* write.c (relax_segment): Correct address on frag added to stop
[binutils.git] / bfd / section.c
blob6e13fdb10e9bb5788f4f9520aae48ca9c0edd1c7
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
25 SECTION
26 Sections
28 The raw data contained within a BFD is maintained through the
29 section abstraction. A single BFD may have any number of
30 sections. It keeps hold of them by pointing to the first;
31 each one points to the next in the list.
33 Sections are supported in BFD in <<section.c>>.
35 @menu
36 @* Section Input::
37 @* Section Output::
38 @* typedef asection::
39 @* section prototypes::
40 @end menu
42 INODE
43 Section Input, Section Output, Sections, Sections
44 SUBSECTION
45 Section input
47 When a BFD is opened for reading, the section structures are
48 created and attached to the BFD.
50 Each section has a name which describes the section in the
51 outside world---for example, <<a.out>> would contain at least
52 three sections, called <<.text>>, <<.data>> and <<.bss>>.
54 Names need not be unique; for example a COFF file may have several
55 sections named <<.data>>.
57 Sometimes a BFD will contain more than the ``natural'' number of
58 sections. A back end may attach other sections containing
59 constructor data, or an application may add a section (using
60 <<bfd_make_section>>) to the sections attached to an already open
61 BFD. For example, the linker creates an extra section
62 <<COMMON>> for each input file's BFD to hold information about
63 common storage.
65 The raw data is not necessarily read in when
66 the section descriptor is created. Some targets may leave the
67 data in place until a <<bfd_get_section_contents>> call is
68 made. Other back ends may read in all the data at once. For
69 example, an S-record file has to be read once to determine the
70 size of the data. An IEEE-695 file doesn't contain raw data in
71 sections, but data and relocation expressions intermixed, so
72 the data area has to be parsed to get out the data and
73 relocations.
75 INODE
76 Section Output, typedef asection, Section Input, Sections
78 SUBSECTION
79 Section output
81 To write a new object style BFD, the various sections to be
82 written have to be created. They are attached to the BFD in
83 the same way as input sections; data is written to the
84 sections using <<bfd_set_section_contents>>.
86 Any program that creates or combines sections (e.g., the assembler
87 and linker) must use the <<asection>> fields <<output_section>> and
88 <<output_offset>> to indicate the file sections to which each
89 section must be written. (If the section is being created from
90 scratch, <<output_section>> should probably point to the section
91 itself and <<output_offset>> should probably be zero.)
93 The data to be written comes from input sections attached
94 (via <<output_section>> pointers) to
95 the output sections. The output section structure can be
96 considered a filter for the input section: the output section
97 determines the vma of the output data and the name, but the
98 input section determines the offset into the output section of
99 the data to be written.
101 E.g., to create a section "O", starting at 0x100, 0x123 long,
102 containing two subsections, "A" at offset 0x0 (i.e., at vma
103 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
104 structures would look like:
106 | section name "A"
107 | output_offset 0x00
108 | size 0x20
109 | output_section -----------> section name "O"
110 | | vma 0x100
111 | section name "B" | size 0x123
112 | output_offset 0x20 |
113 | size 0x103 |
114 | output_section --------|
116 SUBSECTION
117 Link orders
119 The data within a section is stored in a @dfn{link_order}.
120 These are much like the fixups in <<gas>>. The link_order
121 abstraction allows a section to grow and shrink within itself.
123 A link_order knows how big it is, and which is the next
124 link_order and where the raw data for it is; it also points to
125 a list of relocations which apply to it.
127 The link_order is used by the linker to perform relaxing on
128 final code. The compiler creates code which is as big as
129 necessary to make it work without relaxing, and the user can
130 select whether to relax. Sometimes relaxing takes a lot of
131 time. The linker runs around the relocations to see if any
132 are attached to data which can be shrunk, if so it does it on
133 a link_order by link_order basis.
137 #include "sysdep.h"
138 #include "bfd.h"
139 #include "libbfd.h"
140 #include "bfdlink.h"
143 DOCDD
144 INODE
145 typedef asection, section prototypes, Section Output, Sections
146 SUBSECTION
147 typedef asection
149 Here is the section structure:
151 CODE_FRAGMENT
153 .typedef struct bfd_section
155 . {* The name of the section; the name isn't a copy, the pointer is
156 . the same as that passed to bfd_make_section. *}
157 . const char *name;
159 . {* A unique sequence number. *}
160 . int id;
162 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
163 . int index;
165 . {* The next section in the list belonging to the BFD, or NULL. *}
166 . struct bfd_section *next;
168 . {* The previous section in the list belonging to the BFD, or NULL. *}
169 . struct bfd_section *prev;
171 . {* The field flags contains attributes of the section. Some
172 . flags are read in from the object file, and some are
173 . synthesized from other information. *}
174 . flagword flags;
176 .#define SEC_NO_FLAGS 0x000
178 . {* Tells the OS to allocate space for this section when loading.
179 . This is clear for a section containing debug information only. *}
180 .#define SEC_ALLOC 0x001
182 . {* Tells the OS to load the section from the file when loading.
183 . This is clear for a .bss section. *}
184 .#define SEC_LOAD 0x002
186 . {* The section contains data still to be relocated, so there is
187 . some relocation information too. *}
188 .#define SEC_RELOC 0x004
190 . {* A signal to the OS that the section contains read only data. *}
191 .#define SEC_READONLY 0x008
193 . {* The section contains code only. *}
194 .#define SEC_CODE 0x010
196 . {* The section contains data only. *}
197 .#define SEC_DATA 0x020
199 . {* The section will reside in ROM. *}
200 .#define SEC_ROM 0x040
202 . {* The section contains constructor information. This section
203 . type is used by the linker to create lists of constructors and
204 . destructors used by <<g++>>. When a back end sees a symbol
205 . which should be used in a constructor list, it creates a new
206 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
207 . the symbol to it, and builds a relocation. To build the lists
208 . of constructors, all the linker has to do is catenate all the
209 . sections called <<__CTOR_LIST__>> and relocate the data
210 . contained within - exactly the operations it would peform on
211 . standard data. *}
212 .#define SEC_CONSTRUCTOR 0x080
214 . {* The section has contents - a data section could be
215 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
216 . <<SEC_HAS_CONTENTS>> *}
217 .#define SEC_HAS_CONTENTS 0x100
219 . {* An instruction to the linker to not output the section
220 . even if it has information which would normally be written. *}
221 .#define SEC_NEVER_LOAD 0x200
223 . {* The section contains thread local data. *}
224 .#define SEC_THREAD_LOCAL 0x400
226 . {* The section has GOT references. This flag is only for the
227 . linker, and is currently only used by the elf32-hppa back end.
228 . It will be set if global offset table references were detected
229 . in this section, which indicate to the linker that the section
230 . contains PIC code, and must be handled specially when doing a
231 . static link. *}
232 .#define SEC_HAS_GOT_REF 0x800
234 . {* The section contains common symbols (symbols may be defined
235 . multiple times, the value of a symbol is the amount of
236 . space it requires, and the largest symbol value is the one
237 . used). Most targets have exactly one of these (which we
238 . translate to bfd_com_section_ptr), but ECOFF has two. *}
239 .#define SEC_IS_COMMON 0x1000
241 . {* The section contains only debugging information. For
242 . example, this is set for ELF .debug and .stab sections.
243 . strip tests this flag to see if a section can be
244 . discarded. *}
245 .#define SEC_DEBUGGING 0x2000
247 . {* The contents of this section are held in memory pointed to
248 . by the contents field. This is checked by bfd_get_section_contents,
249 . and the data is retrieved from memory if appropriate. *}
250 .#define SEC_IN_MEMORY 0x4000
252 . {* The contents of this section are to be excluded by the
253 . linker for executable and shared objects unless those
254 . objects are to be further relocated. *}
255 .#define SEC_EXCLUDE 0x8000
257 . {* The contents of this section are to be sorted based on the sum of
258 . the symbol and addend values specified by the associated relocation
259 . entries. Entries without associated relocation entries will be
260 . appended to the end of the section in an unspecified order. *}
261 .#define SEC_SORT_ENTRIES 0x10000
263 . {* When linking, duplicate sections of the same name should be
264 . discarded, rather than being combined into a single section as
265 . is usually done. This is similar to how common symbols are
266 . handled. See SEC_LINK_DUPLICATES below. *}
267 .#define SEC_LINK_ONCE 0x20000
269 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
270 . should handle duplicate sections. *}
271 .#define SEC_LINK_DUPLICATES 0xc0000
273 . {* This value for SEC_LINK_DUPLICATES means that duplicate
274 . sections with the same name should simply be discarded. *}
275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
277 . {* This value for SEC_LINK_DUPLICATES means that the linker
278 . should warn if there are any duplicate sections, although
279 . it should still only link one copy. *}
280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
282 . {* This value for SEC_LINK_DUPLICATES means that the linker
283 . should warn if any duplicate sections are a different size. *}
284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
286 . {* This value for SEC_LINK_DUPLICATES means that the linker
287 . should warn if any duplicate sections contain different
288 . contents. *}
289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
290 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
292 . {* This section was created by the linker as part of dynamic
293 . relocation or other arcane processing. It is skipped when
294 . going through the first-pass output, trusting that someone
295 . else up the line will take care of it later. *}
296 .#define SEC_LINKER_CREATED 0x100000
298 . {* This section should not be subject to garbage collection.
299 . Also set to inform the linker that this section should not be
300 . listed in the link map as discarded. *}
301 .#define SEC_KEEP 0x200000
303 . {* This section contains "short" data, and should be placed
304 . "near" the GP. *}
305 .#define SEC_SMALL_DATA 0x400000
307 . {* Attempt to merge identical entities in the section.
308 . Entity size is given in the entsize field. *}
309 .#define SEC_MERGE 0x800000
311 . {* If given with SEC_MERGE, entities to merge are zero terminated
312 . strings where entsize specifies character size instead of fixed
313 . size entries. *}
314 .#define SEC_STRINGS 0x1000000
316 . {* This section contains data about section groups. *}
317 .#define SEC_GROUP 0x2000000
319 . {* The section is a COFF shared library section. This flag is
320 . only for the linker. If this type of section appears in
321 . the input file, the linker must copy it to the output file
322 . without changing the vma or size. FIXME: Although this
323 . was originally intended to be general, it really is COFF
324 . specific (and the flag was renamed to indicate this). It
325 . might be cleaner to have some more general mechanism to
326 . allow the back end to control what the linker does with
327 . sections. *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
330 . {* This section contains data which may be shared with other
331 . executables or shared objects. This is for COFF only. *}
332 .#define SEC_COFF_SHARED 0x8000000
334 . {* When a section with this flag is being linked, then if the size of
335 . the input section is less than a page, it should not cross a page
336 . boundary. If the size of the input section is one page or more,
337 . it should be aligned on a page boundary. This is for TI
338 . TMS320C54X only. *}
339 .#define SEC_TIC54X_BLOCK 0x10000000
341 . {* Conditionally link this section; do not link if there are no
342 . references found to any symbol in the section. This is for TI
343 . TMS320C54X only. *}
344 .#define SEC_TIC54X_CLINK 0x20000000
346 . {* Indicate that section has the no read flag set. This happens
347 . when memory read flag isn't set. *}
348 .#define SEC_COFF_NOREAD 0x40000000
350 . {* End of section flags. *}
352 . {* Some internal packed boolean fields. *}
354 . {* See the vma field. *}
355 . unsigned int user_set_vma : 1;
357 . {* A mark flag used by some of the linker backends. *}
358 . unsigned int linker_mark : 1;
360 . {* Another mark flag used by some of the linker backends. Set for
361 . output sections that have an input section. *}
362 . unsigned int linker_has_input : 1;
364 . {* Mark flag used by some linker backends for garbage collection. *}
365 . unsigned int gc_mark : 1;
367 . {* The following flags are used by the ELF linker. *}
369 . {* Mark sections which have been allocated to segments. *}
370 . unsigned int segment_mark : 1;
372 . {* Type of sec_info information. *}
373 . unsigned int sec_info_type:3;
374 .#define ELF_INFO_TYPE_NONE 0
375 .#define ELF_INFO_TYPE_STABS 1
376 .#define ELF_INFO_TYPE_MERGE 2
377 .#define ELF_INFO_TYPE_EH_FRAME 3
378 .#define ELF_INFO_TYPE_JUST_SYMS 4
380 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
381 . unsigned int use_rela_p:1;
383 . {* Bits used by various backends. The generic code doesn't touch
384 . these fields. *}
386 . unsigned int sec_flg0:1;
387 . unsigned int sec_flg1:1;
388 . unsigned int sec_flg2:1;
389 . unsigned int sec_flg3:1;
390 . unsigned int sec_flg4:1;
391 . unsigned int sec_flg5:1;
393 . {* End of internal packed boolean fields. *}
395 . {* The virtual memory address of the section - where it will be
396 . at run time. The symbols are relocated against this. The
397 . user_set_vma flag is maintained by bfd; if it's not set, the
398 . backend can assign addresses (for example, in <<a.out>>, where
399 . the default address for <<.data>> is dependent on the specific
400 . target and various flags). *}
401 . bfd_vma vma;
403 . {* The load address of the section - where it would be in a
404 . rom image; really only used for writing section header
405 . information. *}
406 . bfd_vma lma;
408 . {* The size of the section in octets, as it will be output.
409 . Contains a value even if the section has no contents (e.g., the
410 . size of <<.bss>>). *}
411 . bfd_size_type size;
413 . {* For input sections, the original size on disk of the section, in
414 . octets. This field should be set for any section whose size is
415 . changed by linker relaxation. It is required for sections where
416 . the linker relaxation scheme doesn't cache altered section and
417 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
418 . targets), and thus the original size needs to be kept to read the
419 . section multiple times. For output sections, rawsize holds the
420 . section size calculated on a previous linker relaxation pass. *}
421 . bfd_size_type rawsize;
423 . {* Relaxation table. *}
424 . struct relax_table *relax;
426 . {* Count of used relaxation table entries. *}
427 . int relax_count;
430 . {* If this section is going to be output, then this value is the
431 . offset in *bytes* into the output section of the first byte in the
432 . input section (byte ==> smallest addressable unit on the
433 . target). In most cases, if this was going to start at the
434 . 100th octet (8-bit quantity) in the output section, this value
435 . would be 100. However, if the target byte size is 16 bits
436 . (bfd_octets_per_byte is "2"), this value would be 50. *}
437 . bfd_vma output_offset;
439 . {* The output section through which to map on output. *}
440 . struct bfd_section *output_section;
442 . {* The alignment requirement of the section, as an exponent of 2 -
443 . e.g., 3 aligns to 2^3 (or 8). *}
444 . unsigned int alignment_power;
446 . {* If an input section, a pointer to a vector of relocation
447 . records for the data in this section. *}
448 . struct reloc_cache_entry *relocation;
450 . {* If an output section, a pointer to a vector of pointers to
451 . relocation records for the data in this section. *}
452 . struct reloc_cache_entry **orelocation;
454 . {* The number of relocation records in one of the above. *}
455 . unsigned reloc_count;
457 . {* Information below is back end specific - and not always used
458 . or updated. *}
460 . {* File position of section data. *}
461 . file_ptr filepos;
463 . {* File position of relocation info. *}
464 . file_ptr rel_filepos;
466 . {* File position of line data. *}
467 . file_ptr line_filepos;
469 . {* Pointer to data for applications. *}
470 . void *userdata;
472 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
473 . contents. *}
474 . unsigned char *contents;
476 . {* Attached line number information. *}
477 . alent *lineno;
479 . {* Number of line number records. *}
480 . unsigned int lineno_count;
482 . {* Entity size for merging purposes. *}
483 . unsigned int entsize;
485 . {* Points to the kept section if this section is a link-once section,
486 . and is discarded. *}
487 . struct bfd_section *kept_section;
489 . {* When a section is being output, this value changes as more
490 . linenumbers are written out. *}
491 . file_ptr moving_line_filepos;
493 . {* What the section number is in the target world. *}
494 . int target_index;
496 . void *used_by_bfd;
498 . {* If this is a constructor section then here is a list of the
499 . relocations created to relocate items within it. *}
500 . struct relent_chain *constructor_chain;
502 . {* The BFD which owns the section. *}
503 . bfd *owner;
505 . {* A symbol which points at this section only. *}
506 . struct bfd_symbol *symbol;
507 . struct bfd_symbol **symbol_ptr_ptr;
509 . {* Early in the link process, map_head and map_tail are used to build
510 . a list of input sections attached to an output section. Later,
511 . output sections use these fields for a list of bfd_link_order
512 . structs. *}
513 . union {
514 . struct bfd_link_order *link_order;
515 . struct bfd_section *s;
516 . } map_head, map_tail;
517 .} asection;
519 .{* Relax table contains information about instructions which can
520 . be removed by relaxation -- replacing a long address with a
521 . short address. *}
522 .struct relax_table {
523 . {* Address where bytes may be deleted. *}
524 . bfd_vma addr;
526 . {* Number of bytes to be deleted. *}
527 . int size;
530 .{* These sections are global, and are managed by BFD. The application
531 . and target back end are not permitted to change the values in
532 . these sections. New code should use the section_ptr macros rather
533 . than referring directly to the const sections. The const sections
534 . may eventually vanish. *}
535 .#define BFD_ABS_SECTION_NAME "*ABS*"
536 .#define BFD_UND_SECTION_NAME "*UND*"
537 .#define BFD_COM_SECTION_NAME "*COM*"
538 .#define BFD_IND_SECTION_NAME "*IND*"
540 .{* The absolute section. *}
541 .extern asection bfd_abs_section;
542 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
543 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
544 .{* Pointer to the undefined section. *}
545 .extern asection bfd_und_section;
546 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
547 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
548 .{* Pointer to the common section. *}
549 .extern asection bfd_com_section;
550 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
551 .{* Pointer to the indirect section. *}
552 .extern asection bfd_ind_section;
553 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
554 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
556 .#define bfd_is_const_section(SEC) \
557 . ( ((SEC) == bfd_abs_section_ptr) \
558 . || ((SEC) == bfd_und_section_ptr) \
559 . || ((SEC) == bfd_com_section_ptr) \
560 . || ((SEC) == bfd_ind_section_ptr))
562 .{* Macros to handle insertion and deletion of a bfd's sections. These
563 . only handle the list pointers, ie. do not adjust section_count,
564 . target_index etc. *}
565 .#define bfd_section_list_remove(ABFD, S) \
566 . do \
567 . { \
568 . asection *_s = S; \
569 . asection *_next = _s->next; \
570 . asection *_prev = _s->prev; \
571 . if (_prev) \
572 . _prev->next = _next; \
573 . else \
574 . (ABFD)->sections = _next; \
575 . if (_next) \
576 . _next->prev = _prev; \
577 . else \
578 . (ABFD)->section_last = _prev; \
579 . } \
580 . while (0)
581 .#define bfd_section_list_append(ABFD, S) \
582 . do \
583 . { \
584 . asection *_s = S; \
585 . bfd *_abfd = ABFD; \
586 . _s->next = NULL; \
587 . if (_abfd->section_last) \
588 . { \
589 . _s->prev = _abfd->section_last; \
590 . _abfd->section_last->next = _s; \
591 . } \
592 . else \
593 . { \
594 . _s->prev = NULL; \
595 . _abfd->sections = _s; \
596 . } \
597 . _abfd->section_last = _s; \
598 . } \
599 . while (0)
600 .#define bfd_section_list_prepend(ABFD, S) \
601 . do \
602 . { \
603 . asection *_s = S; \
604 . bfd *_abfd = ABFD; \
605 . _s->prev = NULL; \
606 . if (_abfd->sections) \
607 . { \
608 . _s->next = _abfd->sections; \
609 . _abfd->sections->prev = _s; \
610 . } \
611 . else \
612 . { \
613 . _s->next = NULL; \
614 . _abfd->section_last = _s; \
615 . } \
616 . _abfd->sections = _s; \
617 . } \
618 . while (0)
619 .#define bfd_section_list_insert_after(ABFD, A, S) \
620 . do \
621 . { \
622 . asection *_a = A; \
623 . asection *_s = S; \
624 . asection *_next = _a->next; \
625 . _s->next = _next; \
626 . _s->prev = _a; \
627 . _a->next = _s; \
628 . if (_next) \
629 . _next->prev = _s; \
630 . else \
631 . (ABFD)->section_last = _s; \
632 . } \
633 . while (0)
634 .#define bfd_section_list_insert_before(ABFD, B, S) \
635 . do \
636 . { \
637 . asection *_b = B; \
638 . asection *_s = S; \
639 . asection *_prev = _b->prev; \
640 . _s->prev = _prev; \
641 . _s->next = _b; \
642 . _b->prev = _s; \
643 . if (_prev) \
644 . _prev->next = _s; \
645 . else \
646 . (ABFD)->sections = _s; \
647 . } \
648 . while (0)
649 .#define bfd_section_removed_from_list(ABFD, S) \
650 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
652 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
653 . {* name, id, index, next, prev, flags, user_set_vma, *} \
654 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
656 . {* linker_mark, linker_has_input, gc_mark, segment_mark, *} \
657 . 0, 0, 1, 0, \
659 . {* sec_info_type, use_rela_p, *} \
660 . 0, 0, \
662 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
663 . 0, 0, 0, 0, 0, 0, \
665 . {* vma, lma, size, rawsize, relax, relax_count, *} \
666 . 0, 0, 0, 0, 0, 0, \
668 . {* output_offset, output_section, alignment_power, *} \
669 . 0, (struct bfd_section *) &SEC, 0, \
671 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
672 . NULL, NULL, 0, 0, 0, \
674 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
675 . 0, NULL, NULL, NULL, 0, \
677 . {* entsize, kept_section, moving_line_filepos, *} \
678 . 0, NULL, 0, \
680 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
681 . 0, NULL, NULL, NULL, \
683 . {* symbol, symbol_ptr_ptr, *} \
684 . (struct bfd_symbol *) SYM, &SEC.symbol, \
686 . {* map_head, map_tail *} \
687 . { NULL }, { NULL } \
692 /* We use a macro to initialize the static asymbol structures because
693 traditional C does not permit us to initialize a union member while
694 gcc warns if we don't initialize it. */
695 /* the_bfd, name, value, attr, section [, udata] */
696 #ifdef __STDC__
697 #define GLOBAL_SYM_INIT(NAME, SECTION) \
698 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
699 #else
700 #define GLOBAL_SYM_INIT(NAME, SECTION) \
701 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
702 #endif
704 /* These symbols are global, not specific to any BFD. Therefore, anything
705 that tries to change them is broken, and should be repaired. */
707 static const asymbol global_syms[] =
709 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
710 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
711 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
712 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
715 #define STD_SECTION(SEC, FLAGS, NAME, IDX) \
716 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], \
717 NAME, IDX)
719 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
720 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
721 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
722 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
723 #undef STD_SECTION
725 /* Initialize an entry in the section hash table. */
727 struct bfd_hash_entry *
728 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
729 struct bfd_hash_table *table,
730 const char *string)
732 /* Allocate the structure if it has not already been allocated by a
733 subclass. */
734 if (entry == NULL)
736 entry = (struct bfd_hash_entry *)
737 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
738 if (entry == NULL)
739 return entry;
742 /* Call the allocation method of the superclass. */
743 entry = bfd_hash_newfunc (entry, table, string);
744 if (entry != NULL)
745 memset (&((struct section_hash_entry *) entry)->section, 0,
746 sizeof (asection));
748 return entry;
751 #define section_hash_lookup(table, string, create, copy) \
752 ((struct section_hash_entry *) \
753 bfd_hash_lookup ((table), (string), (create), (copy)))
755 /* Create a symbol whose only job is to point to this section. This
756 is useful for things like relocs which are relative to the base
757 of a section. */
759 bfd_boolean
760 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
762 newsect->symbol = bfd_make_empty_symbol (abfd);
763 if (newsect->symbol == NULL)
764 return FALSE;
766 newsect->symbol->name = newsect->name;
767 newsect->symbol->value = 0;
768 newsect->symbol->section = newsect;
769 newsect->symbol->flags = BSF_SECTION_SYM;
771 newsect->symbol_ptr_ptr = &newsect->symbol;
772 return TRUE;
775 /* Initializes a new section. NEWSECT->NAME is already set. */
777 static asection *
778 bfd_section_init (bfd *abfd, asection *newsect)
780 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
782 newsect->id = section_id;
783 newsect->index = abfd->section_count;
784 newsect->owner = abfd;
786 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
787 return NULL;
789 section_id++;
790 abfd->section_count++;
791 bfd_section_list_append (abfd, newsect);
792 return newsect;
796 DOCDD
797 INODE
798 section prototypes, , typedef asection, Sections
799 SUBSECTION
800 Section prototypes
802 These are the functions exported by the section handling part of BFD.
806 FUNCTION
807 bfd_section_list_clear
809 SYNOPSIS
810 void bfd_section_list_clear (bfd *);
812 DESCRIPTION
813 Clears the section list, and also resets the section count and
814 hash table entries.
817 void
818 bfd_section_list_clear (bfd *abfd)
820 abfd->sections = NULL;
821 abfd->section_last = NULL;
822 abfd->section_count = 0;
823 memset (abfd->section_htab.table, 0,
824 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
828 FUNCTION
829 bfd_get_section_by_name
831 SYNOPSIS
832 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
834 DESCRIPTION
835 Run through @var{abfd} and return the one of the
836 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
837 @xref{Sections}, for more information.
839 This should only be used in special cases; the normal way to process
840 all sections of a given name is to use <<bfd_map_over_sections>> and
841 <<strcmp>> on the name (or better yet, base it on the section flags
842 or something else) for each section.
845 asection *
846 bfd_get_section_by_name (bfd *abfd, const char *name)
848 struct section_hash_entry *sh;
850 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
851 if (sh != NULL)
852 return &sh->section;
854 return NULL;
858 FUNCTION
859 bfd_get_section_by_name_if
861 SYNOPSIS
862 asection *bfd_get_section_by_name_if
863 (bfd *abfd,
864 const char *name,
865 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
866 void *obj);
868 DESCRIPTION
869 Call the provided function @var{func} for each section
870 attached to the BFD @var{abfd} whose name matches @var{name},
871 passing @var{obj} as an argument. The function will be called
872 as if by
874 | func (abfd, the_section, obj);
876 It returns the first section for which @var{func} returns true,
877 otherwise <<NULL>>.
881 asection *
882 bfd_get_section_by_name_if (bfd *abfd, const char *name,
883 bfd_boolean (*operation) (bfd *,
884 asection *,
885 void *),
886 void *user_storage)
888 struct section_hash_entry *sh;
889 unsigned long hash;
891 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
892 if (sh == NULL)
893 return NULL;
895 hash = sh->root.hash;
898 if ((*operation) (abfd, &sh->section, user_storage))
899 return &sh->section;
900 sh = (struct section_hash_entry *) sh->root.next;
902 while (sh != NULL && sh->root.hash == hash
903 && strcmp (sh->root.string, name) == 0);
905 return NULL;
909 FUNCTION
910 bfd_get_unique_section_name
912 SYNOPSIS
913 char *bfd_get_unique_section_name
914 (bfd *abfd, const char *templat, int *count);
916 DESCRIPTION
917 Invent a section name that is unique in @var{abfd} by tacking
918 a dot and a digit suffix onto the original @var{templat}. If
919 @var{count} is non-NULL, then it specifies the first number
920 tried as a suffix to generate a unique name. The value
921 pointed to by @var{count} will be incremented in this case.
924 char *
925 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
927 int num;
928 unsigned int len;
929 char *sname;
931 len = strlen (templat);
932 sname = (char *) bfd_malloc (len + 8);
933 if (sname == NULL)
934 return NULL;
935 memcpy (sname, templat, len);
936 num = 1;
937 if (count != NULL)
938 num = *count;
942 /* If we have a million sections, something is badly wrong. */
943 if (num > 999999)
944 abort ();
945 sprintf (sname + len, ".%d", num++);
947 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
949 if (count != NULL)
950 *count = num;
951 return sname;
955 FUNCTION
956 bfd_make_section_old_way
958 SYNOPSIS
959 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
961 DESCRIPTION
962 Create a new empty section called @var{name}
963 and attach it to the end of the chain of sections for the
964 BFD @var{abfd}. An attempt to create a section with a name which
965 is already in use returns its pointer without changing the
966 section chain.
968 It has the funny name since this is the way it used to be
969 before it was rewritten....
971 Possible errors are:
972 o <<bfd_error_invalid_operation>> -
973 If output has already started for this BFD.
974 o <<bfd_error_no_memory>> -
975 If memory allocation fails.
979 asection *
980 bfd_make_section_old_way (bfd *abfd, const char *name)
982 asection *newsect;
984 if (abfd->output_has_begun)
986 bfd_set_error (bfd_error_invalid_operation);
987 return NULL;
990 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
991 newsect = bfd_abs_section_ptr;
992 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
993 newsect = bfd_com_section_ptr;
994 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
995 newsect = bfd_und_section_ptr;
996 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
997 newsect = bfd_ind_section_ptr;
998 else
1000 struct section_hash_entry *sh;
1002 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1003 if (sh == NULL)
1004 return NULL;
1006 newsect = &sh->section;
1007 if (newsect->name != NULL)
1009 /* Section already exists. */
1010 return newsect;
1013 newsect->name = name;
1014 return bfd_section_init (abfd, newsect);
1017 /* Call new_section_hook when "creating" the standard abs, com, und
1018 and ind sections to tack on format specific section data.
1019 Also, create a proper section symbol. */
1020 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1021 return NULL;
1022 return newsect;
1026 FUNCTION
1027 bfd_make_section_anyway_with_flags
1029 SYNOPSIS
1030 asection *bfd_make_section_anyway_with_flags
1031 (bfd *abfd, const char *name, flagword flags);
1033 DESCRIPTION
1034 Create a new empty section called @var{name} and attach it to the end of
1035 the chain of sections for @var{abfd}. Create a new section even if there
1036 is already a section with that name. Also set the attributes of the
1037 new section to the value @var{flags}.
1039 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1040 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1041 o <<bfd_error_no_memory>> - If memory allocation fails.
1044 sec_ptr
1045 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1046 flagword flags)
1048 struct section_hash_entry *sh;
1049 asection *newsect;
1051 if (abfd->output_has_begun)
1053 bfd_set_error (bfd_error_invalid_operation);
1054 return NULL;
1057 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1058 if (sh == NULL)
1059 return NULL;
1061 newsect = &sh->section;
1062 if (newsect->name != NULL)
1064 /* We are making a section of the same name. Put it in the
1065 section hash table. Even though we can't find it directly by a
1066 hash lookup, we'll be able to find the section by traversing
1067 sh->root.next quicker than looking at all the bfd sections. */
1068 struct section_hash_entry *new_sh;
1069 new_sh = (struct section_hash_entry *)
1070 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1071 if (new_sh == NULL)
1072 return NULL;
1074 new_sh->root = sh->root;
1075 sh->root.next = &new_sh->root;
1076 newsect = &new_sh->section;
1079 newsect->flags = flags;
1080 newsect->name = name;
1081 return bfd_section_init (abfd, newsect);
1085 FUNCTION
1086 bfd_make_section_anyway
1088 SYNOPSIS
1089 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1091 DESCRIPTION
1092 Create a new empty section called @var{name} and attach it to the end of
1093 the chain of sections for @var{abfd}. Create a new section even if there
1094 is already a section with that name.
1096 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1097 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1098 o <<bfd_error_no_memory>> - If memory allocation fails.
1101 sec_ptr
1102 bfd_make_section_anyway (bfd *abfd, const char *name)
1104 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1108 FUNCTION
1109 bfd_make_section_with_flags
1111 SYNOPSIS
1112 asection *bfd_make_section_with_flags
1113 (bfd *, const char *name, flagword flags);
1115 DESCRIPTION
1116 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1117 bfd_set_error ()) without changing the section chain if there is already a
1118 section named @var{name}. Also set the attributes of the new section to
1119 the value @var{flags}. If there is an error, return <<NULL>> and set
1120 <<bfd_error>>.
1123 asection *
1124 bfd_make_section_with_flags (bfd *abfd, const char *name,
1125 flagword flags)
1127 struct section_hash_entry *sh;
1128 asection *newsect;
1130 if (abfd->output_has_begun)
1132 bfd_set_error (bfd_error_invalid_operation);
1133 return NULL;
1136 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1137 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1138 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1139 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1140 return NULL;
1142 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1143 if (sh == NULL)
1144 return NULL;
1146 newsect = &sh->section;
1147 if (newsect->name != NULL)
1149 /* Section already exists. */
1150 return NULL;
1153 newsect->name = name;
1154 newsect->flags = flags;
1155 return bfd_section_init (abfd, newsect);
1159 FUNCTION
1160 bfd_make_section
1162 SYNOPSIS
1163 asection *bfd_make_section (bfd *, const char *name);
1165 DESCRIPTION
1166 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1167 bfd_set_error ()) without changing the section chain if there is already a
1168 section named @var{name}. If there is an error, return <<NULL>> and set
1169 <<bfd_error>>.
1172 asection *
1173 bfd_make_section (bfd *abfd, const char *name)
1175 return bfd_make_section_with_flags (abfd, name, 0);
1179 FUNCTION
1180 bfd_set_section_flags
1182 SYNOPSIS
1183 bfd_boolean bfd_set_section_flags
1184 (bfd *abfd, asection *sec, flagword flags);
1186 DESCRIPTION
1187 Set the attributes of the section @var{sec} in the BFD
1188 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1189 <<FALSE>> on error. Possible error returns are:
1191 o <<bfd_error_invalid_operation>> -
1192 The section cannot have one or more of the attributes
1193 requested. For example, a .bss section in <<a.out>> may not
1194 have the <<SEC_HAS_CONTENTS>> field set.
1198 bfd_boolean
1199 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1200 sec_ptr section,
1201 flagword flags)
1203 section->flags = flags;
1204 return TRUE;
1208 FUNCTION
1209 bfd_map_over_sections
1211 SYNOPSIS
1212 void bfd_map_over_sections
1213 (bfd *abfd,
1214 void (*func) (bfd *abfd, asection *sect, void *obj),
1215 void *obj);
1217 DESCRIPTION
1218 Call the provided function @var{func} for each section
1219 attached to the BFD @var{abfd}, passing @var{obj} as an
1220 argument. The function will be called as if by
1222 | func (abfd, the_section, obj);
1224 This is the preferred method for iterating over sections; an
1225 alternative would be to use a loop:
1227 | section *p;
1228 | for (p = abfd->sections; p != NULL; p = p->next)
1229 | func (abfd, p, ...)
1233 void
1234 bfd_map_over_sections (bfd *abfd,
1235 void (*operation) (bfd *, asection *, void *),
1236 void *user_storage)
1238 asection *sect;
1239 unsigned int i = 0;
1241 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1242 (*operation) (abfd, sect, user_storage);
1244 if (i != abfd->section_count) /* Debugging */
1245 abort ();
1249 FUNCTION
1250 bfd_sections_find_if
1252 SYNOPSIS
1253 asection *bfd_sections_find_if
1254 (bfd *abfd,
1255 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1256 void *obj);
1258 DESCRIPTION
1259 Call the provided function @var{operation} for each section
1260 attached to the BFD @var{abfd}, passing @var{obj} as an
1261 argument. The function will be called as if by
1263 | operation (abfd, the_section, obj);
1265 It returns the first section for which @var{operation} returns true.
1269 asection *
1270 bfd_sections_find_if (bfd *abfd,
1271 bfd_boolean (*operation) (bfd *, asection *, void *),
1272 void *user_storage)
1274 asection *sect;
1276 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1277 if ((*operation) (abfd, sect, user_storage))
1278 break;
1280 return sect;
1284 FUNCTION
1285 bfd_set_section_size
1287 SYNOPSIS
1288 bfd_boolean bfd_set_section_size
1289 (bfd *abfd, asection *sec, bfd_size_type val);
1291 DESCRIPTION
1292 Set @var{sec} to the size @var{val}. If the operation is
1293 ok, then <<TRUE>> is returned, else <<FALSE>>.
1295 Possible error returns:
1296 o <<bfd_error_invalid_operation>> -
1297 Writing has started to the BFD, so setting the size is invalid.
1301 bfd_boolean
1302 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1304 /* Once you've started writing to any section you cannot create or change
1305 the size of any others. */
1307 if (abfd->output_has_begun)
1309 bfd_set_error (bfd_error_invalid_operation);
1310 return FALSE;
1313 ptr->size = val;
1314 return TRUE;
1318 FUNCTION
1319 bfd_set_section_contents
1321 SYNOPSIS
1322 bfd_boolean bfd_set_section_contents
1323 (bfd *abfd, asection *section, const void *data,
1324 file_ptr offset, bfd_size_type count);
1326 DESCRIPTION
1327 Sets the contents of the section @var{section} in BFD
1328 @var{abfd} to the data starting in memory at @var{data}. The
1329 data is written to the output section starting at offset
1330 @var{offset} for @var{count} octets.
1332 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1333 returns are:
1334 o <<bfd_error_no_contents>> -
1335 The output section does not have the <<SEC_HAS_CONTENTS>>
1336 attribute, so nothing can be written to it.
1337 o and some more too
1339 This routine is front end to the back end function
1340 <<_bfd_set_section_contents>>.
1344 bfd_boolean
1345 bfd_set_section_contents (bfd *abfd,
1346 sec_ptr section,
1347 const void *location,
1348 file_ptr offset,
1349 bfd_size_type count)
1351 bfd_size_type sz;
1353 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1355 bfd_set_error (bfd_error_no_contents);
1356 return FALSE;
1359 sz = section->size;
1360 if ((bfd_size_type) offset > sz
1361 || count > sz
1362 || offset + count > sz
1363 || count != (size_t) count)
1365 bfd_set_error (bfd_error_bad_value);
1366 return FALSE;
1369 if (!bfd_write_p (abfd))
1371 bfd_set_error (bfd_error_invalid_operation);
1372 return FALSE;
1375 /* Record a copy of the data in memory if desired. */
1376 if (section->contents
1377 && location != section->contents + offset)
1378 memcpy (section->contents + offset, location, (size_t) count);
1380 if (BFD_SEND (abfd, _bfd_set_section_contents,
1381 (abfd, section, location, offset, count)))
1383 abfd->output_has_begun = TRUE;
1384 return TRUE;
1387 return FALSE;
1391 FUNCTION
1392 bfd_get_section_contents
1394 SYNOPSIS
1395 bfd_boolean bfd_get_section_contents
1396 (bfd *abfd, asection *section, void *location, file_ptr offset,
1397 bfd_size_type count);
1399 DESCRIPTION
1400 Read data from @var{section} in BFD @var{abfd}
1401 into memory starting at @var{location}. The data is read at an
1402 offset of @var{offset} from the start of the input section,
1403 and is read for @var{count} bytes.
1405 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1406 flag set are requested or if the section does not have the
1407 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1408 with zeroes. If no errors occur, <<TRUE>> is returned, else
1409 <<FALSE>>.
1412 bfd_boolean
1413 bfd_get_section_contents (bfd *abfd,
1414 sec_ptr section,
1415 void *location,
1416 file_ptr offset,
1417 bfd_size_type count)
1419 bfd_size_type sz;
1421 if (section->flags & SEC_CONSTRUCTOR)
1423 memset (location, 0, (size_t) count);
1424 return TRUE;
1427 sz = section->rawsize ? section->rawsize : section->size;
1428 if ((bfd_size_type) offset > sz
1429 || count > sz
1430 || offset + count > sz
1431 || count != (size_t) count)
1433 bfd_set_error (bfd_error_bad_value);
1434 return FALSE;
1437 if (count == 0)
1438 /* Don't bother. */
1439 return TRUE;
1441 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1443 memset (location, 0, (size_t) count);
1444 return TRUE;
1447 if ((section->flags & SEC_IN_MEMORY) != 0)
1449 if (section->contents == NULL)
1451 /* This can happen because of errors earlier on in the linking process.
1452 We do not want to seg-fault here, so clear the flag and return an
1453 error code. */
1454 section->flags &= ~ SEC_IN_MEMORY;
1455 bfd_set_error (bfd_error_invalid_operation);
1456 return FALSE;
1459 memcpy (location, section->contents + offset, (size_t) count);
1460 return TRUE;
1463 return BFD_SEND (abfd, _bfd_get_section_contents,
1464 (abfd, section, location, offset, count));
1468 FUNCTION
1469 bfd_malloc_and_get_section
1471 SYNOPSIS
1472 bfd_boolean bfd_malloc_and_get_section
1473 (bfd *abfd, asection *section, bfd_byte **buf);
1475 DESCRIPTION
1476 Read all data from @var{section} in BFD @var{abfd}
1477 into a buffer, *@var{buf}, malloc'd by this function.
1480 bfd_boolean
1481 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1483 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1484 bfd_byte *p = NULL;
1486 *buf = p;
1487 if (sz == 0)
1488 return TRUE;
1490 p = (bfd_byte *)
1491 bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1492 if (p == NULL)
1493 return FALSE;
1494 *buf = p;
1496 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1499 FUNCTION
1500 bfd_copy_private_section_data
1502 SYNOPSIS
1503 bfd_boolean bfd_copy_private_section_data
1504 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1506 DESCRIPTION
1507 Copy private section information from @var{isec} in the BFD
1508 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1509 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1510 returns are:
1512 o <<bfd_error_no_memory>> -
1513 Not enough memory exists to create private data for @var{osec}.
1515 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1516 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1517 . (ibfd, isection, obfd, osection))
1521 FUNCTION
1522 bfd_generic_is_group_section
1524 SYNOPSIS
1525 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1527 DESCRIPTION
1528 Returns TRUE if @var{sec} is a member of a group.
1531 bfd_boolean
1532 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1533 const asection *sec ATTRIBUTE_UNUSED)
1535 return FALSE;
1539 FUNCTION
1540 bfd_generic_discard_group
1542 SYNOPSIS
1543 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1545 DESCRIPTION
1546 Remove all members of @var{group} from the output.
1549 bfd_boolean
1550 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1551 asection *group ATTRIBUTE_UNUSED)
1553 return TRUE;