Fix a typo in comments for CpuFSGSBase.
[binutils.git] / gold / script.cc
blob2cdaae6384e5f5e9dbd6472029292219a6cdca0c
1 // script.cc -- handle linker scripts for gold.
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
48 namespace gold
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
54 class Token
56 public:
57 // Token classification.
58 enum Classification
60 // Token is invalid.
61 TOKEN_INVALID,
62 // Token indicates end of input.
63 TOKEN_EOF,
64 // Token is a string of characters.
65 TOKEN_STRING,
66 // Token is a quoted string of characters.
67 TOKEN_QUOTED_STRING,
68 // Token is an operator.
69 TOKEN_OPERATOR,
70 // Token is a number (an integer).
71 TOKEN_INTEGER
74 // We need an empty constructor so that we can put this STL objects.
75 Token()
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
78 { }
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
105 // Return whether the token is invalid.
106 bool
107 is_invalid() const
108 { return this->classification_ == TOKEN_INVALID; }
110 // Return whether this is an EOF token.
111 bool
112 is_eof() const
113 { return this->classification_ == TOKEN_EOF; }
115 // Return the token classification.
116 Classification
117 classification() const
118 { return this->classification_; }
120 // Return the line number at which the token starts.
122 lineno() const
123 { return this->lineno_; }
125 // Return the character position at this the token starts.
127 charpos() const
128 { return this->charpos_; }
130 // Get the value of a token.
132 const char*
133 string_value(size_t* length) const
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
138 return this->value_;
142 operator_value() const
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
148 uint64_t
149 integer_value() const
151 gold_assert(this->classification_ == TOKEN_INTEGER);
152 // Null terminate.
153 std::string s(this->value_, this->value_length_);
154 return strtoull(s.c_str(), NULL, 0);
157 private:
158 // The token classification.
159 Classification classification_;
160 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
161 // TOKEN_INTEGER.
162 const char* value_;
163 // The length of the token value.
164 size_t value_length_;
165 // The token value, for TOKEN_OPERATOR.
166 int opcode_;
167 // The line number where this token started (one based).
168 int lineno_;
169 // The character position within the line where this token started
170 // (one based).
171 int charpos_;
174 // This class handles lexing a file into a sequence of tokens.
176 class Lex
178 public:
179 // We unfortunately have to support different lexing modes, because
180 // when reading different parts of a linker script we need to parse
181 // things differently.
182 enum Mode
184 // Reading an ordinary linker script.
185 LINKER_SCRIPT,
186 // Reading an expression in a linker script.
187 EXPRESSION,
188 // Reading a version script.
189 VERSION_SCRIPT,
190 // Reading a --dynamic-list file.
191 DYNAMIC_LIST
194 Lex(const char* input_string, size_t input_length, int parsing_token)
195 : input_string_(input_string), input_length_(input_length),
196 current_(input_string), mode_(LINKER_SCRIPT),
197 first_token_(parsing_token), token_(),
198 lineno_(1), linestart_(input_string)
201 // Read a file into a string.
202 static void
203 read_file(Input_file*, std::string*);
205 // Return the next token.
206 const Token*
207 next_token();
209 // Return the current lexing mode.
210 Lex::Mode
211 mode() const
212 { return this->mode_; }
214 // Set the lexing mode.
215 void
216 set_mode(Mode mode)
217 { this->mode_ = mode; }
219 private:
220 Lex(const Lex&);
221 Lex& operator=(const Lex&);
223 // Make a general token with no value at the current location.
224 Token
225 make_token(Token::Classification c, const char* start) const
226 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
228 // Make a general token with a value at the current location.
229 Token
230 make_token(Token::Classification c, const char* v, size_t len,
231 const char* start)
232 const
233 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
235 // Make an operator token at the current location.
236 Token
237 make_token(int opcode, const char* start) const
238 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
240 // Make an invalid token at the current location.
241 Token
242 make_invalid_token(const char* start)
243 { return this->make_token(Token::TOKEN_INVALID, start); }
245 // Make an EOF token at the current location.
246 Token
247 make_eof_token(const char* start)
248 { return this->make_token(Token::TOKEN_EOF, start); }
250 // Return whether C can be the first character in a name. C2 is the
251 // next character, since we sometimes need that.
252 inline bool
253 can_start_name(char c, char c2);
255 // If C can appear in a name which has already started, return a
256 // pointer to a character later in the token or just past
257 // it. Otherwise, return NULL.
258 inline const char*
259 can_continue_name(const char* c);
261 // Return whether C, C2, C3 can start a hex number.
262 inline bool
263 can_start_hex(char c, char c2, char c3);
265 // If C can appear in a hex number which has already started, return
266 // a pointer to a character later in the token or just past
267 // it. Otherwise, return NULL.
268 inline const char*
269 can_continue_hex(const char* c);
271 // Return whether C can start a non-hex number.
272 static inline bool
273 can_start_number(char c);
275 // If C can appear in a decimal number which has already started,
276 // return a pointer to a character later in the token or just past
277 // it. Otherwise, return NULL.
278 inline const char*
279 can_continue_number(const char* c)
280 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
282 // If C1 C2 C3 form a valid three character operator, return the
283 // opcode. Otherwise return 0.
284 static inline int
285 three_char_operator(char c1, char c2, char c3);
287 // If C1 C2 form a valid two character operator, return the opcode.
288 // Otherwise return 0.
289 static inline int
290 two_char_operator(char c1, char c2);
292 // If C1 is a valid one character operator, return the opcode.
293 // Otherwise return 0.
294 static inline int
295 one_char_operator(char c1);
297 // Read the next token.
298 Token
299 get_token(const char**);
301 // Skip a C style /* */ comment. Return false if the comment did
302 // not end.
303 bool
304 skip_c_comment(const char**);
306 // Skip a line # comment. Return false if there was no newline.
307 bool
308 skip_line_comment(const char**);
310 // Build a token CLASSIFICATION from all characters that match
311 // CAN_CONTINUE_FN. The token starts at START. Start matching from
312 // MATCH. Set *PP to the character following the token.
313 inline Token
314 gather_token(Token::Classification,
315 const char* (Lex::*can_continue_fn)(const char*),
316 const char* start, const char* match, const char** pp);
318 // Build a token from a quoted string.
319 Token
320 gather_quoted_string(const char** pp);
322 // The string we are tokenizing.
323 const char* input_string_;
324 // The length of the string.
325 size_t input_length_;
326 // The current offset into the string.
327 const char* current_;
328 // The current lexing mode.
329 Mode mode_;
330 // The code to use for the first token. This is set to 0 after it
331 // is used.
332 int first_token_;
333 // The current token.
334 Token token_;
335 // The current line number.
336 int lineno_;
337 // The start of the current line in the string.
338 const char* linestart_;
341 // Read the whole file into memory. We don't expect linker scripts to
342 // be large, so we just use a std::string as a buffer. We ignore the
343 // data we've already read, so that we read aligned buffers.
345 void
346 Lex::read_file(Input_file* input_file, std::string* contents)
348 off_t filesize = input_file->file().filesize();
349 contents->clear();
350 contents->reserve(filesize);
352 off_t off = 0;
353 unsigned char buf[BUFSIZ];
354 while (off < filesize)
356 off_t get = BUFSIZ;
357 if (get > filesize - off)
358 get = filesize - off;
359 input_file->file().read(off, get, buf);
360 contents->append(reinterpret_cast<char*>(&buf[0]), get);
361 off += get;
365 // Return whether C can be the start of a name, if the next character
366 // is C2. A name can being with a letter, underscore, period, or
367 // dollar sign. Because a name can be a file name, we also permit
368 // forward slash, backslash, and tilde. Tilde is the tricky case
369 // here; GNU ld also uses it as a bitwise not operator. It is only
370 // recognized as the operator if it is not immediately followed by
371 // some character which can appear in a symbol. That is, when we
372 // don't know that we are looking at an expression, "~0" is a file
373 // name, and "~ 0" is an expression using bitwise not. We are
374 // compatible.
376 inline bool
377 Lex::can_start_name(char c, char c2)
379 switch (c)
381 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
382 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
383 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
384 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
385 case 'Y': case 'Z':
386 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
387 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
388 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
389 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
390 case 'y': case 'z':
391 case '_': case '.': case '$':
392 return true;
394 case '/': case '\\':
395 return this->mode_ == LINKER_SCRIPT;
397 case '~':
398 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
400 case '*': case '[':
401 return (this->mode_ == VERSION_SCRIPT
402 || this->mode_ == DYNAMIC_LIST
403 || (this->mode_ == LINKER_SCRIPT
404 && can_continue_name(&c2)));
406 default:
407 return false;
411 // Return whether C can continue a name which has already started.
412 // Subsequent characters in a name are the same as the leading
413 // characters, plus digits and "=+-:[],?*". So in general the linker
414 // script language requires spaces around operators, unless we know
415 // that we are parsing an expression.
417 inline const char*
418 Lex::can_continue_name(const char* c)
420 switch (*c)
422 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
423 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
424 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
425 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
426 case 'Y': case 'Z':
427 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
428 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
429 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
430 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
431 case 'y': case 'z':
432 case '_': case '.': case '$':
433 case '0': case '1': case '2': case '3': case '4':
434 case '5': case '6': case '7': case '8': case '9':
435 return c + 1;
437 // TODO(csilvers): why not allow ~ in names for version-scripts?
438 case '/': case '\\': case '~':
439 case '=': case '+':
440 case ',':
441 if (this->mode_ == LINKER_SCRIPT)
442 return c + 1;
443 return NULL;
445 case '[': case ']': case '*': case '?': case '-':
446 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
447 || this->mode_ == DYNAMIC_LIST)
448 return c + 1;
449 return NULL;
451 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
452 case '^':
453 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
454 return c + 1;
455 return NULL;
457 case ':':
458 if (this->mode_ == LINKER_SCRIPT)
459 return c + 1;
460 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
461 && (c[1] == ':'))
463 // A name can have '::' in it, as that's a c++ namespace
464 // separator. But a single colon is not part of a name.
465 return c + 2;
467 return NULL;
469 default:
470 return NULL;
474 // For a number we accept 0x followed by hex digits, or any sequence
475 // of digits. The old linker accepts leading '$' for hex, and
476 // trailing HXBOD. Those are for MRI compatibility and we don't
477 // accept them. The old linker also accepts trailing MK for mega or
478 // kilo. FIXME: Those are mentioned in the documentation, and we
479 // should accept them.
481 // Return whether C1 C2 C3 can start a hex number.
483 inline bool
484 Lex::can_start_hex(char c1, char c2, char c3)
486 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
487 return this->can_continue_hex(&c3);
488 return false;
491 // Return whether C can appear in a hex number.
493 inline const char*
494 Lex::can_continue_hex(const char* c)
496 switch (*c)
498 case '0': case '1': case '2': case '3': case '4':
499 case '5': case '6': case '7': case '8': case '9':
500 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
501 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
502 return c + 1;
504 default:
505 return NULL;
509 // Return whether C can start a non-hex number.
511 inline bool
512 Lex::can_start_number(char c)
514 switch (c)
516 case '0': case '1': case '2': case '3': case '4':
517 case '5': case '6': case '7': case '8': case '9':
518 return true;
520 default:
521 return false;
525 // If C1 C2 C3 form a valid three character operator, return the
526 // opcode (defined in the yyscript.h file generated from yyscript.y).
527 // Otherwise return 0.
529 inline int
530 Lex::three_char_operator(char c1, char c2, char c3)
532 switch (c1)
534 case '<':
535 if (c2 == '<' && c3 == '=')
536 return LSHIFTEQ;
537 break;
538 case '>':
539 if (c2 == '>' && c3 == '=')
540 return RSHIFTEQ;
541 break;
542 default:
543 break;
545 return 0;
548 // If C1 C2 form a valid two character operator, return the opcode
549 // (defined in the yyscript.h file generated from yyscript.y).
550 // Otherwise return 0.
552 inline int
553 Lex::two_char_operator(char c1, char c2)
555 switch (c1)
557 case '=':
558 if (c2 == '=')
559 return EQ;
560 break;
561 case '!':
562 if (c2 == '=')
563 return NE;
564 break;
565 case '+':
566 if (c2 == '=')
567 return PLUSEQ;
568 break;
569 case '-':
570 if (c2 == '=')
571 return MINUSEQ;
572 break;
573 case '*':
574 if (c2 == '=')
575 return MULTEQ;
576 break;
577 case '/':
578 if (c2 == '=')
579 return DIVEQ;
580 break;
581 case '|':
582 if (c2 == '=')
583 return OREQ;
584 if (c2 == '|')
585 return OROR;
586 break;
587 case '&':
588 if (c2 == '=')
589 return ANDEQ;
590 if (c2 == '&')
591 return ANDAND;
592 break;
593 case '>':
594 if (c2 == '=')
595 return GE;
596 if (c2 == '>')
597 return RSHIFT;
598 break;
599 case '<':
600 if (c2 == '=')
601 return LE;
602 if (c2 == '<')
603 return LSHIFT;
604 break;
605 default:
606 break;
608 return 0;
611 // If C1 is a valid operator, return the opcode. Otherwise return 0.
613 inline int
614 Lex::one_char_operator(char c1)
616 switch (c1)
618 case '+':
619 case '-':
620 case '*':
621 case '/':
622 case '%':
623 case '!':
624 case '&':
625 case '|':
626 case '^':
627 case '~':
628 case '<':
629 case '>':
630 case '=':
631 case '?':
632 case ',':
633 case '(':
634 case ')':
635 case '{':
636 case '}':
637 case '[':
638 case ']':
639 case ':':
640 case ';':
641 return c1;
642 default:
643 return 0;
647 // Skip a C style comment. *PP points to just after the "/*". Return
648 // false if the comment did not end.
650 bool
651 Lex::skip_c_comment(const char** pp)
653 const char* p = *pp;
654 while (p[0] != '*' || p[1] != '/')
656 if (*p == '\0')
658 *pp = p;
659 return false;
662 if (*p == '\n')
664 ++this->lineno_;
665 this->linestart_ = p + 1;
667 ++p;
670 *pp = p + 2;
671 return true;
674 // Skip a line # comment. Return false if there was no newline.
676 bool
677 Lex::skip_line_comment(const char** pp)
679 const char* p = *pp;
680 size_t skip = strcspn(p, "\n");
681 if (p[skip] == '\0')
683 *pp = p + skip;
684 return false;
687 p += skip + 1;
688 ++this->lineno_;
689 this->linestart_ = p;
690 *pp = p;
692 return true;
695 // Build a token CLASSIFICATION from all characters that match
696 // CAN_CONTINUE_FN. Update *PP.
698 inline Token
699 Lex::gather_token(Token::Classification classification,
700 const char* (Lex::*can_continue_fn)(const char*),
701 const char* start,
702 const char* match,
703 const char **pp)
705 const char* new_match = NULL;
706 while ((new_match = (this->*can_continue_fn)(match)))
707 match = new_match;
708 *pp = match;
709 return this->make_token(classification, start, match - start, start);
712 // Build a token from a quoted string.
714 Token
715 Lex::gather_quoted_string(const char** pp)
717 const char* start = *pp;
718 const char* p = start;
719 ++p;
720 size_t skip = strcspn(p, "\"\n");
721 if (p[skip] != '"')
722 return this->make_invalid_token(start);
723 *pp = p + skip + 1;
724 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
727 // Return the next token at *PP. Update *PP. General guideline: we
728 // require linker scripts to be simple ASCII. No unicode linker
729 // scripts. In particular we can assume that any '\0' is the end of
730 // the input.
732 Token
733 Lex::get_token(const char** pp)
735 const char* p = *pp;
737 while (true)
739 if (*p == '\0')
741 *pp = p;
742 return this->make_eof_token(p);
745 // Skip whitespace quickly.
746 while (*p == ' ' || *p == '\t' || *p == '\r')
747 ++p;
749 if (*p == '\n')
751 ++p;
752 ++this->lineno_;
753 this->linestart_ = p;
754 continue;
757 // Skip C style comments.
758 if (p[0] == '/' && p[1] == '*')
760 int lineno = this->lineno_;
761 int charpos = p - this->linestart_ + 1;
763 *pp = p + 2;
764 if (!this->skip_c_comment(pp))
765 return Token(Token::TOKEN_INVALID, lineno, charpos);
766 p = *pp;
768 continue;
771 // Skip line comments.
772 if (*p == '#')
774 *pp = p + 1;
775 if (!this->skip_line_comment(pp))
776 return this->make_eof_token(p);
777 p = *pp;
778 continue;
781 // Check for a name.
782 if (this->can_start_name(p[0], p[1]))
783 return this->gather_token(Token::TOKEN_STRING,
784 &Lex::can_continue_name,
785 p, p + 1, pp);
787 // We accept any arbitrary name in double quotes, as long as it
788 // does not cross a line boundary.
789 if (*p == '"')
791 *pp = p;
792 return this->gather_quoted_string(pp);
795 // Check for a number.
797 if (this->can_start_hex(p[0], p[1], p[2]))
798 return this->gather_token(Token::TOKEN_INTEGER,
799 &Lex::can_continue_hex,
800 p, p + 3, pp);
802 if (Lex::can_start_number(p[0]))
803 return this->gather_token(Token::TOKEN_INTEGER,
804 &Lex::can_continue_number,
805 p, p + 1, pp);
807 // Check for operators.
809 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
810 if (opcode != 0)
812 *pp = p + 3;
813 return this->make_token(opcode, p);
816 opcode = Lex::two_char_operator(p[0], p[1]);
817 if (opcode != 0)
819 *pp = p + 2;
820 return this->make_token(opcode, p);
823 opcode = Lex::one_char_operator(p[0]);
824 if (opcode != 0)
826 *pp = p + 1;
827 return this->make_token(opcode, p);
830 return this->make_token(Token::TOKEN_INVALID, p);
834 // Return the next token.
836 const Token*
837 Lex::next_token()
839 // The first token is special.
840 if (this->first_token_ != 0)
842 this->token_ = Token(this->first_token_, 0, 0);
843 this->first_token_ = 0;
844 return &this->token_;
847 this->token_ = this->get_token(&this->current_);
849 // Don't let an early null byte fool us into thinking that we've
850 // reached the end of the file.
851 if (this->token_.is_eof()
852 && (static_cast<size_t>(this->current_ - this->input_string_)
853 < this->input_length_))
854 this->token_ = this->make_invalid_token(this->current_);
856 return &this->token_;
859 // class Symbol_assignment.
861 // Add the symbol to the symbol table. This makes sure the symbol is
862 // there and defined. The actual value is stored later. We can't
863 // determine the actual value at this point, because we can't
864 // necessarily evaluate the expression until all ordinary symbols have
865 // been finalized.
867 // The GNU linker lets symbol assignments in the linker script
868 // silently override defined symbols in object files. We are
869 // compatible. FIXME: Should we issue a warning?
871 void
872 Symbol_assignment::add_to_table(Symbol_table* symtab)
874 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
875 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
876 NULL, // version
877 (this->is_defsym_
878 ? Symbol_table::DEFSYM
879 : Symbol_table::SCRIPT),
880 0, // value
881 0, // size
882 elfcpp::STT_NOTYPE,
883 elfcpp::STB_GLOBAL,
884 vis,
885 0, // nonvis
886 this->provide_,
887 true); // force_override
890 // Finalize a symbol value.
892 void
893 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
895 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
898 // Finalize a symbol value which can refer to the dot symbol.
900 void
901 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
902 const Layout* layout,
903 uint64_t dot_value,
904 Output_section* dot_section)
906 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
909 // Finalize a symbol value, internal version.
911 void
912 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
913 const Layout* layout,
914 bool is_dot_available,
915 uint64_t dot_value,
916 Output_section* dot_section)
918 // If we were only supposed to provide this symbol, the sym_ field
919 // will be NULL if the symbol was not referenced.
920 if (this->sym_ == NULL)
922 gold_assert(this->provide_);
923 return;
926 if (parameters->target().get_size() == 32)
928 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
929 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
930 dot_section);
931 #else
932 gold_unreachable();
933 #endif
935 else if (parameters->target().get_size() == 64)
937 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
938 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
939 dot_section);
940 #else
941 gold_unreachable();
942 #endif
944 else
945 gold_unreachable();
948 template<int size>
949 void
950 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
951 bool is_dot_available, uint64_t dot_value,
952 Output_section* dot_section)
954 Output_section* section;
955 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
956 is_dot_available,
957 dot_value, dot_section,
958 &section, NULL);
959 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
960 ssym->set_value(final_val);
961 if (section != NULL)
962 ssym->set_output_section(section);
965 // Set the symbol value if the expression yields an absolute value.
967 void
968 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
969 bool is_dot_available, uint64_t dot_value)
971 if (this->sym_ == NULL)
972 return;
974 Output_section* val_section;
975 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
976 is_dot_available, dot_value,
977 NULL, &val_section, NULL);
978 if (val_section != NULL)
979 return;
981 if (parameters->target().get_size() == 32)
983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
984 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
985 ssym->set_value(val);
986 #else
987 gold_unreachable();
988 #endif
990 else if (parameters->target().get_size() == 64)
992 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
993 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
994 ssym->set_value(val);
995 #else
996 gold_unreachable();
997 #endif
999 else
1000 gold_unreachable();
1003 // Print for debugging.
1005 void
1006 Symbol_assignment::print(FILE* f) const
1008 if (this->provide_ && this->hidden_)
1009 fprintf(f, "PROVIDE_HIDDEN(");
1010 else if (this->provide_)
1011 fprintf(f, "PROVIDE(");
1012 else if (this->hidden_)
1013 gold_unreachable();
1015 fprintf(f, "%s = ", this->name_.c_str());
1016 this->val_->print(f);
1018 if (this->provide_ || this->hidden_)
1019 fprintf(f, ")");
1021 fprintf(f, "\n");
1024 // Class Script_assertion.
1026 // Check the assertion.
1028 void
1029 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1031 if (!this->check_->eval(symtab, layout, true))
1032 gold_error("%s", this->message_.c_str());
1035 // Print for debugging.
1037 void
1038 Script_assertion::print(FILE* f) const
1040 fprintf(f, "ASSERT(");
1041 this->check_->print(f);
1042 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1045 // Class Script_options.
1047 Script_options::Script_options()
1048 : entry_(), symbol_assignments_(), version_script_info_(),
1049 script_sections_()
1053 // Add a symbol to be defined.
1055 void
1056 Script_options::add_symbol_assignment(const char* name, size_t length,
1057 bool is_defsym, Expression* value,
1058 bool provide, bool hidden)
1060 if (length != 1 || name[0] != '.')
1062 if (this->script_sections_.in_sections_clause())
1064 gold_assert(!is_defsym);
1065 this->script_sections_.add_symbol_assignment(name, length, value,
1066 provide, hidden);
1068 else
1070 Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1071 value, provide, hidden);
1072 this->symbol_assignments_.push_back(p);
1075 else
1077 if (provide || hidden)
1078 gold_error(_("invalid use of PROVIDE for dot symbol"));
1080 // The GNU linker permits assignments to dot outside of SECTIONS
1081 // clauses and treats them as occurring inside, so we don't
1082 // check in_sections_clause here.
1083 this->script_sections_.add_dot_assignment(value);
1087 // Add an assertion.
1089 void
1090 Script_options::add_assertion(Expression* check, const char* message,
1091 size_t messagelen)
1093 if (this->script_sections_.in_sections_clause())
1094 this->script_sections_.add_assertion(check, message, messagelen);
1095 else
1097 Script_assertion* p = new Script_assertion(check, message, messagelen);
1098 this->assertions_.push_back(p);
1102 // Create sections required by any linker scripts.
1104 void
1105 Script_options::create_script_sections(Layout* layout)
1107 if (this->saw_sections_clause())
1108 this->script_sections_.create_sections(layout);
1111 // Add any symbols we are defining to the symbol table.
1113 void
1114 Script_options::add_symbols_to_table(Symbol_table* symtab)
1116 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1117 p != this->symbol_assignments_.end();
1118 ++p)
1119 (*p)->add_to_table(symtab);
1120 this->script_sections_.add_symbols_to_table(symtab);
1123 // Finalize symbol values. Also check assertions.
1125 void
1126 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1128 // We finalize the symbols defined in SECTIONS first, because they
1129 // are the ones which may have changed. This way if symbol outside
1130 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1131 // will get the right value.
1132 this->script_sections_.finalize_symbols(symtab, layout);
1134 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1135 p != this->symbol_assignments_.end();
1136 ++p)
1137 (*p)->finalize(symtab, layout);
1139 for (Assertions::iterator p = this->assertions_.begin();
1140 p != this->assertions_.end();
1141 ++p)
1142 (*p)->check(symtab, layout);
1145 // Set section addresses. We set all the symbols which have absolute
1146 // values. Then we let the SECTIONS clause do its thing. This
1147 // returns the segment which holds the file header and segment
1148 // headers, if any.
1150 Output_segment*
1151 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1153 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1154 p != this->symbol_assignments_.end();
1155 ++p)
1156 (*p)->set_if_absolute(symtab, layout, false, 0);
1158 return this->script_sections_.set_section_addresses(symtab, layout);
1161 // This class holds data passed through the parser to the lexer and to
1162 // the parser support functions. This avoids global variables. We
1163 // can't use global variables because we need not be called by a
1164 // singleton thread.
1166 class Parser_closure
1168 public:
1169 Parser_closure(const char* filename,
1170 const Position_dependent_options& posdep_options,
1171 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1172 Command_line* command_line,
1173 Script_options* script_options,
1174 Lex* lex,
1175 bool skip_on_incompatible_target)
1176 : filename_(filename), posdep_options_(posdep_options),
1177 parsing_defsym_(parsing_defsym), in_group_(in_group),
1178 is_in_sysroot_(is_in_sysroot),
1179 skip_on_incompatible_target_(skip_on_incompatible_target),
1180 found_incompatible_target_(false),
1181 command_line_(command_line), script_options_(script_options),
1182 version_script_info_(script_options->version_script_info()),
1183 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1185 // We start out processing C symbols in the default lex mode.
1186 this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1187 this->lex_mode_stack_.push_back(lex->mode());
1190 // Return the file name.
1191 const char*
1192 filename() const
1193 { return this->filename_; }
1195 // Return the position dependent options. The caller may modify
1196 // this.
1197 Position_dependent_options&
1198 position_dependent_options()
1199 { return this->posdep_options_; }
1201 // Whether we are parsing a --defsym.
1202 bool
1203 parsing_defsym() const
1204 { return this->parsing_defsym_; }
1206 // Return whether this script is being run in a group.
1207 bool
1208 in_group() const
1209 { return this->in_group_; }
1211 // Return whether this script was found using a directory in the
1212 // sysroot.
1213 bool
1214 is_in_sysroot() const
1215 { return this->is_in_sysroot_; }
1217 // Whether to skip to the next file with the same name if we find an
1218 // incompatible target in an OUTPUT_FORMAT statement.
1219 bool
1220 skip_on_incompatible_target() const
1221 { return this->skip_on_incompatible_target_; }
1223 // Stop skipping to the next file on an incompatible target. This
1224 // is called when we make some unrevocable change to the data
1225 // structures.
1226 void
1227 clear_skip_on_incompatible_target()
1228 { this->skip_on_incompatible_target_ = false; }
1230 // Whether we found an incompatible target in an OUTPUT_FORMAT
1231 // statement.
1232 bool
1233 found_incompatible_target() const
1234 { return this->found_incompatible_target_; }
1236 // Note that we found an incompatible target.
1237 void
1238 set_found_incompatible_target()
1239 { this->found_incompatible_target_ = true; }
1241 // Returns the Command_line structure passed in at constructor time.
1242 // This value may be NULL. The caller may modify this, which modifies
1243 // the passed-in Command_line object (not a copy).
1244 Command_line*
1245 command_line()
1246 { return this->command_line_; }
1248 // Return the options which may be set by a script.
1249 Script_options*
1250 script_options()
1251 { return this->script_options_; }
1253 // Return the object in which version script information should be stored.
1254 Version_script_info*
1255 version_script()
1256 { return this->version_script_info_; }
1258 // Return the next token, and advance.
1259 const Token*
1260 next_token()
1262 const Token* token = this->lex_->next_token();
1263 this->lineno_ = token->lineno();
1264 this->charpos_ = token->charpos();
1265 return token;
1268 // Set a new lexer mode, pushing the current one.
1269 void
1270 push_lex_mode(Lex::Mode mode)
1272 this->lex_mode_stack_.push_back(this->lex_->mode());
1273 this->lex_->set_mode(mode);
1276 // Pop the lexer mode.
1277 void
1278 pop_lex_mode()
1280 gold_assert(!this->lex_mode_stack_.empty());
1281 this->lex_->set_mode(this->lex_mode_stack_.back());
1282 this->lex_mode_stack_.pop_back();
1285 // Return the current lexer mode.
1286 Lex::Mode
1287 lex_mode() const
1288 { return this->lex_mode_stack_.back(); }
1290 // Return the line number of the last token.
1292 lineno() const
1293 { return this->lineno_; }
1295 // Return the character position in the line of the last token.
1297 charpos() const
1298 { return this->charpos_; }
1300 // Return the list of input files, creating it if necessary. This
1301 // is a space leak--we never free the INPUTS_ pointer.
1302 Input_arguments*
1303 inputs()
1305 if (this->inputs_ == NULL)
1306 this->inputs_ = new Input_arguments();
1307 return this->inputs_;
1310 // Return whether we saw any input files.
1311 bool
1312 saw_inputs() const
1313 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1315 // Return the current language being processed in a version script
1316 // (eg, "C++"). The empty string represents unmangled C names.
1317 Version_script_info::Language
1318 get_current_language() const
1319 { return this->language_stack_.back(); }
1321 // Push a language onto the stack when entering an extern block.
1322 void
1323 push_language(Version_script_info::Language lang)
1324 { this->language_stack_.push_back(lang); }
1326 // Pop a language off of the stack when exiting an extern block.
1327 void
1328 pop_language()
1330 gold_assert(!this->language_stack_.empty());
1331 this->language_stack_.pop_back();
1334 private:
1335 // The name of the file we are reading.
1336 const char* filename_;
1337 // The position dependent options.
1338 Position_dependent_options posdep_options_;
1339 // True if we are parsing a --defsym.
1340 bool parsing_defsym_;
1341 // Whether we are currently in a --start-group/--end-group.
1342 bool in_group_;
1343 // Whether the script was found in a sysrooted directory.
1344 bool is_in_sysroot_;
1345 // If this is true, then if we find an OUTPUT_FORMAT with an
1346 // incompatible target, then we tell the parser to abort so that we
1347 // can search for the next file with the same name.
1348 bool skip_on_incompatible_target_;
1349 // True if we found an OUTPUT_FORMAT with an incompatible target.
1350 bool found_incompatible_target_;
1351 // May be NULL if the user chooses not to pass one in.
1352 Command_line* command_line_;
1353 // Options which may be set from any linker script.
1354 Script_options* script_options_;
1355 // Information parsed from a version script.
1356 Version_script_info* version_script_info_;
1357 // The lexer.
1358 Lex* lex_;
1359 // The line number of the last token returned by next_token.
1360 int lineno_;
1361 // The column number of the last token returned by next_token.
1362 int charpos_;
1363 // A stack of lexer modes.
1364 std::vector<Lex::Mode> lex_mode_stack_;
1365 // A stack of which extern/language block we're inside. Can be C++,
1366 // java, or empty for C.
1367 std::vector<Version_script_info::Language> language_stack_;
1368 // New input files found to add to the link.
1369 Input_arguments* inputs_;
1372 // FILE was found as an argument on the command line. Try to read it
1373 // as a script. Return true if the file was handled.
1375 bool
1376 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1377 Dirsearch* dirsearch, int dirindex,
1378 Input_objects* input_objects, Mapfile* mapfile,
1379 Input_group* input_group,
1380 const Input_argument* input_argument,
1381 Input_file* input_file, Task_token* next_blocker,
1382 bool* used_next_blocker)
1384 *used_next_blocker = false;
1386 std::string input_string;
1387 Lex::read_file(input_file, &input_string);
1389 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1391 Parser_closure closure(input_file->filename().c_str(),
1392 input_argument->file().options(),
1393 false,
1394 input_group != NULL,
1395 input_file->is_in_sysroot(),
1396 NULL,
1397 layout->script_options(),
1398 &lex,
1399 input_file->will_search_for());
1401 bool old_saw_sections_clause =
1402 layout->script_options()->saw_sections_clause();
1404 if (yyparse(&closure) != 0)
1406 if (closure.found_incompatible_target())
1408 Read_symbols::incompatible_warning(input_argument, input_file);
1409 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1410 dirsearch, dirindex, mapfile, input_argument,
1411 input_group, next_blocker);
1412 return true;
1414 return false;
1417 if (!old_saw_sections_clause
1418 && layout->script_options()->saw_sections_clause()
1419 && layout->have_added_input_section())
1420 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1421 input_file->filename().c_str());
1423 if (!closure.saw_inputs())
1424 return true;
1426 Task_token* this_blocker = NULL;
1427 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1428 p != closure.inputs()->end();
1429 ++p)
1431 Task_token* nb;
1432 if (p + 1 == closure.inputs()->end())
1433 nb = next_blocker;
1434 else
1436 nb = new Task_token(true);
1437 nb->add_blocker();
1439 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1440 layout, dirsearch, 0, mapfile, &*p,
1441 input_group, NULL, this_blocker, nb));
1442 this_blocker = nb;
1445 if (layout->incremental_inputs())
1447 // Like new Read_symbols(...) above, we rely on close.inputs()
1448 // getting leaked by closure.
1449 Script_info* info = new Script_info(closure.inputs());
1450 layout->incremental_inputs()->report_script(
1451 input_argument,
1452 input_file->file().get_mtime(),
1453 info);
1455 *used_next_blocker = true;
1457 return true;
1460 // Helper function for read_version_script() and
1461 // read_commandline_script(). Processes the given file in the mode
1462 // indicated by first_token and lex_mode.
1464 static bool
1465 read_script_file(const char* filename, Command_line* cmdline,
1466 Script_options* script_options,
1467 int first_token, Lex::Mode lex_mode)
1469 // TODO: if filename is a relative filename, search for it manually
1470 // using "." + cmdline->options()->search_path() -- not dirsearch.
1471 Dirsearch dirsearch;
1473 // The file locking code wants to record a Task, but we haven't
1474 // started the workqueue yet. This is only for debugging purposes,
1475 // so we invent a fake value.
1476 const Task* task = reinterpret_cast<const Task*>(-1);
1478 // We don't want this file to be opened in binary mode.
1479 Position_dependent_options posdep = cmdline->position_dependent_options();
1480 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1481 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1482 Input_file_argument input_argument(filename,
1483 Input_file_argument::INPUT_FILE_TYPE_FILE,
1484 "", false, posdep);
1485 Input_file input_file(&input_argument);
1486 int dummy = 0;
1487 if (!input_file.open(dirsearch, task, &dummy))
1488 return false;
1490 std::string input_string;
1491 Lex::read_file(&input_file, &input_string);
1493 Lex lex(input_string.c_str(), input_string.length(), first_token);
1494 lex.set_mode(lex_mode);
1496 Parser_closure closure(filename,
1497 cmdline->position_dependent_options(),
1498 first_token == Lex::DYNAMIC_LIST,
1499 false,
1500 input_file.is_in_sysroot(),
1501 cmdline,
1502 script_options,
1503 &lex,
1504 false);
1505 if (yyparse(&closure) != 0)
1507 input_file.file().unlock(task);
1508 return false;
1511 input_file.file().unlock(task);
1513 gold_assert(!closure.saw_inputs());
1515 return true;
1518 // FILENAME was found as an argument to --script (-T).
1519 // Read it as a script, and execute its contents immediately.
1521 bool
1522 read_commandline_script(const char* filename, Command_line* cmdline)
1524 return read_script_file(filename, cmdline, &cmdline->script_options(),
1525 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1528 // FILENAME was found as an argument to --version-script. Read it as
1529 // a version script, and store its contents in
1530 // cmdline->script_options()->version_script_info().
1532 bool
1533 read_version_script(const char* filename, Command_line* cmdline)
1535 return read_script_file(filename, cmdline, &cmdline->script_options(),
1536 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1539 // FILENAME was found as an argument to --dynamic-list. Read it as a
1540 // list of symbols, and store its contents in DYNAMIC_LIST.
1542 bool
1543 read_dynamic_list(const char* filename, Command_line* cmdline,
1544 Script_options* dynamic_list)
1546 return read_script_file(filename, cmdline, dynamic_list,
1547 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1550 // Implement the --defsym option on the command line. Return true if
1551 // all is well.
1553 bool
1554 Script_options::define_symbol(const char* definition)
1556 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1557 lex.set_mode(Lex::EXPRESSION);
1559 // Dummy value.
1560 Position_dependent_options posdep_options;
1562 Parser_closure closure("command line", posdep_options, true,
1563 false, false, NULL, this, &lex, false);
1565 if (yyparse(&closure) != 0)
1566 return false;
1568 gold_assert(!closure.saw_inputs());
1570 return true;
1573 // Print the script to F for debugging.
1575 void
1576 Script_options::print(FILE* f) const
1578 fprintf(f, "%s: Dumping linker script\n", program_name);
1580 if (!this->entry_.empty())
1581 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1583 for (Symbol_assignments::const_iterator p =
1584 this->symbol_assignments_.begin();
1585 p != this->symbol_assignments_.end();
1586 ++p)
1587 (*p)->print(f);
1589 for (Assertions::const_iterator p = this->assertions_.begin();
1590 p != this->assertions_.end();
1591 ++p)
1592 (*p)->print(f);
1594 this->script_sections_.print(f);
1596 this->version_script_info_.print(f);
1599 // Manage mapping from keywords to the codes expected by the bison
1600 // parser. We construct one global object for each lex mode with
1601 // keywords.
1603 class Keyword_to_parsecode
1605 public:
1606 // The structure which maps keywords to parsecodes.
1607 struct Keyword_parsecode
1609 // Keyword.
1610 const char* keyword;
1611 // Corresponding parsecode.
1612 int parsecode;
1615 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1616 int keyword_count)
1617 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1620 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1621 // keyword.
1623 keyword_to_parsecode(const char* keyword, size_t len) const;
1625 private:
1626 const Keyword_parsecode* keyword_parsecodes_;
1627 const int keyword_count_;
1630 // Mapping from keyword string to keyword parsecode. This array must
1631 // be kept in sorted order. Parsecodes are looked up using bsearch.
1632 // This array must correspond to the list of parsecodes in yyscript.y.
1634 static const Keyword_to_parsecode::Keyword_parsecode
1635 script_keyword_parsecodes[] =
1637 { "ABSOLUTE", ABSOLUTE },
1638 { "ADDR", ADDR },
1639 { "ALIGN", ALIGN_K },
1640 { "ALIGNOF", ALIGNOF },
1641 { "ASSERT", ASSERT_K },
1642 { "AS_NEEDED", AS_NEEDED },
1643 { "AT", AT },
1644 { "BIND", BIND },
1645 { "BLOCK", BLOCK },
1646 { "BYTE", BYTE },
1647 { "CONSTANT", CONSTANT },
1648 { "CONSTRUCTORS", CONSTRUCTORS },
1649 { "COPY", COPY },
1650 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1651 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1652 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1653 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1654 { "DEFINED", DEFINED },
1655 { "DSECT", DSECT },
1656 { "ENTRY", ENTRY },
1657 { "EXCLUDE_FILE", EXCLUDE_FILE },
1658 { "EXTERN", EXTERN },
1659 { "FILL", FILL },
1660 { "FLOAT", FLOAT },
1661 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1662 { "GROUP", GROUP },
1663 { "HLL", HLL },
1664 { "INCLUDE", INCLUDE },
1665 { "INFO", INFO },
1666 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1667 { "INPUT", INPUT },
1668 { "KEEP", KEEP },
1669 { "LENGTH", LENGTH },
1670 { "LOADADDR", LOADADDR },
1671 { "LONG", LONG },
1672 { "MAP", MAP },
1673 { "MAX", MAX_K },
1674 { "MEMORY", MEMORY },
1675 { "MIN", MIN_K },
1676 { "NEXT", NEXT },
1677 { "NOCROSSREFS", NOCROSSREFS },
1678 { "NOFLOAT", NOFLOAT },
1679 { "NOLOAD", NOLOAD },
1680 { "ONLY_IF_RO", ONLY_IF_RO },
1681 { "ONLY_IF_RW", ONLY_IF_RW },
1682 { "OPTION", OPTION },
1683 { "ORIGIN", ORIGIN },
1684 { "OUTPUT", OUTPUT },
1685 { "OUTPUT_ARCH", OUTPUT_ARCH },
1686 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1687 { "OVERLAY", OVERLAY },
1688 { "PHDRS", PHDRS },
1689 { "PROVIDE", PROVIDE },
1690 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1691 { "QUAD", QUAD },
1692 { "SEARCH_DIR", SEARCH_DIR },
1693 { "SECTIONS", SECTIONS },
1694 { "SEGMENT_START", SEGMENT_START },
1695 { "SHORT", SHORT },
1696 { "SIZEOF", SIZEOF },
1697 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1698 { "SORT", SORT_BY_NAME },
1699 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1700 { "SORT_BY_NAME", SORT_BY_NAME },
1701 { "SPECIAL", SPECIAL },
1702 { "SQUAD", SQUAD },
1703 { "STARTUP", STARTUP },
1704 { "SUBALIGN", SUBALIGN },
1705 { "SYSLIB", SYSLIB },
1706 { "TARGET", TARGET_K },
1707 { "TRUNCATE", TRUNCATE },
1708 { "VERSION", VERSIONK },
1709 { "global", GLOBAL },
1710 { "l", LENGTH },
1711 { "len", LENGTH },
1712 { "local", LOCAL },
1713 { "o", ORIGIN },
1714 { "org", ORIGIN },
1715 { "sizeof_headers", SIZEOF_HEADERS },
1718 static const Keyword_to_parsecode
1719 script_keywords(&script_keyword_parsecodes[0],
1720 (sizeof(script_keyword_parsecodes)
1721 / sizeof(script_keyword_parsecodes[0])));
1723 static const Keyword_to_parsecode::Keyword_parsecode
1724 version_script_keyword_parsecodes[] =
1726 { "extern", EXTERN },
1727 { "global", GLOBAL },
1728 { "local", LOCAL },
1731 static const Keyword_to_parsecode
1732 version_script_keywords(&version_script_keyword_parsecodes[0],
1733 (sizeof(version_script_keyword_parsecodes)
1734 / sizeof(version_script_keyword_parsecodes[0])));
1736 static const Keyword_to_parsecode::Keyword_parsecode
1737 dynamic_list_keyword_parsecodes[] =
1739 { "extern", EXTERN },
1742 static const Keyword_to_parsecode
1743 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1744 (sizeof(dynamic_list_keyword_parsecodes)
1745 / sizeof(dynamic_list_keyword_parsecodes[0])));
1749 // Comparison function passed to bsearch.
1751 extern "C"
1754 struct Ktt_key
1756 const char* str;
1757 size_t len;
1760 static int
1761 ktt_compare(const void* keyv, const void* kttv)
1763 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1764 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1765 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1766 int i = strncmp(key->str, ktt->keyword, key->len);
1767 if (i != 0)
1768 return i;
1769 if (ktt->keyword[key->len] != '\0')
1770 return -1;
1771 return 0;
1774 } // End extern "C".
1777 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1778 size_t len) const
1780 Ktt_key key;
1781 key.str = keyword;
1782 key.len = len;
1783 void* kttv = bsearch(&key,
1784 this->keyword_parsecodes_,
1785 this->keyword_count_,
1786 sizeof(this->keyword_parsecodes_[0]),
1787 ktt_compare);
1788 if (kttv == NULL)
1789 return 0;
1790 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1791 return ktt->parsecode;
1794 // The following structs are used within the VersionInfo class as well
1795 // as in the bison helper functions. They store the information
1796 // parsed from the version script.
1798 // A single version expression.
1799 // For example, pattern="std::map*" and language="C++".
1800 struct Version_expression
1802 Version_expression(const std::string& a_pattern,
1803 Version_script_info::Language a_language,
1804 bool a_exact_match)
1805 : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1806 was_matched_by_symbol(false)
1809 std::string pattern;
1810 Version_script_info::Language language;
1811 // If false, we use glob() to match pattern. If true, we use strcmp().
1812 bool exact_match;
1813 // True if --no-undefined-version is in effect and we found this
1814 // version in get_symbol_version. We use mutable because this
1815 // struct is generally not modifiable after it has been created.
1816 mutable bool was_matched_by_symbol;
1819 // A list of expressions.
1820 struct Version_expression_list
1822 std::vector<struct Version_expression> expressions;
1825 // A list of which versions upon which another version depends.
1826 // Strings should be from the Stringpool.
1827 struct Version_dependency_list
1829 std::vector<std::string> dependencies;
1832 // The total definition of a version. It includes the tag for the
1833 // version, its global and local expressions, and any dependencies.
1834 struct Version_tree
1836 Version_tree()
1837 : tag(), global(NULL), local(NULL), dependencies(NULL)
1840 std::string tag;
1841 const struct Version_expression_list* global;
1842 const struct Version_expression_list* local;
1843 const struct Version_dependency_list* dependencies;
1846 // Helper class that calls cplus_demangle when needed and takes care of freeing
1847 // the result.
1849 class Lazy_demangler
1851 public:
1852 Lazy_demangler(const char* symbol, int options)
1853 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1856 ~Lazy_demangler()
1857 { free(this->demangled_); }
1859 // Return the demangled name. The actual demangling happens on the first call,
1860 // and the result is later cached.
1861 inline char*
1862 get();
1864 private:
1865 // The symbol to demangle.
1866 const char *symbol_;
1867 // Option flags to pass to cplus_demagle.
1868 const int options_;
1869 // The cached demangled value, or NULL if demangling didn't happen yet or
1870 // failed.
1871 char *demangled_;
1872 // Whether we already called cplus_demangle
1873 bool did_demangle_;
1876 // Return the demangled name. The actual demangling happens on the first call,
1877 // and the result is later cached. Returns NULL if the symbol cannot be
1878 // demangled.
1880 inline char*
1881 Lazy_demangler::get()
1883 if (!this->did_demangle_)
1885 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1886 this->did_demangle_ = true;
1888 return this->demangled_;
1891 // Class Version_script_info.
1893 Version_script_info::Version_script_info()
1894 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1895 default_version_(NULL), default_is_global_(false), is_finalized_(false)
1897 for (int i = 0; i < LANGUAGE_COUNT; ++i)
1898 this->exact_[i] = NULL;
1901 Version_script_info::~Version_script_info()
1905 // Forget all the known version script information.
1907 void
1908 Version_script_info::clear()
1910 for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
1911 delete this->dependency_lists_[k];
1912 this->dependency_lists_.clear();
1913 for (size_t k = 0; k < this->version_trees_.size(); ++k)
1914 delete this->version_trees_[k];
1915 this->version_trees_.clear();
1916 for (size_t k = 0; k < this->expression_lists_.size(); ++k)
1917 delete this->expression_lists_[k];
1918 this->expression_lists_.clear();
1921 // Finalize the version script information.
1923 void
1924 Version_script_info::finalize()
1926 if (!this->is_finalized_)
1928 this->build_lookup_tables();
1929 this->is_finalized_ = true;
1933 // Return all the versions.
1935 std::vector<std::string>
1936 Version_script_info::get_versions() const
1938 std::vector<std::string> ret;
1939 for (size_t j = 0; j < this->version_trees_.size(); ++j)
1940 if (!this->version_trees_[j]->tag.empty())
1941 ret.push_back(this->version_trees_[j]->tag);
1942 return ret;
1945 // Return the dependencies of VERSION.
1947 std::vector<std::string>
1948 Version_script_info::get_dependencies(const char* version) const
1950 std::vector<std::string> ret;
1951 for (size_t j = 0; j < this->version_trees_.size(); ++j)
1952 if (this->version_trees_[j]->tag == version)
1954 const struct Version_dependency_list* deps =
1955 this->version_trees_[j]->dependencies;
1956 if (deps != NULL)
1957 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1958 ret.push_back(deps->dependencies[k]);
1959 return ret;
1961 return ret;
1964 // A version script essentially maps a symbol name to a version tag
1965 // and an indication of whether symbol is global or local within that
1966 // version tag. Each symbol maps to at most one version tag.
1967 // Unfortunately, in practice, version scripts are ambiguous, and list
1968 // symbols multiple times. Thus, we have to document the matching
1969 // process.
1971 // This is a description of what the GNU linker does as of 2010-01-11.
1972 // It walks through the version tags in the order in which they appear
1973 // in the version script. For each tag, it first walks through the
1974 // global patterns for that tag, then the local patterns. When
1975 // looking at a single pattern, it first applies any language specific
1976 // demangling as specified for the pattern, and then matches the
1977 // resulting symbol name to the pattern. If it finds an exact match
1978 // for a literal pattern (a pattern enclosed in quotes or with no
1979 // wildcard characters), then that is the match that it uses. If
1980 // finds a match with a wildcard pattern, then it saves it and
1981 // continues searching. Wildcard patterns that are exactly "*" are
1982 // saved separately.
1984 // If no exact match with a literal pattern is ever found, then if a
1985 // wildcard match with a global pattern was found it is used,
1986 // otherwise if a wildcard match with a local pattern was found it is
1987 // used.
1989 // This is the result:
1990 // * If there is an exact match, then we use the first tag in the
1991 // version script where it matches.
1992 // + If the exact match in that tag is global, it is used.
1993 // + Otherwise the exact match in that tag is local, and is used.
1994 // * Otherwise, if there is any match with a global wildcard pattern:
1995 // + If there is any match with a wildcard pattern which is not
1996 // "*", then we use the tag in which the *last* such pattern
1997 // appears.
1998 // + Otherwise, we matched "*". If there is no match with a local
1999 // wildcard pattern which is not "*", then we use the *last*
2000 // match with a global "*". Otherwise, continue.
2001 // * Otherwise, if there is any match with a local wildcard pattern:
2002 // + If there is any match with a wildcard pattern which is not
2003 // "*", then we use the tag in which the *last* such pattern
2004 // appears.
2005 // + Otherwise, we matched "*", and we use the tag in which the
2006 // *last* such match occurred.
2008 // There is an additional wrinkle. When the GNU linker finds a symbol
2009 // with a version defined in an object file due to a .symver
2010 // directive, it looks up that symbol name in that version tag. If it
2011 // finds it, it matches the symbol name against the patterns for that
2012 // version. If there is no match with a global pattern, but there is
2013 // a match with a local pattern, then the GNU linker marks the symbol
2014 // as local.
2016 // We want gold to be generally compatible, but we also want gold to
2017 // be fast. These are the rules that gold implements:
2018 // * If there is an exact match for the mangled name, we use it.
2019 // + If there is more than one exact match, we give a warning, and
2020 // we use the first tag in the script which matches.
2021 // + If a symbol has an exact match as both global and local for
2022 // the same version tag, we give an error.
2023 // * Otherwise, we look for an extern C++ or an extern Java exact
2024 // match. If we find an exact match, we use it.
2025 // + If there is more than one exact match, we give a warning, and
2026 // we use the first tag in the script which matches.
2027 // + If a symbol has an exact match as both global and local for
2028 // the same version tag, we give an error.
2029 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2030 // patterns. We look through the version tags in reverse order.
2031 // For each version tag, we look through the global patterns and
2032 // then the local patterns. We use the first match we find (i.e.,
2033 // the last matching version tag in the file).
2034 // * Otherwise, we use the "*" pattern if there is one. We give an
2035 // error if there are multiple "*" patterns.
2037 // At least for now, gold does not look up the version tag for a
2038 // symbol version found in an object file to see if it should be
2039 // forced local. There are other ways to force a symbol to be local,
2040 // and I don't understand why this one is useful.
2042 // Build a set of fast lookup tables for a version script.
2044 void
2045 Version_script_info::build_lookup_tables()
2047 size_t size = this->version_trees_.size();
2048 for (size_t j = 0; j < size; ++j)
2050 const Version_tree* v = this->version_trees_[j];
2051 this->build_expression_list_lookup(v->local, v, false);
2052 this->build_expression_list_lookup(v->global, v, true);
2056 // If a pattern has backlashes but no unquoted wildcard characters,
2057 // then we apply backslash unquoting and look for an exact match.
2058 // Otherwise we treat it as a wildcard pattern. This function returns
2059 // true for a wildcard pattern. Otherwise, it does backslash
2060 // unquoting on *PATTERN and returns false. If this returns true,
2061 // *PATTERN may have been partially unquoted.
2063 bool
2064 Version_script_info::unquote(std::string* pattern) const
2066 bool saw_backslash = false;
2067 size_t len = pattern->length();
2068 size_t j = 0;
2069 for (size_t i = 0; i < len; ++i)
2071 if (saw_backslash)
2072 saw_backslash = false;
2073 else
2075 switch ((*pattern)[i])
2077 case '?': case '[': case '*':
2078 return true;
2079 case '\\':
2080 saw_backslash = true;
2081 continue;
2082 default:
2083 break;
2087 if (i != j)
2088 (*pattern)[j] = (*pattern)[i];
2089 ++j;
2091 return false;
2094 // Add an exact match for MATCH to *PE. The result of the match is
2095 // V/IS_GLOBAL.
2097 void
2098 Version_script_info::add_exact_match(const std::string& match,
2099 const Version_tree* v, bool is_global,
2100 const Version_expression* ve,
2101 Exact *pe)
2103 std::pair<Exact::iterator, bool> ins =
2104 pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2105 if (ins.second)
2107 // This is the first time we have seen this match.
2108 return;
2111 Version_tree_match& vtm(ins.first->second);
2112 if (vtm.real->tag != v->tag)
2114 // This is an ambiguous match. We still return the
2115 // first version that we found in the script, but we
2116 // record the new version to issue a warning if we
2117 // wind up looking up this symbol.
2118 if (vtm.ambiguous == NULL)
2119 vtm.ambiguous = v;
2121 else if (is_global != vtm.is_global)
2123 // We have a match for both the global and local entries for a
2124 // version tag. That's got to be wrong.
2125 gold_error(_("'%s' appears as both a global and a local symbol "
2126 "for version '%s' in script"),
2127 match.c_str(), v->tag.c_str());
2131 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2132 // All matches go to V, and IS_GLOBAL is true if they are global
2133 // matches.
2135 void
2136 Version_script_info::build_expression_list_lookup(
2137 const Version_expression_list* explist,
2138 const Version_tree* v,
2139 bool is_global)
2141 if (explist == NULL)
2142 return;
2143 size_t size = explist->expressions.size();
2144 for (size_t i = 0; i < size; ++i)
2146 const Version_expression& exp(explist->expressions[i]);
2148 if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2150 if (this->default_version_ != NULL
2151 && this->default_version_->tag != v->tag)
2152 gold_warning(_("wildcard match appears in both version '%s' "
2153 "and '%s' in script"),
2154 this->default_version_->tag.c_str(), v->tag.c_str());
2155 else if (this->default_version_ != NULL
2156 && this->default_is_global_ != is_global)
2157 gold_error(_("wildcard match appears as both global and local "
2158 "in version '%s' in script"),
2159 v->tag.c_str());
2160 this->default_version_ = v;
2161 this->default_is_global_ = is_global;
2162 continue;
2165 std::string pattern = exp.pattern;
2166 if (!exp.exact_match)
2168 if (this->unquote(&pattern))
2170 this->globs_.push_back(Glob(&exp, v, is_global));
2171 continue;
2175 if (this->exact_[exp.language] == NULL)
2176 this->exact_[exp.language] = new Exact();
2177 this->add_exact_match(pattern, v, is_global, &exp,
2178 this->exact_[exp.language]);
2182 // Return the name to match given a name, a language code, and two
2183 // lazy demanglers.
2185 const char*
2186 Version_script_info::get_name_to_match(const char* name,
2187 int language,
2188 Lazy_demangler* cpp_demangler,
2189 Lazy_demangler* java_demangler) const
2191 switch (language)
2193 case LANGUAGE_C:
2194 return name;
2195 case LANGUAGE_CXX:
2196 return cpp_demangler->get();
2197 case LANGUAGE_JAVA:
2198 return java_demangler->get();
2199 default:
2200 gold_unreachable();
2204 // Look up SYMBOL_NAME in the list of versions. Return true if the
2205 // symbol is found, false if not. If the symbol is found, then if
2206 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2207 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2208 // symbol is global or not.
2210 bool
2211 Version_script_info::get_symbol_version(const char* symbol_name,
2212 std::string* pversion,
2213 bool* p_is_global) const
2215 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2216 Lazy_demangler java_demangled_name(symbol_name,
2217 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2219 gold_assert(this->is_finalized_);
2220 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2222 Exact* exact = this->exact_[i];
2223 if (exact == NULL)
2224 continue;
2226 const char* name_to_match = this->get_name_to_match(symbol_name, i,
2227 &cpp_demangled_name,
2228 &java_demangled_name);
2229 if (name_to_match == NULL)
2231 // If the name can not be demangled, the GNU linker goes
2232 // ahead and tries to match it anyhow. That does not
2233 // make sense to me and I have not implemented it.
2234 continue;
2237 Exact::const_iterator pe = exact->find(name_to_match);
2238 if (pe != exact->end())
2240 const Version_tree_match& vtm(pe->second);
2241 if (vtm.ambiguous != NULL)
2242 gold_warning(_("using '%s' as version for '%s' which is also "
2243 "named in version '%s' in script"),
2244 vtm.real->tag.c_str(), name_to_match,
2245 vtm.ambiguous->tag.c_str());
2247 if (pversion != NULL)
2248 *pversion = vtm.real->tag;
2249 if (p_is_global != NULL)
2250 *p_is_global = vtm.is_global;
2252 // If we are using --no-undefined-version, and this is a
2253 // global symbol, we have to record that we have found this
2254 // symbol, so that we don't warn about it. We have to do
2255 // this now, because otherwise we have no way to get from a
2256 // non-C language back to the demangled name that we
2257 // matched.
2258 if (p_is_global != NULL && vtm.is_global)
2259 vtm.expression->was_matched_by_symbol = true;
2261 return true;
2265 // Look through the glob patterns in reverse order.
2267 for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2268 p != this->globs_.rend();
2269 ++p)
2271 int language = p->expression->language;
2272 const char* name_to_match = this->get_name_to_match(symbol_name,
2273 language,
2274 &cpp_demangled_name,
2275 &java_demangled_name);
2276 if (name_to_match == NULL)
2277 continue;
2279 if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2280 FNM_NOESCAPE) == 0)
2282 if (pversion != NULL)
2283 *pversion = p->version->tag;
2284 if (p_is_global != NULL)
2285 *p_is_global = p->is_global;
2286 return true;
2290 // Finally, there may be a wildcard.
2291 if (this->default_version_ != NULL)
2293 if (pversion != NULL)
2294 *pversion = this->default_version_->tag;
2295 if (p_is_global != NULL)
2296 *p_is_global = this->default_is_global_;
2297 return true;
2300 return false;
2303 // Give an error if any exact symbol names (not wildcards) appear in a
2304 // version script, but there is no such symbol.
2306 void
2307 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2309 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2311 const Version_tree* vt = this->version_trees_[i];
2312 if (vt->global == NULL)
2313 continue;
2314 for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2316 const Version_expression& expression(vt->global->expressions[j]);
2318 // Ignore cases where we used the version because we saw a
2319 // symbol that we looked up. Note that
2320 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2321 // not a definition. That's OK as in that case we most
2322 // likely gave an undefined symbol error anyhow.
2323 if (expression.was_matched_by_symbol)
2324 continue;
2326 // Just ignore names which are in languages other than C.
2327 // We have no way to look them up in the symbol table.
2328 if (expression.language != LANGUAGE_C)
2329 continue;
2331 // Remove backslash quoting, and ignore wildcard patterns.
2332 std::string pattern = expression.pattern;
2333 if (!expression.exact_match)
2335 if (this->unquote(&pattern))
2336 continue;
2339 if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2340 gold_error(_("version script assignment of %s to symbol %s "
2341 "failed: symbol not defined"),
2342 vt->tag.c_str(), pattern.c_str());
2347 struct Version_dependency_list*
2348 Version_script_info::allocate_dependency_list()
2350 dependency_lists_.push_back(new Version_dependency_list);
2351 return dependency_lists_.back();
2354 struct Version_expression_list*
2355 Version_script_info::allocate_expression_list()
2357 expression_lists_.push_back(new Version_expression_list);
2358 return expression_lists_.back();
2361 struct Version_tree*
2362 Version_script_info::allocate_version_tree()
2364 version_trees_.push_back(new Version_tree);
2365 return version_trees_.back();
2368 // Print for debugging.
2370 void
2371 Version_script_info::print(FILE* f) const
2373 if (this->empty())
2374 return;
2376 fprintf(f, "VERSION {");
2378 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2380 const Version_tree* vt = this->version_trees_[i];
2382 if (vt->tag.empty())
2383 fprintf(f, " {\n");
2384 else
2385 fprintf(f, " %s {\n", vt->tag.c_str());
2387 if (vt->global != NULL)
2389 fprintf(f, " global :\n");
2390 this->print_expression_list(f, vt->global);
2393 if (vt->local != NULL)
2395 fprintf(f, " local :\n");
2396 this->print_expression_list(f, vt->local);
2399 fprintf(f, " }");
2400 if (vt->dependencies != NULL)
2402 const Version_dependency_list* deps = vt->dependencies;
2403 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2405 if (j < deps->dependencies.size() - 1)
2406 fprintf(f, "\n");
2407 fprintf(f, " %s", deps->dependencies[j].c_str());
2410 fprintf(f, ";\n");
2413 fprintf(f, "}\n");
2416 void
2417 Version_script_info::print_expression_list(
2418 FILE* f,
2419 const Version_expression_list* vel) const
2421 Version_script_info::Language current_language = LANGUAGE_C;
2422 for (size_t i = 0; i < vel->expressions.size(); ++i)
2424 const Version_expression& ve(vel->expressions[i]);
2426 if (ve.language != current_language)
2428 if (current_language != LANGUAGE_C)
2429 fprintf(f, " }\n");
2430 switch (ve.language)
2432 case LANGUAGE_C:
2433 break;
2434 case LANGUAGE_CXX:
2435 fprintf(f, " extern \"C++\" {\n");
2436 break;
2437 case LANGUAGE_JAVA:
2438 fprintf(f, " extern \"Java\" {\n");
2439 break;
2440 default:
2441 gold_unreachable();
2443 current_language = ve.language;
2446 fprintf(f, " ");
2447 if (current_language != LANGUAGE_C)
2448 fprintf(f, " ");
2450 if (ve.exact_match)
2451 fprintf(f, "\"");
2452 fprintf(f, "%s", ve.pattern.c_str());
2453 if (ve.exact_match)
2454 fprintf(f, "\"");
2456 fprintf(f, "\n");
2459 if (current_language != LANGUAGE_C)
2460 fprintf(f, " }\n");
2463 } // End namespace gold.
2465 // The remaining functions are extern "C", so it's clearer to not put
2466 // them in namespace gold.
2468 using namespace gold;
2470 // This function is called by the bison parser to return the next
2471 // token.
2473 extern "C" int
2474 yylex(YYSTYPE* lvalp, void* closurev)
2476 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2477 const Token* token = closure->next_token();
2478 switch (token->classification())
2480 default:
2481 gold_unreachable();
2483 case Token::TOKEN_INVALID:
2484 yyerror(closurev, "invalid character");
2485 return 0;
2487 case Token::TOKEN_EOF:
2488 return 0;
2490 case Token::TOKEN_STRING:
2492 // This is either a keyword or a STRING.
2493 size_t len;
2494 const char* str = token->string_value(&len);
2495 int parsecode = 0;
2496 switch (closure->lex_mode())
2498 case Lex::LINKER_SCRIPT:
2499 parsecode = script_keywords.keyword_to_parsecode(str, len);
2500 break;
2501 case Lex::VERSION_SCRIPT:
2502 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2503 break;
2504 case Lex::DYNAMIC_LIST:
2505 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2506 break;
2507 default:
2508 break;
2510 if (parsecode != 0)
2511 return parsecode;
2512 lvalp->string.value = str;
2513 lvalp->string.length = len;
2514 return STRING;
2517 case Token::TOKEN_QUOTED_STRING:
2518 lvalp->string.value = token->string_value(&lvalp->string.length);
2519 return QUOTED_STRING;
2521 case Token::TOKEN_OPERATOR:
2522 return token->operator_value();
2524 case Token::TOKEN_INTEGER:
2525 lvalp->integer = token->integer_value();
2526 return INTEGER;
2530 // This function is called by the bison parser to report an error.
2532 extern "C" void
2533 yyerror(void* closurev, const char* message)
2535 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2536 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2537 closure->charpos(), message);
2540 // Called by the bison parser to add an external symbol to the link.
2542 extern "C" void
2543 script_add_extern(void* closurev, const char* name, size_t length)
2545 // We treat exactly like -u NAME. FIXME: If it seems useful, we
2546 // could handle this after the command line has been read, by adding
2547 // entries to the symbol table directly.
2548 std::string arg("--undefined=");
2549 arg.append(name, length);
2550 script_parse_option(closurev, arg.c_str(), arg.size());
2553 // Called by the bison parser to add a file to the link.
2555 extern "C" void
2556 script_add_file(void* closurev, const char* name, size_t length)
2558 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2560 // If this is an absolute path, and we found the script in the
2561 // sysroot, then we want to prepend the sysroot to the file name.
2562 // For example, this is how we handle a cross link to the x86_64
2563 // libc.so, which refers to /lib/libc.so.6.
2564 std::string name_string(name, length);
2565 const char* extra_search_path = ".";
2566 std::string script_directory;
2567 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2569 if (closure->is_in_sysroot())
2571 const std::string& sysroot(parameters->options().sysroot());
2572 gold_assert(!sysroot.empty());
2573 name_string = sysroot + name_string;
2576 else
2578 // In addition to checking the normal library search path, we
2579 // also want to check in the script-directory.
2580 const char *slash = strrchr(closure->filename(), '/');
2581 if (slash != NULL)
2583 script_directory.assign(closure->filename(),
2584 slash - closure->filename() + 1);
2585 extra_search_path = script_directory.c_str();
2589 Input_file_argument file(name_string.c_str(),
2590 Input_file_argument::INPUT_FILE_TYPE_FILE,
2591 extra_search_path, false,
2592 closure->position_dependent_options());
2593 closure->inputs()->add_file(file);
2596 // Called by the bison parser to add a library to the link.
2598 extern "C" void
2599 script_add_library(void* closurev, const char* name, size_t length)
2601 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2602 std::string name_string(name, length);
2604 if (name_string[0] != 'l')
2605 gold_error(_("library name must be prefixed with -l"));
2607 Input_file_argument file(name_string.c_str() + 1,
2608 Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2609 "", false,
2610 closure->position_dependent_options());
2611 closure->inputs()->add_file(file);
2614 // Called by the bison parser to start a group. If we are already in
2615 // a group, that means that this script was invoked within a
2616 // --start-group --end-group sequence on the command line, or that
2617 // this script was found in a GROUP of another script. In that case,
2618 // we simply continue the existing group, rather than starting a new
2619 // one. It is possible to construct a case in which this will do
2620 // something other than what would happen if we did a recursive group,
2621 // but it's hard to imagine why the different behaviour would be
2622 // useful for a real program. Avoiding recursive groups is simpler
2623 // and more efficient.
2625 extern "C" void
2626 script_start_group(void* closurev)
2628 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2629 if (!closure->in_group())
2630 closure->inputs()->start_group();
2633 // Called by the bison parser at the end of a group.
2635 extern "C" void
2636 script_end_group(void* closurev)
2638 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2639 if (!closure->in_group())
2640 closure->inputs()->end_group();
2643 // Called by the bison parser to start an AS_NEEDED list.
2645 extern "C" void
2646 script_start_as_needed(void* closurev)
2648 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2649 closure->position_dependent_options().set_as_needed(true);
2652 // Called by the bison parser at the end of an AS_NEEDED list.
2654 extern "C" void
2655 script_end_as_needed(void* closurev)
2657 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2658 closure->position_dependent_options().set_as_needed(false);
2661 // Called by the bison parser to set the entry symbol.
2663 extern "C" void
2664 script_set_entry(void* closurev, const char* entry, size_t length)
2666 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2667 // TODO(csilvers): FIXME -- call set_entry directly.
2668 std::string arg("--entry=");
2669 arg.append(entry, length);
2670 script_parse_option(closurev, arg.c_str(), arg.size());
2673 // Called by the bison parser to set whether to define common symbols.
2675 extern "C" void
2676 script_set_common_allocation(void* closurev, int set)
2678 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2679 script_parse_option(closurev, arg, strlen(arg));
2682 // Called by the bison parser to define a symbol.
2684 extern "C" void
2685 script_set_symbol(void* closurev, const char* name, size_t length,
2686 Expression* value, int providei, int hiddeni)
2688 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2689 const bool provide = providei != 0;
2690 const bool hidden = hiddeni != 0;
2691 closure->script_options()->add_symbol_assignment(name, length,
2692 closure->parsing_defsym(),
2693 value, provide, hidden);
2694 closure->clear_skip_on_incompatible_target();
2697 // Called by the bison parser to add an assertion.
2699 extern "C" void
2700 script_add_assertion(void* closurev, Expression* check, const char* message,
2701 size_t messagelen)
2703 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2704 closure->script_options()->add_assertion(check, message, messagelen);
2705 closure->clear_skip_on_incompatible_target();
2708 // Called by the bison parser to parse an OPTION.
2710 extern "C" void
2711 script_parse_option(void* closurev, const char* option, size_t length)
2713 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2714 // We treat the option as a single command-line option, even if
2715 // it has internal whitespace.
2716 if (closure->command_line() == NULL)
2718 // There are some options that we could handle here--e.g.,
2719 // -lLIBRARY. Should we bother?
2720 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2721 " for scripts specified via -T/--script"),
2722 closure->filename(), closure->lineno(), closure->charpos());
2724 else
2726 bool past_a_double_dash_option = false;
2727 const char* mutable_option = strndup(option, length);
2728 gold_assert(mutable_option != NULL);
2729 closure->command_line()->process_one_option(1, &mutable_option, 0,
2730 &past_a_double_dash_option);
2731 // The General_options class will quite possibly store a pointer
2732 // into mutable_option, so we can't free it. In cases the class
2733 // does not store such a pointer, this is a memory leak. Alas. :(
2735 closure->clear_skip_on_incompatible_target();
2738 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2739 // takes either one or three arguments. In the three argument case,
2740 // the format depends on the endianness option, which we don't
2741 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2742 // wrong format, then we want to search for a new file. Returning 0
2743 // here will cause the parser to immediately abort.
2745 extern "C" int
2746 script_check_output_format(void* closurev,
2747 const char* default_name, size_t default_length,
2748 const char*, size_t, const char*, size_t)
2750 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2751 std::string name(default_name, default_length);
2752 Target* target = select_target_by_name(name.c_str());
2753 if (target == NULL || !parameters->is_compatible_target(target))
2755 if (closure->skip_on_incompatible_target())
2757 closure->set_found_incompatible_target();
2758 return 0;
2760 // FIXME: Should we warn about the unknown target?
2762 return 1;
2765 // Called by the bison parser to handle TARGET.
2767 extern "C" void
2768 script_set_target(void* closurev, const char* target, size_t len)
2770 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2771 std::string s(target, len);
2772 General_options::Object_format format_enum;
2773 format_enum = General_options::string_to_object_format(s.c_str());
2774 closure->position_dependent_options().set_format_enum(format_enum);
2777 // Called by the bison parser to handle SEARCH_DIR. This is handled
2778 // exactly like a -L option.
2780 extern "C" void
2781 script_add_search_dir(void* closurev, const char* option, size_t length)
2783 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2784 if (closure->command_line() == NULL)
2785 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2786 " for scripts specified via -T/--script"),
2787 closure->filename(), closure->lineno(), closure->charpos());
2788 else if (!closure->command_line()->options().nostdlib())
2790 std::string s = "-L" + std::string(option, length);
2791 script_parse_option(closurev, s.c_str(), s.size());
2795 /* Called by the bison parser to push the lexer into expression
2796 mode. */
2798 extern "C" void
2799 script_push_lex_into_expression_mode(void* closurev)
2801 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2802 closure->push_lex_mode(Lex::EXPRESSION);
2805 /* Called by the bison parser to push the lexer into version
2806 mode. */
2808 extern "C" void
2809 script_push_lex_into_version_mode(void* closurev)
2811 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2812 if (closure->version_script()->is_finalized())
2813 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2814 closure->filename(), closure->lineno(), closure->charpos());
2815 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2818 /* Called by the bison parser to pop the lexer mode. */
2820 extern "C" void
2821 script_pop_lex_mode(void* closurev)
2823 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2824 closure->pop_lex_mode();
2827 // Register an entire version node. For example:
2829 // GLIBC_2.1 {
2830 // global: foo;
2831 // } GLIBC_2.0;
2833 // - tag is "GLIBC_2.1"
2834 // - tree contains the information "global: foo"
2835 // - deps contains "GLIBC_2.0"
2837 extern "C" void
2838 script_register_vers_node(void*,
2839 const char* tag,
2840 int taglen,
2841 struct Version_tree *tree,
2842 struct Version_dependency_list *deps)
2844 gold_assert(tree != NULL);
2845 tree->dependencies = deps;
2846 if (tag != NULL)
2847 tree->tag = std::string(tag, taglen);
2850 // Add a dependencies to the list of existing dependencies, if any,
2851 // and return the expanded list.
2853 extern "C" struct Version_dependency_list *
2854 script_add_vers_depend(void* closurev,
2855 struct Version_dependency_list *all_deps,
2856 const char *depend_to_add, int deplen)
2858 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2859 if (all_deps == NULL)
2860 all_deps = closure->version_script()->allocate_dependency_list();
2861 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2862 return all_deps;
2865 // Add a pattern expression to an existing list of expressions, if any.
2867 extern "C" struct Version_expression_list *
2868 script_new_vers_pattern(void* closurev,
2869 struct Version_expression_list *expressions,
2870 const char *pattern, int patlen, int exact_match)
2872 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2873 if (expressions == NULL)
2874 expressions = closure->version_script()->allocate_expression_list();
2875 expressions->expressions.push_back(
2876 Version_expression(std::string(pattern, patlen),
2877 closure->get_current_language(),
2878 static_cast<bool>(exact_match)));
2879 return expressions;
2882 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2884 extern "C" struct Version_expression_list*
2885 script_merge_expressions(struct Version_expression_list *a,
2886 struct Version_expression_list *b)
2888 a->expressions.insert(a->expressions.end(),
2889 b->expressions.begin(), b->expressions.end());
2890 // We could delete b and remove it from expressions_lists_, but
2891 // that's a lot of work. This works just as well.
2892 b->expressions.clear();
2893 return a;
2896 // Combine the global and local expressions into a a Version_tree.
2898 extern "C" struct Version_tree *
2899 script_new_vers_node(void* closurev,
2900 struct Version_expression_list *global,
2901 struct Version_expression_list *local)
2903 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2904 Version_tree* tree = closure->version_script()->allocate_version_tree();
2905 tree->global = global;
2906 tree->local = local;
2907 return tree;
2910 // Handle a transition in language, such as at the
2911 // start or end of 'extern "C++"'
2913 extern "C" void
2914 version_script_push_lang(void* closurev, const char* lang, int langlen)
2916 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2917 std::string language(lang, langlen);
2918 Version_script_info::Language code;
2919 if (language.empty() || language == "C")
2920 code = Version_script_info::LANGUAGE_C;
2921 else if (language == "C++")
2922 code = Version_script_info::LANGUAGE_CXX;
2923 else if (language == "Java")
2924 code = Version_script_info::LANGUAGE_JAVA;
2925 else
2927 char* buf = new char[langlen + 100];
2928 snprintf(buf, langlen + 100,
2929 _("unrecognized version script language '%s'"),
2930 language.c_str());
2931 yyerror(closurev, buf);
2932 delete[] buf;
2933 code = Version_script_info::LANGUAGE_C;
2935 closure->push_language(code);
2938 extern "C" void
2939 version_script_pop_lang(void* closurev)
2941 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2942 closure->pop_language();
2945 // Called by the bison parser to start a SECTIONS clause.
2947 extern "C" void
2948 script_start_sections(void* closurev)
2950 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2951 closure->script_options()->script_sections()->start_sections();
2952 closure->clear_skip_on_incompatible_target();
2955 // Called by the bison parser to finish a SECTIONS clause.
2957 extern "C" void
2958 script_finish_sections(void* closurev)
2960 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2961 closure->script_options()->script_sections()->finish_sections();
2964 // Start processing entries for an output section.
2966 extern "C" void
2967 script_start_output_section(void* closurev, const char* name, size_t namelen,
2968 const struct Parser_output_section_header* header)
2970 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2971 closure->script_options()->script_sections()->start_output_section(name,
2972 namelen,
2973 header);
2976 // Finish processing entries for an output section.
2978 extern "C" void
2979 script_finish_output_section(void* closurev,
2980 const struct Parser_output_section_trailer* trail)
2982 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2983 closure->script_options()->script_sections()->finish_output_section(trail);
2986 // Add a data item (e.g., "WORD (0)") to the current output section.
2988 extern "C" void
2989 script_add_data(void* closurev, int data_token, Expression* val)
2991 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2992 int size;
2993 bool is_signed = true;
2994 switch (data_token)
2996 case QUAD:
2997 size = 8;
2998 is_signed = false;
2999 break;
3000 case SQUAD:
3001 size = 8;
3002 break;
3003 case LONG:
3004 size = 4;
3005 break;
3006 case SHORT:
3007 size = 2;
3008 break;
3009 case BYTE:
3010 size = 1;
3011 break;
3012 default:
3013 gold_unreachable();
3015 closure->script_options()->script_sections()->add_data(size, is_signed, val);
3018 // Add a clause setting the fill value to the current output section.
3020 extern "C" void
3021 script_add_fill(void* closurev, Expression* val)
3023 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3024 closure->script_options()->script_sections()->add_fill(val);
3027 // Add a new input section specification to the current output
3028 // section.
3030 extern "C" void
3031 script_add_input_section(void* closurev,
3032 const struct Input_section_spec* spec,
3033 int keepi)
3035 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3036 bool keep = keepi != 0;
3037 closure->script_options()->script_sections()->add_input_section(spec, keep);
3040 // When we see DATA_SEGMENT_ALIGN we record that following output
3041 // sections may be relro.
3043 extern "C" void
3044 script_data_segment_align(void* closurev)
3046 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3047 if (!closure->script_options()->saw_sections_clause())
3048 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3049 closure->filename(), closure->lineno(), closure->charpos());
3050 else
3051 closure->script_options()->script_sections()->data_segment_align();
3054 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3055 // since DATA_SEGMENT_ALIGN should be relro.
3057 extern "C" void
3058 script_data_segment_relro_end(void* closurev)
3060 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3061 if (!closure->script_options()->saw_sections_clause())
3062 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3063 closure->filename(), closure->lineno(), closure->charpos());
3064 else
3065 closure->script_options()->script_sections()->data_segment_relro_end();
3068 // Create a new list of string/sort pairs.
3070 extern "C" String_sort_list_ptr
3071 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3073 return new String_sort_list(1, *string_sort);
3076 // Add an entry to a list of string/sort pairs. The way the parser
3077 // works permits us to simply modify the first parameter, rather than
3078 // copy the vector.
3080 extern "C" String_sort_list_ptr
3081 script_string_sort_list_add(String_sort_list_ptr pv,
3082 const struct Wildcard_section* string_sort)
3084 if (pv == NULL)
3085 return script_new_string_sort_list(string_sort);
3086 else
3088 pv->push_back(*string_sort);
3089 return pv;
3093 // Create a new list of strings.
3095 extern "C" String_list_ptr
3096 script_new_string_list(const char* str, size_t len)
3098 return new String_list(1, std::string(str, len));
3101 // Add an element to a list of strings. The way the parser works
3102 // permits us to simply modify the first parameter, rather than copy
3103 // the vector.
3105 extern "C" String_list_ptr
3106 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3108 if (pv == NULL)
3109 return script_new_string_list(str, len);
3110 else
3112 pv->push_back(std::string(str, len));
3113 return pv;
3117 // Concatenate two string lists. Either or both may be NULL. The way
3118 // the parser works permits us to modify the parameters, rather than
3119 // copy the vector.
3121 extern "C" String_list_ptr
3122 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3124 if (pv1 == NULL)
3125 return pv2;
3126 if (pv2 == NULL)
3127 return pv1;
3128 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3129 return pv1;
3132 // Add a new program header.
3134 extern "C" void
3135 script_add_phdr(void* closurev, const char* name, size_t namelen,
3136 unsigned int type, const Phdr_info* info)
3138 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3139 bool includes_filehdr = info->includes_filehdr != 0;
3140 bool includes_phdrs = info->includes_phdrs != 0;
3141 bool is_flags_valid = info->is_flags_valid != 0;
3142 Script_sections* ss = closure->script_options()->script_sections();
3143 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3144 is_flags_valid, info->flags, info->load_address);
3145 closure->clear_skip_on_incompatible_target();
3148 // Convert a program header string to a type.
3150 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3152 static struct
3154 const char* name;
3155 size_t namelen;
3156 unsigned int val;
3157 } phdr_type_names[] =
3159 PHDR_TYPE(PT_NULL),
3160 PHDR_TYPE(PT_LOAD),
3161 PHDR_TYPE(PT_DYNAMIC),
3162 PHDR_TYPE(PT_INTERP),
3163 PHDR_TYPE(PT_NOTE),
3164 PHDR_TYPE(PT_SHLIB),
3165 PHDR_TYPE(PT_PHDR),
3166 PHDR_TYPE(PT_TLS),
3167 PHDR_TYPE(PT_GNU_EH_FRAME),
3168 PHDR_TYPE(PT_GNU_STACK),
3169 PHDR_TYPE(PT_GNU_RELRO)
3172 extern "C" unsigned int
3173 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3175 for (unsigned int i = 0;
3176 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3177 ++i)
3178 if (namelen == phdr_type_names[i].namelen
3179 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3180 return phdr_type_names[i].val;
3181 yyerror(closurev, _("unknown PHDR type (try integer)"));
3182 return elfcpp::PT_NULL;
3185 extern "C" void
3186 script_saw_segment_start_expression(void* closurev)
3188 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3189 Script_sections* ss = closure->script_options()->script_sections();
3190 ss->set_saw_segment_start_expression(true);