_r_type);
1939 return 0;
1943 /* d30v_cleanup() is called after the assembler has finished parsing the input
1944 file or after a label is defined. Because the D30V assembler sometimes saves short
1945 instructions to see if it can package them with the next instruction, there may
1946 be a short instruction that still needs written. */
1948 d30v_cleanup (use_sequential)
1949 int use_sequential;
1951 segT seg;
1952 subsegT subseg;
1954 if (prev_insn != -1)
1956 seg = now_seg;
1957 subseg = now_subseg;
1958 subseg_set (prev_seg, prev_subseg);
1959 write_1_short (&prev_opcode, (long)prev_insn, fixups->next, use_sequential);
1960 subseg_set (seg, subseg);
1961 prev_insn = -1;
1962 if (use_sequential)
1963 prev_mul32_p = false;
1965 return 1;
1968 static void
1969 d30v_number_to_chars (buf, value, n)
1970 char *buf; /* Return 'nbytes' of chars here. */
1971 long long value; /* The value of the bits. */
1972 int n; /* Number of bytes in the output. */
1974 while (n--)
1976 buf[n] = value & 0xff;
1977 value >>= 8;
1982 /* This function is called at the start of every line. */
1983 /* it checks to see if the first character is a '.' */
1984 /* which indicates the start of a pseudo-op. If it is, */
1985 /* then write out any unwritten instructions */
1987 void
1988 d30v_start_line ()
1990 char *c = input_line_pointer;
1992 while (isspace (*c))
1993 c++;
1995 if (*c == '.')
1996 d30v_cleanup (false);
1999 static void
2000 check_size (value, bits, file, line)
2001 long value;
2002 int bits;
2003 char *file;
2004 int line;
2006 int tmp, max;
2008 if (value < 0)
2009 tmp = ~value;
2010 else
2011 tmp = value;
2013 max = (1 << (bits - 1)) - 1;
2015 if (tmp > max)
2016 as_bad_where (file, line, _("value too large to fit in %d bits"), bits);
2018 return;
2021 /* d30v_frob_label() is called when after a label is recognized. */
2023 void
2024 d30v_frob_label (lab)
2025 symbolS *lab;
2027 /* Emit any pending instructions. */
2028 d30v_cleanup (false);
2030 /* Update the label's address with the current output pointer. */
2031 lab->sy_frag = frag_now;
2032 S_SET_VALUE (lab, (valueT) frag_now_fix ());
2034 /* Record this label for future adjustment after we find out what
2035 kind of data it references, and the required alignment therewith. */
2036 d30v_last_label = lab;
2039 /* Hook into cons for capturing alignment changes. */
2041 void
2042 d30v_cons_align (size)
2043 int size;
2045 int log_size;
2047 log_size = 0;
2048 while ((size >>= 1) != 0)
2049 ++log_size;
2051 if (d30v_current_align < log_size)
2052 d30v_align (log_size, (char *) NULL, NULL);
2053 else if (d30v_current_align > log_size)
2054 d30v_current_align = log_size;
2055 d30v_last_label = NULL;
2058 /* Called internally to handle all alignment needs. This takes care
2059 of eliding calls to frag_align if'n the cached current alignment
2060 says we've already got it, as well as taking care of the auto-aligning
2061 labels wrt code. */
2063 static void
2064 d30v_align (n, pfill, label)
2065 int n;
2066 char *pfill;
2067 symbolS *label;
2069 /* The front end is prone to changing segments out from under us
2070 temporarily when -g is in effect. */
2071 int switched_seg_p = (d30v_current_align_seg != now_seg);
2073 /* Do not assume that if 'd30v_current_align >= n' and
2074 '! switched_seg_p' that it is safe to avoid performing
2075 this alignement request. The alignment of the current frag
2076 can be changed under our feet, for example by a .ascii
2077 directive in the source code. cf testsuite/gas/d30v/reloc.s */
2079 d30v_cleanup (false);
2081 if (pfill == NULL)
2083 if (n > 2
2084 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
2086 static char const nop[4] = { 0x00, 0xf0, 0x00, 0x00 };
2088 /* First, make sure we're on a four-byte boundary, in case
2089 someone has been putting .byte values the text section. */
2090 if (d30v_current_align < 2 || switched_seg_p)
2091 frag_align (2, 0, 0);
2092 frag_align_pattern (n, nop, sizeof nop, 0);
2094 else
2095 frag_align (n, 0, 0);
2097 else
2098 frag_align (n, *pfill, 0);
2100 if (!switched_seg_p)
2101 d30v_current_align = n;
2103 if (label != NULL)
2105 symbolS * sym;
2106 int label_seen = false;
2107 struct frag * old_frag;
2108 valueT old_value;
2109 valueT new_value;
2111 assert (S_GET_SEGMENT (label) == now_seg);
2113 old_frag = label->sy_frag;
2114 old_value = S_GET_VALUE (label);
2115 new_value = (valueT) frag_now_fix ();
2117 /* It is possible to have more than one label at a particular
2118 address, especially if debugging is enabled, so we must
2119 take care to adjust all the labels at this address in this
2120 fragment. To save time we search from the end of the symbol
2121 list, backwards, since the symbols we are interested in are
2122 almost certainly the ones that were most recently added.
2123 Also to save time we stop searching once we have seen at least
2124 one matching label, and we encounter a label that is no longer
2125 in the target fragment. Note, this search is guaranteed to
2126 find at least one match when sym == label, so no special case
2127 code is necessary. */
2128 for (sym = symbol_lastP; sym != NULL; sym = sym->sy_previous)
2130 if (sym->sy_frag == old_frag && S_GET_VALUE (sym) == old_value)
2132 label_seen = true;
2133 sym->sy_frag = frag_now;
2134 S_SET_VALUE (sym, new_value);
2136 else if (label_seen && sym->sy_frag != old_frag)
2137 break;
2141 record_alignment (now_seg, n);
2144 /* Handle the .align pseudo-op. This aligns to a power of two. We
2145 hook here to latch the current alignment. */
2147 static void
2148 s_d30v_align (ignore)
2149 int ignore;
2151 int align;
2152 char fill, *pfill = NULL;
2153 long max_alignment = 15;
2155 align = get_absolute_expression ();
2156 if (align > max_alignment)
2158 align = max_alignment;
2159 as_warn (_("Alignment too large: %d assumed"), align);
2161 else if (align < 0)
2163 as_warn (_("Alignment negative: 0 assumed"));
2164 align = 0;
2167 if (*input_line_pointer == ',')
2169 input_line_pointer++;
2170 fill = get_absolute_expression ();
2171 pfill = &fill;
2174 d30v_last_label = NULL;
2175 d30v_align (align, pfill, NULL);
2177 demand_empty_rest_of_line ();
2180 /* Handle the .text pseudo-op. This is like the usual one, but it
2181 clears the saved last label and resets known alignment. */
2183 static void
2184 s_d30v_text (i)
2185 int i;
2188 s_text (i);
2189 d30v_last_label = NULL;
2190 d30v_current_align = 0;
2191 d30v_current_align_seg = now_seg;
2194 /* Handle the .data pseudo-op. This is like the usual one, but it
2195 clears the saved last label and resets known alignment. */
2197 static void
2198 s_d30v_data (i)
2199 int i;
2201 s_data (i);
2202 d30v_last_label = NULL;
2203 d30v_current_align = 0;
2204 d30v_current_align_seg = now_seg;
2207 /* Handle the .section pseudo-op. This is like the usual one, but it
2208 clears the saved last label and resets known alignment. */
2210 static void
2211 s_d30v_section (ignore)
2212 int ignore;
2214 obj_elf_section (ignore);
2215 d30v_last_label = NULL;
2216 d30v_current_align = 0;
2217 d30v_current_align_seg = now_seg;