daily update
[binutils.git] / bfd / elflink.h
blobf784002b0211c9407000670bcce20b74f2d83323
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info *));
68 static boolean elf_link_output_relocs
69 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
70 static boolean elf_link_size_reloc_section
71 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
74 struct elf_link_hash_entry **));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd *, struct bfd_link_info *, asection **));
81 static boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection *));
84 /* Given an ELF BFD, add symbols to the global hash table as
85 appropriate. */
87 boolean
88 elf_bfd_link_add_symbols (abfd, info)
89 bfd *abfd;
90 struct bfd_link_info *info;
92 switch (bfd_get_format (abfd))
94 case bfd_object:
95 return elf_link_add_object_symbols (abfd, info);
96 case bfd_archive:
97 return elf_link_add_archive_symbols (abfd, info);
98 default:
99 bfd_set_error (bfd_error_wrong_format);
100 return false;
104 /* Return true iff this is a non-common, definition of a non-function symbol. */
105 static boolean
106 is_global_data_symbol_definition (abfd, sym)
107 bfd * abfd ATTRIBUTE_UNUSED;
108 Elf_Internal_Sym * sym;
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
112 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
113 return false;
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
117 return false;
119 /* If the section is undefined, then so is the symbol. */
120 if (sym->st_shndx == SHN_UNDEF)
121 return false;
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym->st_shndx == SHN_COMMON)
126 return false;
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
131 /* FIXME - this function is not coded yet:
133 return _bfd_is_global_symbol_definition (abfd, sym);
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
138 return false;
140 return true;
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
146 static boolean
147 elf_link_is_defined_archive_symbol (abfd, symdef)
148 bfd * abfd;
149 carsym * symdef;
151 Elf_Internal_Shdr * hdr;
152 bfd_size_type symcount;
153 bfd_size_type extsymcount;
154 bfd_size_type extsymoff;
155 Elf_Internal_Sym *isymbuf;
156 Elf_Internal_Sym *isym;
157 Elf_Internal_Sym *isymend;
158 boolean result;
160 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
161 if (abfd == (bfd *) NULL)
162 return false;
164 if (! bfd_check_format (abfd, bfd_object))
165 return false;
167 /* If we have already included the element containing this symbol in the
168 link then we do not need to include it again. Just claim that any symbol
169 it contains is not a definition, so that our caller will not decide to
170 (re)include this element. */
171 if (abfd->archive_pass)
172 return false;
174 /* Select the appropriate symbol table. */
175 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
176 hdr = &elf_tdata (abfd)->symtab_hdr;
177 else
178 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
180 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
182 /* The sh_info field of the symtab header tells us where the
183 external symbols start. We don't care about the local symbols. */
184 if (elf_bad_symtab (abfd))
186 extsymcount = symcount;
187 extsymoff = 0;
189 else
191 extsymcount = symcount - hdr->sh_info;
192 extsymoff = hdr->sh_info;
195 if (extsymcount == 0)
196 return false;
198 /* Read in the symbol table. */
199 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
200 NULL, NULL, NULL);
201 if (isymbuf == NULL)
202 return false;
204 /* Scan the symbol table looking for SYMDEF. */
205 result = false;
206 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
208 const char *name;
210 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
211 isym->st_name);
212 if (name == (const char *) NULL)
213 break;
215 if (strcmp (name, symdef->name) == 0)
217 result = is_global_data_symbol_definition (abfd, isym);
218 break;
222 free (isymbuf);
224 return result;
227 /* Add symbols from an ELF archive file to the linker hash table. We
228 don't use _bfd_generic_link_add_archive_symbols because of a
229 problem which arises on UnixWare. The UnixWare libc.so is an
230 archive which includes an entry libc.so.1 which defines a bunch of
231 symbols. The libc.so archive also includes a number of other
232 object files, which also define symbols, some of which are the same
233 as those defined in libc.so.1. Correct linking requires that we
234 consider each object file in turn, and include it if it defines any
235 symbols we need. _bfd_generic_link_add_archive_symbols does not do
236 this; it looks through the list of undefined symbols, and includes
237 any object file which defines them. When this algorithm is used on
238 UnixWare, it winds up pulling in libc.so.1 early and defining a
239 bunch of symbols. This means that some of the other objects in the
240 archive are not included in the link, which is incorrect since they
241 precede libc.so.1 in the archive.
243 Fortunately, ELF archive handling is simpler than that done by
244 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
245 oddities. In ELF, if we find a symbol in the archive map, and the
246 symbol is currently undefined, we know that we must pull in that
247 object file.
249 Unfortunately, we do have to make multiple passes over the symbol
250 table until nothing further is resolved. */
252 static boolean
253 elf_link_add_archive_symbols (abfd, info)
254 bfd *abfd;
255 struct bfd_link_info *info;
257 symindex c;
258 boolean *defined = NULL;
259 boolean *included = NULL;
260 carsym *symdefs;
261 boolean loop;
262 bfd_size_type amt;
264 if (! bfd_has_map (abfd))
266 /* An empty archive is a special case. */
267 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
268 return true;
269 bfd_set_error (bfd_error_no_armap);
270 return false;
273 /* Keep track of all symbols we know to be already defined, and all
274 files we know to be already included. This is to speed up the
275 second and subsequent passes. */
276 c = bfd_ardata (abfd)->symdef_count;
277 if (c == 0)
278 return true;
279 amt = c;
280 amt *= sizeof (boolean);
281 defined = (boolean *) bfd_zmalloc (amt);
282 included = (boolean *) bfd_zmalloc (amt);
283 if (defined == (boolean *) NULL || included == (boolean *) NULL)
284 goto error_return;
286 symdefs = bfd_ardata (abfd)->symdefs;
290 file_ptr last;
291 symindex i;
292 carsym *symdef;
293 carsym *symdefend;
295 loop = false;
296 last = -1;
298 symdef = symdefs;
299 symdefend = symdef + c;
300 for (i = 0; symdef < symdefend; symdef++, i++)
302 struct elf_link_hash_entry *h;
303 bfd *element;
304 struct bfd_link_hash_entry *undefs_tail;
305 symindex mark;
307 if (defined[i] || included[i])
308 continue;
309 if (symdef->file_offset == last)
311 included[i] = true;
312 continue;
315 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
316 false, false, false);
318 if (h == NULL)
320 char *p, *copy;
321 size_t len, first;
323 /* If this is a default version (the name contains @@),
324 look up the symbol again with only one `@' as well
325 as without the version. The effect is that references
326 to the symbol with and without the version will be
327 matched by the default symbol in the archive. */
329 p = strchr (symdef->name, ELF_VER_CHR);
330 if (p == NULL || p[1] != ELF_VER_CHR)
331 continue;
333 /* First check with only one `@'. */
334 len = strlen (symdef->name);
335 copy = bfd_alloc (abfd, (bfd_size_type) len);
336 if (copy == NULL)
337 goto error_return;
338 first = p - symdef->name + 1;
339 memcpy (copy, symdef->name, first);
340 memcpy (copy + first, symdef->name + first + 1, len - first);
342 h = elf_link_hash_lookup (elf_hash_table (info), copy,
343 false, false, false);
345 if (h == NULL)
347 /* We also need to check references to the symbol
348 without the version. */
350 copy[first - 1] = '\0';
351 h = elf_link_hash_lookup (elf_hash_table (info),
352 copy, false, false, false);
355 bfd_release (abfd, copy);
358 if (h == NULL)
359 continue;
361 if (h->root.type == bfd_link_hash_common)
363 /* We currently have a common symbol. The archive map contains
364 a reference to this symbol, so we may want to include it. We
365 only want to include it however, if this archive element
366 contains a definition of the symbol, not just another common
367 declaration of it.
369 Unfortunately some archivers (including GNU ar) will put
370 declarations of common symbols into their archive maps, as
371 well as real definitions, so we cannot just go by the archive
372 map alone. Instead we must read in the element's symbol
373 table and check that to see what kind of symbol definition
374 this is. */
375 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
376 continue;
378 else if (h->root.type != bfd_link_hash_undefined)
380 if (h->root.type != bfd_link_hash_undefweak)
381 defined[i] = true;
382 continue;
385 /* We need to include this archive member. */
386 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
387 if (element == (bfd *) NULL)
388 goto error_return;
390 if (! bfd_check_format (element, bfd_object))
391 goto error_return;
393 /* Doublecheck that we have not included this object
394 already--it should be impossible, but there may be
395 something wrong with the archive. */
396 if (element->archive_pass != 0)
398 bfd_set_error (bfd_error_bad_value);
399 goto error_return;
401 element->archive_pass = 1;
403 undefs_tail = info->hash->undefs_tail;
405 if (! (*info->callbacks->add_archive_element) (info, element,
406 symdef->name))
407 goto error_return;
408 if (! elf_link_add_object_symbols (element, info))
409 goto error_return;
411 /* If there are any new undefined symbols, we need to make
412 another pass through the archive in order to see whether
413 they can be defined. FIXME: This isn't perfect, because
414 common symbols wind up on undefs_tail and because an
415 undefined symbol which is defined later on in this pass
416 does not require another pass. This isn't a bug, but it
417 does make the code less efficient than it could be. */
418 if (undefs_tail != info->hash->undefs_tail)
419 loop = true;
421 /* Look backward to mark all symbols from this object file
422 which we have already seen in this pass. */
423 mark = i;
426 included[mark] = true;
427 if (mark == 0)
428 break;
429 --mark;
431 while (symdefs[mark].file_offset == symdef->file_offset);
433 /* We mark subsequent symbols from this object file as we go
434 on through the loop. */
435 last = symdef->file_offset;
438 while (loop);
440 free (defined);
441 free (included);
443 return true;
445 error_return:
446 if (defined != (boolean *) NULL)
447 free (defined);
448 if (included != (boolean *) NULL)
449 free (included);
450 return false;
453 /* This function is called when we want to define a new symbol. It
454 handles the various cases which arise when we find a definition in
455 a dynamic object, or when there is already a definition in a
456 dynamic object. The new symbol is described by NAME, SYM, PSEC,
457 and PVALUE. We set SYM_HASH to the hash table entry. We set
458 OVERRIDE if the old symbol is overriding a new definition. We set
459 TYPE_CHANGE_OK if it is OK for the type to change. We set
460 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
461 change, we mean that we shouldn't warn if the type or size does
462 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
463 a shared object. */
465 static boolean
466 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
467 override, type_change_ok, size_change_ok, dt_needed)
468 bfd *abfd;
469 struct bfd_link_info *info;
470 const char *name;
471 Elf_Internal_Sym *sym;
472 asection **psec;
473 bfd_vma *pvalue;
474 struct elf_link_hash_entry **sym_hash;
475 boolean *override;
476 boolean *type_change_ok;
477 boolean *size_change_ok;
478 boolean dt_needed;
480 asection *sec;
481 struct elf_link_hash_entry *h;
482 int bind;
483 bfd *oldbfd;
484 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
486 *override = false;
488 sec = *psec;
489 bind = ELF_ST_BIND (sym->st_info);
491 if (! bfd_is_und_section (sec))
492 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
493 else
494 h = ((struct elf_link_hash_entry *)
495 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
496 if (h == NULL)
497 return false;
498 *sym_hash = h;
500 /* This code is for coping with dynamic objects, and is only useful
501 if we are doing an ELF link. */
502 if (info->hash->creator != abfd->xvec)
503 return true;
505 /* For merging, we only care about real symbols. */
507 while (h->root.type == bfd_link_hash_indirect
508 || h->root.type == bfd_link_hash_warning)
509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
511 /* If we just created the symbol, mark it as being an ELF symbol.
512 Other than that, there is nothing to do--there is no merge issue
513 with a newly defined symbol--so we just return. */
515 if (h->root.type == bfd_link_hash_new)
517 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
518 return true;
521 /* OLDBFD is a BFD associated with the existing symbol. */
523 switch (h->root.type)
525 default:
526 oldbfd = NULL;
527 break;
529 case bfd_link_hash_undefined:
530 case bfd_link_hash_undefweak:
531 oldbfd = h->root.u.undef.abfd;
532 break;
534 case bfd_link_hash_defined:
535 case bfd_link_hash_defweak:
536 oldbfd = h->root.u.def.section->owner;
537 break;
539 case bfd_link_hash_common:
540 oldbfd = h->root.u.c.p->section->owner;
541 break;
544 /* In cases involving weak versioned symbols, we may wind up trying
545 to merge a symbol with itself. Catch that here, to avoid the
546 confusion that results if we try to override a symbol with
547 itself. The additional tests catch cases like
548 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
549 dynamic object, which we do want to handle here. */
550 if (abfd == oldbfd
551 && ((abfd->flags & DYNAMIC) == 0
552 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
553 return true;
555 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
556 respectively, is from a dynamic object. */
558 if ((abfd->flags & DYNAMIC) != 0)
559 newdyn = true;
560 else
561 newdyn = false;
563 if (oldbfd != NULL)
564 olddyn = (oldbfd->flags & DYNAMIC) != 0;
565 else
567 asection *hsec;
569 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
570 indices used by MIPS ELF. */
571 switch (h->root.type)
573 default:
574 hsec = NULL;
575 break;
577 case bfd_link_hash_defined:
578 case bfd_link_hash_defweak:
579 hsec = h->root.u.def.section;
580 break;
582 case bfd_link_hash_common:
583 hsec = h->root.u.c.p->section;
584 break;
587 if (hsec == NULL)
588 olddyn = false;
589 else
590 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
593 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
594 respectively, appear to be a definition rather than reference. */
596 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
597 newdef = false;
598 else
599 newdef = true;
601 if (h->root.type == bfd_link_hash_undefined
602 || h->root.type == bfd_link_hash_undefweak
603 || h->root.type == bfd_link_hash_common)
604 olddef = false;
605 else
606 olddef = true;
608 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
609 symbol, respectively, appears to be a common symbol in a dynamic
610 object. If a symbol appears in an uninitialized section, and is
611 not weak, and is not a function, then it may be a common symbol
612 which was resolved when the dynamic object was created. We want
613 to treat such symbols specially, because they raise special
614 considerations when setting the symbol size: if the symbol
615 appears as a common symbol in a regular object, and the size in
616 the regular object is larger, we must make sure that we use the
617 larger size. This problematic case can always be avoided in C,
618 but it must be handled correctly when using Fortran shared
619 libraries.
621 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
622 likewise for OLDDYNCOMMON and OLDDEF.
624 Note that this test is just a heuristic, and that it is quite
625 possible to have an uninitialized symbol in a shared object which
626 is really a definition, rather than a common symbol. This could
627 lead to some minor confusion when the symbol really is a common
628 symbol in some regular object. However, I think it will be
629 harmless. */
631 if (newdyn
632 && newdef
633 && (sec->flags & SEC_ALLOC) != 0
634 && (sec->flags & SEC_LOAD) == 0
635 && sym->st_size > 0
636 && bind != STB_WEAK
637 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
638 newdyncommon = true;
639 else
640 newdyncommon = false;
642 if (olddyn
643 && olddef
644 && h->root.type == bfd_link_hash_defined
645 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
646 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
647 && (h->root.u.def.section->flags & SEC_LOAD) == 0
648 && h->size > 0
649 && h->type != STT_FUNC)
650 olddyncommon = true;
651 else
652 olddyncommon = false;
654 /* It's OK to change the type if either the existing symbol or the
655 new symbol is weak unless it comes from a DT_NEEDED entry of
656 a shared object, in which case, the DT_NEEDED entry may not be
657 required at the run time. */
659 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
660 || h->root.type == bfd_link_hash_undefweak
661 || bind == STB_WEAK)
662 *type_change_ok = true;
664 /* It's OK to change the size if either the existing symbol or the
665 new symbol is weak, or if the old symbol is undefined. */
667 if (*type_change_ok
668 || h->root.type == bfd_link_hash_undefined)
669 *size_change_ok = true;
671 /* If both the old and the new symbols look like common symbols in a
672 dynamic object, set the size of the symbol to the larger of the
673 two. */
675 if (olddyncommon
676 && newdyncommon
677 && sym->st_size != h->size)
679 /* Since we think we have two common symbols, issue a multiple
680 common warning if desired. Note that we only warn if the
681 size is different. If the size is the same, we simply let
682 the old symbol override the new one as normally happens with
683 symbols defined in dynamic objects. */
685 if (! ((*info->callbacks->multiple_common)
686 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
687 h->size, abfd, bfd_link_hash_common, sym->st_size)))
688 return false;
690 if (sym->st_size > h->size)
691 h->size = sym->st_size;
693 *size_change_ok = true;
696 /* If we are looking at a dynamic object, and we have found a
697 definition, we need to see if the symbol was already defined by
698 some other object. If so, we want to use the existing
699 definition, and we do not want to report a multiple symbol
700 definition error; we do this by clobbering *PSEC to be
701 bfd_und_section_ptr.
703 We treat a common symbol as a definition if the symbol in the
704 shared library is a function, since common symbols always
705 represent variables; this can cause confusion in principle, but
706 any such confusion would seem to indicate an erroneous program or
707 shared library. We also permit a common symbol in a regular
708 object to override a weak symbol in a shared object.
710 We prefer a non-weak definition in a shared library to a weak
711 definition in the executable unless it comes from a DT_NEEDED
712 entry of a shared object, in which case, the DT_NEEDED entry
713 may not be required at the run time. */
715 if (newdyn
716 && newdef
717 && (olddef
718 || (h->root.type == bfd_link_hash_common
719 && (bind == STB_WEAK
720 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
721 && (h->root.type != bfd_link_hash_defweak
722 || dt_needed
723 || bind == STB_WEAK))
725 *override = true;
726 newdef = false;
727 newdyncommon = false;
729 *psec = sec = bfd_und_section_ptr;
730 *size_change_ok = true;
732 /* If we get here when the old symbol is a common symbol, then
733 we are explicitly letting it override a weak symbol or
734 function in a dynamic object, and we don't want to warn about
735 a type change. If the old symbol is a defined symbol, a type
736 change warning may still be appropriate. */
738 if (h->root.type == bfd_link_hash_common)
739 *type_change_ok = true;
742 /* Handle the special case of an old common symbol merging with a
743 new symbol which looks like a common symbol in a shared object.
744 We change *PSEC and *PVALUE to make the new symbol look like a
745 common symbol, and let _bfd_generic_link_add_one_symbol will do
746 the right thing. */
748 if (newdyncommon
749 && h->root.type == bfd_link_hash_common)
751 *override = true;
752 newdef = false;
753 newdyncommon = false;
754 *pvalue = sym->st_size;
755 *psec = sec = bfd_com_section_ptr;
756 *size_change_ok = true;
759 /* If the old symbol is from a dynamic object, and the new symbol is
760 a definition which is not from a dynamic object, then the new
761 symbol overrides the old symbol. Symbols from regular files
762 always take precedence over symbols from dynamic objects, even if
763 they are defined after the dynamic object in the link.
765 As above, we again permit a common symbol in a regular object to
766 override a definition in a shared object if the shared object
767 symbol is a function or is weak.
769 As above, we permit a non-weak definition in a shared object to
770 override a weak definition in a regular object. */
772 if (! newdyn
773 && (newdef
774 || (bfd_is_com_section (sec)
775 && (h->root.type == bfd_link_hash_defweak
776 || h->type == STT_FUNC)))
777 && olddyn
778 && olddef
779 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
780 && (bind != STB_WEAK
781 || h->root.type == bfd_link_hash_defweak))
783 /* Change the hash table entry to undefined, and let
784 _bfd_generic_link_add_one_symbol do the right thing with the
785 new definition. */
787 h->root.type = bfd_link_hash_undefined;
788 h->root.u.undef.abfd = h->root.u.def.section->owner;
789 *size_change_ok = true;
791 olddef = false;
792 olddyncommon = false;
794 /* We again permit a type change when a common symbol may be
795 overriding a function. */
797 if (bfd_is_com_section (sec))
798 *type_change_ok = true;
800 /* This union may have been set to be non-NULL when this symbol
801 was seen in a dynamic object. We must force the union to be
802 NULL, so that it is correct for a regular symbol. */
804 h->verinfo.vertree = NULL;
806 /* In this special case, if H is the target of an indirection,
807 we want the caller to frob with H rather than with the
808 indirect symbol. That will permit the caller to redefine the
809 target of the indirection, rather than the indirect symbol
810 itself. FIXME: This will break the -y option if we store a
811 symbol with a different name. */
812 *sym_hash = h;
815 /* Handle the special case of a new common symbol merging with an
816 old symbol that looks like it might be a common symbol defined in
817 a shared object. Note that we have already handled the case in
818 which a new common symbol should simply override the definition
819 in the shared library. */
821 if (! newdyn
822 && bfd_is_com_section (sec)
823 && olddyncommon)
825 /* It would be best if we could set the hash table entry to a
826 common symbol, but we don't know what to use for the section
827 or the alignment. */
828 if (! ((*info->callbacks->multiple_common)
829 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
830 h->size, abfd, bfd_link_hash_common, sym->st_size)))
831 return false;
833 /* If the predumed common symbol in the dynamic object is
834 larger, pretend that the new symbol has its size. */
836 if (h->size > *pvalue)
837 *pvalue = h->size;
839 /* FIXME: We no longer know the alignment required by the symbol
840 in the dynamic object, so we just wind up using the one from
841 the regular object. */
843 olddef = false;
844 olddyncommon = false;
846 h->root.type = bfd_link_hash_undefined;
847 h->root.u.undef.abfd = h->root.u.def.section->owner;
849 *size_change_ok = true;
850 *type_change_ok = true;
852 h->verinfo.vertree = NULL;
855 /* Handle the special case of a weak definition in a regular object
856 followed by a non-weak definition in a shared object. In this
857 case, we prefer the definition in the shared object unless it
858 comes from a DT_NEEDED entry of a shared object, in which case,
859 the DT_NEEDED entry may not be required at the run time. */
860 if (olddef
861 && ! dt_needed
862 && h->root.type == bfd_link_hash_defweak
863 && newdef
864 && newdyn
865 && bind != STB_WEAK)
867 /* To make this work we have to frob the flags so that the rest
868 of the code does not think we are using the regular
869 definition. */
870 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
871 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
872 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
873 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
874 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
875 | ELF_LINK_HASH_DEF_DYNAMIC);
877 /* If H is the target of an indirection, we want the caller to
878 use H rather than the indirect symbol. Otherwise if we are
879 defining a new indirect symbol we will wind up attaching it
880 to the entry we are overriding. */
881 *sym_hash = h;
884 /* Handle the special case of a non-weak definition in a shared
885 object followed by a weak definition in a regular object. In
886 this case we prefer to definition in the shared object. To make
887 this work we have to tell the caller to not treat the new symbol
888 as a definition. */
889 if (olddef
890 && olddyn
891 && h->root.type != bfd_link_hash_defweak
892 && newdef
893 && ! newdyn
894 && bind == STB_WEAK)
895 *override = true;
897 return true;
900 /* This function is called to create an indirect symbol from the
901 default for the symbol with the default version if needed. The
902 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
903 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
904 indicates if it comes from a DT_NEEDED entry of a shared object. */
906 static boolean
907 elf_add_default_symbol (abfd, info, h, name, sym, psec, value,
908 dynsym, override, dt_needed)
909 bfd *abfd;
910 struct bfd_link_info *info;
911 struct elf_link_hash_entry *h;
912 const char *name;
913 Elf_Internal_Sym *sym;
914 asection **psec;
915 bfd_vma *value;
916 boolean *dynsym;
917 boolean override;
918 boolean dt_needed;
920 boolean type_change_ok;
921 boolean size_change_ok;
922 char *shortname;
923 struct elf_link_hash_entry *hi;
924 struct bfd_link_hash_entry *bh;
925 struct elf_backend_data *bed;
926 boolean collect;
927 boolean dynamic;
928 char *p;
929 size_t len, shortlen;
930 asection *sec;
932 /* If this symbol has a version, and it is the default version, we
933 create an indirect symbol from the default name to the fully
934 decorated name. This will cause external references which do not
935 specify a version to be bound to this version of the symbol. */
936 p = strchr (name, ELF_VER_CHR);
937 if (p == NULL || p[1] != ELF_VER_CHR)
938 return true;
940 if (override)
942 /* We are overridden by an old defition. We need to check if we
943 need to create the indirect symbol from the default name. */
944 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
945 false, false);
946 BFD_ASSERT (hi != NULL);
947 if (hi == h)
948 return true;
949 while (hi->root.type == bfd_link_hash_indirect
950 || hi->root.type == bfd_link_hash_warning)
952 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
953 if (hi == h)
954 return true;
958 bed = get_elf_backend_data (abfd);
959 collect = bed->collect;
960 dynamic = (abfd->flags & DYNAMIC) != 0;
962 shortlen = p - name;
963 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
964 if (shortname == NULL)
965 return false;
966 memcpy (shortname, name, shortlen);
967 shortname[shortlen] = '\0';
969 /* We are going to create a new symbol. Merge it with any existing
970 symbol with this name. For the purposes of the merge, act as
971 though we were defining the symbol we just defined, although we
972 actually going to define an indirect symbol. */
973 type_change_ok = false;
974 size_change_ok = false;
975 sec = *psec;
976 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
977 &hi, &override, &type_change_ok,
978 &size_change_ok, dt_needed))
979 return false;
981 if (! override)
983 bh = &hi->root;
984 if (! (_bfd_generic_link_add_one_symbol
985 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
986 (bfd_vma) 0, name, false, collect, &bh)))
987 return false;
988 hi = (struct elf_link_hash_entry *) bh;
990 else
992 /* In this case the symbol named SHORTNAME is overriding the
993 indirect symbol we want to add. We were planning on making
994 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
995 is the name without a version. NAME is the fully versioned
996 name, and it is the default version.
998 Overriding means that we already saw a definition for the
999 symbol SHORTNAME in a regular object, and it is overriding
1000 the symbol defined in the dynamic object.
1002 When this happens, we actually want to change NAME, the
1003 symbol we just added, to refer to SHORTNAME. This will cause
1004 references to NAME in the shared object to become references
1005 to SHORTNAME in the regular object. This is what we expect
1006 when we override a function in a shared object: that the
1007 references in the shared object will be mapped to the
1008 definition in the regular object. */
1010 while (hi->root.type == bfd_link_hash_indirect
1011 || hi->root.type == bfd_link_hash_warning)
1012 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1014 h->root.type = bfd_link_hash_indirect;
1015 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1016 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1018 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1019 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1020 if (hi->elf_link_hash_flags
1021 & (ELF_LINK_HASH_REF_REGULAR
1022 | ELF_LINK_HASH_DEF_REGULAR))
1024 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1025 return false;
1029 /* Now set HI to H, so that the following code will set the
1030 other fields correctly. */
1031 hi = h;
1034 /* If there is a duplicate definition somewhere, then HI may not
1035 point to an indirect symbol. We will have reported an error to
1036 the user in that case. */
1038 if (hi->root.type == bfd_link_hash_indirect)
1040 struct elf_link_hash_entry *ht;
1042 /* If the symbol became indirect, then we assume that we have
1043 not seen a definition before. */
1044 BFD_ASSERT ((hi->elf_link_hash_flags
1045 & (ELF_LINK_HASH_DEF_DYNAMIC
1046 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1048 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1049 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1051 /* See if the new flags lead us to realize that the symbol must
1052 be dynamic. */
1053 if (! *dynsym)
1055 if (! dynamic)
1057 if (info->shared
1058 || ((hi->elf_link_hash_flags
1059 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1060 *dynsym = true;
1062 else
1064 if ((hi->elf_link_hash_flags
1065 & ELF_LINK_HASH_REF_REGULAR) != 0)
1066 *dynsym = true;
1071 /* We also need to define an indirection from the nondefault version
1072 of the symbol. */
1074 len = strlen (name);
1075 shortname = bfd_hash_allocate (&info->hash->table, len);
1076 if (shortname == NULL)
1077 return false;
1078 memcpy (shortname, name, shortlen);
1079 memcpy (shortname + shortlen, p + 1, len - shortlen);
1081 /* Once again, merge with any existing symbol. */
1082 type_change_ok = false;
1083 size_change_ok = false;
1084 sec = *psec;
1085 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1086 &hi, &override, &type_change_ok,
1087 &size_change_ok, dt_needed))
1088 return false;
1090 if (override)
1092 /* Here SHORTNAME is a versioned name, so we don't expect to see
1093 the type of override we do in the case above unless it is
1094 overridden by a versioned definiton. */
1095 if (hi->root.type != bfd_link_hash_defined
1096 && hi->root.type != bfd_link_hash_defweak)
1097 (*_bfd_error_handler)
1098 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1099 bfd_archive_filename (abfd), shortname);
1101 else
1103 bh = &hi->root;
1104 if (! (_bfd_generic_link_add_one_symbol
1105 (info, abfd, shortname, BSF_INDIRECT,
1106 bfd_ind_section_ptr, (bfd_vma) 0, name, false, collect, &bh)))
1107 return false;
1108 hi = (struct elf_link_hash_entry *) bh;
1110 /* If there is a duplicate definition somewhere, then HI may not
1111 point to an indirect symbol. We will have reported an error
1112 to the user in that case. */
1114 if (hi->root.type == bfd_link_hash_indirect)
1116 /* If the symbol became indirect, then we assume that we have
1117 not seen a definition before. */
1118 BFD_ASSERT ((hi->elf_link_hash_flags
1119 & (ELF_LINK_HASH_DEF_DYNAMIC
1120 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1122 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1124 /* See if the new flags lead us to realize that the symbol
1125 must be dynamic. */
1126 if (! *dynsym)
1128 if (! dynamic)
1130 if (info->shared
1131 || ((hi->elf_link_hash_flags
1132 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1133 *dynsym = true;
1135 else
1137 if ((hi->elf_link_hash_flags
1138 & ELF_LINK_HASH_REF_REGULAR) != 0)
1139 *dynsym = true;
1145 return true;
1148 /* Add symbols from an ELF object file to the linker hash table. */
1150 static boolean
1151 elf_link_add_object_symbols (abfd, info)
1152 bfd *abfd;
1153 struct bfd_link_info *info;
1155 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1156 const Elf_Internal_Sym *,
1157 const char **, flagword *,
1158 asection **, bfd_vma *));
1159 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1160 asection *, const Elf_Internal_Rela *));
1161 boolean collect;
1162 Elf_Internal_Shdr *hdr;
1163 bfd_size_type symcount;
1164 bfd_size_type extsymcount;
1165 bfd_size_type extsymoff;
1166 struct elf_link_hash_entry **sym_hash;
1167 boolean dynamic;
1168 Elf_External_Versym *extversym = NULL;
1169 Elf_External_Versym *ever;
1170 struct elf_link_hash_entry *weaks;
1171 Elf_Internal_Sym *isymbuf = NULL;
1172 Elf_Internal_Sym *isym;
1173 Elf_Internal_Sym *isymend;
1174 struct elf_backend_data *bed;
1175 boolean dt_needed;
1176 struct elf_link_hash_table * hash_table;
1177 bfd_size_type amt;
1179 hash_table = elf_hash_table (info);
1181 bed = get_elf_backend_data (abfd);
1182 add_symbol_hook = bed->elf_add_symbol_hook;
1183 collect = bed->collect;
1185 if ((abfd->flags & DYNAMIC) == 0)
1186 dynamic = false;
1187 else
1189 dynamic = true;
1191 /* You can't use -r against a dynamic object. Also, there's no
1192 hope of using a dynamic object which does not exactly match
1193 the format of the output file. */
1194 if (info->relocateable || info->hash->creator != abfd->xvec)
1196 bfd_set_error (bfd_error_invalid_operation);
1197 goto error_return;
1201 /* As a GNU extension, any input sections which are named
1202 .gnu.warning.SYMBOL are treated as warning symbols for the given
1203 symbol. This differs from .gnu.warning sections, which generate
1204 warnings when they are included in an output file. */
1205 if (! info->shared)
1207 asection *s;
1209 for (s = abfd->sections; s != NULL; s = s->next)
1211 const char *name;
1213 name = bfd_get_section_name (abfd, s);
1214 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1216 char *msg;
1217 bfd_size_type sz;
1219 name += sizeof ".gnu.warning." - 1;
1221 /* If this is a shared object, then look up the symbol
1222 in the hash table. If it is there, and it is already
1223 been defined, then we will not be using the entry
1224 from this shared object, so we don't need to warn.
1225 FIXME: If we see the definition in a regular object
1226 later on, we will warn, but we shouldn't. The only
1227 fix is to keep track of what warnings we are supposed
1228 to emit, and then handle them all at the end of the
1229 link. */
1230 if (dynamic && abfd->xvec == info->hash->creator)
1232 struct elf_link_hash_entry *h;
1234 h = elf_link_hash_lookup (hash_table, name,
1235 false, false, true);
1237 /* FIXME: What about bfd_link_hash_common? */
1238 if (h != NULL
1239 && (h->root.type == bfd_link_hash_defined
1240 || h->root.type == bfd_link_hash_defweak))
1242 /* We don't want to issue this warning. Clobber
1243 the section size so that the warning does not
1244 get copied into the output file. */
1245 s->_raw_size = 0;
1246 continue;
1250 sz = bfd_section_size (abfd, s);
1251 msg = (char *) bfd_alloc (abfd, sz + 1);
1252 if (msg == NULL)
1253 goto error_return;
1255 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1256 goto error_return;
1258 msg[sz] = '\0';
1260 if (! (_bfd_generic_link_add_one_symbol
1261 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1262 false, collect, (struct bfd_link_hash_entry **) NULL)))
1263 goto error_return;
1265 if (! info->relocateable)
1267 /* Clobber the section size so that the warning does
1268 not get copied into the output file. */
1269 s->_raw_size = 0;
1275 dt_needed = false;
1276 if (! dynamic)
1278 /* If we are creating a shared library, create all the dynamic
1279 sections immediately. We need to attach them to something,
1280 so we attach them to this BFD, provided it is the right
1281 format. FIXME: If there are no input BFD's of the same
1282 format as the output, we can't make a shared library. */
1283 if (info->shared
1284 && is_elf_hash_table (info)
1285 && ! hash_table->dynamic_sections_created
1286 && abfd->xvec == info->hash->creator)
1288 if (! elf_link_create_dynamic_sections (abfd, info))
1289 goto error_return;
1292 else if (! is_elf_hash_table (info))
1293 goto error_return;
1294 else
1296 asection *s;
1297 boolean add_needed;
1298 const char *name;
1299 bfd_size_type oldsize;
1300 bfd_size_type strindex;
1301 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
1303 /* ld --just-symbols and dynamic objects don't mix very well.
1304 Test for --just-symbols by looking at info set up by
1305 _bfd_elf_link_just_syms. */
1306 if ((s = abfd->sections) != NULL
1307 && elf_section_data (s)->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
1308 goto error_return;
1310 /* Find the name to use in a DT_NEEDED entry that refers to this
1311 object. If the object has a DT_SONAME entry, we use it.
1312 Otherwise, if the generic linker stuck something in
1313 elf_dt_name, we use that. Otherwise, we just use the file
1314 name. If the generic linker put a null string into
1315 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1316 there is a DT_SONAME entry. */
1317 add_needed = true;
1318 name = bfd_get_filename (abfd);
1319 if (elf_dt_name (abfd) != NULL)
1321 name = elf_dt_name (abfd);
1322 if (*name == '\0')
1324 if (elf_dt_soname (abfd) != NULL)
1325 dt_needed = true;
1327 add_needed = false;
1330 s = bfd_get_section_by_name (abfd, ".dynamic");
1331 if (s != NULL)
1333 Elf_External_Dyn *dynbuf = NULL;
1334 Elf_External_Dyn *extdyn;
1335 Elf_External_Dyn *extdynend;
1336 int elfsec;
1337 unsigned long shlink;
1339 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1340 if (dynbuf == NULL)
1341 goto error_return;
1343 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1344 (file_ptr) 0, s->_raw_size))
1345 goto error_free_dyn;
1347 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1348 if (elfsec == -1)
1349 goto error_free_dyn;
1350 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1352 extdyn = dynbuf;
1353 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1354 for (; extdyn < extdynend; extdyn++)
1356 Elf_Internal_Dyn dyn;
1358 elf_swap_dyn_in (abfd, extdyn, &dyn);
1359 if (dyn.d_tag == DT_SONAME)
1361 unsigned int tagv = dyn.d_un.d_val;
1362 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1363 if (name == NULL)
1364 goto error_free_dyn;
1366 if (dyn.d_tag == DT_NEEDED)
1368 struct bfd_link_needed_list *n, **pn;
1369 char *fnm, *anm;
1370 unsigned int tagv = dyn.d_un.d_val;
1372 amt = sizeof (struct bfd_link_needed_list);
1373 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1374 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1375 if (n == NULL || fnm == NULL)
1376 goto error_free_dyn;
1377 amt = strlen (fnm) + 1;
1378 anm = bfd_alloc (abfd, amt);
1379 if (anm == NULL)
1380 goto error_free_dyn;
1381 memcpy (anm, fnm, (size_t) amt);
1382 n->name = anm;
1383 n->by = abfd;
1384 n->next = NULL;
1385 for (pn = & hash_table->needed;
1386 *pn != NULL;
1387 pn = &(*pn)->next)
1389 *pn = n;
1391 if (dyn.d_tag == DT_RUNPATH)
1393 struct bfd_link_needed_list *n, **pn;
1394 char *fnm, *anm;
1395 unsigned int tagv = dyn.d_un.d_val;
1397 amt = sizeof (struct bfd_link_needed_list);
1398 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1399 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1400 if (n == NULL || fnm == NULL)
1401 goto error_free_dyn;
1402 amt = strlen (fnm) + 1;
1403 anm = bfd_alloc (abfd, amt);
1404 if (anm == NULL)
1405 goto error_free_dyn;
1406 memcpy (anm, fnm, (size_t) amt);
1407 n->name = anm;
1408 n->by = abfd;
1409 n->next = NULL;
1410 for (pn = & runpath;
1411 *pn != NULL;
1412 pn = &(*pn)->next)
1414 *pn = n;
1416 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1417 if (!runpath && dyn.d_tag == DT_RPATH)
1419 struct bfd_link_needed_list *n, **pn;
1420 char *fnm, *anm;
1421 unsigned int tagv = dyn.d_un.d_val;
1423 amt = sizeof (struct bfd_link_needed_list);
1424 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1425 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1426 if (n == NULL || fnm == NULL)
1427 goto error_free_dyn;
1428 amt = strlen (fnm) + 1;
1429 anm = bfd_alloc (abfd, amt);
1430 if (anm == NULL)
1432 error_free_dyn:
1433 free (dynbuf);
1434 goto error_return;
1436 memcpy (anm, fnm, (size_t) amt);
1437 n->name = anm;
1438 n->by = abfd;
1439 n->next = NULL;
1440 for (pn = & rpath;
1441 *pn != NULL;
1442 pn = &(*pn)->next)
1444 *pn = n;
1448 free (dynbuf);
1451 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
1452 frees all more recently bfd_alloc'd blocks as well. */
1453 if (runpath)
1454 rpath = runpath;
1456 if (rpath)
1458 struct bfd_link_needed_list **pn;
1459 for (pn = & hash_table->runpath;
1460 *pn != NULL;
1461 pn = &(*pn)->next)
1463 *pn = rpath;
1466 /* We do not want to include any of the sections in a dynamic
1467 object in the output file. We hack by simply clobbering the
1468 list of sections in the BFD. This could be handled more
1469 cleanly by, say, a new section flag; the existing
1470 SEC_NEVER_LOAD flag is not the one we want, because that one
1471 still implies that the section takes up space in the output
1472 file. */
1473 bfd_section_list_clear (abfd);
1475 /* If this is the first dynamic object found in the link, create
1476 the special sections required for dynamic linking. */
1477 if (! hash_table->dynamic_sections_created)
1478 if (! elf_link_create_dynamic_sections (abfd, info))
1479 goto error_return;
1481 if (add_needed)
1483 /* Add a DT_NEEDED entry for this dynamic object. */
1484 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1485 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1486 if (strindex == (bfd_size_type) -1)
1487 goto error_return;
1489 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1491 asection *sdyn;
1492 Elf_External_Dyn *dyncon, *dynconend;
1494 /* The hash table size did not change, which means that
1495 the dynamic object name was already entered. If we
1496 have already included this dynamic object in the
1497 link, just ignore it. There is no reason to include
1498 a particular dynamic object more than once. */
1499 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1500 BFD_ASSERT (sdyn != NULL);
1502 dyncon = (Elf_External_Dyn *) sdyn->contents;
1503 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1504 sdyn->_raw_size);
1505 for (; dyncon < dynconend; dyncon++)
1507 Elf_Internal_Dyn dyn;
1509 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1510 if (dyn.d_tag == DT_NEEDED
1511 && dyn.d_un.d_val == strindex)
1513 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1514 return true;
1519 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1520 goto error_return;
1523 /* Save the SONAME, if there is one, because sometimes the
1524 linker emulation code will need to know it. */
1525 if (*name == '\0')
1526 name = basename (bfd_get_filename (abfd));
1527 elf_dt_name (abfd) = name;
1530 /* If this is a dynamic object, we always link against the .dynsym
1531 symbol table, not the .symtab symbol table. The dynamic linker
1532 will only see the .dynsym symbol table, so there is no reason to
1533 look at .symtab for a dynamic object. */
1535 if (! dynamic || elf_dynsymtab (abfd) == 0)
1536 hdr = &elf_tdata (abfd)->symtab_hdr;
1537 else
1538 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1540 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1542 /* The sh_info field of the symtab header tells us where the
1543 external symbols start. We don't care about the local symbols at
1544 this point. */
1545 if (elf_bad_symtab (abfd))
1547 extsymcount = symcount;
1548 extsymoff = 0;
1550 else
1552 extsymcount = symcount - hdr->sh_info;
1553 extsymoff = hdr->sh_info;
1556 sym_hash = NULL;
1557 if (extsymcount != 0)
1559 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
1560 NULL, NULL, NULL);
1561 if (isymbuf == NULL)
1562 goto error_return;
1564 /* We store a pointer to the hash table entry for each external
1565 symbol. */
1566 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1567 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1568 if (sym_hash == NULL)
1569 goto error_free_sym;
1570 elf_sym_hashes (abfd) = sym_hash;
1573 if (dynamic)
1575 /* Read in any version definitions. */
1576 if (! _bfd_elf_slurp_version_tables (abfd))
1577 goto error_free_sym;
1579 /* Read in the symbol versions, but don't bother to convert them
1580 to internal format. */
1581 if (elf_dynversym (abfd) != 0)
1583 Elf_Internal_Shdr *versymhdr;
1585 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1586 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1587 if (extversym == NULL)
1588 goto error_free_sym;
1589 amt = versymhdr->sh_size;
1590 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1591 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1592 goto error_free_vers;
1596 weaks = NULL;
1598 ever = extversym != NULL ? extversym + extsymoff : NULL;
1599 for (isym = isymbuf, isymend = isymbuf + extsymcount;
1600 isym < isymend;
1601 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1603 int bind;
1604 bfd_vma value;
1605 asection *sec;
1606 flagword flags;
1607 const char *name;
1608 struct elf_link_hash_entry *h;
1609 boolean definition;
1610 boolean size_change_ok, type_change_ok;
1611 boolean new_weakdef;
1612 unsigned int old_alignment;
1613 boolean override;
1615 override = false;
1617 flags = BSF_NO_FLAGS;
1618 sec = NULL;
1619 value = isym->st_value;
1620 *sym_hash = NULL;
1622 bind = ELF_ST_BIND (isym->st_info);
1623 if (bind == STB_LOCAL)
1625 /* This should be impossible, since ELF requires that all
1626 global symbols follow all local symbols, and that sh_info
1627 point to the first global symbol. Unfortunatealy, Irix 5
1628 screws this up. */
1629 continue;
1631 else if (bind == STB_GLOBAL)
1633 if (isym->st_shndx != SHN_UNDEF
1634 && isym->st_shndx != SHN_COMMON)
1635 flags = BSF_GLOBAL;
1637 else if (bind == STB_WEAK)
1638 flags = BSF_WEAK;
1639 else
1641 /* Leave it up to the processor backend. */
1644 if (isym->st_shndx == SHN_UNDEF)
1645 sec = bfd_und_section_ptr;
1646 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
1648 sec = section_from_elf_index (abfd, isym->st_shndx);
1649 if (sec == NULL)
1650 sec = bfd_abs_section_ptr;
1651 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1652 value -= sec->vma;
1654 else if (isym->st_shndx == SHN_ABS)
1655 sec = bfd_abs_section_ptr;
1656 else if (isym->st_shndx == SHN_COMMON)
1658 sec = bfd_com_section_ptr;
1659 /* What ELF calls the size we call the value. What ELF
1660 calls the value we call the alignment. */
1661 value = isym->st_size;
1663 else
1665 /* Leave it up to the processor backend. */
1668 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
1669 isym->st_name);
1670 if (name == (const char *) NULL)
1671 goto error_free_vers;
1673 if (isym->st_shndx == SHN_COMMON
1674 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
1676 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
1678 if (tcomm == NULL)
1680 tcomm = bfd_make_section (abfd, ".tcommon");
1681 if (tcomm == NULL
1682 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
1683 | SEC_IS_COMMON
1684 | SEC_LINKER_CREATED
1685 | SEC_THREAD_LOCAL)))
1686 goto error_free_vers;
1688 sec = tcomm;
1690 else if (add_symbol_hook)
1692 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
1693 &value))
1694 goto error_free_vers;
1696 /* The hook function sets the name to NULL if this symbol
1697 should be skipped for some reason. */
1698 if (name == (const char *) NULL)
1699 continue;
1702 /* Sanity check that all possibilities were handled. */
1703 if (sec == (asection *) NULL)
1705 bfd_set_error (bfd_error_bad_value);
1706 goto error_free_vers;
1709 if (bfd_is_und_section (sec)
1710 || bfd_is_com_section (sec))
1711 definition = false;
1712 else
1713 definition = true;
1715 size_change_ok = false;
1716 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1717 old_alignment = 0;
1718 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1720 Elf_Internal_Versym iver;
1721 unsigned int vernum = 0;
1723 if (ever != NULL)
1725 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1726 vernum = iver.vs_vers & VERSYM_VERSION;
1728 /* If this is a hidden symbol, or if it is not version
1729 1, we append the version name to the symbol name.
1730 However, we do not modify a non-hidden absolute
1731 symbol, because it might be the version symbol
1732 itself. FIXME: What if it isn't? */
1733 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1734 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1736 const char *verstr;
1737 size_t namelen, verlen, newlen;
1738 char *newname, *p;
1740 if (isym->st_shndx != SHN_UNDEF)
1742 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1744 (*_bfd_error_handler)
1745 (_("%s: %s: invalid version %u (max %d)"),
1746 bfd_archive_filename (abfd), name, vernum,
1747 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1748 bfd_set_error (bfd_error_bad_value);
1749 goto error_free_vers;
1751 else if (vernum > 1)
1752 verstr =
1753 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1754 else
1755 verstr = "";
1757 else
1759 /* We cannot simply test for the number of
1760 entries in the VERNEED section since the
1761 numbers for the needed versions do not start
1762 at 0. */
1763 Elf_Internal_Verneed *t;
1765 verstr = NULL;
1766 for (t = elf_tdata (abfd)->verref;
1767 t != NULL;
1768 t = t->vn_nextref)
1770 Elf_Internal_Vernaux *a;
1772 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1774 if (a->vna_other == vernum)
1776 verstr = a->vna_nodename;
1777 break;
1780 if (a != NULL)
1781 break;
1783 if (verstr == NULL)
1785 (*_bfd_error_handler)
1786 (_("%s: %s: invalid needed version %d"),
1787 bfd_archive_filename (abfd), name, vernum);
1788 bfd_set_error (bfd_error_bad_value);
1789 goto error_free_vers;
1793 namelen = strlen (name);
1794 verlen = strlen (verstr);
1795 newlen = namelen + verlen + 2;
1796 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1797 && isym->st_shndx != SHN_UNDEF)
1798 ++newlen;
1800 newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
1801 if (newname == NULL)
1802 goto error_free_vers;
1803 memcpy (newname, name, namelen);
1804 p = newname + namelen;
1805 *p++ = ELF_VER_CHR;
1806 /* If this is a defined non-hidden version symbol,
1807 we add another @ to the name. This indicates the
1808 default version of the symbol. */
1809 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1810 && isym->st_shndx != SHN_UNDEF)
1811 *p++ = ELF_VER_CHR;
1812 memcpy (p, verstr, verlen + 1);
1814 name = newname;
1818 if (! elf_merge_symbol (abfd, info, name, isym, &sec, &value,
1819 sym_hash, &override, &type_change_ok,
1820 &size_change_ok, dt_needed))
1821 goto error_free_vers;
1823 if (override)
1824 definition = false;
1826 h = *sym_hash;
1827 while (h->root.type == bfd_link_hash_indirect
1828 || h->root.type == bfd_link_hash_warning)
1829 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1831 /* Remember the old alignment if this is a common symbol, so
1832 that we don't reduce the alignment later on. We can't
1833 check later, because _bfd_generic_link_add_one_symbol
1834 will set a default for the alignment which we want to
1835 override. */
1836 if (h->root.type == bfd_link_hash_common)
1837 old_alignment = h->root.u.c.p->alignment_power;
1839 if (elf_tdata (abfd)->verdef != NULL
1840 && ! override
1841 && vernum > 1
1842 && definition)
1843 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1846 if (! (_bfd_generic_link_add_one_symbol
1847 (info, abfd, name, flags, sec, value, (const char *) NULL,
1848 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1849 goto error_free_vers;
1851 h = *sym_hash;
1852 while (h->root.type == bfd_link_hash_indirect
1853 || h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1855 *sym_hash = h;
1857 new_weakdef = false;
1858 if (dynamic
1859 && definition
1860 && (flags & BSF_WEAK) != 0
1861 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
1862 && info->hash->creator->flavour == bfd_target_elf_flavour
1863 && h->weakdef == NULL)
1865 /* Keep a list of all weak defined non function symbols from
1866 a dynamic object, using the weakdef field. Later in this
1867 function we will set the weakdef field to the correct
1868 value. We only put non-function symbols from dynamic
1869 objects on this list, because that happens to be the only
1870 time we need to know the normal symbol corresponding to a
1871 weak symbol, and the information is time consuming to
1872 figure out. If the weakdef field is not already NULL,
1873 then this symbol was already defined by some previous
1874 dynamic object, and we will be using that previous
1875 definition anyhow. */
1877 h->weakdef = weaks;
1878 weaks = h;
1879 new_weakdef = true;
1882 /* Set the alignment of a common symbol. */
1883 if (isym->st_shndx == SHN_COMMON
1884 && h->root.type == bfd_link_hash_common)
1886 unsigned int align;
1888 align = bfd_log2 (isym->st_value);
1889 if (align > old_alignment
1890 /* Permit an alignment power of zero if an alignment of one
1891 is specified and no other alignments have been specified. */
1892 || (isym->st_value == 1 && old_alignment == 0))
1893 h->root.u.c.p->alignment_power = align;
1896 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1898 int old_flags;
1899 boolean dynsym;
1900 int new_flag;
1902 /* Remember the symbol size and type. */
1903 if (isym->st_size != 0
1904 && (definition || h->size == 0))
1906 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
1907 (*_bfd_error_handler)
1908 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1909 name, (unsigned long) h->size,
1910 (unsigned long) isym->st_size, bfd_archive_filename (abfd));
1912 h->size = isym->st_size;
1915 /* If this is a common symbol, then we always want H->SIZE
1916 to be the size of the common symbol. The code just above
1917 won't fix the size if a common symbol becomes larger. We
1918 don't warn about a size change here, because that is
1919 covered by --warn-common. */
1920 if (h->root.type == bfd_link_hash_common)
1921 h->size = h->root.u.c.size;
1923 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
1924 && (definition || h->type == STT_NOTYPE))
1926 if (h->type != STT_NOTYPE
1927 && h->type != ELF_ST_TYPE (isym->st_info)
1928 && ! type_change_ok)
1929 (*_bfd_error_handler)
1930 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1931 name, h->type, ELF_ST_TYPE (isym->st_info),
1932 bfd_archive_filename (abfd));
1934 h->type = ELF_ST_TYPE (isym->st_info);
1937 /* If st_other has a processor-specific meaning, specific code
1938 might be needed here. */
1939 if (isym->st_other != 0)
1941 unsigned char hvis, symvis, other;
1943 /* Take the balance of OTHER from the definition. */
1944 other = (definition ? isym->st_other : h->other);
1945 other &= ~ ELF_ST_VISIBILITY (-1);
1947 /* Combine visibilities, using the most constraining one. */
1948 hvis = ELF_ST_VISIBILITY (h->other);
1949 symvis = ELF_ST_VISIBILITY (isym->st_other);
1951 h->other = other | (hvis > symvis ? hvis : symvis);
1954 /* Set a flag in the hash table entry indicating the type of
1955 reference or definition we just found. Keep a count of
1956 the number of dynamic symbols we find. A dynamic symbol
1957 is one which is referenced or defined by both a regular
1958 object and a shared object. */
1959 old_flags = h->elf_link_hash_flags;
1960 dynsym = false;
1961 if (! dynamic)
1963 if (! definition)
1965 new_flag = ELF_LINK_HASH_REF_REGULAR;
1966 if (bind != STB_WEAK)
1967 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1969 else
1970 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1971 if (info->shared
1972 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1973 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1974 dynsym = true;
1976 else
1978 if (! definition)
1979 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1980 else
1981 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1982 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1983 | ELF_LINK_HASH_REF_REGULAR)) != 0
1984 || (h->weakdef != NULL
1985 && ! new_weakdef
1986 && h->weakdef->dynindx != -1))
1987 dynsym = true;
1990 h->elf_link_hash_flags |= new_flag;
1992 /* Check to see if we need to add an indirect symbol for
1993 the default name. */
1994 if (definition || h->root.type == bfd_link_hash_common)
1995 if (! elf_add_default_symbol (abfd, info, h, name, isym,
1996 &sec, &value, &dynsym,
1997 override, dt_needed))
1998 goto error_free_vers;
2000 if (dynsym && h->dynindx == -1)
2002 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2003 goto error_free_vers;
2004 if (h->weakdef != NULL
2005 && ! new_weakdef
2006 && h->weakdef->dynindx == -1)
2008 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2009 goto error_free_vers;
2012 else if (dynsym && h->dynindx != -1)
2013 /* If the symbol already has a dynamic index, but
2014 visibility says it should not be visible, turn it into
2015 a local symbol. */
2016 switch (ELF_ST_VISIBILITY (h->other))
2018 case STV_INTERNAL:
2019 case STV_HIDDEN:
2020 (*bed->elf_backend_hide_symbol) (info, h, true);
2021 break;
2024 if (dt_needed && definition
2025 && (h->elf_link_hash_flags
2026 & ELF_LINK_HASH_REF_REGULAR) != 0)
2028 bfd_size_type oldsize;
2029 bfd_size_type strindex;
2031 if (! is_elf_hash_table (info))
2032 goto error_free_vers;
2034 /* The symbol from a DT_NEEDED object is referenced from
2035 the regular object to create a dynamic executable. We
2036 have to make sure there is a DT_NEEDED entry for it. */
2038 dt_needed = false;
2039 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2040 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2041 elf_dt_soname (abfd), false);
2042 if (strindex == (bfd_size_type) -1)
2043 goto error_free_vers;
2045 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2047 asection *sdyn;
2048 Elf_External_Dyn *dyncon, *dynconend;
2050 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2051 ".dynamic");
2052 BFD_ASSERT (sdyn != NULL);
2054 dyncon = (Elf_External_Dyn *) sdyn->contents;
2055 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2056 sdyn->_raw_size);
2057 for (; dyncon < dynconend; dyncon++)
2059 Elf_Internal_Dyn dyn;
2061 elf_swap_dyn_in (hash_table->dynobj,
2062 dyncon, &dyn);
2063 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2064 dyn.d_un.d_val != strindex);
2068 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2069 goto error_free_vers;
2074 if (extversym != NULL)
2076 free (extversym);
2077 extversym = NULL;
2080 if (isymbuf != NULL)
2081 free (isymbuf);
2082 isymbuf = NULL;
2084 /* Now set the weakdefs field correctly for all the weak defined
2085 symbols we found. The only way to do this is to search all the
2086 symbols. Since we only need the information for non functions in
2087 dynamic objects, that's the only time we actually put anything on
2088 the list WEAKS. We need this information so that if a regular
2089 object refers to a symbol defined weakly in a dynamic object, the
2090 real symbol in the dynamic object is also put in the dynamic
2091 symbols; we also must arrange for both symbols to point to the
2092 same memory location. We could handle the general case of symbol
2093 aliasing, but a general symbol alias can only be generated in
2094 assembler code, handling it correctly would be very time
2095 consuming, and other ELF linkers don't handle general aliasing
2096 either. */
2097 while (weaks != NULL)
2099 struct elf_link_hash_entry *hlook;
2100 asection *slook;
2101 bfd_vma vlook;
2102 struct elf_link_hash_entry **hpp;
2103 struct elf_link_hash_entry **hppend;
2105 hlook = weaks;
2106 weaks = hlook->weakdef;
2107 hlook->weakdef = NULL;
2109 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2110 || hlook->root.type == bfd_link_hash_defweak
2111 || hlook->root.type == bfd_link_hash_common
2112 || hlook->root.type == bfd_link_hash_indirect);
2113 slook = hlook->root.u.def.section;
2114 vlook = hlook->root.u.def.value;
2116 hpp = elf_sym_hashes (abfd);
2117 hppend = hpp + extsymcount;
2118 for (; hpp < hppend; hpp++)
2120 struct elf_link_hash_entry *h;
2122 h = *hpp;
2123 if (h != NULL && h != hlook
2124 && h->root.type == bfd_link_hash_defined
2125 && h->root.u.def.section == slook
2126 && h->root.u.def.value == vlook)
2128 hlook->weakdef = h;
2130 /* If the weak definition is in the list of dynamic
2131 symbols, make sure the real definition is put there
2132 as well. */
2133 if (hlook->dynindx != -1
2134 && h->dynindx == -1)
2136 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2137 goto error_return;
2140 /* If the real definition is in the list of dynamic
2141 symbols, make sure the weak definition is put there
2142 as well. If we don't do this, then the dynamic
2143 loader might not merge the entries for the real
2144 definition and the weak definition. */
2145 if (h->dynindx != -1
2146 && hlook->dynindx == -1)
2148 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2149 goto error_return;
2151 break;
2156 /* If this object is the same format as the output object, and it is
2157 not a shared library, then let the backend look through the
2158 relocs.
2160 This is required to build global offset table entries and to
2161 arrange for dynamic relocs. It is not required for the
2162 particular common case of linking non PIC code, even when linking
2163 against shared libraries, but unfortunately there is no way of
2164 knowing whether an object file has been compiled PIC or not.
2165 Looking through the relocs is not particularly time consuming.
2166 The problem is that we must either (1) keep the relocs in memory,
2167 which causes the linker to require additional runtime memory or
2168 (2) read the relocs twice from the input file, which wastes time.
2169 This would be a good case for using mmap.
2171 I have no idea how to handle linking PIC code into a file of a
2172 different format. It probably can't be done. */
2173 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2174 if (! dynamic
2175 && abfd->xvec == info->hash->creator
2176 && check_relocs != NULL)
2178 asection *o;
2180 for (o = abfd->sections; o != NULL; o = o->next)
2182 Elf_Internal_Rela *internal_relocs;
2183 boolean ok;
2185 if ((o->flags & SEC_RELOC) == 0
2186 || o->reloc_count == 0
2187 || ((info->strip == strip_all || info->strip == strip_debugger)
2188 && (o->flags & SEC_DEBUGGING) != 0)
2189 || bfd_is_abs_section (o->output_section))
2190 continue;
2192 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2193 (abfd, o, (PTR) NULL,
2194 (Elf_Internal_Rela *) NULL,
2195 info->keep_memory));
2196 if (internal_relocs == NULL)
2197 goto error_return;
2199 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2201 if (elf_section_data (o)->relocs != internal_relocs)
2202 free (internal_relocs);
2204 if (! ok)
2205 goto error_return;
2209 /* If this is a non-traditional link, try to optimize the handling
2210 of the .stab/.stabstr sections. */
2211 if (! dynamic
2212 && ! info->traditional_format
2213 && info->hash->creator->flavour == bfd_target_elf_flavour
2214 && is_elf_hash_table (info)
2215 && (info->strip != strip_all && info->strip != strip_debugger))
2217 asection *stab, *stabstr;
2219 stab = bfd_get_section_by_name (abfd, ".stab");
2220 if (stab != NULL
2221 && (stab->flags & SEC_MERGE) == 0
2222 && !bfd_is_abs_section (stab->output_section))
2224 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2226 if (stabstr != NULL)
2228 struct bfd_elf_section_data *secdata;
2230 secdata = elf_section_data (stab);
2231 if (! _bfd_link_section_stabs (abfd,
2232 & hash_table->stab_info,
2233 stab, stabstr,
2234 &secdata->sec_info))
2235 goto error_return;
2236 if (secdata->sec_info)
2237 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2242 if (! info->relocateable && ! dynamic
2243 && is_elf_hash_table (info))
2245 asection *s;
2247 for (s = abfd->sections; s != NULL; s = s->next)
2248 if ((s->flags & SEC_MERGE) != 0
2249 && !bfd_is_abs_section (s->output_section))
2251 struct bfd_elf_section_data *secdata;
2253 secdata = elf_section_data (s);
2254 if (! _bfd_merge_section (abfd,
2255 & hash_table->merge_info,
2256 s, &secdata->sec_info))
2257 goto error_return;
2258 else if (secdata->sec_info)
2259 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2263 if (is_elf_hash_table (info))
2265 /* Add this bfd to the loaded list. */
2266 struct elf_link_loaded_list *n;
2268 n = ((struct elf_link_loaded_list *)
2269 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
2270 if (n == NULL)
2271 goto error_return;
2272 n->abfd = abfd;
2273 n->next = hash_table->loaded;
2274 hash_table->loaded = n;
2277 return true;
2279 error_free_vers:
2280 if (extversym != NULL)
2281 free (extversym);
2282 error_free_sym:
2283 if (isymbuf != NULL)
2284 free (isymbuf);
2285 error_return:
2286 return false;
2289 /* Create some sections which will be filled in with dynamic linking
2290 information. ABFD is an input file which requires dynamic sections
2291 to be created. The dynamic sections take up virtual memory space
2292 when the final executable is run, so we need to create them before
2293 addresses are assigned to the output sections. We work out the
2294 actual contents and size of these sections later. */
2296 boolean
2297 elf_link_create_dynamic_sections (abfd, info)
2298 bfd *abfd;
2299 struct bfd_link_info *info;
2301 flagword flags;
2302 register asection *s;
2303 struct elf_link_hash_entry *h;
2304 struct bfd_link_hash_entry *bh;
2305 struct elf_backend_data *bed;
2307 if (! is_elf_hash_table (info))
2308 return false;
2310 if (elf_hash_table (info)->dynamic_sections_created)
2311 return true;
2313 /* Make sure that all dynamic sections use the same input BFD. */
2314 if (elf_hash_table (info)->dynobj == NULL)
2315 elf_hash_table (info)->dynobj = abfd;
2316 else
2317 abfd = elf_hash_table (info)->dynobj;
2319 /* Note that we set the SEC_IN_MEMORY flag for all of these
2320 sections. */
2321 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2322 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2324 /* A dynamically linked executable has a .interp section, but a
2325 shared library does not. */
2326 if (! info->shared)
2328 s = bfd_make_section (abfd, ".interp");
2329 if (s == NULL
2330 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2331 return false;
2334 if (! info->traditional_format
2335 && info->hash->creator->flavour == bfd_target_elf_flavour)
2337 s = bfd_make_section (abfd, ".eh_frame_hdr");
2338 if (s == NULL
2339 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2340 || ! bfd_set_section_alignment (abfd, s, 2))
2341 return false;
2342 elf_hash_table (info)->eh_info.hdr_sec = s;
2345 /* Create sections to hold version informations. These are removed
2346 if they are not needed. */
2347 s = bfd_make_section (abfd, ".gnu.version_d");
2348 if (s == NULL
2349 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2350 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2351 return false;
2353 s = bfd_make_section (abfd, ".gnu.version");
2354 if (s == NULL
2355 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2356 || ! bfd_set_section_alignment (abfd, s, 1))
2357 return false;
2359 s = bfd_make_section (abfd, ".gnu.version_r");
2360 if (s == NULL
2361 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2362 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2363 return false;
2365 s = bfd_make_section (abfd, ".dynsym");
2366 if (s == NULL
2367 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2368 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2369 return false;
2371 s = bfd_make_section (abfd, ".dynstr");
2372 if (s == NULL
2373 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2374 return false;
2376 /* Create a strtab to hold the dynamic symbol names. */
2377 if (elf_hash_table (info)->dynstr == NULL)
2379 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2380 if (elf_hash_table (info)->dynstr == NULL)
2381 return false;
2384 s = bfd_make_section (abfd, ".dynamic");
2385 if (s == NULL
2386 || ! bfd_set_section_flags (abfd, s, flags)
2387 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2388 return false;
2390 /* The special symbol _DYNAMIC is always set to the start of the
2391 .dynamic section. This call occurs before we have processed the
2392 symbols for any dynamic object, so we don't have to worry about
2393 overriding a dynamic definition. We could set _DYNAMIC in a
2394 linker script, but we only want to define it if we are, in fact,
2395 creating a .dynamic section. We don't want to define it if there
2396 is no .dynamic section, since on some ELF platforms the start up
2397 code examines it to decide how to initialize the process. */
2398 bh = NULL;
2399 if (! (_bfd_generic_link_add_one_symbol
2400 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2401 (const char *) 0, false, get_elf_backend_data (abfd)->collect, &bh)))
2402 return false;
2403 h = (struct elf_link_hash_entry *) bh;
2404 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2405 h->type = STT_OBJECT;
2407 if (info->shared
2408 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2409 return false;
2411 bed = get_elf_backend_data (abfd);
2413 s = bfd_make_section (abfd, ".hash");
2414 if (s == NULL
2415 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2416 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2417 return false;
2418 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2420 /* Let the backend create the rest of the sections. This lets the
2421 backend set the right flags. The backend will normally create
2422 the .got and .plt sections. */
2423 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2424 return false;
2426 elf_hash_table (info)->dynamic_sections_created = true;
2428 return true;
2431 /* Add an entry to the .dynamic table. */
2433 boolean
2434 elf_add_dynamic_entry (info, tag, val)
2435 struct bfd_link_info *info;
2436 bfd_vma tag;
2437 bfd_vma val;
2439 Elf_Internal_Dyn dyn;
2440 bfd *dynobj;
2441 asection *s;
2442 bfd_size_type newsize;
2443 bfd_byte *newcontents;
2445 if (! is_elf_hash_table (info))
2446 return false;
2448 dynobj = elf_hash_table (info)->dynobj;
2450 s = bfd_get_section_by_name (dynobj, ".dynamic");
2451 BFD_ASSERT (s != NULL);
2453 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2454 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2455 if (newcontents == NULL)
2456 return false;
2458 dyn.d_tag = tag;
2459 dyn.d_un.d_val = val;
2460 elf_swap_dyn_out (dynobj, &dyn,
2461 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2463 s->_raw_size = newsize;
2464 s->contents = newcontents;
2466 return true;
2469 /* Read and swap the relocs from the section indicated by SHDR. This
2470 may be either a REL or a RELA section. The relocations are
2471 translated into RELA relocations and stored in INTERNAL_RELOCS,
2472 which should have already been allocated to contain enough space.
2473 The EXTERNAL_RELOCS are a buffer where the external form of the
2474 relocations should be stored.
2476 Returns false if something goes wrong. */
2478 static boolean
2479 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2480 internal_relocs)
2481 bfd *abfd;
2482 Elf_Internal_Shdr *shdr;
2483 PTR external_relocs;
2484 Elf_Internal_Rela *internal_relocs;
2486 struct elf_backend_data *bed;
2487 bfd_size_type amt;
2489 /* If there aren't any relocations, that's OK. */
2490 if (!shdr)
2491 return true;
2493 /* Position ourselves at the start of the section. */
2494 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2495 return false;
2497 /* Read the relocations. */
2498 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2499 return false;
2501 bed = get_elf_backend_data (abfd);
2503 /* Convert the external relocations to the internal format. */
2504 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2506 Elf_External_Rel *erel;
2507 Elf_External_Rel *erelend;
2508 Elf_Internal_Rela *irela;
2509 Elf_Internal_Rel *irel;
2511 erel = (Elf_External_Rel *) external_relocs;
2512 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2513 irela = internal_relocs;
2514 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2515 irel = bfd_alloc (abfd, amt);
2516 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2518 unsigned int i;
2520 if (bed->s->swap_reloc_in)
2521 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2522 else
2523 elf_swap_reloc_in (abfd, erel, irel);
2525 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2527 irela[i].r_offset = irel[i].r_offset;
2528 irela[i].r_info = irel[i].r_info;
2529 irela[i].r_addend = 0;
2533 else
2535 Elf_External_Rela *erela;
2536 Elf_External_Rela *erelaend;
2537 Elf_Internal_Rela *irela;
2539 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2541 erela = (Elf_External_Rela *) external_relocs;
2542 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2543 irela = internal_relocs;
2544 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2546 if (bed->s->swap_reloca_in)
2547 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2548 else
2549 elf_swap_reloca_in (abfd, erela, irela);
2553 return true;
2556 /* Read and swap the relocs for a section O. They may have been
2557 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2558 not NULL, they are used as buffers to read into. They are known to
2559 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2560 the return value is allocated using either malloc or bfd_alloc,
2561 according to the KEEP_MEMORY argument. If O has two relocation
2562 sections (both REL and RELA relocations), then the REL_HDR
2563 relocations will appear first in INTERNAL_RELOCS, followed by the
2564 REL_HDR2 relocations. */
2566 Elf_Internal_Rela *
2567 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2568 keep_memory)
2569 bfd *abfd;
2570 asection *o;
2571 PTR external_relocs;
2572 Elf_Internal_Rela *internal_relocs;
2573 boolean keep_memory;
2575 Elf_Internal_Shdr *rel_hdr;
2576 PTR alloc1 = NULL;
2577 Elf_Internal_Rela *alloc2 = NULL;
2578 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2580 if (elf_section_data (o)->relocs != NULL)
2581 return elf_section_data (o)->relocs;
2583 if (o->reloc_count == 0)
2584 return NULL;
2586 rel_hdr = &elf_section_data (o)->rel_hdr;
2588 if (internal_relocs == NULL)
2590 bfd_size_type size;
2592 size = o->reloc_count;
2593 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2594 if (keep_memory)
2595 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2596 else
2597 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2598 if (internal_relocs == NULL)
2599 goto error_return;
2602 if (external_relocs == NULL)
2604 bfd_size_type size = rel_hdr->sh_size;
2606 if (elf_section_data (o)->rel_hdr2)
2607 size += elf_section_data (o)->rel_hdr2->sh_size;
2608 alloc1 = (PTR) bfd_malloc (size);
2609 if (alloc1 == NULL)
2610 goto error_return;
2611 external_relocs = alloc1;
2614 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2615 external_relocs,
2616 internal_relocs))
2617 goto error_return;
2618 if (!elf_link_read_relocs_from_section
2619 (abfd,
2620 elf_section_data (o)->rel_hdr2,
2621 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2622 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2623 * bed->s->int_rels_per_ext_rel)))
2624 goto error_return;
2626 /* Cache the results for next time, if we can. */
2627 if (keep_memory)
2628 elf_section_data (o)->relocs = internal_relocs;
2630 if (alloc1 != NULL)
2631 free (alloc1);
2633 /* Don't free alloc2, since if it was allocated we are passing it
2634 back (under the name of internal_relocs). */
2636 return internal_relocs;
2638 error_return:
2639 if (alloc1 != NULL)
2640 free (alloc1);
2641 if (alloc2 != NULL)
2642 free (alloc2);
2643 return NULL;
2646 /* Record an assignment to a symbol made by a linker script. We need
2647 this in case some dynamic object refers to this symbol. */
2649 boolean
2650 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2651 bfd *output_bfd ATTRIBUTE_UNUSED;
2652 struct bfd_link_info *info;
2653 const char *name;
2654 boolean provide;
2656 struct elf_link_hash_entry *h;
2658 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2659 return true;
2661 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2662 if (h == NULL)
2663 return false;
2665 if (h->root.type == bfd_link_hash_new)
2666 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2668 /* If this symbol is being provided by the linker script, and it is
2669 currently defined by a dynamic object, but not by a regular
2670 object, then mark it as undefined so that the generic linker will
2671 force the correct value. */
2672 if (provide
2673 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2674 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2675 h->root.type = bfd_link_hash_undefined;
2677 /* If this symbol is not being provided by the linker script, and it is
2678 currently defined by a dynamic object, but not by a regular object,
2679 then clear out any version information because the symbol will not be
2680 associated with the dynamic object any more. */
2681 if (!provide
2682 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2683 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2684 h->verinfo.verdef = NULL;
2686 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2688 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2689 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2690 || info->shared)
2691 && h->dynindx == -1)
2693 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2694 return false;
2696 /* If this is a weak defined symbol, and we know a corresponding
2697 real symbol from the same dynamic object, make sure the real
2698 symbol is also made into a dynamic symbol. */
2699 if (h->weakdef != NULL
2700 && h->weakdef->dynindx == -1)
2702 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2703 return false;
2707 return true;
2710 /* This structure is used to pass information to
2711 elf_link_assign_sym_version. */
2713 struct elf_assign_sym_version_info
2715 /* Output BFD. */
2716 bfd *output_bfd;
2717 /* General link information. */
2718 struct bfd_link_info *info;
2719 /* Version tree. */
2720 struct bfd_elf_version_tree *verdefs;
2721 /* Whether we had a failure. */
2722 boolean failed;
2725 /* This structure is used to pass information to
2726 elf_link_find_version_dependencies. */
2728 struct elf_find_verdep_info
2730 /* Output BFD. */
2731 bfd *output_bfd;
2732 /* General link information. */
2733 struct bfd_link_info *info;
2734 /* The number of dependencies. */
2735 unsigned int vers;
2736 /* Whether we had a failure. */
2737 boolean failed;
2740 /* Array used to determine the number of hash table buckets to use
2741 based on the number of symbols there are. If there are fewer than
2742 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2743 fewer than 37 we use 17 buckets, and so forth. We never use more
2744 than 32771 buckets. */
2746 static const size_t elf_buckets[] =
2748 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2749 16411, 32771, 0
2752 /* Compute bucket count for hashing table. We do not use a static set
2753 of possible tables sizes anymore. Instead we determine for all
2754 possible reasonable sizes of the table the outcome (i.e., the
2755 number of collisions etc) and choose the best solution. The
2756 weighting functions are not too simple to allow the table to grow
2757 without bounds. Instead one of the weighting factors is the size.
2758 Therefore the result is always a good payoff between few collisions
2759 (= short chain lengths) and table size. */
2760 static size_t
2761 compute_bucket_count (info)
2762 struct bfd_link_info *info;
2764 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2765 size_t best_size = 0;
2766 unsigned long int *hashcodes;
2767 unsigned long int *hashcodesp;
2768 unsigned long int i;
2769 bfd_size_type amt;
2771 /* Compute the hash values for all exported symbols. At the same
2772 time store the values in an array so that we could use them for
2773 optimizations. */
2774 amt = dynsymcount;
2775 amt *= sizeof (unsigned long int);
2776 hashcodes = (unsigned long int *) bfd_malloc (amt);
2777 if (hashcodes == NULL)
2778 return 0;
2779 hashcodesp = hashcodes;
2781 /* Put all hash values in HASHCODES. */
2782 elf_link_hash_traverse (elf_hash_table (info),
2783 elf_collect_hash_codes, &hashcodesp);
2785 /* We have a problem here. The following code to optimize the table
2786 size requires an integer type with more the 32 bits. If
2787 BFD_HOST_U_64_BIT is set we know about such a type. */
2788 #ifdef BFD_HOST_U_64_BIT
2789 if (info->optimize)
2791 unsigned long int nsyms = hashcodesp - hashcodes;
2792 size_t minsize;
2793 size_t maxsize;
2794 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2795 unsigned long int *counts ;
2797 /* Possible optimization parameters: if we have NSYMS symbols we say
2798 that the hashing table must at least have NSYMS/4 and at most
2799 2*NSYMS buckets. */
2800 minsize = nsyms / 4;
2801 if (minsize == 0)
2802 minsize = 1;
2803 best_size = maxsize = nsyms * 2;
2805 /* Create array where we count the collisions in. We must use bfd_malloc
2806 since the size could be large. */
2807 amt = maxsize;
2808 amt *= sizeof (unsigned long int);
2809 counts = (unsigned long int *) bfd_malloc (amt);
2810 if (counts == NULL)
2812 free (hashcodes);
2813 return 0;
2816 /* Compute the "optimal" size for the hash table. The criteria is a
2817 minimal chain length. The minor criteria is (of course) the size
2818 of the table. */
2819 for (i = minsize; i < maxsize; ++i)
2821 /* Walk through the array of hashcodes and count the collisions. */
2822 BFD_HOST_U_64_BIT max;
2823 unsigned long int j;
2824 unsigned long int fact;
2826 memset (counts, '\0', i * sizeof (unsigned long int));
2828 /* Determine how often each hash bucket is used. */
2829 for (j = 0; j < nsyms; ++j)
2830 ++counts[hashcodes[j] % i];
2832 /* For the weight function we need some information about the
2833 pagesize on the target. This is information need not be 100%
2834 accurate. Since this information is not available (so far) we
2835 define it here to a reasonable default value. If it is crucial
2836 to have a better value some day simply define this value. */
2837 # ifndef BFD_TARGET_PAGESIZE
2838 # define BFD_TARGET_PAGESIZE (4096)
2839 # endif
2841 /* We in any case need 2 + NSYMS entries for the size values and
2842 the chains. */
2843 max = (2 + nsyms) * (ARCH_SIZE / 8);
2845 # if 1
2846 /* Variant 1: optimize for short chains. We add the squares
2847 of all the chain lengths (which favous many small chain
2848 over a few long chains). */
2849 for (j = 0; j < i; ++j)
2850 max += counts[j] * counts[j];
2852 /* This adds penalties for the overall size of the table. */
2853 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2854 max *= fact * fact;
2855 # else
2856 /* Variant 2: Optimize a lot more for small table. Here we
2857 also add squares of the size but we also add penalties for
2858 empty slots (the +1 term). */
2859 for (j = 0; j < i; ++j)
2860 max += (1 + counts[j]) * (1 + counts[j]);
2862 /* The overall size of the table is considered, but not as
2863 strong as in variant 1, where it is squared. */
2864 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2865 max *= fact;
2866 # endif
2868 /* Compare with current best results. */
2869 if (max < best_chlen)
2871 best_chlen = max;
2872 best_size = i;
2876 free (counts);
2878 else
2879 #endif /* defined (BFD_HOST_U_64_BIT) */
2881 /* This is the fallback solution if no 64bit type is available or if we
2882 are not supposed to spend much time on optimizations. We select the
2883 bucket count using a fixed set of numbers. */
2884 for (i = 0; elf_buckets[i] != 0; i++)
2886 best_size = elf_buckets[i];
2887 if (dynsymcount < elf_buckets[i + 1])
2888 break;
2892 /* Free the arrays we needed. */
2893 free (hashcodes);
2895 return best_size;
2898 /* Set up the sizes and contents of the ELF dynamic sections. This is
2899 called by the ELF linker emulation before_allocation routine. We
2900 must set the sizes of the sections before the linker sets the
2901 addresses of the various sections. */
2903 boolean
2904 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2905 filter_shlib,
2906 auxiliary_filters, info, sinterpptr,
2907 verdefs)
2908 bfd *output_bfd;
2909 const char *soname;
2910 const char *rpath;
2911 const char *filter_shlib;
2912 const char * const *auxiliary_filters;
2913 struct bfd_link_info *info;
2914 asection **sinterpptr;
2915 struct bfd_elf_version_tree *verdefs;
2917 bfd_size_type soname_indx;
2918 bfd *dynobj;
2919 struct elf_backend_data *bed;
2920 struct elf_assign_sym_version_info asvinfo;
2922 *sinterpptr = NULL;
2924 soname_indx = (bfd_size_type) -1;
2926 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2927 return true;
2929 if (! is_elf_hash_table (info))
2930 return true;
2932 /* Any syms created from now on start with -1 in
2933 got.refcount/offset and plt.refcount/offset. */
2934 elf_hash_table (info)->init_refcount = -1;
2936 /* The backend may have to create some sections regardless of whether
2937 we're dynamic or not. */
2938 bed = get_elf_backend_data (output_bfd);
2939 if (bed->elf_backend_always_size_sections
2940 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2941 return false;
2943 dynobj = elf_hash_table (info)->dynobj;
2945 /* If there were no dynamic objects in the link, there is nothing to
2946 do here. */
2947 if (dynobj == NULL)
2948 return true;
2950 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
2951 return false;
2953 if (elf_hash_table (info)->dynamic_sections_created)
2955 struct elf_info_failed eif;
2956 struct elf_link_hash_entry *h;
2957 asection *dynstr;
2958 struct bfd_elf_version_tree *t;
2959 struct bfd_elf_version_expr *d;
2960 boolean all_defined;
2962 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2963 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2965 if (soname != NULL)
2967 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
2968 soname, true);
2969 if (soname_indx == (bfd_size_type) -1
2970 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
2971 soname_indx))
2972 return false;
2975 if (info->symbolic)
2977 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
2978 (bfd_vma) 0))
2979 return false;
2980 info->flags |= DF_SYMBOLIC;
2983 if (rpath != NULL)
2985 bfd_size_type indx;
2987 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
2988 true);
2989 if (info->new_dtags)
2990 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
2991 if (indx == (bfd_size_type) -1
2992 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
2993 || (info->new_dtags
2994 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
2995 indx)))
2996 return false;
2999 if (filter_shlib != NULL)
3001 bfd_size_type indx;
3003 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3004 filter_shlib, true);
3005 if (indx == (bfd_size_type) -1
3006 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
3007 return false;
3010 if (auxiliary_filters != NULL)
3012 const char * const *p;
3014 for (p = auxiliary_filters; *p != NULL; p++)
3016 bfd_size_type indx;
3018 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3019 *p, true);
3020 if (indx == (bfd_size_type) -1
3021 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3022 indx))
3023 return false;
3027 eif.info = info;
3028 eif.verdefs = verdefs;
3029 eif.failed = false;
3031 /* If we are supposed to export all symbols into the dynamic symbol
3032 table (this is not the normal case), then do so. */
3033 if (info->export_dynamic)
3035 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3036 (PTR) &eif);
3037 if (eif.failed)
3038 return false;
3041 /* Make all global versions with definiton. */
3042 for (t = verdefs; t != NULL; t = t->next)
3043 for (d = t->globals; d != NULL; d = d->next)
3044 if (!d->symver && strchr (d->pattern, '*') == NULL)
3046 const char *verstr, *name;
3047 size_t namelen, verlen, newlen;
3048 char *newname, *p;
3049 struct elf_link_hash_entry *newh;
3051 name = d->pattern;
3052 namelen = strlen (name);
3053 verstr = t->name;
3054 verlen = strlen (verstr);
3055 newlen = namelen + verlen + 3;
3057 newname = (char *) bfd_malloc ((bfd_size_type) newlen);
3058 if (newname == NULL)
3059 return false;
3060 memcpy (newname, name, namelen);
3062 /* Check the hidden versioned definition. */
3063 p = newname + namelen;
3064 *p++ = ELF_VER_CHR;
3065 memcpy (p, verstr, verlen + 1);
3066 newh = elf_link_hash_lookup (elf_hash_table (info),
3067 newname, false, false,
3068 false);
3069 if (newh == NULL
3070 || (newh->root.type != bfd_link_hash_defined
3071 && newh->root.type != bfd_link_hash_defweak))
3073 /* Check the default versioned definition. */
3074 *p++ = ELF_VER_CHR;
3075 memcpy (p, verstr, verlen + 1);
3076 newh = elf_link_hash_lookup (elf_hash_table (info),
3077 newname, false, false,
3078 false);
3080 free (newname);
3082 /* Mark this version if there is a definition and it is
3083 not defined in a shared object. */
3084 if (newh != NULL
3085 && ((newh->elf_link_hash_flags
3086 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3087 && (newh->root.type == bfd_link_hash_defined
3088 || newh->root.type == bfd_link_hash_defweak))
3089 d->symver = 1;
3092 /* Attach all the symbols to their version information. */
3093 asvinfo.output_bfd = output_bfd;
3094 asvinfo.info = info;
3095 asvinfo.verdefs = verdefs;
3096 asvinfo.failed = false;
3098 elf_link_hash_traverse (elf_hash_table (info),
3099 elf_link_assign_sym_version,
3100 (PTR) &asvinfo);
3101 if (asvinfo.failed)
3102 return false;
3104 if (!info->allow_undefined_version)
3106 /* Check if all global versions have a definiton. */
3107 all_defined = true;
3108 for (t = verdefs; t != NULL; t = t->next)
3109 for (d = t->globals; d != NULL; d = d->next)
3110 if (!d->symver && !d->script
3111 && strchr (d->pattern, '*') == NULL)
3113 (*_bfd_error_handler)
3114 (_("%s: undefined version: %s"),
3115 d->pattern, t->name);
3116 all_defined = false;
3119 if (!all_defined)
3121 bfd_set_error (bfd_error_bad_value);
3122 return false;
3126 /* Find all symbols which were defined in a dynamic object and make
3127 the backend pick a reasonable value for them. */
3128 elf_link_hash_traverse (elf_hash_table (info),
3129 elf_adjust_dynamic_symbol,
3130 (PTR) &eif);
3131 if (eif.failed)
3132 return false;
3134 /* Add some entries to the .dynamic section. We fill in some of the
3135 values later, in elf_bfd_final_link, but we must add the entries
3136 now so that we know the final size of the .dynamic section. */
3138 /* If there are initialization and/or finalization functions to
3139 call then add the corresponding DT_INIT/DT_FINI entries. */
3140 h = (info->init_function
3141 ? elf_link_hash_lookup (elf_hash_table (info),
3142 info->init_function, false,
3143 false, false)
3144 : NULL);
3145 if (h != NULL
3146 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3147 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3149 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3150 return false;
3152 h = (info->fini_function
3153 ? elf_link_hash_lookup (elf_hash_table (info),
3154 info->fini_function, false,
3155 false, false)
3156 : NULL);
3157 if (h != NULL
3158 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3159 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3161 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3162 return false;
3165 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3167 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3168 if (info->shared)
3170 bfd *sub;
3171 asection *o;
3173 for (sub = info->input_bfds; sub != NULL;
3174 sub = sub->link_next)
3175 for (o = sub->sections; o != NULL; o = o->next)
3176 if (elf_section_data (o)->this_hdr.sh_type
3177 == SHT_PREINIT_ARRAY)
3179 (*_bfd_error_handler)
3180 (_("%s: .preinit_array section is not allowed in DSO"),
3181 bfd_archive_filename (sub));
3182 break;
3185 bfd_set_error (bfd_error_nonrepresentable_section);
3186 return false;
3189 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3190 (bfd_vma) 0)
3191 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3192 (bfd_vma) 0))
3193 return false;
3195 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3197 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3198 (bfd_vma) 0)
3199 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3200 (bfd_vma) 0))
3201 return false;
3203 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3205 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3206 (bfd_vma) 0)
3207 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3208 (bfd_vma) 0))
3209 return false;
3212 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3213 /* If .dynstr is excluded from the link, we don't want any of
3214 these tags. Strictly, we should be checking each section
3215 individually; This quick check covers for the case where
3216 someone does a /DISCARD/ : { *(*) }. */
3217 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3219 bfd_size_type strsize;
3221 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3222 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3223 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3224 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3225 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3226 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3227 (bfd_vma) sizeof (Elf_External_Sym)))
3228 return false;
3232 /* The backend must work out the sizes of all the other dynamic
3233 sections. */
3234 if (bed->elf_backend_size_dynamic_sections
3235 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3236 return false;
3238 if (elf_hash_table (info)->dynamic_sections_created)
3240 bfd_size_type dynsymcount;
3241 asection *s;
3242 size_t bucketcount = 0;
3243 size_t hash_entry_size;
3244 unsigned int dtagcount;
3246 /* Set up the version definition section. */
3247 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3248 BFD_ASSERT (s != NULL);
3250 /* We may have created additional version definitions if we are
3251 just linking a regular application. */
3252 verdefs = asvinfo.verdefs;
3254 /* Skip anonymous version tag. */
3255 if (verdefs != NULL && verdefs->vernum == 0)
3256 verdefs = verdefs->next;
3258 if (verdefs == NULL)
3259 _bfd_strip_section_from_output (info, s);
3260 else
3262 unsigned int cdefs;
3263 bfd_size_type size;
3264 struct bfd_elf_version_tree *t;
3265 bfd_byte *p;
3266 Elf_Internal_Verdef def;
3267 Elf_Internal_Verdaux defaux;
3269 cdefs = 0;
3270 size = 0;
3272 /* Make space for the base version. */
3273 size += sizeof (Elf_External_Verdef);
3274 size += sizeof (Elf_External_Verdaux);
3275 ++cdefs;
3277 for (t = verdefs; t != NULL; t = t->next)
3279 struct bfd_elf_version_deps *n;
3281 size += sizeof (Elf_External_Verdef);
3282 size += sizeof (Elf_External_Verdaux);
3283 ++cdefs;
3285 for (n = t->deps; n != NULL; n = n->next)
3286 size += sizeof (Elf_External_Verdaux);
3289 s->_raw_size = size;
3290 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3291 if (s->contents == NULL && s->_raw_size != 0)
3292 return false;
3294 /* Fill in the version definition section. */
3296 p = s->contents;
3298 def.vd_version = VER_DEF_CURRENT;
3299 def.vd_flags = VER_FLG_BASE;
3300 def.vd_ndx = 1;
3301 def.vd_cnt = 1;
3302 def.vd_aux = sizeof (Elf_External_Verdef);
3303 def.vd_next = (sizeof (Elf_External_Verdef)
3304 + sizeof (Elf_External_Verdaux));
3306 if (soname_indx != (bfd_size_type) -1)
3308 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3309 soname_indx);
3310 def.vd_hash = bfd_elf_hash (soname);
3311 defaux.vda_name = soname_indx;
3313 else
3315 const char *name;
3316 bfd_size_type indx;
3318 name = basename (output_bfd->filename);
3319 def.vd_hash = bfd_elf_hash (name);
3320 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3321 name, false);
3322 if (indx == (bfd_size_type) -1)
3323 return false;
3324 defaux.vda_name = indx;
3326 defaux.vda_next = 0;
3328 _bfd_elf_swap_verdef_out (output_bfd, &def,
3329 (Elf_External_Verdef *) p);
3330 p += sizeof (Elf_External_Verdef);
3331 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3332 (Elf_External_Verdaux *) p);
3333 p += sizeof (Elf_External_Verdaux);
3335 for (t = verdefs; t != NULL; t = t->next)
3337 unsigned int cdeps;
3338 struct bfd_elf_version_deps *n;
3339 struct elf_link_hash_entry *h;
3340 struct bfd_link_hash_entry *bh;
3342 cdeps = 0;
3343 for (n = t->deps; n != NULL; n = n->next)
3344 ++cdeps;
3346 /* Add a symbol representing this version. */
3347 bh = NULL;
3348 if (! (_bfd_generic_link_add_one_symbol
3349 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3350 (bfd_vma) 0, (const char *) NULL, false,
3351 get_elf_backend_data (dynobj)->collect, &bh)))
3352 return false;
3353 h = (struct elf_link_hash_entry *) bh;
3354 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3355 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3356 h->type = STT_OBJECT;
3357 h->verinfo.vertree = t;
3359 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3360 return false;
3362 def.vd_version = VER_DEF_CURRENT;
3363 def.vd_flags = 0;
3364 if (t->globals == NULL && t->locals == NULL && ! t->used)
3365 def.vd_flags |= VER_FLG_WEAK;
3366 def.vd_ndx = t->vernum + 1;
3367 def.vd_cnt = cdeps + 1;
3368 def.vd_hash = bfd_elf_hash (t->name);
3369 def.vd_aux = sizeof (Elf_External_Verdef);
3370 if (t->next != NULL)
3371 def.vd_next = (sizeof (Elf_External_Verdef)
3372 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3373 else
3374 def.vd_next = 0;
3376 _bfd_elf_swap_verdef_out (output_bfd, &def,
3377 (Elf_External_Verdef *) p);
3378 p += sizeof (Elf_External_Verdef);
3380 defaux.vda_name = h->dynstr_index;
3381 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3382 h->dynstr_index);
3383 if (t->deps == NULL)
3384 defaux.vda_next = 0;
3385 else
3386 defaux.vda_next = sizeof (Elf_External_Verdaux);
3387 t->name_indx = defaux.vda_name;
3389 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3390 (Elf_External_Verdaux *) p);
3391 p += sizeof (Elf_External_Verdaux);
3393 for (n = t->deps; n != NULL; n = n->next)
3395 if (n->version_needed == NULL)
3397 /* This can happen if there was an error in the
3398 version script. */
3399 defaux.vda_name = 0;
3401 else
3403 defaux.vda_name = n->version_needed->name_indx;
3404 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3405 defaux.vda_name);
3407 if (n->next == NULL)
3408 defaux.vda_next = 0;
3409 else
3410 defaux.vda_next = sizeof (Elf_External_Verdaux);
3412 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3413 (Elf_External_Verdaux *) p);
3414 p += sizeof (Elf_External_Verdaux);
3418 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3419 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3420 (bfd_vma) cdefs))
3421 return false;
3423 elf_tdata (output_bfd)->cverdefs = cdefs;
3426 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
3428 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3429 return false;
3432 if (info->flags_1)
3434 if (! info->shared)
3435 info->flags_1 &= ~ (DF_1_INITFIRST
3436 | DF_1_NODELETE
3437 | DF_1_NOOPEN);
3438 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3439 info->flags_1))
3440 return false;
3443 /* Work out the size of the version reference section. */
3445 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3446 BFD_ASSERT (s != NULL);
3448 struct elf_find_verdep_info sinfo;
3450 sinfo.output_bfd = output_bfd;
3451 sinfo.info = info;
3452 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3453 if (sinfo.vers == 0)
3454 sinfo.vers = 1;
3455 sinfo.failed = false;
3457 elf_link_hash_traverse (elf_hash_table (info),
3458 elf_link_find_version_dependencies,
3459 (PTR) &sinfo);
3461 if (elf_tdata (output_bfd)->verref == NULL)
3462 _bfd_strip_section_from_output (info, s);
3463 else
3465 Elf_Internal_Verneed *t;
3466 unsigned int size;
3467 unsigned int crefs;
3468 bfd_byte *p;
3470 /* Build the version definition section. */
3471 size = 0;
3472 crefs = 0;
3473 for (t = elf_tdata (output_bfd)->verref;
3474 t != NULL;
3475 t = t->vn_nextref)
3477 Elf_Internal_Vernaux *a;
3479 size += sizeof (Elf_External_Verneed);
3480 ++crefs;
3481 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3482 size += sizeof (Elf_External_Vernaux);
3485 s->_raw_size = size;
3486 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3487 if (s->contents == NULL)
3488 return false;
3490 p = s->contents;
3491 for (t = elf_tdata (output_bfd)->verref;
3492 t != NULL;
3493 t = t->vn_nextref)
3495 unsigned int caux;
3496 Elf_Internal_Vernaux *a;
3497 bfd_size_type indx;
3499 caux = 0;
3500 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3501 ++caux;
3503 t->vn_version = VER_NEED_CURRENT;
3504 t->vn_cnt = caux;
3505 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3506 elf_dt_name (t->vn_bfd) != NULL
3507 ? elf_dt_name (t->vn_bfd)
3508 : basename (t->vn_bfd->filename),
3509 false);
3510 if (indx == (bfd_size_type) -1)
3511 return false;
3512 t->vn_file = indx;
3513 t->vn_aux = sizeof (Elf_External_Verneed);
3514 if (t->vn_nextref == NULL)
3515 t->vn_next = 0;
3516 else
3517 t->vn_next = (sizeof (Elf_External_Verneed)
3518 + caux * sizeof (Elf_External_Vernaux));
3520 _bfd_elf_swap_verneed_out (output_bfd, t,
3521 (Elf_External_Verneed *) p);
3522 p += sizeof (Elf_External_Verneed);
3524 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3526 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3527 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3528 a->vna_nodename, false);
3529 if (indx == (bfd_size_type) -1)
3530 return false;
3531 a->vna_name = indx;
3532 if (a->vna_nextptr == NULL)
3533 a->vna_next = 0;
3534 else
3535 a->vna_next = sizeof (Elf_External_Vernaux);
3537 _bfd_elf_swap_vernaux_out (output_bfd, a,
3538 (Elf_External_Vernaux *) p);
3539 p += sizeof (Elf_External_Vernaux);
3543 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3544 (bfd_vma) 0)
3545 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3546 (bfd_vma) crefs))
3547 return false;
3549 elf_tdata (output_bfd)->cverrefs = crefs;
3553 /* Assign dynsym indicies. In a shared library we generate a
3554 section symbol for each output section, which come first.
3555 Next come all of the back-end allocated local dynamic syms,
3556 followed by the rest of the global symbols. */
3558 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3560 /* Work out the size of the symbol version section. */
3561 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3562 BFD_ASSERT (s != NULL);
3563 if (dynsymcount == 0
3564 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3566 _bfd_strip_section_from_output (info, s);
3567 /* The DYNSYMCOUNT might have changed if we were going to
3568 output a dynamic symbol table entry for S. */
3569 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3571 else
3573 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3574 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3575 if (s->contents == NULL)
3576 return false;
3578 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3579 return false;
3582 /* Set the size of the .dynsym and .hash sections. We counted
3583 the number of dynamic symbols in elf_link_add_object_symbols.
3584 We will build the contents of .dynsym and .hash when we build
3585 the final symbol table, because until then we do not know the
3586 correct value to give the symbols. We built the .dynstr
3587 section as we went along in elf_link_add_object_symbols. */
3588 s = bfd_get_section_by_name (dynobj, ".dynsym");
3589 BFD_ASSERT (s != NULL);
3590 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3591 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3592 if (s->contents == NULL && s->_raw_size != 0)
3593 return false;
3595 if (dynsymcount != 0)
3597 Elf_Internal_Sym isym;
3599 /* The first entry in .dynsym is a dummy symbol. */
3600 isym.st_value = 0;
3601 isym.st_size = 0;
3602 isym.st_name = 0;
3603 isym.st_info = 0;
3604 isym.st_other = 0;
3605 isym.st_shndx = 0;
3606 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3609 /* Compute the size of the hashing table. As a side effect this
3610 computes the hash values for all the names we export. */
3611 bucketcount = compute_bucket_count (info);
3613 s = bfd_get_section_by_name (dynobj, ".hash");
3614 BFD_ASSERT (s != NULL);
3615 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3616 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3617 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3618 if (s->contents == NULL)
3619 return false;
3621 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3622 s->contents);
3623 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3624 s->contents + hash_entry_size);
3626 elf_hash_table (info)->bucketcount = bucketcount;
3628 s = bfd_get_section_by_name (dynobj, ".dynstr");
3629 BFD_ASSERT (s != NULL);
3631 elf_finalize_dynstr (output_bfd, info);
3633 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3635 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3636 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3637 return false;
3640 return true;
3643 /* This function is used to adjust offsets into .dynstr for
3644 dynamic symbols. This is called via elf_link_hash_traverse. */
3646 static boolean elf_adjust_dynstr_offsets
3647 PARAMS ((struct elf_link_hash_entry *, PTR));
3649 static boolean
3650 elf_adjust_dynstr_offsets (h, data)
3651 struct elf_link_hash_entry *h;
3652 PTR data;
3654 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3656 if (h->root.type == bfd_link_hash_warning)
3657 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3659 if (h->dynindx != -1)
3660 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3661 return true;
3664 /* Assign string offsets in .dynstr, update all structures referencing
3665 them. */
3667 static boolean
3668 elf_finalize_dynstr (output_bfd, info)
3669 bfd *output_bfd;
3670 struct bfd_link_info *info;
3672 struct elf_link_local_dynamic_entry *entry;
3673 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3674 bfd *dynobj = elf_hash_table (info)->dynobj;
3675 asection *sdyn;
3676 bfd_size_type size;
3677 Elf_External_Dyn *dyncon, *dynconend;
3679 _bfd_elf_strtab_finalize (dynstr);
3680 size = _bfd_elf_strtab_size (dynstr);
3682 /* Update all .dynamic entries referencing .dynstr strings. */
3683 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3684 BFD_ASSERT (sdyn != NULL);
3686 dyncon = (Elf_External_Dyn *) sdyn->contents;
3687 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3688 sdyn->_raw_size);
3689 for (; dyncon < dynconend; dyncon++)
3691 Elf_Internal_Dyn dyn;
3693 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3694 switch (dyn.d_tag)
3696 case DT_STRSZ:
3697 dyn.d_un.d_val = size;
3698 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3699 break;
3700 case DT_NEEDED:
3701 case DT_SONAME:
3702 case DT_RPATH:
3703 case DT_RUNPATH:
3704 case DT_FILTER:
3705 case DT_AUXILIARY:
3706 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3707 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3708 break;
3709 default:
3710 break;
3714 /* Now update local dynamic symbols. */
3715 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3716 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3717 entry->isym.st_name);
3719 /* And the rest of dynamic symbols. */
3720 elf_link_hash_traverse (elf_hash_table (info),
3721 elf_adjust_dynstr_offsets, dynstr);
3723 /* Adjust version definitions. */
3724 if (elf_tdata (output_bfd)->cverdefs)
3726 asection *s;
3727 bfd_byte *p;
3728 bfd_size_type i;
3729 Elf_Internal_Verdef def;
3730 Elf_Internal_Verdaux defaux;
3732 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3733 p = (bfd_byte *) s->contents;
3736 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3737 &def);
3738 p += sizeof (Elf_External_Verdef);
3739 for (i = 0; i < def.vd_cnt; ++i)
3741 _bfd_elf_swap_verdaux_in (output_bfd,
3742 (Elf_External_Verdaux *) p, &defaux);
3743 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3744 defaux.vda_name);
3745 _bfd_elf_swap_verdaux_out (output_bfd,
3746 &defaux, (Elf_External_Verdaux *) p);
3747 p += sizeof (Elf_External_Verdaux);
3750 while (def.vd_next);
3753 /* Adjust version references. */
3754 if (elf_tdata (output_bfd)->verref)
3756 asection *s;
3757 bfd_byte *p;
3758 bfd_size_type i;
3759 Elf_Internal_Verneed need;
3760 Elf_Internal_Vernaux needaux;
3762 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3763 p = (bfd_byte *) s->contents;
3766 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3767 &need);
3768 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3769 _bfd_elf_swap_verneed_out (output_bfd, &need,
3770 (Elf_External_Verneed *) p);
3771 p += sizeof (Elf_External_Verneed);
3772 for (i = 0; i < need.vn_cnt; ++i)
3774 _bfd_elf_swap_vernaux_in (output_bfd,
3775 (Elf_External_Vernaux *) p, &needaux);
3776 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3777 needaux.vna_name);
3778 _bfd_elf_swap_vernaux_out (output_bfd,
3779 &needaux,
3780 (Elf_External_Vernaux *) p);
3781 p += sizeof (Elf_External_Vernaux);
3784 while (need.vn_next);
3787 return true;
3790 /* Fix up the flags for a symbol. This handles various cases which
3791 can only be fixed after all the input files are seen. This is
3792 currently called by both adjust_dynamic_symbol and
3793 assign_sym_version, which is unnecessary but perhaps more robust in
3794 the face of future changes. */
3796 static boolean
3797 elf_fix_symbol_flags (h, eif)
3798 struct elf_link_hash_entry *h;
3799 struct elf_info_failed *eif;
3801 /* If this symbol was mentioned in a non-ELF file, try to set
3802 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3803 permit a non-ELF file to correctly refer to a symbol defined in
3804 an ELF dynamic object. */
3805 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3807 while (h->root.type == bfd_link_hash_indirect)
3808 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3810 if (h->root.type != bfd_link_hash_defined
3811 && h->root.type != bfd_link_hash_defweak)
3812 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3813 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3814 else
3816 if (h->root.u.def.section->owner != NULL
3817 && (bfd_get_flavour (h->root.u.def.section->owner)
3818 == bfd_target_elf_flavour))
3819 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3820 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3821 else
3822 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3825 if (h->dynindx == -1
3826 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3827 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3829 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3831 eif->failed = true;
3832 return false;
3836 else
3838 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3839 was first seen in a non-ELF file. Fortunately, if the symbol
3840 was first seen in an ELF file, we're probably OK unless the
3841 symbol was defined in a non-ELF file. Catch that case here.
3842 FIXME: We're still in trouble if the symbol was first seen in
3843 a dynamic object, and then later in a non-ELF regular object. */
3844 if ((h->root.type == bfd_link_hash_defined
3845 || h->root.type == bfd_link_hash_defweak)
3846 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3847 && (h->root.u.def.section->owner != NULL
3848 ? (bfd_get_flavour (h->root.u.def.section->owner)
3849 != bfd_target_elf_flavour)
3850 : (bfd_is_abs_section (h->root.u.def.section)
3851 && (h->elf_link_hash_flags
3852 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3853 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3856 /* If this is a final link, and the symbol was defined as a common
3857 symbol in a regular object file, and there was no definition in
3858 any dynamic object, then the linker will have allocated space for
3859 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3860 flag will not have been set. */
3861 if (h->root.type == bfd_link_hash_defined
3862 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3863 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3864 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3865 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3866 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3868 /* If -Bsymbolic was used (which means to bind references to global
3869 symbols to the definition within the shared object), and this
3870 symbol was defined in a regular object, then it actually doesn't
3871 need a PLT entry, and we can accomplish that by forcing it local.
3872 Likewise, if the symbol has hidden or internal visibility.
3873 FIXME: It might be that we also do not need a PLT for other
3874 non-hidden visibilities, but we would have to tell that to the
3875 backend specifically; we can't just clear PLT-related data here. */
3876 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3877 && eif->info->shared
3878 && is_elf_hash_table (eif->info)
3879 && (eif->info->symbolic
3880 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3881 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3882 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3884 struct elf_backend_data *bed;
3885 boolean force_local;
3887 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3889 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3890 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3891 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3894 /* If this is a weak defined symbol in a dynamic object, and we know
3895 the real definition in the dynamic object, copy interesting flags
3896 over to the real definition. */
3897 if (h->weakdef != NULL)
3899 struct elf_link_hash_entry *weakdef;
3901 weakdef = h->weakdef;
3902 if (h->root.type == bfd_link_hash_indirect)
3903 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3905 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3906 || h->root.type == bfd_link_hash_defweak);
3907 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3908 || weakdef->root.type == bfd_link_hash_defweak);
3909 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3911 /* If the real definition is defined by a regular object file,
3912 don't do anything special. See the longer description in
3913 elf_adjust_dynamic_symbol, below. */
3914 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3915 h->weakdef = NULL;
3916 else
3918 struct elf_backend_data *bed;
3920 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3921 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
3925 return true;
3928 /* Make the backend pick a good value for a dynamic symbol. This is
3929 called via elf_link_hash_traverse, and also calls itself
3930 recursively. */
3932 static boolean
3933 elf_adjust_dynamic_symbol (h, data)
3934 struct elf_link_hash_entry *h;
3935 PTR data;
3937 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3938 bfd *dynobj;
3939 struct elf_backend_data *bed;
3941 if (h->root.type == bfd_link_hash_warning)
3943 h->plt.offset = (bfd_vma) -1;
3944 h->got.offset = (bfd_vma) -1;
3946 /* When warning symbols are created, they **replace** the "real"
3947 entry in the hash table, thus we never get to see the real
3948 symbol in a hash traversal. So look at it now. */
3949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3952 /* Ignore indirect symbols. These are added by the versioning code. */
3953 if (h->root.type == bfd_link_hash_indirect)
3954 return true;
3956 if (! is_elf_hash_table (eif->info))
3957 return false;
3959 /* Fix the symbol flags. */
3960 if (! elf_fix_symbol_flags (h, eif))
3961 return false;
3963 /* If this symbol does not require a PLT entry, and it is not
3964 defined by a dynamic object, or is not referenced by a regular
3965 object, ignore it. We do have to handle a weak defined symbol,
3966 even if no regular object refers to it, if we decided to add it
3967 to the dynamic symbol table. FIXME: Do we normally need to worry
3968 about symbols which are defined by one dynamic object and
3969 referenced by another one? */
3970 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3971 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3972 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3973 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3974 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3976 h->plt.offset = (bfd_vma) -1;
3977 return true;
3980 /* If we've already adjusted this symbol, don't do it again. This
3981 can happen via a recursive call. */
3982 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3983 return true;
3985 /* Don't look at this symbol again. Note that we must set this
3986 after checking the above conditions, because we may look at a
3987 symbol once, decide not to do anything, and then get called
3988 recursively later after REF_REGULAR is set below. */
3989 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3991 /* If this is a weak definition, and we know a real definition, and
3992 the real symbol is not itself defined by a regular object file,
3993 then get a good value for the real definition. We handle the
3994 real symbol first, for the convenience of the backend routine.
3996 Note that there is a confusing case here. If the real definition
3997 is defined by a regular object file, we don't get the real symbol
3998 from the dynamic object, but we do get the weak symbol. If the
3999 processor backend uses a COPY reloc, then if some routine in the
4000 dynamic object changes the real symbol, we will not see that
4001 change in the corresponding weak symbol. This is the way other
4002 ELF linkers work as well, and seems to be a result of the shared
4003 library model.
4005 I will clarify this issue. Most SVR4 shared libraries define the
4006 variable _timezone and define timezone as a weak synonym. The
4007 tzset call changes _timezone. If you write
4008 extern int timezone;
4009 int _timezone = 5;
4010 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
4011 you might expect that, since timezone is a synonym for _timezone,
4012 the same number will print both times. However, if the processor
4013 backend uses a COPY reloc, then actually timezone will be copied
4014 into your process image, and, since you define _timezone
4015 yourself, _timezone will not. Thus timezone and _timezone will
4016 wind up at different memory locations. The tzset call will set
4017 _timezone, leaving timezone unchanged. */
4019 if (h->weakdef != NULL)
4021 /* If we get to this point, we know there is an implicit
4022 reference by a regular object file via the weak symbol H.
4023 FIXME: Is this really true? What if the traversal finds
4024 H->WEAKDEF before it finds H? */
4025 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4027 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4028 return false;
4031 /* If a symbol has no type and no size and does not require a PLT
4032 entry, then we are probably about to do the wrong thing here: we
4033 are probably going to create a COPY reloc for an empty object.
4034 This case can arise when a shared object is built with assembly
4035 code, and the assembly code fails to set the symbol type. */
4036 if (h->size == 0
4037 && h->type == STT_NOTYPE
4038 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4039 (*_bfd_error_handler)
4040 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4041 h->root.root.string);
4043 dynobj = elf_hash_table (eif->info)->dynobj;
4044 bed = get_elf_backend_data (dynobj);
4045 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4047 eif->failed = true;
4048 return false;
4051 return true;
4054 /* This routine is used to export all defined symbols into the dynamic
4055 symbol table. It is called via elf_link_hash_traverse. */
4057 static boolean
4058 elf_export_symbol (h, data)
4059 struct elf_link_hash_entry *h;
4060 PTR data;
4062 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4064 /* Ignore indirect symbols. These are added by the versioning code. */
4065 if (h->root.type == bfd_link_hash_indirect)
4066 return true;
4068 if (h->root.type == bfd_link_hash_warning)
4069 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4071 if (h->dynindx == -1
4072 && (h->elf_link_hash_flags
4073 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4075 struct bfd_elf_version_tree *t;
4076 struct bfd_elf_version_expr *d;
4078 for (t = eif->verdefs; t != NULL; t = t->next)
4080 if (t->globals != NULL)
4082 for (d = t->globals; d != NULL; d = d->next)
4084 if ((*d->match) (d, h->root.root.string))
4085 goto doit;
4089 if (t->locals != NULL)
4091 for (d = t->locals ; d != NULL; d = d->next)
4093 if ((*d->match) (d, h->root.root.string))
4094 return true;
4099 if (!eif->verdefs)
4101 doit:
4102 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4104 eif->failed = true;
4105 return false;
4110 return true;
4113 /* Look through the symbols which are defined in other shared
4114 libraries and referenced here. Update the list of version
4115 dependencies. This will be put into the .gnu.version_r section.
4116 This function is called via elf_link_hash_traverse. */
4118 static boolean
4119 elf_link_find_version_dependencies (h, data)
4120 struct elf_link_hash_entry *h;
4121 PTR data;
4123 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4124 Elf_Internal_Verneed *t;
4125 Elf_Internal_Vernaux *a;
4126 bfd_size_type amt;
4128 if (h->root.type == bfd_link_hash_warning)
4129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4131 /* We only care about symbols defined in shared objects with version
4132 information. */
4133 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4134 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4135 || h->dynindx == -1
4136 || h->verinfo.verdef == NULL)
4137 return true;
4139 /* See if we already know about this version. */
4140 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4142 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4143 continue;
4145 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4146 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4147 return true;
4149 break;
4152 /* This is a new version. Add it to tree we are building. */
4154 if (t == NULL)
4156 amt = sizeof *t;
4157 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4158 if (t == NULL)
4160 rinfo->failed = true;
4161 return false;
4164 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4165 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4166 elf_tdata (rinfo->output_bfd)->verref = t;
4169 amt = sizeof *a;
4170 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4172 /* Note that we are copying a string pointer here, and testing it
4173 above. If bfd_elf_string_from_elf_section is ever changed to
4174 discard the string data when low in memory, this will have to be
4175 fixed. */
4176 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4178 a->vna_flags = h->verinfo.verdef->vd_flags;
4179 a->vna_nextptr = t->vn_auxptr;
4181 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4182 ++rinfo->vers;
4184 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4186 t->vn_auxptr = a;
4188 return true;
4191 /* Figure out appropriate versions for all the symbols. We may not
4192 have the version number script until we have read all of the input
4193 files, so until that point we don't know which symbols should be
4194 local. This function is called via elf_link_hash_traverse. */
4196 static boolean
4197 elf_link_assign_sym_version (h, data)
4198 struct elf_link_hash_entry *h;
4199 PTR data;
4201 struct elf_assign_sym_version_info *sinfo;
4202 struct bfd_link_info *info;
4203 struct elf_backend_data *bed;
4204 struct elf_info_failed eif;
4205 char *p;
4206 bfd_size_type amt;
4208 sinfo = (struct elf_assign_sym_version_info *) data;
4209 info = sinfo->info;
4211 if (h->root.type == bfd_link_hash_warning)
4212 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4214 /* Fix the symbol flags. */
4215 eif.failed = false;
4216 eif.info = info;
4217 if (! elf_fix_symbol_flags (h, &eif))
4219 if (eif.failed)
4220 sinfo->failed = true;
4221 return false;
4224 /* We only need version numbers for symbols defined in regular
4225 objects. */
4226 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4227 return true;
4229 bed = get_elf_backend_data (sinfo->output_bfd);
4230 p = strchr (h->root.root.string, ELF_VER_CHR);
4231 if (p != NULL && h->verinfo.vertree == NULL)
4233 struct bfd_elf_version_tree *t;
4234 boolean hidden;
4236 hidden = true;
4238 /* There are two consecutive ELF_VER_CHR characters if this is
4239 not a hidden symbol. */
4240 ++p;
4241 if (*p == ELF_VER_CHR)
4243 hidden = false;
4244 ++p;
4247 /* If there is no version string, we can just return out. */
4248 if (*p == '\0')
4250 if (hidden)
4251 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4252 return true;
4255 /* Look for the version. If we find it, it is no longer weak. */
4256 for (t = sinfo->verdefs; t != NULL; t = t->next)
4258 if (strcmp (t->name, p) == 0)
4260 size_t len;
4261 char *alc;
4262 struct bfd_elf_version_expr *d;
4264 len = p - h->root.root.string;
4265 alc = bfd_malloc ((bfd_size_type) len);
4266 if (alc == NULL)
4267 return false;
4268 memcpy (alc, h->root.root.string, len - 1);
4269 alc[len - 1] = '\0';
4270 if (alc[len - 2] == ELF_VER_CHR)
4271 alc[len - 2] = '\0';
4273 h->verinfo.vertree = t;
4274 t->used = true;
4275 d = NULL;
4277 if (t->globals != NULL)
4279 for (d = t->globals; d != NULL; d = d->next)
4280 if ((*d->match) (d, alc))
4281 break;
4284 /* See if there is anything to force this symbol to
4285 local scope. */
4286 if (d == NULL && t->locals != NULL)
4288 for (d = t->locals; d != NULL; d = d->next)
4290 if ((*d->match) (d, alc))
4292 if (h->dynindx != -1
4293 && info->shared
4294 && ! info->export_dynamic)
4296 (*bed->elf_backend_hide_symbol) (info, h, true);
4299 break;
4304 free (alc);
4305 break;
4309 /* If we are building an application, we need to create a
4310 version node for this version. */
4311 if (t == NULL && ! info->shared)
4313 struct bfd_elf_version_tree **pp;
4314 int version_index;
4316 /* If we aren't going to export this symbol, we don't need
4317 to worry about it. */
4318 if (h->dynindx == -1)
4319 return true;
4321 amt = sizeof *t;
4322 t = ((struct bfd_elf_version_tree *)
4323 bfd_alloc (sinfo->output_bfd, amt));
4324 if (t == NULL)
4326 sinfo->failed = true;
4327 return false;
4330 t->next = NULL;
4331 t->name = p;
4332 t->globals = NULL;
4333 t->locals = NULL;
4334 t->deps = NULL;
4335 t->name_indx = (unsigned int) -1;
4336 t->used = true;
4338 version_index = 1;
4339 /* Don't count anonymous version tag. */
4340 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4341 version_index = 0;
4342 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4343 ++version_index;
4344 t->vernum = version_index;
4346 *pp = t;
4348 h->verinfo.vertree = t;
4350 else if (t == NULL)
4352 /* We could not find the version for a symbol when
4353 generating a shared archive. Return an error. */
4354 (*_bfd_error_handler)
4355 (_("%s: undefined versioned symbol name %s"),
4356 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4357 bfd_set_error (bfd_error_bad_value);
4358 sinfo->failed = true;
4359 return false;
4362 if (hidden)
4363 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4366 /* If we don't have a version for this symbol, see if we can find
4367 something. */
4368 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4370 struct bfd_elf_version_tree *t;
4371 struct bfd_elf_version_tree *local_ver;
4372 struct bfd_elf_version_expr *d;
4374 /* See if can find what version this symbol is in. If the
4375 symbol is supposed to be local, then don't actually register
4376 it. */
4377 local_ver = NULL;
4378 for (t = sinfo->verdefs; t != NULL; t = t->next)
4380 if (t->globals != NULL)
4382 boolean matched;
4384 matched = false;
4385 for (d = t->globals; d != NULL; d = d->next)
4387 if ((*d->match) (d, h->root.root.string))
4389 if (d->symver)
4390 matched = true;
4391 else
4393 /* There is a version without definition. Make
4394 the symbol the default definition for this
4395 version. */
4396 h->verinfo.vertree = t;
4397 local_ver = NULL;
4398 d->script = 1;
4399 break;
4404 if (d != NULL)
4405 break;
4406 else if (matched)
4407 /* There is no undefined version for this symbol. Hide the
4408 default one. */
4409 (*bed->elf_backend_hide_symbol) (info, h, true);
4412 if (t->locals != NULL)
4414 for (d = t->locals; d != NULL; d = d->next)
4416 /* If the match is "*", keep looking for a more
4417 explicit, perhaps even global, match. */
4418 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4419 local_ver = t;
4420 else if ((*d->match) (d, h->root.root.string))
4422 local_ver = t;
4423 break;
4427 if (d != NULL)
4428 break;
4432 if (local_ver != NULL)
4434 h->verinfo.vertree = local_ver;
4435 if (h->dynindx != -1
4436 && info->shared
4437 && ! info->export_dynamic)
4439 (*bed->elf_backend_hide_symbol) (info, h, true);
4444 return true;
4447 /* Final phase of ELF linker. */
4449 /* A structure we use to avoid passing large numbers of arguments. */
4451 struct elf_final_link_info
4453 /* General link information. */
4454 struct bfd_link_info *info;
4455 /* Output BFD. */
4456 bfd *output_bfd;
4457 /* Symbol string table. */
4458 struct bfd_strtab_hash *symstrtab;
4459 /* .dynsym section. */
4460 asection *dynsym_sec;
4461 /* .hash section. */
4462 asection *hash_sec;
4463 /* symbol version section (.gnu.version). */
4464 asection *symver_sec;
4465 /* first SHF_TLS section (if any). */
4466 asection *first_tls_sec;
4467 /* Buffer large enough to hold contents of any section. */
4468 bfd_byte *contents;
4469 /* Buffer large enough to hold external relocs of any section. */
4470 PTR external_relocs;
4471 /* Buffer large enough to hold internal relocs of any section. */
4472 Elf_Internal_Rela *internal_relocs;
4473 /* Buffer large enough to hold external local symbols of any input
4474 BFD. */
4475 Elf_External_Sym *external_syms;
4476 /* And a buffer for symbol section indices. */
4477 Elf_External_Sym_Shndx *locsym_shndx;
4478 /* Buffer large enough to hold internal local symbols of any input
4479 BFD. */
4480 Elf_Internal_Sym *internal_syms;
4481 /* Array large enough to hold a symbol index for each local symbol
4482 of any input BFD. */
4483 long *indices;
4484 /* Array large enough to hold a section pointer for each local
4485 symbol of any input BFD. */
4486 asection **sections;
4487 /* Buffer to hold swapped out symbols. */
4488 Elf_External_Sym *symbuf;
4489 /* And one for symbol section indices. */
4490 Elf_External_Sym_Shndx *symshndxbuf;
4491 /* Number of swapped out symbols in buffer. */
4492 size_t symbuf_count;
4493 /* Number of symbols which fit in symbuf. */
4494 size_t symbuf_size;
4495 /* And same for symshndxbuf. */
4496 size_t shndxbuf_size;
4499 static boolean elf_link_output_sym
4500 PARAMS ((struct elf_final_link_info *, const char *,
4501 Elf_Internal_Sym *, asection *));
4502 static boolean elf_link_flush_output_syms
4503 PARAMS ((struct elf_final_link_info *));
4504 static boolean elf_link_output_extsym
4505 PARAMS ((struct elf_link_hash_entry *, PTR));
4506 static boolean elf_link_sec_merge_syms
4507 PARAMS ((struct elf_link_hash_entry *, PTR));
4508 static boolean elf_link_check_versioned_symbol
4509 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
4510 static boolean elf_link_input_bfd
4511 PARAMS ((struct elf_final_link_info *, bfd *));
4512 static boolean elf_reloc_link_order
4513 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4514 struct bfd_link_order *));
4516 /* This struct is used to pass information to elf_link_output_extsym. */
4518 struct elf_outext_info
4520 boolean failed;
4521 boolean localsyms;
4522 struct elf_final_link_info *finfo;
4525 /* Compute the size of, and allocate space for, REL_HDR which is the
4526 section header for a section containing relocations for O. */
4528 static boolean
4529 elf_link_size_reloc_section (abfd, rel_hdr, o)
4530 bfd *abfd;
4531 Elf_Internal_Shdr *rel_hdr;
4532 asection *o;
4534 bfd_size_type reloc_count;
4535 bfd_size_type num_rel_hashes;
4537 /* Figure out how many relocations there will be. */
4538 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4539 reloc_count = elf_section_data (o)->rel_count;
4540 else
4541 reloc_count = elf_section_data (o)->rel_count2;
4543 num_rel_hashes = o->reloc_count;
4544 if (num_rel_hashes < reloc_count)
4545 num_rel_hashes = reloc_count;
4547 /* That allows us to calculate the size of the section. */
4548 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4550 /* The contents field must last into write_object_contents, so we
4551 allocate it with bfd_alloc rather than malloc. Also since we
4552 cannot be sure that the contents will actually be filled in,
4553 we zero the allocated space. */
4554 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4555 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4556 return false;
4558 /* We only allocate one set of hash entries, so we only do it the
4559 first time we are called. */
4560 if (elf_section_data (o)->rel_hashes == NULL
4561 && num_rel_hashes)
4563 struct elf_link_hash_entry **p;
4565 p = ((struct elf_link_hash_entry **)
4566 bfd_zmalloc (num_rel_hashes
4567 * sizeof (struct elf_link_hash_entry *)));
4568 if (p == NULL)
4569 return false;
4571 elf_section_data (o)->rel_hashes = p;
4574 return true;
4577 /* When performing a relocateable link, the input relocations are
4578 preserved. But, if they reference global symbols, the indices
4579 referenced must be updated. Update all the relocations in
4580 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4582 static void
4583 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4584 bfd *abfd;
4585 Elf_Internal_Shdr *rel_hdr;
4586 unsigned int count;
4587 struct elf_link_hash_entry **rel_hash;
4589 unsigned int i;
4590 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4591 Elf_Internal_Rel *irel;
4592 Elf_Internal_Rela *irela;
4593 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4595 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4596 if (irel == NULL)
4598 (*_bfd_error_handler) (_("Error: out of memory"));
4599 abort ();
4602 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4603 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4604 if (irela == NULL)
4606 (*_bfd_error_handler) (_("Error: out of memory"));
4607 abort ();
4610 for (i = 0; i < count; i++, rel_hash++)
4612 if (*rel_hash == NULL)
4613 continue;
4615 BFD_ASSERT ((*rel_hash)->indx >= 0);
4617 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4619 Elf_External_Rel *erel;
4620 unsigned int j;
4622 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4623 if (bed->s->swap_reloc_in)
4624 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4625 else
4626 elf_swap_reloc_in (abfd, erel, irel);
4628 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4629 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4630 ELF_R_TYPE (irel[j].r_info));
4632 if (bed->s->swap_reloc_out)
4633 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4634 else
4635 elf_swap_reloc_out (abfd, irel, erel);
4637 else
4639 Elf_External_Rela *erela;
4640 unsigned int j;
4642 BFD_ASSERT (rel_hdr->sh_entsize
4643 == sizeof (Elf_External_Rela));
4645 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4646 if (bed->s->swap_reloca_in)
4647 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4648 else
4649 elf_swap_reloca_in (abfd, erela, irela);
4651 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4652 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4653 ELF_R_TYPE (irela[j].r_info));
4655 if (bed->s->swap_reloca_out)
4656 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4657 else
4658 elf_swap_reloca_out (abfd, irela, erela);
4662 free (irel);
4663 free (irela);
4666 struct elf_link_sort_rela
4668 bfd_vma offset;
4669 enum elf_reloc_type_class type;
4670 union
4672 /* We use these as arrays of size int_rels_per_ext_rel. */
4673 Elf_Internal_Rel rel[1];
4674 Elf_Internal_Rela rela[1];
4675 } u;
4678 static int
4679 elf_link_sort_cmp1 (A, B)
4680 const PTR A;
4681 const PTR B;
4683 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4684 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4685 int relativea, relativeb;
4687 relativea = a->type == reloc_class_relative;
4688 relativeb = b->type == reloc_class_relative;
4690 if (relativea < relativeb)
4691 return 1;
4692 if (relativea > relativeb)
4693 return -1;
4694 if (ELF_R_SYM (a->u.rel->r_info) < ELF_R_SYM (b->u.rel->r_info))
4695 return -1;
4696 if (ELF_R_SYM (a->u.rel->r_info) > ELF_R_SYM (b->u.rel->r_info))
4697 return 1;
4698 if (a->u.rel->r_offset < b->u.rel->r_offset)
4699 return -1;
4700 if (a->u.rel->r_offset > b->u.rel->r_offset)
4701 return 1;
4702 return 0;
4705 static int
4706 elf_link_sort_cmp2 (A, B)
4707 const PTR A;
4708 const PTR B;
4710 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4711 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4712 int copya, copyb;
4714 if (a->offset < b->offset)
4715 return -1;
4716 if (a->offset > b->offset)
4717 return 1;
4718 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4719 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4720 if (copya < copyb)
4721 return -1;
4722 if (copya > copyb)
4723 return 1;
4724 if (a->u.rel->r_offset < b->u.rel->r_offset)
4725 return -1;
4726 if (a->u.rel->r_offset > b->u.rel->r_offset)
4727 return 1;
4728 return 0;
4731 static size_t
4732 elf_link_sort_relocs (abfd, info, psec)
4733 bfd *abfd;
4734 struct bfd_link_info *info;
4735 asection **psec;
4737 bfd *dynobj = elf_hash_table (info)->dynobj;
4738 asection *reldyn, *o;
4739 boolean rel = false;
4740 bfd_size_type count, size;
4741 size_t i, j, ret;
4742 struct elf_link_sort_rela *rela;
4743 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4744 int i2e = bed->s->int_rels_per_ext_rel;
4746 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4747 if (reldyn == NULL || reldyn->_raw_size == 0)
4749 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4750 if (reldyn == NULL || reldyn->_raw_size == 0)
4751 return 0;
4752 rel = true;
4753 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4755 else
4756 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4758 size = 0;
4759 for (o = dynobj->sections; o != NULL; o = o->next)
4760 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4761 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4762 && o->output_section == reldyn)
4763 size += o->_raw_size;
4765 if (size != reldyn->_raw_size)
4766 return 0;
4768 /* We waste some memory here when N = i2e is greater than 1, since
4769 we allocate space for N * sizeof (*rela) where sizeof (*rela) +
4770 (N - 1) * sizeof (Elf_Internal_Rel/Rela) would do. Also, we use
4771 rela[k] only when k is a multiple of N, and then we index the
4772 array within the union, such that rela[k].u.rel[i], i < N, is the
4773 (i+1)th internal relocation corresponding to the (k/N)th external
4774 relocation. This is done such that the relocation swap-in and
4775 swap-out functions can gen pointers to arrays of internal
4776 relocations that form a single external relocation.
4778 If C permitted arrays of structures with dynamic sizes, we could
4779 do better, but trying to avoid wasting space at the end of the
4780 chunk from rela[k] to rela[k+N-1] would require us to allocate a
4781 separate array of pointers and since most ports have N == 1, this
4782 would be more wasteful. */
4783 rela = (struct elf_link_sort_rela *) bfd_zmalloc
4784 (sizeof (*rela) * count * i2e);
4785 if (rela == NULL)
4787 (*info->callbacks->warning)
4788 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4789 (bfd_vma) 0);
4790 return 0;
4793 for (o = dynobj->sections; o != NULL; o = o->next)
4794 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4795 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4796 && o->output_section == reldyn)
4798 if (rel)
4800 Elf_External_Rel *erel, *erelend;
4801 struct elf_link_sort_rela *s;
4803 erel = (Elf_External_Rel *) o->contents;
4804 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4805 s = rela + (o->output_offset / sizeof (Elf_External_Rel) * i2e);
4806 for (; erel < erelend; erel++, s += i2e)
4808 if (bed->s->swap_reloc_in)
4809 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel,
4810 s->u.rel);
4811 else
4812 elf_swap_reloc_in (abfd, erel, s->u.rel);
4814 s->type = (*bed->elf_backend_reloc_type_class) (s->u.rela);
4817 else
4819 Elf_External_Rela *erela, *erelaend;
4820 struct elf_link_sort_rela *s;
4822 erela = (Elf_External_Rela *) o->contents;
4823 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4824 s = rela + (o->output_offset / sizeof (Elf_External_Rela) * i2e);
4825 for (; erela < erelaend; erela++, s += i2e)
4827 if (bed->s->swap_reloca_in)
4828 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4829 s->u.rela);
4830 else
4831 elf_swap_reloca_in (dynobj, erela, s->u.rela);
4833 s->type = (*bed->elf_backend_reloc_type_class) (s->u.rela);
4838 qsort (rela, (size_t) count, sizeof (*rela) * i2e, elf_link_sort_cmp1);
4839 for (ret = 0; ret < count * i2e && rela[ret].type == reloc_class_relative;
4840 ret += i2e)
4842 for (i = ret, j = ret; i < count * i2e; i += i2e)
4844 if (ELF_R_SYM (rela[i].u.rel->r_info)
4845 != ELF_R_SYM (rela[j].u.rel->r_info))
4846 j = i;
4847 rela[i].offset = rela[j].u.rel->r_offset;
4849 ret /= i2e;
4850 qsort (rela + ret, (size_t) count - ret,
4851 sizeof (*rela) * i2e, elf_link_sort_cmp2);
4853 for (o = dynobj->sections; o != NULL; o = o->next)
4854 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4855 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4856 && o->output_section == reldyn)
4858 if (rel)
4860 Elf_External_Rel *erel, *erelend;
4861 struct elf_link_sort_rela *s;
4863 erel = (Elf_External_Rel *) o->contents;
4864 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4865 s = rela + (o->output_offset / sizeof (Elf_External_Rel) * i2e);
4866 for (; erel < erelend; erel++, s += i2e)
4868 if (bed->s->swap_reloc_out)
4869 (*bed->s->swap_reloc_out) (abfd, s->u.rel,
4870 (bfd_byte *) erel);
4871 else
4872 elf_swap_reloc_out (abfd, s->u.rel, erel);
4875 else
4877 Elf_External_Rela *erela, *erelaend;
4878 struct elf_link_sort_rela *s;
4880 erela = (Elf_External_Rela *) o->contents;
4881 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4882 s = rela + (o->output_offset / sizeof (Elf_External_Rela) * i2e);
4883 for (; erela < erelaend; erela++, s += i2e)
4885 if (bed->s->swap_reloca_out)
4886 (*bed->s->swap_reloca_out) (dynobj, s->u.rela,
4887 (bfd_byte *) erela);
4888 else
4889 elf_swap_reloca_out (dynobj, s->u.rela, erela);
4894 free (rela);
4895 *psec = reldyn;
4896 return ret;
4899 /* Do the final step of an ELF link. */
4901 boolean
4902 elf_bfd_final_link (abfd, info)
4903 bfd *abfd;
4904 struct bfd_link_info *info;
4906 boolean dynamic;
4907 boolean emit_relocs;
4908 bfd *dynobj;
4909 struct elf_final_link_info finfo;
4910 register asection *o;
4911 register struct bfd_link_order *p;
4912 register bfd *sub;
4913 bfd_size_type max_contents_size;
4914 bfd_size_type max_external_reloc_size;
4915 bfd_size_type max_internal_reloc_count;
4916 bfd_size_type max_sym_count;
4917 bfd_size_type max_sym_shndx_count;
4918 file_ptr off;
4919 Elf_Internal_Sym elfsym;
4920 unsigned int i;
4921 Elf_Internal_Shdr *symtab_hdr;
4922 Elf_Internal_Shdr *symtab_shndx_hdr;
4923 Elf_Internal_Shdr *symstrtab_hdr;
4924 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4925 struct elf_outext_info eoinfo;
4926 boolean merged;
4927 size_t relativecount = 0;
4928 asection *reldyn = 0;
4929 bfd_size_type amt;
4931 if (! is_elf_hash_table (info))
4932 return false;
4934 if (info->shared)
4935 abfd->flags |= DYNAMIC;
4937 dynamic = elf_hash_table (info)->dynamic_sections_created;
4938 dynobj = elf_hash_table (info)->dynobj;
4940 emit_relocs = (info->relocateable
4941 || info->emitrelocations
4942 || bed->elf_backend_emit_relocs);
4944 finfo.info = info;
4945 finfo.output_bfd = abfd;
4946 finfo.symstrtab = elf_stringtab_init ();
4947 if (finfo.symstrtab == NULL)
4948 return false;
4950 if (! dynamic)
4952 finfo.dynsym_sec = NULL;
4953 finfo.hash_sec = NULL;
4954 finfo.symver_sec = NULL;
4956 else
4958 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4959 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4960 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4961 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4962 /* Note that it is OK if symver_sec is NULL. */
4965 finfo.contents = NULL;
4966 finfo.external_relocs = NULL;
4967 finfo.internal_relocs = NULL;
4968 finfo.external_syms = NULL;
4969 finfo.locsym_shndx = NULL;
4970 finfo.internal_syms = NULL;
4971 finfo.indices = NULL;
4972 finfo.sections = NULL;
4973 finfo.symbuf = NULL;
4974 finfo.symshndxbuf = NULL;
4975 finfo.symbuf_count = 0;
4976 finfo.shndxbuf_size = 0;
4977 finfo.first_tls_sec = NULL;
4978 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4979 if ((o->flags & SEC_THREAD_LOCAL) != 0
4980 && (o->flags & SEC_LOAD) != 0)
4982 finfo.first_tls_sec = o;
4983 break;
4986 /* Count up the number of relocations we will output for each output
4987 section, so that we know the sizes of the reloc sections. We
4988 also figure out some maximum sizes. */
4989 max_contents_size = 0;
4990 max_external_reloc_size = 0;
4991 max_internal_reloc_count = 0;
4992 max_sym_count = 0;
4993 max_sym_shndx_count = 0;
4994 merged = false;
4995 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4997 o->reloc_count = 0;
4999 for (p = o->link_order_head; p != NULL; p = p->next)
5001 if (p->type == bfd_section_reloc_link_order
5002 || p->type == bfd_symbol_reloc_link_order)
5003 ++o->reloc_count;
5004 else if (p->type == bfd_indirect_link_order)
5006 asection *sec;
5008 sec = p->u.indirect.section;
5010 /* Mark all sections which are to be included in the
5011 link. This will normally be every section. We need
5012 to do this so that we can identify any sections which
5013 the linker has decided to not include. */
5014 sec->linker_mark = true;
5016 if (sec->flags & SEC_MERGE)
5017 merged = true;
5019 if (info->relocateable || info->emitrelocations)
5020 o->reloc_count += sec->reloc_count;
5021 else if (bed->elf_backend_count_relocs)
5023 Elf_Internal_Rela * relocs;
5025 relocs = (NAME(_bfd_elf,link_read_relocs)
5026 (abfd, sec, (PTR) NULL,
5027 (Elf_Internal_Rela *) NULL, info->keep_memory));
5029 o->reloc_count
5030 += (*bed->elf_backend_count_relocs) (sec, relocs);
5032 if (elf_section_data (o)->relocs != relocs)
5033 free (relocs);
5036 if (sec->_raw_size > max_contents_size)
5037 max_contents_size = sec->_raw_size;
5038 if (sec->_cooked_size > max_contents_size)
5039 max_contents_size = sec->_cooked_size;
5041 /* We are interested in just local symbols, not all
5042 symbols. */
5043 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
5044 && (sec->owner->flags & DYNAMIC) == 0)
5046 size_t sym_count;
5048 if (elf_bad_symtab (sec->owner))
5049 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5050 / sizeof (Elf_External_Sym));
5051 else
5052 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5054 if (sym_count > max_sym_count)
5055 max_sym_count = sym_count;
5057 if (sym_count > max_sym_shndx_count
5058 && elf_symtab_shndx (sec->owner) != 0)
5059 max_sym_shndx_count = sym_count;
5061 if ((sec->flags & SEC_RELOC) != 0)
5063 size_t ext_size;
5065 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5066 if (ext_size > max_external_reloc_size)
5067 max_external_reloc_size = ext_size;
5068 if (sec->reloc_count > max_internal_reloc_count)
5069 max_internal_reloc_count = sec->reloc_count;
5075 if (o->reloc_count > 0)
5076 o->flags |= SEC_RELOC;
5077 else
5079 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5080 set it (this is probably a bug) and if it is set
5081 assign_section_numbers will create a reloc section. */
5082 o->flags &=~ SEC_RELOC;
5085 /* If the SEC_ALLOC flag is not set, force the section VMA to
5086 zero. This is done in elf_fake_sections as well, but forcing
5087 the VMA to 0 here will ensure that relocs against these
5088 sections are handled correctly. */
5089 if ((o->flags & SEC_ALLOC) == 0
5090 && ! o->user_set_vma)
5091 o->vma = 0;
5094 if (! info->relocateable && merged)
5095 elf_link_hash_traverse (elf_hash_table (info),
5096 elf_link_sec_merge_syms, (PTR) abfd);
5098 /* Figure out the file positions for everything but the symbol table
5099 and the relocs. We set symcount to force assign_section_numbers
5100 to create a symbol table. */
5101 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5102 BFD_ASSERT (! abfd->output_has_begun);
5103 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5104 goto error_return;
5106 /* Figure out how many relocations we will have in each section.
5107 Just using RELOC_COUNT isn't good enough since that doesn't
5108 maintain a separate value for REL vs. RELA relocations. */
5109 if (emit_relocs)
5110 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5111 for (o = sub->sections; o != NULL; o = o->next)
5113 asection *output_section;
5115 if (! o->linker_mark)
5117 /* This section was omitted from the link. */
5118 continue;
5121 output_section = o->output_section;
5123 if (output_section != NULL
5124 && (o->flags & SEC_RELOC) != 0)
5126 struct bfd_elf_section_data *esdi
5127 = elf_section_data (o);
5128 struct bfd_elf_section_data *esdo
5129 = elf_section_data (output_section);
5130 unsigned int *rel_count;
5131 unsigned int *rel_count2;
5132 bfd_size_type entsize;
5133 bfd_size_type entsize2;
5135 /* We must be careful to add the relocations from the
5136 input section to the right output count. */
5137 entsize = esdi->rel_hdr.sh_entsize;
5138 entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
5139 BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
5140 || entsize == sizeof (Elf_External_Rela))
5141 && entsize2 != entsize
5142 && (entsize2 == 0
5143 || entsize2 == sizeof (Elf_External_Rel)
5144 || entsize2 == sizeof (Elf_External_Rela)));
5145 if (entsize == esdo->rel_hdr.sh_entsize)
5147 rel_count = &esdo->rel_count;
5148 rel_count2 = &esdo->rel_count2;
5150 else
5152 rel_count = &esdo->rel_count2;
5153 rel_count2 = &esdo->rel_count;
5156 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5157 if (esdi->rel_hdr2)
5158 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5159 output_section->flags |= SEC_RELOC;
5163 /* That created the reloc sections. Set their sizes, and assign
5164 them file positions, and allocate some buffers. */
5165 for (o = abfd->sections; o != NULL; o = o->next)
5167 if ((o->flags & SEC_RELOC) != 0)
5169 if (!elf_link_size_reloc_section (abfd,
5170 &elf_section_data (o)->rel_hdr,
5172 goto error_return;
5174 if (elf_section_data (o)->rel_hdr2
5175 && !elf_link_size_reloc_section (abfd,
5176 elf_section_data (o)->rel_hdr2,
5178 goto error_return;
5181 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5182 to count upwards while actually outputting the relocations. */
5183 elf_section_data (o)->rel_count = 0;
5184 elf_section_data (o)->rel_count2 = 0;
5187 _bfd_elf_assign_file_positions_for_relocs (abfd);
5189 /* We have now assigned file positions for all the sections except
5190 .symtab and .strtab. We start the .symtab section at the current
5191 file position, and write directly to it. We build the .strtab
5192 section in memory. */
5193 bfd_get_symcount (abfd) = 0;
5194 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5195 /* sh_name is set in prep_headers. */
5196 symtab_hdr->sh_type = SHT_SYMTAB;
5197 /* sh_flags, sh_addr and sh_size all start off zero. */
5198 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5199 /* sh_link is set in assign_section_numbers. */
5200 /* sh_info is set below. */
5201 /* sh_offset is set just below. */
5202 symtab_hdr->sh_addralign = bed->s->file_align;
5204 off = elf_tdata (abfd)->next_file_pos;
5205 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5207 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5208 incorrect. We do not yet know the size of the .symtab section.
5209 We correct next_file_pos below, after we do know the size. */
5211 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5212 continuously seeking to the right position in the file. */
5213 if (! info->keep_memory || max_sym_count < 20)
5214 finfo.symbuf_size = 20;
5215 else
5216 finfo.symbuf_size = max_sym_count;
5217 amt = finfo.symbuf_size;
5218 amt *= sizeof (Elf_External_Sym);
5219 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5220 if (finfo.symbuf == NULL)
5221 goto error_return;
5222 if (elf_numsections (abfd) > SHN_LORESERVE)
5224 /* Wild guess at number of output symbols. realloc'd as needed. */
5225 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
5226 finfo.shndxbuf_size = amt;
5227 amt *= sizeof (Elf_External_Sym_Shndx);
5228 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
5229 if (finfo.symshndxbuf == NULL)
5230 goto error_return;
5233 /* Start writing out the symbol table. The first symbol is always a
5234 dummy symbol. */
5235 if (info->strip != strip_all
5236 || emit_relocs)
5238 elfsym.st_value = 0;
5239 elfsym.st_size = 0;
5240 elfsym.st_info = 0;
5241 elfsym.st_other = 0;
5242 elfsym.st_shndx = SHN_UNDEF;
5243 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5244 &elfsym, bfd_und_section_ptr))
5245 goto error_return;
5248 #if 0
5249 /* Some standard ELF linkers do this, but we don't because it causes
5250 bootstrap comparison failures. */
5251 /* Output a file symbol for the output file as the second symbol.
5252 We output this even if we are discarding local symbols, although
5253 I'm not sure if this is correct. */
5254 elfsym.st_value = 0;
5255 elfsym.st_size = 0;
5256 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5257 elfsym.st_other = 0;
5258 elfsym.st_shndx = SHN_ABS;
5259 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5260 &elfsym, bfd_abs_section_ptr))
5261 goto error_return;
5262 #endif
5264 /* Output a symbol for each section. We output these even if we are
5265 discarding local symbols, since they are used for relocs. These
5266 symbols have no names. We store the index of each one in the
5267 index field of the section, so that we can find it again when
5268 outputting relocs. */
5269 if (info->strip != strip_all
5270 || emit_relocs)
5272 elfsym.st_size = 0;
5273 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5274 elfsym.st_other = 0;
5275 for (i = 1; i < elf_numsections (abfd); i++)
5277 o = section_from_elf_index (abfd, i);
5278 if (o != NULL)
5279 o->target_index = bfd_get_symcount (abfd);
5280 elfsym.st_shndx = i;
5281 if (info->relocateable || o == NULL)
5282 elfsym.st_value = 0;
5283 else
5284 elfsym.st_value = o->vma;
5285 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5286 &elfsym, o))
5287 goto error_return;
5288 if (i == SHN_LORESERVE - 1)
5289 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5293 /* Allocate some memory to hold information read in from the input
5294 files. */
5295 if (max_contents_size != 0)
5297 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5298 if (finfo.contents == NULL)
5299 goto error_return;
5302 if (max_external_reloc_size != 0)
5304 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5305 if (finfo.external_relocs == NULL)
5306 goto error_return;
5309 if (max_internal_reloc_count != 0)
5311 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5312 amt *= sizeof (Elf_Internal_Rela);
5313 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5314 if (finfo.internal_relocs == NULL)
5315 goto error_return;
5318 if (max_sym_count != 0)
5320 amt = max_sym_count * sizeof (Elf_External_Sym);
5321 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5322 if (finfo.external_syms == NULL)
5323 goto error_return;
5325 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5326 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5327 if (finfo.internal_syms == NULL)
5328 goto error_return;
5330 amt = max_sym_count * sizeof (long);
5331 finfo.indices = (long *) bfd_malloc (amt);
5332 if (finfo.indices == NULL)
5333 goto error_return;
5335 amt = max_sym_count * sizeof (asection *);
5336 finfo.sections = (asection **) bfd_malloc (amt);
5337 if (finfo.sections == NULL)
5338 goto error_return;
5341 if (max_sym_shndx_count != 0)
5343 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5344 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5345 if (finfo.locsym_shndx == NULL)
5346 goto error_return;
5349 if (finfo.first_tls_sec)
5351 unsigned int align = 0;
5352 bfd_vma base = finfo.first_tls_sec->vma, end = 0;
5353 asection *sec;
5355 for (sec = finfo.first_tls_sec;
5356 sec && (sec->flags & SEC_THREAD_LOCAL);
5357 sec = sec->next)
5359 bfd_vma size = sec->_raw_size;
5361 if (bfd_get_section_alignment (abfd, sec) > align)
5362 align = bfd_get_section_alignment (abfd, sec);
5363 if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
5365 struct bfd_link_order *o;
5367 size = 0;
5368 for (o = sec->link_order_head; o != NULL; o = o->next)
5369 if (size < o->offset + o->size)
5370 size = o->offset + o->size;
5372 end = sec->vma + size;
5374 elf_hash_table (info)->tls_segment
5375 = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
5376 if (elf_hash_table (info)->tls_segment == NULL)
5377 goto error_return;
5378 elf_hash_table (info)->tls_segment->start = base;
5379 elf_hash_table (info)->tls_segment->size = end - base;
5380 elf_hash_table (info)->tls_segment->align = align;
5383 /* Since ELF permits relocations to be against local symbols, we
5384 must have the local symbols available when we do the relocations.
5385 Since we would rather only read the local symbols once, and we
5386 would rather not keep them in memory, we handle all the
5387 relocations for a single input file at the same time.
5389 Unfortunately, there is no way to know the total number of local
5390 symbols until we have seen all of them, and the local symbol
5391 indices precede the global symbol indices. This means that when
5392 we are generating relocateable output, and we see a reloc against
5393 a global symbol, we can not know the symbol index until we have
5394 finished examining all the local symbols to see which ones we are
5395 going to output. To deal with this, we keep the relocations in
5396 memory, and don't output them until the end of the link. This is
5397 an unfortunate waste of memory, but I don't see a good way around
5398 it. Fortunately, it only happens when performing a relocateable
5399 link, which is not the common case. FIXME: If keep_memory is set
5400 we could write the relocs out and then read them again; I don't
5401 know how bad the memory loss will be. */
5403 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5404 sub->output_has_begun = false;
5405 for (o = abfd->sections; o != NULL; o = o->next)
5407 for (p = o->link_order_head; p != NULL; p = p->next)
5409 if (p->type == bfd_indirect_link_order
5410 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5411 == bfd_target_elf_flavour)
5412 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
5414 if (! sub->output_has_begun)
5416 if (! elf_link_input_bfd (&finfo, sub))
5417 goto error_return;
5418 sub->output_has_begun = true;
5421 else if (p->type == bfd_section_reloc_link_order
5422 || p->type == bfd_symbol_reloc_link_order)
5424 if (! elf_reloc_link_order (abfd, info, o, p))
5425 goto error_return;
5427 else
5429 if (! _bfd_default_link_order (abfd, info, o, p))
5430 goto error_return;
5435 /* Output any global symbols that got converted to local in a
5436 version script or due to symbol visibility. We do this in a
5437 separate step since ELF requires all local symbols to appear
5438 prior to any global symbols. FIXME: We should only do this if
5439 some global symbols were, in fact, converted to become local.
5440 FIXME: Will this work correctly with the Irix 5 linker? */
5441 eoinfo.failed = false;
5442 eoinfo.finfo = &finfo;
5443 eoinfo.localsyms = true;
5444 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5445 (PTR) &eoinfo);
5446 if (eoinfo.failed)
5447 return false;
5449 /* That wrote out all the local symbols. Finish up the symbol table
5450 with the global symbols. Even if we want to strip everything we
5451 can, we still need to deal with those global symbols that got
5452 converted to local in a version script. */
5454 /* The sh_info field records the index of the first non local symbol. */
5455 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5457 if (dynamic
5458 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5460 Elf_Internal_Sym sym;
5461 Elf_External_Sym *dynsym =
5462 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5463 long last_local = 0;
5465 /* Write out the section symbols for the output sections. */
5466 if (info->shared)
5468 asection *s;
5470 sym.st_size = 0;
5471 sym.st_name = 0;
5472 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5473 sym.st_other = 0;
5475 for (s = abfd->sections; s != NULL; s = s->next)
5477 int indx;
5478 Elf_External_Sym *dest;
5480 indx = elf_section_data (s)->this_idx;
5481 BFD_ASSERT (indx > 0);
5482 sym.st_shndx = indx;
5483 sym.st_value = s->vma;
5484 dest = dynsym + elf_section_data (s)->dynindx;
5485 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5488 last_local = bfd_count_sections (abfd);
5491 /* Write out the local dynsyms. */
5492 if (elf_hash_table (info)->dynlocal)
5494 struct elf_link_local_dynamic_entry *e;
5495 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5497 asection *s;
5498 Elf_External_Sym *dest;
5500 sym.st_size = e->isym.st_size;
5501 sym.st_other = e->isym.st_other;
5503 /* Copy the internal symbol as is.
5504 Note that we saved a word of storage and overwrote
5505 the original st_name with the dynstr_index. */
5506 sym = e->isym;
5508 if (e->isym.st_shndx != SHN_UNDEF
5509 && (e->isym.st_shndx < SHN_LORESERVE
5510 || e->isym.st_shndx > SHN_HIRESERVE))
5512 s = bfd_section_from_elf_index (e->input_bfd,
5513 e->isym.st_shndx);
5515 sym.st_shndx =
5516 elf_section_data (s->output_section)->this_idx;
5517 sym.st_value = (s->output_section->vma
5518 + s->output_offset
5519 + e->isym.st_value);
5522 if (last_local < e->dynindx)
5523 last_local = e->dynindx;
5525 dest = dynsym + e->dynindx;
5526 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5530 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5531 last_local + 1;
5534 /* We get the global symbols from the hash table. */
5535 eoinfo.failed = false;
5536 eoinfo.localsyms = false;
5537 eoinfo.finfo = &finfo;
5538 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5539 (PTR) &eoinfo);
5540 if (eoinfo.failed)
5541 return false;
5543 /* If backend needs to output some symbols not present in the hash
5544 table, do it now. */
5545 if (bed->elf_backend_output_arch_syms)
5547 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5548 Elf_Internal_Sym *,
5549 asection *));
5551 if (! ((*bed->elf_backend_output_arch_syms)
5552 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5553 return false;
5556 /* Flush all symbols to the file. */
5557 if (! elf_link_flush_output_syms (&finfo))
5558 return false;
5560 /* Now we know the size of the symtab section. */
5561 off += symtab_hdr->sh_size;
5563 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5564 if (symtab_shndx_hdr->sh_name != 0)
5566 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5567 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5568 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5569 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
5570 symtab_shndx_hdr->sh_size = amt;
5572 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
5573 off, true);
5575 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
5576 || (bfd_bwrite ((PTR) finfo.symshndxbuf, amt, abfd) != amt))
5577 return false;
5581 /* Finish up and write out the symbol string table (.strtab)
5582 section. */
5583 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5584 /* sh_name was set in prep_headers. */
5585 symstrtab_hdr->sh_type = SHT_STRTAB;
5586 symstrtab_hdr->sh_flags = 0;
5587 symstrtab_hdr->sh_addr = 0;
5588 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5589 symstrtab_hdr->sh_entsize = 0;
5590 symstrtab_hdr->sh_link = 0;
5591 symstrtab_hdr->sh_info = 0;
5592 /* sh_offset is set just below. */
5593 symstrtab_hdr->sh_addralign = 1;
5595 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5596 elf_tdata (abfd)->next_file_pos = off;
5598 if (bfd_get_symcount (abfd) > 0)
5600 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5601 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5602 return false;
5605 /* Adjust the relocs to have the correct symbol indices. */
5606 for (o = abfd->sections; o != NULL; o = o->next)
5608 if ((o->flags & SEC_RELOC) == 0)
5609 continue;
5611 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5612 elf_section_data (o)->rel_count,
5613 elf_section_data (o)->rel_hashes);
5614 if (elf_section_data (o)->rel_hdr2 != NULL)
5615 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5616 elf_section_data (o)->rel_count2,
5617 (elf_section_data (o)->rel_hashes
5618 + elf_section_data (o)->rel_count));
5620 /* Set the reloc_count field to 0 to prevent write_relocs from
5621 trying to swap the relocs out itself. */
5622 o->reloc_count = 0;
5625 if (dynamic && info->combreloc && dynobj != NULL)
5626 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5628 /* If we are linking against a dynamic object, or generating a
5629 shared library, finish up the dynamic linking information. */
5630 if (dynamic)
5632 Elf_External_Dyn *dyncon, *dynconend;
5634 /* Fix up .dynamic entries. */
5635 o = bfd_get_section_by_name (dynobj, ".dynamic");
5636 BFD_ASSERT (o != NULL);
5638 dyncon = (Elf_External_Dyn *) o->contents;
5639 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5640 for (; dyncon < dynconend; dyncon++)
5642 Elf_Internal_Dyn dyn;
5643 const char *name;
5644 unsigned int type;
5646 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5648 switch (dyn.d_tag)
5650 default:
5651 break;
5652 case DT_NULL:
5653 if (relativecount > 0 && dyncon + 1 < dynconend)
5655 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5657 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5658 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5659 default: break;
5661 if (dyn.d_tag != DT_NULL)
5663 dyn.d_un.d_val = relativecount;
5664 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5665 relativecount = 0;
5668 break;
5669 case DT_INIT:
5670 name = info->init_function;
5671 goto get_sym;
5672 case DT_FINI:
5673 name = info->fini_function;
5674 get_sym:
5676 struct elf_link_hash_entry *h;
5678 h = elf_link_hash_lookup (elf_hash_table (info), name,
5679 false, false, true);
5680 if (h != NULL
5681 && (h->root.type == bfd_link_hash_defined
5682 || h->root.type == bfd_link_hash_defweak))
5684 dyn.d_un.d_val = h->root.u.def.value;
5685 o = h->root.u.def.section;
5686 if (o->output_section != NULL)
5687 dyn.d_un.d_val += (o->output_section->vma
5688 + o->output_offset);
5689 else
5691 /* The symbol is imported from another shared
5692 library and does not apply to this one. */
5693 dyn.d_un.d_val = 0;
5696 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5699 break;
5701 case DT_PREINIT_ARRAYSZ:
5702 name = ".preinit_array";
5703 goto get_size;
5704 case DT_INIT_ARRAYSZ:
5705 name = ".init_array";
5706 goto get_size;
5707 case DT_FINI_ARRAYSZ:
5708 name = ".fini_array";
5709 get_size:
5710 o = bfd_get_section_by_name (abfd, name);
5711 if (o == NULL)
5713 (*_bfd_error_handler)
5714 (_("%s: could not find output section %s"),
5715 bfd_get_filename (abfd), name);
5716 goto error_return;
5718 if (o->_raw_size == 0)
5719 (*_bfd_error_handler)
5720 (_("warning: %s section has zero size"), name);
5721 dyn.d_un.d_val = o->_raw_size;
5722 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5723 break;
5725 case DT_PREINIT_ARRAY:
5726 name = ".preinit_array";
5727 goto get_vma;
5728 case DT_INIT_ARRAY:
5729 name = ".init_array";
5730 goto get_vma;
5731 case DT_FINI_ARRAY:
5732 name = ".fini_array";
5733 goto get_vma;
5735 case DT_HASH:
5736 name = ".hash";
5737 goto get_vma;
5738 case DT_STRTAB:
5739 name = ".dynstr";
5740 goto get_vma;
5741 case DT_SYMTAB:
5742 name = ".dynsym";
5743 goto get_vma;
5744 case DT_VERDEF:
5745 name = ".gnu.version_d";
5746 goto get_vma;
5747 case DT_VERNEED:
5748 name = ".gnu.version_r";
5749 goto get_vma;
5750 case DT_VERSYM:
5751 name = ".gnu.version";
5752 get_vma:
5753 o = bfd_get_section_by_name (abfd, name);
5754 if (o == NULL)
5756 (*_bfd_error_handler)
5757 (_("%s: could not find output section %s"),
5758 bfd_get_filename (abfd), name);
5759 goto error_return;
5761 dyn.d_un.d_ptr = o->vma;
5762 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5763 break;
5765 case DT_REL:
5766 case DT_RELA:
5767 case DT_RELSZ:
5768 case DT_RELASZ:
5769 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5770 type = SHT_REL;
5771 else
5772 type = SHT_RELA;
5773 dyn.d_un.d_val = 0;
5774 for (i = 1; i < elf_numsections (abfd); i++)
5776 Elf_Internal_Shdr *hdr;
5778 hdr = elf_elfsections (abfd)[i];
5779 if (hdr->sh_type == type
5780 && (hdr->sh_flags & SHF_ALLOC) != 0)
5782 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5783 dyn.d_un.d_val += hdr->sh_size;
5784 else
5786 if (dyn.d_un.d_val == 0
5787 || hdr->sh_addr < dyn.d_un.d_val)
5788 dyn.d_un.d_val = hdr->sh_addr;
5792 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5793 break;
5798 /* If we have created any dynamic sections, then output them. */
5799 if (dynobj != NULL)
5801 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5802 goto error_return;
5804 for (o = dynobj->sections; o != NULL; o = o->next)
5806 if ((o->flags & SEC_HAS_CONTENTS) == 0
5807 || o->_raw_size == 0
5808 || o->output_section == bfd_abs_section_ptr)
5809 continue;
5810 if ((o->flags & SEC_LINKER_CREATED) == 0)
5812 /* At this point, we are only interested in sections
5813 created by elf_link_create_dynamic_sections. */
5814 continue;
5816 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5817 != SHT_STRTAB)
5818 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5820 if (! bfd_set_section_contents (abfd, o->output_section,
5821 o->contents,
5822 (file_ptr) o->output_offset,
5823 o->_raw_size))
5824 goto error_return;
5826 else
5828 /* The contents of the .dynstr section are actually in a
5829 stringtab. */
5830 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5831 if (bfd_seek (abfd, off, SEEK_SET) != 0
5832 || ! _bfd_elf_strtab_emit (abfd,
5833 elf_hash_table (info)->dynstr))
5834 goto error_return;
5839 if (info->relocateable)
5841 boolean failed = false;
5843 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
5844 if (failed)
5845 goto error_return;
5848 /* If we have optimized stabs strings, output them. */
5849 if (elf_hash_table (info)->stab_info != NULL)
5851 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5852 goto error_return;
5855 if (info->eh_frame_hdr)
5857 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
5858 goto error_return;
5861 if (finfo.symstrtab != NULL)
5862 _bfd_stringtab_free (finfo.symstrtab);
5863 if (finfo.contents != NULL)
5864 free (finfo.contents);
5865 if (finfo.external_relocs != NULL)
5866 free (finfo.external_relocs);
5867 if (finfo.internal_relocs != NULL)
5868 free (finfo.internal_relocs);
5869 if (finfo.external_syms != NULL)
5870 free (finfo.external_syms);
5871 if (finfo.locsym_shndx != NULL)
5872 free (finfo.locsym_shndx);
5873 if (finfo.internal_syms != NULL)
5874 free (finfo.internal_syms);
5875 if (finfo.indices != NULL)
5876 free (finfo.indices);
5877 if (finfo.sections != NULL)
5878 free (finfo.sections);
5879 if (finfo.symbuf != NULL)
5880 free (finfo.symbuf);
5881 if (finfo.symshndxbuf != NULL)
5882 free (finfo.symshndxbuf);
5883 for (o = abfd->sections; o != NULL; o = o->next)
5885 if ((o->flags & SEC_RELOC) != 0
5886 && elf_section_data (o)->rel_hashes != NULL)
5887 free (elf_section_data (o)->rel_hashes);
5890 elf_tdata (abfd)->linker = true;
5892 return true;
5894 error_return:
5895 if (finfo.symstrtab != NULL)
5896 _bfd_stringtab_free (finfo.symstrtab);
5897 if (finfo.contents != NULL)
5898 free (finfo.contents);
5899 if (finfo.external_relocs != NULL)
5900 free (finfo.external_relocs);
5901 if (finfo.internal_relocs != NULL)
5902 free (finfo.internal_relocs);
5903 if (finfo.external_syms != NULL)
5904 free (finfo.external_syms);
5905 if (finfo.locsym_shndx != NULL)
5906 free (finfo.locsym_shndx);
5907 if (finfo.internal_syms != NULL)
5908 free (finfo.internal_syms);
5909 if (finfo.indices != NULL)
5910 free (finfo.indices);
5911 if (finfo.sections != NULL)
5912 free (finfo.sections);
5913 if (finfo.symbuf != NULL)
5914 free (finfo.symbuf);
5915 if (finfo.symshndxbuf != NULL)
5916 free (finfo.symshndxbuf);
5917 for (o = abfd->sections; o != NULL; o = o->next)
5919 if ((o->flags & SEC_RELOC) != 0
5920 && elf_section_data (o)->rel_hashes != NULL)
5921 free (elf_section_data (o)->rel_hashes);
5924 return false;
5927 /* Add a symbol to the output symbol table. */
5929 static boolean
5930 elf_link_output_sym (finfo, name, elfsym, input_sec)
5931 struct elf_final_link_info *finfo;
5932 const char *name;
5933 Elf_Internal_Sym *elfsym;
5934 asection *input_sec;
5936 Elf_External_Sym *dest;
5937 Elf_External_Sym_Shndx *destshndx;
5939 boolean (*output_symbol_hook) PARAMS ((bfd *,
5940 struct bfd_link_info *info,
5941 const char *,
5942 Elf_Internal_Sym *,
5943 asection *));
5945 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5946 elf_backend_link_output_symbol_hook;
5947 if (output_symbol_hook != NULL)
5949 if (! ((*output_symbol_hook)
5950 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5951 return false;
5954 if (name == (const char *) NULL || *name == '\0')
5955 elfsym->st_name = 0;
5956 else if (input_sec->flags & SEC_EXCLUDE)
5957 elfsym->st_name = 0;
5958 else
5960 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5961 name, true, false);
5962 if (elfsym->st_name == (unsigned long) -1)
5963 return false;
5966 if (finfo->symbuf_count >= finfo->symbuf_size)
5968 if (! elf_link_flush_output_syms (finfo))
5969 return false;
5972 dest = finfo->symbuf + finfo->symbuf_count;
5973 destshndx = finfo->symshndxbuf;
5974 if (destshndx != NULL)
5976 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5978 bfd_size_type amt;
5980 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5981 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5982 if (destshndx == NULL)
5983 return false;
5984 memset ((char *) destshndx + amt, 0, amt);
5985 finfo->shndxbuf_size *= 2;
5987 destshndx += bfd_get_symcount (finfo->output_bfd);
5990 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5991 finfo->symbuf_count += 1;
5992 bfd_get_symcount (finfo->output_bfd) += 1;
5994 return true;
5997 /* Flush the output symbols to the file. */
5999 static boolean
6000 elf_link_flush_output_syms (finfo)
6001 struct elf_final_link_info *finfo;
6003 if (finfo->symbuf_count > 0)
6005 Elf_Internal_Shdr *hdr;
6006 file_ptr pos;
6007 bfd_size_type amt;
6009 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6010 pos = hdr->sh_offset + hdr->sh_size;
6011 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
6012 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6013 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
6014 return false;
6016 hdr->sh_size += amt;
6017 finfo->symbuf_count = 0;
6020 return true;
6023 /* Adjust all external symbols pointing into SEC_MERGE sections
6024 to reflect the object merging within the sections. */
6026 static boolean
6027 elf_link_sec_merge_syms (h, data)
6028 struct elf_link_hash_entry *h;
6029 PTR data;
6031 asection *sec;
6033 if (h->root.type == bfd_link_hash_warning)
6034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6036 if ((h->root.type == bfd_link_hash_defined
6037 || h->root.type == bfd_link_hash_defweak)
6038 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
6039 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
6041 bfd *output_bfd = (bfd *) data;
6043 h->root.u.def.value =
6044 _bfd_merged_section_offset (output_bfd,
6045 &h->root.u.def.section,
6046 elf_section_data (sec)->sec_info,
6047 h->root.u.def.value, (bfd_vma) 0);
6050 return true;
6053 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6054 allowing an unsatisfied unversioned symbol in the DSO to match a
6055 versioned symbol that would normally require an explicit version. */
6057 static boolean
6058 elf_link_check_versioned_symbol (info, h)
6059 struct bfd_link_info *info;
6060 struct elf_link_hash_entry *h;
6062 bfd *undef_bfd = h->root.u.undef.abfd;
6063 struct elf_link_loaded_list *loaded;
6065 if ((undef_bfd->flags & DYNAMIC) == 0
6066 || info->hash->creator->flavour != bfd_target_elf_flavour
6067 || elf_dt_soname (h->root.u.undef.abfd) == NULL)
6068 return false;
6070 for (loaded = elf_hash_table (info)->loaded;
6071 loaded != NULL;
6072 loaded = loaded->next)
6074 bfd *input;
6075 Elf_Internal_Shdr *hdr;
6076 bfd_size_type symcount;
6077 bfd_size_type extsymcount;
6078 bfd_size_type extsymoff;
6079 Elf_Internal_Shdr *versymhdr;
6080 Elf_Internal_Sym *isym;
6081 Elf_Internal_Sym *isymend;
6082 Elf_Internal_Sym *isymbuf;
6083 Elf_External_Versym *ever;
6084 Elf_External_Versym *extversym;
6086 input = loaded->abfd;
6088 /* We check each DSO for a possible hidden versioned definition. */
6089 if (input == undef_bfd
6090 || (input->flags & DYNAMIC) == 0
6091 || elf_dynversym (input) == 0)
6092 continue;
6094 hdr = &elf_tdata (input)->dynsymtab_hdr;
6096 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
6097 if (elf_bad_symtab (input))
6099 extsymcount = symcount;
6100 extsymoff = 0;
6102 else
6104 extsymcount = symcount - hdr->sh_info;
6105 extsymoff = hdr->sh_info;
6108 if (extsymcount == 0)
6109 continue;
6111 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6112 NULL, NULL, NULL);
6113 if (isymbuf == NULL)
6114 return false;
6116 /* Read in any version definitions. */
6117 versymhdr = &elf_tdata (input)->dynversym_hdr;
6118 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
6119 if (extversym == NULL)
6120 goto error_ret;
6122 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6123 || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
6124 != versymhdr->sh_size))
6126 free (extversym);
6127 error_ret:
6128 free (isymbuf);
6129 return false;
6132 ever = extversym + extsymoff;
6133 isymend = isymbuf + extsymcount;
6134 for (isym = isymbuf; isym < isymend; isym++, ever++)
6136 const char *name;
6137 Elf_Internal_Versym iver;
6139 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6140 || isym->st_shndx == SHN_UNDEF)
6141 continue;
6143 name = bfd_elf_string_from_elf_section (input,
6144 hdr->sh_link,
6145 isym->st_name);
6146 if (strcmp (name, h->root.root.string) != 0)
6147 continue;
6149 _bfd_elf_swap_versym_in (input, ever, &iver);
6151 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6153 /* If we have a non-hidden versioned sym, then it should
6154 have provided a definition for the undefined sym. */
6155 abort ();
6158 if ((iver.vs_vers & VERSYM_VERSION) == 2)
6160 /* This is the oldest (default) sym. We can use it. */
6161 free (extversym);
6162 free (isymbuf);
6163 return true;
6167 free (extversym);
6168 free (isymbuf);
6171 return false;
6174 /* Add an external symbol to the symbol table. This is called from
6175 the hash table traversal routine. When generating a shared object,
6176 we go through the symbol table twice. The first time we output
6177 anything that might have been forced to local scope in a version
6178 script. The second time we output the symbols that are still
6179 global symbols. */
6181 static boolean
6182 elf_link_output_extsym (h, data)
6183 struct elf_link_hash_entry *h;
6184 PTR data;
6186 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
6187 struct elf_final_link_info *finfo = eoinfo->finfo;
6188 boolean strip;
6189 Elf_Internal_Sym sym;
6190 asection *input_sec;
6192 if (h->root.type == bfd_link_hash_warning)
6194 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6195 if (h->root.type == bfd_link_hash_new)
6196 return true;
6199 /* Decide whether to output this symbol in this pass. */
6200 if (eoinfo->localsyms)
6202 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6203 return true;
6205 else
6207 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6208 return true;
6211 /* If we are not creating a shared library, and this symbol is
6212 referenced by a shared library but is not defined anywhere, then
6213 warn that it is undefined. If we do not do this, the runtime
6214 linker will complain that the symbol is undefined when the
6215 program is run. We don't have to worry about symbols that are
6216 referenced by regular files, because we will already have issued
6217 warnings for them. */
6218 if (! finfo->info->relocateable
6219 && ! finfo->info->allow_shlib_undefined
6220 && ! finfo->info->shared
6221 && h->root.type == bfd_link_hash_undefined
6222 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6223 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6224 && ! elf_link_check_versioned_symbol (finfo->info, h))
6226 if (! ((*finfo->info->callbacks->undefined_symbol)
6227 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6228 (asection *) NULL, (bfd_vma) 0, true)))
6230 eoinfo->failed = true;
6231 return false;
6235 /* We don't want to output symbols that have never been mentioned by
6236 a regular file, or that we have been told to strip. However, if
6237 h->indx is set to -2, the symbol is used by a reloc and we must
6238 output it. */
6239 if (h->indx == -2)
6240 strip = false;
6241 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6242 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6243 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6244 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6245 strip = true;
6246 else if (finfo->info->strip == strip_all
6247 || (finfo->info->strip == strip_some
6248 && bfd_hash_lookup (finfo->info->keep_hash,
6249 h->root.root.string,
6250 false, false) == NULL))
6251 strip = true;
6252 else
6253 strip = false;
6255 /* If we're stripping it, and it's not a dynamic symbol, there's
6256 nothing else to do unless it is a forced local symbol. */
6257 if (strip
6258 && h->dynindx == -1
6259 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6260 return true;
6262 sym.st_value = 0;
6263 sym.st_size = h->size;
6264 sym.st_other = h->other;
6265 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6266 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6267 else if (h->root.type == bfd_link_hash_undefweak
6268 || h->root.type == bfd_link_hash_defweak)
6269 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6270 else
6271 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6273 switch (h->root.type)
6275 default:
6276 case bfd_link_hash_new:
6277 case bfd_link_hash_warning:
6278 abort ();
6279 return false;
6281 case bfd_link_hash_undefined:
6282 case bfd_link_hash_undefweak:
6283 input_sec = bfd_und_section_ptr;
6284 sym.st_shndx = SHN_UNDEF;
6285 break;
6287 case bfd_link_hash_defined:
6288 case bfd_link_hash_defweak:
6290 input_sec = h->root.u.def.section;
6291 if (input_sec->output_section != NULL)
6293 sym.st_shndx =
6294 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6295 input_sec->output_section);
6296 if (sym.st_shndx == SHN_BAD)
6298 (*_bfd_error_handler)
6299 (_("%s: could not find output section %s for input section %s"),
6300 bfd_get_filename (finfo->output_bfd),
6301 input_sec->output_section->name,
6302 input_sec->name);
6303 eoinfo->failed = true;
6304 return false;
6307 /* ELF symbols in relocateable files are section relative,
6308 but in nonrelocateable files they are virtual
6309 addresses. */
6310 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6311 if (! finfo->info->relocateable)
6313 sym.st_value += input_sec->output_section->vma;
6314 if (h->type == STT_TLS)
6316 /* STT_TLS symbols are relative to PT_TLS segment
6317 base. */
6318 BFD_ASSERT (finfo->first_tls_sec != NULL);
6319 sym.st_value -= finfo->first_tls_sec->vma;
6323 else
6325 BFD_ASSERT (input_sec->owner == NULL
6326 || (input_sec->owner->flags & DYNAMIC) != 0);
6327 sym.st_shndx = SHN_UNDEF;
6328 input_sec = bfd_und_section_ptr;
6331 break;
6333 case bfd_link_hash_common:
6334 input_sec = h->root.u.c.p->section;
6335 sym.st_shndx = SHN_COMMON;
6336 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6337 break;
6339 case bfd_link_hash_indirect:
6340 /* These symbols are created by symbol versioning. They point
6341 to the decorated version of the name. For example, if the
6342 symbol foo@@GNU_1.2 is the default, which should be used when
6343 foo is used with no version, then we add an indirect symbol
6344 foo which points to foo@@GNU_1.2. We ignore these symbols,
6345 since the indirected symbol is already in the hash table. */
6346 return true;
6349 /* Give the processor backend a chance to tweak the symbol value,
6350 and also to finish up anything that needs to be done for this
6351 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6352 forced local syms when non-shared is due to a historical quirk. */
6353 if ((h->dynindx != -1
6354 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6355 && (finfo->info->shared
6356 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6357 && elf_hash_table (finfo->info)->dynamic_sections_created)
6359 struct elf_backend_data *bed;
6361 bed = get_elf_backend_data (finfo->output_bfd);
6362 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6363 (finfo->output_bfd, finfo->info, h, &sym)))
6365 eoinfo->failed = true;
6366 return false;
6370 /* If we are marking the symbol as undefined, and there are no
6371 non-weak references to this symbol from a regular object, then
6372 mark the symbol as weak undefined; if there are non-weak
6373 references, mark the symbol as strong. We can't do this earlier,
6374 because it might not be marked as undefined until the
6375 finish_dynamic_symbol routine gets through with it. */
6376 if (sym.st_shndx == SHN_UNDEF
6377 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6378 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6379 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6381 int bindtype;
6383 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6384 bindtype = STB_GLOBAL;
6385 else
6386 bindtype = STB_WEAK;
6387 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6390 /* If a symbol is not defined locally, we clear the visibility field. */
6391 if (! finfo->info->relocateable
6392 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6393 sym.st_other &= ~ ELF_ST_VISIBILITY (-1);
6395 /* If this symbol should be put in the .dynsym section, then put it
6396 there now. We already know the symbol index. We also fill in
6397 the entry in the .hash section. */
6398 if (h->dynindx != -1
6399 && elf_hash_table (finfo->info)->dynamic_sections_created)
6401 size_t bucketcount;
6402 size_t bucket;
6403 size_t hash_entry_size;
6404 bfd_byte *bucketpos;
6405 bfd_vma chain;
6406 Elf_External_Sym *esym;
6408 sym.st_name = h->dynstr_index;
6409 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6410 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6412 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6413 bucket = h->elf_hash_value % bucketcount;
6414 hash_entry_size
6415 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6416 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6417 + (bucket + 2) * hash_entry_size);
6418 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6419 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6420 bucketpos);
6421 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6422 ((bfd_byte *) finfo->hash_sec->contents
6423 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6425 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6427 Elf_Internal_Versym iversym;
6428 Elf_External_Versym *eversym;
6430 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6432 if (h->verinfo.verdef == NULL)
6433 iversym.vs_vers = 0;
6434 else
6435 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6437 else
6439 if (h->verinfo.vertree == NULL)
6440 iversym.vs_vers = 1;
6441 else
6442 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6445 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6446 iversym.vs_vers |= VERSYM_HIDDEN;
6448 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6449 eversym += h->dynindx;
6450 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6454 /* If we're stripping it, then it was just a dynamic symbol, and
6455 there's nothing else to do. */
6456 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6457 return true;
6459 h->indx = bfd_get_symcount (finfo->output_bfd);
6461 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6463 eoinfo->failed = true;
6464 return false;
6467 return true;
6470 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6471 originated from the section given by INPUT_REL_HDR) to the
6472 OUTPUT_BFD. */
6474 static boolean
6475 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6476 internal_relocs)
6477 bfd *output_bfd;
6478 asection *input_section;
6479 Elf_Internal_Shdr *input_rel_hdr;
6480 Elf_Internal_Rela *internal_relocs;
6482 Elf_Internal_Rela *irela;
6483 Elf_Internal_Rela *irelaend;
6484 Elf_Internal_Shdr *output_rel_hdr;
6485 asection *output_section;
6486 unsigned int *rel_countp = NULL;
6487 struct elf_backend_data *bed;
6488 bfd_size_type amt;
6490 output_section = input_section->output_section;
6491 output_rel_hdr = NULL;
6493 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6494 == input_rel_hdr->sh_entsize)
6496 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6497 rel_countp = &elf_section_data (output_section)->rel_count;
6499 else if (elf_section_data (output_section)->rel_hdr2
6500 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6501 == input_rel_hdr->sh_entsize))
6503 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6504 rel_countp = &elf_section_data (output_section)->rel_count2;
6506 else
6508 (*_bfd_error_handler)
6509 (_("%s: relocation size mismatch in %s section %s"),
6510 bfd_get_filename (output_bfd),
6511 bfd_archive_filename (input_section->owner),
6512 input_section->name);
6513 bfd_set_error (bfd_error_wrong_object_format);
6514 return false;
6517 bed = get_elf_backend_data (output_bfd);
6518 irela = internal_relocs;
6519 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
6520 * bed->s->int_rels_per_ext_rel);
6522 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6524 Elf_External_Rel *erel;
6525 Elf_Internal_Rel *irel;
6527 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6528 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6529 if (irel == NULL)
6531 (*_bfd_error_handler) (_("Error: out of memory"));
6532 abort ();
6535 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6536 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6538 unsigned int i;
6540 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6542 irel[i].r_offset = irela[i].r_offset;
6543 irel[i].r_info = irela[i].r_info;
6544 BFD_ASSERT (irela[i].r_addend == 0);
6547 if (bed->s->swap_reloc_out)
6548 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6549 else
6550 elf_swap_reloc_out (output_bfd, irel, erel);
6553 free (irel);
6555 else
6557 Elf_External_Rela *erela;
6559 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6561 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6562 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6563 if (bed->s->swap_reloca_out)
6564 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6565 else
6566 elf_swap_reloca_out (output_bfd, irela, erela);
6569 /* Bump the counter, so that we know where to add the next set of
6570 relocations. */
6571 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6573 return true;
6576 /* Link an input file into the linker output file. This function
6577 handles all the sections and relocations of the input file at once.
6578 This is so that we only have to read the local symbols once, and
6579 don't have to keep them in memory. */
6581 static boolean
6582 elf_link_input_bfd (finfo, input_bfd)
6583 struct elf_final_link_info *finfo;
6584 bfd *input_bfd;
6586 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6587 bfd *, asection *, bfd_byte *,
6588 Elf_Internal_Rela *,
6589 Elf_Internal_Sym *, asection **));
6590 bfd *output_bfd;
6591 Elf_Internal_Shdr *symtab_hdr;
6592 size_t locsymcount;
6593 size_t extsymoff;
6594 Elf_Internal_Sym *isymbuf;
6595 Elf_Internal_Sym *isym;
6596 Elf_Internal_Sym *isymend;
6597 long *pindex;
6598 asection **ppsection;
6599 asection *o;
6600 struct elf_backend_data *bed;
6601 boolean emit_relocs;
6602 struct elf_link_hash_entry **sym_hashes;
6604 output_bfd = finfo->output_bfd;
6605 bed = get_elf_backend_data (output_bfd);
6606 relocate_section = bed->elf_backend_relocate_section;
6608 /* If this is a dynamic object, we don't want to do anything here:
6609 we don't want the local symbols, and we don't want the section
6610 contents. */
6611 if ((input_bfd->flags & DYNAMIC) != 0)
6612 return true;
6614 emit_relocs = (finfo->info->relocateable
6615 || finfo->info->emitrelocations
6616 || bed->elf_backend_emit_relocs);
6618 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6619 if (elf_bad_symtab (input_bfd))
6621 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6622 extsymoff = 0;
6624 else
6626 locsymcount = symtab_hdr->sh_info;
6627 extsymoff = symtab_hdr->sh_info;
6630 /* Read the local symbols. */
6631 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6632 if (isymbuf == NULL && locsymcount != 0)
6634 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6635 finfo->internal_syms,
6636 finfo->external_syms,
6637 finfo->locsym_shndx);
6638 if (isymbuf == NULL)
6639 return false;
6642 /* Find local symbol sections and adjust values of symbols in
6643 SEC_MERGE sections. Write out those local symbols we know are
6644 going into the output file. */
6645 isymend = isymbuf + locsymcount;
6646 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6647 isym < isymend;
6648 isym++, pindex++, ppsection++)
6650 asection *isec;
6651 const char *name;
6652 Elf_Internal_Sym osym;
6654 *pindex = -1;
6656 if (elf_bad_symtab (input_bfd))
6658 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6660 *ppsection = NULL;
6661 continue;
6665 if (isym->st_shndx == SHN_UNDEF)
6666 isec = bfd_und_section_ptr;
6667 else if (isym->st_shndx < SHN_LORESERVE
6668 || isym->st_shndx > SHN_HIRESERVE)
6670 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6671 if (isec
6672 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6673 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6674 isym->st_value =
6675 _bfd_merged_section_offset (output_bfd, &isec,
6676 elf_section_data (isec)->sec_info,
6677 isym->st_value, (bfd_vma) 0);
6679 else if (isym->st_shndx == SHN_ABS)
6680 isec = bfd_abs_section_ptr;
6681 else if (isym->st_shndx == SHN_COMMON)
6682 isec = bfd_com_section_ptr;
6683 else
6685 /* Who knows? */
6686 isec = NULL;
6689 *ppsection = isec;
6691 /* Don't output the first, undefined, symbol. */
6692 if (ppsection == finfo->sections)
6693 continue;
6695 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6697 /* We never output section symbols. Instead, we use the
6698 section symbol of the corresponding section in the output
6699 file. */
6700 continue;
6703 /* If we are stripping all symbols, we don't want to output this
6704 one. */
6705 if (finfo->info->strip == strip_all)
6706 continue;
6708 /* If we are discarding all local symbols, we don't want to
6709 output this one. If we are generating a relocateable output
6710 file, then some of the local symbols may be required by
6711 relocs; we output them below as we discover that they are
6712 needed. */
6713 if (finfo->info->discard == discard_all)
6714 continue;
6716 /* If this symbol is defined in a section which we are
6717 discarding, we don't need to keep it, but note that
6718 linker_mark is only reliable for sections that have contents.
6719 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6720 as well as linker_mark. */
6721 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6722 && isec != NULL
6723 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6724 || (! finfo->info->relocateable
6725 && (isec->flags & SEC_EXCLUDE) != 0)))
6726 continue;
6728 /* Get the name of the symbol. */
6729 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6730 isym->st_name);
6731 if (name == NULL)
6732 return false;
6734 /* See if we are discarding symbols with this name. */
6735 if ((finfo->info->strip == strip_some
6736 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6737 == NULL))
6738 || (((finfo->info->discard == discard_sec_merge
6739 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6740 || finfo->info->discard == discard_l)
6741 && bfd_is_local_label_name (input_bfd, name)))
6742 continue;
6744 /* If we get here, we are going to output this symbol. */
6746 osym = *isym;
6748 /* Adjust the section index for the output file. */
6749 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6750 isec->output_section);
6751 if (osym.st_shndx == SHN_BAD)
6752 return false;
6754 *pindex = bfd_get_symcount (output_bfd);
6756 /* ELF symbols in relocateable files are section relative, but
6757 in executable files they are virtual addresses. Note that
6758 this code assumes that all ELF sections have an associated
6759 BFD section with a reasonable value for output_offset; below
6760 we assume that they also have a reasonable value for
6761 output_section. Any special sections must be set up to meet
6762 these requirements. */
6763 osym.st_value += isec->output_offset;
6764 if (! finfo->info->relocateable)
6766 osym.st_value += isec->output_section->vma;
6767 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6769 /* STT_TLS symbols are relative to PT_TLS segment base. */
6770 BFD_ASSERT (finfo->first_tls_sec != NULL);
6771 osym.st_value -= finfo->first_tls_sec->vma;
6775 if (! elf_link_output_sym (finfo, name, &osym, isec))
6776 return false;
6779 /* Relocate the contents of each section. */
6780 sym_hashes = elf_sym_hashes (input_bfd);
6781 for (o = input_bfd->sections; o != NULL; o = o->next)
6783 bfd_byte *contents;
6785 if (! o->linker_mark)
6787 /* This section was omitted from the link. */
6788 continue;
6791 if ((o->flags & SEC_HAS_CONTENTS) == 0
6792 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6793 continue;
6795 if ((o->flags & SEC_LINKER_CREATED) != 0)
6797 /* Section was created by elf_link_create_dynamic_sections
6798 or somesuch. */
6799 continue;
6802 /* Get the contents of the section. They have been cached by a
6803 relaxation routine. Note that o is a section in an input
6804 file, so the contents field will not have been set by any of
6805 the routines which work on output files. */
6806 if (elf_section_data (o)->this_hdr.contents != NULL)
6807 contents = elf_section_data (o)->this_hdr.contents;
6808 else
6810 contents = finfo->contents;
6811 if (! bfd_get_section_contents (input_bfd, o, contents,
6812 (file_ptr) 0, o->_raw_size))
6813 return false;
6816 if ((o->flags & SEC_RELOC) != 0)
6818 Elf_Internal_Rela *internal_relocs;
6820 /* Get the swapped relocs. */
6821 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6822 (input_bfd, o, finfo->external_relocs,
6823 finfo->internal_relocs, false));
6824 if (internal_relocs == NULL
6825 && o->reloc_count > 0)
6826 return false;
6828 /* Run through the relocs looking for any against symbols
6829 from discarded sections and section symbols from
6830 removed link-once sections. Complain about relocs
6831 against discarded sections. Zero relocs against removed
6832 link-once sections. */
6833 if (!finfo->info->relocateable
6834 && !elf_section_ignore_discarded_relocs (o))
6836 Elf_Internal_Rela *rel, *relend;
6838 rel = internal_relocs;
6839 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6840 for ( ; rel < relend; rel++)
6842 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6844 if (r_symndx >= locsymcount
6845 || (elf_bad_symtab (input_bfd)
6846 && finfo->sections[r_symndx] == NULL))
6848 struct elf_link_hash_entry *h;
6850 h = sym_hashes[r_symndx - extsymoff];
6851 while (h->root.type == bfd_link_hash_indirect
6852 || h->root.type == bfd_link_hash_warning)
6853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6855 /* Complain if the definition comes from a
6856 discarded section. */
6857 if ((h->root.type == bfd_link_hash_defined
6858 || h->root.type == bfd_link_hash_defweak)
6859 && elf_discarded_section (h->root.u.def.section))
6861 if ((o->flags & SEC_DEBUGGING) != 0)
6863 BFD_ASSERT (r_symndx != 0);
6864 memset (rel, 0, sizeof (*rel));
6866 else
6868 if (! ((*finfo->info->callbacks->undefined_symbol)
6869 (finfo->info, h->root.root.string,
6870 input_bfd, o, rel->r_offset,
6871 true)))
6872 return false;
6876 else
6878 asection *sec = finfo->sections[r_symndx];
6880 if (sec != NULL && elf_discarded_section (sec))
6882 if ((o->flags & SEC_DEBUGGING) != 0
6883 || (sec->flags & SEC_LINK_ONCE) != 0)
6885 BFD_ASSERT (r_symndx != 0);
6886 rel->r_info
6887 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6888 rel->r_addend = 0;
6890 else
6892 boolean ok;
6893 const char *msg
6894 = _("local symbols in discarded section %s");
6895 bfd_size_type amt
6896 = strlen (sec->name) + strlen (msg) - 1;
6897 char *buf = (char *) bfd_malloc (amt);
6899 if (buf != NULL)
6900 sprintf (buf, msg, sec->name);
6901 else
6902 buf = (char *) sec->name;
6903 ok = (*finfo->info->callbacks
6904 ->undefined_symbol) (finfo->info, buf,
6905 input_bfd, o,
6906 rel->r_offset,
6907 true);
6908 if (buf != sec->name)
6909 free (buf);
6910 if (!ok)
6911 return false;
6918 /* Relocate the section by invoking a back end routine.
6920 The back end routine is responsible for adjusting the
6921 section contents as necessary, and (if using Rela relocs
6922 and generating a relocateable output file) adjusting the
6923 reloc addend as necessary.
6925 The back end routine does not have to worry about setting
6926 the reloc address or the reloc symbol index.
6928 The back end routine is given a pointer to the swapped in
6929 internal symbols, and can access the hash table entries
6930 for the external symbols via elf_sym_hashes (input_bfd).
6932 When generating relocateable output, the back end routine
6933 must handle STB_LOCAL/STT_SECTION symbols specially. The
6934 output symbol is going to be a section symbol
6935 corresponding to the output section, which will require
6936 the addend to be adjusted. */
6938 if (! (*relocate_section) (output_bfd, finfo->info,
6939 input_bfd, o, contents,
6940 internal_relocs,
6941 isymbuf,
6942 finfo->sections))
6943 return false;
6945 if (emit_relocs)
6947 Elf_Internal_Rela *irela;
6948 Elf_Internal_Rela *irelaend;
6949 struct elf_link_hash_entry **rel_hash;
6950 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6951 unsigned int next_erel;
6952 boolean (*reloc_emitter) PARAMS ((bfd *, asection *,
6953 Elf_Internal_Shdr *,
6954 Elf_Internal_Rela *));
6955 boolean rela_normal;
6957 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6958 rela_normal = (bed->rela_normal
6959 && (input_rel_hdr->sh_entsize
6960 == sizeof (Elf_External_Rela)));
6962 /* Adjust the reloc addresses and symbol indices. */
6964 irela = internal_relocs;
6965 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6966 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6967 + elf_section_data (o->output_section)->rel_count
6968 + elf_section_data (o->output_section)->rel_count2);
6969 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6971 unsigned long r_symndx;
6972 asection *sec;
6973 Elf_Internal_Sym sym;
6975 if (next_erel == bed->s->int_rels_per_ext_rel)
6977 rel_hash++;
6978 next_erel = 0;
6981 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6982 finfo->info, o,
6983 irela->r_offset);
6984 if (irela->r_offset >= (bfd_vma) -2)
6986 /* This is a reloc for a deleted entry or somesuch. */
6987 memset (irela, 0, sizeof (*irela));
6988 continue;
6991 irela->r_offset += o->output_offset;
6993 /* Relocs in an executable have to be virtual addresses. */
6994 if (!finfo->info->relocateable)
6995 irela->r_offset += o->output_section->vma;
6997 r_symndx = ELF_R_SYM (irela->r_info);
6999 if (r_symndx == 0)
7000 continue;
7002 if (r_symndx >= locsymcount
7003 || (elf_bad_symtab (input_bfd)
7004 && finfo->sections[r_symndx] == NULL))
7006 struct elf_link_hash_entry *rh;
7007 unsigned long indx;
7009 /* This is a reloc against a global symbol. We
7010 have not yet output all the local symbols, so
7011 we do not know the symbol index of any global
7012 symbol. We set the rel_hash entry for this
7013 reloc to point to the global hash table entry
7014 for this symbol. The symbol index is then
7015 set at the end of elf_bfd_final_link. */
7016 indx = r_symndx - extsymoff;
7017 rh = elf_sym_hashes (input_bfd)[indx];
7018 while (rh->root.type == bfd_link_hash_indirect
7019 || rh->root.type == bfd_link_hash_warning)
7020 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7022 /* Setting the index to -2 tells
7023 elf_link_output_extsym that this symbol is
7024 used by a reloc. */
7025 BFD_ASSERT (rh->indx < 0);
7026 rh->indx = -2;
7028 *rel_hash = rh;
7030 continue;
7033 /* This is a reloc against a local symbol. */
7035 *rel_hash = NULL;
7036 sym = isymbuf[r_symndx];
7037 sec = finfo->sections[r_symndx];
7038 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7040 /* I suppose the backend ought to fill in the
7041 section of any STT_SECTION symbol against a
7042 processor specific section. If we have
7043 discarded a section, the output_section will
7044 be the absolute section. */
7045 if (bfd_is_abs_section (sec)
7046 || (sec != NULL
7047 && bfd_is_abs_section (sec->output_section)))
7048 r_symndx = 0;
7049 else if (sec == NULL || sec->owner == NULL)
7051 bfd_set_error (bfd_error_bad_value);
7052 return false;
7054 else
7056 r_symndx = sec->output_section->target_index;
7057 BFD_ASSERT (r_symndx != 0);
7060 /* Adjust the addend according to where the
7061 section winds up in the output section. */
7062 if (rela_normal)
7063 irela->r_addend += sec->output_offset;
7065 else
7067 if (finfo->indices[r_symndx] == -1)
7069 unsigned long shlink;
7070 const char *name;
7071 asection *osec;
7073 if (finfo->info->strip == strip_all)
7075 /* You can't do ld -r -s. */
7076 bfd_set_error (bfd_error_invalid_operation);
7077 return false;
7080 /* This symbol was skipped earlier, but
7081 since it is needed by a reloc, we
7082 must output it now. */
7083 shlink = symtab_hdr->sh_link;
7084 name = (bfd_elf_string_from_elf_section
7085 (input_bfd, shlink, sym.st_name));
7086 if (name == NULL)
7087 return false;
7089 osec = sec->output_section;
7090 sym.st_shndx =
7091 _bfd_elf_section_from_bfd_section (output_bfd,
7092 osec);
7093 if (sym.st_shndx == SHN_BAD)
7094 return false;
7096 sym.st_value += sec->output_offset;
7097 if (! finfo->info->relocateable)
7099 sym.st_value += osec->vma;
7100 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7102 /* STT_TLS symbols are relative to PT_TLS
7103 segment base. */
7104 BFD_ASSERT (finfo->first_tls_sec != NULL);
7105 sym.st_value -= finfo->first_tls_sec->vma;
7109 finfo->indices[r_symndx]
7110 = bfd_get_symcount (output_bfd);
7112 if (! elf_link_output_sym (finfo, name, &sym, sec))
7113 return false;
7116 r_symndx = finfo->indices[r_symndx];
7119 irela->r_info = ELF_R_INFO (r_symndx,
7120 ELF_R_TYPE (irela->r_info));
7123 /* Swap out the relocs. */
7124 if (bed->elf_backend_emit_relocs
7125 && !(finfo->info->relocateable
7126 || finfo->info->emitrelocations))
7127 reloc_emitter = bed->elf_backend_emit_relocs;
7128 else
7129 reloc_emitter = elf_link_output_relocs;
7131 if (input_rel_hdr->sh_size != 0
7132 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7133 internal_relocs))
7134 return false;
7136 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7137 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7139 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7140 * bed->s->int_rels_per_ext_rel);
7141 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7142 internal_relocs))
7143 return false;
7148 /* Write out the modified section contents. */
7149 if (bed->elf_backend_write_section
7150 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7152 /* Section written out. */
7154 else switch (elf_section_data (o)->sec_info_type)
7156 case ELF_INFO_TYPE_STABS:
7157 if (! (_bfd_write_section_stabs
7158 (output_bfd,
7159 &elf_hash_table (finfo->info)->stab_info,
7160 o, &elf_section_data (o)->sec_info, contents)))
7161 return false;
7162 break;
7163 case ELF_INFO_TYPE_MERGE:
7164 if (! _bfd_write_merged_section (output_bfd, o,
7165 elf_section_data (o)->sec_info))
7166 return false;
7167 break;
7168 case ELF_INFO_TYPE_EH_FRAME:
7170 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7171 o, contents))
7172 return false;
7174 break;
7175 default:
7177 bfd_size_type sec_size;
7179 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
7180 if (! (o->flags & SEC_EXCLUDE)
7181 && ! bfd_set_section_contents (output_bfd, o->output_section,
7182 contents,
7183 (file_ptr) o->output_offset,
7184 sec_size))
7185 return false;
7187 break;
7191 return true;
7194 /* Generate a reloc when linking an ELF file. This is a reloc
7195 requested by the linker, and does come from any input file. This
7196 is used to build constructor and destructor tables when linking
7197 with -Ur. */
7199 static boolean
7200 elf_reloc_link_order (output_bfd, info, output_section, link_order)
7201 bfd *output_bfd;
7202 struct bfd_link_info *info;
7203 asection *output_section;
7204 struct bfd_link_order *link_order;
7206 reloc_howto_type *howto;
7207 long indx;
7208 bfd_vma offset;
7209 bfd_vma addend;
7210 struct elf_link_hash_entry **rel_hash_ptr;
7211 Elf_Internal_Shdr *rel_hdr;
7212 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7214 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7215 if (howto == NULL)
7217 bfd_set_error (bfd_error_bad_value);
7218 return false;
7221 addend = link_order->u.reloc.p->addend;
7223 /* Figure out the symbol index. */
7224 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7225 + elf_section_data (output_section)->rel_count
7226 + elf_section_data (output_section)->rel_count2);
7227 if (link_order->type == bfd_section_reloc_link_order)
7229 indx = link_order->u.reloc.p->u.section->target_index;
7230 BFD_ASSERT (indx != 0);
7231 *rel_hash_ptr = NULL;
7233 else
7235 struct elf_link_hash_entry *h;
7237 /* Treat a reloc against a defined symbol as though it were
7238 actually against the section. */
7239 h = ((struct elf_link_hash_entry *)
7240 bfd_wrapped_link_hash_lookup (output_bfd, info,
7241 link_order->u.reloc.p->u.name,
7242 false, false, true));
7243 if (h != NULL
7244 && (h->root.type == bfd_link_hash_defined
7245 || h->root.type == bfd_link_hash_defweak))
7247 asection *section;
7249 section = h->root.u.def.section;
7250 indx = section->output_section->target_index;
7251 *rel_hash_ptr = NULL;
7252 /* It seems that we ought to add the symbol value to the
7253 addend here, but in practice it has already been added
7254 because it was passed to constructor_callback. */
7255 addend += section->output_section->vma + section->output_offset;
7257 else if (h != NULL)
7259 /* Setting the index to -2 tells elf_link_output_extsym that
7260 this symbol is used by a reloc. */
7261 h->indx = -2;
7262 *rel_hash_ptr = h;
7263 indx = 0;
7265 else
7267 if (! ((*info->callbacks->unattached_reloc)
7268 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7269 (asection *) NULL, (bfd_vma) 0)))
7270 return false;
7271 indx = 0;
7275 /* If this is an inplace reloc, we must write the addend into the
7276 object file. */
7277 if (howto->partial_inplace && addend != 0)
7279 bfd_size_type size;
7280 bfd_reloc_status_type rstat;
7281 bfd_byte *buf;
7282 boolean ok;
7283 const char *sym_name;
7285 size = bfd_get_reloc_size (howto);
7286 buf = (bfd_byte *) bfd_zmalloc (size);
7287 if (buf == (bfd_byte *) NULL)
7288 return false;
7289 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7290 switch (rstat)
7292 case bfd_reloc_ok:
7293 break;
7295 default:
7296 case bfd_reloc_outofrange:
7297 abort ();
7299 case bfd_reloc_overflow:
7300 if (link_order->type == bfd_section_reloc_link_order)
7301 sym_name = bfd_section_name (output_bfd,
7302 link_order->u.reloc.p->u.section);
7303 else
7304 sym_name = link_order->u.reloc.p->u.name;
7305 if (! ((*info->callbacks->reloc_overflow)
7306 (info, sym_name, howto->name, addend,
7307 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7309 free (buf);
7310 return false;
7312 break;
7314 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7315 (file_ptr) link_order->offset, size);
7316 free (buf);
7317 if (! ok)
7318 return false;
7321 /* The address of a reloc is relative to the section in a
7322 relocateable file, and is a virtual address in an executable
7323 file. */
7324 offset = link_order->offset;
7325 if (! info->relocateable)
7326 offset += output_section->vma;
7328 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7330 if (rel_hdr->sh_type == SHT_REL)
7332 bfd_size_type size;
7333 Elf_Internal_Rel *irel;
7334 Elf_External_Rel *erel;
7335 unsigned int i;
7337 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7338 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7339 if (irel == NULL)
7340 return false;
7342 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7343 irel[i].r_offset = offset;
7344 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7346 erel = ((Elf_External_Rel *) rel_hdr->contents
7347 + elf_section_data (output_section)->rel_count);
7349 if (bed->s->swap_reloc_out)
7350 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7351 else
7352 elf_swap_reloc_out (output_bfd, irel, erel);
7354 free (irel);
7356 else
7358 bfd_size_type size;
7359 Elf_Internal_Rela *irela;
7360 Elf_External_Rela *erela;
7361 unsigned int i;
7363 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7364 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7365 if (irela == NULL)
7366 return false;
7368 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7369 irela[i].r_offset = offset;
7370 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7371 irela[0].r_addend = addend;
7373 erela = ((Elf_External_Rela *) rel_hdr->contents
7374 + elf_section_data (output_section)->rel_count);
7376 if (bed->s->swap_reloca_out)
7377 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7378 else
7379 elf_swap_reloca_out (output_bfd, irela, erela);
7382 ++elf_section_data (output_section)->rel_count;
7384 return true;
7387 /* Allocate a pointer to live in a linker created section. */
7389 boolean
7390 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7391 bfd *abfd;
7392 struct bfd_link_info *info;
7393 elf_linker_section_t *lsect;
7394 struct elf_link_hash_entry *h;
7395 const Elf_Internal_Rela *rel;
7397 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7398 elf_linker_section_pointers_t *linker_section_ptr;
7399 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7400 bfd_size_type amt;
7402 BFD_ASSERT (lsect != NULL);
7404 /* Is this a global symbol? */
7405 if (h != NULL)
7407 /* Has this symbol already been allocated? If so, our work is done. */
7408 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7409 rel->r_addend,
7410 lsect->which))
7411 return true;
7413 ptr_linker_section_ptr = &h->linker_section_pointer;
7414 /* Make sure this symbol is output as a dynamic symbol. */
7415 if (h->dynindx == -1)
7417 if (! elf_link_record_dynamic_symbol (info, h))
7418 return false;
7421 if (lsect->rel_section)
7422 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7424 else
7426 /* Allocation of a pointer to a local symbol. */
7427 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7429 /* Allocate a table to hold the local symbols if first time. */
7430 if (!ptr)
7432 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7433 register unsigned int i;
7435 amt = num_symbols;
7436 amt *= sizeof (elf_linker_section_pointers_t *);
7437 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7439 if (!ptr)
7440 return false;
7442 elf_local_ptr_offsets (abfd) = ptr;
7443 for (i = 0; i < num_symbols; i++)
7444 ptr[i] = (elf_linker_section_pointers_t *) 0;
7447 /* Has this symbol already been allocated? If so, our work is done. */
7448 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7449 rel->r_addend,
7450 lsect->which))
7451 return true;
7453 ptr_linker_section_ptr = &ptr[r_symndx];
7455 if (info->shared)
7457 /* If we are generating a shared object, we need to
7458 output a R_<xxx>_RELATIVE reloc so that the
7459 dynamic linker can adjust this GOT entry. */
7460 BFD_ASSERT (lsect->rel_section != NULL);
7461 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7465 /* Allocate space for a pointer in the linker section, and allocate
7466 a new pointer record from internal memory. */
7467 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7468 amt = sizeof (elf_linker_section_pointers_t);
7469 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7471 if (!linker_section_ptr)
7472 return false;
7474 linker_section_ptr->next = *ptr_linker_section_ptr;
7475 linker_section_ptr->addend = rel->r_addend;
7476 linker_section_ptr->which = lsect->which;
7477 linker_section_ptr->written_address_p = false;
7478 *ptr_linker_section_ptr = linker_section_ptr;
7480 #if 0
7481 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7483 linker_section_ptr->offset = (lsect->section->_raw_size
7484 - lsect->hole_size + (ARCH_SIZE / 8));
7485 lsect->hole_offset += ARCH_SIZE / 8;
7486 lsect->sym_offset += ARCH_SIZE / 8;
7487 if (lsect->sym_hash)
7489 /* Bump up symbol value if needed. */
7490 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7491 #ifdef DEBUG
7492 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7493 lsect->sym_hash->root.root.string,
7494 (long) ARCH_SIZE / 8,
7495 (long) lsect->sym_hash->root.u.def.value);
7496 #endif
7499 else
7500 #endif
7501 linker_section_ptr->offset = lsect->section->_raw_size;
7503 lsect->section->_raw_size += ARCH_SIZE / 8;
7505 #ifdef DEBUG
7506 fprintf (stderr,
7507 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7508 lsect->name, (long) linker_section_ptr->offset,
7509 (long) lsect->section->_raw_size);
7510 #endif
7512 return true;
7515 #if ARCH_SIZE==64
7516 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7517 #endif
7518 #if ARCH_SIZE==32
7519 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7520 #endif
7522 /* Fill in the address for a pointer generated in a linker section. */
7524 bfd_vma
7525 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7526 relocation, rel, relative_reloc)
7527 bfd *output_bfd;
7528 bfd *input_bfd;
7529 struct bfd_link_info *info;
7530 elf_linker_section_t *lsect;
7531 struct elf_link_hash_entry *h;
7532 bfd_vma relocation;
7533 const Elf_Internal_Rela *rel;
7534 int relative_reloc;
7536 elf_linker_section_pointers_t *linker_section_ptr;
7538 BFD_ASSERT (lsect != NULL);
7540 if (h != NULL)
7542 /* Handle global symbol. */
7543 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7544 (h->linker_section_pointer,
7545 rel->r_addend,
7546 lsect->which));
7548 BFD_ASSERT (linker_section_ptr != NULL);
7550 if (! elf_hash_table (info)->dynamic_sections_created
7551 || (info->shared
7552 && info->symbolic
7553 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7555 /* This is actually a static link, or it is a
7556 -Bsymbolic link and the symbol is defined
7557 locally. We must initialize this entry in the
7558 global section.
7560 When doing a dynamic link, we create a .rela.<xxx>
7561 relocation entry to initialize the value. This
7562 is done in the finish_dynamic_symbol routine. */
7563 if (!linker_section_ptr->written_address_p)
7565 linker_section_ptr->written_address_p = true;
7566 bfd_put_ptr (output_bfd,
7567 relocation + linker_section_ptr->addend,
7568 (lsect->section->contents
7569 + linker_section_ptr->offset));
7573 else
7575 /* Handle local symbol. */
7576 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7577 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7578 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7579 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7580 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7581 rel->r_addend,
7582 lsect->which));
7584 BFD_ASSERT (linker_section_ptr != NULL);
7586 /* Write out pointer if it hasn't been rewritten out before. */
7587 if (!linker_section_ptr->written_address_p)
7589 linker_section_ptr->written_address_p = true;
7590 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7591 lsect->section->contents + linker_section_ptr->offset);
7593 if (info->shared)
7595 asection *srel = lsect->rel_section;
7596 Elf_Internal_Rela *outrel;
7597 Elf_External_Rela *erel;
7598 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7599 unsigned int i;
7600 bfd_size_type amt;
7602 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7603 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7604 if (outrel == NULL)
7606 (*_bfd_error_handler) (_("Error: out of memory"));
7607 return 0;
7610 /* We need to generate a relative reloc for the dynamic
7611 linker. */
7612 if (!srel)
7614 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7615 lsect->rel_name);
7616 lsect->rel_section = srel;
7619 BFD_ASSERT (srel != NULL);
7621 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7622 outrel[i].r_offset = (lsect->section->output_section->vma
7623 + lsect->section->output_offset
7624 + linker_section_ptr->offset);
7625 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7626 outrel[0].r_addend = 0;
7627 erel = (Elf_External_Rela *) lsect->section->contents;
7628 erel += elf_section_data (lsect->section)->rel_count;
7629 elf_swap_reloca_out (output_bfd, outrel, erel);
7630 ++elf_section_data (lsect->section)->rel_count;
7632 free (outrel);
7637 relocation = (lsect->section->output_offset
7638 + linker_section_ptr->offset
7639 - lsect->hole_offset
7640 - lsect->sym_offset);
7642 #ifdef DEBUG
7643 fprintf (stderr,
7644 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7645 lsect->name, (long) relocation, (long) relocation);
7646 #endif
7648 /* Subtract out the addend, because it will get added back in by the normal
7649 processing. */
7650 return relocation - linker_section_ptr->addend;
7653 /* Garbage collect unused sections. */
7655 static boolean elf_gc_mark
7656 PARAMS ((struct bfd_link_info *, asection *,
7657 asection * (*) (asection *, struct bfd_link_info *,
7658 Elf_Internal_Rela *, struct elf_link_hash_entry *,
7659 Elf_Internal_Sym *)));
7661 static boolean elf_gc_sweep
7662 PARAMS ((struct bfd_link_info *,
7663 boolean (*) (bfd *, struct bfd_link_info *, asection *,
7664 const Elf_Internal_Rela *)));
7666 static boolean elf_gc_sweep_symbol
7667 PARAMS ((struct elf_link_hash_entry *, PTR));
7669 static boolean elf_gc_allocate_got_offsets
7670 PARAMS ((struct elf_link_hash_entry *, PTR));
7672 static boolean elf_gc_propagate_vtable_entries_used
7673 PARAMS ((struct elf_link_hash_entry *, PTR));
7675 static boolean elf_gc_smash_unused_vtentry_relocs
7676 PARAMS ((struct elf_link_hash_entry *, PTR));
7678 /* The mark phase of garbage collection. For a given section, mark
7679 it and any sections in this section's group, and all the sections
7680 which define symbols to which it refers. */
7682 static boolean
7683 elf_gc_mark (info, sec, gc_mark_hook)
7684 struct bfd_link_info *info;
7685 asection *sec;
7686 asection * (*gc_mark_hook) PARAMS ((asection *, struct bfd_link_info *,
7687 Elf_Internal_Rela *,
7688 struct elf_link_hash_entry *,
7689 Elf_Internal_Sym *));
7691 boolean ret;
7692 asection *group_sec;
7694 sec->gc_mark = 1;
7696 /* Mark all the sections in the group. */
7697 group_sec = elf_section_data (sec)->next_in_group;
7698 if (group_sec && !group_sec->gc_mark)
7699 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7700 return false;
7702 /* Look through the section relocs. */
7703 ret = true;
7704 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7706 Elf_Internal_Rela *relstart, *rel, *relend;
7707 Elf_Internal_Shdr *symtab_hdr;
7708 struct elf_link_hash_entry **sym_hashes;
7709 size_t nlocsyms;
7710 size_t extsymoff;
7711 bfd *input_bfd = sec->owner;
7712 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7713 Elf_Internal_Sym *isym = NULL;
7715 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7716 sym_hashes = elf_sym_hashes (input_bfd);
7718 /* Read the local symbols. */
7719 if (elf_bad_symtab (input_bfd))
7721 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7722 extsymoff = 0;
7724 else
7725 extsymoff = nlocsyms = symtab_hdr->sh_info;
7727 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
7728 if (isym == NULL && nlocsyms != 0)
7730 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
7731 NULL, NULL, NULL);
7732 if (isym == NULL)
7733 return false;
7736 /* Read the relocations. */
7737 relstart = (NAME(_bfd_elf,link_read_relocs)
7738 (input_bfd, sec, NULL, (Elf_Internal_Rela *) NULL,
7739 info->keep_memory));
7740 if (relstart == NULL)
7742 ret = false;
7743 goto out1;
7745 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7747 for (rel = relstart; rel < relend; rel++)
7749 unsigned long r_symndx;
7750 asection *rsec;
7751 struct elf_link_hash_entry *h;
7753 r_symndx = ELF_R_SYM (rel->r_info);
7754 if (r_symndx == 0)
7755 continue;
7757 if (r_symndx >= nlocsyms
7758 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
7760 h = sym_hashes[r_symndx - extsymoff];
7761 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
7763 else
7765 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
7768 if (rsec && !rsec->gc_mark)
7770 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
7771 rsec->gc_mark = 1;
7772 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
7774 ret = false;
7775 goto out2;
7780 out2:
7781 if (elf_section_data (sec)->relocs != relstart)
7782 free (relstart);
7783 out1:
7784 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
7786 if (! info->keep_memory)
7787 free (isym);
7788 else
7789 symtab_hdr->contents = (unsigned char *) isym;
7793 return ret;
7796 /* The sweep phase of garbage collection. Remove all garbage sections. */
7798 static boolean
7799 elf_gc_sweep (info, gc_sweep_hook)
7800 struct bfd_link_info *info;
7801 boolean (*gc_sweep_hook) PARAMS ((bfd *, struct bfd_link_info *,
7802 asection *, const Elf_Internal_Rela *));
7804 bfd *sub;
7806 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7808 asection *o;
7810 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7811 continue;
7813 for (o = sub->sections; o != NULL; o = o->next)
7815 /* Keep special sections. Keep .debug sections. */
7816 if ((o->flags & SEC_LINKER_CREATED)
7817 || (o->flags & SEC_DEBUGGING))
7818 o->gc_mark = 1;
7820 if (o->gc_mark)
7821 continue;
7823 /* Skip sweeping sections already excluded. */
7824 if (o->flags & SEC_EXCLUDE)
7825 continue;
7827 /* Since this is early in the link process, it is simple
7828 to remove a section from the output. */
7829 o->flags |= SEC_EXCLUDE;
7831 /* But we also have to update some of the relocation
7832 info we collected before. */
7833 if (gc_sweep_hook
7834 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7836 Elf_Internal_Rela *internal_relocs;
7837 boolean r;
7839 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7840 (o->owner, o, NULL, NULL, info->keep_memory));
7841 if (internal_relocs == NULL)
7842 return false;
7844 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7846 if (elf_section_data (o)->relocs != internal_relocs)
7847 free (internal_relocs);
7849 if (!r)
7850 return false;
7855 /* Remove the symbols that were in the swept sections from the dynamic
7856 symbol table. GCFIXME: Anyone know how to get them out of the
7857 static symbol table as well? */
7859 int i = 0;
7861 elf_link_hash_traverse (elf_hash_table (info),
7862 elf_gc_sweep_symbol,
7863 (PTR) &i);
7865 elf_hash_table (info)->dynsymcount = i;
7868 return true;
7871 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7873 static boolean
7874 elf_gc_sweep_symbol (h, idxptr)
7875 struct elf_link_hash_entry *h;
7876 PTR idxptr;
7878 int *idx = (int *) idxptr;
7880 if (h->root.type == bfd_link_hash_warning)
7881 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7883 if (h->dynindx != -1
7884 && ((h->root.type != bfd_link_hash_defined
7885 && h->root.type != bfd_link_hash_defweak)
7886 || h->root.u.def.section->gc_mark))
7887 h->dynindx = (*idx)++;
7889 return true;
7892 /* Propogate collected vtable information. This is called through
7893 elf_link_hash_traverse. */
7895 static boolean
7896 elf_gc_propagate_vtable_entries_used (h, okp)
7897 struct elf_link_hash_entry *h;
7898 PTR okp;
7900 if (h->root.type == bfd_link_hash_warning)
7901 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7903 /* Those that are not vtables. */
7904 if (h->vtable_parent == NULL)
7905 return true;
7907 /* Those vtables that do not have parents, we cannot merge. */
7908 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7909 return true;
7911 /* If we've already been done, exit. */
7912 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7913 return true;
7915 /* Make sure the parent's table is up to date. */
7916 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7918 if (h->vtable_entries_used == NULL)
7920 /* None of this table's entries were referenced. Re-use the
7921 parent's table. */
7922 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7923 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7925 else
7927 size_t n;
7928 boolean *cu, *pu;
7930 /* Or the parent's entries into ours. */
7931 cu = h->vtable_entries_used;
7932 cu[-1] = true;
7933 pu = h->vtable_parent->vtable_entries_used;
7934 if (pu != NULL)
7936 asection *sec = h->root.u.def.section;
7937 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7938 int file_align = bed->s->file_align;
7940 n = h->vtable_parent->vtable_entries_size / file_align;
7941 while (n--)
7943 if (*pu)
7944 *cu = true;
7945 pu++;
7946 cu++;
7951 return true;
7954 static boolean
7955 elf_gc_smash_unused_vtentry_relocs (h, okp)
7956 struct elf_link_hash_entry *h;
7957 PTR okp;
7959 asection *sec;
7960 bfd_vma hstart, hend;
7961 Elf_Internal_Rela *relstart, *relend, *rel;
7962 struct elf_backend_data *bed;
7963 int file_align;
7965 if (h->root.type == bfd_link_hash_warning)
7966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7968 /* Take care of both those symbols that do not describe vtables as
7969 well as those that are not loaded. */
7970 if (h->vtable_parent == NULL)
7971 return true;
7973 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7974 || h->root.type == bfd_link_hash_defweak);
7976 sec = h->root.u.def.section;
7977 hstart = h->root.u.def.value;
7978 hend = hstart + h->size;
7980 relstart = (NAME(_bfd_elf,link_read_relocs)
7981 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7982 if (!relstart)
7983 return *(boolean *) okp = false;
7984 bed = get_elf_backend_data (sec->owner);
7985 file_align = bed->s->file_align;
7987 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7989 for (rel = relstart; rel < relend; ++rel)
7990 if (rel->r_offset >= hstart && rel->r_offset < hend)
7992 /* If the entry is in use, do nothing. */
7993 if (h->vtable_entries_used
7994 && (rel->r_offset - hstart) < h->vtable_entries_size)
7996 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7997 if (h->vtable_entries_used[entry])
7998 continue;
8000 /* Otherwise, kill it. */
8001 rel->r_offset = rel->r_info = rel->r_addend = 0;
8004 return true;
8007 /* Do mark and sweep of unused sections. */
8009 boolean
8010 elf_gc_sections (abfd, info)
8011 bfd *abfd;
8012 struct bfd_link_info *info;
8014 boolean ok = true;
8015 bfd *sub;
8016 asection * (*gc_mark_hook)
8017 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8018 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
8020 if (!get_elf_backend_data (abfd)->can_gc_sections
8021 || info->relocateable || info->emitrelocations
8022 || elf_hash_table (info)->dynamic_sections_created)
8023 return true;
8025 /* Apply transitive closure to the vtable entry usage info. */
8026 elf_link_hash_traverse (elf_hash_table (info),
8027 elf_gc_propagate_vtable_entries_used,
8028 (PTR) &ok);
8029 if (!ok)
8030 return false;
8032 /* Kill the vtable relocations that were not used. */
8033 elf_link_hash_traverse (elf_hash_table (info),
8034 elf_gc_smash_unused_vtentry_relocs,
8035 (PTR) &ok);
8036 if (!ok)
8037 return false;
8039 /* Grovel through relocs to find out who stays ... */
8041 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8042 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8044 asection *o;
8046 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8047 continue;
8049 for (o = sub->sections; o != NULL; o = o->next)
8051 if (o->flags & SEC_KEEP)
8052 if (!elf_gc_mark (info, o, gc_mark_hook))
8053 return false;
8057 /* ... and mark SEC_EXCLUDE for those that go. */
8058 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8059 return false;
8061 return true;
8064 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
8066 boolean
8067 elf_gc_record_vtinherit (abfd, sec, h, offset)
8068 bfd *abfd;
8069 asection *sec;
8070 struct elf_link_hash_entry *h;
8071 bfd_vma offset;
8073 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8074 struct elf_link_hash_entry **search, *child;
8075 bfd_size_type extsymcount;
8077 /* The sh_info field of the symtab header tells us where the
8078 external symbols start. We don't care about the local symbols at
8079 this point. */
8080 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
8081 if (!elf_bad_symtab (abfd))
8082 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8084 sym_hashes = elf_sym_hashes (abfd);
8085 sym_hashes_end = sym_hashes + extsymcount;
8087 /* Hunt down the child symbol, which is in this section at the same
8088 offset as the relocation. */
8089 for (search = sym_hashes; search != sym_hashes_end; ++search)
8091 if ((child = *search) != NULL
8092 && (child->root.type == bfd_link_hash_defined
8093 || child->root.type == bfd_link_hash_defweak)
8094 && child->root.u.def.section == sec
8095 && child->root.u.def.value == offset)
8096 goto win;
8099 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8100 bfd_archive_filename (abfd), sec->name,
8101 (unsigned long) offset);
8102 bfd_set_error (bfd_error_invalid_operation);
8103 return false;
8105 win:
8106 if (!h)
8108 /* This *should* only be the absolute section. It could potentially
8109 be that someone has defined a non-global vtable though, which
8110 would be bad. It isn't worth paging in the local symbols to be
8111 sure though; that case should simply be handled by the assembler. */
8113 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8115 else
8116 child->vtable_parent = h;
8118 return true;
8121 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
8123 boolean
8124 elf_gc_record_vtentry (abfd, sec, h, addend)
8125 bfd *abfd ATTRIBUTE_UNUSED;
8126 asection *sec ATTRIBUTE_UNUSED;
8127 struct elf_link_hash_entry *h;
8128 bfd_vma addend;
8130 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8131 int file_align = bed->s->file_align;
8133 if (addend >= h->vtable_entries_size)
8135 size_t size, bytes;
8136 boolean *ptr = h->vtable_entries_used;
8138 /* While the symbol is undefined, we have to be prepared to handle
8139 a zero size. */
8140 if (h->root.type == bfd_link_hash_undefined)
8141 size = addend;
8142 else
8144 size = h->size;
8145 if (size < addend)
8147 /* Oops! We've got a reference past the defined end of
8148 the table. This is probably a bug -- shall we warn? */
8149 size = addend;
8153 /* Allocate one extra entry for use as a "done" flag for the
8154 consolidation pass. */
8155 bytes = (size / file_align + 1) * sizeof (boolean);
8157 if (ptr)
8159 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
8161 if (ptr != NULL)
8163 size_t oldbytes;
8165 oldbytes = ((h->vtable_entries_size / file_align + 1)
8166 * sizeof (boolean));
8167 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8170 else
8171 ptr = bfd_zmalloc ((bfd_size_type) bytes);
8173 if (ptr == NULL)
8174 return false;
8176 /* And arrange for that done flag to be at index -1. */
8177 h->vtable_entries_used = ptr + 1;
8178 h->vtable_entries_size = size;
8181 h->vtable_entries_used[addend / file_align] = true;
8183 return true;
8186 /* And an accompanying bit to work out final got entry offsets once
8187 we're done. Should be called from final_link. */
8189 boolean
8190 elf_gc_common_finalize_got_offsets (abfd, info)
8191 bfd *abfd;
8192 struct bfd_link_info *info;
8194 bfd *i;
8195 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8196 bfd_vma gotoff;
8198 /* The GOT offset is relative to the .got section, but the GOT header is
8199 put into the .got.plt section, if the backend uses it. */
8200 if (bed->want_got_plt)
8201 gotoff = 0;
8202 else
8203 gotoff = bed->got_header_size;
8205 /* Do the local .got entries first. */
8206 for (i = info->input_bfds; i; i = i->link_next)
8208 bfd_signed_vma *local_got;
8209 bfd_size_type j, locsymcount;
8210 Elf_Internal_Shdr *symtab_hdr;
8212 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8213 continue;
8215 local_got = elf_local_got_refcounts (i);
8216 if (!local_got)
8217 continue;
8219 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8220 if (elf_bad_symtab (i))
8221 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8222 else
8223 locsymcount = symtab_hdr->sh_info;
8225 for (j = 0; j < locsymcount; ++j)
8227 if (local_got[j] > 0)
8229 local_got[j] = gotoff;
8230 gotoff += ARCH_SIZE / 8;
8232 else
8233 local_got[j] = (bfd_vma) -1;
8237 /* Then the global .got entries. .plt refcounts are handled by
8238 adjust_dynamic_symbol */
8239 elf_link_hash_traverse (elf_hash_table (info),
8240 elf_gc_allocate_got_offsets,
8241 (PTR) &gotoff);
8242 return true;
8245 /* We need a special top-level link routine to convert got reference counts
8246 to real got offsets. */
8248 static boolean
8249 elf_gc_allocate_got_offsets (h, offarg)
8250 struct elf_link_hash_entry *h;
8251 PTR offarg;
8253 bfd_vma *off = (bfd_vma *) offarg;
8255 if (h->root.type == bfd_link_hash_warning)
8256 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8258 if (h->got.refcount > 0)
8260 h->got.offset = off[0];
8261 off[0] += ARCH_SIZE / 8;
8263 else
8264 h->got.offset = (bfd_vma) -1;
8266 return true;
8269 /* Many folk need no more in the way of final link than this, once
8270 got entry reference counting is enabled. */
8272 boolean
8273 elf_gc_common_final_link (abfd, info)
8274 bfd *abfd;
8275 struct bfd_link_info *info;
8277 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8278 return false;
8280 /* Invoke the regular ELF backend linker to do all the work. */
8281 return elf_bfd_final_link (abfd, info);
8284 /* This function will be called though elf_link_hash_traverse to store
8285 all hash value of the exported symbols in an array. */
8287 static boolean
8288 elf_collect_hash_codes (h, data)
8289 struct elf_link_hash_entry *h;
8290 PTR data;
8292 unsigned long **valuep = (unsigned long **) data;
8293 const char *name;
8294 char *p;
8295 unsigned long ha;
8296 char *alc = NULL;
8298 if (h->root.type == bfd_link_hash_warning)
8299 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8301 /* Ignore indirect symbols. These are added by the versioning code. */
8302 if (h->dynindx == -1)
8303 return true;
8305 name = h->root.root.string;
8306 p = strchr (name, ELF_VER_CHR);
8307 if (p != NULL)
8309 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8310 memcpy (alc, name, (size_t) (p - name));
8311 alc[p - name] = '\0';
8312 name = alc;
8315 /* Compute the hash value. */
8316 ha = bfd_elf_hash (name);
8318 /* Store the found hash value in the array given as the argument. */
8319 *(*valuep)++ = ha;
8321 /* And store it in the struct so that we can put it in the hash table
8322 later. */
8323 h->elf_hash_value = ha;
8325 if (alc != NULL)
8326 free (alc);
8328 return true;
8331 boolean
8332 elf_reloc_symbol_deleted_p (offset, cookie)
8333 bfd_vma offset;
8334 PTR cookie;
8336 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8338 if (rcookie->bad_symtab)
8339 rcookie->rel = rcookie->rels;
8341 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8343 unsigned long r_symndx;
8345 if (! rcookie->bad_symtab)
8346 if (rcookie->rel->r_offset > offset)
8347 return false;
8348 if (rcookie->rel->r_offset != offset)
8349 continue;
8351 r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8352 if (r_symndx == SHN_UNDEF)
8353 return true;
8355 if (r_symndx >= rcookie->locsymcount
8356 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8358 struct elf_link_hash_entry *h;
8360 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8362 while (h->root.type == bfd_link_hash_indirect
8363 || h->root.type == bfd_link_hash_warning)
8364 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8366 if ((h->root.type == bfd_link_hash_defined
8367 || h->root.type == bfd_link_hash_defweak)
8368 && elf_discarded_section (h->root.u.def.section))
8369 return true;
8370 else
8371 return false;
8373 else
8375 /* It's not a relocation against a global symbol,
8376 but it could be a relocation against a local
8377 symbol for a discarded section. */
8378 asection *isec;
8379 Elf_Internal_Sym *isym;
8381 /* Need to: get the symbol; get the section. */
8382 isym = &rcookie->locsyms[r_symndx];
8383 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8385 isec = section_from_elf_index (rcookie->abfd, isym->st_shndx);
8386 if (isec != NULL && elf_discarded_section (isec))
8387 return true;
8390 return false;
8392 return false;
8395 /* Discard unneeded references to discarded sections.
8396 Returns true if any section's size was changed. */
8397 /* This function assumes that the relocations are in sorted order,
8398 which is true for all known assemblers. */
8400 boolean
8401 elf_bfd_discard_info (output_bfd, info)
8402 bfd *output_bfd;
8403 struct bfd_link_info *info;
8405 struct elf_reloc_cookie cookie;
8406 asection *stab, *eh;
8407 Elf_Internal_Shdr *symtab_hdr;
8408 struct elf_backend_data *bed;
8409 bfd *abfd;
8410 unsigned int count;
8411 boolean ret = false;
8413 if (info->traditional_format
8414 || info->hash->creator->flavour != bfd_target_elf_flavour
8415 || ! is_elf_hash_table (info))
8416 return false;
8418 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8420 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8421 continue;
8423 bed = get_elf_backend_data (abfd);
8425 if ((abfd->flags & DYNAMIC) != 0)
8426 continue;
8428 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8429 if (eh != NULL
8430 && (eh->_raw_size == 0
8431 || bfd_is_abs_section (eh->output_section)))
8432 eh = NULL;
8434 stab = bfd_get_section_by_name (abfd, ".stab");
8435 if (stab != NULL
8436 && (stab->_raw_size == 0
8437 || bfd_is_abs_section (stab->output_section)
8438 || elf_section_data (stab)->sec_info_type != ELF_INFO_TYPE_STABS))
8439 stab = NULL;
8441 if (stab == NULL
8442 && eh == NULL
8443 && bed->elf_backend_discard_info == NULL)
8444 continue;
8446 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8447 cookie.abfd = abfd;
8448 cookie.sym_hashes = elf_sym_hashes (abfd);
8449 cookie.bad_symtab = elf_bad_symtab (abfd);
8450 if (cookie.bad_symtab)
8452 cookie.locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8453 cookie.extsymoff = 0;
8455 else
8457 cookie.locsymcount = symtab_hdr->sh_info;
8458 cookie.extsymoff = symtab_hdr->sh_info;
8461 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8462 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8464 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8465 cookie.locsymcount, 0,
8466 NULL, NULL, NULL);
8467 if (cookie.locsyms == NULL)
8468 return false;
8471 if (stab != NULL)
8473 cookie.rels = NULL;
8474 count = stab->reloc_count;
8475 if (count != 0)
8476 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8477 (abfd, stab, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8478 info->keep_memory));
8479 if (cookie.rels != NULL)
8481 cookie.rel = cookie.rels;
8482 cookie.relend = cookie.rels;
8483 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8484 if (_bfd_discard_section_stabs (abfd, stab,
8485 elf_section_data (stab)->sec_info,
8486 elf_reloc_symbol_deleted_p,
8487 &cookie))
8488 ret = true;
8489 if (elf_section_data (stab)->relocs != cookie.rels)
8490 free (cookie.rels);
8494 if (eh != NULL)
8496 cookie.rels = NULL;
8497 count = eh->reloc_count;
8498 if (count != 0)
8499 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8500 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8501 info->keep_memory));
8502 cookie.rel = cookie.rels;
8503 cookie.relend = cookie.rels;
8504 if (cookie.rels != NULL)
8505 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8507 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
8508 elf_reloc_symbol_deleted_p,
8509 &cookie))
8510 ret = true;
8512 if (cookie.rels != NULL
8513 && elf_section_data (eh)->relocs != cookie.rels)
8514 free (cookie.rels);
8517 if (bed->elf_backend_discard_info != NULL
8518 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
8519 ret = true;
8521 if (cookie.locsyms != NULL
8522 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
8524 if (! info->keep_memory)
8525 free (cookie.locsyms);
8526 else
8527 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
8531 if (info->eh_frame_hdr
8532 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
8533 ret = true;
8535 return ret;
8538 static boolean
8539 elf_section_ignore_discarded_relocs (sec)
8540 asection *sec;
8542 struct elf_backend_data *bed;
8544 switch (elf_section_data (sec)->sec_info_type)
8546 case ELF_INFO_TYPE_STABS:
8547 case ELF_INFO_TYPE_EH_FRAME:
8548 return true;
8549 default:
8550 break;
8553 bed = get_elf_backend_data (sec->owner);
8554 if (bed->elf_backend_ignore_discarded_relocs != NULL
8555 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8556 return true;
8558 return false;