1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
48 #include "descriptors.h"
50 #include "incremental.h"
56 // Layout_task_runner methods.
58 // Lay out the sections. This is called after all the input objects
62 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
64 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
69 // Now we know the final size of the output file and we know where
70 // each piece of information goes.
72 if (this->mapfile_
!= NULL
)
74 this->mapfile_
->print_discarded_sections(this->input_objects_
);
75 this->layout_
->print_to_mapfile(this->mapfile_
);
78 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
79 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
80 of
->set_is_temporary();
83 // Queue up the final set of tasks.
84 gold::queue_final_tasks(this->options_
, this->input_objects_
,
85 this->symtab_
, this->layout_
, workqueue
, of
);
90 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
91 : number_of_input_files_(number_of_input_files
),
92 script_options_(script_options
),
100 unattached_section_list_(),
101 special_output_list_(),
102 section_headers_(NULL
),
104 relro_segment_(NULL
),
105 symtab_section_(NULL
),
106 symtab_xindex_(NULL
),
107 dynsym_section_(NULL
),
108 dynsym_xindex_(NULL
),
109 dynamic_section_(NULL
),
111 eh_frame_section_(NULL
),
112 eh_frame_data_(NULL
),
113 added_eh_frame_data_(false),
114 eh_frame_hdr_section_(NULL
),
115 build_id_note_(NULL
),
119 output_file_size_(-1),
120 sections_are_attached_(false),
121 input_requires_executable_stack_(false),
122 input_with_gnu_stack_note_(false),
123 input_without_gnu_stack_note_(false),
124 has_static_tls_(false),
125 any_postprocessing_sections_(false),
126 resized_signatures_(false),
127 have_stabstr_section_(false),
128 incremental_inputs_(NULL
)
130 // Make space for more than enough segments for a typical file.
131 // This is just for efficiency--it's OK if we wind up needing more.
132 this->segment_list_
.reserve(12);
134 // We expect two unattached Output_data objects: the file header and
135 // the segment headers.
136 this->special_output_list_
.reserve(2);
138 // Initialize structure needed for an incremental build.
139 if (parameters
->options().incremental())
140 this->incremental_inputs_
= new Incremental_inputs
;
142 // The section name pool is worth optimizing in all cases, because
143 // it is small, but there are often overlaps due to .rel sections.
144 this->namepool_
.set_optimize();
147 // Hash a key we use to look up an output section mapping.
150 Layout::Hash_key::operator()(const Layout::Key
& k
) const
152 return k
.first
+ k
.second
.first
+ k
.second
.second
;
155 // Returns whether the given section is in the list of
156 // debug-sections-used-by-some-version-of-gdb. Currently,
157 // we've checked versions of gdb up to and including 6.7.1.
159 static const char* gdb_sections
[] =
161 // ".debug_aranges", // not used by gdb as of 6.7.1
167 // ".debug_pubnames", // not used by gdb as of 6.7.1
172 static const char* lines_only_debug_sections
[] =
174 // ".debug_aranges", // not used by gdb as of 6.7.1
180 // ".debug_pubnames", // not used by gdb as of 6.7.1
186 is_gdb_debug_section(const char* str
)
188 // We can do this faster: binary search or a hashtable. But why bother?
189 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
190 if (strcmp(str
, gdb_sections
[i
]) == 0)
196 is_lines_only_debug_section(const char* str
)
198 // We can do this faster: binary search or a hashtable. But why bother?
200 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
202 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
207 // Whether to include this section in the link.
209 template<int size
, bool big_endian
>
211 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
212 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
214 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
217 switch (shdr
.get_sh_type())
219 case elfcpp::SHT_NULL
:
220 case elfcpp::SHT_SYMTAB
:
221 case elfcpp::SHT_DYNSYM
:
222 case elfcpp::SHT_HASH
:
223 case elfcpp::SHT_DYNAMIC
:
224 case elfcpp::SHT_SYMTAB_SHNDX
:
227 case elfcpp::SHT_STRTAB
:
228 // Discard the sections which have special meanings in the ELF
229 // ABI. Keep others (e.g., .stabstr). We could also do this by
230 // checking the sh_link fields of the appropriate sections.
231 return (strcmp(name
, ".dynstr") != 0
232 && strcmp(name
, ".strtab") != 0
233 && strcmp(name
, ".shstrtab") != 0);
235 case elfcpp::SHT_RELA
:
236 case elfcpp::SHT_REL
:
237 case elfcpp::SHT_GROUP
:
238 // If we are emitting relocations these should be handled
240 gold_assert(!parameters
->options().relocatable()
241 && !parameters
->options().emit_relocs());
244 case elfcpp::SHT_PROGBITS
:
245 if (parameters
->options().strip_debug()
246 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
248 if (is_debug_info_section(name
))
251 if (parameters
->options().strip_debug_non_line()
252 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
254 // Debugging sections can only be recognized by name.
255 if (is_prefix_of(".debug", name
)
256 && !is_lines_only_debug_section(name
))
259 if (parameters
->options().strip_debug_gdb()
260 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
262 // Debugging sections can only be recognized by name.
263 if (is_prefix_of(".debug", name
)
264 && !is_gdb_debug_section(name
))
267 if (parameters
->options().strip_lto_sections()
268 && !parameters
->options().relocatable()
269 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
271 // Ignore LTO sections containing intermediate code.
272 if (is_prefix_of(".gnu.lto_", name
))
282 // Return an output section named NAME, or NULL if there is none.
285 Layout::find_output_section(const char* name
) const
287 for (Section_list::const_iterator p
= this->section_list_
.begin();
288 p
!= this->section_list_
.end();
290 if (strcmp((*p
)->name(), name
) == 0)
295 // Return an output segment of type TYPE, with segment flags SET set
296 // and segment flags CLEAR clear. Return NULL if there is none.
299 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
300 elfcpp::Elf_Word clear
) const
302 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
303 p
!= this->segment_list_
.end();
305 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
306 && ((*p
)->flags() & set
) == set
307 && ((*p
)->flags() & clear
) == 0)
312 // Return the output section to use for section NAME with type TYPE
313 // and section flags FLAGS. NAME must be canonicalized in the string
314 // pool, and NAME_KEY is the key.
317 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
318 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
320 elfcpp::Elf_Xword lookup_flags
= flags
;
322 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
323 // read-write with read-only sections. Some other ELF linkers do
324 // not do this. FIXME: Perhaps there should be an option
326 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
328 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
329 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
330 std::pair
<Section_name_map::iterator
, bool> ins(
331 this->section_name_map_
.insert(v
));
334 return ins
.first
->second
;
337 // This is the first time we've seen this name/type/flags
338 // combination. For compatibility with the GNU linker, we
339 // combine sections with contents and zero flags with sections
340 // with non-zero flags. This is a workaround for cases where
341 // assembler code forgets to set section flags. FIXME: Perhaps
342 // there should be an option to control this.
343 Output_section
* os
= NULL
;
345 if (type
== elfcpp::SHT_PROGBITS
)
349 Output_section
* same_name
= this->find_output_section(name
);
350 if (same_name
!= NULL
351 && same_name
->type() == elfcpp::SHT_PROGBITS
352 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
355 else if ((flags
& elfcpp::SHF_TLS
) == 0)
357 elfcpp::Elf_Xword zero_flags
= 0;
358 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
359 Section_name_map::iterator p
=
360 this->section_name_map_
.find(zero_key
);
361 if (p
!= this->section_name_map_
.end())
367 os
= this->make_output_section(name
, type
, flags
);
368 ins
.first
->second
= os
;
373 // Pick the output section to use for section NAME, in input file
374 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
375 // linker created section. IS_INPUT_SECTION is true if we are
376 // choosing an output section for an input section found in a input
377 // file. This will return NULL if the input section should be
381 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
382 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
383 bool is_input_section
)
385 // We should not see any input sections after we have attached
386 // sections to segments.
387 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
389 // Some flags in the input section should not be automatically
390 // copied to the output section.
391 flags
&= ~ (elfcpp::SHF_INFO_LINK
392 | elfcpp::SHF_LINK_ORDER
395 | elfcpp::SHF_STRINGS
);
397 if (this->script_options_
->saw_sections_clause())
399 // We are using a SECTIONS clause, so the output section is
400 // chosen based only on the name.
402 Script_sections
* ss
= this->script_options_
->script_sections();
403 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
404 Output_section
** output_section_slot
;
405 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
408 // The SECTIONS clause says to discard this input section.
412 // If this is an orphan section--one not mentioned in the linker
413 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
414 // default processing below.
416 if (output_section_slot
!= NULL
)
418 if (*output_section_slot
!= NULL
)
420 (*output_section_slot
)->update_flags_for_input_section(flags
);
421 return *output_section_slot
;
424 // We don't put sections found in the linker script into
425 // SECTION_NAME_MAP_. That keeps us from getting confused
426 // if an orphan section is mapped to a section with the same
427 // name as one in the linker script.
429 name
= this->namepool_
.add(name
, false, NULL
);
431 Output_section
* os
= this->make_output_section(name
, type
, flags
);
432 os
->set_found_in_sections_clause();
433 *output_section_slot
= os
;
438 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
440 // Turn NAME from the name of the input section into the name of the
443 size_t len
= strlen(name
);
445 && !this->script_options_
->saw_sections_clause()
446 && !parameters
->options().relocatable())
447 name
= Layout::output_section_name(name
, &len
);
449 Stringpool::Key name_key
;
450 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
452 // Find or make the output section. The output section is selected
453 // based on the section name, type, and flags.
454 return this->get_output_section(name
, name_key
, type
, flags
);
457 // Return the output section to use for input section SHNDX, with name
458 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
459 // index of a relocation section which applies to this section, or 0
460 // if none, or -1U if more than one. RELOC_TYPE is the type of the
461 // relocation section if there is one. Set *OFF to the offset of this
462 // input section without the output section. Return NULL if the
463 // section should be discarded. Set *OFF to -1 if the section
464 // contents should not be written directly to the output file, but
465 // will instead receive special handling.
467 template<int size
, bool big_endian
>
469 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
470 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
471 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
475 if (!this->include_section(object
, name
, shdr
))
480 // In a relocatable link a grouped section must not be combined with
481 // any other sections.
482 if (parameters
->options().relocatable()
483 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
485 name
= this->namepool_
.add(name
, true, NULL
);
486 os
= this->make_output_section(name
, shdr
.get_sh_type(),
487 shdr
.get_sh_flags());
491 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
492 shdr
.get_sh_flags(), true);
497 // By default the GNU linker sorts input sections whose names match
498 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
499 // are sorted by name. This is used to implement constructor
500 // priority ordering. We are compatible.
501 if (!this->script_options_
->saw_sections_clause()
502 && (is_prefix_of(".ctors.", name
)
503 || is_prefix_of(".dtors.", name
)
504 || is_prefix_of(".init_array.", name
)
505 || is_prefix_of(".fini_array.", name
)))
506 os
->set_must_sort_attached_input_sections();
508 // FIXME: Handle SHF_LINK_ORDER somewhere.
510 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
511 this->script_options_
->saw_sections_clause());
516 // Handle a relocation section when doing a relocatable link.
518 template<int size
, bool big_endian
>
520 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
522 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
523 Output_section
* data_section
,
524 Relocatable_relocs
* rr
)
526 gold_assert(parameters
->options().relocatable()
527 || parameters
->options().emit_relocs());
529 int sh_type
= shdr
.get_sh_type();
532 if (sh_type
== elfcpp::SHT_REL
)
534 else if (sh_type
== elfcpp::SHT_RELA
)
538 name
+= data_section
->name();
540 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
545 os
->set_should_link_to_symtab();
546 os
->set_info_section(data_section
);
548 Output_section_data
* posd
;
549 if (sh_type
== elfcpp::SHT_REL
)
551 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
552 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
556 else if (sh_type
== elfcpp::SHT_RELA
)
558 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
559 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
566 os
->add_output_section_data(posd
);
567 rr
->set_output_data(posd
);
572 // Handle a group section when doing a relocatable link.
574 template<int size
, bool big_endian
>
576 Layout::layout_group(Symbol_table
* symtab
,
577 Sized_relobj
<size
, big_endian
>* object
,
579 const char* group_section_name
,
580 const char* signature
,
581 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
582 elfcpp::Elf_Word flags
,
583 std::vector
<unsigned int>* shndxes
)
585 gold_assert(parameters
->options().relocatable());
586 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
587 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
588 Output_section
* os
= this->make_output_section(group_section_name
,
590 shdr
.get_sh_flags());
592 // We need to find a symbol with the signature in the symbol table.
593 // If we don't find one now, we need to look again later.
594 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
596 os
->set_info_symndx(sym
);
599 // Reserve some space to minimize reallocations.
600 if (this->group_signatures_
.empty())
601 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
603 // We will wind up using a symbol whose name is the signature.
604 // So just put the signature in the symbol name pool to save it.
605 signature
= symtab
->canonicalize_name(signature
);
606 this->group_signatures_
.push_back(Group_signature(os
, signature
));
609 os
->set_should_link_to_symtab();
612 section_size_type entry_count
=
613 convert_to_section_size_type(shdr
.get_sh_size() / 4);
614 Output_section_data
* posd
=
615 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
617 os
->add_output_section_data(posd
);
620 // Special GNU handling of sections name .eh_frame. They will
621 // normally hold exception frame data as defined by the C++ ABI
622 // (http://codesourcery.com/cxx-abi/).
624 template<int size
, bool big_endian
>
626 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
627 const unsigned char* symbols
,
629 const unsigned char* symbol_names
,
630 off_t symbol_names_size
,
632 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
633 unsigned int reloc_shndx
, unsigned int reloc_type
,
636 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
637 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
639 const char* const name
= ".eh_frame";
640 Output_section
* os
= this->choose_output_section(object
,
642 elfcpp::SHT_PROGBITS
,
648 if (this->eh_frame_section_
== NULL
)
650 this->eh_frame_section_
= os
;
651 this->eh_frame_data_
= new Eh_frame();
653 if (parameters
->options().eh_frame_hdr())
655 Output_section
* hdr_os
=
656 this->choose_output_section(NULL
,
658 elfcpp::SHT_PROGBITS
,
664 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
665 this->eh_frame_data_
);
666 hdr_os
->add_output_section_data(hdr_posd
);
668 hdr_os
->set_after_input_sections();
670 if (!this->script_options_
->saw_phdrs_clause())
672 Output_segment
* hdr_oseg
;
673 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
675 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
678 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
683 gold_assert(this->eh_frame_section_
== os
);
685 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
694 os
->update_flags_for_input_section(shdr
.get_sh_flags());
696 // We found a .eh_frame section we are going to optimize, so now
697 // we can add the set of optimized sections to the output
698 // section. We need to postpone adding this until we've found a
699 // section we can optimize so that the .eh_frame section in
700 // crtbegin.o winds up at the start of the output section.
701 if (!this->added_eh_frame_data_
)
703 os
->add_output_section_data(this->eh_frame_data_
);
704 this->added_eh_frame_data_
= true;
710 // We couldn't handle this .eh_frame section for some reason.
711 // Add it as a normal section.
712 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
713 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
714 saw_sections_clause
);
720 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
721 // the output section.
724 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
725 elfcpp::Elf_Xword flags
,
726 Output_section_data
* posd
)
728 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
731 os
->add_output_section_data(posd
);
735 // Map section flags to segment flags.
738 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
740 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
741 if ((flags
& elfcpp::SHF_WRITE
) != 0)
743 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
748 // Sometimes we compress sections. This is typically done for
749 // sections that are not part of normal program execution (such as
750 // .debug_* sections), and where the readers of these sections know
751 // how to deal with compressed sections. This routine doesn't say for
752 // certain whether we'll compress -- it depends on commandline options
753 // as well -- just whether this section is a candidate for compression.
754 // (The Output_compressed_section class decides whether to compress
755 // a given section, and picks the name of the compressed section.)
758 is_compressible_debug_section(const char* secname
)
760 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
763 // Make a new Output_section, and attach it to segments as
767 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
768 elfcpp::Elf_Xword flags
)
771 if ((flags
& elfcpp::SHF_ALLOC
) == 0
772 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
773 && is_compressible_debug_section(name
))
774 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
777 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
778 && parameters
->options().strip_debug_non_line()
779 && strcmp(".debug_abbrev", name
) == 0)
781 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
783 if (this->debug_info_
)
784 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
786 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
787 && parameters
->options().strip_debug_non_line()
788 && strcmp(".debug_info", name
) == 0)
790 os
= this->debug_info_
= new Output_reduced_debug_info_section(
792 if (this->debug_abbrev_
)
793 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
796 os
= new Output_section(name
, type
, flags
);
798 parameters
->target().new_output_section(os
);
800 this->section_list_
.push_back(os
);
802 // The GNU linker by default sorts some sections by priority, so we
803 // do the same. We need to know that this might happen before we
804 // attach any input sections.
805 if (!this->script_options_
->saw_sections_clause()
806 && (strcmp(name
, ".ctors") == 0
807 || strcmp(name
, ".dtors") == 0
808 || strcmp(name
, ".init_array") == 0
809 || strcmp(name
, ".fini_array") == 0))
810 os
->set_may_sort_attached_input_sections();
812 // With -z relro, we have to recognize the special sections by name.
813 // There is no other way.
814 if (!this->script_options_
->saw_sections_clause()
815 && parameters
->options().relro()
816 && type
== elfcpp::SHT_PROGBITS
817 && (flags
& elfcpp::SHF_ALLOC
) != 0
818 && (flags
& elfcpp::SHF_WRITE
) != 0)
820 if (strcmp(name
, ".data.rel.ro") == 0)
822 else if (strcmp(name
, ".data.rel.ro.local") == 0)
825 os
->set_is_relro_local();
829 // Check for .stab*str sections, as .stab* sections need to link to
831 if (type
== elfcpp::SHT_STRTAB
832 && !this->have_stabstr_section_
833 && strncmp(name
, ".stab", 5) == 0
834 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
835 this->have_stabstr_section_
= true;
837 // If we have already attached the sections to segments, then we
838 // need to attach this one now. This happens for sections created
839 // directly by the linker.
840 if (this->sections_are_attached_
)
841 this->attach_section_to_segment(os
);
846 // Attach output sections to segments. This is called after we have
847 // seen all the input sections.
850 Layout::attach_sections_to_segments()
852 for (Section_list::iterator p
= this->section_list_
.begin();
853 p
!= this->section_list_
.end();
855 this->attach_section_to_segment(*p
);
857 this->sections_are_attached_
= true;
860 // Attach an output section to a segment.
863 Layout::attach_section_to_segment(Output_section
* os
)
865 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
866 this->unattached_section_list_
.push_back(os
);
868 this->attach_allocated_section_to_segment(os
);
871 // Attach an allocated output section to a segment.
874 Layout::attach_allocated_section_to_segment(Output_section
* os
)
876 elfcpp::Elf_Xword flags
= os
->flags();
877 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
879 if (parameters
->options().relocatable())
882 // If we have a SECTIONS clause, we can't handle the attachment to
883 // segments until after we've seen all the sections.
884 if (this->script_options_
->saw_sections_clause())
887 gold_assert(!this->script_options_
->saw_phdrs_clause());
889 // This output section goes into a PT_LOAD segment.
891 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
893 // In general the only thing we really care about for PT_LOAD
894 // segments is whether or not they are writable, so that is how we
895 // search for them. Large data sections also go into their own
896 // PT_LOAD segment. People who need segments sorted on some other
897 // basis will have to use a linker script.
899 Segment_list::const_iterator p
;
900 for (p
= this->segment_list_
.begin();
901 p
!= this->segment_list_
.end();
904 if ((*p
)->type() != elfcpp::PT_LOAD
)
906 if (!parameters
->options().omagic()
907 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
909 // If -Tbss was specified, we need to separate the data and BSS
911 if (parameters
->options().user_set_Tbss())
913 if ((os
->type() == elfcpp::SHT_NOBITS
)
914 == (*p
)->has_any_data_sections())
917 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
920 (*p
)->add_output_section(os
, seg_flags
);
924 if (p
== this->segment_list_
.end())
926 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
928 if (os
->is_large_data_section())
929 oseg
->set_is_large_data_segment();
930 oseg
->add_output_section(os
, seg_flags
);
933 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
935 if (os
->type() == elfcpp::SHT_NOTE
)
937 // See if we already have an equivalent PT_NOTE segment.
938 for (p
= this->segment_list_
.begin();
939 p
!= segment_list_
.end();
942 if ((*p
)->type() == elfcpp::PT_NOTE
943 && (((*p
)->flags() & elfcpp::PF_W
)
944 == (seg_flags
& elfcpp::PF_W
)))
946 (*p
)->add_output_section(os
, seg_flags
);
951 if (p
== this->segment_list_
.end())
953 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
955 oseg
->add_output_section(os
, seg_flags
);
959 // If we see a loadable SHF_TLS section, we create a PT_TLS
960 // segment. There can only be one such segment.
961 if ((flags
& elfcpp::SHF_TLS
) != 0)
963 if (this->tls_segment_
== NULL
)
964 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
965 this->tls_segment_
->add_output_section(os
, seg_flags
);
968 // If -z relro is in effect, and we see a relro section, we create a
969 // PT_GNU_RELRO segment. There can only be one such segment.
970 if (os
->is_relro() && parameters
->options().relro())
972 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
973 if (this->relro_segment_
== NULL
)
974 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
975 this->relro_segment_
->add_output_section(os
, seg_flags
);
979 // Make an output section for a script.
982 Layout::make_output_section_for_script(const char* name
)
984 name
= this->namepool_
.add(name
, false, NULL
);
985 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
987 os
->set_found_in_sections_clause();
991 // Return the number of segments we expect to see.
994 Layout::expected_segment_count() const
996 size_t ret
= this->segment_list_
.size();
998 // If we didn't see a SECTIONS clause in a linker script, we should
999 // already have the complete list of segments. Otherwise we ask the
1000 // SECTIONS clause how many segments it expects, and add in the ones
1001 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1003 if (!this->script_options_
->saw_sections_clause())
1007 const Script_sections
* ss
= this->script_options_
->script_sections();
1008 return ret
+ ss
->expected_segment_count(this);
1012 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1013 // is whether we saw a .note.GNU-stack section in the object file.
1014 // GNU_STACK_FLAGS is the section flags. The flags give the
1015 // protection required for stack memory. We record this in an
1016 // executable as a PT_GNU_STACK segment. If an object file does not
1017 // have a .note.GNU-stack segment, we must assume that it is an old
1018 // object. On some targets that will force an executable stack.
1021 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
1023 if (!seen_gnu_stack
)
1024 this->input_without_gnu_stack_note_
= true;
1027 this->input_with_gnu_stack_note_
= true;
1028 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1029 this->input_requires_executable_stack_
= true;
1033 // Create automatic note sections.
1036 Layout::create_notes()
1038 this->create_gold_note();
1039 this->create_executable_stack_info();
1040 this->create_build_id();
1043 // Create the dynamic sections which are needed before we read the
1047 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1049 if (parameters
->doing_static_link())
1052 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1053 elfcpp::SHT_DYNAMIC
,
1055 | elfcpp::SHF_WRITE
),
1057 this->dynamic_section_
->set_is_relro();
1059 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
1060 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1061 elfcpp::STV_HIDDEN
, 0, false, false);
1063 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1065 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1068 // For each output section whose name can be represented as C symbol,
1069 // define __start and __stop symbols for the section. This is a GNU
1073 Layout::define_section_symbols(Symbol_table
* symtab
)
1075 for (Section_list::const_iterator p
= this->section_list_
.begin();
1076 p
!= this->section_list_
.end();
1079 const char* const name
= (*p
)->name();
1080 if (name
[strspn(name
,
1082 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1083 "abcdefghijklmnopqrstuvwxyz"
1087 const std::string
name_string(name
);
1088 const std::string
start_name("__start_" + name_string
);
1089 const std::string
stop_name("__stop_" + name_string
);
1091 symtab
->define_in_output_data(start_name
.c_str(),
1098 elfcpp::STV_DEFAULT
,
1100 false, // offset_is_from_end
1101 true); // only_if_ref
1103 symtab
->define_in_output_data(stop_name
.c_str(),
1110 elfcpp::STV_DEFAULT
,
1112 true, // offset_is_from_end
1113 true); // only_if_ref
1118 // Define symbols for group signatures.
1121 Layout::define_group_signatures(Symbol_table
* symtab
)
1123 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1124 p
!= this->group_signatures_
.end();
1127 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1129 p
->section
->set_info_symndx(sym
);
1132 // Force the name of the group section to the group
1133 // signature, and use the group's section symbol as the
1134 // signature symbol.
1135 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1137 const char* name
= this->namepool_
.add(p
->signature
,
1139 p
->section
->set_name(name
);
1141 p
->section
->set_needs_symtab_index();
1142 p
->section
->set_info_section_symndx(p
->section
);
1146 this->group_signatures_
.clear();
1149 // Find the first read-only PT_LOAD segment, creating one if
1153 Layout::find_first_load_seg()
1155 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1156 p
!= this->segment_list_
.end();
1159 if ((*p
)->type() == elfcpp::PT_LOAD
1160 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1161 && (parameters
->options().omagic()
1162 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1166 gold_assert(!this->script_options_
->saw_phdrs_clause());
1168 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1173 // Finalize the layout. When this is called, we have created all the
1174 // output sections and all the output segments which are based on
1175 // input sections. We have several things to do, and we have to do
1176 // them in the right order, so that we get the right results correctly
1179 // 1) Finalize the list of output segments and create the segment
1182 // 2) Finalize the dynamic symbol table and associated sections.
1184 // 3) Determine the final file offset of all the output segments.
1186 // 4) Determine the final file offset of all the SHF_ALLOC output
1189 // 5) Create the symbol table sections and the section name table
1192 // 6) Finalize the symbol table: set symbol values to their final
1193 // value and make a final determination of which symbols are going
1194 // into the output symbol table.
1196 // 7) Create the section table header.
1198 // 8) Determine the final file offset of all the output sections which
1199 // are not SHF_ALLOC, including the section table header.
1201 // 9) Finalize the ELF file header.
1203 // This function returns the size of the output file.
1206 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1207 Target
* target
, const Task
* task
)
1209 target
->finalize_sections(this);
1211 this->count_local_symbols(task
, input_objects
);
1213 this->link_stabs_sections();
1215 Output_segment
* phdr_seg
= NULL
;
1216 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1218 // There was a dynamic object in the link. We need to create
1219 // some information for the dynamic linker.
1221 // Create the PT_PHDR segment which will hold the program
1223 if (!this->script_options_
->saw_phdrs_clause())
1224 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1226 // Create the dynamic symbol table, including the hash table.
1227 Output_section
* dynstr
;
1228 std::vector
<Symbol
*> dynamic_symbols
;
1229 unsigned int local_dynamic_count
;
1230 Versions
versions(*this->script_options()->version_script_info(),
1232 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1233 &local_dynamic_count
, &dynamic_symbols
,
1236 // Create the .interp section to hold the name of the
1237 // interpreter, and put it in a PT_INTERP segment.
1238 if (!parameters
->options().shared())
1239 this->create_interp(target
);
1241 // Finish the .dynamic section to hold the dynamic data, and put
1242 // it in a PT_DYNAMIC segment.
1243 this->finish_dynamic_section(input_objects
, symtab
);
1245 // We should have added everything we need to the dynamic string
1247 this->dynpool_
.set_string_offsets();
1249 // Create the version sections. We can't do this until the
1250 // dynamic string table is complete.
1251 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1252 dynamic_symbols
, dynstr
);
1255 if (this->incremental_inputs_
)
1257 this->incremental_inputs_
->finalize();
1258 this->create_incremental_info_sections();
1261 // If there is a SECTIONS clause, put all the input sections into
1262 // the required order.
1263 Output_segment
* load_seg
;
1264 if (this->script_options_
->saw_sections_clause())
1265 load_seg
= this->set_section_addresses_from_script(symtab
);
1266 else if (parameters
->options().relocatable())
1269 load_seg
= this->find_first_load_seg();
1271 if (parameters
->options().oformat_enum()
1272 != General_options::OBJECT_FORMAT_ELF
)
1275 gold_assert(phdr_seg
== NULL
|| load_seg
!= NULL
);
1277 // Lay out the segment headers.
1278 Output_segment_headers
* segment_headers
;
1279 if (parameters
->options().relocatable())
1280 segment_headers
= NULL
;
1283 segment_headers
= new Output_segment_headers(this->segment_list_
);
1284 if (load_seg
!= NULL
)
1285 load_seg
->add_initial_output_data(segment_headers
);
1286 if (phdr_seg
!= NULL
)
1287 phdr_seg
->add_initial_output_data(segment_headers
);
1290 // Lay out the file header.
1291 Output_file_header
* file_header
;
1292 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
1293 parameters
->options().entry());
1294 if (load_seg
!= NULL
)
1295 load_seg
->add_initial_output_data(file_header
);
1297 this->special_output_list_
.push_back(file_header
);
1298 if (segment_headers
!= NULL
)
1299 this->special_output_list_
.push_back(segment_headers
);
1301 if (this->script_options_
->saw_phdrs_clause()
1302 && !parameters
->options().relocatable())
1304 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1305 // clause in a linker script.
1306 Script_sections
* ss
= this->script_options_
->script_sections();
1307 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1310 // We set the output section indexes in set_segment_offsets and
1311 // set_section_indexes.
1312 unsigned int shndx
= 1;
1314 // Set the file offsets of all the segments, and all the sections
1317 if (!parameters
->options().relocatable())
1318 off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
1320 off
= this->set_relocatable_section_offsets(file_header
, &shndx
);
1322 // Set the file offsets of all the non-data sections we've seen so
1323 // far which don't have to wait for the input sections. We need
1324 // this in order to finalize local symbols in non-allocated
1326 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1328 // Set the section indexes of all unallocated sections seen so far,
1329 // in case any of them are somehow referenced by a symbol.
1330 shndx
= this->set_section_indexes(shndx
);
1332 // Create the symbol table sections.
1333 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1334 if (!parameters
->doing_static_link())
1335 this->assign_local_dynsym_offsets(input_objects
);
1337 // Process any symbol assignments from a linker script. This must
1338 // be called after the symbol table has been finalized.
1339 this->script_options_
->finalize_symbols(symtab
, this);
1341 // Create the .shstrtab section.
1342 Output_section
* shstrtab_section
= this->create_shstrtab();
1344 // Set the file offsets of the rest of the non-data sections which
1345 // don't have to wait for the input sections.
1346 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1348 // Now that all sections have been created, set the section indexes
1349 // for any sections which haven't been done yet.
1350 shndx
= this->set_section_indexes(shndx
);
1352 // Create the section table header.
1353 this->create_shdrs(shstrtab_section
, &off
);
1355 // If there are no sections which require postprocessing, we can
1356 // handle the section names now, and avoid a resize later.
1357 if (!this->any_postprocessing_sections_
)
1358 off
= this->set_section_offsets(off
,
1359 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1361 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1363 // Now we know exactly where everything goes in the output file
1364 // (except for non-allocated sections which require postprocessing).
1365 Output_data::layout_complete();
1367 this->output_file_size_
= off
;
1372 // Create a note header following the format defined in the ELF ABI.
1373 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1374 // of the section to create, DESCSZ is the size of the descriptor.
1375 // ALLOCATE is true if the section should be allocated in memory.
1376 // This returns the new note section. It sets *TRAILING_PADDING to
1377 // the number of trailing zero bytes required.
1380 Layout::create_note(const char* name
, int note_type
,
1381 const char* section_name
, size_t descsz
,
1382 bool allocate
, size_t* trailing_padding
)
1384 // Authorities all agree that the values in a .note field should
1385 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1386 // they differ on what the alignment is for 64-bit binaries.
1387 // The GABI says unambiguously they take 8-byte alignment:
1388 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1389 // Other documentation says alignment should always be 4 bytes:
1390 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1391 // GNU ld and GNU readelf both support the latter (at least as of
1392 // version 2.16.91), and glibc always generates the latter for
1393 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1395 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1396 const int size
= parameters
->target().get_size();
1398 const int size
= 32;
1401 // The contents of the .note section.
1402 size_t namesz
= strlen(name
) + 1;
1403 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1404 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1406 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1408 unsigned char* buffer
= new unsigned char[notehdrsz
];
1409 memset(buffer
, 0, notehdrsz
);
1411 bool is_big_endian
= parameters
->target().is_big_endian();
1417 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1418 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1419 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1423 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1424 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1425 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1428 else if (size
== 64)
1432 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1433 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1434 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1438 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1439 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1440 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1446 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1448 elfcpp::Elf_Xword flags
= 0;
1450 flags
= elfcpp::SHF_ALLOC
;
1451 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
1457 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1460 os
->add_output_section_data(posd
);
1462 *trailing_padding
= aligned_descsz
- descsz
;
1467 // For an executable or shared library, create a note to record the
1468 // version of gold used to create the binary.
1471 Layout::create_gold_note()
1473 if (parameters
->options().relocatable())
1476 std::string desc
= std::string("gold ") + gold::get_version_string();
1478 size_t trailing_padding
;
1479 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1480 ".note.gnu.gold-version", desc
.size(),
1481 false, &trailing_padding
);
1485 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1486 os
->add_output_section_data(posd
);
1488 if (trailing_padding
> 0)
1490 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1491 os
->add_output_section_data(posd
);
1495 // Record whether the stack should be executable. This can be set
1496 // from the command line using the -z execstack or -z noexecstack
1497 // options. Otherwise, if any input file has a .note.GNU-stack
1498 // section with the SHF_EXECINSTR flag set, the stack should be
1499 // executable. Otherwise, if at least one input file a
1500 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1501 // section, we use the target default for whether the stack should be
1502 // executable. Otherwise, we don't generate a stack note. When
1503 // generating a object file, we create a .note.GNU-stack section with
1504 // the appropriate marking. When generating an executable or shared
1505 // library, we create a PT_GNU_STACK segment.
1508 Layout::create_executable_stack_info()
1510 bool is_stack_executable
;
1511 if (parameters
->options().is_execstack_set())
1512 is_stack_executable
= parameters
->options().is_stack_executable();
1513 else if (!this->input_with_gnu_stack_note_
)
1517 if (this->input_requires_executable_stack_
)
1518 is_stack_executable
= true;
1519 else if (this->input_without_gnu_stack_note_
)
1520 is_stack_executable
=
1521 parameters
->target().is_default_stack_executable();
1523 is_stack_executable
= false;
1526 if (parameters
->options().relocatable())
1528 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1529 elfcpp::Elf_Xword flags
= 0;
1530 if (is_stack_executable
)
1531 flags
|= elfcpp::SHF_EXECINSTR
;
1532 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1536 if (this->script_options_
->saw_phdrs_clause())
1538 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1539 if (is_stack_executable
)
1540 flags
|= elfcpp::PF_X
;
1541 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1545 // If --build-id was used, set up the build ID note.
1548 Layout::create_build_id()
1550 if (!parameters
->options().user_set_build_id())
1553 const char* style
= parameters
->options().build_id();
1554 if (strcmp(style
, "none") == 0)
1557 // Set DESCSZ to the size of the note descriptor. When possible,
1558 // set DESC to the note descriptor contents.
1561 if (strcmp(style
, "md5") == 0)
1563 else if (strcmp(style
, "sha1") == 0)
1565 else if (strcmp(style
, "uuid") == 0)
1567 const size_t uuidsz
= 128 / 8;
1569 char buffer
[uuidsz
];
1570 memset(buffer
, 0, uuidsz
);
1572 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
1574 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1578 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1579 release_descriptor(descriptor
, true);
1581 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1582 else if (static_cast<size_t>(got
) != uuidsz
)
1583 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1587 desc
.assign(buffer
, uuidsz
);
1590 else if (strncmp(style
, "0x", 2) == 0)
1593 const char* p
= style
+ 2;
1596 if (hex_p(p
[0]) && hex_p(p
[1]))
1598 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1602 else if (*p
== '-' || *p
== ':')
1605 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1608 descsz
= desc
.size();
1611 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1614 size_t trailing_padding
;
1615 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1616 ".note.gnu.build-id", descsz
, true,
1623 // We know the value already, so we fill it in now.
1624 gold_assert(desc
.size() == descsz
);
1626 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1627 os
->add_output_section_data(posd
);
1629 if (trailing_padding
!= 0)
1631 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1632 os
->add_output_section_data(posd
);
1637 // We need to compute a checksum after we have completed the
1639 gold_assert(trailing_padding
== 0);
1640 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
1641 os
->add_output_section_data(this->build_id_note_
);
1645 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1646 // field of the former should point to the latter. I'm not sure who
1647 // started this, but the GNU linker does it, and some tools depend
1651 Layout::link_stabs_sections()
1653 if (!this->have_stabstr_section_
)
1656 for (Section_list::iterator p
= this->section_list_
.begin();
1657 p
!= this->section_list_
.end();
1660 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
1663 const char* name
= (*p
)->name();
1664 if (strncmp(name
, ".stab", 5) != 0)
1667 size_t len
= strlen(name
);
1668 if (strcmp(name
+ len
- 3, "str") != 0)
1671 std::string
stab_name(name
, len
- 3);
1672 Output_section
* stab_sec
;
1673 stab_sec
= this->find_output_section(stab_name
.c_str());
1674 if (stab_sec
!= NULL
)
1675 stab_sec
->set_link_section(*p
);
1679 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1680 // for the next run of incremental linking to check what has changed.
1683 Layout::create_incremental_info_sections()
1685 gold_assert(this->incremental_inputs_
!= NULL
);
1687 // Add the .gnu_incremental_inputs section.
1688 const char *incremental_inputs_name
=
1689 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
1690 Output_section
* inputs_os
=
1691 this->make_output_section(incremental_inputs_name
,
1692 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0);
1693 Output_section_data
* posd
=
1694 this->incremental_inputs_
->create_incremental_inputs_section_data();
1695 inputs_os
->add_output_section_data(posd
);
1697 // Add the .gnu_incremental_strtab section.
1698 const char *incremental_strtab_name
=
1699 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
1700 Output_section
* strtab_os
= this->make_output_section(incremental_strtab_name
,
1703 Output_data_strtab
* strtab_data
=
1704 new Output_data_strtab(this->incremental_inputs_
->get_stringpool());
1705 strtab_os
->add_output_section_data(strtab_data
);
1707 inputs_os
->set_link_section(strtab_data
);
1710 // Return whether SEG1 should be before SEG2 in the output file. This
1711 // is based entirely on the segment type and flags. When this is
1712 // called the segment addresses has normally not yet been set.
1715 Layout::segment_precedes(const Output_segment
* seg1
,
1716 const Output_segment
* seg2
)
1718 elfcpp::Elf_Word type1
= seg1
->type();
1719 elfcpp::Elf_Word type2
= seg2
->type();
1721 // The single PT_PHDR segment is required to precede any loadable
1722 // segment. We simply make it always first.
1723 if (type1
== elfcpp::PT_PHDR
)
1725 gold_assert(type2
!= elfcpp::PT_PHDR
);
1728 if (type2
== elfcpp::PT_PHDR
)
1731 // The single PT_INTERP segment is required to precede any loadable
1732 // segment. We simply make it always second.
1733 if (type1
== elfcpp::PT_INTERP
)
1735 gold_assert(type2
!= elfcpp::PT_INTERP
);
1738 if (type2
== elfcpp::PT_INTERP
)
1741 // We then put PT_LOAD segments before any other segments.
1742 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
1744 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
1747 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1748 // segment, because that is where the dynamic linker expects to find
1749 // it (this is just for efficiency; other positions would also work
1751 if (type1
== elfcpp::PT_TLS
1752 && type2
!= elfcpp::PT_TLS
1753 && type2
!= elfcpp::PT_GNU_RELRO
)
1755 if (type2
== elfcpp::PT_TLS
1756 && type1
!= elfcpp::PT_TLS
1757 && type1
!= elfcpp::PT_GNU_RELRO
)
1760 // We put the PT_GNU_RELRO segment last, because that is where the
1761 // dynamic linker expects to find it (as with PT_TLS, this is just
1763 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
1765 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
1768 const elfcpp::Elf_Word flags1
= seg1
->flags();
1769 const elfcpp::Elf_Word flags2
= seg2
->flags();
1771 // The order of non-PT_LOAD segments is unimportant. We simply sort
1772 // by the numeric segment type and flags values. There should not
1773 // be more than one segment with the same type and flags.
1774 if (type1
!= elfcpp::PT_LOAD
)
1777 return type1
< type2
;
1778 gold_assert(flags1
!= flags2
);
1779 return flags1
< flags2
;
1782 // If the addresses are set already, sort by load address.
1783 if (seg1
->are_addresses_set())
1785 if (!seg2
->are_addresses_set())
1788 unsigned int section_count1
= seg1
->output_section_count();
1789 unsigned int section_count2
= seg2
->output_section_count();
1790 if (section_count1
== 0 && section_count2
> 0)
1792 if (section_count1
> 0 && section_count2
== 0)
1795 uint64_t paddr1
= seg1
->first_section_load_address();
1796 uint64_t paddr2
= seg2
->first_section_load_address();
1797 if (paddr1
!= paddr2
)
1798 return paddr1
< paddr2
;
1800 else if (seg2
->are_addresses_set())
1803 // A segment which holds large data comes after a segment which does
1804 // not hold large data.
1805 if (seg1
->is_large_data_segment())
1807 if (!seg2
->is_large_data_segment())
1810 else if (seg2
->is_large_data_segment())
1813 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
1814 // segments come before writable segments. Then writable segments
1815 // with data come before writable segments without data. Then
1816 // executable segments come before non-executable segments. Then
1817 // the unlikely case of a non-readable segment comes before the
1818 // normal case of a readable segment. If there are multiple
1819 // segments with the same type and flags, we require that the
1820 // address be set, and we sort by virtual address and then physical
1822 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
1823 return (flags1
& elfcpp::PF_W
) == 0;
1824 if ((flags1
& elfcpp::PF_W
) != 0
1825 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
1826 return seg1
->has_any_data_sections();
1827 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
1828 return (flags1
& elfcpp::PF_X
) != 0;
1829 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
1830 return (flags1
& elfcpp::PF_R
) == 0;
1832 // We shouldn't get here--we shouldn't create segments which we
1833 // can't distinguish.
1837 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
1840 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
1842 uint64_t unsigned_off
= off
;
1843 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
1844 | (addr
& (abi_pagesize
- 1)));
1845 if (aligned_off
< unsigned_off
)
1846 aligned_off
+= abi_pagesize
;
1850 // Set the file offsets of all the segments, and all the sections they
1851 // contain. They have all been created. LOAD_SEG must be be laid out
1852 // first. Return the offset of the data to follow.
1855 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1856 unsigned int *pshndx
)
1858 // Sort them into the final order.
1859 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1860 Layout::Compare_segments());
1862 // Find the PT_LOAD segments, and set their addresses and offsets
1863 // and their section's addresses and offsets.
1865 if (parameters
->options().user_set_Ttext())
1866 addr
= parameters
->options().Ttext();
1867 else if (parameters
->options().shared())
1870 addr
= target
->default_text_segment_address();
1873 // If LOAD_SEG is NULL, then the file header and segment headers
1874 // will not be loadable. But they still need to be at offset 0 in
1875 // the file. Set their offsets now.
1876 if (load_seg
== NULL
)
1878 for (Data_list::iterator p
= this->special_output_list_
.begin();
1879 p
!= this->special_output_list_
.end();
1882 off
= align_address(off
, (*p
)->addralign());
1883 (*p
)->set_address_and_file_offset(0, off
);
1884 off
+= (*p
)->data_size();
1888 const bool check_sections
= parameters
->options().check_sections();
1889 Output_segment
* last_load_segment
= NULL
;
1891 bool was_readonly
= false;
1892 for (Segment_list::iterator p
= this->segment_list_
.begin();
1893 p
!= this->segment_list_
.end();
1896 if ((*p
)->type() == elfcpp::PT_LOAD
)
1898 if (load_seg
!= NULL
&& load_seg
!= *p
)
1902 bool are_addresses_set
= (*p
)->are_addresses_set();
1903 if (are_addresses_set
)
1905 // When it comes to setting file offsets, we care about
1906 // the physical address.
1907 addr
= (*p
)->paddr();
1909 else if (parameters
->options().user_set_Tdata()
1910 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1911 && (!parameters
->options().user_set_Tbss()
1912 || (*p
)->has_any_data_sections()))
1914 addr
= parameters
->options().Tdata();
1915 are_addresses_set
= true;
1917 else if (parameters
->options().user_set_Tbss()
1918 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1919 && !(*p
)->has_any_data_sections())
1921 addr
= parameters
->options().Tbss();
1922 are_addresses_set
= true;
1925 uint64_t orig_addr
= addr
;
1926 uint64_t orig_off
= off
;
1928 uint64_t aligned_addr
= 0;
1929 uint64_t abi_pagesize
= target
->abi_pagesize();
1930 uint64_t common_pagesize
= target
->common_pagesize();
1932 if (!parameters
->options().nmagic()
1933 && !parameters
->options().omagic())
1934 (*p
)->set_minimum_p_align(common_pagesize
);
1936 if (!are_addresses_set
)
1938 // If the last segment was readonly, and this one is
1939 // not, then skip the address forward one page,
1940 // maintaining the same position within the page. This
1941 // lets us store both segments overlapping on a single
1942 // page in the file, but the loader will put them on
1943 // different pages in memory.
1945 addr
= align_address(addr
, (*p
)->maximum_alignment());
1946 aligned_addr
= addr
;
1948 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1950 if ((addr
& (abi_pagesize
- 1)) != 0)
1951 addr
= addr
+ abi_pagesize
;
1954 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1957 if (!parameters
->options().nmagic()
1958 && !parameters
->options().omagic())
1959 off
= align_file_offset(off
, addr
, abi_pagesize
);
1961 unsigned int shndx_hold
= *pshndx
;
1962 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
1965 // Now that we know the size of this segment, we may be able
1966 // to save a page in memory, at the cost of wasting some
1967 // file space, by instead aligning to the start of a new
1968 // page. Here we use the real machine page size rather than
1969 // the ABI mandated page size.
1971 if (!are_addresses_set
&& aligned_addr
!= addr
)
1973 uint64_t first_off
= (common_pagesize
1975 & (common_pagesize
- 1)));
1976 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1979 && ((aligned_addr
& ~ (common_pagesize
- 1))
1980 != (new_addr
& ~ (common_pagesize
- 1)))
1981 && first_off
+ last_off
<= common_pagesize
)
1983 *pshndx
= shndx_hold
;
1984 addr
= align_address(aligned_addr
, common_pagesize
);
1985 addr
= align_address(addr
, (*p
)->maximum_alignment());
1986 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1987 off
= align_file_offset(off
, addr
, abi_pagesize
);
1988 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
1995 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1996 was_readonly
= true;
1998 // Implement --check-sections. We know that the segments
1999 // are sorted by LMA.
2000 if (check_sections
&& last_load_segment
!= NULL
)
2002 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
2003 if (last_load_segment
->paddr() + last_load_segment
->memsz()
2006 unsigned long long lb1
= last_load_segment
->paddr();
2007 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
2008 unsigned long long lb2
= (*p
)->paddr();
2009 unsigned long long le2
= lb2
+ (*p
)->memsz();
2010 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2011 "[0x%llx -> 0x%llx]"),
2012 lb1
, le1
, lb2
, le2
);
2015 last_load_segment
= *p
;
2019 // Handle the non-PT_LOAD segments, setting their offsets from their
2020 // section's offsets.
2021 for (Segment_list::iterator p
= this->segment_list_
.begin();
2022 p
!= this->segment_list_
.end();
2025 if ((*p
)->type() != elfcpp::PT_LOAD
)
2029 // Set the TLS offsets for each section in the PT_TLS segment.
2030 if (this->tls_segment_
!= NULL
)
2031 this->tls_segment_
->set_tls_offsets();
2036 // Set the offsets of all the allocated sections when doing a
2037 // relocatable link. This does the same jobs as set_segment_offsets,
2038 // only for a relocatable link.
2041 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
2042 unsigned int *pshndx
)
2046 file_header
->set_address_and_file_offset(0, 0);
2047 off
+= file_header
->data_size();
2049 for (Section_list::iterator p
= this->section_list_
.begin();
2050 p
!= this->section_list_
.end();
2053 // We skip unallocated sections here, except that group sections
2054 // have to come first.
2055 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
2056 && (*p
)->type() != elfcpp::SHT_GROUP
)
2059 off
= align_address(off
, (*p
)->addralign());
2061 // The linker script might have set the address.
2062 if (!(*p
)->is_address_valid())
2063 (*p
)->set_address(0);
2064 (*p
)->set_file_offset(off
);
2065 (*p
)->finalize_data_size();
2066 off
+= (*p
)->data_size();
2068 (*p
)->set_out_shndx(*pshndx
);
2075 // Set the file offset of all the sections not associated with a
2079 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2081 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2082 p
!= this->unattached_section_list_
.end();
2085 // The symtab section is handled in create_symtab_sections.
2086 if (*p
== this->symtab_section_
)
2089 // If we've already set the data size, don't set it again.
2090 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2093 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2094 && (*p
)->requires_postprocessing())
2096 (*p
)->create_postprocessing_buffer();
2097 this->any_postprocessing_sections_
= true;
2100 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2101 && (*p
)->after_input_sections())
2103 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2104 && (!(*p
)->after_input_sections()
2105 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2107 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2108 && (!(*p
)->after_input_sections()
2109 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2112 off
= align_address(off
, (*p
)->addralign());
2113 (*p
)->set_file_offset(off
);
2114 (*p
)->finalize_data_size();
2115 off
+= (*p
)->data_size();
2117 // At this point the name must be set.
2118 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2119 this->namepool_
.add((*p
)->name(), false, NULL
);
2124 // Set the section indexes of all the sections not associated with a
2128 Layout::set_section_indexes(unsigned int shndx
)
2130 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2131 p
!= this->unattached_section_list_
.end();
2134 if (!(*p
)->has_out_shndx())
2136 (*p
)->set_out_shndx(shndx
);
2143 // Set the section addresses according to the linker script. This is
2144 // only called when we see a SECTIONS clause. This returns the
2145 // program segment which should hold the file header and segment
2146 // headers, if any. It will return NULL if they should not be in a
2150 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2152 Script_sections
* ss
= this->script_options_
->script_sections();
2153 gold_assert(ss
->saw_sections_clause());
2155 // Place each orphaned output section in the script.
2156 for (Section_list::iterator p
= this->section_list_
.begin();
2157 p
!= this->section_list_
.end();
2160 if (!(*p
)->found_in_sections_clause())
2161 ss
->place_orphan(*p
);
2164 return this->script_options_
->set_section_addresses(symtab
, this);
2167 // Count the local symbols in the regular symbol table and the dynamic
2168 // symbol table, and build the respective string pools.
2171 Layout::count_local_symbols(const Task
* task
,
2172 const Input_objects
* input_objects
)
2174 // First, figure out an upper bound on the number of symbols we'll
2175 // be inserting into each pool. This helps us create the pools with
2176 // the right size, to avoid unnecessary hashtable resizing.
2177 unsigned int symbol_count
= 0;
2178 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2179 p
!= input_objects
->relobj_end();
2181 symbol_count
+= (*p
)->local_symbol_count();
2183 // Go from "upper bound" to "estimate." We overcount for two
2184 // reasons: we double-count symbols that occur in more than one
2185 // object file, and we count symbols that are dropped from the
2186 // output. Add it all together and assume we overcount by 100%.
2189 // We assume all symbols will go into both the sympool and dynpool.
2190 this->sympool_
.reserve(symbol_count
);
2191 this->dynpool_
.reserve(symbol_count
);
2193 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2194 p
!= input_objects
->relobj_end();
2197 Task_lock_obj
<Object
> tlo(task
, *p
);
2198 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2202 // Create the symbol table sections. Here we also set the final
2203 // values of the symbols. At this point all the loadable sections are
2204 // fully laid out. SHNUM is the number of sections so far.
2207 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2208 Symbol_table
* symtab
,
2214 if (parameters
->target().get_size() == 32)
2216 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2219 else if (parameters
->target().get_size() == 64)
2221 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2228 off
= align_address(off
, align
);
2229 off_t startoff
= off
;
2231 // Save space for the dummy symbol at the start of the section. We
2232 // never bother to write this out--it will just be left as zero.
2234 unsigned int local_symbol_index
= 1;
2236 // Add STT_SECTION symbols for each Output section which needs one.
2237 for (Section_list::iterator p
= this->section_list_
.begin();
2238 p
!= this->section_list_
.end();
2241 if (!(*p
)->needs_symtab_index())
2242 (*p
)->set_symtab_index(-1U);
2245 (*p
)->set_symtab_index(local_symbol_index
);
2246 ++local_symbol_index
;
2251 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2252 p
!= input_objects
->relobj_end();
2255 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2257 off
+= (index
- local_symbol_index
) * symsize
;
2258 local_symbol_index
= index
;
2261 unsigned int local_symcount
= local_symbol_index
;
2262 gold_assert(local_symcount
* symsize
== off
- startoff
);
2265 size_t dyn_global_index
;
2267 if (this->dynsym_section_
== NULL
)
2270 dyn_global_index
= 0;
2275 dyn_global_index
= this->dynsym_section_
->info();
2276 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2277 dynoff
= this->dynsym_section_
->offset() + locsize
;
2278 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2279 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2280 == this->dynsym_section_
->data_size() - locsize
);
2283 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2284 &this->sympool_
, &local_symcount
);
2286 if (!parameters
->options().strip_all())
2288 this->sympool_
.set_string_offsets();
2290 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2291 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2294 this->symtab_section_
= osymtab
;
2296 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2299 osymtab
->add_output_section_data(pos
);
2301 // We generate a .symtab_shndx section if we have more than
2302 // SHN_LORESERVE sections. Technically it is possible that we
2303 // don't need one, because it is possible that there are no
2304 // symbols in any of sections with indexes larger than
2305 // SHN_LORESERVE. That is probably unusual, though, and it is
2306 // easier to always create one than to compute section indexes
2307 // twice (once here, once when writing out the symbols).
2308 if (shnum
>= elfcpp::SHN_LORESERVE
)
2310 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2312 Output_section
* osymtab_xindex
=
2313 this->make_output_section(symtab_xindex_name
,
2314 elfcpp::SHT_SYMTAB_SHNDX
, 0);
2316 size_t symcount
= (off
- startoff
) / symsize
;
2317 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2319 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2321 osymtab_xindex
->set_link_section(osymtab
);
2322 osymtab_xindex
->set_addralign(4);
2323 osymtab_xindex
->set_entsize(4);
2325 osymtab_xindex
->set_after_input_sections();
2327 // This tells the driver code to wait until the symbol table
2328 // has written out before writing out the postprocessing
2329 // sections, including the .symtab_shndx section.
2330 this->any_postprocessing_sections_
= true;
2333 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2334 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2338 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2339 ostrtab
->add_output_section_data(pstr
);
2341 osymtab
->set_file_offset(startoff
);
2342 osymtab
->finalize_data_size();
2343 osymtab
->set_link_section(ostrtab
);
2344 osymtab
->set_info(local_symcount
);
2345 osymtab
->set_entsize(symsize
);
2351 // Create the .shstrtab section, which holds the names of the
2352 // sections. At the time this is called, we have created all the
2353 // output sections except .shstrtab itself.
2356 Layout::create_shstrtab()
2358 // FIXME: We don't need to create a .shstrtab section if we are
2359 // stripping everything.
2361 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2363 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
2365 // We can't write out this section until we've set all the section
2366 // names, and we don't set the names of compressed output sections
2367 // until relocations are complete.
2368 os
->set_after_input_sections();
2370 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2371 os
->add_output_section_data(posd
);
2376 // Create the section headers. SIZE is 32 or 64. OFF is the file
2380 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2382 Output_section_headers
* oshdrs
;
2383 oshdrs
= new Output_section_headers(this,
2384 &this->segment_list_
,
2385 &this->section_list_
,
2386 &this->unattached_section_list_
,
2389 off_t off
= align_address(*poff
, oshdrs
->addralign());
2390 oshdrs
->set_address_and_file_offset(0, off
);
2391 off
+= oshdrs
->data_size();
2393 this->section_headers_
= oshdrs
;
2396 // Count the allocated sections.
2399 Layout::allocated_output_section_count() const
2401 size_t section_count
= 0;
2402 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2403 p
!= this->segment_list_
.end();
2405 section_count
+= (*p
)->output_section_count();
2406 return section_count
;
2409 // Create the dynamic symbol table.
2412 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2413 Symbol_table
* symtab
,
2414 Output_section
**pdynstr
,
2415 unsigned int* plocal_dynamic_count
,
2416 std::vector
<Symbol
*>* pdynamic_symbols
,
2417 Versions
* pversions
)
2419 // Count all the symbols in the dynamic symbol table, and set the
2420 // dynamic symbol indexes.
2422 // Skip symbol 0, which is always all zeroes.
2423 unsigned int index
= 1;
2425 // Add STT_SECTION symbols for each Output section which needs one.
2426 for (Section_list::iterator p
= this->section_list_
.begin();
2427 p
!= this->section_list_
.end();
2430 if (!(*p
)->needs_dynsym_index())
2431 (*p
)->set_dynsym_index(-1U);
2434 (*p
)->set_dynsym_index(index
);
2439 // Count the local symbols that need to go in the dynamic symbol table,
2440 // and set the dynamic symbol indexes.
2441 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2442 p
!= input_objects
->relobj_end();
2445 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2449 unsigned int local_symcount
= index
;
2450 *plocal_dynamic_count
= local_symcount
;
2452 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2453 &this->dynpool_
, pversions
);
2457 const int size
= parameters
->target().get_size();
2460 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2463 else if (size
== 64)
2465 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2471 // Create the dynamic symbol table section.
2473 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2478 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2481 dynsym
->add_output_section_data(odata
);
2483 dynsym
->set_info(local_symcount
);
2484 dynsym
->set_entsize(symsize
);
2485 dynsym
->set_addralign(align
);
2487 this->dynsym_section_
= dynsym
;
2489 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2490 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2491 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2493 // If there are more than SHN_LORESERVE allocated sections, we
2494 // create a .dynsym_shndx section. It is possible that we don't
2495 // need one, because it is possible that there are no dynamic
2496 // symbols in any of the sections with indexes larger than
2497 // SHN_LORESERVE. This is probably unusual, though, and at this
2498 // time we don't know the actual section indexes so it is
2499 // inconvenient to check.
2500 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2502 Output_section
* dynsym_xindex
=
2503 this->choose_output_section(NULL
, ".dynsym_shndx",
2504 elfcpp::SHT_SYMTAB_SHNDX
,
2508 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2510 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2512 dynsym_xindex
->set_link_section(dynsym
);
2513 dynsym_xindex
->set_addralign(4);
2514 dynsym_xindex
->set_entsize(4);
2516 dynsym_xindex
->set_after_input_sections();
2518 // This tells the driver code to wait until the symbol table has
2519 // written out before writing out the postprocessing sections,
2520 // including the .dynsym_shndx section.
2521 this->any_postprocessing_sections_
= true;
2524 // Create the dynamic string table section.
2526 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2531 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2532 dynstr
->add_output_section_data(strdata
);
2534 dynsym
->set_link_section(dynstr
);
2535 this->dynamic_section_
->set_link_section(dynstr
);
2537 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2538 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2542 // Create the hash tables.
2544 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2545 || strcmp(parameters
->options().hash_style(), "both") == 0)
2547 unsigned char* phash
;
2548 unsigned int hashlen
;
2549 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2552 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2557 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2561 hashsec
->add_output_section_data(hashdata
);
2563 hashsec
->set_link_section(dynsym
);
2564 hashsec
->set_entsize(4);
2566 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2569 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2570 || strcmp(parameters
->options().hash_style(), "both") == 0)
2572 unsigned char* phash
;
2573 unsigned int hashlen
;
2574 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
2577 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
2578 elfcpp::SHT_GNU_HASH
,
2582 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2586 hashsec
->add_output_section_data(hashdata
);
2588 hashsec
->set_link_section(dynsym
);
2589 hashsec
->set_entsize(4);
2591 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
2595 // Assign offsets to each local portion of the dynamic symbol table.
2598 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
2600 Output_section
* dynsym
= this->dynsym_section_
;
2601 gold_assert(dynsym
!= NULL
);
2603 off_t off
= dynsym
->offset();
2605 // Skip the dummy symbol at the start of the section.
2606 off
+= dynsym
->entsize();
2608 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2609 p
!= input_objects
->relobj_end();
2612 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
2613 off
+= count
* dynsym
->entsize();
2617 // Create the version sections.
2620 Layout::create_version_sections(const Versions
* versions
,
2621 const Symbol_table
* symtab
,
2622 unsigned int local_symcount
,
2623 const std::vector
<Symbol
*>& dynamic_symbols
,
2624 const Output_section
* dynstr
)
2626 if (!versions
->any_defs() && !versions
->any_needs())
2629 switch (parameters
->size_and_endianness())
2631 #ifdef HAVE_TARGET_32_LITTLE
2632 case Parameters::TARGET_32_LITTLE
:
2633 this->sized_create_version_sections
<32, false>(versions
, symtab
,
2635 dynamic_symbols
, dynstr
);
2638 #ifdef HAVE_TARGET_32_BIG
2639 case Parameters::TARGET_32_BIG
:
2640 this->sized_create_version_sections
<32, true>(versions
, symtab
,
2642 dynamic_symbols
, dynstr
);
2645 #ifdef HAVE_TARGET_64_LITTLE
2646 case Parameters::TARGET_64_LITTLE
:
2647 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2649 dynamic_symbols
, dynstr
);
2652 #ifdef HAVE_TARGET_64_BIG
2653 case Parameters::TARGET_64_BIG
:
2654 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2656 dynamic_symbols
, dynstr
);
2664 // Create the version sections, sized version.
2666 template<int size
, bool big_endian
>
2668 Layout::sized_create_version_sections(
2669 const Versions
* versions
,
2670 const Symbol_table
* symtab
,
2671 unsigned int local_symcount
,
2672 const std::vector
<Symbol
*>& dynamic_symbols
,
2673 const Output_section
* dynstr
)
2675 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2676 elfcpp::SHT_GNU_versym
,
2680 unsigned char* vbuf
;
2682 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2687 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
2690 vsec
->add_output_section_data(vdata
);
2691 vsec
->set_entsize(2);
2692 vsec
->set_link_section(this->dynsym_section_
);
2694 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2695 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
2697 if (versions
->any_defs())
2699 Output_section
* vdsec
;
2700 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
2701 elfcpp::SHT_GNU_verdef
,
2705 unsigned char* vdbuf
;
2706 unsigned int vdsize
;
2707 unsigned int vdentries
;
2708 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
2709 &vdsize
, &vdentries
);
2711 Output_section_data
* vddata
=
2712 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
2714 vdsec
->add_output_section_data(vddata
);
2715 vdsec
->set_link_section(dynstr
);
2716 vdsec
->set_info(vdentries
);
2718 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
2719 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
2722 if (versions
->any_needs())
2724 Output_section
* vnsec
;
2725 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
2726 elfcpp::SHT_GNU_verneed
,
2730 unsigned char* vnbuf
;
2731 unsigned int vnsize
;
2732 unsigned int vnentries
;
2733 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
2737 Output_section_data
* vndata
=
2738 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
2740 vnsec
->add_output_section_data(vndata
);
2741 vnsec
->set_link_section(dynstr
);
2742 vnsec
->set_info(vnentries
);
2744 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
2745 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
2749 // Create the .interp section and PT_INTERP segment.
2752 Layout::create_interp(const Target
* target
)
2754 const char* interp
= parameters
->options().dynamic_linker();
2757 interp
= target
->dynamic_linker();
2758 gold_assert(interp
!= NULL
);
2761 size_t len
= strlen(interp
) + 1;
2763 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
2765 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
2766 elfcpp::SHT_PROGBITS
,
2769 osec
->add_output_section_data(odata
);
2771 if (!this->script_options_
->saw_phdrs_clause())
2773 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
2775 oseg
->add_output_section(osec
, elfcpp::PF_R
);
2779 // Finish the .dynamic section and PT_DYNAMIC segment.
2782 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
2783 const Symbol_table
* symtab
)
2785 if (!this->script_options_
->saw_phdrs_clause())
2787 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
2790 oseg
->add_output_section(this->dynamic_section_
,
2791 elfcpp::PF_R
| elfcpp::PF_W
);
2794 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2796 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
2797 p
!= input_objects
->dynobj_end();
2800 // FIXME: Handle --as-needed.
2801 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
2804 if (parameters
->options().shared())
2806 const char* soname
= parameters
->options().soname();
2808 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
2811 // FIXME: Support --init and --fini.
2812 Symbol
* sym
= symtab
->lookup("_init");
2813 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2814 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
2816 sym
= symtab
->lookup("_fini");
2817 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2818 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
2820 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2822 // Add a DT_RPATH entry if needed.
2823 const General_options::Dir_list
& rpath(parameters
->options().rpath());
2826 std::string rpath_val
;
2827 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
2831 if (rpath_val
.empty())
2832 rpath_val
= p
->name();
2835 // Eliminate duplicates.
2836 General_options::Dir_list::const_iterator q
;
2837 for (q
= rpath
.begin(); q
!= p
; ++q
)
2838 if (q
->name() == p
->name())
2843 rpath_val
+= p
->name();
2848 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
2849 if (parameters
->options().enable_new_dtags())
2850 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
2853 // Look for text segments that have dynamic relocations.
2854 bool have_textrel
= false;
2855 if (!this->script_options_
->saw_sections_clause())
2857 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2858 p
!= this->segment_list_
.end();
2861 if (((*p
)->flags() & elfcpp::PF_W
) == 0
2862 && (*p
)->dynamic_reloc_count() > 0)
2864 have_textrel
= true;
2871 // We don't know the section -> segment mapping, so we are
2872 // conservative and just look for readonly sections with
2873 // relocations. If those sections wind up in writable segments,
2874 // then we have created an unnecessary DT_TEXTREL entry.
2875 for (Section_list::const_iterator p
= this->section_list_
.begin();
2876 p
!= this->section_list_
.end();
2879 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
2880 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
2881 && ((*p
)->dynamic_reloc_count() > 0))
2883 have_textrel
= true;
2889 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2890 // post-link tools can easily modify these flags if desired.
2891 unsigned int flags
= 0;
2894 // Add a DT_TEXTREL for compatibility with older loaders.
2895 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
2896 flags
|= elfcpp::DF_TEXTREL
;
2898 if (parameters
->options().shared() && this->has_static_tls())
2899 flags
|= elfcpp::DF_STATIC_TLS
;
2900 if (parameters
->options().origin())
2901 flags
|= elfcpp::DF_ORIGIN
;
2902 if (parameters
->options().now())
2903 flags
|= elfcpp::DF_BIND_NOW
;
2904 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
2907 if (parameters
->options().initfirst())
2908 flags
|= elfcpp::DF_1_INITFIRST
;
2909 if (parameters
->options().interpose())
2910 flags
|= elfcpp::DF_1_INTERPOSE
;
2911 if (parameters
->options().loadfltr())
2912 flags
|= elfcpp::DF_1_LOADFLTR
;
2913 if (parameters
->options().nodefaultlib())
2914 flags
|= elfcpp::DF_1_NODEFLIB
;
2915 if (parameters
->options().nodelete())
2916 flags
|= elfcpp::DF_1_NODELETE
;
2917 if (parameters
->options().nodlopen())
2918 flags
|= elfcpp::DF_1_NOOPEN
;
2919 if (parameters
->options().nodump())
2920 flags
|= elfcpp::DF_1_NODUMP
;
2921 if (!parameters
->options().shared())
2922 flags
&= ~(elfcpp::DF_1_INITFIRST
2923 | elfcpp::DF_1_NODELETE
2924 | elfcpp::DF_1_NOOPEN
);
2925 if (parameters
->options().origin())
2926 flags
|= elfcpp::DF_1_ORIGIN
;
2927 if (parameters
->options().now())
2928 flags
|= elfcpp::DF_1_NOW
;
2930 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
2933 // The mapping of input section name prefixes to output section names.
2934 // In some cases one prefix is itself a prefix of another prefix; in
2935 // such a case the longer prefix must come first. These prefixes are
2936 // based on the GNU linker default ELF linker script.
2938 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2939 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
2941 MAPPING_INIT(".text.", ".text"),
2942 MAPPING_INIT(".ctors.", ".ctors"),
2943 MAPPING_INIT(".dtors.", ".dtors"),
2944 MAPPING_INIT(".rodata.", ".rodata"),
2945 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
2946 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
2947 MAPPING_INIT(".data.", ".data"),
2948 MAPPING_INIT(".bss.", ".bss"),
2949 MAPPING_INIT(".tdata.", ".tdata"),
2950 MAPPING_INIT(".tbss.", ".tbss"),
2951 MAPPING_INIT(".init_array.", ".init_array"),
2952 MAPPING_INIT(".fini_array.", ".fini_array"),
2953 MAPPING_INIT(".sdata.", ".sdata"),
2954 MAPPING_INIT(".sbss.", ".sbss"),
2955 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
2956 // differently depending on whether it is creating a shared library.
2957 MAPPING_INIT(".sdata2.", ".sdata"),
2958 MAPPING_INIT(".sbss2.", ".sbss"),
2959 MAPPING_INIT(".lrodata.", ".lrodata"),
2960 MAPPING_INIT(".ldata.", ".ldata"),
2961 MAPPING_INIT(".lbss.", ".lbss"),
2962 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
2963 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
2964 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
2965 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
2966 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
2967 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
2968 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
2969 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
2970 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
2971 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
2972 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
2973 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
2974 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
2975 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
2976 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
2977 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
2978 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
2979 MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
2980 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
2981 MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
2982 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
2986 const int Layout::section_name_mapping_count
=
2987 (sizeof(Layout::section_name_mapping
)
2988 / sizeof(Layout::section_name_mapping
[0]));
2990 // Choose the output section name to use given an input section name.
2991 // Set *PLEN to the length of the name. *PLEN is initialized to the
2995 Layout::output_section_name(const char* name
, size_t* plen
)
2997 // gcc 4.3 generates the following sorts of section names when it
2998 // needs a section name specific to a function:
3004 // .data.rel.local.FN
3006 // .data.rel.ro.local.FN
3013 // The GNU linker maps all of those to the part before the .FN,
3014 // except that .data.rel.local.FN is mapped to .data, and
3015 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3016 // beginning with .data.rel.ro.local are grouped together.
3018 // For an anonymous namespace, the string FN can contain a '.'.
3020 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3021 // GNU linker maps to .rodata.
3023 // The .data.rel.ro sections are used with -z relro. The sections
3024 // are recognized by name. We use the same names that the GNU
3025 // linker does for these sections.
3027 // It is hard to handle this in a principled way, so we don't even
3028 // try. We use a table of mappings. If the input section name is
3029 // not found in the table, we simply use it as the output section
3032 const Section_name_mapping
* psnm
= section_name_mapping
;
3033 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
3035 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
3037 *plen
= psnm
->tolen
;
3045 // Check if a comdat group or .gnu.linkonce section with the given
3046 // NAME is selected for the link. If there is already a section,
3047 // *KEPT_SECTION is set to point to the existing section and the
3048 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3049 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3050 // *KEPT_SECTION is set to the internal copy and the function returns
3054 Layout::find_or_add_kept_section(const std::string
& name
,
3059 Kept_section
** kept_section
)
3061 // It's normal to see a couple of entries here, for the x86 thunk
3062 // sections. If we see more than a few, we're linking a C++
3063 // program, and we resize to get more space to minimize rehashing.
3064 if (this->signatures_
.size() > 4
3065 && !this->resized_signatures_
)
3067 reserve_unordered_map(&this->signatures_
,
3068 this->number_of_input_files_
* 64);
3069 this->resized_signatures_
= true;
3072 Kept_section candidate
;
3073 std::pair
<Signatures::iterator
, bool> ins
=
3074 this->signatures_
.insert(std::make_pair(name
, candidate
));
3076 if (kept_section
!= NULL
)
3077 *kept_section
= &ins
.first
->second
;
3080 // This is the first time we've seen this signature.
3081 ins
.first
->second
.set_object(object
);
3082 ins
.first
->second
.set_shndx(shndx
);
3084 ins
.first
->second
.set_is_comdat();
3086 ins
.first
->second
.set_is_group_name();
3090 // We have already seen this signature.
3092 if (ins
.first
->second
.is_group_name())
3094 // We've already seen a real section group with this signature.
3095 // If the kept group is from a plugin object, and we're in the
3096 // replacement phase, accept the new one as a replacement.
3097 if (ins
.first
->second
.object() == NULL
3098 && parameters
->options().plugins()->in_replacement_phase())
3100 ins
.first
->second
.set_object(object
);
3101 ins
.first
->second
.set_shndx(shndx
);
3106 else if (is_group_name
)
3108 // This is a real section group, and we've already seen a
3109 // linkonce section with this signature. Record that we've seen
3110 // a section group, and don't include this section group.
3111 ins
.first
->second
.set_is_group_name();
3116 // We've already seen a linkonce section and this is a linkonce
3117 // section. These don't block each other--this may be the same
3118 // symbol name with different section types.
3123 // Store the allocated sections into the section list.
3126 Layout::get_allocated_sections(Section_list
* section_list
) const
3128 for (Section_list::const_iterator p
= this->section_list_
.begin();
3129 p
!= this->section_list_
.end();
3131 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3132 section_list
->push_back(*p
);
3135 // Create an output segment.
3138 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3140 gold_assert(!parameters
->options().relocatable());
3141 Output_segment
* oseg
= new Output_segment(type
, flags
);
3142 this->segment_list_
.push_back(oseg
);
3144 if (type
== elfcpp::PT_TLS
)
3145 this->tls_segment_
= oseg
;
3146 else if (type
== elfcpp::PT_GNU_RELRO
)
3147 this->relro_segment_
= oseg
;
3152 // Write out the Output_sections. Most won't have anything to write,
3153 // since most of the data will come from input sections which are
3154 // handled elsewhere. But some Output_sections do have Output_data.
3157 Layout::write_output_sections(Output_file
* of
) const
3159 for (Section_list::const_iterator p
= this->section_list_
.begin();
3160 p
!= this->section_list_
.end();
3163 if (!(*p
)->after_input_sections())
3168 // Write out data not associated with a section or the symbol table.
3171 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3173 if (!parameters
->options().strip_all())
3175 const Output_section
* symtab_section
= this->symtab_section_
;
3176 for (Section_list::const_iterator p
= this->section_list_
.begin();
3177 p
!= this->section_list_
.end();
3180 if ((*p
)->needs_symtab_index())
3182 gold_assert(symtab_section
!= NULL
);
3183 unsigned int index
= (*p
)->symtab_index();
3184 gold_assert(index
> 0 && index
!= -1U);
3185 off_t off
= (symtab_section
->offset()
3186 + index
* symtab_section
->entsize());
3187 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3192 const Output_section
* dynsym_section
= this->dynsym_section_
;
3193 for (Section_list::const_iterator p
= this->section_list_
.begin();
3194 p
!= this->section_list_
.end();
3197 if ((*p
)->needs_dynsym_index())
3199 gold_assert(dynsym_section
!= NULL
);
3200 unsigned int index
= (*p
)->dynsym_index();
3201 gold_assert(index
> 0 && index
!= -1U);
3202 off_t off
= (dynsym_section
->offset()
3203 + index
* dynsym_section
->entsize());
3204 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3208 // Write out the Output_data which are not in an Output_section.
3209 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3210 p
!= this->special_output_list_
.end();
3215 // Write out the Output_sections which can only be written after the
3216 // input sections are complete.
3219 Layout::write_sections_after_input_sections(Output_file
* of
)
3221 // Determine the final section offsets, and thus the final output
3222 // file size. Note we finalize the .shstrab last, to allow the
3223 // after_input_section sections to modify their section-names before
3225 if (this->any_postprocessing_sections_
)
3227 off_t off
= this->output_file_size_
;
3228 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3230 // Now that we've finalized the names, we can finalize the shstrab.
3232 this->set_section_offsets(off
,
3233 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3235 if (off
> this->output_file_size_
)
3238 this->output_file_size_
= off
;
3242 for (Section_list::const_iterator p
= this->section_list_
.begin();
3243 p
!= this->section_list_
.end();
3246 if ((*p
)->after_input_sections())
3250 this->section_headers_
->write(of
);
3253 // If the build ID requires computing a checksum, do so here, and
3254 // write it out. We compute a checksum over the entire file because
3255 // that is simplest.
3258 Layout::write_build_id(Output_file
* of
) const
3260 if (this->build_id_note_
== NULL
)
3263 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3265 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3266 this->build_id_note_
->data_size());
3268 const char* style
= parameters
->options().build_id();
3269 if (strcmp(style
, "sha1") == 0)
3272 sha1_init_ctx(&ctx
);
3273 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3274 sha1_finish_ctx(&ctx
, ov
);
3276 else if (strcmp(style
, "md5") == 0)
3280 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3281 md5_finish_ctx(&ctx
, ov
);
3286 of
->write_output_view(this->build_id_note_
->offset(),
3287 this->build_id_note_
->data_size(),
3290 of
->free_input_view(0, this->output_file_size_
, iv
);
3293 // Write out a binary file. This is called after the link is
3294 // complete. IN is the temporary output file we used to generate the
3295 // ELF code. We simply walk through the segments, read them from
3296 // their file offset in IN, and write them to their load address in
3297 // the output file. FIXME: with a bit more work, we could support
3298 // S-records and/or Intel hex format here.
3301 Layout::write_binary(Output_file
* in
) const
3303 gold_assert(parameters
->options().oformat_enum()
3304 == General_options::OBJECT_FORMAT_BINARY
);
3306 // Get the size of the binary file.
3307 uint64_t max_load_address
= 0;
3308 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3309 p
!= this->segment_list_
.end();
3312 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3314 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3315 if (max_paddr
> max_load_address
)
3316 max_load_address
= max_paddr
;
3320 Output_file
out(parameters
->options().output_file_name());
3321 out
.open(max_load_address
);
3323 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3324 p
!= this->segment_list_
.end();
3327 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3329 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3331 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3333 memcpy(vout
, vin
, (*p
)->filesz());
3334 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3335 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3342 // Print the output sections to the map file.
3345 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3347 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3348 p
!= this->segment_list_
.end();
3350 (*p
)->print_sections_to_mapfile(mapfile
);
3353 // Print statistical information to stderr. This is used for --stats.
3356 Layout::print_stats() const
3358 this->namepool_
.print_stats("section name pool");
3359 this->sympool_
.print_stats("output symbol name pool");
3360 this->dynpool_
.print_stats("dynamic name pool");
3362 for (Section_list::const_iterator p
= this->section_list_
.begin();
3363 p
!= this->section_list_
.end();
3365 (*p
)->print_merge_stats();
3368 // Write_sections_task methods.
3370 // We can always run this task.
3373 Write_sections_task::is_runnable()
3378 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3382 Write_sections_task::locks(Task_locker
* tl
)
3384 tl
->add(this, this->output_sections_blocker_
);
3385 tl
->add(this, this->final_blocker_
);
3388 // Run the task--write out the data.
3391 Write_sections_task::run(Workqueue
*)
3393 this->layout_
->write_output_sections(this->of_
);
3396 // Write_data_task methods.
3398 // We can always run this task.
3401 Write_data_task::is_runnable()
3406 // We need to unlock FINAL_BLOCKER when finished.
3409 Write_data_task::locks(Task_locker
* tl
)
3411 tl
->add(this, this->final_blocker_
);
3414 // Run the task--write out the data.
3417 Write_data_task::run(Workqueue
*)
3419 this->layout_
->write_data(this->symtab_
, this->of_
);
3422 // Write_symbols_task methods.
3424 // We can always run this task.
3427 Write_symbols_task::is_runnable()
3432 // We need to unlock FINAL_BLOCKER when finished.
3435 Write_symbols_task::locks(Task_locker
* tl
)
3437 tl
->add(this, this->final_blocker_
);
3440 // Run the task--write out the symbols.
3443 Write_symbols_task::run(Workqueue
*)
3445 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
3446 this->layout_
->symtab_xindex(),
3447 this->layout_
->dynsym_xindex(), this->of_
);
3450 // Write_after_input_sections_task methods.
3452 // We can only run this task after the input sections have completed.
3455 Write_after_input_sections_task::is_runnable()
3457 if (this->input_sections_blocker_
->is_blocked())
3458 return this->input_sections_blocker_
;
3462 // We need to unlock FINAL_BLOCKER when finished.
3465 Write_after_input_sections_task::locks(Task_locker
* tl
)
3467 tl
->add(this, this->final_blocker_
);
3473 Write_after_input_sections_task::run(Workqueue
*)
3475 this->layout_
->write_sections_after_input_sections(this->of_
);
3478 // Close_task_runner methods.
3480 // Run the task--close the file.
3483 Close_task_runner::run(Workqueue
*, const Task
*)
3485 // If we need to compute a checksum for the BUILD if, we do so here.
3486 this->layout_
->write_build_id(this->of_
);
3488 // If we've been asked to create a binary file, we do so here.
3489 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
3490 this->layout_
->write_binary(this->of_
);
3495 // Instantiate the templates we need. We could use the configure
3496 // script to restrict this to only the ones for implemented targets.
3498 #ifdef HAVE_TARGET_32_LITTLE
3501 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
3503 const elfcpp::Shdr
<32, false>& shdr
,
3504 unsigned int, unsigned int, off_t
*);
3507 #ifdef HAVE_TARGET_32_BIG
3510 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
3512 const elfcpp::Shdr
<32, true>& shdr
,
3513 unsigned int, unsigned int, off_t
*);
3516 #ifdef HAVE_TARGET_64_LITTLE
3519 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
3521 const elfcpp::Shdr
<64, false>& shdr
,
3522 unsigned int, unsigned int, off_t
*);
3525 #ifdef HAVE_TARGET_64_BIG
3528 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
3530 const elfcpp::Shdr
<64, true>& shdr
,
3531 unsigned int, unsigned int, off_t
*);
3534 #ifdef HAVE_TARGET_32_LITTLE
3537 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
3538 unsigned int reloc_shndx
,
3539 const elfcpp::Shdr
<32, false>& shdr
,
3540 Output_section
* data_section
,
3541 Relocatable_relocs
* rr
);
3544 #ifdef HAVE_TARGET_32_BIG
3547 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
3548 unsigned int reloc_shndx
,
3549 const elfcpp::Shdr
<32, true>& shdr
,
3550 Output_section
* data_section
,
3551 Relocatable_relocs
* rr
);
3554 #ifdef HAVE_TARGET_64_LITTLE
3557 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
3558 unsigned int reloc_shndx
,
3559 const elfcpp::Shdr
<64, false>& shdr
,
3560 Output_section
* data_section
,
3561 Relocatable_relocs
* rr
);
3564 #ifdef HAVE_TARGET_64_BIG
3567 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
3568 unsigned int reloc_shndx
,
3569 const elfcpp::Shdr
<64, true>& shdr
,
3570 Output_section
* data_section
,
3571 Relocatable_relocs
* rr
);
3574 #ifdef HAVE_TARGET_32_LITTLE
3577 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
3578 Sized_relobj
<32, false>* object
,
3580 const char* group_section_name
,
3581 const char* signature
,
3582 const elfcpp::Shdr
<32, false>& shdr
,
3583 elfcpp::Elf_Word flags
,
3584 std::vector
<unsigned int>* shndxes
);
3587 #ifdef HAVE_TARGET_32_BIG
3590 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
3591 Sized_relobj
<32, true>* object
,
3593 const char* group_section_name
,
3594 const char* signature
,
3595 const elfcpp::Shdr
<32, true>& shdr
,
3596 elfcpp::Elf_Word flags
,
3597 std::vector
<unsigned int>* shndxes
);
3600 #ifdef HAVE_TARGET_64_LITTLE
3603 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
3604 Sized_relobj
<64, false>* object
,
3606 const char* group_section_name
,
3607 const char* signature
,
3608 const elfcpp::Shdr
<64, false>& shdr
,
3609 elfcpp::Elf_Word flags
,
3610 std::vector
<unsigned int>* shndxes
);
3613 #ifdef HAVE_TARGET_64_BIG
3616 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
3617 Sized_relobj
<64, true>* object
,
3619 const char* group_section_name
,
3620 const char* signature
,
3621 const elfcpp::Shdr
<64, true>& shdr
,
3622 elfcpp::Elf_Word flags
,
3623 std::vector
<unsigned int>* shndxes
);
3626 #ifdef HAVE_TARGET_32_LITTLE
3629 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
3630 const unsigned char* symbols
,
3632 const unsigned char* symbol_names
,
3633 off_t symbol_names_size
,
3635 const elfcpp::Shdr
<32, false>& shdr
,
3636 unsigned int reloc_shndx
,
3637 unsigned int reloc_type
,
3641 #ifdef HAVE_TARGET_32_BIG
3644 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
3645 const unsigned char* symbols
,
3647 const unsigned char* symbol_names
,
3648 off_t symbol_names_size
,
3650 const elfcpp::Shdr
<32, true>& shdr
,
3651 unsigned int reloc_shndx
,
3652 unsigned int reloc_type
,
3656 #ifdef HAVE_TARGET_64_LITTLE
3659 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
3660 const unsigned char* symbols
,
3662 const unsigned char* symbol_names
,
3663 off_t symbol_names_size
,
3665 const elfcpp::Shdr
<64, false>& shdr
,
3666 unsigned int reloc_shndx
,
3667 unsigned int reloc_type
,
3671 #ifdef HAVE_TARGET_64_BIG
3674 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
3675 const unsigned char* symbols
,
3677 const unsigned char* symbol_names
,
3678 off_t symbol_names_size
,
3680 const elfcpp::Shdr
<64, true>& shdr
,
3681 unsigned int reloc_shndx
,
3682 unsigned int reloc_type
,
3686 } // End namespace gold.