1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
28 #include "safe-ctype.h"
29 #include "libiberty.h"
32 /* Define a symbol in a dynamic linkage section. */
34 struct elf_link_hash_entry
*
35 _bfd_elf_define_linkage_sym (bfd
*abfd
,
36 struct bfd_link_info
*info
,
40 struct elf_link_hash_entry
*h
;
41 struct bfd_link_hash_entry
*bh
;
42 const struct elf_backend_data
*bed
;
44 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h
->root
.type
= bfd_link_hash_new
;
55 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
57 get_elf_backend_data (abfd
)->collect
,
60 h
= (struct elf_link_hash_entry
*) bh
;
63 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
65 bed
= get_elf_backend_data (abfd
);
66 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
71 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
75 struct elf_link_hash_entry
*h
;
76 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
79 /* This function may be called more than once. */
80 s
= bfd_get_section_by_name (abfd
, ".got");
81 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
84 switch (bed
->s
->arch_size
)
95 bfd_set_error (bfd_error_bad_value
);
99 flags
= bed
->dynamic_sec_flags
;
101 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
103 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
106 if (bed
->want_got_plt
)
108 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
110 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
114 if (bed
->want_got_sym
)
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info
)->hgot
= h
;
126 /* The first bit of the global offset table is the header. */
127 s
->size
+= bed
->got_header_size
;
132 /* Create a strtab to hold the dynamic symbol names. */
134 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
136 struct elf_link_hash_table
*hash_table
;
138 hash_table
= elf_hash_table (info
);
139 if (hash_table
->dynobj
== NULL
)
140 hash_table
->dynobj
= abfd
;
142 if (hash_table
->dynstr
== NULL
)
144 hash_table
->dynstr
= _bfd_elf_strtab_init ();
145 if (hash_table
->dynstr
== NULL
)
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
159 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
162 register asection
*s
;
163 const struct elf_backend_data
*bed
;
165 if (! is_elf_hash_table (info
->hash
))
168 if (elf_hash_table (info
)->dynamic_sections_created
)
171 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
174 abfd
= elf_hash_table (info
)->dynobj
;
175 bed
= get_elf_backend_data (abfd
);
177 flags
= bed
->dynamic_sec_flags
;
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info
->executable
)
183 s
= bfd_make_section_with_flags (abfd
, ".interp",
184 flags
| SEC_READONLY
);
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
192 flags
| SEC_READONLY
);
194 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
197 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
198 flags
| SEC_READONLY
);
200 || ! bfd_set_section_alignment (abfd
, s
, 1))
203 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
204 flags
| SEC_READONLY
);
206 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
209 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
210 flags
| SEC_READONLY
);
212 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
215 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
216 flags
| SEC_READONLY
);
220 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
222 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
236 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
238 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
240 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
243 if (info
->emit_gnu_hash
)
245 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
246 flags
| SEC_READONLY
);
248 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed
->s
->arch_size
== 64)
254 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
256 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
265 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
270 /* Create dynamic sections when linking against a dynamic object. */
273 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
275 flagword flags
, pltflags
;
276 struct elf_link_hash_entry
*h
;
278 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags
= bed
->dynamic_sec_flags
;
285 if (bed
->plt_not_loaded
)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
291 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
292 if (bed
->plt_readonly
)
293 pltflags
|= SEC_READONLY
;
295 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
297 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
302 if (bed
->want_plt_sym
)
304 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info
)->hplt
= h
;
311 s
= bfd_make_section_with_flags (abfd
,
312 (bed
->rela_plts_and_copies_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags
| SEC_READONLY
);
316 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
319 if (! _bfd_elf_create_got_section (abfd
, info
))
322 if (bed
->want_dynbss
)
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
332 | SEC_LINKER_CREATED
));
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
349 s
= bfd_make_section_with_flags (abfd
,
350 (bed
->rela_plts_and_copies_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags
| SEC_READONLY
);
354 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
372 struct elf_link_hash_entry
*h
)
374 if (h
->dynindx
== -1)
376 struct elf_strtab_hash
*dynstr
;
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h
->other
))
389 if (h
->root
.type
!= bfd_link_hash_undefined
390 && h
->root
.type
!= bfd_link_hash_undefweak
)
393 if (!elf_hash_table (info
)->is_relocatable_executable
)
401 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
402 ++elf_hash_table (info
)->dynsymcount
;
404 dynstr
= elf_hash_table (info
)->dynstr
;
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
413 /* We don't put any version information in the dynamic string
415 name
= h
->root
.root
.string
;
416 p
= strchr (name
, ELF_VER_CHR
);
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
425 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
430 if (indx
== (bfd_size_type
) -1)
432 h
->dynstr_index
= indx
;
438 /* Mark a symbol dynamic. */
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
442 struct elf_link_hash_entry
*h
,
443 Elf_Internal_Sym
*sym
)
445 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
447 /* It may be called more than once on the same H. */
448 if(h
->dynamic
|| info
->relocatable
)
451 if ((info
->dynamic_data
452 && (h
->type
== STT_OBJECT
454 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
456 && h
->root
.type
== bfd_link_hash_new
457 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
465 bfd_elf_record_link_assignment (bfd
*output_bfd
,
466 struct bfd_link_info
*info
,
471 struct elf_link_hash_entry
*h
, *hv
;
472 struct elf_link_hash_table
*htab
;
473 const struct elf_backend_data
*bed
;
475 if (!is_elf_hash_table (info
->hash
))
478 htab
= elf_hash_table (info
);
479 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
483 switch (h
->root
.type
)
485 case bfd_link_hash_defined
:
486 case bfd_link_hash_defweak
:
487 case bfd_link_hash_common
:
489 case bfd_link_hash_undefweak
:
490 case bfd_link_hash_undefined
:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h
->root
.type
= bfd_link_hash_new
;
495 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
496 bfd_link_repair_undef_list (&htab
->root
);
498 case bfd_link_hash_new
:
499 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
502 case bfd_link_hash_indirect
:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed
= get_elf_backend_data (output_bfd
);
507 while (hv
->root
.type
== bfd_link_hash_indirect
508 || hv
->root
.type
== bfd_link_hash_warning
)
509 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
510 /* We don't need to update h->root.u since linker will set them
512 h
->root
.type
= bfd_link_hash_undefined
;
513 hv
->root
.type
= bfd_link_hash_indirect
;
514 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
515 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
517 case bfd_link_hash_warning
:
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
529 h
->root
.type
= bfd_link_hash_undefined
;
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
538 h
->verinfo
.verdef
= NULL
;
542 if (provide
&& hidden
)
544 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
546 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
547 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
552 if (!info
->relocatable
554 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
561 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
564 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h
->u
.weakdef
!= NULL
571 && h
->u
.weakdef
->dynindx
== -1)
573 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
591 struct elf_link_local_dynamic_entry
*entry
;
592 struct elf_link_hash_table
*eht
;
593 struct elf_strtab_hash
*dynstr
;
594 unsigned long dynstr_index
;
596 Elf_External_Sym_Shndx eshndx
;
597 char esym
[sizeof (Elf64_External_Sym
)];
599 if (! is_elf_hash_table (info
->hash
))
602 /* See if the entry exists already. */
603 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
604 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
607 amt
= sizeof (*entry
);
608 entry
= bfd_alloc (input_bfd
, amt
);
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
614 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
616 bfd_release (input_bfd
, entry
);
620 if (entry
->isym
.st_shndx
!= SHN_UNDEF
621 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
625 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
626 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
628 /* We can still bfd_release here as nothing has done another
629 bfd_alloc. We can't do this later in this function. */
630 bfd_release (input_bfd
, entry
);
635 name
= (bfd_elf_string_from_elf_section
636 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
637 entry
->isym
.st_name
));
639 dynstr
= elf_hash_table (info
)->dynstr
;
642 /* Create a strtab to hold the dynamic symbol names. */
643 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
648 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
649 if (dynstr_index
== (unsigned long) -1)
651 entry
->isym
.st_name
= dynstr_index
;
653 eht
= elf_hash_table (info
);
655 entry
->next
= eht
->dynlocal
;
656 eht
->dynlocal
= entry
;
657 entry
->input_bfd
= input_bfd
;
658 entry
->input_indx
= input_indx
;
661 /* Whatever binding the symbol had before, it's now local. */
663 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
665 /* The dynindx will be set at the end of size_dynamic_sections. */
670 /* Return the dynindex of a local dynamic symbol. */
673 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
677 struct elf_link_local_dynamic_entry
*e
;
679 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
680 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
685 /* This function is used to renumber the dynamic symbols, if some of
686 them are removed because they are marked as local. This is called
687 via elf_link_hash_traverse. */
690 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
693 size_t *count
= data
;
695 if (h
->root
.type
== bfd_link_hash_warning
)
696 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
701 if (h
->dynindx
!= -1)
702 h
->dynindx
= ++(*count
);
708 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
709 STB_LOCAL binding. */
712 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
715 size_t *count
= data
;
717 if (h
->root
.type
== bfd_link_hash_warning
)
718 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
720 if (!h
->forced_local
)
723 if (h
->dynindx
!= -1)
724 h
->dynindx
= ++(*count
);
729 /* Return true if the dynamic symbol for a given section should be
730 omitted when creating a shared library. */
732 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
733 struct bfd_link_info
*info
,
736 struct elf_link_hash_table
*htab
;
738 switch (elf_section_data (p
)->this_hdr
.sh_type
)
742 /* If sh_type is yet undecided, assume it could be
743 SHT_PROGBITS/SHT_NOBITS. */
745 htab
= elf_hash_table (info
);
746 if (p
== htab
->tls_sec
)
749 if (htab
->text_index_section
!= NULL
)
750 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
752 if (strcmp (p
->name
, ".got") == 0
753 || strcmp (p
->name
, ".got.plt") == 0
754 || strcmp (p
->name
, ".plt") == 0)
758 if (htab
->dynobj
!= NULL
759 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
760 && (ip
->flags
& SEC_LINKER_CREATED
)
761 && ip
->output_section
== p
)
766 /* There shouldn't be section relative relocations
767 against any other section. */
773 /* Assign dynsym indices. In a shared library we generate a section
774 symbol for each output section, which come first. Next come symbols
775 which have been forced to local binding. Then all of the back-end
776 allocated local dynamic syms, followed by the rest of the global
780 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
781 struct bfd_link_info
*info
,
782 unsigned long *section_sym_count
)
784 unsigned long dynsymcount
= 0;
786 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
788 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
790 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
791 if ((p
->flags
& SEC_EXCLUDE
) == 0
792 && (p
->flags
& SEC_ALLOC
) != 0
793 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
794 elf_section_data (p
)->dynindx
= ++dynsymcount
;
796 elf_section_data (p
)->dynindx
= 0;
798 *section_sym_count
= dynsymcount
;
800 elf_link_hash_traverse (elf_hash_table (info
),
801 elf_link_renumber_local_hash_table_dynsyms
,
804 if (elf_hash_table (info
)->dynlocal
)
806 struct elf_link_local_dynamic_entry
*p
;
807 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
808 p
->dynindx
= ++dynsymcount
;
811 elf_link_hash_traverse (elf_hash_table (info
),
812 elf_link_renumber_hash_table_dynsyms
,
815 /* There is an unused NULL entry at the head of the table which
816 we must account for in our count. Unless there weren't any
817 symbols, which means we'll have no table at all. */
818 if (dynsymcount
!= 0)
821 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
825 /* This function is called when we want to define a new symbol. It
826 handles the various cases which arise when we find a definition in
827 a dynamic object, or when there is already a definition in a
828 dynamic object. The new symbol is described by NAME, SYM, PSEC,
829 and PVALUE. We set SYM_HASH to the hash table entry. We set
830 OVERRIDE if the old symbol is overriding a new definition. We set
831 TYPE_CHANGE_OK if it is OK for the type to change. We set
832 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
833 change, we mean that we shouldn't warn if the type or size does
834 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
835 object is overridden by a regular object. */
838 _bfd_elf_merge_symbol (bfd
*abfd
,
839 struct bfd_link_info
*info
,
841 Elf_Internal_Sym
*sym
,
844 unsigned int *pold_alignment
,
845 struct elf_link_hash_entry
**sym_hash
,
847 bfd_boolean
*override
,
848 bfd_boolean
*type_change_ok
,
849 bfd_boolean
*size_change_ok
)
851 asection
*sec
, *oldsec
;
852 struct elf_link_hash_entry
*h
;
853 struct elf_link_hash_entry
*flip
;
856 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
857 bfd_boolean newweak
, oldweak
;
858 const struct elf_backend_data
*bed
;
864 bind
= ELF_ST_BIND (sym
->st_info
);
866 /* Silently discard TLS symbols from --just-syms. There's no way to
867 combine a static TLS block with a new TLS block for this executable. */
868 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
869 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
875 if (! bfd_is_und_section (sec
))
876 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
878 h
= ((struct elf_link_hash_entry
*)
879 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
884 bed
= get_elf_backend_data (abfd
);
886 /* This code is for coping with dynamic objects, and is only useful
887 if we are doing an ELF link. */
888 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
891 /* For merging, we only care about real symbols. */
893 while (h
->root
.type
== bfd_link_hash_indirect
894 || h
->root
.type
== bfd_link_hash_warning
)
895 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
897 /* We have to check it for every instance since the first few may be
898 refereences and not all compilers emit symbol type for undefined
900 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
902 /* If we just created the symbol, mark it as being an ELF symbol.
903 Other than that, there is nothing to do--there is no merge issue
904 with a newly defined symbol--so we just return. */
906 if (h
->root
.type
== bfd_link_hash_new
)
912 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
915 switch (h
->root
.type
)
922 case bfd_link_hash_undefined
:
923 case bfd_link_hash_undefweak
:
924 oldbfd
= h
->root
.u
.undef
.abfd
;
928 case bfd_link_hash_defined
:
929 case bfd_link_hash_defweak
:
930 oldbfd
= h
->root
.u
.def
.section
->owner
;
931 oldsec
= h
->root
.u
.def
.section
;
934 case bfd_link_hash_common
:
935 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
936 oldsec
= h
->root
.u
.c
.p
->section
;
940 /* In cases involving weak versioned symbols, we may wind up trying
941 to merge a symbol with itself. Catch that here, to avoid the
942 confusion that results if we try to override a symbol with
943 itself. The additional tests catch cases like
944 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
945 dynamic object, which we do want to handle here. */
947 && ((abfd
->flags
& DYNAMIC
) == 0
951 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
952 respectively, is from a dynamic object. */
954 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
958 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
959 else if (oldsec
!= NULL
)
961 /* This handles the special SHN_MIPS_{TEXT,DATA} section
962 indices used by MIPS ELF. */
963 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
966 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
967 respectively, appear to be a definition rather than reference. */
969 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
971 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
972 && h
->root
.type
!= bfd_link_hash_undefweak
973 && h
->root
.type
!= bfd_link_hash_common
);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment
== NULL
981 && !info
->export_dynamic
986 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
987 && ELF_ST_TYPE (sym
->st_info
) != h
->type
988 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
989 && h
->type
!= STT_NOTYPE
990 && !(bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
))
991 && bed
->is_function_type (h
->type
)))
997 /* Check TLS symbol. We don't check undefined symbol introduced by
999 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1000 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1004 bfd_boolean ntdef
, tdef
;
1005 asection
*ntsec
, *tsec
;
1007 if (h
->type
== STT_TLS
)
1027 (*_bfd_error_handler
)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1030 else if (!tdef
&& !ntdef
)
1031 (*_bfd_error_handler
)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd
, ntbfd
, h
->root
.root
.string
);
1035 (*_bfd_error_handler
)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1039 (*_bfd_error_handler
)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1043 bfd_set_error (bfd_error_bad_value
);
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn
&& !h
->dynamic_def
)
1052 if (!bfd_is_und_section (sec
))
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h
->ref_dynamic
)
1061 if (bind
== STB_WEAK
)
1062 h
->dynamic_weak
= 1;
1064 else if (bind
!= STB_WEAK
)
1065 h
->dynamic_weak
= 0;
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1072 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1073 && !bfd_is_und_section (sec
))
1076 /* Make sure this symbol is dynamic. */
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1083 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1088 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1102 const struct elf_backend_data
*bed
1103 = get_elf_backend_data (abfd
);
1104 struct elf_link_hash_entry
*vh
= *sym_hash
;
1105 vh
->root
.type
= h
->root
.type
;
1106 h
->root
.type
= bfd_link_hash_indirect
;
1107 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1112 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1113 vh
->dynamic_def
= 1;
1114 vh
->ref_dynamic
= 1;
1118 h
->root
.type
= vh
->root
.type
;
1119 vh
->ref_dynamic
= 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1131 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1132 && bfd_is_und_section (sec
))
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1140 h
->root
.type
= bfd_link_hash_undefined
;
1141 h
->root
.u
.undef
.abfd
= abfd
;
1145 h
->root
.type
= bfd_link_hash_new
;
1146 h
->root
.u
.undef
.abfd
= NULL
;
1155 /* FIXME: Should we check type and size for protected symbol? */
1161 /* Differentiate strong and weak symbols. */
1162 newweak
= bind
== STB_WEAK
;
1163 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1164 || h
->root
.type
== bfd_link_hash_undefweak
);
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1177 if (newdef
&& !newdyn
&& olddyn
)
1179 if (olddef
&& newdyn
)
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
))
1184 && bed
->is_function_type (h
->type
))
1185 *type_change_ok
= TRUE
;
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1194 && h
->root
.type
== bfd_link_hash_undefined
))
1195 *type_change_ok
= TRUE
;
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1201 || h
->root
.type
== bfd_link_hash_undefined
)
1202 *size_change_ok
= TRUE
;
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1230 && (sec
->flags
& SEC_ALLOC
) != 0
1231 && (sec
->flags
& SEC_LOAD
) == 0
1233 && !bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
1234 newdyncommon
= TRUE
;
1236 newdyncommon
= FALSE
;
1240 && h
->root
.type
== bfd_link_hash_defined
1242 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1243 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1245 && !bed
->is_function_type (h
->type
))
1246 olddyncommon
= TRUE
;
1248 olddyncommon
= FALSE
;
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed
->merge_symbol
1253 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1254 pold_alignment
, skip
, override
,
1255 type_change_ok
, size_change_ok
,
1256 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1258 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1268 && sym
->st_size
!= h
->size
)
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1276 if (! ((*info
->callbacks
->multiple_common
)
1277 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1278 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1281 if (sym
->st_size
> h
->size
)
1282 h
->size
= sym
->st_size
;
1284 *size_change_ok
= TRUE
;
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1304 || (h
->root
.type
== bfd_link_hash_common
1306 || bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
))))))
1310 newdyncommon
= FALSE
;
1312 *psec
= sec
= bfd_und_section_ptr
;
1313 *size_change_ok
= TRUE
;
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1321 if (h
->root
.type
== bfd_link_hash_common
)
1322 *type_change_ok
= TRUE
;
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1332 && h
->root
.type
== bfd_link_hash_common
)
1336 newdyncommon
= FALSE
;
1337 *pvalue
= sym
->st_size
;
1338 *psec
= sec
= bed
->common_section (oldsec
);
1339 *size_change_ok
= TRUE
;
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef
&& olddef
&& newweak
)
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1359 || (bfd_is_com_section (sec
)
1361 || bed
->is_function_type (h
->type
))))
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1370 h
->root
.type
= bfd_link_hash_undefined
;
1371 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1372 *size_change_ok
= TRUE
;
1375 olddyncommon
= FALSE
;
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1380 if (bfd_is_com_section (sec
))
1381 *type_change_ok
= TRUE
;
1383 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h
->verinfo
.vertree
= NULL
;
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1399 && bfd_is_com_section (sec
)
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info
->callbacks
->multiple_common
)
1406 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1407 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1413 if (h
->size
> *pvalue
)
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment
);
1419 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1422 olddyncommon
= FALSE
;
1424 h
->root
.type
= bfd_link_hash_undefined
;
1425 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1427 *size_change_ok
= TRUE
;
1428 *type_change_ok
= TRUE
;
1430 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1433 h
->verinfo
.vertree
= NULL
;
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1442 flip
->root
.type
= h
->root
.type
;
1443 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1444 h
->root
.type
= bfd_link_hash_indirect
;
1445 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1446 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1450 flip
->ref_dynamic
= 1;
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1463 _bfd_elf_add_default_symbol (bfd
*abfd
,
1464 struct bfd_link_info
*info
,
1465 struct elf_link_hash_entry
*h
,
1467 Elf_Internal_Sym
*sym
,
1470 bfd_boolean
*dynsym
,
1471 bfd_boolean override
)
1473 bfd_boolean type_change_ok
;
1474 bfd_boolean size_change_ok
;
1477 struct elf_link_hash_entry
*hi
;
1478 struct bfd_link_hash_entry
*bh
;
1479 const struct elf_backend_data
*bed
;
1480 bfd_boolean collect
;
1481 bfd_boolean dynamic
;
1483 size_t len
, shortlen
;
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p
= strchr (name
, ELF_VER_CHR
);
1491 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1500 BFD_ASSERT (hi
!= NULL
);
1503 while (hi
->root
.type
== bfd_link_hash_indirect
1504 || hi
->root
.type
== bfd_link_hash_warning
)
1506 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1512 bed
= get_elf_backend_data (abfd
);
1513 collect
= bed
->collect
;
1514 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1516 shortlen
= p
- name
;
1517 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1518 if (shortname
== NULL
)
1520 memcpy (shortname
, name
, shortlen
);
1521 shortname
[shortlen
] = '\0';
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok
= FALSE
;
1528 size_change_ok
= FALSE
;
1530 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1531 NULL
, &hi
, &skip
, &override
,
1532 &type_change_ok
, &size_change_ok
))
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1543 0, name
, FALSE
, collect
, &bh
)))
1545 hi
= (struct elf_link_hash_entry
*) bh
;
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1567 while (hi
->root
.type
== bfd_link_hash_indirect
1568 || hi
->root
.type
== bfd_link_hash_warning
)
1569 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1571 h
->root
.type
= bfd_link_hash_indirect
;
1572 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1576 hi
->ref_dynamic
= 1;
1580 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1590 /* Check if HI is a warning symbol. */
1591 if (hi
->root
.type
== bfd_link_hash_warning
)
1592 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1598 if (hi
->root
.type
== bfd_link_hash_indirect
)
1600 struct elf_link_hash_entry
*ht
;
1602 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1603 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1605 /* See if the new flags lead us to realize that the symbol must
1617 if (hi
->ref_regular
)
1623 /* We also need to define an indirection from the nondefault version
1627 len
= strlen (name
);
1628 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1629 if (shortname
== NULL
)
1631 memcpy (shortname
, name
, shortlen
);
1632 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok
= FALSE
;
1636 size_change_ok
= FALSE
;
1638 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1639 NULL
, &hi
, &skip
, &override
,
1640 &type_change_ok
, &size_change_ok
))
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi
->root
.type
!= bfd_link_hash_defined
1652 && hi
->root
.type
!= bfd_link_hash_defweak
)
1653 (*_bfd_error_handler
)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info
, abfd
, shortname
, BSF_INDIRECT
,
1662 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1664 hi
= (struct elf_link_hash_entry
*) bh
;
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1670 if (hi
->root
.type
== bfd_link_hash_indirect
)
1672 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1674 /* See if the new flags lead us to realize that the symbol
1686 if (hi
->ref_regular
)
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1702 struct elf_info_failed
*eif
= data
;
1704 /* Ignore this if we won't export it. */
1705 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h
->root
.type
== bfd_link_hash_indirect
)
1712 if (h
->root
.type
== bfd_link_hash_warning
)
1713 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1715 if (h
->dynindx
== -1
1719 struct bfd_elf_version_tree
*t
;
1720 struct bfd_elf_version_expr
*d
;
1722 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
1724 if (t
->globals
.list
!= NULL
)
1726 d
= (*t
->match
) (&t
->globals
, NULL
, h
->root
.root
.string
);
1731 if (t
->locals
.list
!= NULL
)
1733 d
= (*t
->match
) (&t
->locals
, NULL
, h
->root
.root
.string
);
1742 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1762 struct elf_find_verdep_info
*rinfo
= data
;
1763 Elf_Internal_Verneed
*t
;
1764 Elf_Internal_Vernaux
*a
;
1767 if (h
->root
.type
== bfd_link_hash_warning
)
1768 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1770 /* We only care about symbols defined in shared objects with version
1775 || h
->verinfo
.verdef
== NULL
)
1778 /* See if we already know about this version. */
1779 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1781 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1784 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1785 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1791 /* This is a new version. Add it to tree we are building. */
1796 t
= bfd_zalloc (rinfo
->output_bfd
, amt
);
1799 rinfo
->failed
= TRUE
;
1803 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1804 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
1805 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
1809 a
= bfd_zalloc (rinfo
->output_bfd
, amt
);
1812 rinfo
->failed
= TRUE
;
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1820 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1822 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1823 a
->vna_nextptr
= t
->vn_auxptr
;
1825 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1828 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1843 struct elf_assign_sym_version_info
*sinfo
;
1844 struct bfd_link_info
*info
;
1845 const struct elf_backend_data
*bed
;
1846 struct elf_info_failed eif
;
1853 if (h
->root
.type
== bfd_link_hash_warning
)
1854 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1856 /* Fix the symbol flags. */
1859 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1862 sinfo
->failed
= TRUE
;
1866 /* We only need version numbers for symbols defined in regular
1868 if (!h
->def_regular
)
1871 bed
= get_elf_backend_data (sinfo
->output_bfd
);
1872 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1873 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1875 struct bfd_elf_version_tree
*t
;
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1883 if (*p
== ELF_VER_CHR
)
1889 /* If there is no version string, we can just return out. */
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1900 if (strcmp (t
->name
, p
) == 0)
1904 struct bfd_elf_version_expr
*d
;
1906 len
= p
- h
->root
.root
.string
;
1907 alc
= bfd_malloc (len
);
1910 sinfo
->failed
= TRUE
;
1913 memcpy (alc
, h
->root
.root
.string
, len
- 1);
1914 alc
[len
- 1] = '\0';
1915 if (alc
[len
- 2] == ELF_VER_CHR
)
1916 alc
[len
- 2] = '\0';
1918 h
->verinfo
.vertree
= t
;
1922 if (t
->globals
.list
!= NULL
)
1923 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
1925 /* See if there is anything to force this symbol to
1927 if (d
== NULL
&& t
->locals
.list
!= NULL
)
1929 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
1932 && ! info
->export_dynamic
)
1933 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t
== NULL
&& info
->executable
)
1945 struct bfd_elf_version_tree
**pp
;
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h
->dynindx
== -1)
1954 t
= bfd_zalloc (sinfo
->output_bfd
, amt
);
1957 sinfo
->failed
= TRUE
;
1962 t
->name_indx
= (unsigned int) -1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
1969 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
1971 t
->vernum
= version_index
;
1975 h
->verinfo
.vertree
= t
;
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler
)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo
->output_bfd
, h
->root
.root
.string
);
1984 bfd_set_error (bfd_error_bad_value
);
1985 sinfo
->failed
= TRUE
;
1993 /* If we don't have a version for this symbol, see if we can find
1995 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
1997 struct bfd_elf_version_tree
*t
;
1998 struct bfd_elf_version_tree
*local_ver
;
1999 struct bfd_elf_version_expr
*d
;
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2005 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
2007 if (t
->globals
.list
!= NULL
)
2009 bfd_boolean matched
;
2013 while ((d
= (*t
->match
) (&t
->globals
, d
,
2014 h
->root
.root
.string
)) != NULL
)
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2022 h
->verinfo
.vertree
= t
;
2030 /* There is no undefined version for this symbol. Hide the
2032 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2035 if (t
->locals
.list
!= NULL
)
2038 while ((d
= (*t
->match
) (&t
->locals
, d
,
2039 h
->root
.root
.string
)) != NULL
)
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d
->pattern
[0] != '*' || d
->pattern
[1] != '\0')
2054 if (local_ver
!= NULL
)
2056 h
->verinfo
.vertree
= local_ver
;
2057 if (h
->dynindx
!= -1
2058 && ! info
->export_dynamic
)
2060 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2075 Returns FALSE if something goes wrong. */
2078 elf_link_read_relocs_from_section (bfd
*abfd
,
2080 Elf_Internal_Shdr
*shdr
,
2081 void *external_relocs
,
2082 Elf_Internal_Rela
*internal_relocs
)
2084 const struct elf_backend_data
*bed
;
2085 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2086 const bfd_byte
*erela
;
2087 const bfd_byte
*erelaend
;
2088 Elf_Internal_Rela
*irela
;
2089 Elf_Internal_Shdr
*symtab_hdr
;
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2100 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2101 nsyms
= symtab_hdr
->sh_size
/ symtab_hdr
->sh_entsize
;
2103 bed
= get_elf_backend_data (abfd
);
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2107 swap_in
= bed
->s
->swap_reloc_in
;
2108 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2109 swap_in
= bed
->s
->swap_reloca_in
;
2112 bfd_set_error (bfd_error_wrong_format
);
2116 erela
= external_relocs
;
2117 erelaend
= erela
+ shdr
->sh_size
;
2118 irela
= internal_relocs
;
2119 while (erela
< erelaend
)
2123 (*swap_in
) (abfd
, erela
, irela
);
2124 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2125 if (bed
->s
->arch_size
== 64)
2127 if ((size_t) r_symndx
>= nsyms
)
2129 (*_bfd_error_handler
)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2133 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2134 bfd_set_error (bfd_error_bad_value
);
2137 irela
+= bed
->s
->int_rels_per_ext_rel
;
2138 erela
+= shdr
->sh_entsize
;
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2155 _bfd_elf_link_read_relocs (bfd
*abfd
,
2157 void *external_relocs
,
2158 Elf_Internal_Rela
*internal_relocs
,
2159 bfd_boolean keep_memory
)
2161 Elf_Internal_Shdr
*rel_hdr
;
2162 void *alloc1
= NULL
;
2163 Elf_Internal_Rela
*alloc2
= NULL
;
2164 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2166 if (elf_section_data (o
)->relocs
!= NULL
)
2167 return elf_section_data (o
)->relocs
;
2169 if (o
->reloc_count
== 0)
2172 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2174 if (internal_relocs
== NULL
)
2178 size
= o
->reloc_count
;
2179 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2181 internal_relocs
= alloc2
= bfd_alloc (abfd
, size
);
2183 internal_relocs
= alloc2
= bfd_malloc (size
);
2184 if (internal_relocs
== NULL
)
2188 if (external_relocs
== NULL
)
2190 bfd_size_type size
= rel_hdr
->sh_size
;
2192 if (elf_section_data (o
)->rel_hdr2
)
2193 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2194 alloc1
= bfd_malloc (size
);
2197 external_relocs
= alloc1
;
2200 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2204 if (elf_section_data (o
)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2207 elf_section_data (o
)->rel_hdr2
,
2208 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2209 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2210 * bed
->s
->int_rels_per_ext_rel
))))
2213 /* Cache the results for next time, if we can. */
2215 elf_section_data (o
)->relocs
= internal_relocs
;
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2223 return internal_relocs
;
2231 bfd_release (abfd
, alloc2
);
2238 /* Compute the size of, and allocate space for, REL_HDR which is the
2239 section header for a section containing relocations for O. */
2242 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2243 Elf_Internal_Shdr
*rel_hdr
,
2246 bfd_size_type reloc_count
;
2247 bfd_size_type num_rel_hashes
;
2249 /* Figure out how many relocations there will be. */
2250 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2251 reloc_count
= elf_section_data (o
)->rel_count
;
2253 reloc_count
= elf_section_data (o
)->rel_count2
;
2255 num_rel_hashes
= o
->reloc_count
;
2256 if (num_rel_hashes
< reloc_count
)
2257 num_rel_hashes
= reloc_count
;
2259 /* That allows us to calculate the size of the section. */
2260 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2262 /* The contents field must last into write_object_contents, so we
2263 allocate it with bfd_alloc rather than malloc. Also since we
2264 cannot be sure that the contents will actually be filled in,
2265 we zero the allocated space. */
2266 rel_hdr
->contents
= bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2267 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2270 /* We only allocate one set of hash entries, so we only do it the
2271 first time we are called. */
2272 if (elf_section_data (o
)->rel_hashes
== NULL
2275 struct elf_link_hash_entry
**p
;
2277 p
= bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2281 elf_section_data (o
)->rel_hashes
= p
;
2287 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2288 originated from the section given by INPUT_REL_HDR) to the
2292 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2293 asection
*input_section
,
2294 Elf_Internal_Shdr
*input_rel_hdr
,
2295 Elf_Internal_Rela
*internal_relocs
,
2296 struct elf_link_hash_entry
**rel_hash
2299 Elf_Internal_Rela
*irela
;
2300 Elf_Internal_Rela
*irelaend
;
2302 Elf_Internal_Shdr
*output_rel_hdr
;
2303 asection
*output_section
;
2304 unsigned int *rel_countp
= NULL
;
2305 const struct elf_backend_data
*bed
;
2306 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2308 output_section
= input_section
->output_section
;
2309 output_rel_hdr
= NULL
;
2311 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2312 == input_rel_hdr
->sh_entsize
)
2314 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2315 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2317 else if (elf_section_data (output_section
)->rel_hdr2
2318 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2319 == input_rel_hdr
->sh_entsize
))
2321 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2322 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2326 (*_bfd_error_handler
)
2327 (_("%B: relocation size mismatch in %B section %A"),
2328 output_bfd
, input_section
->owner
, input_section
);
2329 bfd_set_error (bfd_error_wrong_format
);
2333 bed
= get_elf_backend_data (output_bfd
);
2334 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2335 swap_out
= bed
->s
->swap_reloc_out
;
2336 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2337 swap_out
= bed
->s
->swap_reloca_out
;
2341 erel
= output_rel_hdr
->contents
;
2342 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2343 irela
= internal_relocs
;
2344 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2345 * bed
->s
->int_rels_per_ext_rel
);
2346 while (irela
< irelaend
)
2348 (*swap_out
) (output_bfd
, irela
, erel
);
2349 irela
+= bed
->s
->int_rels_per_ext_rel
;
2350 erel
+= input_rel_hdr
->sh_entsize
;
2353 /* Bump the counter, so that we know where to add the next set of
2355 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2360 /* Make weak undefined symbols in PIE dynamic. */
2363 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2364 struct elf_link_hash_entry
*h
)
2368 && h
->root
.type
== bfd_link_hash_undefweak
)
2369 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2374 /* Fix up the flags for a symbol. This handles various cases which
2375 can only be fixed after all the input files are seen. This is
2376 currently called by both adjust_dynamic_symbol and
2377 assign_sym_version, which is unnecessary but perhaps more robust in
2378 the face of future changes. */
2381 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2382 struct elf_info_failed
*eif
)
2384 const struct elf_backend_data
*bed
;
2386 /* If this symbol was mentioned in a non-ELF file, try to set
2387 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2388 permit a non-ELF file to correctly refer to a symbol defined in
2389 an ELF dynamic object. */
2392 while (h
->root
.type
== bfd_link_hash_indirect
)
2393 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2395 if (h
->root
.type
!= bfd_link_hash_defined
2396 && h
->root
.type
!= bfd_link_hash_defweak
)
2399 h
->ref_regular_nonweak
= 1;
2403 if (h
->root
.u
.def
.section
->owner
!= NULL
2404 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2405 == bfd_target_elf_flavour
))
2408 h
->ref_regular_nonweak
= 1;
2414 if (h
->dynindx
== -1
2418 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2427 /* Unfortunately, NON_ELF is only correct if the symbol
2428 was first seen in a non-ELF file. Fortunately, if the symbol
2429 was first seen in an ELF file, we're probably OK unless the
2430 symbol was defined in a non-ELF file. Catch that case here.
2431 FIXME: We're still in trouble if the symbol was first seen in
2432 a dynamic object, and then later in a non-ELF regular object. */
2433 if ((h
->root
.type
== bfd_link_hash_defined
2434 || h
->root
.type
== bfd_link_hash_defweak
)
2436 && (h
->root
.u
.def
.section
->owner
!= NULL
2437 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2438 != bfd_target_elf_flavour
)
2439 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2440 && !h
->def_dynamic
)))
2444 /* Backend specific symbol fixup. */
2445 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2446 if (bed
->elf_backend_fixup_symbol
2447 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2450 /* If this is a final link, and the symbol was defined as a common
2451 symbol in a regular object file, and there was no definition in
2452 any dynamic object, then the linker will have allocated space for
2453 the symbol in a common section but the DEF_REGULAR
2454 flag will not have been set. */
2455 if (h
->root
.type
== bfd_link_hash_defined
2459 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2462 /* If -Bsymbolic was used (which means to bind references to global
2463 symbols to the definition within the shared object), and this
2464 symbol was defined in a regular object, then it actually doesn't
2465 need a PLT entry. Likewise, if the symbol has non-default
2466 visibility. If the symbol has hidden or internal visibility, we
2467 will force it local. */
2469 && eif
->info
->shared
2470 && is_elf_hash_table (eif
->info
->hash
)
2471 && (SYMBOLIC_BIND (eif
->info
, h
)
2472 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2475 bfd_boolean force_local
;
2477 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2478 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2479 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2482 /* If a weak undefined symbol has non-default visibility, we also
2483 hide it from the dynamic linker. */
2484 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2485 && h
->root
.type
== bfd_link_hash_undefweak
)
2486 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2488 /* If this is a weak defined symbol in a dynamic object, and we know
2489 the real definition in the dynamic object, copy interesting flags
2490 over to the real definition. */
2491 if (h
->u
.weakdef
!= NULL
)
2493 struct elf_link_hash_entry
*weakdef
;
2495 weakdef
= h
->u
.weakdef
;
2496 if (h
->root
.type
== bfd_link_hash_indirect
)
2497 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2499 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2500 || h
->root
.type
== bfd_link_hash_defweak
);
2501 BFD_ASSERT (weakdef
->def_dynamic
);
2503 /* If the real definition is defined by a regular object file,
2504 don't do anything special. See the longer description in
2505 _bfd_elf_adjust_dynamic_symbol, below. */
2506 if (weakdef
->def_regular
)
2507 h
->u
.weakdef
= NULL
;
2510 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2511 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2512 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2519 /* Make the backend pick a good value for a dynamic symbol. This is
2520 called via elf_link_hash_traverse, and also calls itself
2524 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2526 struct elf_info_failed
*eif
= data
;
2528 const struct elf_backend_data
*bed
;
2530 if (! is_elf_hash_table (eif
->info
->hash
))
2533 if (h
->root
.type
== bfd_link_hash_warning
)
2535 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2536 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2538 /* When warning symbols are created, they **replace** the "real"
2539 entry in the hash table, thus we never get to see the real
2540 symbol in a hash traversal. So look at it now. */
2541 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2544 /* Ignore indirect symbols. These are added by the versioning code. */
2545 if (h
->root
.type
== bfd_link_hash_indirect
)
2548 /* Fix the symbol flags. */
2549 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2552 /* If this symbol does not require a PLT entry, and it is not
2553 defined by a dynamic object, or is not referenced by a regular
2554 object, ignore it. We do have to handle a weak defined symbol,
2555 even if no regular object refers to it, if we decided to add it
2556 to the dynamic symbol table. FIXME: Do we normally need to worry
2557 about symbols which are defined by one dynamic object and
2558 referenced by another one? */
2563 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2565 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2569 /* If we've already adjusted this symbol, don't do it again. This
2570 can happen via a recursive call. */
2571 if (h
->dynamic_adjusted
)
2574 /* Don't look at this symbol again. Note that we must set this
2575 after checking the above conditions, because we may look at a
2576 symbol once, decide not to do anything, and then get called
2577 recursively later after REF_REGULAR is set below. */
2578 h
->dynamic_adjusted
= 1;
2580 /* If this is a weak definition, and we know a real definition, and
2581 the real symbol is not itself defined by a regular object file,
2582 then get a good value for the real definition. We handle the
2583 real symbol first, for the convenience of the backend routine.
2585 Note that there is a confusing case here. If the real definition
2586 is defined by a regular object file, we don't get the real symbol
2587 from the dynamic object, but we do get the weak symbol. If the
2588 processor backend uses a COPY reloc, then if some routine in the
2589 dynamic object changes the real symbol, we will not see that
2590 change in the corresponding weak symbol. This is the way other
2591 ELF linkers work as well, and seems to be a result of the shared
2594 I will clarify this issue. Most SVR4 shared libraries define the
2595 variable _timezone and define timezone as a weak synonym. The
2596 tzset call changes _timezone. If you write
2597 extern int timezone;
2599 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2600 you might expect that, since timezone is a synonym for _timezone,
2601 the same number will print both times. However, if the processor
2602 backend uses a COPY reloc, then actually timezone will be copied
2603 into your process image, and, since you define _timezone
2604 yourself, _timezone will not. Thus timezone and _timezone will
2605 wind up at different memory locations. The tzset call will set
2606 _timezone, leaving timezone unchanged. */
2608 if (h
->u
.weakdef
!= NULL
)
2610 /* If we get to this point, we know there is an implicit
2611 reference by a regular object file via the weak symbol H.
2612 FIXME: Is this really true? What if the traversal finds
2613 H->U.WEAKDEF before it finds H? */
2614 h
->u
.weakdef
->ref_regular
= 1;
2616 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2620 /* If a symbol has no type and no size and does not require a PLT
2621 entry, then we are probably about to do the wrong thing here: we
2622 are probably going to create a COPY reloc for an empty object.
2623 This case can arise when a shared object is built with assembly
2624 code, and the assembly code fails to set the symbol type. */
2626 && h
->type
== STT_NOTYPE
2628 (*_bfd_error_handler
)
2629 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2630 h
->root
.root
.string
);
2632 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2633 bed
= get_elf_backend_data (dynobj
);
2634 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2643 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2647 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2650 unsigned int power_of_two
;
2652 asection
*sec
= h
->root
.u
.def
.section
;
2654 /* The section aligment of definition is the maximum alignment
2655 requirement of symbols defined in the section. Since we don't
2656 know the symbol alignment requirement, we start with the
2657 maximum alignment and check low bits of the symbol address
2658 for the minimum alignment. */
2659 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2660 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2661 while ((h
->root
.u
.def
.value
& mask
) != 0)
2667 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2670 /* Adjust the section alignment if needed. */
2671 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2676 /* We make sure that the symbol will be aligned properly. */
2677 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2679 /* Define the symbol as being at this point in DYNBSS. */
2680 h
->root
.u
.def
.section
= dynbss
;
2681 h
->root
.u
.def
.value
= dynbss
->size
;
2683 /* Increment the size of DYNBSS to make room for the symbol. */
2684 dynbss
->size
+= h
->size
;
2689 /* Adjust all external symbols pointing into SEC_MERGE sections
2690 to reflect the object merging within the sections. */
2693 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2697 if (h
->root
.type
== bfd_link_hash_warning
)
2698 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2700 if ((h
->root
.type
== bfd_link_hash_defined
2701 || h
->root
.type
== bfd_link_hash_defweak
)
2702 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2703 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2705 bfd
*output_bfd
= data
;
2707 h
->root
.u
.def
.value
=
2708 _bfd_merged_section_offset (output_bfd
,
2709 &h
->root
.u
.def
.section
,
2710 elf_section_data (sec
)->sec_info
,
2711 h
->root
.u
.def
.value
);
2717 /* Returns false if the symbol referred to by H should be considered
2718 to resolve local to the current module, and true if it should be
2719 considered to bind dynamically. */
2722 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2723 struct bfd_link_info
*info
,
2724 bfd_boolean ignore_protected
)
2726 bfd_boolean binding_stays_local_p
;
2727 const struct elf_backend_data
*bed
;
2728 struct elf_link_hash_table
*hash_table
;
2733 while (h
->root
.type
== bfd_link_hash_indirect
2734 || h
->root
.type
== bfd_link_hash_warning
)
2735 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2737 /* If it was forced local, then clearly it's not dynamic. */
2738 if (h
->dynindx
== -1)
2740 if (h
->forced_local
)
2743 /* Identify the cases where name binding rules say that a
2744 visible symbol resolves locally. */
2745 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2747 switch (ELF_ST_VISIBILITY (h
->other
))
2754 hash_table
= elf_hash_table (info
);
2755 if (!is_elf_hash_table (hash_table
))
2758 bed
= get_elf_backend_data (hash_table
->dynobj
);
2760 /* Proper resolution for function pointer equality may require
2761 that these symbols perhaps be resolved dynamically, even though
2762 we should be resolving them to the current module. */
2763 if (!ignore_protected
|| !bed
->is_function_type (h
->type
))
2764 binding_stays_local_p
= TRUE
;
2771 /* If it isn't defined locally, then clearly it's dynamic. */
2772 if (!h
->def_regular
)
2775 /* Otherwise, the symbol is dynamic if binding rules don't tell
2776 us that it remains local. */
2777 return !binding_stays_local_p
;
2780 /* Return true if the symbol referred to by H should be considered
2781 to resolve local to the current module, and false otherwise. Differs
2782 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2783 undefined symbols and weak symbols. */
2786 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2787 struct bfd_link_info
*info
,
2788 bfd_boolean local_protected
)
2790 const struct elf_backend_data
*bed
;
2791 struct elf_link_hash_table
*hash_table
;
2793 /* If it's a local sym, of course we resolve locally. */
2797 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2798 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2799 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2802 /* Common symbols that become definitions don't get the DEF_REGULAR
2803 flag set, so test it first, and don't bail out. */
2804 if (ELF_COMMON_DEF_P (h
))
2806 /* If we don't have a definition in a regular file, then we can't
2807 resolve locally. The sym is either undefined or dynamic. */
2808 else if (!h
->def_regular
)
2811 /* Forced local symbols resolve locally. */
2812 if (h
->forced_local
)
2815 /* As do non-dynamic symbols. */
2816 if (h
->dynindx
== -1)
2819 /* At this point, we know the symbol is defined and dynamic. In an
2820 executable it must resolve locally, likewise when building symbolic
2821 shared libraries. */
2822 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2825 /* Now deal with defined dynamic symbols in shared libraries. Ones
2826 with default visibility might not resolve locally. */
2827 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2830 hash_table
= elf_hash_table (info
);
2831 if (!is_elf_hash_table (hash_table
))
2834 bed
= get_elf_backend_data (hash_table
->dynobj
);
2836 /* STV_PROTECTED non-function symbols are local. */
2837 if (!bed
->is_function_type (h
->type
))
2840 /* Function pointer equality tests may require that STV_PROTECTED
2841 symbols be treated as dynamic symbols, even when we know that the
2842 dynamic linker will resolve them locally. */
2843 return local_protected
;
2846 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2847 aligned. Returns the first TLS output section. */
2849 struct bfd_section
*
2850 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2852 struct bfd_section
*sec
, *tls
;
2853 unsigned int align
= 0;
2855 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2856 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2860 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2861 if (sec
->alignment_power
> align
)
2862 align
= sec
->alignment_power
;
2864 elf_hash_table (info
)->tls_sec
= tls
;
2866 /* Ensure the alignment of the first section is the largest alignment,
2867 so that the tls segment starts aligned. */
2869 tls
->alignment_power
= align
;
2874 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2876 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2877 Elf_Internal_Sym
*sym
)
2879 const struct elf_backend_data
*bed
;
2881 /* Local symbols do not count, but target specific ones might. */
2882 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2883 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2886 bed
= get_elf_backend_data (abfd
);
2887 /* Function symbols do not count. */
2888 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2891 /* If the section is undefined, then so is the symbol. */
2892 if (sym
->st_shndx
== SHN_UNDEF
)
2895 /* If the symbol is defined in the common section, then
2896 it is a common definition and so does not count. */
2897 if (bed
->common_definition (sym
))
2900 /* If the symbol is in a target specific section then we
2901 must rely upon the backend to tell us what it is. */
2902 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2903 /* FIXME - this function is not coded yet:
2905 return _bfd_is_global_symbol_definition (abfd, sym);
2907 Instead for now assume that the definition is not global,
2908 Even if this is wrong, at least the linker will behave
2909 in the same way that it used to do. */
2915 /* Search the symbol table of the archive element of the archive ABFD
2916 whose archive map contains a mention of SYMDEF, and determine if
2917 the symbol is defined in this element. */
2919 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2921 Elf_Internal_Shdr
* hdr
;
2922 bfd_size_type symcount
;
2923 bfd_size_type extsymcount
;
2924 bfd_size_type extsymoff
;
2925 Elf_Internal_Sym
*isymbuf
;
2926 Elf_Internal_Sym
*isym
;
2927 Elf_Internal_Sym
*isymend
;
2930 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2934 if (! bfd_check_format (abfd
, bfd_object
))
2937 /* If we have already included the element containing this symbol in the
2938 link then we do not need to include it again. Just claim that any symbol
2939 it contains is not a definition, so that our caller will not decide to
2940 (re)include this element. */
2941 if (abfd
->archive_pass
)
2944 /* Select the appropriate symbol table. */
2945 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2946 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2948 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2950 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2952 /* The sh_info field of the symtab header tells us where the
2953 external symbols start. We don't care about the local symbols. */
2954 if (elf_bad_symtab (abfd
))
2956 extsymcount
= symcount
;
2961 extsymcount
= symcount
- hdr
->sh_info
;
2962 extsymoff
= hdr
->sh_info
;
2965 if (extsymcount
== 0)
2968 /* Read in the symbol table. */
2969 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
2971 if (isymbuf
== NULL
)
2974 /* Scan the symbol table looking for SYMDEF. */
2976 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
2980 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
2985 if (strcmp (name
, symdef
->name
) == 0)
2987 result
= is_global_data_symbol_definition (abfd
, isym
);
2997 /* Add an entry to the .dynamic table. */
3000 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3004 struct elf_link_hash_table
*hash_table
;
3005 const struct elf_backend_data
*bed
;
3007 bfd_size_type newsize
;
3008 bfd_byte
*newcontents
;
3009 Elf_Internal_Dyn dyn
;
3011 hash_table
= elf_hash_table (info
);
3012 if (! is_elf_hash_table (hash_table
))
3015 bed
= get_elf_backend_data (hash_table
->dynobj
);
3016 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3017 BFD_ASSERT (s
!= NULL
);
3019 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3020 newcontents
= bfd_realloc (s
->contents
, newsize
);
3021 if (newcontents
== NULL
)
3025 dyn
.d_un
.d_val
= val
;
3026 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3029 s
->contents
= newcontents
;
3034 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3035 otherwise just check whether one already exists. Returns -1 on error,
3036 1 if a DT_NEEDED tag already exists, and 0 on success. */
3039 elf_add_dt_needed_tag (bfd
*abfd
,
3040 struct bfd_link_info
*info
,
3044 struct elf_link_hash_table
*hash_table
;
3045 bfd_size_type oldsize
;
3046 bfd_size_type strindex
;
3048 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3051 hash_table
= elf_hash_table (info
);
3052 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3053 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3054 if (strindex
== (bfd_size_type
) -1)
3057 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3060 const struct elf_backend_data
*bed
;
3063 bed
= get_elf_backend_data (hash_table
->dynobj
);
3064 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3066 for (extdyn
= sdyn
->contents
;
3067 extdyn
< sdyn
->contents
+ sdyn
->size
;
3068 extdyn
+= bed
->s
->sizeof_dyn
)
3070 Elf_Internal_Dyn dyn
;
3072 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3073 if (dyn
.d_tag
== DT_NEEDED
3074 && dyn
.d_un
.d_val
== strindex
)
3076 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3084 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3087 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3091 /* We were just checking for existence of the tag. */
3092 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3097 /* Sort symbol by value and section. */
3099 elf_sort_symbol (const void *arg1
, const void *arg2
)
3101 const struct elf_link_hash_entry
*h1
;
3102 const struct elf_link_hash_entry
*h2
;
3103 bfd_signed_vma vdiff
;
3105 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3106 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3107 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3109 return vdiff
> 0 ? 1 : -1;
3112 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3114 return sdiff
> 0 ? 1 : -1;
3119 /* This function is used to adjust offsets into .dynstr for
3120 dynamic symbols. This is called via elf_link_hash_traverse. */
3123 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3125 struct elf_strtab_hash
*dynstr
= data
;
3127 if (h
->root
.type
== bfd_link_hash_warning
)
3128 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3130 if (h
->dynindx
!= -1)
3131 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3135 /* Assign string offsets in .dynstr, update all structures referencing
3139 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3141 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3142 struct elf_link_local_dynamic_entry
*entry
;
3143 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3144 bfd
*dynobj
= hash_table
->dynobj
;
3147 const struct elf_backend_data
*bed
;
3150 _bfd_elf_strtab_finalize (dynstr
);
3151 size
= _bfd_elf_strtab_size (dynstr
);
3153 bed
= get_elf_backend_data (dynobj
);
3154 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3155 BFD_ASSERT (sdyn
!= NULL
);
3157 /* Update all .dynamic entries referencing .dynstr strings. */
3158 for (extdyn
= sdyn
->contents
;
3159 extdyn
< sdyn
->contents
+ sdyn
->size
;
3160 extdyn
+= bed
->s
->sizeof_dyn
)
3162 Elf_Internal_Dyn dyn
;
3164 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3168 dyn
.d_un
.d_val
= size
;
3176 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3181 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3184 /* Now update local dynamic symbols. */
3185 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3186 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3187 entry
->isym
.st_name
);
3189 /* And the rest of dynamic symbols. */
3190 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3192 /* Adjust version definitions. */
3193 if (elf_tdata (output_bfd
)->cverdefs
)
3198 Elf_Internal_Verdef def
;
3199 Elf_Internal_Verdaux defaux
;
3201 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3205 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3207 p
+= sizeof (Elf_External_Verdef
);
3208 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3210 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3212 _bfd_elf_swap_verdaux_in (output_bfd
,
3213 (Elf_External_Verdaux
*) p
, &defaux
);
3214 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3216 _bfd_elf_swap_verdaux_out (output_bfd
,
3217 &defaux
, (Elf_External_Verdaux
*) p
);
3218 p
+= sizeof (Elf_External_Verdaux
);
3221 while (def
.vd_next
);
3224 /* Adjust version references. */
3225 if (elf_tdata (output_bfd
)->verref
)
3230 Elf_Internal_Verneed need
;
3231 Elf_Internal_Vernaux needaux
;
3233 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3237 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3239 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3240 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3241 (Elf_External_Verneed
*) p
);
3242 p
+= sizeof (Elf_External_Verneed
);
3243 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3245 _bfd_elf_swap_vernaux_in (output_bfd
,
3246 (Elf_External_Vernaux
*) p
, &needaux
);
3247 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3249 _bfd_elf_swap_vernaux_out (output_bfd
,
3251 (Elf_External_Vernaux
*) p
);
3252 p
+= sizeof (Elf_External_Vernaux
);
3255 while (need
.vn_next
);
3261 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3262 The default is to only match when the INPUT and OUTPUT are exactly
3266 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3267 const bfd_target
*output
)
3269 return input
== output
;
3272 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3273 This version is used when different targets for the same architecture
3274 are virtually identical. */
3277 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3278 const bfd_target
*output
)
3280 const struct elf_backend_data
*obed
, *ibed
;
3282 if (input
== output
)
3285 ibed
= xvec_get_elf_backend_data (input
);
3286 obed
= xvec_get_elf_backend_data (output
);
3288 if (ibed
->arch
!= obed
->arch
)
3291 /* If both backends are using this function, deem them compatible. */
3292 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3295 /* Add symbols from an ELF object file to the linker hash table. */
3298 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3300 Elf_Internal_Shdr
*hdr
;
3301 bfd_size_type symcount
;
3302 bfd_size_type extsymcount
;
3303 bfd_size_type extsymoff
;
3304 struct elf_link_hash_entry
**sym_hash
;
3305 bfd_boolean dynamic
;
3306 Elf_External_Versym
*extversym
= NULL
;
3307 Elf_External_Versym
*ever
;
3308 struct elf_link_hash_entry
*weaks
;
3309 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3310 bfd_size_type nondeflt_vers_cnt
= 0;
3311 Elf_Internal_Sym
*isymbuf
= NULL
;
3312 Elf_Internal_Sym
*isym
;
3313 Elf_Internal_Sym
*isymend
;
3314 const struct elf_backend_data
*bed
;
3315 bfd_boolean add_needed
;
3316 struct elf_link_hash_table
*htab
;
3318 void *alloc_mark
= NULL
;
3319 struct bfd_hash_entry
**old_table
= NULL
;
3320 unsigned int old_size
= 0;
3321 unsigned int old_count
= 0;
3322 void *old_tab
= NULL
;
3325 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3326 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3327 long old_dynsymcount
= 0;
3329 size_t hashsize
= 0;
3331 htab
= elf_hash_table (info
);
3332 bed
= get_elf_backend_data (abfd
);
3334 if ((abfd
->flags
& DYNAMIC
) == 0)
3340 /* You can't use -r against a dynamic object. Also, there's no
3341 hope of using a dynamic object which does not exactly match
3342 the format of the output file. */
3343 if (info
->relocatable
3344 || !is_elf_hash_table (htab
)
3345 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3347 if (info
->relocatable
)
3348 bfd_set_error (bfd_error_invalid_operation
);
3350 bfd_set_error (bfd_error_wrong_format
);
3355 /* As a GNU extension, any input sections which are named
3356 .gnu.warning.SYMBOL are treated as warning symbols for the given
3357 symbol. This differs from .gnu.warning sections, which generate
3358 warnings when they are included in an output file. */
3359 if (info
->executable
)
3363 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3367 name
= bfd_get_section_name (abfd
, s
);
3368 if (CONST_STRNEQ (name
, ".gnu.warning."))
3373 name
+= sizeof ".gnu.warning." - 1;
3375 /* If this is a shared object, then look up the symbol
3376 in the hash table. If it is there, and it is already
3377 been defined, then we will not be using the entry
3378 from this shared object, so we don't need to warn.
3379 FIXME: If we see the definition in a regular object
3380 later on, we will warn, but we shouldn't. The only
3381 fix is to keep track of what warnings we are supposed
3382 to emit, and then handle them all at the end of the
3386 struct elf_link_hash_entry
*h
;
3388 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3390 /* FIXME: What about bfd_link_hash_common? */
3392 && (h
->root
.type
== bfd_link_hash_defined
3393 || h
->root
.type
== bfd_link_hash_defweak
))
3395 /* We don't want to issue this warning. Clobber
3396 the section size so that the warning does not
3397 get copied into the output file. */
3404 msg
= bfd_alloc (abfd
, sz
+ 1);
3408 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3413 if (! (_bfd_generic_link_add_one_symbol
3414 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3415 FALSE
, bed
->collect
, NULL
)))
3418 if (! info
->relocatable
)
3420 /* Clobber the section size so that the warning does
3421 not get copied into the output file. */
3424 /* Also set SEC_EXCLUDE, so that symbols defined in
3425 the warning section don't get copied to the output. */
3426 s
->flags
|= SEC_EXCLUDE
;
3435 /* If we are creating a shared library, create all the dynamic
3436 sections immediately. We need to attach them to something,
3437 so we attach them to this BFD, provided it is the right
3438 format. FIXME: If there are no input BFD's of the same
3439 format as the output, we can't make a shared library. */
3441 && is_elf_hash_table (htab
)
3442 && info
->output_bfd
->xvec
== abfd
->xvec
3443 && !htab
->dynamic_sections_created
)
3445 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3449 else if (!is_elf_hash_table (htab
))
3454 const char *soname
= NULL
;
3455 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3458 /* ld --just-symbols and dynamic objects don't mix very well.
3459 ld shouldn't allow it. */
3460 if ((s
= abfd
->sections
) != NULL
3461 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3464 /* If this dynamic lib was specified on the command line with
3465 --as-needed in effect, then we don't want to add a DT_NEEDED
3466 tag unless the lib is actually used. Similary for libs brought
3467 in by another lib's DT_NEEDED. When --no-add-needed is used
3468 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3469 any dynamic library in DT_NEEDED tags in the dynamic lib at
3471 add_needed
= (elf_dyn_lib_class (abfd
)
3472 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3473 | DYN_NO_NEEDED
)) == 0;
3475 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3480 unsigned int elfsec
;
3481 unsigned long shlink
;
3483 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3484 goto error_free_dyn
;
3486 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3487 if (elfsec
== SHN_BAD
)
3488 goto error_free_dyn
;
3489 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3491 for (extdyn
= dynbuf
;
3492 extdyn
< dynbuf
+ s
->size
;
3493 extdyn
+= bed
->s
->sizeof_dyn
)
3495 Elf_Internal_Dyn dyn
;
3497 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3498 if (dyn
.d_tag
== DT_SONAME
)
3500 unsigned int tagv
= dyn
.d_un
.d_val
;
3501 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3503 goto error_free_dyn
;
3505 if (dyn
.d_tag
== DT_NEEDED
)
3507 struct bfd_link_needed_list
*n
, **pn
;
3509 unsigned int tagv
= dyn
.d_un
.d_val
;
3511 amt
= sizeof (struct bfd_link_needed_list
);
3512 n
= bfd_alloc (abfd
, amt
);
3513 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3514 if (n
== NULL
|| fnm
== NULL
)
3515 goto error_free_dyn
;
3516 amt
= strlen (fnm
) + 1;
3517 anm
= bfd_alloc (abfd
, amt
);
3519 goto error_free_dyn
;
3520 memcpy (anm
, fnm
, amt
);
3524 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3528 if (dyn
.d_tag
== DT_RUNPATH
)
3530 struct bfd_link_needed_list
*n
, **pn
;
3532 unsigned int tagv
= dyn
.d_un
.d_val
;
3534 amt
= sizeof (struct bfd_link_needed_list
);
3535 n
= bfd_alloc (abfd
, amt
);
3536 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3537 if (n
== NULL
|| fnm
== NULL
)
3538 goto error_free_dyn
;
3539 amt
= strlen (fnm
) + 1;
3540 anm
= bfd_alloc (abfd
, amt
);
3542 goto error_free_dyn
;
3543 memcpy (anm
, fnm
, amt
);
3547 for (pn
= & runpath
;
3553 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3554 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3556 struct bfd_link_needed_list
*n
, **pn
;
3558 unsigned int tagv
= dyn
.d_un
.d_val
;
3560 amt
= sizeof (struct bfd_link_needed_list
);
3561 n
= bfd_alloc (abfd
, amt
);
3562 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3563 if (n
== NULL
|| fnm
== NULL
)
3564 goto error_free_dyn
;
3565 amt
= strlen (fnm
) + 1;
3566 anm
= bfd_alloc (abfd
, amt
);
3573 memcpy (anm
, fnm
, amt
);
3588 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3589 frees all more recently bfd_alloc'd blocks as well. */
3595 struct bfd_link_needed_list
**pn
;
3596 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3601 /* We do not want to include any of the sections in a dynamic
3602 object in the output file. We hack by simply clobbering the
3603 list of sections in the BFD. This could be handled more
3604 cleanly by, say, a new section flag; the existing
3605 SEC_NEVER_LOAD flag is not the one we want, because that one
3606 still implies that the section takes up space in the output
3608 bfd_section_list_clear (abfd
);
3610 /* Find the name to use in a DT_NEEDED entry that refers to this
3611 object. If the object has a DT_SONAME entry, we use it.
3612 Otherwise, if the generic linker stuck something in
3613 elf_dt_name, we use that. Otherwise, we just use the file
3615 if (soname
== NULL
|| *soname
== '\0')
3617 soname
= elf_dt_name (abfd
);
3618 if (soname
== NULL
|| *soname
== '\0')
3619 soname
= bfd_get_filename (abfd
);
3622 /* Save the SONAME because sometimes the linker emulation code
3623 will need to know it. */
3624 elf_dt_name (abfd
) = soname
;
3626 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3630 /* If we have already included this dynamic object in the
3631 link, just ignore it. There is no reason to include a
3632 particular dynamic object more than once. */
3637 /* If this is a dynamic object, we always link against the .dynsym
3638 symbol table, not the .symtab symbol table. The dynamic linker
3639 will only see the .dynsym symbol table, so there is no reason to
3640 look at .symtab for a dynamic object. */
3642 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3643 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3645 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3647 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3649 /* The sh_info field of the symtab header tells us where the
3650 external symbols start. We don't care about the local symbols at
3652 if (elf_bad_symtab (abfd
))
3654 extsymcount
= symcount
;
3659 extsymcount
= symcount
- hdr
->sh_info
;
3660 extsymoff
= hdr
->sh_info
;
3664 if (extsymcount
!= 0)
3666 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3668 if (isymbuf
== NULL
)
3671 /* We store a pointer to the hash table entry for each external
3673 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3674 sym_hash
= bfd_alloc (abfd
, amt
);
3675 if (sym_hash
== NULL
)
3676 goto error_free_sym
;
3677 elf_sym_hashes (abfd
) = sym_hash
;
3682 /* Read in any version definitions. */
3683 if (!_bfd_elf_slurp_version_tables (abfd
,
3684 info
->default_imported_symver
))
3685 goto error_free_sym
;
3687 /* Read in the symbol versions, but don't bother to convert them
3688 to internal format. */
3689 if (elf_dynversym (abfd
) != 0)
3691 Elf_Internal_Shdr
*versymhdr
;
3693 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3694 extversym
= bfd_malloc (versymhdr
->sh_size
);
3695 if (extversym
== NULL
)
3696 goto error_free_sym
;
3697 amt
= versymhdr
->sh_size
;
3698 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3699 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3700 goto error_free_vers
;
3704 /* If we are loading an as-needed shared lib, save the symbol table
3705 state before we start adding symbols. If the lib turns out
3706 to be unneeded, restore the state. */
3707 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3712 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3714 struct bfd_hash_entry
*p
;
3715 struct elf_link_hash_entry
*h
;
3717 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3719 h
= (struct elf_link_hash_entry
*) p
;
3720 entsize
+= htab
->root
.table
.entsize
;
3721 if (h
->root
.type
== bfd_link_hash_warning
)
3722 entsize
+= htab
->root
.table
.entsize
;
3726 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3727 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3728 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3729 if (old_tab
== NULL
)
3730 goto error_free_vers
;
3732 /* Remember the current objalloc pointer, so that all mem for
3733 symbols added can later be reclaimed. */
3734 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3735 if (alloc_mark
== NULL
)
3736 goto error_free_vers
;
3738 /* Make a special call to the linker "notice" function to
3739 tell it that we are about to handle an as-needed lib. */
3740 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3742 goto error_free_vers
;
3744 /* Clone the symbol table and sym hashes. Remember some
3745 pointers into the symbol table, and dynamic symbol count. */
3746 old_hash
= (char *) old_tab
+ tabsize
;
3747 old_ent
= (char *) old_hash
+ hashsize
;
3748 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3749 memcpy (old_hash
, sym_hash
, hashsize
);
3750 old_undefs
= htab
->root
.undefs
;
3751 old_undefs_tail
= htab
->root
.undefs_tail
;
3752 old_table
= htab
->root
.table
.table
;
3753 old_size
= htab
->root
.table
.size
;
3754 old_count
= htab
->root
.table
.count
;
3755 old_dynsymcount
= htab
->dynsymcount
;
3757 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3759 struct bfd_hash_entry
*p
;
3760 struct elf_link_hash_entry
*h
;
3762 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3764 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3765 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3766 h
= (struct elf_link_hash_entry
*) p
;
3767 if (h
->root
.type
== bfd_link_hash_warning
)
3769 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3770 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3777 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3778 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3780 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3784 asection
*sec
, *new_sec
;
3787 struct elf_link_hash_entry
*h
;
3788 bfd_boolean definition
;
3789 bfd_boolean size_change_ok
;
3790 bfd_boolean type_change_ok
;
3791 bfd_boolean new_weakdef
;
3792 bfd_boolean override
;
3794 unsigned int old_alignment
;
3799 flags
= BSF_NO_FLAGS
;
3801 value
= isym
->st_value
;
3803 common
= bed
->common_definition (isym
);
3805 bind
= ELF_ST_BIND (isym
->st_info
);
3806 if (bind
== STB_LOCAL
)
3808 /* This should be impossible, since ELF requires that all
3809 global symbols follow all local symbols, and that sh_info
3810 point to the first global symbol. Unfortunately, Irix 5
3814 else if (bind
== STB_GLOBAL
)
3816 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3819 else if (bind
== STB_WEAK
)
3823 /* Leave it up to the processor backend. */
3826 if (isym
->st_shndx
== SHN_UNDEF
)
3827 sec
= bfd_und_section_ptr
;
3828 else if (isym
->st_shndx
== SHN_ABS
)
3829 sec
= bfd_abs_section_ptr
;
3830 else if (isym
->st_shndx
== SHN_COMMON
)
3832 sec
= bfd_com_section_ptr
;
3833 /* What ELF calls the size we call the value. What ELF
3834 calls the value we call the alignment. */
3835 value
= isym
->st_size
;
3839 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3841 sec
= bfd_abs_section_ptr
;
3842 else if (sec
->kept_section
)
3844 /* Symbols from discarded section are undefined. We keep
3846 sec
= bfd_und_section_ptr
;
3847 isym
->st_shndx
= SHN_UNDEF
;
3849 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3853 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3856 goto error_free_vers
;
3858 if (isym
->st_shndx
== SHN_COMMON
3859 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3860 && !info
->relocatable
)
3862 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3866 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3869 | SEC_LINKER_CREATED
3870 | SEC_THREAD_LOCAL
));
3872 goto error_free_vers
;
3876 else if (bed
->elf_add_symbol_hook
)
3878 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3880 goto error_free_vers
;
3882 /* The hook function sets the name to NULL if this symbol
3883 should be skipped for some reason. */
3888 /* Sanity check that all possibilities were handled. */
3891 bfd_set_error (bfd_error_bad_value
);
3892 goto error_free_vers
;
3895 if (bfd_is_und_section (sec
)
3896 || bfd_is_com_section (sec
))
3901 size_change_ok
= FALSE
;
3902 type_change_ok
= bed
->type_change_ok
;
3907 if (is_elf_hash_table (htab
))
3909 Elf_Internal_Versym iver
;
3910 unsigned int vernum
= 0;
3915 if (info
->default_imported_symver
)
3916 /* Use the default symbol version created earlier. */
3917 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
3922 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
3924 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
3926 /* If this is a hidden symbol, or if it is not version
3927 1, we append the version name to the symbol name.
3928 However, we do not modify a non-hidden absolute symbol
3929 if it is not a function, because it might be the version
3930 symbol itself. FIXME: What if it isn't? */
3931 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
3933 && (!bfd_is_abs_section (sec
)
3934 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
3937 size_t namelen
, verlen
, newlen
;
3940 if (isym
->st_shndx
!= SHN_UNDEF
)
3942 if (vernum
> elf_tdata (abfd
)->cverdefs
)
3944 else if (vernum
> 1)
3946 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
3952 (*_bfd_error_handler
)
3953 (_("%B: %s: invalid version %u (max %d)"),
3955 elf_tdata (abfd
)->cverdefs
);
3956 bfd_set_error (bfd_error_bad_value
);
3957 goto error_free_vers
;
3962 /* We cannot simply test for the number of
3963 entries in the VERNEED section since the
3964 numbers for the needed versions do not start
3966 Elf_Internal_Verneed
*t
;
3969 for (t
= elf_tdata (abfd
)->verref
;
3973 Elf_Internal_Vernaux
*a
;
3975 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3977 if (a
->vna_other
== vernum
)
3979 verstr
= a
->vna_nodename
;
3988 (*_bfd_error_handler
)
3989 (_("%B: %s: invalid needed version %d"),
3990 abfd
, name
, vernum
);
3991 bfd_set_error (bfd_error_bad_value
);
3992 goto error_free_vers
;
3996 namelen
= strlen (name
);
3997 verlen
= strlen (verstr
);
3998 newlen
= namelen
+ verlen
+ 2;
3999 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4000 && isym
->st_shndx
!= SHN_UNDEF
)
4003 newname
= bfd_hash_allocate (&htab
->root
.table
, newlen
);
4004 if (newname
== NULL
)
4005 goto error_free_vers
;
4006 memcpy (newname
, name
, namelen
);
4007 p
= newname
+ namelen
;
4009 /* If this is a defined non-hidden version symbol,
4010 we add another @ to the name. This indicates the
4011 default version of the symbol. */
4012 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4013 && isym
->st_shndx
!= SHN_UNDEF
)
4015 memcpy (p
, verstr
, verlen
+ 1);
4020 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4021 &value
, &old_alignment
,
4022 sym_hash
, &skip
, &override
,
4023 &type_change_ok
, &size_change_ok
))
4024 goto error_free_vers
;
4033 while (h
->root
.type
== bfd_link_hash_indirect
4034 || h
->root
.type
== bfd_link_hash_warning
)
4035 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4037 /* Remember the old alignment if this is a common symbol, so
4038 that we don't reduce the alignment later on. We can't
4039 check later, because _bfd_generic_link_add_one_symbol
4040 will set a default for the alignment which we want to
4041 override. We also remember the old bfd where the existing
4042 definition comes from. */
4043 switch (h
->root
.type
)
4048 case bfd_link_hash_defined
:
4049 case bfd_link_hash_defweak
:
4050 old_bfd
= h
->root
.u
.def
.section
->owner
;
4053 case bfd_link_hash_common
:
4054 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4055 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4059 if (elf_tdata (abfd
)->verdef
!= NULL
4063 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4066 if (! (_bfd_generic_link_add_one_symbol
4067 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4068 (struct bfd_link_hash_entry
**) sym_hash
)))
4069 goto error_free_vers
;
4072 while (h
->root
.type
== bfd_link_hash_indirect
4073 || h
->root
.type
== bfd_link_hash_warning
)
4074 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4077 new_weakdef
= FALSE
;
4080 && (flags
& BSF_WEAK
) != 0
4081 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4082 && is_elf_hash_table (htab
)
4083 && h
->u
.weakdef
== NULL
)
4085 /* Keep a list of all weak defined non function symbols from
4086 a dynamic object, using the weakdef field. Later in this
4087 function we will set the weakdef field to the correct
4088 value. We only put non-function symbols from dynamic
4089 objects on this list, because that happens to be the only
4090 time we need to know the normal symbol corresponding to a
4091 weak symbol, and the information is time consuming to
4092 figure out. If the weakdef field is not already NULL,
4093 then this symbol was already defined by some previous
4094 dynamic object, and we will be using that previous
4095 definition anyhow. */
4097 h
->u
.weakdef
= weaks
;
4102 /* Set the alignment of a common symbol. */
4103 if ((common
|| bfd_is_com_section (sec
))
4104 && h
->root
.type
== bfd_link_hash_common
)
4109 align
= bfd_log2 (isym
->st_value
);
4112 /* The new symbol is a common symbol in a shared object.
4113 We need to get the alignment from the section. */
4114 align
= new_sec
->alignment_power
;
4116 if (align
> old_alignment
4117 /* Permit an alignment power of zero if an alignment of one
4118 is specified and no other alignments have been specified. */
4119 || (isym
->st_value
== 1 && old_alignment
== 0))
4120 h
->root
.u
.c
.p
->alignment_power
= align
;
4122 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4125 if (is_elf_hash_table (htab
))
4129 /* Check the alignment when a common symbol is involved. This
4130 can change when a common symbol is overridden by a normal
4131 definition or a common symbol is ignored due to the old
4132 normal definition. We need to make sure the maximum
4133 alignment is maintained. */
4134 if ((old_alignment
|| common
)
4135 && h
->root
.type
!= bfd_link_hash_common
)
4137 unsigned int common_align
;
4138 unsigned int normal_align
;
4139 unsigned int symbol_align
;
4143 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4144 if (h
->root
.u
.def
.section
->owner
!= NULL
4145 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4147 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4148 if (normal_align
> symbol_align
)
4149 normal_align
= symbol_align
;
4152 normal_align
= symbol_align
;
4156 common_align
= old_alignment
;
4157 common_bfd
= old_bfd
;
4162 common_align
= bfd_log2 (isym
->st_value
);
4164 normal_bfd
= old_bfd
;
4167 if (normal_align
< common_align
)
4169 /* PR binutils/2735 */
4170 if (normal_bfd
== NULL
)
4171 (*_bfd_error_handler
)
4172 (_("Warning: alignment %u of common symbol `%s' in %B"
4173 " is greater than the alignment (%u) of its section %A"),
4174 common_bfd
, h
->root
.u
.def
.section
,
4175 1 << common_align
, name
, 1 << normal_align
);
4177 (*_bfd_error_handler
)
4178 (_("Warning: alignment %u of symbol `%s' in %B"
4179 " is smaller than %u in %B"),
4180 normal_bfd
, common_bfd
,
4181 1 << normal_align
, name
, 1 << common_align
);
4185 /* Remember the symbol size if it isn't undefined. */
4186 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4187 && (definition
|| h
->size
== 0))
4190 && h
->size
!= isym
->st_size
4191 && ! size_change_ok
)
4192 (*_bfd_error_handler
)
4193 (_("Warning: size of symbol `%s' changed"
4194 " from %lu in %B to %lu in %B"),
4196 name
, (unsigned long) h
->size
,
4197 (unsigned long) isym
->st_size
);
4199 h
->size
= isym
->st_size
;
4202 /* If this is a common symbol, then we always want H->SIZE
4203 to be the size of the common symbol. The code just above
4204 won't fix the size if a common symbol becomes larger. We
4205 don't warn about a size change here, because that is
4206 covered by --warn-common. Allow changed between different
4208 if (h
->root
.type
== bfd_link_hash_common
)
4209 h
->size
= h
->root
.u
.c
.size
;
4211 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4212 && (definition
|| h
->type
== STT_NOTYPE
))
4214 if (h
->type
!= STT_NOTYPE
4215 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
4216 && ! type_change_ok
)
4217 (*_bfd_error_handler
)
4218 (_("Warning: type of symbol `%s' changed"
4219 " from %d to %d in %B"),
4220 abfd
, name
, h
->type
, ELF_ST_TYPE (isym
->st_info
));
4222 h
->type
= ELF_ST_TYPE (isym
->st_info
);
4225 /* If st_other has a processor-specific meaning, specific
4226 code might be needed here. We never merge the visibility
4227 attribute with the one from a dynamic object. */
4228 if (bed
->elf_backend_merge_symbol_attribute
)
4229 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
4232 /* If this symbol has default visibility and the user has requested
4233 we not re-export it, then mark it as hidden. */
4234 if (definition
&& !dynamic
4236 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
4237 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
4238 isym
->st_other
= (STV_HIDDEN
4239 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
4241 if (ELF_ST_VISIBILITY (isym
->st_other
) != 0 && !dynamic
)
4243 unsigned char hvis
, symvis
, other
, nvis
;
4245 /* Only merge the visibility. Leave the remainder of the
4246 st_other field to elf_backend_merge_symbol_attribute. */
4247 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
4249 /* Combine visibilities, using the most constraining one. */
4250 hvis
= ELF_ST_VISIBILITY (h
->other
);
4251 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
4257 nvis
= hvis
< symvis
? hvis
: symvis
;
4259 h
->other
= other
| nvis
;
4262 /* Set a flag in the hash table entry indicating the type of
4263 reference or definition we just found. Keep a count of
4264 the number of dynamic symbols we find. A dynamic symbol
4265 is one which is referenced or defined by both a regular
4266 object and a shared object. */
4273 if (bind
!= STB_WEAK
)
4274 h
->ref_regular_nonweak
= 1;
4278 if (! info
->executable
4291 || (h
->u
.weakdef
!= NULL
4293 && h
->u
.weakdef
->dynindx
!= -1))
4297 if (definition
&& (sec
->flags
& SEC_DEBUGGING
))
4299 /* We don't want to make debug symbol dynamic. */
4300 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4304 /* Check to see if we need to add an indirect symbol for
4305 the default name. */
4306 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4307 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4308 &sec
, &value
, &dynsym
,
4310 goto error_free_vers
;
4312 if (definition
&& !dynamic
)
4314 char *p
= strchr (name
, ELF_VER_CHR
);
4315 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4317 /* Queue non-default versions so that .symver x, x@FOO
4318 aliases can be checked. */
4321 amt
= ((isymend
- isym
+ 1)
4322 * sizeof (struct elf_link_hash_entry
*));
4323 nondeflt_vers
= bfd_malloc (amt
);
4325 goto error_free_vers
;
4327 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4331 if (dynsym
&& h
->dynindx
== -1)
4333 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4334 goto error_free_vers
;
4335 if (h
->u
.weakdef
!= NULL
4337 && h
->u
.weakdef
->dynindx
== -1)
4339 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4340 goto error_free_vers
;
4343 else if (dynsym
&& h
->dynindx
!= -1)
4344 /* If the symbol already has a dynamic index, but
4345 visibility says it should not be visible, turn it into
4347 switch (ELF_ST_VISIBILITY (h
->other
))
4351 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4362 const char *soname
= elf_dt_name (abfd
);
4364 /* A symbol from a library loaded via DT_NEEDED of some
4365 other library is referenced by a regular object.
4366 Add a DT_NEEDED entry for it. Issue an error if
4367 --no-add-needed is used. */
4368 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4370 (*_bfd_error_handler
)
4371 (_("%s: invalid DSO for symbol `%s' definition"),
4373 bfd_set_error (bfd_error_bad_value
);
4374 goto error_free_vers
;
4377 elf_dyn_lib_class (abfd
) &= ~DYN_AS_NEEDED
;
4380 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4382 goto error_free_vers
;
4384 BFD_ASSERT (ret
== 0);
4389 if (extversym
!= NULL
)
4395 if (isymbuf
!= NULL
)
4401 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4405 /* Restore the symbol table. */
4406 if (bed
->as_needed_cleanup
)
4407 (*bed
->as_needed_cleanup
) (abfd
, info
);
4408 old_hash
= (char *) old_tab
+ tabsize
;
4409 old_ent
= (char *) old_hash
+ hashsize
;
4410 sym_hash
= elf_sym_hashes (abfd
);
4411 htab
->root
.table
.table
= old_table
;
4412 htab
->root
.table
.size
= old_size
;
4413 htab
->root
.table
.count
= old_count
;
4414 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4415 memcpy (sym_hash
, old_hash
, hashsize
);
4416 htab
->root
.undefs
= old_undefs
;
4417 htab
->root
.undefs_tail
= old_undefs_tail
;
4418 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4420 struct bfd_hash_entry
*p
;
4421 struct elf_link_hash_entry
*h
;
4423 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4425 h
= (struct elf_link_hash_entry
*) p
;
4426 if (h
->root
.type
== bfd_link_hash_warning
)
4427 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4428 if (h
->dynindx
>= old_dynsymcount
)
4429 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4431 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4432 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4433 h
= (struct elf_link_hash_entry
*) p
;
4434 if (h
->root
.type
== bfd_link_hash_warning
)
4436 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4437 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4442 /* Make a special call to the linker "notice" function to
4443 tell it that symbols added for crefs may need to be removed. */
4444 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4446 goto error_free_vers
;
4449 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4451 if (nondeflt_vers
!= NULL
)
4452 free (nondeflt_vers
);
4456 if (old_tab
!= NULL
)
4458 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4460 goto error_free_vers
;
4465 /* Now that all the symbols from this input file are created, handle
4466 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4467 if (nondeflt_vers
!= NULL
)
4469 bfd_size_type cnt
, symidx
;
4471 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4473 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4474 char *shortname
, *p
;
4476 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4478 || (h
->root
.type
!= bfd_link_hash_defined
4479 && h
->root
.type
!= bfd_link_hash_defweak
))
4482 amt
= p
- h
->root
.root
.string
;
4483 shortname
= bfd_malloc (amt
+ 1);
4485 goto error_free_vers
;
4486 memcpy (shortname
, h
->root
.root
.string
, amt
);
4487 shortname
[amt
] = '\0';
4489 hi
= (struct elf_link_hash_entry
*)
4490 bfd_link_hash_lookup (&htab
->root
, shortname
,
4491 FALSE
, FALSE
, FALSE
);
4493 && hi
->root
.type
== h
->root
.type
4494 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4495 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4497 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4498 hi
->root
.type
= bfd_link_hash_indirect
;
4499 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4500 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4501 sym_hash
= elf_sym_hashes (abfd
);
4503 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4504 if (sym_hash
[symidx
] == hi
)
4506 sym_hash
[symidx
] = h
;
4512 free (nondeflt_vers
);
4513 nondeflt_vers
= NULL
;
4516 /* Now set the weakdefs field correctly for all the weak defined
4517 symbols we found. The only way to do this is to search all the
4518 symbols. Since we only need the information for non functions in
4519 dynamic objects, that's the only time we actually put anything on
4520 the list WEAKS. We need this information so that if a regular
4521 object refers to a symbol defined weakly in a dynamic object, the
4522 real symbol in the dynamic object is also put in the dynamic
4523 symbols; we also must arrange for both symbols to point to the
4524 same memory location. We could handle the general case of symbol
4525 aliasing, but a general symbol alias can only be generated in
4526 assembler code, handling it correctly would be very time
4527 consuming, and other ELF linkers don't handle general aliasing
4531 struct elf_link_hash_entry
**hpp
;
4532 struct elf_link_hash_entry
**hppend
;
4533 struct elf_link_hash_entry
**sorted_sym_hash
;
4534 struct elf_link_hash_entry
*h
;
4537 /* Since we have to search the whole symbol list for each weak
4538 defined symbol, search time for N weak defined symbols will be
4539 O(N^2). Binary search will cut it down to O(NlogN). */
4540 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4541 sorted_sym_hash
= bfd_malloc (amt
);
4542 if (sorted_sym_hash
== NULL
)
4544 sym_hash
= sorted_sym_hash
;
4545 hpp
= elf_sym_hashes (abfd
);
4546 hppend
= hpp
+ extsymcount
;
4548 for (; hpp
< hppend
; hpp
++)
4552 && h
->root
.type
== bfd_link_hash_defined
4553 && !bed
->is_function_type (h
->type
))
4561 qsort (sorted_sym_hash
, sym_count
,
4562 sizeof (struct elf_link_hash_entry
*),
4565 while (weaks
!= NULL
)
4567 struct elf_link_hash_entry
*hlook
;
4574 weaks
= hlook
->u
.weakdef
;
4575 hlook
->u
.weakdef
= NULL
;
4577 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4578 || hlook
->root
.type
== bfd_link_hash_defweak
4579 || hlook
->root
.type
== bfd_link_hash_common
4580 || hlook
->root
.type
== bfd_link_hash_indirect
);
4581 slook
= hlook
->root
.u
.def
.section
;
4582 vlook
= hlook
->root
.u
.def
.value
;
4589 bfd_signed_vma vdiff
;
4591 h
= sorted_sym_hash
[idx
];
4592 vdiff
= vlook
- h
->root
.u
.def
.value
;
4599 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4612 /* We didn't find a value/section match. */
4616 for (i
= ilook
; i
< sym_count
; i
++)
4618 h
= sorted_sym_hash
[i
];
4620 /* Stop if value or section doesn't match. */
4621 if (h
->root
.u
.def
.value
!= vlook
4622 || h
->root
.u
.def
.section
!= slook
)
4624 else if (h
!= hlook
)
4626 hlook
->u
.weakdef
= h
;
4628 /* If the weak definition is in the list of dynamic
4629 symbols, make sure the real definition is put
4631 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4633 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4636 free (sorted_sym_hash
);
4641 /* If the real definition is in the list of dynamic
4642 symbols, make sure the weak definition is put
4643 there as well. If we don't do this, then the
4644 dynamic loader might not merge the entries for the
4645 real definition and the weak definition. */
4646 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4648 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4649 goto err_free_sym_hash
;
4656 free (sorted_sym_hash
);
4659 if (bed
->check_directives
)
4660 (*bed
->check_directives
) (abfd
, info
);
4662 /* If this object is the same format as the output object, and it is
4663 not a shared library, then let the backend look through the
4666 This is required to build global offset table entries and to
4667 arrange for dynamic relocs. It is not required for the
4668 particular common case of linking non PIC code, even when linking
4669 against shared libraries, but unfortunately there is no way of
4670 knowing whether an object file has been compiled PIC or not.
4671 Looking through the relocs is not particularly time consuming.
4672 The problem is that we must either (1) keep the relocs in memory,
4673 which causes the linker to require additional runtime memory or
4674 (2) read the relocs twice from the input file, which wastes time.
4675 This would be a good case for using mmap.
4677 I have no idea how to handle linking PIC code into a file of a
4678 different format. It probably can't be done. */
4680 && is_elf_hash_table (htab
)
4681 && bed
->check_relocs
!= NULL
4682 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4686 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4688 Elf_Internal_Rela
*internal_relocs
;
4691 if ((o
->flags
& SEC_RELOC
) == 0
4692 || o
->reloc_count
== 0
4693 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4694 && (o
->flags
& SEC_DEBUGGING
) != 0)
4695 || bfd_is_abs_section (o
->output_section
))
4698 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4700 if (internal_relocs
== NULL
)
4703 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4705 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4706 free (internal_relocs
);
4713 /* If this is a non-traditional link, try to optimize the handling
4714 of the .stab/.stabstr sections. */
4716 && ! info
->traditional_format
4717 && is_elf_hash_table (htab
)
4718 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4722 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4723 if (stabstr
!= NULL
)
4725 bfd_size_type string_offset
= 0;
4728 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4729 if (CONST_STRNEQ (stab
->name
, ".stab")
4730 && (!stab
->name
[5] ||
4731 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4732 && (stab
->flags
& SEC_MERGE
) == 0
4733 && !bfd_is_abs_section (stab
->output_section
))
4735 struct bfd_elf_section_data
*secdata
;
4737 secdata
= elf_section_data (stab
);
4738 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4739 stabstr
, &secdata
->sec_info
,
4742 if (secdata
->sec_info
)
4743 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4748 if (is_elf_hash_table (htab
) && add_needed
)
4750 /* Add this bfd to the loaded list. */
4751 struct elf_link_loaded_list
*n
;
4753 n
= bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4757 n
->next
= htab
->loaded
;
4764 if (old_tab
!= NULL
)
4766 if (nondeflt_vers
!= NULL
)
4767 free (nondeflt_vers
);
4768 if (extversym
!= NULL
)
4771 if (isymbuf
!= NULL
)
4777 /* Return the linker hash table entry of a symbol that might be
4778 satisfied by an archive symbol. Return -1 on error. */
4780 struct elf_link_hash_entry
*
4781 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4782 struct bfd_link_info
*info
,
4785 struct elf_link_hash_entry
*h
;
4789 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4793 /* If this is a default version (the name contains @@), look up the
4794 symbol again with only one `@' as well as without the version.
4795 The effect is that references to the symbol with and without the
4796 version will be matched by the default symbol in the archive. */
4798 p
= strchr (name
, ELF_VER_CHR
);
4799 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4802 /* First check with only one `@'. */
4803 len
= strlen (name
);
4804 copy
= bfd_alloc (abfd
, len
);
4806 return (struct elf_link_hash_entry
*) 0 - 1;
4808 first
= p
- name
+ 1;
4809 memcpy (copy
, name
, first
);
4810 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4812 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4815 /* We also need to check references to the symbol without the
4817 copy
[first
- 1] = '\0';
4818 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4819 FALSE
, FALSE
, FALSE
);
4822 bfd_release (abfd
, copy
);
4826 /* Add symbols from an ELF archive file to the linker hash table. We
4827 don't use _bfd_generic_link_add_archive_symbols because of a
4828 problem which arises on UnixWare. The UnixWare libc.so is an
4829 archive which includes an entry libc.so.1 which defines a bunch of
4830 symbols. The libc.so archive also includes a number of other
4831 object files, which also define symbols, some of which are the same
4832 as those defined in libc.so.1. Correct linking requires that we
4833 consider each object file in turn, and include it if it defines any
4834 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4835 this; it looks through the list of undefined symbols, and includes
4836 any object file which defines them. When this algorithm is used on
4837 UnixWare, it winds up pulling in libc.so.1 early and defining a
4838 bunch of symbols. This means that some of the other objects in the
4839 archive are not included in the link, which is incorrect since they
4840 precede libc.so.1 in the archive.
4842 Fortunately, ELF archive handling is simpler than that done by
4843 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4844 oddities. In ELF, if we find a symbol in the archive map, and the
4845 symbol is currently undefined, we know that we must pull in that
4848 Unfortunately, we do have to make multiple passes over the symbol
4849 table until nothing further is resolved. */
4852 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4855 bfd_boolean
*defined
= NULL
;
4856 bfd_boolean
*included
= NULL
;
4860 const struct elf_backend_data
*bed
;
4861 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4862 (bfd
*, struct bfd_link_info
*, const char *);
4864 if (! bfd_has_map (abfd
))
4866 /* An empty archive is a special case. */
4867 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4869 bfd_set_error (bfd_error_no_armap
);
4873 /* Keep track of all symbols we know to be already defined, and all
4874 files we know to be already included. This is to speed up the
4875 second and subsequent passes. */
4876 c
= bfd_ardata (abfd
)->symdef_count
;
4880 amt
*= sizeof (bfd_boolean
);
4881 defined
= bfd_zmalloc (amt
);
4882 included
= bfd_zmalloc (amt
);
4883 if (defined
== NULL
|| included
== NULL
)
4886 symdefs
= bfd_ardata (abfd
)->symdefs
;
4887 bed
= get_elf_backend_data (abfd
);
4888 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
4901 symdefend
= symdef
+ c
;
4902 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
4904 struct elf_link_hash_entry
*h
;
4906 struct bfd_link_hash_entry
*undefs_tail
;
4909 if (defined
[i
] || included
[i
])
4911 if (symdef
->file_offset
== last
)
4917 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
4918 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
4924 if (h
->root
.type
== bfd_link_hash_common
)
4926 /* We currently have a common symbol. The archive map contains
4927 a reference to this symbol, so we may want to include it. We
4928 only want to include it however, if this archive element
4929 contains a definition of the symbol, not just another common
4932 Unfortunately some archivers (including GNU ar) will put
4933 declarations of common symbols into their archive maps, as
4934 well as real definitions, so we cannot just go by the archive
4935 map alone. Instead we must read in the element's symbol
4936 table and check that to see what kind of symbol definition
4938 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
4941 else if (h
->root
.type
!= bfd_link_hash_undefined
)
4943 if (h
->root
.type
!= bfd_link_hash_undefweak
)
4948 /* We need to include this archive member. */
4949 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
4950 if (element
== NULL
)
4953 if (! bfd_check_format (element
, bfd_object
))
4956 /* Doublecheck that we have not included this object
4957 already--it should be impossible, but there may be
4958 something wrong with the archive. */
4959 if (element
->archive_pass
!= 0)
4961 bfd_set_error (bfd_error_bad_value
);
4964 element
->archive_pass
= 1;
4966 undefs_tail
= info
->hash
->undefs_tail
;
4968 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
4971 if (! bfd_link_add_symbols (element
, info
))
4974 /* If there are any new undefined symbols, we need to make
4975 another pass through the archive in order to see whether
4976 they can be defined. FIXME: This isn't perfect, because
4977 common symbols wind up on undefs_tail and because an
4978 undefined symbol which is defined later on in this pass
4979 does not require another pass. This isn't a bug, but it
4980 does make the code less efficient than it could be. */
4981 if (undefs_tail
!= info
->hash
->undefs_tail
)
4984 /* Look backward to mark all symbols from this object file
4985 which we have already seen in this pass. */
4989 included
[mark
] = TRUE
;
4994 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
4996 /* We mark subsequent symbols from this object file as we go
4997 on through the loop. */
4998 last
= symdef
->file_offset
;
5009 if (defined
!= NULL
)
5011 if (included
!= NULL
)
5016 /* Given an ELF BFD, add symbols to the global hash table as
5020 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5022 switch (bfd_get_format (abfd
))
5025 return elf_link_add_object_symbols (abfd
, info
);
5027 return elf_link_add_archive_symbols (abfd
, info
);
5029 bfd_set_error (bfd_error_wrong_format
);
5034 struct hash_codes_info
5036 unsigned long *hashcodes
;
5040 /* This function will be called though elf_link_hash_traverse to store
5041 all hash value of the exported symbols in an array. */
5044 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5046 struct hash_codes_info
*inf
= data
;
5052 if (h
->root
.type
== bfd_link_hash_warning
)
5053 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5055 /* Ignore indirect symbols. These are added by the versioning code. */
5056 if (h
->dynindx
== -1)
5059 name
= h
->root
.root
.string
;
5060 p
= strchr (name
, ELF_VER_CHR
);
5063 alc
= bfd_malloc (p
- name
+ 1);
5069 memcpy (alc
, name
, p
- name
);
5070 alc
[p
- name
] = '\0';
5074 /* Compute the hash value. */
5075 ha
= bfd_elf_hash (name
);
5077 /* Store the found hash value in the array given as the argument. */
5078 *(inf
->hashcodes
)++ = ha
;
5080 /* And store it in the struct so that we can put it in the hash table
5082 h
->u
.elf_hash_value
= ha
;
5090 struct collect_gnu_hash_codes
5093 const struct elf_backend_data
*bed
;
5094 unsigned long int nsyms
;
5095 unsigned long int maskbits
;
5096 unsigned long int *hashcodes
;
5097 unsigned long int *hashval
;
5098 unsigned long int *indx
;
5099 unsigned long int *counts
;
5102 long int min_dynindx
;
5103 unsigned long int bucketcount
;
5104 unsigned long int symindx
;
5105 long int local_indx
;
5106 long int shift1
, shift2
;
5107 unsigned long int mask
;
5111 /* This function will be called though elf_link_hash_traverse to store
5112 all hash value of the exported symbols in an array. */
5115 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5117 struct collect_gnu_hash_codes
*s
= data
;
5123 if (h
->root
.type
== bfd_link_hash_warning
)
5124 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5126 /* Ignore indirect symbols. These are added by the versioning code. */
5127 if (h
->dynindx
== -1)
5130 /* Ignore also local symbols and undefined symbols. */
5131 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5134 name
= h
->root
.root
.string
;
5135 p
= strchr (name
, ELF_VER_CHR
);
5138 alc
= bfd_malloc (p
- name
+ 1);
5144 memcpy (alc
, name
, p
- name
);
5145 alc
[p
- name
] = '\0';
5149 /* Compute the hash value. */
5150 ha
= bfd_elf_gnu_hash (name
);
5152 /* Store the found hash value in the array for compute_bucket_count,
5153 and also for .dynsym reordering purposes. */
5154 s
->hashcodes
[s
->nsyms
] = ha
;
5155 s
->hashval
[h
->dynindx
] = ha
;
5157 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5158 s
->min_dynindx
= h
->dynindx
;
5166 /* This function will be called though elf_link_hash_traverse to do
5167 final dynaminc symbol renumbering. */
5170 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5172 struct collect_gnu_hash_codes
*s
= data
;
5173 unsigned long int bucket
;
5174 unsigned long int val
;
5176 if (h
->root
.type
== bfd_link_hash_warning
)
5177 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5179 /* Ignore indirect symbols. */
5180 if (h
->dynindx
== -1)
5183 /* Ignore also local symbols and undefined symbols. */
5184 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5186 if (h
->dynindx
>= s
->min_dynindx
)
5187 h
->dynindx
= s
->local_indx
++;
5191 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5192 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5193 & ((s
->maskbits
>> s
->shift1
) - 1);
5194 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5196 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5197 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5198 if (s
->counts
[bucket
] == 1)
5199 /* Last element terminates the chain. */
5201 bfd_put_32 (s
->output_bfd
, val
,
5202 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5203 --s
->counts
[bucket
];
5204 h
->dynindx
= s
->indx
[bucket
]++;
5208 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5211 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5213 return !(h
->forced_local
5214 || h
->root
.type
== bfd_link_hash_undefined
5215 || h
->root
.type
== bfd_link_hash_undefweak
5216 || ((h
->root
.type
== bfd_link_hash_defined
5217 || h
->root
.type
== bfd_link_hash_defweak
)
5218 && h
->root
.u
.def
.section
->output_section
== NULL
));
5221 /* Array used to determine the number of hash table buckets to use
5222 based on the number of symbols there are. If there are fewer than
5223 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5224 fewer than 37 we use 17 buckets, and so forth. We never use more
5225 than 32771 buckets. */
5227 static const size_t elf_buckets
[] =
5229 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5233 /* Compute bucket count for hashing table. We do not use a static set
5234 of possible tables sizes anymore. Instead we determine for all
5235 possible reasonable sizes of the table the outcome (i.e., the
5236 number of collisions etc) and choose the best solution. The
5237 weighting functions are not too simple to allow the table to grow
5238 without bounds. Instead one of the weighting factors is the size.
5239 Therefore the result is always a good payoff between few collisions
5240 (= short chain lengths) and table size. */
5242 compute_bucket_count (struct bfd_link_info
*info
,
5243 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5244 unsigned long int nsyms
,
5247 size_t best_size
= 0;
5248 unsigned long int i
;
5250 /* We have a problem here. The following code to optimize the table
5251 size requires an integer type with more the 32 bits. If
5252 BFD_HOST_U_64_BIT is set we know about such a type. */
5253 #ifdef BFD_HOST_U_64_BIT
5258 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5259 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5260 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5261 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5262 unsigned long int *counts
;
5265 /* Possible optimization parameters: if we have NSYMS symbols we say
5266 that the hashing table must at least have NSYMS/4 and at most
5268 minsize
= nsyms
/ 4;
5271 best_size
= maxsize
= nsyms
* 2;
5276 if ((best_size
& 31) == 0)
5280 /* Create array where we count the collisions in. We must use bfd_malloc
5281 since the size could be large. */
5283 amt
*= sizeof (unsigned long int);
5284 counts
= bfd_malloc (amt
);
5288 /* Compute the "optimal" size for the hash table. The criteria is a
5289 minimal chain length. The minor criteria is (of course) the size
5291 for (i
= minsize
; i
< maxsize
; ++i
)
5293 /* Walk through the array of hashcodes and count the collisions. */
5294 BFD_HOST_U_64_BIT max
;
5295 unsigned long int j
;
5296 unsigned long int fact
;
5298 if (gnu_hash
&& (i
& 31) == 0)
5301 memset (counts
, '\0', i
* sizeof (unsigned long int));
5303 /* Determine how often each hash bucket is used. */
5304 for (j
= 0; j
< nsyms
; ++j
)
5305 ++counts
[hashcodes
[j
] % i
];
5307 /* For the weight function we need some information about the
5308 pagesize on the target. This is information need not be 100%
5309 accurate. Since this information is not available (so far) we
5310 define it here to a reasonable default value. If it is crucial
5311 to have a better value some day simply define this value. */
5312 # ifndef BFD_TARGET_PAGESIZE
5313 # define BFD_TARGET_PAGESIZE (4096)
5316 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5318 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5321 /* Variant 1: optimize for short chains. We add the squares
5322 of all the chain lengths (which favors many small chain
5323 over a few long chains). */
5324 for (j
= 0; j
< i
; ++j
)
5325 max
+= counts
[j
] * counts
[j
];
5327 /* This adds penalties for the overall size of the table. */
5328 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5331 /* Variant 2: Optimize a lot more for small table. Here we
5332 also add squares of the size but we also add penalties for
5333 empty slots (the +1 term). */
5334 for (j
= 0; j
< i
; ++j
)
5335 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5337 /* The overall size of the table is considered, but not as
5338 strong as in variant 1, where it is squared. */
5339 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5343 /* Compare with current best results. */
5344 if (max
< best_chlen
)
5354 #endif /* defined (BFD_HOST_U_64_BIT) */
5356 /* This is the fallback solution if no 64bit type is available or if we
5357 are not supposed to spend much time on optimizations. We select the
5358 bucket count using a fixed set of numbers. */
5359 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5361 best_size
= elf_buckets
[i
];
5362 if (nsyms
< elf_buckets
[i
+ 1])
5365 if (gnu_hash
&& best_size
< 2)
5372 /* Set up the sizes and contents of the ELF dynamic sections. This is
5373 called by the ELF linker emulation before_allocation routine. We
5374 must set the sizes of the sections before the linker sets the
5375 addresses of the various sections. */
5378 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5381 const char *filter_shlib
,
5382 const char * const *auxiliary_filters
,
5383 struct bfd_link_info
*info
,
5384 asection
**sinterpptr
,
5385 struct bfd_elf_version_tree
*verdefs
)
5387 bfd_size_type soname_indx
;
5389 const struct elf_backend_data
*bed
;
5390 struct elf_assign_sym_version_info asvinfo
;
5394 soname_indx
= (bfd_size_type
) -1;
5396 if (!is_elf_hash_table (info
->hash
))
5399 bed
= get_elf_backend_data (output_bfd
);
5400 if (info
->execstack
)
5401 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5402 else if (info
->noexecstack
)
5403 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5407 asection
*notesec
= NULL
;
5410 for (inputobj
= info
->input_bfds
;
5412 inputobj
= inputobj
->link_next
)
5416 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5418 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5421 if (s
->flags
& SEC_CODE
)
5425 else if (bed
->default_execstack
)
5430 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5431 if (exec
&& info
->relocatable
5432 && notesec
->output_section
!= bfd_abs_section_ptr
)
5433 notesec
->output_section
->flags
|= SEC_CODE
;
5437 /* Any syms created from now on start with -1 in
5438 got.refcount/offset and plt.refcount/offset. */
5439 elf_hash_table (info
)->init_got_refcount
5440 = elf_hash_table (info
)->init_got_offset
;
5441 elf_hash_table (info
)->init_plt_refcount
5442 = elf_hash_table (info
)->init_plt_offset
;
5444 /* The backend may have to create some sections regardless of whether
5445 we're dynamic or not. */
5446 if (bed
->elf_backend_always_size_sections
5447 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5450 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5453 dynobj
= elf_hash_table (info
)->dynobj
;
5455 /* If there were no dynamic objects in the link, there is nothing to
5460 if (elf_hash_table (info
)->dynamic_sections_created
)
5462 struct elf_info_failed eif
;
5463 struct elf_link_hash_entry
*h
;
5465 struct bfd_elf_version_tree
*t
;
5466 struct bfd_elf_version_expr
*d
;
5468 bfd_boolean all_defined
;
5470 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5471 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5475 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5477 if (soname_indx
== (bfd_size_type
) -1
5478 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5484 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5486 info
->flags
|= DF_SYMBOLIC
;
5493 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5495 if (indx
== (bfd_size_type
) -1
5496 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5499 if (info
->new_dtags
)
5501 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5502 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5507 if (filter_shlib
!= NULL
)
5511 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5512 filter_shlib
, TRUE
);
5513 if (indx
== (bfd_size_type
) -1
5514 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5518 if (auxiliary_filters
!= NULL
)
5520 const char * const *p
;
5522 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5526 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5528 if (indx
== (bfd_size_type
) -1
5529 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5535 eif
.verdefs
= verdefs
;
5538 /* If we are supposed to export all symbols into the dynamic symbol
5539 table (this is not the normal case), then do so. */
5540 if (info
->export_dynamic
5541 || (info
->executable
&& info
->dynamic
))
5543 elf_link_hash_traverse (elf_hash_table (info
),
5544 _bfd_elf_export_symbol
,
5550 /* Make all global versions with definition. */
5551 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5552 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5553 if (!d
->symver
&& d
->symbol
)
5555 const char *verstr
, *name
;
5556 size_t namelen
, verlen
, newlen
;
5558 struct elf_link_hash_entry
*newh
;
5561 namelen
= strlen (name
);
5563 verlen
= strlen (verstr
);
5564 newlen
= namelen
+ verlen
+ 3;
5566 newname
= bfd_malloc (newlen
);
5567 if (newname
== NULL
)
5569 memcpy (newname
, name
, namelen
);
5571 /* Check the hidden versioned definition. */
5572 p
= newname
+ namelen
;
5574 memcpy (p
, verstr
, verlen
+ 1);
5575 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5576 newname
, FALSE
, FALSE
,
5579 || (newh
->root
.type
!= bfd_link_hash_defined
5580 && newh
->root
.type
!= bfd_link_hash_defweak
))
5582 /* Check the default versioned definition. */
5584 memcpy (p
, verstr
, verlen
+ 1);
5585 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5586 newname
, FALSE
, FALSE
,
5591 /* Mark this version if there is a definition and it is
5592 not defined in a shared object. */
5594 && !newh
->def_dynamic
5595 && (newh
->root
.type
== bfd_link_hash_defined
5596 || newh
->root
.type
== bfd_link_hash_defweak
))
5600 /* Attach all the symbols to their version information. */
5601 asvinfo
.output_bfd
= output_bfd
;
5602 asvinfo
.info
= info
;
5603 asvinfo
.verdefs
= verdefs
;
5604 asvinfo
.failed
= FALSE
;
5606 elf_link_hash_traverse (elf_hash_table (info
),
5607 _bfd_elf_link_assign_sym_version
,
5612 if (!info
->allow_undefined_version
)
5614 /* Check if all global versions have a definition. */
5616 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5617 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5618 if (!d
->symver
&& !d
->script
)
5620 (*_bfd_error_handler
)
5621 (_("%s: undefined version: %s"),
5622 d
->pattern
, t
->name
);
5623 all_defined
= FALSE
;
5628 bfd_set_error (bfd_error_bad_value
);
5633 /* Find all symbols which were defined in a dynamic object and make
5634 the backend pick a reasonable value for them. */
5635 elf_link_hash_traverse (elf_hash_table (info
),
5636 _bfd_elf_adjust_dynamic_symbol
,
5641 /* Add some entries to the .dynamic section. We fill in some of the
5642 values later, in bfd_elf_final_link, but we must add the entries
5643 now so that we know the final size of the .dynamic section. */
5645 /* If there are initialization and/or finalization functions to
5646 call then add the corresponding DT_INIT/DT_FINI entries. */
5647 h
= (info
->init_function
5648 ? elf_link_hash_lookup (elf_hash_table (info
),
5649 info
->init_function
, FALSE
,
5656 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5659 h
= (info
->fini_function
5660 ? elf_link_hash_lookup (elf_hash_table (info
),
5661 info
->fini_function
, FALSE
,
5668 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5672 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5673 if (s
!= NULL
&& s
->linker_has_input
)
5675 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5676 if (! info
->executable
)
5681 for (sub
= info
->input_bfds
; sub
!= NULL
;
5682 sub
= sub
->link_next
)
5683 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5684 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5685 if (elf_section_data (o
)->this_hdr
.sh_type
5686 == SHT_PREINIT_ARRAY
)
5688 (*_bfd_error_handler
)
5689 (_("%B: .preinit_array section is not allowed in DSO"),
5694 bfd_set_error (bfd_error_nonrepresentable_section
);
5698 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5699 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5702 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5703 if (s
!= NULL
&& s
->linker_has_input
)
5705 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5706 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5709 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5710 if (s
!= NULL
&& s
->linker_has_input
)
5712 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5713 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5717 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5718 /* If .dynstr is excluded from the link, we don't want any of
5719 these tags. Strictly, we should be checking each section
5720 individually; This quick check covers for the case where
5721 someone does a /DISCARD/ : { *(*) }. */
5722 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5724 bfd_size_type strsize
;
5726 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5727 if ((info
->emit_hash
5728 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5729 || (info
->emit_gnu_hash
5730 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5731 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5732 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5733 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5734 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5735 bed
->s
->sizeof_sym
))
5740 /* The backend must work out the sizes of all the other dynamic
5742 if (bed
->elf_backend_size_dynamic_sections
5743 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5746 if (elf_hash_table (info
)->dynamic_sections_created
)
5748 unsigned long section_sym_count
;
5751 /* Set up the version definition section. */
5752 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5753 BFD_ASSERT (s
!= NULL
);
5755 /* We may have created additional version definitions if we are
5756 just linking a regular application. */
5757 verdefs
= asvinfo
.verdefs
;
5759 /* Skip anonymous version tag. */
5760 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5761 verdefs
= verdefs
->next
;
5763 if (verdefs
== NULL
&& !info
->create_default_symver
)
5764 s
->flags
|= SEC_EXCLUDE
;
5769 struct bfd_elf_version_tree
*t
;
5771 Elf_Internal_Verdef def
;
5772 Elf_Internal_Verdaux defaux
;
5773 struct bfd_link_hash_entry
*bh
;
5774 struct elf_link_hash_entry
*h
;
5780 /* Make space for the base version. */
5781 size
+= sizeof (Elf_External_Verdef
);
5782 size
+= sizeof (Elf_External_Verdaux
);
5785 /* Make space for the default version. */
5786 if (info
->create_default_symver
)
5788 size
+= sizeof (Elf_External_Verdef
);
5792 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5794 struct bfd_elf_version_deps
*n
;
5796 size
+= sizeof (Elf_External_Verdef
);
5797 size
+= sizeof (Elf_External_Verdaux
);
5800 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5801 size
+= sizeof (Elf_External_Verdaux
);
5805 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
5806 if (s
->contents
== NULL
&& s
->size
!= 0)
5809 /* Fill in the version definition section. */
5813 def
.vd_version
= VER_DEF_CURRENT
;
5814 def
.vd_flags
= VER_FLG_BASE
;
5817 if (info
->create_default_symver
)
5819 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5820 def
.vd_next
= sizeof (Elf_External_Verdef
);
5824 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5825 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5826 + sizeof (Elf_External_Verdaux
));
5829 if (soname_indx
!= (bfd_size_type
) -1)
5831 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5833 def
.vd_hash
= bfd_elf_hash (soname
);
5834 defaux
.vda_name
= soname_indx
;
5841 name
= lbasename (output_bfd
->filename
);
5842 def
.vd_hash
= bfd_elf_hash (name
);
5843 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5845 if (indx
== (bfd_size_type
) -1)
5847 defaux
.vda_name
= indx
;
5849 defaux
.vda_next
= 0;
5851 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5852 (Elf_External_Verdef
*) p
);
5853 p
+= sizeof (Elf_External_Verdef
);
5854 if (info
->create_default_symver
)
5856 /* Add a symbol representing this version. */
5858 if (! (_bfd_generic_link_add_one_symbol
5859 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5861 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5863 h
= (struct elf_link_hash_entry
*) bh
;
5866 h
->type
= STT_OBJECT
;
5867 h
->verinfo
.vertree
= NULL
;
5869 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5872 /* Create a duplicate of the base version with the same
5873 aux block, but different flags. */
5876 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5878 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5879 + sizeof (Elf_External_Verdaux
));
5882 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5883 (Elf_External_Verdef
*) p
);
5884 p
+= sizeof (Elf_External_Verdef
);
5886 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5887 (Elf_External_Verdaux
*) p
);
5888 p
+= sizeof (Elf_External_Verdaux
);
5890 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5893 struct bfd_elf_version_deps
*n
;
5896 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5899 /* Add a symbol representing this version. */
5901 if (! (_bfd_generic_link_add_one_symbol
5902 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5904 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5906 h
= (struct elf_link_hash_entry
*) bh
;
5909 h
->type
= STT_OBJECT
;
5910 h
->verinfo
.vertree
= t
;
5912 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5915 def
.vd_version
= VER_DEF_CURRENT
;
5917 if (t
->globals
.list
== NULL
5918 && t
->locals
.list
== NULL
5920 def
.vd_flags
|= VER_FLG_WEAK
;
5921 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
5922 def
.vd_cnt
= cdeps
+ 1;
5923 def
.vd_hash
= bfd_elf_hash (t
->name
);
5924 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5926 if (t
->next
!= NULL
)
5927 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5928 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
5930 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5931 (Elf_External_Verdef
*) p
);
5932 p
+= sizeof (Elf_External_Verdef
);
5934 defaux
.vda_name
= h
->dynstr_index
;
5935 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5937 defaux
.vda_next
= 0;
5938 if (t
->deps
!= NULL
)
5939 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5940 t
->name_indx
= defaux
.vda_name
;
5942 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5943 (Elf_External_Verdaux
*) p
);
5944 p
+= sizeof (Elf_External_Verdaux
);
5946 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5948 if (n
->version_needed
== NULL
)
5950 /* This can happen if there was an error in the
5952 defaux
.vda_name
= 0;
5956 defaux
.vda_name
= n
->version_needed
->name_indx
;
5957 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5960 if (n
->next
== NULL
)
5961 defaux
.vda_next
= 0;
5963 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5965 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5966 (Elf_External_Verdaux
*) p
);
5967 p
+= sizeof (Elf_External_Verdaux
);
5971 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
5972 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
5975 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
5978 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
5980 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
5983 else if (info
->flags
& DF_BIND_NOW
)
5985 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
5991 if (info
->executable
)
5992 info
->flags_1
&= ~ (DF_1_INITFIRST
5995 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
5999 /* Work out the size of the version reference section. */
6001 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6002 BFD_ASSERT (s
!= NULL
);
6004 struct elf_find_verdep_info sinfo
;
6006 sinfo
.output_bfd
= output_bfd
;
6008 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6009 if (sinfo
.vers
== 0)
6011 sinfo
.failed
= FALSE
;
6013 elf_link_hash_traverse (elf_hash_table (info
),
6014 _bfd_elf_link_find_version_dependencies
,
6019 if (elf_tdata (output_bfd
)->verref
== NULL
)
6020 s
->flags
|= SEC_EXCLUDE
;
6023 Elf_Internal_Verneed
*t
;
6028 /* Build the version definition section. */
6031 for (t
= elf_tdata (output_bfd
)->verref
;
6035 Elf_Internal_Vernaux
*a
;
6037 size
+= sizeof (Elf_External_Verneed
);
6039 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6040 size
+= sizeof (Elf_External_Vernaux
);
6044 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6045 if (s
->contents
== NULL
)
6049 for (t
= elf_tdata (output_bfd
)->verref
;
6054 Elf_Internal_Vernaux
*a
;
6058 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6061 t
->vn_version
= VER_NEED_CURRENT
;
6063 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6064 elf_dt_name (t
->vn_bfd
) != NULL
6065 ? elf_dt_name (t
->vn_bfd
)
6066 : lbasename (t
->vn_bfd
->filename
),
6068 if (indx
== (bfd_size_type
) -1)
6071 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6072 if (t
->vn_nextref
== NULL
)
6075 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6076 + caux
* sizeof (Elf_External_Vernaux
));
6078 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6079 (Elf_External_Verneed
*) p
);
6080 p
+= sizeof (Elf_External_Verneed
);
6082 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6084 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6085 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6086 a
->vna_nodename
, FALSE
);
6087 if (indx
== (bfd_size_type
) -1)
6090 if (a
->vna_nextptr
== NULL
)
6093 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6095 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6096 (Elf_External_Vernaux
*) p
);
6097 p
+= sizeof (Elf_External_Vernaux
);
6101 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6102 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6105 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6109 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6110 && elf_tdata (output_bfd
)->cverdefs
== 0)
6111 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6112 §ion_sym_count
) == 0)
6114 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6115 s
->flags
|= SEC_EXCLUDE
;
6121 /* Find the first non-excluded output section. We'll use its
6122 section symbol for some emitted relocs. */
6124 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6128 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6129 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6130 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6132 elf_hash_table (info
)->text_index_section
= s
;
6137 /* Find two non-excluded output sections, one for code, one for data.
6138 We'll use their section symbols for some emitted relocs. */
6140 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6144 /* Data first, since setting text_index_section changes
6145 _bfd_elf_link_omit_section_dynsym. */
6146 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6147 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6148 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6150 elf_hash_table (info
)->data_index_section
= s
;
6154 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6155 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6156 == (SEC_ALLOC
| SEC_READONLY
))
6157 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6159 elf_hash_table (info
)->text_index_section
= s
;
6163 if (elf_hash_table (info
)->text_index_section
== NULL
)
6164 elf_hash_table (info
)->text_index_section
6165 = elf_hash_table (info
)->data_index_section
;
6169 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6171 const struct elf_backend_data
*bed
;
6173 if (!is_elf_hash_table (info
->hash
))
6176 bed
= get_elf_backend_data (output_bfd
);
6177 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6179 if (elf_hash_table (info
)->dynamic_sections_created
)
6183 bfd_size_type dynsymcount
;
6184 unsigned long section_sym_count
;
6185 unsigned int dtagcount
;
6187 dynobj
= elf_hash_table (info
)->dynobj
;
6189 /* Assign dynsym indicies. In a shared library we generate a
6190 section symbol for each output section, which come first.
6191 Next come all of the back-end allocated local dynamic syms,
6192 followed by the rest of the global symbols. */
6194 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6195 §ion_sym_count
);
6197 /* Work out the size of the symbol version section. */
6198 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6199 BFD_ASSERT (s
!= NULL
);
6200 if (dynsymcount
!= 0
6201 && (s
->flags
& SEC_EXCLUDE
) == 0)
6203 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6204 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6205 if (s
->contents
== NULL
)
6208 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6212 /* Set the size of the .dynsym and .hash sections. We counted
6213 the number of dynamic symbols in elf_link_add_object_symbols.
6214 We will build the contents of .dynsym and .hash when we build
6215 the final symbol table, because until then we do not know the
6216 correct value to give the symbols. We built the .dynstr
6217 section as we went along in elf_link_add_object_symbols. */
6218 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6219 BFD_ASSERT (s
!= NULL
);
6220 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6222 if (dynsymcount
!= 0)
6224 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6225 if (s
->contents
== NULL
)
6228 /* The first entry in .dynsym is a dummy symbol.
6229 Clear all the section syms, in case we don't output them all. */
6230 ++section_sym_count
;
6231 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6234 elf_hash_table (info
)->bucketcount
= 0;
6236 /* Compute the size of the hashing table. As a side effect this
6237 computes the hash values for all the names we export. */
6238 if (info
->emit_hash
)
6240 unsigned long int *hashcodes
;
6241 struct hash_codes_info hashinf
;
6243 unsigned long int nsyms
;
6245 size_t hash_entry_size
;
6247 /* Compute the hash values for all exported symbols. At the same
6248 time store the values in an array so that we could use them for
6250 amt
= dynsymcount
* sizeof (unsigned long int);
6251 hashcodes
= bfd_malloc (amt
);
6252 if (hashcodes
== NULL
)
6254 hashinf
.hashcodes
= hashcodes
;
6255 hashinf
.error
= FALSE
;
6257 /* Put all hash values in HASHCODES. */
6258 elf_link_hash_traverse (elf_hash_table (info
),
6259 elf_collect_hash_codes
, &hashinf
);
6266 nsyms
= hashinf
.hashcodes
- hashcodes
;
6268 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6271 if (bucketcount
== 0)
6274 elf_hash_table (info
)->bucketcount
= bucketcount
;
6276 s
= bfd_get_section_by_name (dynobj
, ".hash");
6277 BFD_ASSERT (s
!= NULL
);
6278 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6279 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6280 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6281 if (s
->contents
== NULL
)
6284 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6285 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6286 s
->contents
+ hash_entry_size
);
6289 if (info
->emit_gnu_hash
)
6292 unsigned char *contents
;
6293 struct collect_gnu_hash_codes cinfo
;
6297 memset (&cinfo
, 0, sizeof (cinfo
));
6299 /* Compute the hash values for all exported symbols. At the same
6300 time store the values in an array so that we could use them for
6302 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6303 cinfo
.hashcodes
= bfd_malloc (amt
);
6304 if (cinfo
.hashcodes
== NULL
)
6307 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6308 cinfo
.min_dynindx
= -1;
6309 cinfo
.output_bfd
= output_bfd
;
6312 /* Put all hash values in HASHCODES. */
6313 elf_link_hash_traverse (elf_hash_table (info
),
6314 elf_collect_gnu_hash_codes
, &cinfo
);
6317 free (cinfo
.hashcodes
);
6322 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6324 if (bucketcount
== 0)
6326 free (cinfo
.hashcodes
);
6330 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6331 BFD_ASSERT (s
!= NULL
);
6333 if (cinfo
.nsyms
== 0)
6335 /* Empty .gnu.hash section is special. */
6336 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6337 free (cinfo
.hashcodes
);
6338 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6339 contents
= bfd_zalloc (output_bfd
, s
->size
);
6340 if (contents
== NULL
)
6342 s
->contents
= contents
;
6343 /* 1 empty bucket. */
6344 bfd_put_32 (output_bfd
, 1, contents
);
6345 /* SYMIDX above the special symbol 0. */
6346 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6347 /* Just one word for bitmask. */
6348 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6349 /* Only hash fn bloom filter. */
6350 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6351 /* No hashes are valid - empty bitmask. */
6352 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6353 /* No hashes in the only bucket. */
6354 bfd_put_32 (output_bfd
, 0,
6355 contents
+ 16 + bed
->s
->arch_size
/ 8);
6359 unsigned long int maskwords
, maskbitslog2
;
6360 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6362 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6363 if (maskbitslog2
< 3)
6365 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6366 maskbitslog2
= maskbitslog2
+ 3;
6368 maskbitslog2
= maskbitslog2
+ 2;
6369 if (bed
->s
->arch_size
== 64)
6371 if (maskbitslog2
== 5)
6377 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6378 cinfo
.shift2
= maskbitslog2
;
6379 cinfo
.maskbits
= 1 << maskbitslog2
;
6380 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6381 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6382 amt
+= maskwords
* sizeof (bfd_vma
);
6383 cinfo
.bitmask
= bfd_malloc (amt
);
6384 if (cinfo
.bitmask
== NULL
)
6386 free (cinfo
.hashcodes
);
6390 cinfo
.counts
= (void *) (cinfo
.bitmask
+ maskwords
);
6391 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6392 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6393 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6395 /* Determine how often each hash bucket is used. */
6396 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6397 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6398 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6400 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6401 if (cinfo
.counts
[i
] != 0)
6403 cinfo
.indx
[i
] = cnt
;
6404 cnt
+= cinfo
.counts
[i
];
6406 BFD_ASSERT (cnt
== dynsymcount
);
6407 cinfo
.bucketcount
= bucketcount
;
6408 cinfo
.local_indx
= cinfo
.min_dynindx
;
6410 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6411 s
->size
+= cinfo
.maskbits
/ 8;
6412 contents
= bfd_zalloc (output_bfd
, s
->size
);
6413 if (contents
== NULL
)
6415 free (cinfo
.bitmask
);
6416 free (cinfo
.hashcodes
);
6420 s
->contents
= contents
;
6421 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6422 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6423 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6424 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6425 contents
+= 16 + cinfo
.maskbits
/ 8;
6427 for (i
= 0; i
< bucketcount
; ++i
)
6429 if (cinfo
.counts
[i
] == 0)
6430 bfd_put_32 (output_bfd
, 0, contents
);
6432 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6436 cinfo
.contents
= contents
;
6438 /* Renumber dynamic symbols, populate .gnu.hash section. */
6439 elf_link_hash_traverse (elf_hash_table (info
),
6440 elf_renumber_gnu_hash_syms
, &cinfo
);
6442 contents
= s
->contents
+ 16;
6443 for (i
= 0; i
< maskwords
; ++i
)
6445 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6447 contents
+= bed
->s
->arch_size
/ 8;
6450 free (cinfo
.bitmask
);
6451 free (cinfo
.hashcodes
);
6455 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6456 BFD_ASSERT (s
!= NULL
);
6458 elf_finalize_dynstr (output_bfd
, info
);
6460 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6462 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6463 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6470 /* Indicate that we are only retrieving symbol values from this
6474 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6476 if (is_elf_hash_table (info
->hash
))
6477 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6478 _bfd_generic_link_just_syms (sec
, info
);
6481 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6484 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6487 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6488 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6491 /* Finish SHF_MERGE section merging. */
6494 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6499 if (!is_elf_hash_table (info
->hash
))
6502 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6503 if ((ibfd
->flags
& DYNAMIC
) == 0)
6504 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6505 if ((sec
->flags
& SEC_MERGE
) != 0
6506 && !bfd_is_abs_section (sec
->output_section
))
6508 struct bfd_elf_section_data
*secdata
;
6510 secdata
= elf_section_data (sec
);
6511 if (! _bfd_add_merge_section (abfd
,
6512 &elf_hash_table (info
)->merge_info
,
6513 sec
, &secdata
->sec_info
))
6515 else if (secdata
->sec_info
)
6516 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6519 if (elf_hash_table (info
)->merge_info
!= NULL
)
6520 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6521 merge_sections_remove_hook
);
6525 /* Create an entry in an ELF linker hash table. */
6527 struct bfd_hash_entry
*
6528 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6529 struct bfd_hash_table
*table
,
6532 /* Allocate the structure if it has not already been allocated by a
6536 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6541 /* Call the allocation method of the superclass. */
6542 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6545 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6546 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6548 /* Set local fields. */
6551 ret
->got
= htab
->init_got_refcount
;
6552 ret
->plt
= htab
->init_plt_refcount
;
6553 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6554 - offsetof (struct elf_link_hash_entry
, size
)));
6555 /* Assume that we have been called by a non-ELF symbol reader.
6556 This flag is then reset by the code which reads an ELF input
6557 file. This ensures that a symbol created by a non-ELF symbol
6558 reader will have the flag set correctly. */
6565 /* Copy data from an indirect symbol to its direct symbol, hiding the
6566 old indirect symbol. Also used for copying flags to a weakdef. */
6569 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6570 struct elf_link_hash_entry
*dir
,
6571 struct elf_link_hash_entry
*ind
)
6573 struct elf_link_hash_table
*htab
;
6575 /* Copy down any references that we may have already seen to the
6576 symbol which just became indirect. */
6578 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6579 dir
->ref_regular
|= ind
->ref_regular
;
6580 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6581 dir
->non_got_ref
|= ind
->non_got_ref
;
6582 dir
->needs_plt
|= ind
->needs_plt
;
6583 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6585 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6588 /* Copy over the global and procedure linkage table refcount entries.
6589 These may have been already set up by a check_relocs routine. */
6590 htab
= elf_hash_table (info
);
6591 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6593 if (dir
->got
.refcount
< 0)
6594 dir
->got
.refcount
= 0;
6595 dir
->got
.refcount
+= ind
->got
.refcount
;
6596 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6599 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6601 if (dir
->plt
.refcount
< 0)
6602 dir
->plt
.refcount
= 0;
6603 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6604 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6607 if (ind
->dynindx
!= -1)
6609 if (dir
->dynindx
!= -1)
6610 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6611 dir
->dynindx
= ind
->dynindx
;
6612 dir
->dynstr_index
= ind
->dynstr_index
;
6614 ind
->dynstr_index
= 0;
6619 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6620 struct elf_link_hash_entry
*h
,
6621 bfd_boolean force_local
)
6623 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6627 h
->forced_local
= 1;
6628 if (h
->dynindx
!= -1)
6631 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6637 /* Initialize an ELF linker hash table. */
6640 _bfd_elf_link_hash_table_init
6641 (struct elf_link_hash_table
*table
,
6643 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6644 struct bfd_hash_table
*,
6646 unsigned int entsize
)
6649 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6651 memset (table
, 0, sizeof * table
);
6652 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6653 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6654 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6655 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6656 /* The first dynamic symbol is a dummy. */
6657 table
->dynsymcount
= 1;
6659 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6660 table
->root
.type
= bfd_link_elf_hash_table
;
6665 /* Create an ELF linker hash table. */
6667 struct bfd_link_hash_table
*
6668 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6670 struct elf_link_hash_table
*ret
;
6671 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6673 ret
= bfd_malloc (amt
);
6677 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6678 sizeof (struct elf_link_hash_entry
)))
6687 /* This is a hook for the ELF emulation code in the generic linker to
6688 tell the backend linker what file name to use for the DT_NEEDED
6689 entry for a dynamic object. */
6692 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6694 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6695 && bfd_get_format (abfd
) == bfd_object
)
6696 elf_dt_name (abfd
) = name
;
6700 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6703 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6704 && bfd_get_format (abfd
) == bfd_object
)
6705 lib_class
= elf_dyn_lib_class (abfd
);
6712 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6714 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6715 && bfd_get_format (abfd
) == bfd_object
)
6716 elf_dyn_lib_class (abfd
) = lib_class
;
6719 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6720 the linker ELF emulation code. */
6722 struct bfd_link_needed_list
*
6723 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6724 struct bfd_link_info
*info
)
6726 if (! is_elf_hash_table (info
->hash
))
6728 return elf_hash_table (info
)->needed
;
6731 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6732 hook for the linker ELF emulation code. */
6734 struct bfd_link_needed_list
*
6735 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6736 struct bfd_link_info
*info
)
6738 if (! is_elf_hash_table (info
->hash
))
6740 return elf_hash_table (info
)->runpath
;
6743 /* Get the name actually used for a dynamic object for a link. This
6744 is the SONAME entry if there is one. Otherwise, it is the string
6745 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6748 bfd_elf_get_dt_soname (bfd
*abfd
)
6750 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6751 && bfd_get_format (abfd
) == bfd_object
)
6752 return elf_dt_name (abfd
);
6756 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6757 the ELF linker emulation code. */
6760 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6761 struct bfd_link_needed_list
**pneeded
)
6764 bfd_byte
*dynbuf
= NULL
;
6765 unsigned int elfsec
;
6766 unsigned long shlink
;
6767 bfd_byte
*extdyn
, *extdynend
;
6769 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6773 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6774 || bfd_get_format (abfd
) != bfd_object
)
6777 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6778 if (s
== NULL
|| s
->size
== 0)
6781 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6784 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6785 if (elfsec
== SHN_BAD
)
6788 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6790 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6791 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6794 extdynend
= extdyn
+ s
->size
;
6795 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6797 Elf_Internal_Dyn dyn
;
6799 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6801 if (dyn
.d_tag
== DT_NULL
)
6804 if (dyn
.d_tag
== DT_NEEDED
)
6807 struct bfd_link_needed_list
*l
;
6808 unsigned int tagv
= dyn
.d_un
.d_val
;
6811 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6816 l
= bfd_alloc (abfd
, amt
);
6837 struct elf_symbuf_symbol
6839 unsigned long st_name
; /* Symbol name, index in string tbl */
6840 unsigned char st_info
; /* Type and binding attributes */
6841 unsigned char st_other
; /* Visibilty, and target specific */
6844 struct elf_symbuf_head
6846 struct elf_symbuf_symbol
*ssym
;
6847 bfd_size_type count
;
6848 unsigned int st_shndx
;
6855 Elf_Internal_Sym
*isym
;
6856 struct elf_symbuf_symbol
*ssym
;
6861 /* Sort references to symbols by ascending section number. */
6864 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
6866 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
6867 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
6869 return s1
->st_shndx
- s2
->st_shndx
;
6873 elf_sym_name_compare (const void *arg1
, const void *arg2
)
6875 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
6876 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
6877 return strcmp (s1
->name
, s2
->name
);
6880 static struct elf_symbuf_head
*
6881 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
6883 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
6884 struct elf_symbuf_symbol
*ssym
;
6885 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
6886 bfd_size_type i
, shndx_count
, total_size
;
6888 indbuf
= bfd_malloc2 (symcount
, sizeof (*indbuf
));
6892 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
6893 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
6894 *ind
++ = &isymbuf
[i
];
6897 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
6898 elf_sort_elf_symbol
);
6901 if (indbufend
> indbuf
)
6902 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
6903 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
6906 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
6907 + (indbufend
- indbuf
) * sizeof (*ssym
));
6908 ssymbuf
= bfd_malloc (total_size
);
6909 if (ssymbuf
== NULL
)
6915 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
6916 ssymbuf
->ssym
= NULL
;
6917 ssymbuf
->count
= shndx_count
;
6918 ssymbuf
->st_shndx
= 0;
6919 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
6921 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
6924 ssymhead
->ssym
= ssym
;
6925 ssymhead
->count
= 0;
6926 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
6928 ssym
->st_name
= (*ind
)->st_name
;
6929 ssym
->st_info
= (*ind
)->st_info
;
6930 ssym
->st_other
= (*ind
)->st_other
;
6933 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
6934 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
6941 /* Check if 2 sections define the same set of local and global
6945 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
6946 struct bfd_link_info
*info
)
6949 const struct elf_backend_data
*bed1
, *bed2
;
6950 Elf_Internal_Shdr
*hdr1
, *hdr2
;
6951 bfd_size_type symcount1
, symcount2
;
6952 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
6953 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
6954 Elf_Internal_Sym
*isym
, *isymend
;
6955 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
6956 bfd_size_type count1
, count2
, i
;
6957 unsigned int shndx1
, shndx2
;
6963 /* Both sections have to be in ELF. */
6964 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
6965 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
6968 if (elf_section_type (sec1
) != elf_section_type (sec2
))
6971 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
6972 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
6973 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
6976 bed1
= get_elf_backend_data (bfd1
);
6977 bed2
= get_elf_backend_data (bfd2
);
6978 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
6979 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
6980 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
6981 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
6983 if (symcount1
== 0 || symcount2
== 0)
6989 ssymbuf1
= elf_tdata (bfd1
)->symbuf
;
6990 ssymbuf2
= elf_tdata (bfd2
)->symbuf
;
6992 if (ssymbuf1
== NULL
)
6994 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
6996 if (isymbuf1
== NULL
)
6999 if (!info
->reduce_memory_overheads
)
7000 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7001 = elf_create_symbuf (symcount1
, isymbuf1
);
7004 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7006 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7008 if (isymbuf2
== NULL
)
7011 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7012 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7013 = elf_create_symbuf (symcount2
, isymbuf2
);
7016 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7018 /* Optimized faster version. */
7019 bfd_size_type lo
, hi
, mid
;
7020 struct elf_symbol
*symp
;
7021 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7024 hi
= ssymbuf1
->count
;
7029 mid
= (lo
+ hi
) / 2;
7030 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7032 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7036 count1
= ssymbuf1
[mid
].count
;
7043 hi
= ssymbuf2
->count
;
7048 mid
= (lo
+ hi
) / 2;
7049 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7051 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7055 count2
= ssymbuf2
[mid
].count
;
7061 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7064 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
7065 symtable2
= bfd_malloc (count2
* sizeof (struct elf_symbol
));
7066 if (symtable1
== NULL
|| symtable2
== NULL
)
7070 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7071 ssym
< ssymend
; ssym
++, symp
++)
7073 symp
->u
.ssym
= ssym
;
7074 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7080 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7081 ssym
< ssymend
; ssym
++, symp
++)
7083 symp
->u
.ssym
= ssym
;
7084 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7089 /* Sort symbol by name. */
7090 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7091 elf_sym_name_compare
);
7092 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7093 elf_sym_name_compare
);
7095 for (i
= 0; i
< count1
; i
++)
7096 /* Two symbols must have the same binding, type and name. */
7097 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7098 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7099 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7106 symtable1
= bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7107 symtable2
= bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7108 if (symtable1
== NULL
|| symtable2
== NULL
)
7111 /* Count definitions in the section. */
7113 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7114 if (isym
->st_shndx
== shndx1
)
7115 symtable1
[count1
++].u
.isym
= isym
;
7118 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7119 if (isym
->st_shndx
== shndx2
)
7120 symtable2
[count2
++].u
.isym
= isym
;
7122 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7125 for (i
= 0; i
< count1
; i
++)
7127 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7128 symtable1
[i
].u
.isym
->st_name
);
7130 for (i
= 0; i
< count2
; i
++)
7132 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7133 symtable2
[i
].u
.isym
->st_name
);
7135 /* Sort symbol by name. */
7136 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7137 elf_sym_name_compare
);
7138 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7139 elf_sym_name_compare
);
7141 for (i
= 0; i
< count1
; i
++)
7142 /* Two symbols must have the same binding, type and name. */
7143 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7144 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7145 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7163 /* Return TRUE if 2 section types are compatible. */
7166 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7167 bfd
*bbfd
, const asection
*bsec
)
7171 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7172 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7175 return elf_section_type (asec
) == elf_section_type (bsec
);
7178 /* Final phase of ELF linker. */
7180 /* A structure we use to avoid passing large numbers of arguments. */
7182 struct elf_final_link_info
7184 /* General link information. */
7185 struct bfd_link_info
*info
;
7188 /* Symbol string table. */
7189 struct bfd_strtab_hash
*symstrtab
;
7190 /* .dynsym section. */
7191 asection
*dynsym_sec
;
7192 /* .hash section. */
7194 /* symbol version section (.gnu.version). */
7195 asection
*symver_sec
;
7196 /* Buffer large enough to hold contents of any section. */
7198 /* Buffer large enough to hold external relocs of any section. */
7199 void *external_relocs
;
7200 /* Buffer large enough to hold internal relocs of any section. */
7201 Elf_Internal_Rela
*internal_relocs
;
7202 /* Buffer large enough to hold external local symbols of any input
7204 bfd_byte
*external_syms
;
7205 /* And a buffer for symbol section indices. */
7206 Elf_External_Sym_Shndx
*locsym_shndx
;
7207 /* Buffer large enough to hold internal local symbols of any input
7209 Elf_Internal_Sym
*internal_syms
;
7210 /* Array large enough to hold a symbol index for each local symbol
7211 of any input BFD. */
7213 /* Array large enough to hold a section pointer for each local
7214 symbol of any input BFD. */
7215 asection
**sections
;
7216 /* Buffer to hold swapped out symbols. */
7218 /* And one for symbol section indices. */
7219 Elf_External_Sym_Shndx
*symshndxbuf
;
7220 /* Number of swapped out symbols in buffer. */
7221 size_t symbuf_count
;
7222 /* Number of symbols which fit in symbuf. */
7224 /* And same for symshndxbuf. */
7225 size_t shndxbuf_size
;
7228 /* This struct is used to pass information to elf_link_output_extsym. */
7230 struct elf_outext_info
7233 bfd_boolean localsyms
;
7234 struct elf_final_link_info
*finfo
;
7238 /* Support for evaluating a complex relocation.
7240 Complex relocations are generalized, self-describing relocations. The
7241 implementation of them consists of two parts: complex symbols, and the
7242 relocations themselves.
7244 The relocations are use a reserved elf-wide relocation type code (R_RELC
7245 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7246 information (start bit, end bit, word width, etc) into the addend. This
7247 information is extracted from CGEN-generated operand tables within gas.
7249 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7250 internal) representing prefix-notation expressions, including but not
7251 limited to those sorts of expressions normally encoded as addends in the
7252 addend field. The symbol mangling format is:
7255 | <unary-operator> ':' <node>
7256 | <binary-operator> ':' <node> ':' <node>
7259 <literal> := 's' <digits=N> ':' <N character symbol name>
7260 | 'S' <digits=N> ':' <N character section name>
7264 <binary-operator> := as in C
7265 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7268 set_symbol_value (bfd
*bfd_with_globals
,
7269 Elf_Internal_Sym
*isymbuf
,
7274 struct elf_link_hash_entry
**sym_hashes
;
7275 struct elf_link_hash_entry
*h
;
7276 size_t extsymoff
= locsymcount
;
7278 if (symidx
< locsymcount
)
7280 Elf_Internal_Sym
*sym
;
7282 sym
= isymbuf
+ symidx
;
7283 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7285 /* It is a local symbol: move it to the
7286 "absolute" section and give it a value. */
7287 sym
->st_shndx
= SHN_ABS
;
7288 sym
->st_value
= val
;
7291 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7295 /* It is a global symbol: set its link type
7296 to "defined" and give it a value. */
7298 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7299 h
= sym_hashes
[symidx
- extsymoff
];
7300 while (h
->root
.type
== bfd_link_hash_indirect
7301 || h
->root
.type
== bfd_link_hash_warning
)
7302 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7303 h
->root
.type
= bfd_link_hash_defined
;
7304 h
->root
.u
.def
.value
= val
;
7305 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7309 resolve_symbol (const char *name
,
7311 struct elf_final_link_info
*finfo
,
7313 Elf_Internal_Sym
*isymbuf
,
7316 Elf_Internal_Sym
*sym
;
7317 struct bfd_link_hash_entry
*global_entry
;
7318 const char *candidate
= NULL
;
7319 Elf_Internal_Shdr
*symtab_hdr
;
7322 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7324 for (i
= 0; i
< locsymcount
; ++ i
)
7328 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7331 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7332 symtab_hdr
->sh_link
,
7335 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7336 name
, candidate
, (unsigned long) sym
->st_value
);
7338 if (candidate
&& strcmp (candidate
, name
) == 0)
7340 asection
*sec
= finfo
->sections
[i
];
7342 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7343 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7345 printf ("Found symbol with value %8.8lx\n",
7346 (unsigned long) *result
);
7352 /* Hmm, haven't found it yet. perhaps it is a global. */
7353 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7354 FALSE
, FALSE
, TRUE
);
7358 if (global_entry
->type
== bfd_link_hash_defined
7359 || global_entry
->type
== bfd_link_hash_defweak
)
7361 *result
= (global_entry
->u
.def
.value
7362 + global_entry
->u
.def
.section
->output_section
->vma
7363 + global_entry
->u
.def
.section
->output_offset
);
7365 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7366 global_entry
->root
.string
, (unsigned long) *result
);
7375 resolve_section (const char *name
,
7382 for (curr
= sections
; curr
; curr
= curr
->next
)
7383 if (strcmp (curr
->name
, name
) == 0)
7385 *result
= curr
->vma
;
7389 /* Hmm. still haven't found it. try pseudo-section names. */
7390 for (curr
= sections
; curr
; curr
= curr
->next
)
7392 len
= strlen (curr
->name
);
7393 if (len
> strlen (name
))
7396 if (strncmp (curr
->name
, name
, len
) == 0)
7398 if (strncmp (".end", name
+ len
, 4) == 0)
7400 *result
= curr
->vma
+ curr
->size
;
7404 /* Insert more pseudo-section names here, if you like. */
7412 undefined_reference (const char *reftype
, const char *name
)
7414 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7419 eval_symbol (bfd_vma
*result
,
7422 struct elf_final_link_info
*finfo
,
7424 Elf_Internal_Sym
*isymbuf
,
7433 const char *sym
= *symp
;
7435 bfd_boolean symbol_is_section
= FALSE
;
7440 if (len
< 1 || len
> sizeof (symbuf
))
7442 bfd_set_error (bfd_error_invalid_operation
);
7455 *result
= strtoul (sym
, (char **) symp
, 16);
7459 symbol_is_section
= TRUE
;
7462 symlen
= strtol (sym
, (char **) symp
, 10);
7463 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7465 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7467 bfd_set_error (bfd_error_invalid_operation
);
7471 memcpy (symbuf
, sym
, symlen
);
7472 symbuf
[symlen
] = '\0';
7473 *symp
= sym
+ symlen
;
7475 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7476 the symbol as a section, or vice-versa. so we're pretty liberal in our
7477 interpretation here; section means "try section first", not "must be a
7478 section", and likewise with symbol. */
7480 if (symbol_is_section
)
7482 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7483 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7484 isymbuf
, locsymcount
))
7486 undefined_reference ("section", symbuf
);
7492 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7493 isymbuf
, locsymcount
)
7494 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7497 undefined_reference ("symbol", symbuf
);
7504 /* All that remains are operators. */
7506 #define UNARY_OP(op) \
7507 if (strncmp (sym, #op, strlen (#op)) == 0) \
7509 sym += strlen (#op); \
7513 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7514 isymbuf, locsymcount, signed_p)) \
7517 *result = op ((bfd_signed_vma) a); \
7523 #define BINARY_OP(op) \
7524 if (strncmp (sym, #op, strlen (#op)) == 0) \
7526 sym += strlen (#op); \
7530 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7531 isymbuf, locsymcount, signed_p)) \
7534 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7535 isymbuf, locsymcount, signed_p)) \
7538 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7568 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7569 bfd_set_error (bfd_error_invalid_operation
);
7575 put_value (bfd_vma size
,
7576 unsigned long chunksz
,
7581 location
+= (size
- chunksz
);
7583 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7591 bfd_put_8 (input_bfd
, x
, location
);
7594 bfd_put_16 (input_bfd
, x
, location
);
7597 bfd_put_32 (input_bfd
, x
, location
);
7601 bfd_put_64 (input_bfd
, x
, location
);
7611 get_value (bfd_vma size
,
7612 unsigned long chunksz
,
7618 for (; size
; size
-= chunksz
, location
+= chunksz
)
7626 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7629 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7632 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7636 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7647 decode_complex_addend (unsigned long *start
, /* in bits */
7648 unsigned long *oplen
, /* in bits */
7649 unsigned long *len
, /* in bits */
7650 unsigned long *wordsz
, /* in bytes */
7651 unsigned long *chunksz
, /* in bytes */
7652 unsigned long *lsb0_p
,
7653 unsigned long *signed_p
,
7654 unsigned long *trunc_p
,
7655 unsigned long encoded
)
7657 * start
= encoded
& 0x3F;
7658 * len
= (encoded
>> 6) & 0x3F;
7659 * oplen
= (encoded
>> 12) & 0x3F;
7660 * wordsz
= (encoded
>> 18) & 0xF;
7661 * chunksz
= (encoded
>> 22) & 0xF;
7662 * lsb0_p
= (encoded
>> 27) & 1;
7663 * signed_p
= (encoded
>> 28) & 1;
7664 * trunc_p
= (encoded
>> 29) & 1;
7667 bfd_reloc_status_type
7668 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7669 asection
*input_section ATTRIBUTE_UNUSED
,
7671 Elf_Internal_Rela
*rel
,
7674 bfd_vma shift
, x
, mask
;
7675 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7676 bfd_reloc_status_type r
;
7678 /* Perform this reloc, since it is complex.
7679 (this is not to say that it necessarily refers to a complex
7680 symbol; merely that it is a self-describing CGEN based reloc.
7681 i.e. the addend has the complete reloc information (bit start, end,
7682 word size, etc) encoded within it.). */
7684 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7685 &chunksz
, &lsb0_p
, &signed_p
,
7686 &trunc_p
, rel
->r_addend
);
7688 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7691 shift
= (start
+ 1) - len
;
7693 shift
= (8 * wordsz
) - (start
+ len
);
7695 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7698 printf ("Doing complex reloc: "
7699 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7700 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7701 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7702 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7703 oplen
, x
, mask
, relocation
);
7708 /* Now do an overflow check. */
7709 r
= bfd_check_overflow ((signed_p
7710 ? complain_overflow_signed
7711 : complain_overflow_unsigned
),
7712 len
, 0, (8 * wordsz
),
7716 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7719 printf (" relocation: %8.8lx\n"
7720 " shifted mask: %8.8lx\n"
7721 " shifted/masked reloc: %8.8lx\n"
7722 " result: %8.8lx\n",
7723 relocation
, (mask
<< shift
),
7724 ((relocation
& mask
) << shift
), x
);
7726 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7730 /* When performing a relocatable link, the input relocations are
7731 preserved. But, if they reference global symbols, the indices
7732 referenced must be updated. Update all the relocations in
7733 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7736 elf_link_adjust_relocs (bfd
*abfd
,
7737 Elf_Internal_Shdr
*rel_hdr
,
7739 struct elf_link_hash_entry
**rel_hash
)
7742 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7744 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7745 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7746 bfd_vma r_type_mask
;
7749 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7751 swap_in
= bed
->s
->swap_reloc_in
;
7752 swap_out
= bed
->s
->swap_reloc_out
;
7754 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7756 swap_in
= bed
->s
->swap_reloca_in
;
7757 swap_out
= bed
->s
->swap_reloca_out
;
7762 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7765 if (bed
->s
->arch_size
== 32)
7772 r_type_mask
= 0xffffffff;
7776 erela
= rel_hdr
->contents
;
7777 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7779 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7782 if (*rel_hash
== NULL
)
7785 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7787 (*swap_in
) (abfd
, erela
, irela
);
7788 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7789 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7790 | (irela
[j
].r_info
& r_type_mask
));
7791 (*swap_out
) (abfd
, irela
, erela
);
7795 struct elf_link_sort_rela
7801 enum elf_reloc_type_class type
;
7802 /* We use this as an array of size int_rels_per_ext_rel. */
7803 Elf_Internal_Rela rela
[1];
7807 elf_link_sort_cmp1 (const void *A
, const void *B
)
7809 const struct elf_link_sort_rela
*a
= A
;
7810 const struct elf_link_sort_rela
*b
= B
;
7811 int relativea
, relativeb
;
7813 relativea
= a
->type
== reloc_class_relative
;
7814 relativeb
= b
->type
== reloc_class_relative
;
7816 if (relativea
< relativeb
)
7818 if (relativea
> relativeb
)
7820 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
7822 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
7824 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7826 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7832 elf_link_sort_cmp2 (const void *A
, const void *B
)
7834 const struct elf_link_sort_rela
*a
= A
;
7835 const struct elf_link_sort_rela
*b
= B
;
7838 if (a
->u
.offset
< b
->u
.offset
)
7840 if (a
->u
.offset
> b
->u
.offset
)
7842 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
7843 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
7848 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7850 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7856 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
7858 asection
*dynamic_relocs
;
7861 bfd_size_type count
, size
;
7862 size_t i
, ret
, sort_elt
, ext_size
;
7863 bfd_byte
*sort
, *s_non_relative
, *p
;
7864 struct elf_link_sort_rela
*sq
;
7865 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7866 int i2e
= bed
->s
->int_rels_per_ext_rel
;
7867 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7868 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7869 struct bfd_link_order
*lo
;
7871 bfd_boolean use_rela
;
7873 /* Find a dynamic reloc section. */
7874 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
7875 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
7876 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
7877 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
7879 bfd_boolean use_rela_initialised
= FALSE
;
7881 /* This is just here to stop gcc from complaining.
7882 It's initialization checking code is not perfect. */
7885 /* Both sections are present. Examine the sizes
7886 of the indirect sections to help us choose. */
7887 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7888 if (lo
->type
== bfd_indirect_link_order
)
7890 asection
*o
= lo
->u
.indirect
.section
;
7892 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7894 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7895 /* Section size is divisible by both rel and rela sizes.
7896 It is of no help to us. */
7900 /* Section size is only divisible by rela. */
7901 if (use_rela_initialised
&& (use_rela
== FALSE
))
7904 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7905 bfd_set_error (bfd_error_invalid_operation
);
7911 use_rela_initialised
= TRUE
;
7915 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7917 /* Section size is only divisible by rel. */
7918 if (use_rela_initialised
&& (use_rela
== TRUE
))
7921 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7922 bfd_set_error (bfd_error_invalid_operation
);
7928 use_rela_initialised
= TRUE
;
7933 /* The section size is not divisible by either - something is wrong. */
7935 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
7936 bfd_set_error (bfd_error_invalid_operation
);
7941 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7942 if (lo
->type
== bfd_indirect_link_order
)
7944 asection
*o
= lo
->u
.indirect
.section
;
7946 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7948 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7949 /* Section size is divisible by both rel and rela sizes.
7950 It is of no help to us. */
7954 /* Section size is only divisible by rela. */
7955 if (use_rela_initialised
&& (use_rela
== FALSE
))
7958 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7959 bfd_set_error (bfd_error_invalid_operation
);
7965 use_rela_initialised
= TRUE
;
7969 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7971 /* Section size is only divisible by rel. */
7972 if (use_rela_initialised
&& (use_rela
== TRUE
))
7975 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7976 bfd_set_error (bfd_error_invalid_operation
);
7982 use_rela_initialised
= TRUE
;
7987 /* The section size is not divisible by either - something is wrong. */
7989 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
7990 bfd_set_error (bfd_error_invalid_operation
);
7995 if (! use_rela_initialised
)
7999 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8001 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8008 dynamic_relocs
= rela_dyn
;
8009 ext_size
= bed
->s
->sizeof_rela
;
8010 swap_in
= bed
->s
->swap_reloca_in
;
8011 swap_out
= bed
->s
->swap_reloca_out
;
8015 dynamic_relocs
= rel_dyn
;
8016 ext_size
= bed
->s
->sizeof_rel
;
8017 swap_in
= bed
->s
->swap_reloc_in
;
8018 swap_out
= bed
->s
->swap_reloc_out
;
8022 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8023 if (lo
->type
== bfd_indirect_link_order
)
8024 size
+= lo
->u
.indirect
.section
->size
;
8026 if (size
!= dynamic_relocs
->size
)
8029 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8030 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8032 count
= dynamic_relocs
->size
/ ext_size
;
8033 sort
= bfd_zmalloc (sort_elt
* count
);
8037 (*info
->callbacks
->warning
)
8038 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8042 if (bed
->s
->arch_size
== 32)
8043 r_sym_mask
= ~(bfd_vma
) 0xff;
8045 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8047 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8048 if (lo
->type
== bfd_indirect_link_order
)
8050 bfd_byte
*erel
, *erelend
;
8051 asection
*o
= lo
->u
.indirect
.section
;
8053 if (o
->contents
== NULL
&& o
->size
!= 0)
8055 /* This is a reloc section that is being handled as a normal
8056 section. See bfd_section_from_shdr. We can't combine
8057 relocs in this case. */
8062 erelend
= o
->contents
+ o
->size
;
8063 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8065 while (erel
< erelend
)
8067 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8069 (*swap_in
) (abfd
, erel
, s
->rela
);
8070 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8071 s
->u
.sym_mask
= r_sym_mask
;
8077 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8079 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8081 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8082 if (s
->type
!= reloc_class_relative
)
8088 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8089 for (; i
< count
; i
++, p
+= sort_elt
)
8091 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8092 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8094 sp
->u
.offset
= sq
->rela
->r_offset
;
8097 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8099 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8100 if (lo
->type
== bfd_indirect_link_order
)
8102 bfd_byte
*erel
, *erelend
;
8103 asection
*o
= lo
->u
.indirect
.section
;
8106 erelend
= o
->contents
+ o
->size
;
8107 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8108 while (erel
< erelend
)
8110 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8111 (*swap_out
) (abfd
, s
->rela
, erel
);
8118 *psec
= dynamic_relocs
;
8122 /* Flush the output symbols to the file. */
8125 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8126 const struct elf_backend_data
*bed
)
8128 if (finfo
->symbuf_count
> 0)
8130 Elf_Internal_Shdr
*hdr
;
8134 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8135 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8136 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8137 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8138 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8141 hdr
->sh_size
+= amt
;
8142 finfo
->symbuf_count
= 0;
8148 /* Add a symbol to the output symbol table. */
8151 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8153 Elf_Internal_Sym
*elfsym
,
8154 asection
*input_sec
,
8155 struct elf_link_hash_entry
*h
)
8158 Elf_External_Sym_Shndx
*destshndx
;
8159 bfd_boolean (*output_symbol_hook
)
8160 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8161 struct elf_link_hash_entry
*);
8162 const struct elf_backend_data
*bed
;
8164 bed
= get_elf_backend_data (finfo
->output_bfd
);
8165 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8166 if (output_symbol_hook
!= NULL
)
8168 if (! (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
))
8172 if (name
== NULL
|| *name
== '\0')
8173 elfsym
->st_name
= 0;
8174 else if (input_sec
->flags
& SEC_EXCLUDE
)
8175 elfsym
->st_name
= 0;
8178 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8180 if (elfsym
->st_name
== (unsigned long) -1)
8184 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8186 if (! elf_link_flush_output_syms (finfo
, bed
))
8190 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8191 destshndx
= finfo
->symshndxbuf
;
8192 if (destshndx
!= NULL
)
8194 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8198 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8199 destshndx
= bfd_realloc (destshndx
, amt
* 2);
8200 if (destshndx
== NULL
)
8202 finfo
->symshndxbuf
= destshndx
;
8203 memset ((char *) destshndx
+ amt
, 0, amt
);
8204 finfo
->shndxbuf_size
*= 2;
8206 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8209 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8210 finfo
->symbuf_count
+= 1;
8211 bfd_get_symcount (finfo
->output_bfd
) += 1;
8216 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8219 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8221 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8222 && sym
->st_shndx
< SHN_LORESERVE
)
8224 /* The gABI doesn't support dynamic symbols in output sections
8226 (*_bfd_error_handler
)
8227 (_("%B: Too many sections: %d (>= %d)"),
8228 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8229 bfd_set_error (bfd_error_nonrepresentable_section
);
8235 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8236 allowing an unsatisfied unversioned symbol in the DSO to match a
8237 versioned symbol that would normally require an explicit version.
8238 We also handle the case that a DSO references a hidden symbol
8239 which may be satisfied by a versioned symbol in another DSO. */
8242 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8243 const struct elf_backend_data
*bed
,
8244 struct elf_link_hash_entry
*h
)
8247 struct elf_link_loaded_list
*loaded
;
8249 if (!is_elf_hash_table (info
->hash
))
8252 switch (h
->root
.type
)
8258 case bfd_link_hash_undefined
:
8259 case bfd_link_hash_undefweak
:
8260 abfd
= h
->root
.u
.undef
.abfd
;
8261 if ((abfd
->flags
& DYNAMIC
) == 0
8262 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8266 case bfd_link_hash_defined
:
8267 case bfd_link_hash_defweak
:
8268 abfd
= h
->root
.u
.def
.section
->owner
;
8271 case bfd_link_hash_common
:
8272 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8275 BFD_ASSERT (abfd
!= NULL
);
8277 for (loaded
= elf_hash_table (info
)->loaded
;
8279 loaded
= loaded
->next
)
8282 Elf_Internal_Shdr
*hdr
;
8283 bfd_size_type symcount
;
8284 bfd_size_type extsymcount
;
8285 bfd_size_type extsymoff
;
8286 Elf_Internal_Shdr
*versymhdr
;
8287 Elf_Internal_Sym
*isym
;
8288 Elf_Internal_Sym
*isymend
;
8289 Elf_Internal_Sym
*isymbuf
;
8290 Elf_External_Versym
*ever
;
8291 Elf_External_Versym
*extversym
;
8293 input
= loaded
->abfd
;
8295 /* We check each DSO for a possible hidden versioned definition. */
8297 || (input
->flags
& DYNAMIC
) == 0
8298 || elf_dynversym (input
) == 0)
8301 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8303 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8304 if (elf_bad_symtab (input
))
8306 extsymcount
= symcount
;
8311 extsymcount
= symcount
- hdr
->sh_info
;
8312 extsymoff
= hdr
->sh_info
;
8315 if (extsymcount
== 0)
8318 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8320 if (isymbuf
== NULL
)
8323 /* Read in any version definitions. */
8324 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8325 extversym
= bfd_malloc (versymhdr
->sh_size
);
8326 if (extversym
== NULL
)
8329 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8330 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8331 != versymhdr
->sh_size
))
8339 ever
= extversym
+ extsymoff
;
8340 isymend
= isymbuf
+ extsymcount
;
8341 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8344 Elf_Internal_Versym iver
;
8345 unsigned short version_index
;
8347 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8348 || isym
->st_shndx
== SHN_UNDEF
)
8351 name
= bfd_elf_string_from_elf_section (input
,
8354 if (strcmp (name
, h
->root
.root
.string
) != 0)
8357 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8359 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
8361 /* If we have a non-hidden versioned sym, then it should
8362 have provided a definition for the undefined sym. */
8366 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8367 if (version_index
== 1 || version_index
== 2)
8369 /* This is the base or first version. We can use it. */
8383 /* Add an external symbol to the symbol table. This is called from
8384 the hash table traversal routine. When generating a shared object,
8385 we go through the symbol table twice. The first time we output
8386 anything that might have been forced to local scope in a version
8387 script. The second time we output the symbols that are still
8391 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8393 struct elf_outext_info
*eoinfo
= data
;
8394 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8396 Elf_Internal_Sym sym
;
8397 asection
*input_sec
;
8398 const struct elf_backend_data
*bed
;
8400 if (h
->root
.type
== bfd_link_hash_warning
)
8402 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8403 if (h
->root
.type
== bfd_link_hash_new
)
8407 /* Decide whether to output this symbol in this pass. */
8408 if (eoinfo
->localsyms
)
8410 if (!h
->forced_local
)
8415 if (h
->forced_local
)
8419 bed
= get_elf_backend_data (finfo
->output_bfd
);
8421 if (h
->root
.type
== bfd_link_hash_undefined
)
8423 /* If we have an undefined symbol reference here then it must have
8424 come from a shared library that is being linked in. (Undefined
8425 references in regular files have already been handled). */
8426 bfd_boolean ignore_undef
= FALSE
;
8428 /* Some symbols may be special in that the fact that they're
8429 undefined can be safely ignored - let backend determine that. */
8430 if (bed
->elf_backend_ignore_undef_symbol
)
8431 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8433 /* If we are reporting errors for this situation then do so now. */
8434 if (ignore_undef
== FALSE
8437 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8438 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8440 if (! (finfo
->info
->callbacks
->undefined_symbol
8441 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
8442 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8444 eoinfo
->failed
= TRUE
;
8450 /* We should also warn if a forced local symbol is referenced from
8451 shared libraries. */
8452 if (! finfo
->info
->relocatable
8453 && (! finfo
->info
->shared
)
8458 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8460 (*_bfd_error_handler
)
8461 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8463 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8464 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8465 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8467 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8468 ? "hidden" : "local",
8469 h
->root
.root
.string
);
8470 eoinfo
->failed
= TRUE
;
8474 /* We don't want to output symbols that have never been mentioned by
8475 a regular file, or that we have been told to strip. However, if
8476 h->indx is set to -2, the symbol is used by a reloc and we must
8480 else if ((h
->def_dynamic
8482 || h
->root
.type
== bfd_link_hash_new
)
8486 else if (finfo
->info
->strip
== strip_all
)
8488 else if (finfo
->info
->strip
== strip_some
8489 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8490 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8492 else if (finfo
->info
->strip_discarded
8493 && (h
->root
.type
== bfd_link_hash_defined
8494 || h
->root
.type
== bfd_link_hash_defweak
)
8495 && elf_discarded_section (h
->root
.u
.def
.section
))
8500 /* If we're stripping it, and it's not a dynamic symbol, there's
8501 nothing else to do unless it is a forced local symbol. */
8504 && !h
->forced_local
)
8508 sym
.st_size
= h
->size
;
8509 sym
.st_other
= h
->other
;
8510 if (h
->forced_local
)
8511 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8512 else if (h
->root
.type
== bfd_link_hash_undefweak
8513 || h
->root
.type
== bfd_link_hash_defweak
)
8514 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8516 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8518 switch (h
->root
.type
)
8521 case bfd_link_hash_new
:
8522 case bfd_link_hash_warning
:
8526 case bfd_link_hash_undefined
:
8527 case bfd_link_hash_undefweak
:
8528 input_sec
= bfd_und_section_ptr
;
8529 sym
.st_shndx
= SHN_UNDEF
;
8532 case bfd_link_hash_defined
:
8533 case bfd_link_hash_defweak
:
8535 input_sec
= h
->root
.u
.def
.section
;
8536 if (input_sec
->output_section
!= NULL
)
8539 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8540 input_sec
->output_section
);
8541 if (sym
.st_shndx
== SHN_BAD
)
8543 (*_bfd_error_handler
)
8544 (_("%B: could not find output section %A for input section %A"),
8545 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8546 eoinfo
->failed
= TRUE
;
8550 /* ELF symbols in relocatable files are section relative,
8551 but in nonrelocatable files they are virtual
8553 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8554 if (! finfo
->info
->relocatable
)
8556 sym
.st_value
+= input_sec
->output_section
->vma
;
8557 if (h
->type
== STT_TLS
)
8559 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8560 if (tls_sec
!= NULL
)
8561 sym
.st_value
-= tls_sec
->vma
;
8564 /* The TLS section may have been garbage collected. */
8565 BFD_ASSERT (finfo
->info
->gc_sections
8566 && !input_sec
->gc_mark
);
8573 BFD_ASSERT (input_sec
->owner
== NULL
8574 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8575 sym
.st_shndx
= SHN_UNDEF
;
8576 input_sec
= bfd_und_section_ptr
;
8581 case bfd_link_hash_common
:
8582 input_sec
= h
->root
.u
.c
.p
->section
;
8583 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8584 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8587 case bfd_link_hash_indirect
:
8588 /* These symbols are created by symbol versioning. They point
8589 to the decorated version of the name. For example, if the
8590 symbol foo@@GNU_1.2 is the default, which should be used when
8591 foo is used with no version, then we add an indirect symbol
8592 foo which points to foo@@GNU_1.2. We ignore these symbols,
8593 since the indirected symbol is already in the hash table. */
8597 /* Give the processor backend a chance to tweak the symbol value,
8598 and also to finish up anything that needs to be done for this
8599 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8600 forced local syms when non-shared is due to a historical quirk. */
8601 if ((h
->dynindx
!= -1
8603 && ((finfo
->info
->shared
8604 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8605 || h
->root
.type
!= bfd_link_hash_undefweak
))
8606 || !h
->forced_local
)
8607 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8609 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8610 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8612 eoinfo
->failed
= TRUE
;
8617 /* If we are marking the symbol as undefined, and there are no
8618 non-weak references to this symbol from a regular object, then
8619 mark the symbol as weak undefined; if there are non-weak
8620 references, mark the symbol as strong. We can't do this earlier,
8621 because it might not be marked as undefined until the
8622 finish_dynamic_symbol routine gets through with it. */
8623 if (sym
.st_shndx
== SHN_UNDEF
8625 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8626 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8630 if (h
->ref_regular_nonweak
)
8631 bindtype
= STB_GLOBAL
;
8633 bindtype
= STB_WEAK
;
8634 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
8637 /* If this is a symbol defined in a dynamic library, don't use the
8638 symbol size from the dynamic library. Relinking an executable
8639 against a new library may introduce gratuitous changes in the
8640 executable's symbols if we keep the size. */
8641 if (sym
.st_shndx
== SHN_UNDEF
8646 /* If a non-weak symbol with non-default visibility is not defined
8647 locally, it is a fatal error. */
8648 if (! finfo
->info
->relocatable
8649 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8650 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8651 && h
->root
.type
== bfd_link_hash_undefined
8654 (*_bfd_error_handler
)
8655 (_("%B: %s symbol `%s' isn't defined"),
8657 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8659 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8660 ? "internal" : "hidden",
8661 h
->root
.root
.string
);
8662 eoinfo
->failed
= TRUE
;
8666 /* If this symbol should be put in the .dynsym section, then put it
8667 there now. We already know the symbol index. We also fill in
8668 the entry in the .hash section. */
8669 if (h
->dynindx
!= -1
8670 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8674 sym
.st_name
= h
->dynstr_index
;
8675 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8676 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8678 eoinfo
->failed
= TRUE
;
8681 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8683 if (finfo
->hash_sec
!= NULL
)
8685 size_t hash_entry_size
;
8686 bfd_byte
*bucketpos
;
8691 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8692 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8695 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8696 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8697 + (bucket
+ 2) * hash_entry_size
);
8698 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8699 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8700 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8701 ((bfd_byte
*) finfo
->hash_sec
->contents
8702 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8705 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8707 Elf_Internal_Versym iversym
;
8708 Elf_External_Versym
*eversym
;
8710 if (!h
->def_regular
)
8712 if (h
->verinfo
.verdef
== NULL
)
8713 iversym
.vs_vers
= 0;
8715 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8719 if (h
->verinfo
.vertree
== NULL
)
8720 iversym
.vs_vers
= 1;
8722 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8723 if (finfo
->info
->create_default_symver
)
8728 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8730 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8731 eversym
+= h
->dynindx
;
8732 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8736 /* If we're stripping it, then it was just a dynamic symbol, and
8737 there's nothing else to do. */
8738 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8741 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
8743 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
))
8745 eoinfo
->failed
= TRUE
;
8752 /* Return TRUE if special handling is done for relocs in SEC against
8753 symbols defined in discarded sections. */
8756 elf_section_ignore_discarded_relocs (asection
*sec
)
8758 const struct elf_backend_data
*bed
;
8760 switch (sec
->sec_info_type
)
8762 case ELF_INFO_TYPE_STABS
:
8763 case ELF_INFO_TYPE_EH_FRAME
:
8769 bed
= get_elf_backend_data (sec
->owner
);
8770 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8771 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
8777 /* Return a mask saying how ld should treat relocations in SEC against
8778 symbols defined in discarded sections. If this function returns
8779 COMPLAIN set, ld will issue a warning message. If this function
8780 returns PRETEND set, and the discarded section was link-once and the
8781 same size as the kept link-once section, ld will pretend that the
8782 symbol was actually defined in the kept section. Otherwise ld will
8783 zero the reloc (at least that is the intent, but some cooperation by
8784 the target dependent code is needed, particularly for REL targets). */
8787 _bfd_elf_default_action_discarded (asection
*sec
)
8789 if (sec
->flags
& SEC_DEBUGGING
)
8792 if (strcmp (".eh_frame", sec
->name
) == 0)
8795 if (strcmp (".gcc_except_table", sec
->name
) == 0)
8798 return COMPLAIN
| PRETEND
;
8801 /* Find a match between a section and a member of a section group. */
8804 match_group_member (asection
*sec
, asection
*group
,
8805 struct bfd_link_info
*info
)
8807 asection
*first
= elf_next_in_group (group
);
8808 asection
*s
= first
;
8812 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
8815 s
= elf_next_in_group (s
);
8823 /* Check if the kept section of a discarded section SEC can be used
8824 to replace it. Return the replacement if it is OK. Otherwise return
8828 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
8832 kept
= sec
->kept_section
;
8835 if ((kept
->flags
& SEC_GROUP
) != 0)
8836 kept
= match_group_member (sec
, kept
, info
);
8838 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
8839 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
8841 sec
->kept_section
= kept
;
8846 /* Link an input file into the linker output file. This function
8847 handles all the sections and relocations of the input file at once.
8848 This is so that we only have to read the local symbols once, and
8849 don't have to keep them in memory. */
8852 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
8854 int (*relocate_section
)
8855 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
8856 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
8858 Elf_Internal_Shdr
*symtab_hdr
;
8861 Elf_Internal_Sym
*isymbuf
;
8862 Elf_Internal_Sym
*isym
;
8863 Elf_Internal_Sym
*isymend
;
8865 asection
**ppsection
;
8867 const struct elf_backend_data
*bed
;
8868 struct elf_link_hash_entry
**sym_hashes
;
8870 output_bfd
= finfo
->output_bfd
;
8871 bed
= get_elf_backend_data (output_bfd
);
8872 relocate_section
= bed
->elf_backend_relocate_section
;
8874 /* If this is a dynamic object, we don't want to do anything here:
8875 we don't want the local symbols, and we don't want the section
8877 if ((input_bfd
->flags
& DYNAMIC
) != 0)
8880 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8881 if (elf_bad_symtab (input_bfd
))
8883 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8888 locsymcount
= symtab_hdr
->sh_info
;
8889 extsymoff
= symtab_hdr
->sh_info
;
8892 /* Read the local symbols. */
8893 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8894 if (isymbuf
== NULL
&& locsymcount
!= 0)
8896 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
8897 finfo
->internal_syms
,
8898 finfo
->external_syms
,
8899 finfo
->locsym_shndx
);
8900 if (isymbuf
== NULL
)
8904 /* Find local symbol sections and adjust values of symbols in
8905 SEC_MERGE sections. Write out those local symbols we know are
8906 going into the output file. */
8907 isymend
= isymbuf
+ locsymcount
;
8908 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
8910 isym
++, pindex
++, ppsection
++)
8914 Elf_Internal_Sym osym
;
8918 if (elf_bad_symtab (input_bfd
))
8920 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
8927 if (isym
->st_shndx
== SHN_UNDEF
)
8928 isec
= bfd_und_section_ptr
;
8929 else if (isym
->st_shndx
== SHN_ABS
)
8930 isec
= bfd_abs_section_ptr
;
8931 else if (isym
->st_shndx
== SHN_COMMON
)
8932 isec
= bfd_com_section_ptr
;
8935 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
8938 /* Don't attempt to output symbols with st_shnx in the
8939 reserved range other than SHN_ABS and SHN_COMMON. */
8943 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
8944 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
8946 _bfd_merged_section_offset (output_bfd
, &isec
,
8947 elf_section_data (isec
)->sec_info
,
8953 /* Don't output the first, undefined, symbol. */
8954 if (ppsection
== finfo
->sections
)
8957 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
8959 /* We never output section symbols. Instead, we use the
8960 section symbol of the corresponding section in the output
8965 /* If we are stripping all symbols, we don't want to output this
8967 if (finfo
->info
->strip
== strip_all
)
8970 /* If we are discarding all local symbols, we don't want to
8971 output this one. If we are generating a relocatable output
8972 file, then some of the local symbols may be required by
8973 relocs; we output them below as we discover that they are
8975 if (finfo
->info
->discard
== discard_all
)
8978 /* If this symbol is defined in a section which we are
8979 discarding, we don't need to keep it. */
8980 if (isym
->st_shndx
!= SHN_UNDEF
8981 && isym
->st_shndx
< SHN_LORESERVE
8982 && bfd_section_removed_from_list (output_bfd
,
8983 isec
->output_section
))
8986 /* Get the name of the symbol. */
8987 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
8992 /* See if we are discarding symbols with this name. */
8993 if ((finfo
->info
->strip
== strip_some
8994 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
8996 || (((finfo
->info
->discard
== discard_sec_merge
8997 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
8998 || finfo
->info
->discard
== discard_l
)
8999 && bfd_is_local_label_name (input_bfd
, name
)))
9002 /* If we get here, we are going to output this symbol. */
9006 /* Adjust the section index for the output file. */
9007 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9008 isec
->output_section
);
9009 if (osym
.st_shndx
== SHN_BAD
)
9012 *pindex
= bfd_get_symcount (output_bfd
);
9014 /* ELF symbols in relocatable files are section relative, but
9015 in executable files they are virtual addresses. Note that
9016 this code assumes that all ELF sections have an associated
9017 BFD section with a reasonable value for output_offset; below
9018 we assume that they also have a reasonable value for
9019 output_section. Any special sections must be set up to meet
9020 these requirements. */
9021 osym
.st_value
+= isec
->output_offset
;
9022 if (! finfo
->info
->relocatable
)
9024 osym
.st_value
+= isec
->output_section
->vma
;
9025 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9027 /* STT_TLS symbols are relative to PT_TLS segment base. */
9028 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9029 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9033 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
))
9037 /* Relocate the contents of each section. */
9038 sym_hashes
= elf_sym_hashes (input_bfd
);
9039 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9043 if (! o
->linker_mark
)
9045 /* This section was omitted from the link. */
9049 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9050 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9053 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9055 /* Section was created by _bfd_elf_link_create_dynamic_sections
9060 /* Get the contents of the section. They have been cached by a
9061 relaxation routine. Note that o is a section in an input
9062 file, so the contents field will not have been set by any of
9063 the routines which work on output files. */
9064 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9065 contents
= elf_section_data (o
)->this_hdr
.contents
;
9068 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9070 contents
= finfo
->contents
;
9071 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9075 if ((o
->flags
& SEC_RELOC
) != 0)
9077 Elf_Internal_Rela
*internal_relocs
;
9078 Elf_Internal_Rela
*rel
, *relend
;
9079 bfd_vma r_type_mask
;
9081 int action_discarded
;
9084 /* Get the swapped relocs. */
9086 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9087 finfo
->internal_relocs
, FALSE
);
9088 if (internal_relocs
== NULL
9089 && o
->reloc_count
> 0)
9092 if (bed
->s
->arch_size
== 32)
9099 r_type_mask
= 0xffffffff;
9103 action_discarded
= -1;
9104 if (!elf_section_ignore_discarded_relocs (o
))
9105 action_discarded
= (*bed
->action_discarded
) (o
);
9107 /* Run through the relocs evaluating complex reloc symbols and
9108 looking for relocs against symbols from discarded sections
9109 or section symbols from removed link-once sections.
9110 Complain about relocs against discarded sections. Zero
9111 relocs against removed link-once sections. */
9113 rel
= internal_relocs
;
9114 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9115 for ( ; rel
< relend
; rel
++)
9117 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9118 unsigned int s_type
;
9119 asection
**ps
, *sec
;
9120 struct elf_link_hash_entry
*h
= NULL
;
9121 const char *sym_name
;
9123 if (r_symndx
== STN_UNDEF
)
9126 if (r_symndx
>= locsymcount
9127 || (elf_bad_symtab (input_bfd
)
9128 && finfo
->sections
[r_symndx
] == NULL
))
9130 h
= sym_hashes
[r_symndx
- extsymoff
];
9132 /* Badly formatted input files can contain relocs that
9133 reference non-existant symbols. Check here so that
9134 we do not seg fault. */
9139 sprintf_vma (buffer
, rel
->r_info
);
9140 (*_bfd_error_handler
)
9141 (_("error: %B contains a reloc (0x%s) for section %A "
9142 "that references a non-existent global symbol"),
9143 input_bfd
, o
, buffer
);
9144 bfd_set_error (bfd_error_bad_value
);
9148 while (h
->root
.type
== bfd_link_hash_indirect
9149 || h
->root
.type
== bfd_link_hash_warning
)
9150 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9155 if (h
->root
.type
== bfd_link_hash_defined
9156 || h
->root
.type
== bfd_link_hash_defweak
)
9157 ps
= &h
->root
.u
.def
.section
;
9159 sym_name
= h
->root
.root
.string
;
9163 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9165 s_type
= ELF_ST_TYPE (sym
->st_info
);
9166 ps
= &finfo
->sections
[r_symndx
];
9167 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9171 if (s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9174 bfd_vma dot
= (rel
->r_offset
9175 + o
->output_offset
+ o
->output_section
->vma
);
9177 printf ("Encountered a complex symbol!");
9178 printf (" (input_bfd %s, section %s, reloc %ld\n",
9179 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9180 printf (" symbol: idx %8.8lx, name %s\n",
9181 r_symndx
, sym_name
);
9182 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9183 (unsigned long) rel
->r_info
,
9184 (unsigned long) rel
->r_offset
);
9186 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9187 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9190 /* Symbol evaluated OK. Update to absolute value. */
9191 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9196 if (action_discarded
!= -1 && ps
!= NULL
)
9198 /* Complain if the definition comes from a
9199 discarded section. */
9200 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9202 BFD_ASSERT (r_symndx
!= 0);
9203 if (action_discarded
& COMPLAIN
)
9204 (*finfo
->info
->callbacks
->einfo
)
9205 (_("%X`%s' referenced in section `%A' of %B: "
9206 "defined in discarded section `%A' of %B\n"),
9207 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9209 /* Try to do the best we can to support buggy old
9210 versions of gcc. Pretend that the symbol is
9211 really defined in the kept linkonce section.
9212 FIXME: This is quite broken. Modifying the
9213 symbol here means we will be changing all later
9214 uses of the symbol, not just in this section. */
9215 if (action_discarded
& PRETEND
)
9219 kept
= _bfd_elf_check_kept_section (sec
,
9231 /* Relocate the section by invoking a back end routine.
9233 The back end routine is responsible for adjusting the
9234 section contents as necessary, and (if using Rela relocs
9235 and generating a relocatable output file) adjusting the
9236 reloc addend as necessary.
9238 The back end routine does not have to worry about setting
9239 the reloc address or the reloc symbol index.
9241 The back end routine is given a pointer to the swapped in
9242 internal symbols, and can access the hash table entries
9243 for the external symbols via elf_sym_hashes (input_bfd).
9245 When generating relocatable output, the back end routine
9246 must handle STB_LOCAL/STT_SECTION symbols specially. The
9247 output symbol is going to be a section symbol
9248 corresponding to the output section, which will require
9249 the addend to be adjusted. */
9251 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9252 input_bfd
, o
, contents
,
9260 || finfo
->info
->relocatable
9261 || finfo
->info
->emitrelocations
)
9263 Elf_Internal_Rela
*irela
;
9264 Elf_Internal_Rela
*irelaend
;
9265 bfd_vma last_offset
;
9266 struct elf_link_hash_entry
**rel_hash
;
9267 struct elf_link_hash_entry
**rel_hash_list
;
9268 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9269 unsigned int next_erel
;
9270 bfd_boolean rela_normal
;
9272 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9273 rela_normal
= (bed
->rela_normal
9274 && (input_rel_hdr
->sh_entsize
9275 == bed
->s
->sizeof_rela
));
9277 /* Adjust the reloc addresses and symbol indices. */
9279 irela
= internal_relocs
;
9280 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9281 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9282 + elf_section_data (o
->output_section
)->rel_count
9283 + elf_section_data (o
->output_section
)->rel_count2
);
9284 rel_hash_list
= rel_hash
;
9285 last_offset
= o
->output_offset
;
9286 if (!finfo
->info
->relocatable
)
9287 last_offset
+= o
->output_section
->vma
;
9288 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9290 unsigned long r_symndx
;
9292 Elf_Internal_Sym sym
;
9294 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9300 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9303 if (irela
->r_offset
>= (bfd_vma
) -2)
9305 /* This is a reloc for a deleted entry or somesuch.
9306 Turn it into an R_*_NONE reloc, at the same
9307 offset as the last reloc. elf_eh_frame.c and
9308 bfd_elf_discard_info rely on reloc offsets
9310 irela
->r_offset
= last_offset
;
9312 irela
->r_addend
= 0;
9316 irela
->r_offset
+= o
->output_offset
;
9318 /* Relocs in an executable have to be virtual addresses. */
9319 if (!finfo
->info
->relocatable
)
9320 irela
->r_offset
+= o
->output_section
->vma
;
9322 last_offset
= irela
->r_offset
;
9324 r_symndx
= irela
->r_info
>> r_sym_shift
;
9325 if (r_symndx
== STN_UNDEF
)
9328 if (r_symndx
>= locsymcount
9329 || (elf_bad_symtab (input_bfd
)
9330 && finfo
->sections
[r_symndx
] == NULL
))
9332 struct elf_link_hash_entry
*rh
;
9335 /* This is a reloc against a global symbol. We
9336 have not yet output all the local symbols, so
9337 we do not know the symbol index of any global
9338 symbol. We set the rel_hash entry for this
9339 reloc to point to the global hash table entry
9340 for this symbol. The symbol index is then
9341 set at the end of bfd_elf_final_link. */
9342 indx
= r_symndx
- extsymoff
;
9343 rh
= elf_sym_hashes (input_bfd
)[indx
];
9344 while (rh
->root
.type
== bfd_link_hash_indirect
9345 || rh
->root
.type
== bfd_link_hash_warning
)
9346 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9348 /* Setting the index to -2 tells
9349 elf_link_output_extsym that this symbol is
9351 BFD_ASSERT (rh
->indx
< 0);
9359 /* This is a reloc against a local symbol. */
9362 sym
= isymbuf
[r_symndx
];
9363 sec
= finfo
->sections
[r_symndx
];
9364 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9366 /* I suppose the backend ought to fill in the
9367 section of any STT_SECTION symbol against a
9368 processor specific section. */
9370 if (bfd_is_abs_section (sec
))
9372 else if (sec
== NULL
|| sec
->owner
== NULL
)
9374 bfd_set_error (bfd_error_bad_value
);
9379 asection
*osec
= sec
->output_section
;
9381 /* If we have discarded a section, the output
9382 section will be the absolute section. In
9383 case of discarded SEC_MERGE sections, use
9384 the kept section. relocate_section should
9385 have already handled discarded linkonce
9387 if (bfd_is_abs_section (osec
)
9388 && sec
->kept_section
!= NULL
9389 && sec
->kept_section
->output_section
!= NULL
)
9391 osec
= sec
->kept_section
->output_section
;
9392 irela
->r_addend
-= osec
->vma
;
9395 if (!bfd_is_abs_section (osec
))
9397 r_symndx
= osec
->target_index
;
9400 struct elf_link_hash_table
*htab
;
9403 htab
= elf_hash_table (finfo
->info
);
9404 oi
= htab
->text_index_section
;
9405 if ((osec
->flags
& SEC_READONLY
) == 0
9406 && htab
->data_index_section
!= NULL
)
9407 oi
= htab
->data_index_section
;
9411 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9412 r_symndx
= oi
->target_index
;
9416 BFD_ASSERT (r_symndx
!= 0);
9420 /* Adjust the addend according to where the
9421 section winds up in the output section. */
9423 irela
->r_addend
+= sec
->output_offset
;
9427 if (finfo
->indices
[r_symndx
] == -1)
9429 unsigned long shlink
;
9433 if (finfo
->info
->strip
== strip_all
)
9435 /* You can't do ld -r -s. */
9436 bfd_set_error (bfd_error_invalid_operation
);
9440 /* This symbol was skipped earlier, but
9441 since it is needed by a reloc, we
9442 must output it now. */
9443 shlink
= symtab_hdr
->sh_link
;
9444 name
= (bfd_elf_string_from_elf_section
9445 (input_bfd
, shlink
, sym
.st_name
));
9449 osec
= sec
->output_section
;
9451 _bfd_elf_section_from_bfd_section (output_bfd
,
9453 if (sym
.st_shndx
== SHN_BAD
)
9456 sym
.st_value
+= sec
->output_offset
;
9457 if (! finfo
->info
->relocatable
)
9459 sym
.st_value
+= osec
->vma
;
9460 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9462 /* STT_TLS symbols are relative to PT_TLS
9464 BFD_ASSERT (elf_hash_table (finfo
->info
)
9466 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9471 finfo
->indices
[r_symndx
]
9472 = bfd_get_symcount (output_bfd
);
9474 if (! elf_link_output_sym (finfo
, name
, &sym
, sec
,
9479 r_symndx
= finfo
->indices
[r_symndx
];
9482 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9483 | (irela
->r_info
& r_type_mask
));
9486 /* Swap out the relocs. */
9487 if (input_rel_hdr
->sh_size
!= 0
9488 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9494 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9495 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9497 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9498 * bed
->s
->int_rels_per_ext_rel
);
9499 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9500 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9509 /* Write out the modified section contents. */
9510 if (bed
->elf_backend_write_section
9511 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9514 /* Section written out. */
9516 else switch (o
->sec_info_type
)
9518 case ELF_INFO_TYPE_STABS
:
9519 if (! (_bfd_write_section_stabs
9521 &elf_hash_table (finfo
->info
)->stab_info
,
9522 o
, &elf_section_data (o
)->sec_info
, contents
)))
9525 case ELF_INFO_TYPE_MERGE
:
9526 if (! _bfd_write_merged_section (output_bfd
, o
,
9527 elf_section_data (o
)->sec_info
))
9530 case ELF_INFO_TYPE_EH_FRAME
:
9532 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9539 if (! (o
->flags
& SEC_EXCLUDE
)
9540 && ! (o
->output_section
->flags
& SEC_NEVER_LOAD
)
9541 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9543 (file_ptr
) o
->output_offset
,
9554 /* Generate a reloc when linking an ELF file. This is a reloc
9555 requested by the linker, and does not come from any input file. This
9556 is used to build constructor and destructor tables when linking
9560 elf_reloc_link_order (bfd
*output_bfd
,
9561 struct bfd_link_info
*info
,
9562 asection
*output_section
,
9563 struct bfd_link_order
*link_order
)
9565 reloc_howto_type
*howto
;
9569 struct elf_link_hash_entry
**rel_hash_ptr
;
9570 Elf_Internal_Shdr
*rel_hdr
;
9571 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9572 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9576 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9579 bfd_set_error (bfd_error_bad_value
);
9583 addend
= link_order
->u
.reloc
.p
->addend
;
9585 /* Figure out the symbol index. */
9586 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9587 + elf_section_data (output_section
)->rel_count
9588 + elf_section_data (output_section
)->rel_count2
);
9589 if (link_order
->type
== bfd_section_reloc_link_order
)
9591 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9592 BFD_ASSERT (indx
!= 0);
9593 *rel_hash_ptr
= NULL
;
9597 struct elf_link_hash_entry
*h
;
9599 /* Treat a reloc against a defined symbol as though it were
9600 actually against the section. */
9601 h
= ((struct elf_link_hash_entry
*)
9602 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9603 link_order
->u
.reloc
.p
->u
.name
,
9604 FALSE
, FALSE
, TRUE
));
9606 && (h
->root
.type
== bfd_link_hash_defined
9607 || h
->root
.type
== bfd_link_hash_defweak
))
9611 section
= h
->root
.u
.def
.section
;
9612 indx
= section
->output_section
->target_index
;
9613 *rel_hash_ptr
= NULL
;
9614 /* It seems that we ought to add the symbol value to the
9615 addend here, but in practice it has already been added
9616 because it was passed to constructor_callback. */
9617 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9621 /* Setting the index to -2 tells elf_link_output_extsym that
9622 this symbol is used by a reloc. */
9629 if (! ((*info
->callbacks
->unattached_reloc
)
9630 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9636 /* If this is an inplace reloc, we must write the addend into the
9638 if (howto
->partial_inplace
&& addend
!= 0)
9641 bfd_reloc_status_type rstat
;
9644 const char *sym_name
;
9646 size
= bfd_get_reloc_size (howto
);
9647 buf
= bfd_zmalloc (size
);
9650 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9657 case bfd_reloc_outofrange
:
9660 case bfd_reloc_overflow
:
9661 if (link_order
->type
== bfd_section_reloc_link_order
)
9662 sym_name
= bfd_section_name (output_bfd
,
9663 link_order
->u
.reloc
.p
->u
.section
);
9665 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9666 if (! ((*info
->callbacks
->reloc_overflow
)
9667 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9668 NULL
, (bfd_vma
) 0)))
9675 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9676 link_order
->offset
, size
);
9682 /* The address of a reloc is relative to the section in a
9683 relocatable file, and is a virtual address in an executable
9685 offset
= link_order
->offset
;
9686 if (! info
->relocatable
)
9687 offset
+= output_section
->vma
;
9689 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9691 irel
[i
].r_offset
= offset
;
9693 irel
[i
].r_addend
= 0;
9695 if (bed
->s
->arch_size
== 32)
9696 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
9698 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
9700 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
9701 erel
= rel_hdr
->contents
;
9702 if (rel_hdr
->sh_type
== SHT_REL
)
9704 erel
+= (elf_section_data (output_section
)->rel_count
9705 * bed
->s
->sizeof_rel
);
9706 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
9710 irel
[0].r_addend
= addend
;
9711 erel
+= (elf_section_data (output_section
)->rel_count
9712 * bed
->s
->sizeof_rela
);
9713 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
9716 ++elf_section_data (output_section
)->rel_count
;
9722 /* Get the output vma of the section pointed to by the sh_link field. */
9725 elf_get_linked_section_vma (struct bfd_link_order
*p
)
9727 Elf_Internal_Shdr
**elf_shdrp
;
9731 s
= p
->u
.indirect
.section
;
9732 elf_shdrp
= elf_elfsections (s
->owner
);
9733 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
9734 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
9736 The Intel C compiler generates SHT_IA_64_UNWIND with
9737 SHF_LINK_ORDER. But it doesn't set the sh_link or
9738 sh_info fields. Hence we could get the situation
9739 where elfsec is 0. */
9742 const struct elf_backend_data
*bed
9743 = get_elf_backend_data (s
->owner
);
9744 if (bed
->link_order_error_handler
)
9745 bed
->link_order_error_handler
9746 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
9751 s
= elf_shdrp
[elfsec
]->bfd_section
;
9752 return s
->output_section
->vma
+ s
->output_offset
;
9757 /* Compare two sections based on the locations of the sections they are
9758 linked to. Used by elf_fixup_link_order. */
9761 compare_link_order (const void * a
, const void * b
)
9766 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
9767 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
9774 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9775 order as their linked sections. Returns false if this could not be done
9776 because an output section includes both ordered and unordered
9777 sections. Ideally we'd do this in the linker proper. */
9780 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
9785 struct bfd_link_order
*p
;
9787 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9789 struct bfd_link_order
**sections
;
9790 asection
*s
, *other_sec
, *linkorder_sec
;
9794 linkorder_sec
= NULL
;
9797 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9799 if (p
->type
== bfd_indirect_link_order
)
9801 s
= p
->u
.indirect
.section
;
9803 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
9804 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
9805 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
9806 && elfsec
< elf_numsections (sub
)
9807 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
9808 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
9822 if (seen_other
&& seen_linkorder
)
9824 if (other_sec
&& linkorder_sec
)
9825 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9827 linkorder_sec
->owner
, other_sec
,
9830 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
9832 bfd_set_error (bfd_error_bad_value
);
9837 if (!seen_linkorder
)
9840 sections
= (struct bfd_link_order
**)
9841 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
9842 if (sections
== NULL
)
9846 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9848 sections
[seen_linkorder
++] = p
;
9850 /* Sort the input sections in the order of their linked section. */
9851 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
9852 compare_link_order
);
9854 /* Change the offsets of the sections. */
9856 for (n
= 0; n
< seen_linkorder
; n
++)
9858 s
= sections
[n
]->u
.indirect
.section
;
9859 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
9860 s
->output_offset
= offset
;
9861 sections
[n
]->offset
= offset
;
9862 offset
+= sections
[n
]->size
;
9870 /* Do the final step of an ELF link. */
9873 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9875 bfd_boolean dynamic
;
9876 bfd_boolean emit_relocs
;
9878 struct elf_final_link_info finfo
;
9879 register asection
*o
;
9880 register struct bfd_link_order
*p
;
9882 bfd_size_type max_contents_size
;
9883 bfd_size_type max_external_reloc_size
;
9884 bfd_size_type max_internal_reloc_count
;
9885 bfd_size_type max_sym_count
;
9886 bfd_size_type max_sym_shndx_count
;
9888 Elf_Internal_Sym elfsym
;
9890 Elf_Internal_Shdr
*symtab_hdr
;
9891 Elf_Internal_Shdr
*symtab_shndx_hdr
;
9892 Elf_Internal_Shdr
*symstrtab_hdr
;
9893 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9894 struct elf_outext_info eoinfo
;
9896 size_t relativecount
= 0;
9897 asection
*reldyn
= 0;
9899 asection
*attr_section
= NULL
;
9900 bfd_vma attr_size
= 0;
9901 const char *std_attrs_section
;
9903 if (! is_elf_hash_table (info
->hash
))
9907 abfd
->flags
|= DYNAMIC
;
9909 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
9910 dynobj
= elf_hash_table (info
)->dynobj
;
9912 emit_relocs
= (info
->relocatable
9913 || info
->emitrelocations
);
9916 finfo
.output_bfd
= abfd
;
9917 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
9918 if (finfo
.symstrtab
== NULL
)
9923 finfo
.dynsym_sec
= NULL
;
9924 finfo
.hash_sec
= NULL
;
9925 finfo
.symver_sec
= NULL
;
9929 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
9930 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
9931 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
9932 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
9933 /* Note that it is OK if symver_sec is NULL. */
9936 finfo
.contents
= NULL
;
9937 finfo
.external_relocs
= NULL
;
9938 finfo
.internal_relocs
= NULL
;
9939 finfo
.external_syms
= NULL
;
9940 finfo
.locsym_shndx
= NULL
;
9941 finfo
.internal_syms
= NULL
;
9942 finfo
.indices
= NULL
;
9943 finfo
.sections
= NULL
;
9944 finfo
.symbuf
= NULL
;
9945 finfo
.symshndxbuf
= NULL
;
9946 finfo
.symbuf_count
= 0;
9947 finfo
.shndxbuf_size
= 0;
9949 /* The object attributes have been merged. Remove the input
9950 sections from the link, and set the contents of the output
9952 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
9953 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
9955 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
9956 || strcmp (o
->name
, ".gnu.attributes") == 0)
9958 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9960 asection
*input_section
;
9962 if (p
->type
!= bfd_indirect_link_order
)
9964 input_section
= p
->u
.indirect
.section
;
9965 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9966 elf_link_input_bfd ignores this section. */
9967 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9970 attr_size
= bfd_elf_obj_attr_size (abfd
);
9973 bfd_set_section_size (abfd
, o
, attr_size
);
9975 /* Skip this section later on. */
9976 o
->map_head
.link_order
= NULL
;
9979 o
->flags
|= SEC_EXCLUDE
;
9983 /* Count up the number of relocations we will output for each output
9984 section, so that we know the sizes of the reloc sections. We
9985 also figure out some maximum sizes. */
9986 max_contents_size
= 0;
9987 max_external_reloc_size
= 0;
9988 max_internal_reloc_count
= 0;
9990 max_sym_shndx_count
= 0;
9992 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
9994 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
9997 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9999 unsigned int reloc_count
= 0;
10000 struct bfd_elf_section_data
*esdi
= NULL
;
10001 unsigned int *rel_count1
;
10003 if (p
->type
== bfd_section_reloc_link_order
10004 || p
->type
== bfd_symbol_reloc_link_order
)
10006 else if (p
->type
== bfd_indirect_link_order
)
10010 sec
= p
->u
.indirect
.section
;
10011 esdi
= elf_section_data (sec
);
10013 /* Mark all sections which are to be included in the
10014 link. This will normally be every section. We need
10015 to do this so that we can identify any sections which
10016 the linker has decided to not include. */
10017 sec
->linker_mark
= TRUE
;
10019 if (sec
->flags
& SEC_MERGE
)
10022 if (info
->relocatable
|| info
->emitrelocations
)
10023 reloc_count
= sec
->reloc_count
;
10024 else if (bed
->elf_backend_count_relocs
)
10026 Elf_Internal_Rela
* relocs
;
10028 relocs
= _bfd_elf_link_read_relocs (sec
->owner
, sec
,
10030 info
->keep_memory
);
10032 if (relocs
!= NULL
)
10035 = (*bed
->elf_backend_count_relocs
) (sec
, relocs
);
10037 if (elf_section_data (sec
)->relocs
!= relocs
)
10042 if (sec
->rawsize
> max_contents_size
)
10043 max_contents_size
= sec
->rawsize
;
10044 if (sec
->size
> max_contents_size
)
10045 max_contents_size
= sec
->size
;
10047 /* We are interested in just local symbols, not all
10049 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10050 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10054 if (elf_bad_symtab (sec
->owner
))
10055 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10056 / bed
->s
->sizeof_sym
);
10058 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10060 if (sym_count
> max_sym_count
)
10061 max_sym_count
= sym_count
;
10063 if (sym_count
> max_sym_shndx_count
10064 && elf_symtab_shndx (sec
->owner
) != 0)
10065 max_sym_shndx_count
= sym_count
;
10067 if ((sec
->flags
& SEC_RELOC
) != 0)
10071 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
10072 if (ext_size
> max_external_reloc_size
)
10073 max_external_reloc_size
= ext_size
;
10074 if (sec
->reloc_count
> max_internal_reloc_count
)
10075 max_internal_reloc_count
= sec
->reloc_count
;
10080 if (reloc_count
== 0)
10083 o
->reloc_count
+= reloc_count
;
10085 /* MIPS may have a mix of REL and RELA relocs on sections.
10086 To support this curious ABI we keep reloc counts in
10087 elf_section_data too. We must be careful to add the
10088 relocations from the input section to the right output
10089 count. FIXME: Get rid of one count. We have
10090 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10091 rel_count1
= &esdo
->rel_count
;
10094 bfd_boolean same_size
;
10095 bfd_size_type entsize1
;
10097 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10098 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10099 || entsize1
== bed
->s
->sizeof_rela
);
10100 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10103 rel_count1
= &esdo
->rel_count2
;
10105 if (esdi
->rel_hdr2
!= NULL
)
10107 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10108 unsigned int alt_count
;
10109 unsigned int *rel_count2
;
10111 BFD_ASSERT (entsize2
!= entsize1
10112 && (entsize2
== bed
->s
->sizeof_rel
10113 || entsize2
== bed
->s
->sizeof_rela
));
10115 rel_count2
= &esdo
->rel_count2
;
10117 rel_count2
= &esdo
->rel_count
;
10119 /* The following is probably too simplistic if the
10120 backend counts output relocs unusually. */
10121 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10122 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10123 *rel_count2
+= alt_count
;
10124 reloc_count
-= alt_count
;
10127 *rel_count1
+= reloc_count
;
10130 if (o
->reloc_count
> 0)
10131 o
->flags
|= SEC_RELOC
;
10134 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10135 set it (this is probably a bug) and if it is set
10136 assign_section_numbers will create a reloc section. */
10137 o
->flags
&=~ SEC_RELOC
;
10140 /* If the SEC_ALLOC flag is not set, force the section VMA to
10141 zero. This is done in elf_fake_sections as well, but forcing
10142 the VMA to 0 here will ensure that relocs against these
10143 sections are handled correctly. */
10144 if ((o
->flags
& SEC_ALLOC
) == 0
10145 && ! o
->user_set_vma
)
10149 if (! info
->relocatable
&& merged
)
10150 elf_link_hash_traverse (elf_hash_table (info
),
10151 _bfd_elf_link_sec_merge_syms
, abfd
);
10153 /* Figure out the file positions for everything but the symbol table
10154 and the relocs. We set symcount to force assign_section_numbers
10155 to create a symbol table. */
10156 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10157 BFD_ASSERT (! abfd
->output_has_begun
);
10158 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10161 /* Set sizes, and assign file positions for reloc sections. */
10162 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10164 if ((o
->flags
& SEC_RELOC
) != 0)
10166 if (!(_bfd_elf_link_size_reloc_section
10167 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10170 if (elf_section_data (o
)->rel_hdr2
10171 && !(_bfd_elf_link_size_reloc_section
10172 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10176 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10177 to count upwards while actually outputting the relocations. */
10178 elf_section_data (o
)->rel_count
= 0;
10179 elf_section_data (o
)->rel_count2
= 0;
10182 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10184 /* We have now assigned file positions for all the sections except
10185 .symtab and .strtab. We start the .symtab section at the current
10186 file position, and write directly to it. We build the .strtab
10187 section in memory. */
10188 bfd_get_symcount (abfd
) = 0;
10189 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10190 /* sh_name is set in prep_headers. */
10191 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10192 /* sh_flags, sh_addr and sh_size all start off zero. */
10193 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10194 /* sh_link is set in assign_section_numbers. */
10195 /* sh_info is set below. */
10196 /* sh_offset is set just below. */
10197 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10199 off
= elf_tdata (abfd
)->next_file_pos
;
10200 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10202 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10203 incorrect. We do not yet know the size of the .symtab section.
10204 We correct next_file_pos below, after we do know the size. */
10206 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10207 continuously seeking to the right position in the file. */
10208 if (! info
->keep_memory
|| max_sym_count
< 20)
10209 finfo
.symbuf_size
= 20;
10211 finfo
.symbuf_size
= max_sym_count
;
10212 amt
= finfo
.symbuf_size
;
10213 amt
*= bed
->s
->sizeof_sym
;
10214 finfo
.symbuf
= bfd_malloc (amt
);
10215 if (finfo
.symbuf
== NULL
)
10217 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10219 /* Wild guess at number of output symbols. realloc'd as needed. */
10220 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10221 finfo
.shndxbuf_size
= amt
;
10222 amt
*= sizeof (Elf_External_Sym_Shndx
);
10223 finfo
.symshndxbuf
= bfd_zmalloc (amt
);
10224 if (finfo
.symshndxbuf
== NULL
)
10228 /* Start writing out the symbol table. The first symbol is always a
10230 if (info
->strip
!= strip_all
10233 elfsym
.st_value
= 0;
10234 elfsym
.st_size
= 0;
10235 elfsym
.st_info
= 0;
10236 elfsym
.st_other
= 0;
10237 elfsym
.st_shndx
= SHN_UNDEF
;
10238 if (! elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10243 /* Output a symbol for each section. We output these even if we are
10244 discarding local symbols, since they are used for relocs. These
10245 symbols have no names. We store the index of each one in the
10246 index field of the section, so that we can find it again when
10247 outputting relocs. */
10248 if (info
->strip
!= strip_all
10251 elfsym
.st_size
= 0;
10252 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10253 elfsym
.st_other
= 0;
10254 elfsym
.st_value
= 0;
10255 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10257 o
= bfd_section_from_elf_index (abfd
, i
);
10260 o
->target_index
= bfd_get_symcount (abfd
);
10261 elfsym
.st_shndx
= i
;
10262 if (!info
->relocatable
)
10263 elfsym
.st_value
= o
->vma
;
10264 if (!elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
))
10270 /* Allocate some memory to hold information read in from the input
10272 if (max_contents_size
!= 0)
10274 finfo
.contents
= bfd_malloc (max_contents_size
);
10275 if (finfo
.contents
== NULL
)
10279 if (max_external_reloc_size
!= 0)
10281 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10282 if (finfo
.external_relocs
== NULL
)
10286 if (max_internal_reloc_count
!= 0)
10288 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10289 amt
*= sizeof (Elf_Internal_Rela
);
10290 finfo
.internal_relocs
= bfd_malloc (amt
);
10291 if (finfo
.internal_relocs
== NULL
)
10295 if (max_sym_count
!= 0)
10297 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10298 finfo
.external_syms
= bfd_malloc (amt
);
10299 if (finfo
.external_syms
== NULL
)
10302 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10303 finfo
.internal_syms
= bfd_malloc (amt
);
10304 if (finfo
.internal_syms
== NULL
)
10307 amt
= max_sym_count
* sizeof (long);
10308 finfo
.indices
= bfd_malloc (amt
);
10309 if (finfo
.indices
== NULL
)
10312 amt
= max_sym_count
* sizeof (asection
*);
10313 finfo
.sections
= bfd_malloc (amt
);
10314 if (finfo
.sections
== NULL
)
10318 if (max_sym_shndx_count
!= 0)
10320 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10321 finfo
.locsym_shndx
= bfd_malloc (amt
);
10322 if (finfo
.locsym_shndx
== NULL
)
10326 if (elf_hash_table (info
)->tls_sec
)
10328 bfd_vma base
, end
= 0;
10331 for (sec
= elf_hash_table (info
)->tls_sec
;
10332 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10335 bfd_size_type size
= sec
->size
;
10338 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10340 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
10342 size
= o
->offset
+ o
->size
;
10344 end
= sec
->vma
+ size
;
10346 base
= elf_hash_table (info
)->tls_sec
->vma
;
10347 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10348 elf_hash_table (info
)->tls_size
= end
- base
;
10351 /* Reorder SHF_LINK_ORDER sections. */
10352 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10354 if (!elf_fixup_link_order (abfd
, o
))
10358 /* Since ELF permits relocations to be against local symbols, we
10359 must have the local symbols available when we do the relocations.
10360 Since we would rather only read the local symbols once, and we
10361 would rather not keep them in memory, we handle all the
10362 relocations for a single input file at the same time.
10364 Unfortunately, there is no way to know the total number of local
10365 symbols until we have seen all of them, and the local symbol
10366 indices precede the global symbol indices. This means that when
10367 we are generating relocatable output, and we see a reloc against
10368 a global symbol, we can not know the symbol index until we have
10369 finished examining all the local symbols to see which ones we are
10370 going to output. To deal with this, we keep the relocations in
10371 memory, and don't output them until the end of the link. This is
10372 an unfortunate waste of memory, but I don't see a good way around
10373 it. Fortunately, it only happens when performing a relocatable
10374 link, which is not the common case. FIXME: If keep_memory is set
10375 we could write the relocs out and then read them again; I don't
10376 know how bad the memory loss will be. */
10378 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10379 sub
->output_has_begun
= FALSE
;
10380 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10382 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10384 if (p
->type
== bfd_indirect_link_order
10385 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10386 == bfd_target_elf_flavour
)
10387 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10389 if (! sub
->output_has_begun
)
10391 if (! elf_link_input_bfd (&finfo
, sub
))
10393 sub
->output_has_begun
= TRUE
;
10396 else if (p
->type
== bfd_section_reloc_link_order
10397 || p
->type
== bfd_symbol_reloc_link_order
)
10399 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10404 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10410 /* Free symbol buffer if needed. */
10411 if (!info
->reduce_memory_overheads
)
10413 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10414 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10415 && elf_tdata (sub
)->symbuf
)
10417 free (elf_tdata (sub
)->symbuf
);
10418 elf_tdata (sub
)->symbuf
= NULL
;
10422 /* Output any global symbols that got converted to local in a
10423 version script or due to symbol visibility. We do this in a
10424 separate step since ELF requires all local symbols to appear
10425 prior to any global symbols. FIXME: We should only do this if
10426 some global symbols were, in fact, converted to become local.
10427 FIXME: Will this work correctly with the Irix 5 linker? */
10428 eoinfo
.failed
= FALSE
;
10429 eoinfo
.finfo
= &finfo
;
10430 eoinfo
.localsyms
= TRUE
;
10431 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10436 /* If backend needs to output some local symbols not present in the hash
10437 table, do it now. */
10438 if (bed
->elf_backend_output_arch_local_syms
)
10440 typedef bfd_boolean (*out_sym_func
)
10441 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10442 struct elf_link_hash_entry
*);
10444 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10445 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10449 /* That wrote out all the local symbols. Finish up the symbol table
10450 with the global symbols. Even if we want to strip everything we
10451 can, we still need to deal with those global symbols that got
10452 converted to local in a version script. */
10454 /* The sh_info field records the index of the first non local symbol. */
10455 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10458 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10460 Elf_Internal_Sym sym
;
10461 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10462 long last_local
= 0;
10464 /* Write out the section symbols for the output sections. */
10465 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10471 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10474 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10480 dynindx
= elf_section_data (s
)->dynindx
;
10483 indx
= elf_section_data (s
)->this_idx
;
10484 BFD_ASSERT (indx
> 0);
10485 sym
.st_shndx
= indx
;
10486 if (! check_dynsym (abfd
, &sym
))
10488 sym
.st_value
= s
->vma
;
10489 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10490 if (last_local
< dynindx
)
10491 last_local
= dynindx
;
10492 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10496 /* Write out the local dynsyms. */
10497 if (elf_hash_table (info
)->dynlocal
)
10499 struct elf_link_local_dynamic_entry
*e
;
10500 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10505 sym
.st_size
= e
->isym
.st_size
;
10506 sym
.st_other
= e
->isym
.st_other
;
10508 /* Copy the internal symbol as is.
10509 Note that we saved a word of storage and overwrote
10510 the original st_name with the dynstr_index. */
10513 s
= bfd_section_from_elf_index (e
->input_bfd
,
10518 elf_section_data (s
->output_section
)->this_idx
;
10519 if (! check_dynsym (abfd
, &sym
))
10521 sym
.st_value
= (s
->output_section
->vma
10523 + e
->isym
.st_value
);
10526 if (last_local
< e
->dynindx
)
10527 last_local
= e
->dynindx
;
10529 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10530 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10534 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10538 /* We get the global symbols from the hash table. */
10539 eoinfo
.failed
= FALSE
;
10540 eoinfo
.localsyms
= FALSE
;
10541 eoinfo
.finfo
= &finfo
;
10542 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10547 /* If backend needs to output some symbols not present in the hash
10548 table, do it now. */
10549 if (bed
->elf_backend_output_arch_syms
)
10551 typedef bfd_boolean (*out_sym_func
)
10552 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10553 struct elf_link_hash_entry
*);
10555 if (! ((*bed
->elf_backend_output_arch_syms
)
10556 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10560 /* Flush all symbols to the file. */
10561 if (! elf_link_flush_output_syms (&finfo
, bed
))
10564 /* Now we know the size of the symtab section. */
10565 off
+= symtab_hdr
->sh_size
;
10567 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10568 if (symtab_shndx_hdr
->sh_name
!= 0)
10570 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10571 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10572 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10573 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10574 symtab_shndx_hdr
->sh_size
= amt
;
10576 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10579 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10580 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10585 /* Finish up and write out the symbol string table (.strtab)
10587 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10588 /* sh_name was set in prep_headers. */
10589 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10590 symstrtab_hdr
->sh_flags
= 0;
10591 symstrtab_hdr
->sh_addr
= 0;
10592 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10593 symstrtab_hdr
->sh_entsize
= 0;
10594 symstrtab_hdr
->sh_link
= 0;
10595 symstrtab_hdr
->sh_info
= 0;
10596 /* sh_offset is set just below. */
10597 symstrtab_hdr
->sh_addralign
= 1;
10599 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10600 elf_tdata (abfd
)->next_file_pos
= off
;
10602 if (bfd_get_symcount (abfd
) > 0)
10604 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10605 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10609 /* Adjust the relocs to have the correct symbol indices. */
10610 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10612 if ((o
->flags
& SEC_RELOC
) == 0)
10615 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10616 elf_section_data (o
)->rel_count
,
10617 elf_section_data (o
)->rel_hashes
);
10618 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10619 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10620 elf_section_data (o
)->rel_count2
,
10621 (elf_section_data (o
)->rel_hashes
10622 + elf_section_data (o
)->rel_count
));
10624 /* Set the reloc_count field to 0 to prevent write_relocs from
10625 trying to swap the relocs out itself. */
10626 o
->reloc_count
= 0;
10629 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10630 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10632 /* If we are linking against a dynamic object, or generating a
10633 shared library, finish up the dynamic linking information. */
10636 bfd_byte
*dyncon
, *dynconend
;
10638 /* Fix up .dynamic entries. */
10639 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10640 BFD_ASSERT (o
!= NULL
);
10642 dyncon
= o
->contents
;
10643 dynconend
= o
->contents
+ o
->size
;
10644 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10646 Elf_Internal_Dyn dyn
;
10650 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10657 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10659 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10661 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10662 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10665 dyn
.d_un
.d_val
= relativecount
;
10672 name
= info
->init_function
;
10675 name
= info
->fini_function
;
10678 struct elf_link_hash_entry
*h
;
10680 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10681 FALSE
, FALSE
, TRUE
);
10683 && (h
->root
.type
== bfd_link_hash_defined
10684 || h
->root
.type
== bfd_link_hash_defweak
))
10686 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
10687 o
= h
->root
.u
.def
.section
;
10688 if (o
->output_section
!= NULL
)
10689 dyn
.d_un
.d_val
+= (o
->output_section
->vma
10690 + o
->output_offset
);
10693 /* The symbol is imported from another shared
10694 library and does not apply to this one. */
10695 dyn
.d_un
.d_val
= 0;
10702 case DT_PREINIT_ARRAYSZ
:
10703 name
= ".preinit_array";
10705 case DT_INIT_ARRAYSZ
:
10706 name
= ".init_array";
10708 case DT_FINI_ARRAYSZ
:
10709 name
= ".fini_array";
10711 o
= bfd_get_section_by_name (abfd
, name
);
10714 (*_bfd_error_handler
)
10715 (_("%B: could not find output section %s"), abfd
, name
);
10719 (*_bfd_error_handler
)
10720 (_("warning: %s section has zero size"), name
);
10721 dyn
.d_un
.d_val
= o
->size
;
10724 case DT_PREINIT_ARRAY
:
10725 name
= ".preinit_array";
10727 case DT_INIT_ARRAY
:
10728 name
= ".init_array";
10730 case DT_FINI_ARRAY
:
10731 name
= ".fini_array";
10738 name
= ".gnu.hash";
10747 name
= ".gnu.version_d";
10750 name
= ".gnu.version_r";
10753 name
= ".gnu.version";
10755 o
= bfd_get_section_by_name (abfd
, name
);
10758 (*_bfd_error_handler
)
10759 (_("%B: could not find output section %s"), abfd
, name
);
10762 dyn
.d_un
.d_ptr
= o
->vma
;
10769 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10773 dyn
.d_un
.d_val
= 0;
10774 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10776 Elf_Internal_Shdr
*hdr
;
10778 hdr
= elf_elfsections (abfd
)[i
];
10779 if (hdr
->sh_type
== type
10780 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
10782 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
10783 dyn
.d_un
.d_val
+= hdr
->sh_size
;
10786 if (dyn
.d_un
.d_val
== 0
10787 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
10788 dyn
.d_un
.d_val
= hdr
->sh_addr
;
10794 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
10798 /* If we have created any dynamic sections, then output them. */
10799 if (dynobj
!= NULL
)
10801 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
10804 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10805 if (info
->warn_shared_textrel
&& info
->shared
)
10807 bfd_byte
*dyncon
, *dynconend
;
10809 /* Fix up .dynamic entries. */
10810 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10811 BFD_ASSERT (o
!= NULL
);
10813 dyncon
= o
->contents
;
10814 dynconend
= o
->contents
+ o
->size
;
10815 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10817 Elf_Internal_Dyn dyn
;
10819 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10821 if (dyn
.d_tag
== DT_TEXTREL
)
10823 info
->callbacks
->einfo
10824 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10830 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
10832 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
10834 || o
->output_section
== bfd_abs_section_ptr
)
10836 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
10838 /* At this point, we are only interested in sections
10839 created by _bfd_elf_link_create_dynamic_sections. */
10842 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
10844 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
10846 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
10848 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
10850 if (! bfd_set_section_contents (abfd
, o
->output_section
,
10852 (file_ptr
) o
->output_offset
,
10858 /* The contents of the .dynstr section are actually in a
10860 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
10861 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
10862 || ! _bfd_elf_strtab_emit (abfd
,
10863 elf_hash_table (info
)->dynstr
))
10869 if (info
->relocatable
)
10871 bfd_boolean failed
= FALSE
;
10873 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
10878 /* If we have optimized stabs strings, output them. */
10879 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
10881 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
10885 if (info
->eh_frame_hdr
)
10887 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
10891 if (finfo
.symstrtab
!= NULL
)
10892 _bfd_stringtab_free (finfo
.symstrtab
);
10893 if (finfo
.contents
!= NULL
)
10894 free (finfo
.contents
);
10895 if (finfo
.external_relocs
!= NULL
)
10896 free (finfo
.external_relocs
);
10897 if (finfo
.internal_relocs
!= NULL
)
10898 free (finfo
.internal_relocs
);
10899 if (finfo
.external_syms
!= NULL
)
10900 free (finfo
.external_syms
);
10901 if (finfo
.locsym_shndx
!= NULL
)
10902 free (finfo
.locsym_shndx
);
10903 if (finfo
.internal_syms
!= NULL
)
10904 free (finfo
.internal_syms
);
10905 if (finfo
.indices
!= NULL
)
10906 free (finfo
.indices
);
10907 if (finfo
.sections
!= NULL
)
10908 free (finfo
.sections
);
10909 if (finfo
.symbuf
!= NULL
)
10910 free (finfo
.symbuf
);
10911 if (finfo
.symshndxbuf
!= NULL
)
10912 free (finfo
.symshndxbuf
);
10913 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10915 if ((o
->flags
& SEC_RELOC
) != 0
10916 && elf_section_data (o
)->rel_hashes
!= NULL
)
10917 free (elf_section_data (o
)->rel_hashes
);
10920 elf_tdata (abfd
)->linker
= TRUE
;
10924 bfd_byte
*contents
= bfd_malloc (attr_size
);
10925 if (contents
== NULL
)
10926 return FALSE
; /* Bail out and fail. */
10927 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
10928 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
10935 if (finfo
.symstrtab
!= NULL
)
10936 _bfd_stringtab_free (finfo
.symstrtab
);
10937 if (finfo
.contents
!= NULL
)
10938 free (finfo
.contents
);
10939 if (finfo
.external_relocs
!= NULL
)
10940 free (finfo
.external_relocs
);
10941 if (finfo
.internal_relocs
!= NULL
)
10942 free (finfo
.internal_relocs
);
10943 if (finfo
.external_syms
!= NULL
)
10944 free (finfo
.external_syms
);
10945 if (finfo
.locsym_shndx
!= NULL
)
10946 free (finfo
.locsym_shndx
);
10947 if (finfo
.internal_syms
!= NULL
)
10948 free (finfo
.internal_syms
);
10949 if (finfo
.indices
!= NULL
)
10950 free (finfo
.indices
);
10951 if (finfo
.sections
!= NULL
)
10952 free (finfo
.sections
);
10953 if (finfo
.symbuf
!= NULL
)
10954 free (finfo
.symbuf
);
10955 if (finfo
.symshndxbuf
!= NULL
)
10956 free (finfo
.symshndxbuf
);
10957 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10959 if ((o
->flags
& SEC_RELOC
) != 0
10960 && elf_section_data (o
)->rel_hashes
!= NULL
)
10961 free (elf_section_data (o
)->rel_hashes
);
10967 /* Initialize COOKIE for input bfd ABFD. */
10970 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
10971 struct bfd_link_info
*info
, bfd
*abfd
)
10973 Elf_Internal_Shdr
*symtab_hdr
;
10974 const struct elf_backend_data
*bed
;
10976 bed
= get_elf_backend_data (abfd
);
10977 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10979 cookie
->abfd
= abfd
;
10980 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
10981 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
10982 if (cookie
->bad_symtab
)
10984 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
10985 cookie
->extsymoff
= 0;
10989 cookie
->locsymcount
= symtab_hdr
->sh_info
;
10990 cookie
->extsymoff
= symtab_hdr
->sh_info
;
10993 if (bed
->s
->arch_size
== 32)
10994 cookie
->r_sym_shift
= 8;
10996 cookie
->r_sym_shift
= 32;
10998 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
10999 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11001 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11002 cookie
->locsymcount
, 0,
11004 if (cookie
->locsyms
== NULL
)
11006 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11009 if (info
->keep_memory
)
11010 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11015 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11018 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11020 Elf_Internal_Shdr
*symtab_hdr
;
11022 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11023 if (cookie
->locsyms
!= NULL
11024 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11025 free (cookie
->locsyms
);
11028 /* Initialize the relocation information in COOKIE for input section SEC
11029 of input bfd ABFD. */
11032 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11033 struct bfd_link_info
*info
, bfd
*abfd
,
11036 const struct elf_backend_data
*bed
;
11038 if (sec
->reloc_count
== 0)
11040 cookie
->rels
= NULL
;
11041 cookie
->relend
= NULL
;
11045 bed
= get_elf_backend_data (abfd
);
11047 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11048 info
->keep_memory
);
11049 if (cookie
->rels
== NULL
)
11051 cookie
->rel
= cookie
->rels
;
11052 cookie
->relend
= (cookie
->rels
11053 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11055 cookie
->rel
= cookie
->rels
;
11059 /* Free the memory allocated by init_reloc_cookie_rels,
11063 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11066 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11067 free (cookie
->rels
);
11070 /* Initialize the whole of COOKIE for input section SEC. */
11073 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11074 struct bfd_link_info
*info
,
11077 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11079 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11084 fini_reloc_cookie (cookie
, sec
->owner
);
11089 /* Free the memory allocated by init_reloc_cookie_for_section,
11093 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11096 fini_reloc_cookie_rels (cookie
, sec
);
11097 fini_reloc_cookie (cookie
, sec
->owner
);
11100 /* Garbage collect unused sections. */
11102 /* Default gc_mark_hook. */
11105 _bfd_elf_gc_mark_hook (asection
*sec
,
11106 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11107 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11108 struct elf_link_hash_entry
*h
,
11109 Elf_Internal_Sym
*sym
)
11113 switch (h
->root
.type
)
11115 case bfd_link_hash_defined
:
11116 case bfd_link_hash_defweak
:
11117 return h
->root
.u
.def
.section
;
11119 case bfd_link_hash_common
:
11120 return h
->root
.u
.c
.p
->section
;
11127 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11132 /* COOKIE->rel describes a relocation against section SEC, which is
11133 a section we've decided to keep. Return the section that contains
11134 the relocation symbol, or NULL if no section contains it. */
11137 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11138 elf_gc_mark_hook_fn gc_mark_hook
,
11139 struct elf_reloc_cookie
*cookie
)
11141 unsigned long r_symndx
;
11142 struct elf_link_hash_entry
*h
;
11144 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11148 if (r_symndx
>= cookie
->locsymcount
11149 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11151 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11152 while (h
->root
.type
== bfd_link_hash_indirect
11153 || h
->root
.type
== bfd_link_hash_warning
)
11154 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11155 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11158 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11159 &cookie
->locsyms
[r_symndx
]);
11162 /* COOKIE->rel describes a relocation against section SEC, which is
11163 a section we've decided to keep. Mark the section that contains
11164 the relocation symbol. */
11167 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11169 elf_gc_mark_hook_fn gc_mark_hook
,
11170 struct elf_reloc_cookie
*cookie
)
11174 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11175 if (rsec
&& !rsec
->gc_mark
)
11177 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11179 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11185 /* The mark phase of garbage collection. For a given section, mark
11186 it and any sections in this section's group, and all the sections
11187 which define symbols to which it refers. */
11190 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11192 elf_gc_mark_hook_fn gc_mark_hook
)
11195 asection
*group_sec
, *eh_frame
;
11199 /* Mark all the sections in the group. */
11200 group_sec
= elf_section_data (sec
)->next_in_group
;
11201 if (group_sec
&& !group_sec
->gc_mark
)
11202 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11205 /* Look through the section relocs. */
11207 eh_frame
= elf_eh_frame_section (sec
->owner
);
11208 if ((sec
->flags
& SEC_RELOC
) != 0
11209 && sec
->reloc_count
> 0
11210 && sec
!= eh_frame
)
11212 struct elf_reloc_cookie cookie
;
11214 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11218 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11219 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11224 fini_reloc_cookie_for_section (&cookie
, sec
);
11228 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11230 struct elf_reloc_cookie cookie
;
11232 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11236 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11237 gc_mark_hook
, &cookie
))
11239 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11246 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11248 struct elf_gc_sweep_symbol_info
11250 struct bfd_link_info
*info
;
11251 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11256 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11258 if (h
->root
.type
== bfd_link_hash_warning
)
11259 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11261 if ((h
->root
.type
== bfd_link_hash_defined
11262 || h
->root
.type
== bfd_link_hash_defweak
)
11263 && !h
->root
.u
.def
.section
->gc_mark
11264 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11266 struct elf_gc_sweep_symbol_info
*inf
= data
;
11267 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11273 /* The sweep phase of garbage collection. Remove all garbage sections. */
11275 typedef bfd_boolean (*gc_sweep_hook_fn
)
11276 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11279 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11282 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11283 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11284 unsigned long section_sym_count
;
11285 struct elf_gc_sweep_symbol_info sweep_info
;
11287 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11291 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11294 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11296 /* Keep debug and special sections. */
11297 if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11298 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
11304 /* Skip sweeping sections already excluded. */
11305 if (o
->flags
& SEC_EXCLUDE
)
11308 /* Since this is early in the link process, it is simple
11309 to remove a section from the output. */
11310 o
->flags
|= SEC_EXCLUDE
;
11312 if (info
->print_gc_sections
&& o
->size
!= 0)
11313 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11315 /* But we also have to update some of the relocation
11316 info we collected before. */
11318 && (o
->flags
& SEC_RELOC
) != 0
11319 && o
->reloc_count
> 0
11320 && !bfd_is_abs_section (o
->output_section
))
11322 Elf_Internal_Rela
*internal_relocs
;
11326 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11327 info
->keep_memory
);
11328 if (internal_relocs
== NULL
)
11331 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11333 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11334 free (internal_relocs
);
11342 /* Remove the symbols that were in the swept sections from the dynamic
11343 symbol table. GCFIXME: Anyone know how to get them out of the
11344 static symbol table as well? */
11345 sweep_info
.info
= info
;
11346 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11347 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11350 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11354 /* Propagate collected vtable information. This is called through
11355 elf_link_hash_traverse. */
11358 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11360 if (h
->root
.type
== bfd_link_hash_warning
)
11361 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11363 /* Those that are not vtables. */
11364 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11367 /* Those vtables that do not have parents, we cannot merge. */
11368 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11371 /* If we've already been done, exit. */
11372 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11375 /* Make sure the parent's table is up to date. */
11376 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11378 if (h
->vtable
->used
== NULL
)
11380 /* None of this table's entries were referenced. Re-use the
11382 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11383 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11388 bfd_boolean
*cu
, *pu
;
11390 /* Or the parent's entries into ours. */
11391 cu
= h
->vtable
->used
;
11393 pu
= h
->vtable
->parent
->vtable
->used
;
11396 const struct elf_backend_data
*bed
;
11397 unsigned int log_file_align
;
11399 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11400 log_file_align
= bed
->s
->log_file_align
;
11401 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11416 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11419 bfd_vma hstart
, hend
;
11420 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11421 const struct elf_backend_data
*bed
;
11422 unsigned int log_file_align
;
11424 if (h
->root
.type
== bfd_link_hash_warning
)
11425 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11427 /* Take care of both those symbols that do not describe vtables as
11428 well as those that are not loaded. */
11429 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11432 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11433 || h
->root
.type
== bfd_link_hash_defweak
);
11435 sec
= h
->root
.u
.def
.section
;
11436 hstart
= h
->root
.u
.def
.value
;
11437 hend
= hstart
+ h
->size
;
11439 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11441 return *(bfd_boolean
*) okp
= FALSE
;
11442 bed
= get_elf_backend_data (sec
->owner
);
11443 log_file_align
= bed
->s
->log_file_align
;
11445 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11447 for (rel
= relstart
; rel
< relend
; ++rel
)
11448 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11450 /* If the entry is in use, do nothing. */
11451 if (h
->vtable
->used
11452 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11454 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11455 if (h
->vtable
->used
[entry
])
11458 /* Otherwise, kill it. */
11459 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11465 /* Mark sections containing dynamically referenced symbols. When
11466 building shared libraries, we must assume that any visible symbol is
11470 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11472 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11474 if (h
->root
.type
== bfd_link_hash_warning
)
11475 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11477 if ((h
->root
.type
== bfd_link_hash_defined
11478 || h
->root
.type
== bfd_link_hash_defweak
)
11480 || (!info
->executable
11482 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11483 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11484 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11489 /* Keep all sections containing symbols undefined on the command-line,
11490 and the section containing the entry symbol. */
11493 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11495 struct bfd_sym_chain
*sym
;
11497 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11499 struct elf_link_hash_entry
*h
;
11501 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11502 FALSE
, FALSE
, FALSE
);
11505 && (h
->root
.type
== bfd_link_hash_defined
11506 || h
->root
.type
== bfd_link_hash_defweak
)
11507 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11508 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11512 /* Do mark and sweep of unused sections. */
11515 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11517 bfd_boolean ok
= TRUE
;
11519 elf_gc_mark_hook_fn gc_mark_hook
;
11520 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11522 if (!bed
->can_gc_sections
11523 || !is_elf_hash_table (info
->hash
))
11525 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11529 bed
->gc_keep (info
);
11531 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11532 at the .eh_frame section if we can mark the FDEs individually. */
11533 _bfd_elf_begin_eh_frame_parsing (info
);
11534 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11537 struct elf_reloc_cookie cookie
;
11539 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11540 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11542 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11543 if (elf_section_data (sec
)->sec_info
)
11544 elf_eh_frame_section (sub
) = sec
;
11545 fini_reloc_cookie_for_section (&cookie
, sec
);
11548 _bfd_elf_end_eh_frame_parsing (info
);
11550 /* Apply transitive closure to the vtable entry usage info. */
11551 elf_link_hash_traverse (elf_hash_table (info
),
11552 elf_gc_propagate_vtable_entries_used
,
11557 /* Kill the vtable relocations that were not used. */
11558 elf_link_hash_traverse (elf_hash_table (info
),
11559 elf_gc_smash_unused_vtentry_relocs
,
11564 /* Mark dynamically referenced symbols. */
11565 if (elf_hash_table (info
)->dynamic_sections_created
)
11566 elf_link_hash_traverse (elf_hash_table (info
),
11567 bed
->gc_mark_dynamic_ref
,
11570 /* Grovel through relocs to find out who stays ... */
11571 gc_mark_hook
= bed
->gc_mark_hook
;
11572 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11576 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11579 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11580 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11581 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11585 /* Allow the backend to mark additional target specific sections. */
11586 if (bed
->gc_mark_extra_sections
)
11587 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11589 /* ... and mark SEC_EXCLUDE for those that go. */
11590 return elf_gc_sweep (abfd
, info
);
11593 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11596 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11598 struct elf_link_hash_entry
*h
,
11601 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11602 struct elf_link_hash_entry
**search
, *child
;
11603 bfd_size_type extsymcount
;
11604 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11606 /* The sh_info field of the symtab header tells us where the
11607 external symbols start. We don't care about the local symbols at
11609 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11610 if (!elf_bad_symtab (abfd
))
11611 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11613 sym_hashes
= elf_sym_hashes (abfd
);
11614 sym_hashes_end
= sym_hashes
+ extsymcount
;
11616 /* Hunt down the child symbol, which is in this section at the same
11617 offset as the relocation. */
11618 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11620 if ((child
= *search
) != NULL
11621 && (child
->root
.type
== bfd_link_hash_defined
11622 || child
->root
.type
== bfd_link_hash_defweak
)
11623 && child
->root
.u
.def
.section
== sec
11624 && child
->root
.u
.def
.value
== offset
)
11628 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11629 abfd
, sec
, (unsigned long) offset
);
11630 bfd_set_error (bfd_error_invalid_operation
);
11634 if (!child
->vtable
)
11636 child
->vtable
= bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11637 if (!child
->vtable
)
11642 /* This *should* only be the absolute section. It could potentially
11643 be that someone has defined a non-global vtable though, which
11644 would be bad. It isn't worth paging in the local symbols to be
11645 sure though; that case should simply be handled by the assembler. */
11647 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11650 child
->vtable
->parent
= h
;
11655 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11658 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
11659 asection
*sec ATTRIBUTE_UNUSED
,
11660 struct elf_link_hash_entry
*h
,
11663 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11664 unsigned int log_file_align
= bed
->s
->log_file_align
;
11668 h
->vtable
= bfd_zalloc (abfd
, sizeof (*h
->vtable
));
11673 if (addend
>= h
->vtable
->size
)
11675 size_t size
, bytes
, file_align
;
11676 bfd_boolean
*ptr
= h
->vtable
->used
;
11678 /* While the symbol is undefined, we have to be prepared to handle
11680 file_align
= 1 << log_file_align
;
11681 if (h
->root
.type
== bfd_link_hash_undefined
)
11682 size
= addend
+ file_align
;
11686 if (addend
>= size
)
11688 /* Oops! We've got a reference past the defined end of
11689 the table. This is probably a bug -- shall we warn? */
11690 size
= addend
+ file_align
;
11693 size
= (size
+ file_align
- 1) & -file_align
;
11695 /* Allocate one extra entry for use as a "done" flag for the
11696 consolidation pass. */
11697 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
11701 ptr
= bfd_realloc (ptr
- 1, bytes
);
11707 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
11708 * sizeof (bfd_boolean
));
11709 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
11713 ptr
= bfd_zmalloc (bytes
);
11718 /* And arrange for that done flag to be at index -1. */
11719 h
->vtable
->used
= ptr
+ 1;
11720 h
->vtable
->size
= size
;
11723 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
11728 struct alloc_got_off_arg
{
11730 unsigned int got_elt_size
;
11733 /* We need a special top-level link routine to convert got reference counts
11734 to real got offsets. */
11737 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
11739 struct alloc_got_off_arg
*gofarg
= arg
;
11741 if (h
->root
.type
== bfd_link_hash_warning
)
11742 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11744 if (h
->got
.refcount
> 0)
11746 h
->got
.offset
= gofarg
->gotoff
;
11747 gofarg
->gotoff
+= gofarg
->got_elt_size
;
11750 h
->got
.offset
= (bfd_vma
) -1;
11755 /* And an accompanying bit to work out final got entry offsets once
11756 we're done. Should be called from final_link. */
11759 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
11760 struct bfd_link_info
*info
)
11763 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11765 unsigned int got_elt_size
= bed
->s
->arch_size
/ 8;
11766 struct alloc_got_off_arg gofarg
;
11768 if (! is_elf_hash_table (info
->hash
))
11771 /* The GOT offset is relative to the .got section, but the GOT header is
11772 put into the .got.plt section, if the backend uses it. */
11773 if (bed
->want_got_plt
)
11776 gotoff
= bed
->got_header_size
;
11778 /* Do the local .got entries first. */
11779 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11781 bfd_signed_vma
*local_got
;
11782 bfd_size_type j
, locsymcount
;
11783 Elf_Internal_Shdr
*symtab_hdr
;
11785 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
11788 local_got
= elf_local_got_refcounts (i
);
11792 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
11793 if (elf_bad_symtab (i
))
11794 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11796 locsymcount
= symtab_hdr
->sh_info
;
11798 for (j
= 0; j
< locsymcount
; ++j
)
11800 if (local_got
[j
] > 0)
11802 local_got
[j
] = gotoff
;
11803 gotoff
+= got_elt_size
;
11806 local_got
[j
] = (bfd_vma
) -1;
11810 /* Then the global .got entries. .plt refcounts are handled by
11811 adjust_dynamic_symbol */
11812 gofarg
.gotoff
= gotoff
;
11813 gofarg
.got_elt_size
= got_elt_size
;
11814 elf_link_hash_traverse (elf_hash_table (info
),
11815 elf_gc_allocate_got_offsets
,
11820 /* Many folk need no more in the way of final link than this, once
11821 got entry reference counting is enabled. */
11824 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11826 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
11829 /* Invoke the regular ELF backend linker to do all the work. */
11830 return bfd_elf_final_link (abfd
, info
);
11834 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
11836 struct elf_reloc_cookie
*rcookie
= cookie
;
11838 if (rcookie
->bad_symtab
)
11839 rcookie
->rel
= rcookie
->rels
;
11841 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
11843 unsigned long r_symndx
;
11845 if (! rcookie
->bad_symtab
)
11846 if (rcookie
->rel
->r_offset
> offset
)
11848 if (rcookie
->rel
->r_offset
!= offset
)
11851 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
11852 if (r_symndx
== SHN_UNDEF
)
11855 if (r_symndx
>= rcookie
->locsymcount
11856 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11858 struct elf_link_hash_entry
*h
;
11860 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
11862 while (h
->root
.type
== bfd_link_hash_indirect
11863 || h
->root
.type
== bfd_link_hash_warning
)
11864 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11866 if ((h
->root
.type
== bfd_link_hash_defined
11867 || h
->root
.type
== bfd_link_hash_defweak
)
11868 && elf_discarded_section (h
->root
.u
.def
.section
))
11875 /* It's not a relocation against a global symbol,
11876 but it could be a relocation against a local
11877 symbol for a discarded section. */
11879 Elf_Internal_Sym
*isym
;
11881 /* Need to: get the symbol; get the section. */
11882 isym
= &rcookie
->locsyms
[r_symndx
];
11883 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
11884 if (isec
!= NULL
&& elf_discarded_section (isec
))
11892 /* Discard unneeded references to discarded sections.
11893 Returns TRUE if any section's size was changed. */
11894 /* This function assumes that the relocations are in sorted order,
11895 which is true for all known assemblers. */
11898 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
11900 struct elf_reloc_cookie cookie
;
11901 asection
*stab
, *eh
;
11902 const struct elf_backend_data
*bed
;
11904 bfd_boolean ret
= FALSE
;
11906 if (info
->traditional_format
11907 || !is_elf_hash_table (info
->hash
))
11910 _bfd_elf_begin_eh_frame_parsing (info
);
11911 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
11913 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
11916 bed
= get_elf_backend_data (abfd
);
11918 if ((abfd
->flags
& DYNAMIC
) != 0)
11922 if (!info
->relocatable
)
11924 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
11927 || bfd_is_abs_section (eh
->output_section
)))
11931 stab
= bfd_get_section_by_name (abfd
, ".stab");
11933 && (stab
->size
== 0
11934 || bfd_is_abs_section (stab
->output_section
)
11935 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
11940 && bed
->elf_backend_discard_info
== NULL
)
11943 if (!init_reloc_cookie (&cookie
, info
, abfd
))
11947 && stab
->reloc_count
> 0
11948 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
11950 if (_bfd_discard_section_stabs (abfd
, stab
,
11951 elf_section_data (stab
)->sec_info
,
11952 bfd_elf_reloc_symbol_deleted_p
,
11955 fini_reloc_cookie_rels (&cookie
, stab
);
11959 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
11961 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
11962 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
11963 bfd_elf_reloc_symbol_deleted_p
,
11966 fini_reloc_cookie_rels (&cookie
, eh
);
11969 if (bed
->elf_backend_discard_info
!= NULL
11970 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
11973 fini_reloc_cookie (&cookie
, abfd
);
11975 _bfd_elf_end_eh_frame_parsing (info
);
11977 if (info
->eh_frame_hdr
11978 && !info
->relocatable
11979 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
11986 _bfd_elf_section_already_linked (bfd
*abfd
, struct bfd_section
*sec
,
11987 struct bfd_link_info
*info
)
11990 const char *name
, *p
;
11991 struct bfd_section_already_linked
*l
;
11992 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
11994 if (sec
->output_section
== bfd_abs_section_ptr
)
11997 flags
= sec
->flags
;
11999 /* Return if it isn't a linkonce section. A comdat group section
12000 also has SEC_LINK_ONCE set. */
12001 if ((flags
& SEC_LINK_ONCE
) == 0)
12004 /* Don't put group member sections on our list of already linked
12005 sections. They are handled as a group via their group section. */
12006 if (elf_sec_group (sec
) != NULL
)
12009 /* FIXME: When doing a relocatable link, we may have trouble
12010 copying relocations in other sections that refer to local symbols
12011 in the section being discarded. Those relocations will have to
12012 be converted somehow; as of this writing I'm not sure that any of
12013 the backends handle that correctly.
12015 It is tempting to instead not discard link once sections when
12016 doing a relocatable link (technically, they should be discarded
12017 whenever we are building constructors). However, that fails,
12018 because the linker winds up combining all the link once sections
12019 into a single large link once section, which defeats the purpose
12020 of having link once sections in the first place.
12022 Also, not merging link once sections in a relocatable link
12023 causes trouble for MIPS ELF, which relies on link once semantics
12024 to handle the .reginfo section correctly. */
12026 name
= bfd_get_section_name (abfd
, sec
);
12028 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12029 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12034 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12036 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12038 /* We may have 2 different types of sections on the list: group
12039 sections and linkonce sections. Match like sections. */
12040 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12041 && strcmp (name
, l
->sec
->name
) == 0
12042 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12044 /* The section has already been linked. See if we should
12045 issue a warning. */
12046 switch (flags
& SEC_LINK_DUPLICATES
)
12051 case SEC_LINK_DUPLICATES_DISCARD
:
12054 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12055 (*_bfd_error_handler
)
12056 (_("%B: ignoring duplicate section `%A'"),
12060 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12061 if (sec
->size
!= l
->sec
->size
)
12062 (*_bfd_error_handler
)
12063 (_("%B: duplicate section `%A' has different size"),
12067 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12068 if (sec
->size
!= l
->sec
->size
)
12069 (*_bfd_error_handler
)
12070 (_("%B: duplicate section `%A' has different size"),
12072 else if (sec
->size
!= 0)
12074 bfd_byte
*sec_contents
, *l_sec_contents
;
12076 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12077 (*_bfd_error_handler
)
12078 (_("%B: warning: could not read contents of section `%A'"),
12080 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12082 (*_bfd_error_handler
)
12083 (_("%B: warning: could not read contents of section `%A'"),
12084 l
->sec
->owner
, l
->sec
);
12085 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12086 (*_bfd_error_handler
)
12087 (_("%B: warning: duplicate section `%A' has different contents"),
12091 free (sec_contents
);
12092 if (l_sec_contents
)
12093 free (l_sec_contents
);
12098 /* Set the output_section field so that lang_add_section
12099 does not create a lang_input_section structure for this
12100 section. Since there might be a symbol in the section
12101 being discarded, we must retain a pointer to the section
12102 which we are really going to use. */
12103 sec
->output_section
= bfd_abs_section_ptr
;
12104 sec
->kept_section
= l
->sec
;
12106 if (flags
& SEC_GROUP
)
12108 asection
*first
= elf_next_in_group (sec
);
12109 asection
*s
= first
;
12113 s
->output_section
= bfd_abs_section_ptr
;
12114 /* Record which group discards it. */
12115 s
->kept_section
= l
->sec
;
12116 s
= elf_next_in_group (s
);
12117 /* These lists are circular. */
12127 /* A single member comdat group section may be discarded by a
12128 linkonce section and vice versa. */
12130 if ((flags
& SEC_GROUP
) != 0)
12132 asection
*first
= elf_next_in_group (sec
);
12134 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12135 /* Check this single member group against linkonce sections. */
12136 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12137 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12138 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12139 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12141 first
->output_section
= bfd_abs_section_ptr
;
12142 first
->kept_section
= l
->sec
;
12143 sec
->output_section
= bfd_abs_section_ptr
;
12148 /* Check this linkonce section against single member groups. */
12149 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12150 if (l
->sec
->flags
& SEC_GROUP
)
12152 asection
*first
= elf_next_in_group (l
->sec
);
12155 && elf_next_in_group (first
) == first
12156 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12158 sec
->output_section
= bfd_abs_section_ptr
;
12159 sec
->kept_section
= first
;
12164 /* This is the first section with this name. Record it. */
12165 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12166 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E"));
12170 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12172 return sym
->st_shndx
== SHN_COMMON
;
12176 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12182 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12184 return bfd_com_section_ptr
;