1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
23 /* This file has been modified for usage in libiberty. It includes "xregex.h"
24 instead of <regex.h>. The "xregex.h" header file renames all external
25 routines with an "x" prefix so they do not collide with the native regex
26 routines or with other components regex routines. */
27 /* AIX requires this to be the first thing in the file. */
28 #if defined _AIX && !defined REGEX_MALLOC
40 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
41 # define PARAMS(args) args
43 # define PARAMS(args) ()
45 #endif /* Not PARAMS. */
47 #ifndef INSIDE_RECURSION
49 # if defined STDC_HEADERS && !defined emacs
52 /* We need this for `regex.h', and perhaps for the Emacs include files. */
53 # include <sys/types.h>
56 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60 # if defined _LIBC || WIDE_CHAR_SUPPORT
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(errcode, preg, errbuf, errbuf_size) \
72 __regerror(errcode, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 # define btowc __btowc
90 /* We are also using some library internals. */
91 # include <locale/localeinfo.h>
92 # include <locale/elem-hash.h>
93 # include <langinfo.h>
94 # include <locale/coll-lookup.h>
97 /* This is for other GNU distributions with internationalized messages. */
98 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
102 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
105 # define gettext(msgid) (msgid)
108 # ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
111 # define gettext_noop(String) String
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
122 # else /* not emacs */
124 /* If we are not linking with Emacs proper,
125 we can't use the relocating allocator
126 even if config.h says that we can. */
129 # if defined STDC_HEADERS || defined _LIBC
136 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137 If nothing else has been done, use the method below. */
138 # ifdef INHIBIT_STRING_HEADER
139 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140 # if !defined bzero && !defined bcopy
141 # undef INHIBIT_STRING_HEADER
146 /* This is the normal way of making sure we have a bcopy and a bzero.
147 This is used in most programs--a few other programs avoid this
148 by defining INHIBIT_STRING_HEADER. */
149 # ifndef INHIBIT_STRING_HEADER
150 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
154 # define bzero(s, n) (memset (s, '\0', n), (s))
156 # define bzero(s, n) __bzero (s, n)
160 # include <strings.h>
162 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
165 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
170 /* Define the syntax stuff for \<, \>, etc. */
172 /* This must be nonzero for the wordchar and notwordchar pattern
173 commands in re_match_2. */
178 # ifdef SWITCH_ENUM_BUG
179 # define SWITCH_ENUM_CAST(x) ((int)(x))
181 # define SWITCH_ENUM_CAST(x) (x)
184 # endif /* not emacs */
186 # if defined _LIBC || HAVE_LIMITS_H
191 # define MB_LEN_MAX 1
194 /* Get the interface, including the syntax bits. */
195 # include "xregex.h" /* change for libiberty */
197 /* isalpha etc. are used for the character classes. */
200 /* Jim Meyering writes:
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
213 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214 # define ISASCII(c) 1
216 # define ISASCII(c) isascii(c)
220 # define ISBLANK(c) (ISASCII (c) && isblank (c))
222 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
225 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
227 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
231 # define ISPRINT(c) (ISASCII (c) && isprint (c))
232 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
234 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
235 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236 # define ISLOWER(c) (ISASCII (c) && islower (c))
237 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238 # define ISSPACE(c) (ISASCII (c) && isspace (c))
239 # define ISUPPER(c) (ISASCII (c) && isupper (c))
240 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
243 # define TOLOWER(c) _tolower(c)
245 # define TOLOWER(c) tolower(c)
249 # define NULL (void *)0
252 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
253 since ours (we hope) works properly with all combinations of
254 machines, compilers, `char' and `unsigned char' argument types.
255 (Per Bothner suggested the basic approach.) */
256 # undef SIGN_EXTEND_CHAR
258 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259 # else /* not __STDC__ */
260 /* As in Harbison and Steele. */
261 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
265 /* How many characters in the character set. */
266 # define CHAR_SET_SIZE 256
270 extern char *re_syntax_table
;
272 # else /* not SYNTAX_TABLE */
274 static char re_syntax_table
[CHAR_SET_SIZE
];
276 static void init_syntax_once
PARAMS ((void));
286 bzero (re_syntax_table
, sizeof re_syntax_table
);
288 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
290 re_syntax_table
[c
] = Sword
;
292 re_syntax_table
['_'] = Sword
;
297 # endif /* not SYNTAX_TABLE */
299 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
303 /* Integer type for pointers. */
304 # if !defined _LIBC && !defined HAVE_UINTPTR_T
305 typedef unsigned long int uintptr_t;
308 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
309 use `alloca' instead of `malloc'. This is because using malloc in
310 re_search* or re_match* could cause memory leaks when C-g is used in
311 Emacs; also, malloc is slower and causes storage fragmentation. On
312 the other hand, malloc is more portable, and easier to debug.
314 Because we sometimes use alloca, some routines have to be macros,
315 not functions -- `alloca'-allocated space disappears at the end of the
316 function it is called in. */
320 # define REGEX_ALLOCATE malloc
321 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322 # define REGEX_FREE free
324 # else /* not REGEX_MALLOC */
326 /* Emacs already defines alloca, sometimes. */
329 /* Make alloca work the best possible way. */
331 # define alloca __builtin_alloca
332 # else /* not __GNUC__ */
335 # endif /* HAVE_ALLOCA_H */
336 # endif /* not __GNUC__ */
338 # endif /* not alloca */
340 # define REGEX_ALLOCATE alloca
342 /* Assumes a `char *destination' variable. */
343 # define REGEX_REALLOCATE(source, osize, nsize) \
344 (destination = (char *) alloca (nsize), \
345 memcpy (destination, source, osize))
347 /* No need to do anything to free, after alloca. */
348 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
350 # endif /* not REGEX_MALLOC */
352 /* Define how to allocate the failure stack. */
354 # if defined REL_ALLOC && defined REGEX_MALLOC
356 # define REGEX_ALLOCATE_STACK(size) \
357 r_alloc (&failure_stack_ptr, (size))
358 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
359 r_re_alloc (&failure_stack_ptr, (nsize))
360 # define REGEX_FREE_STACK(ptr) \
361 r_alloc_free (&failure_stack_ptr)
363 # else /* not using relocating allocator */
367 # define REGEX_ALLOCATE_STACK malloc
368 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369 # define REGEX_FREE_STACK free
371 # else /* not REGEX_MALLOC */
373 # define REGEX_ALLOCATE_STACK alloca
375 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
376 REGEX_REALLOCATE (source, osize, nsize)
377 /* No need to explicitly free anything. */
378 # define REGEX_FREE_STACK(arg)
380 # endif /* not REGEX_MALLOC */
381 # endif /* not using relocating allocator */
384 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
385 `string1' or just past its end. This works if PTR is NULL, which is
387 # define FIRST_STRING_P(ptr) \
388 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
390 /* (Re)Allocate N items of type T using malloc, or fail. */
391 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393 # define RETALLOC_IF(addr, n, t) \
394 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
397 # define BYTEWIDTH 8 /* In bits. */
399 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
403 # define MAX(a, b) ((a) > (b) ? (a) : (b))
404 # define MIN(a, b) ((a) < (b) ? (a) : (b))
406 typedef char boolean
;
410 static reg_errcode_t byte_regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
412 struct re_pattern_buffer
*bufp
));
414 static int byte_re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
415 const char *string1
, int size1
,
416 const char *string2
, int size2
,
418 struct re_registers
*regs
,
420 static int byte_re_search_2
PARAMS ((struct re_pattern_buffer
*bufp
,
421 const char *string1
, int size1
,
422 const char *string2
, int size2
,
423 int startpos
, int range
,
424 struct re_registers
*regs
, int stop
));
425 static int byte_re_compile_fastmap
PARAMS ((struct re_pattern_buffer
*bufp
));
428 static reg_errcode_t wcs_regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
430 struct re_pattern_buffer
*bufp
));
433 static int wcs_re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
434 const char *cstring1
, int csize1
,
435 const char *cstring2
, int csize2
,
437 struct re_registers
*regs
,
439 wchar_t *string1
, int size1
,
440 wchar_t *string2
, int size2
,
441 int *mbs_offset1
, int *mbs_offset2
));
442 static int wcs_re_search_2
PARAMS ((struct re_pattern_buffer
*bufp
,
443 const char *string1
, int size1
,
444 const char *string2
, int size2
,
445 int startpos
, int range
,
446 struct re_registers
*regs
, int stop
));
447 static int wcs_re_compile_fastmap
PARAMS ((struct re_pattern_buffer
*bufp
));
450 /* These are the command codes that appear in compiled regular
451 expressions. Some opcodes are followed by argument bytes. A
452 command code can specify any interpretation whatsoever for its
453 arguments. Zero bytes may appear in the compiled regular expression. */
459 /* Succeed right away--no more backtracking. */
462 /* Followed by one byte giving n, then by n literal bytes. */
466 /* Same as exactn, but contains binary data. */
470 /* Matches any (more or less) character. */
473 /* Matches any one char belonging to specified set. First
474 following byte is number of bitmap bytes. Then come bytes
475 for a bitmap saying which chars are in. Bits in each byte
476 are ordered low-bit-first. A character is in the set if its
477 bit is 1. A character too large to have a bit in the map is
478 automatically not in the set. */
479 /* ifdef MBS_SUPPORT, following element is length of character
480 classes, length of collating symbols, length of equivalence
481 classes, length of character ranges, and length of characters.
482 Next, character class element, collating symbols elements,
483 equivalence class elements, range elements, and character
485 See regex_compile function. */
488 /* Same parameters as charset, but match any character that is
489 not one of those specified. */
492 /* Start remembering the text that is matched, for storing in a
493 register. Followed by one byte with the register number, in
494 the range 0 to one less than the pattern buffer's re_nsub
495 field. Then followed by one byte with the number of groups
496 inner to this one. (This last has to be part of the
497 start_memory only because we need it in the on_failure_jump
501 /* Stop remembering the text that is matched and store it in a
502 memory register. Followed by one byte with the register
503 number, in the range 0 to one less than `re_nsub' in the
504 pattern buffer, and one byte with the number of inner groups,
505 just like `start_memory'. (We need the number of inner
506 groups here because we don't have any easy way of finding the
507 corresponding start_memory when we're at a stop_memory.) */
510 /* Match a duplicate of something remembered. Followed by one
511 byte containing the register number. */
514 /* Fail unless at beginning of line. */
517 /* Fail unless at end of line. */
520 /* Succeeds if at beginning of buffer (if emacs) or at beginning
521 of string to be matched (if not). */
524 /* Analogously, for end of buffer/string. */
527 /* Followed by two byte relative address to which to jump. */
530 /* Same as jump, but marks the end of an alternative. */
533 /* Followed by two-byte relative address of place to resume at
534 in case of failure. */
535 /* ifdef MBS_SUPPORT, the size of address is 1. */
538 /* Like on_failure_jump, but pushes a placeholder instead of the
539 current string position when executed. */
540 on_failure_keep_string_jump
,
542 /* Throw away latest failure point and then jump to following
543 two-byte relative address. */
544 /* ifdef MBS_SUPPORT, the size of address is 1. */
547 /* Change to pop_failure_jump if know won't have to backtrack to
548 match; otherwise change to jump. This is used to jump
549 back to the beginning of a repeat. If what follows this jump
550 clearly won't match what the repeat does, such that we can be
551 sure that there is no use backtracking out of repetitions
552 already matched, then we change it to a pop_failure_jump.
553 Followed by two-byte address. */
554 /* ifdef MBS_SUPPORT, the size of address is 1. */
557 /* Jump to following two-byte address, and push a dummy failure
558 point. This failure point will be thrown away if an attempt
559 is made to use it for a failure. A `+' construct makes this
560 before the first repeat. Also used as an intermediary kind
561 of jump when compiling an alternative. */
562 /* ifdef MBS_SUPPORT, the size of address is 1. */
565 /* Push a dummy failure point and continue. Used at the end of
569 /* Followed by two-byte relative address and two-byte number n.
570 After matching N times, jump to the address upon failure. */
571 /* ifdef MBS_SUPPORT, the size of address is 1. */
574 /* Followed by two-byte relative address, and two-byte number n.
575 Jump to the address N times, then fail. */
576 /* ifdef MBS_SUPPORT, the size of address is 1. */
579 /* Set the following two-byte relative address to the
580 subsequent two-byte number. The address *includes* the two
582 /* ifdef MBS_SUPPORT, the size of address is 1. */
585 wordchar
, /* Matches any word-constituent character. */
586 notwordchar
, /* Matches any char that is not a word-constituent. */
588 wordbeg
, /* Succeeds if at word beginning. */
589 wordend
, /* Succeeds if at word end. */
591 wordbound
, /* Succeeds if at a word boundary. */
592 notwordbound
/* Succeeds if not at a word boundary. */
595 ,before_dot
, /* Succeeds if before point. */
596 at_dot
, /* Succeeds if at point. */
597 after_dot
, /* Succeeds if after point. */
599 /* Matches any character whose syntax is specified. Followed by
600 a byte which contains a syntax code, e.g., Sword. */
603 /* Matches any character whose syntax is not that specified. */
607 #endif /* not INSIDE_RECURSION */
612 # define UCHAR_T unsigned char
613 # define COMPILED_BUFFER_VAR bufp->buffer
614 # define OFFSET_ADDRESS_SIZE 2
615 # if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
616 # define PREFIX(name) byte_##name
618 # define PREFIX(name) byte_/**/name
620 # define ARG_PREFIX(name) name
621 # define PUT_CHAR(c) putchar (c)
624 # define CHAR_T wchar_t
625 # define UCHAR_T wchar_t
626 # define COMPILED_BUFFER_VAR wc_buffer
627 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
628 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
629 # if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
630 # define PREFIX(name) wcs_##name
631 # define ARG_PREFIX(name) c##name
633 # define PREFIX(name) wcs_/**/name
634 # define ARG_PREFIX(name) c/**/name
636 /* Should we use wide stream?? */
637 # define PUT_CHAR(c) printf ("%C", c);
643 # define INSIDE_RECURSION
645 # undef INSIDE_RECURSION
648 # define INSIDE_RECURSION
650 # undef INSIDE_RECURSION
654 #ifdef INSIDE_RECURSION
655 /* Common operations on the compiled pattern. */
657 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
658 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
661 # define STORE_NUMBER(destination, number) \
663 *(destination) = (UCHAR_T)(number); \
666 # define STORE_NUMBER(destination, number) \
668 (destination)[0] = (number) & 0377; \
669 (destination)[1] = (number) >> 8; \
673 /* Same as STORE_NUMBER, except increment DESTINATION to
674 the byte after where the number is stored. Therefore, DESTINATION
675 must be an lvalue. */
676 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
678 # define STORE_NUMBER_AND_INCR(destination, number) \
680 STORE_NUMBER (destination, number); \
681 (destination) += OFFSET_ADDRESS_SIZE; \
684 /* Put into DESTINATION a number stored in two contiguous bytes starting
686 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
689 # define EXTRACT_NUMBER(destination, source) \
691 (destination) = *(source); \
694 # define EXTRACT_NUMBER(destination, source) \
696 (destination) = *(source) & 0377; \
697 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
702 static void PREFIX(extract_number
) _RE_ARGS ((int *dest
, UCHAR_T
*source
));
704 PREFIX(extract_number
) (dest
, source
)
711 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
712 *dest
= *source
& 0377;
717 # ifndef EXTRACT_MACROS /* To debug the macros. */
718 # undef EXTRACT_NUMBER
719 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
720 # endif /* not EXTRACT_MACROS */
724 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
725 SOURCE must be an lvalue. */
727 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
729 EXTRACT_NUMBER (destination, source); \
730 (source) += OFFSET_ADDRESS_SIZE; \
734 static void PREFIX(extract_number_and_incr
) _RE_ARGS ((int *destination
,
737 PREFIX(extract_number_and_incr
) (destination
, source
)
741 PREFIX(extract_number
) (destination
, *source
);
742 *source
+= OFFSET_ADDRESS_SIZE
;
745 # ifndef EXTRACT_MACROS
746 # undef EXTRACT_NUMBER_AND_INCR
747 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
748 PREFIX(extract_number_and_incr) (&dest, &src)
749 # endif /* not EXTRACT_MACROS */
755 /* If DEBUG is defined, Regex prints many voluminous messages about what
756 it is doing (if the variable `debug' is nonzero). If linked with the
757 main program in `iregex.c', you can enter patterns and strings
758 interactively. And if linked with the main program in `main.c' and
759 the other test files, you can run the already-written tests. */
763 # ifndef DEFINED_ONCE
765 /* We use standard I/O for debugging. */
768 /* It is useful to test things that ``must'' be true when debugging. */
773 # define DEBUG_STATEMENT(e) e
774 # define DEBUG_PRINT1(x) if (debug) printf (x)
775 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
776 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
777 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
778 # endif /* not DEFINED_ONCE */
780 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
781 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
782 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
783 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
786 /* Print the fastmap in human-readable form. */
788 # ifndef DEFINED_ONCE
790 print_fastmap (fastmap
)
793 unsigned was_a_range
= 0;
796 while (i
< (1 << BYTEWIDTH
))
802 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
816 # endif /* not DEFINED_ONCE */
819 /* Print a compiled pattern string in human-readable form, starting at
820 the START pointer into it and ending just before the pointer END. */
823 PREFIX(print_partial_compiled_pattern
) (start
, end
)
838 /* Loop over pattern commands. */
842 printf ("%td:\t", p
- start
);
844 printf ("%ld:\t", (long int) (p
- start
));
847 switch ((re_opcode_t
) *p
++)
855 printf ("/exactn/%d", mcnt
);
867 printf ("/exactn_bin/%d", mcnt
);
870 printf("/%lx", (long int) *p
++);
874 # endif /* MBS_SUPPORT */
878 printf ("/start_memory/%d/%ld", mcnt
, (long int) *p
++);
883 printf ("/stop_memory/%d/%ld", mcnt
, (long int) *p
++);
887 printf ("/duplicate/%ld", (long int) *p
++);
900 printf ("/charset [%s",
901 (re_opcode_t
) *(workp
- 1) == charset_not
? "^" : "");
903 length
= *workp
++; /* the length of char_classes */
904 for (i
=0 ; i
<length
; i
++)
905 printf("[:%lx:]", (long int) *p
++);
906 length
= *workp
++; /* the length of collating_symbol */
907 for (i
=0 ; i
<length
;)
911 PUT_CHAR((i
++,*p
++));
915 length
= *workp
++; /* the length of equivalence_class */
916 for (i
=0 ; i
<length
;)
920 PUT_CHAR((i
++,*p
++));
924 length
= *workp
++; /* the length of char_range */
925 for (i
=0 ; i
<length
; i
++)
927 wchar_t range_start
= *p
++;
928 wchar_t range_end
= *p
++;
929 printf("%C-%C", range_start
, range_end
);
931 length
= *workp
++; /* the length of char */
932 for (i
=0 ; i
<length
; i
++)
936 register int c
, last
= -100;
937 register int in_range
= 0;
939 printf ("/charset [%s",
940 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
942 assert (p
+ *p
< pend
);
944 for (c
= 0; c
< 256; c
++)
946 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
948 /* Are we starting a range? */
949 if (last
+ 1 == c
&& ! in_range
)
954 /* Have we broken a range? */
955 else if (last
+ 1 != c
&& in_range
)
985 case on_failure_jump
:
986 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
988 printf ("/on_failure_jump to %td", p
+ mcnt
- start
);
990 printf ("/on_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
994 case on_failure_keep_string_jump
:
995 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
997 printf ("/on_failure_keep_string_jump to %td", p
+ mcnt
- start
);
999 printf ("/on_failure_keep_string_jump to %ld",
1000 (long int) (p
+ mcnt
- start
));
1004 case dummy_failure_jump
:
1005 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1007 printf ("/dummy_failure_jump to %td", p
+ mcnt
- start
);
1009 printf ("/dummy_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1013 case push_dummy_failure
:
1014 printf ("/push_dummy_failure");
1017 case maybe_pop_jump
:
1018 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1020 printf ("/maybe_pop_jump to %td", p
+ mcnt
- start
);
1022 printf ("/maybe_pop_jump to %ld", (long int) (p
+ mcnt
- start
));
1026 case pop_failure_jump
:
1027 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1029 printf ("/pop_failure_jump to %td", p
+ mcnt
- start
);
1031 printf ("/pop_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1036 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1038 printf ("/jump_past_alt to %td", p
+ mcnt
- start
);
1040 printf ("/jump_past_alt to %ld", (long int) (p
+ mcnt
- start
));
1045 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1047 printf ("/jump to %td", p
+ mcnt
- start
);
1049 printf ("/jump to %ld", (long int) (p
+ mcnt
- start
));
1054 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1056 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1058 printf ("/succeed_n to %td, %d times", p1
- start
, mcnt2
);
1060 printf ("/succeed_n to %ld, %d times",
1061 (long int) (p1
- start
), mcnt2
);
1066 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1068 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1069 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
1073 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1075 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1077 printf ("/set_number_at location %td to %d", p1
- start
, mcnt2
);
1079 printf ("/set_number_at location %ld to %d",
1080 (long int) (p1
- start
), mcnt2
);
1085 printf ("/wordbound");
1089 printf ("/notwordbound");
1093 printf ("/wordbeg");
1097 printf ("/wordend");
1102 printf ("/before_dot");
1110 printf ("/after_dot");
1114 printf ("/syntaxspec");
1116 printf ("/%d", mcnt
);
1120 printf ("/notsyntaxspec");
1122 printf ("/%d", mcnt
);
1127 printf ("/wordchar");
1131 printf ("/notwordchar");
1143 printf ("?%ld", (long int) *(p
-1));
1150 printf ("%td:\tend of pattern.\n", p
- start
);
1152 printf ("%ld:\tend of pattern.\n", (long int) (p
- start
));
1158 PREFIX(print_compiled_pattern
) (bufp
)
1159 struct re_pattern_buffer
*bufp
;
1161 UCHAR_T
*buffer
= (UCHAR_T
*) bufp
->buffer
;
1163 PREFIX(print_partial_compiled_pattern
) (buffer
, buffer
1164 + bufp
->used
/ sizeof(UCHAR_T
));
1165 printf ("%ld bytes used/%ld bytes allocated.\n",
1166 bufp
->used
, bufp
->allocated
);
1168 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1170 printf ("fastmap: ");
1171 print_fastmap (bufp
->fastmap
);
1175 printf ("re_nsub: %Zd\t", bufp
->re_nsub
);
1177 printf ("re_nsub: %ld\t", (long int) bufp
->re_nsub
);
1179 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1180 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1181 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
1182 printf ("no_sub: %d\t", bufp
->no_sub
);
1183 printf ("not_bol: %d\t", bufp
->not_bol
);
1184 printf ("not_eol: %d\t", bufp
->not_eol
);
1185 printf ("syntax: %lx\n", bufp
->syntax
);
1186 /* Perhaps we should print the translate table? */
1191 PREFIX(print_double_string
) (where
, string1
, size1
, string2
, size2
)
1192 const CHAR_T
*where
;
1193 const CHAR_T
*string1
;
1194 const CHAR_T
*string2
;
1206 if (FIRST_STRING_P (where
))
1208 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1209 PUT_CHAR (string1
[this_char
]);
1215 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1217 PUT_CHAR (string2
[this_char
]);
1220 fputs ("...", stdout
);
1227 # ifndef DEFINED_ONCE
1236 # else /* not DEBUG */
1238 # ifndef DEFINED_ONCE
1242 # define DEBUG_STATEMENT(e)
1243 # define DEBUG_PRINT1(x)
1244 # define DEBUG_PRINT2(x1, x2)
1245 # define DEBUG_PRINT3(x1, x2, x3)
1246 # define DEBUG_PRINT4(x1, x2, x3, x4)
1247 # endif /* not DEFINED_ONCE */
1248 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1249 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1251 # endif /* not DEBUG */
1256 /* This convert a multibyte string to a wide character string.
1257 And write their correspondances to offset_buffer(see below)
1258 and write whether each wchar_t is binary data to is_binary.
1259 This assume invalid multibyte sequences as binary data.
1260 We assume offset_buffer and is_binary is already allocated
1263 static size_t convert_mbs_to_wcs (CHAR_T
*dest
, const unsigned char* src
,
1264 size_t len
, int *offset_buffer
,
1267 convert_mbs_to_wcs (dest
, src
, len
, offset_buffer
, is_binary
)
1269 const unsigned char* src
;
1270 size_t len
; /* the length of multibyte string. */
1272 /* It hold correspondances between src(char string) and
1273 dest(wchar_t string) for optimization.
1275 dest = {'X', 'Y', 'Z'}
1276 (each "xxx", "y" and "zz" represent one multibyte character
1277 corresponding to 'X', 'Y' and 'Z'.)
1278 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1284 wchar_t *pdest
= dest
;
1285 const unsigned char *psrc
= src
;
1286 size_t wc_count
= 0;
1290 size_t mb_remain
= len
;
1291 size_t mb_count
= 0;
1293 /* Initialize the conversion state. */
1294 memset (&mbs
, 0, sizeof (mbstate_t));
1296 offset_buffer
[0] = 0;
1297 for( ; mb_remain
> 0 ; ++wc_count
, ++pdest
, mb_remain
-= consumed
,
1301 consumed
= __mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1303 consumed
= mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1307 /* failed to convert. maybe src contains binary data.
1308 So we consume 1 byte manualy. */
1312 is_binary
[wc_count
] = TRUE
;
1315 is_binary
[wc_count
] = FALSE
;
1316 /* In sjis encoding, we use yen sign as escape character in
1317 place of reverse solidus. So we convert 0x5c(yen sign in
1318 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1319 solidus in UCS2). */
1320 if (consumed
== 1 && (int) *psrc
== 0x5c && (int) *pdest
== 0xa5)
1321 *pdest
= (wchar_t) *psrc
;
1323 offset_buffer
[wc_count
+ 1] = mb_count
+= consumed
;
1326 /* Fill remain of the buffer with sentinel. */
1327 for (i
= wc_count
+ 1 ; i
<= len
; i
++)
1328 offset_buffer
[i
] = mb_count
+ 1;
1335 #else /* not INSIDE_RECURSION */
1337 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1338 also be assigned to arbitrarily: each pattern buffer stores its own
1339 syntax, so it can be changed between regex compilations. */
1340 /* This has no initializer because initialized variables in Emacs
1341 become read-only after dumping. */
1342 reg_syntax_t re_syntax_options
;
1345 /* Specify the precise syntax of regexps for compilation. This provides
1346 for compatibility for various utilities which historically have
1347 different, incompatible syntaxes.
1349 The argument SYNTAX is a bit mask comprised of the various bits
1350 defined in regex.h. We return the old syntax. */
1353 re_set_syntax (syntax
)
1354 reg_syntax_t syntax
;
1356 reg_syntax_t ret
= re_syntax_options
;
1358 re_syntax_options
= syntax
;
1360 if (syntax
& RE_DEBUG
)
1362 else if (debug
) /* was on but now is not */
1368 weak_alias (__re_set_syntax
, re_set_syntax
)
1371 /* This table gives an error message for each of the error codes listed
1372 in regex.h. Obviously the order here has to be same as there.
1373 POSIX doesn't require that we do anything for REG_NOERROR,
1374 but why not be nice? */
1376 static const char re_error_msgid
[] =
1378 # define REG_NOERROR_IDX 0
1379 gettext_noop ("Success") /* REG_NOERROR */
1381 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1382 gettext_noop ("No match") /* REG_NOMATCH */
1384 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1385 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1387 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1388 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1390 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1391 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1393 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1394 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1396 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1397 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1399 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1400 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1402 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1403 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1405 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1406 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1408 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1409 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1411 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1412 gettext_noop ("Invalid range end") /* REG_ERANGE */
1414 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1415 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1417 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1418 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1420 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1421 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1423 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1424 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1426 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1427 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1430 static const size_t re_error_msgid_idx
[] =
1451 #endif /* INSIDE_RECURSION */
1453 #ifndef DEFINED_ONCE
1454 /* Avoiding alloca during matching, to placate r_alloc. */
1456 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1457 searching and matching functions should not call alloca. On some
1458 systems, alloca is implemented in terms of malloc, and if we're
1459 using the relocating allocator routines, then malloc could cause a
1460 relocation, which might (if the strings being searched are in the
1461 ralloc heap) shift the data out from underneath the regexp
1464 Here's another reason to avoid allocation: Emacs
1465 processes input from X in a signal handler; processing X input may
1466 call malloc; if input arrives while a matching routine is calling
1467 malloc, then we're scrod. But Emacs can't just block input while
1468 calling matching routines; then we don't notice interrupts when
1469 they come in. So, Emacs blocks input around all regexp calls
1470 except the matching calls, which it leaves unprotected, in the
1471 faith that they will not malloc. */
1473 /* Normally, this is fine. */
1474 # define MATCH_MAY_ALLOCATE
1476 /* When using GNU C, we are not REALLY using the C alloca, no matter
1477 what config.h may say. So don't take precautions for it. */
1482 /* The match routines may not allocate if (1) they would do it with malloc
1483 and (2) it's not safe for them to use malloc.
1484 Note that if REL_ALLOC is defined, matching would not use malloc for the
1485 failure stack, but we would still use it for the register vectors;
1486 so REL_ALLOC should not affect this. */
1487 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1488 # undef MATCH_MAY_ALLOCATE
1490 #endif /* not DEFINED_ONCE */
1492 #ifdef INSIDE_RECURSION
1493 /* Failure stack declarations and macros; both re_compile_fastmap and
1494 re_match_2 use a failure stack. These have to be macros because of
1495 REGEX_ALLOCATE_STACK. */
1498 /* Number of failure points for which to initially allocate space
1499 when matching. If this number is exceeded, we allocate more
1500 space, so it is not a hard limit. */
1501 # ifndef INIT_FAILURE_ALLOC
1502 # define INIT_FAILURE_ALLOC 5
1505 /* Roughly the maximum number of failure points on the stack. Would be
1506 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1507 This is a variable only so users of regex can assign to it; we never
1508 change it ourselves. */
1510 # ifdef INT_IS_16BIT
1512 # ifndef DEFINED_ONCE
1513 # if defined MATCH_MAY_ALLOCATE
1514 /* 4400 was enough to cause a crash on Alpha OSF/1,
1515 whose default stack limit is 2mb. */
1516 long int re_max_failures
= 4000;
1518 long int re_max_failures
= 2000;
1522 union PREFIX(fail_stack_elt
)
1528 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1532 PREFIX(fail_stack_elt_t
) *stack
;
1533 unsigned long int size
;
1534 unsigned long int avail
; /* Offset of next open position. */
1535 } PREFIX(fail_stack_type
);
1537 # else /* not INT_IS_16BIT */
1539 # ifndef DEFINED_ONCE
1540 # if defined MATCH_MAY_ALLOCATE
1541 /* 4400 was enough to cause a crash on Alpha OSF/1,
1542 whose default stack limit is 2mb. */
1543 int re_max_failures
= 4000;
1545 int re_max_failures
= 2000;
1549 union PREFIX(fail_stack_elt
)
1555 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1559 PREFIX(fail_stack_elt_t
) *stack
;
1561 unsigned avail
; /* Offset of next open position. */
1562 } PREFIX(fail_stack_type
);
1564 # endif /* INT_IS_16BIT */
1566 # ifndef DEFINED_ONCE
1567 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1568 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1569 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1573 /* Define macros to initialize and free the failure stack.
1574 Do `return -2' if the alloc fails. */
1576 # ifdef MATCH_MAY_ALLOCATE
1577 # define INIT_FAIL_STACK() \
1579 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1580 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1582 if (fail_stack.stack == NULL) \
1585 fail_stack.size = INIT_FAILURE_ALLOC; \
1586 fail_stack.avail = 0; \
1589 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1591 # define INIT_FAIL_STACK() \
1593 fail_stack.avail = 0; \
1596 # define RESET_FAIL_STACK()
1600 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1602 Return 1 if succeeds, and 0 if either ran out of memory
1603 allocating space for it or it was already too large.
1605 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1607 # define DOUBLE_FAIL_STACK(fail_stack) \
1608 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1610 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1611 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1612 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1613 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1615 (fail_stack).stack == NULL \
1617 : ((fail_stack).size <<= 1, \
1621 /* Push pointer POINTER on FAIL_STACK.
1622 Return 1 if was able to do so and 0 if ran out of memory allocating
1624 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1625 ((FAIL_STACK_FULL () \
1626 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1628 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1631 /* Push a pointer value onto the failure stack.
1632 Assumes the variable `fail_stack'. Probably should only
1633 be called from within `PUSH_FAILURE_POINT'. */
1634 # define PUSH_FAILURE_POINTER(item) \
1635 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1637 /* This pushes an integer-valued item onto the failure stack.
1638 Assumes the variable `fail_stack'. Probably should only
1639 be called from within `PUSH_FAILURE_POINT'. */
1640 # define PUSH_FAILURE_INT(item) \
1641 fail_stack.stack[fail_stack.avail++].integer = (item)
1643 /* Push a fail_stack_elt_t value onto the failure stack.
1644 Assumes the variable `fail_stack'. Probably should only
1645 be called from within `PUSH_FAILURE_POINT'. */
1646 # define PUSH_FAILURE_ELT(item) \
1647 fail_stack.stack[fail_stack.avail++] = (item)
1649 /* These three POP... operations complement the three PUSH... operations.
1650 All assume that `fail_stack' is nonempty. */
1651 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1652 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1653 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1655 /* Used to omit pushing failure point id's when we're not debugging. */
1657 # define DEBUG_PUSH PUSH_FAILURE_INT
1658 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1660 # define DEBUG_PUSH(item)
1661 # define DEBUG_POP(item_addr)
1665 /* Push the information about the state we will need
1666 if we ever fail back to it.
1668 Requires variables fail_stack, regstart, regend, reg_info, and
1669 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1672 Does `return FAILURE_CODE' if runs out of memory. */
1674 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1676 char *destination; \
1677 /* Must be int, so when we don't save any registers, the arithmetic \
1678 of 0 + -1 isn't done as unsigned. */ \
1679 /* Can't be int, since there is not a shred of a guarantee that int \
1680 is wide enough to hold a value of something to which pointer can \
1682 active_reg_t this_reg; \
1684 DEBUG_STATEMENT (failure_id++); \
1685 DEBUG_STATEMENT (nfailure_points_pushed++); \
1686 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1687 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1688 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1690 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1691 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1693 /* Ensure we have enough space allocated for what we will push. */ \
1694 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1696 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1697 return failure_code; \
1699 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1700 (fail_stack).size); \
1701 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1704 /* Push the info, starting with the registers. */ \
1705 DEBUG_PRINT1 ("\n"); \
1708 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1711 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1712 DEBUG_STATEMENT (num_regs_pushed++); \
1714 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1715 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1717 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1718 PUSH_FAILURE_POINTER (regend[this_reg]); \
1720 DEBUG_PRINT2 (" info: %p\n ", \
1721 reg_info[this_reg].word.pointer); \
1722 DEBUG_PRINT2 (" match_null=%d", \
1723 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1724 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1725 DEBUG_PRINT2 (" matched_something=%d", \
1726 MATCHED_SOMETHING (reg_info[this_reg])); \
1727 DEBUG_PRINT2 (" ever_matched=%d", \
1728 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1729 DEBUG_PRINT1 ("\n"); \
1730 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1733 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1734 PUSH_FAILURE_INT (lowest_active_reg); \
1736 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1737 PUSH_FAILURE_INT (highest_active_reg); \
1739 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1740 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1741 PUSH_FAILURE_POINTER (pattern_place); \
1743 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1744 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1746 DEBUG_PRINT1 ("'\n"); \
1747 PUSH_FAILURE_POINTER (string_place); \
1749 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1750 DEBUG_PUSH (failure_id); \
1753 # ifndef DEFINED_ONCE
1754 /* This is the number of items that are pushed and popped on the stack
1755 for each register. */
1756 # define NUM_REG_ITEMS 3
1758 /* Individual items aside from the registers. */
1760 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1762 # define NUM_NONREG_ITEMS 4
1765 /* We push at most this many items on the stack. */
1766 /* We used to use (num_regs - 1), which is the number of registers
1767 this regexp will save; but that was changed to 5
1768 to avoid stack overflow for a regexp with lots of parens. */
1769 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1771 /* We actually push this many items. */
1772 # define NUM_FAILURE_ITEMS \
1774 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1778 /* How many items can still be added to the stack without overflowing it. */
1779 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1780 # endif /* not DEFINED_ONCE */
1783 /* Pops what PUSH_FAIL_STACK pushes.
1785 We restore into the parameters, all of which should be lvalues:
1786 STR -- the saved data position.
1787 PAT -- the saved pattern position.
1788 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1789 REGSTART, REGEND -- arrays of string positions.
1790 REG_INFO -- array of information about each subexpression.
1792 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1793 `pend', `string1', `size1', `string2', and `size2'. */
1794 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1796 DEBUG_STATEMENT (unsigned failure_id;) \
1797 active_reg_t this_reg; \
1798 const UCHAR_T *string_temp; \
1800 assert (!FAIL_STACK_EMPTY ()); \
1802 /* Remove failure points and point to how many regs pushed. */ \
1803 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1804 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1805 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1807 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1809 DEBUG_POP (&failure_id); \
1810 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1812 /* If the saved string location is NULL, it came from an \
1813 on_failure_keep_string_jump opcode, and we want to throw away the \
1814 saved NULL, thus retaining our current position in the string. */ \
1815 string_temp = POP_FAILURE_POINTER (); \
1816 if (string_temp != NULL) \
1817 str = (const CHAR_T *) string_temp; \
1819 DEBUG_PRINT2 (" Popping string %p: `", str); \
1820 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1821 DEBUG_PRINT1 ("'\n"); \
1823 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1824 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1825 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1827 /* Restore register info. */ \
1828 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1829 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1831 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1832 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1835 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1837 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1839 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1840 DEBUG_PRINT2 (" info: %p\n", \
1841 reg_info[this_reg].word.pointer); \
1843 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1844 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1846 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1847 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1851 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1853 reg_info[this_reg].word.integer = 0; \
1854 regend[this_reg] = 0; \
1855 regstart[this_reg] = 0; \
1857 highest_active_reg = high_reg; \
1860 set_regs_matched_done = 0; \
1861 DEBUG_STATEMENT (nfailure_points_popped++); \
1862 } /* POP_FAILURE_POINT */
1864 /* Structure for per-register (a.k.a. per-group) information.
1865 Other register information, such as the
1866 starting and ending positions (which are addresses), and the list of
1867 inner groups (which is a bits list) are maintained in separate
1870 We are making a (strictly speaking) nonportable assumption here: that
1871 the compiler will pack our bit fields into something that fits into
1872 the type of `word', i.e., is something that fits into one item on the
1876 /* Declarations and macros for re_match_2. */
1880 PREFIX(fail_stack_elt_t
) word
;
1883 /* This field is one if this group can match the empty string,
1884 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1885 # define MATCH_NULL_UNSET_VALUE 3
1886 unsigned match_null_string_p
: 2;
1887 unsigned is_active
: 1;
1888 unsigned matched_something
: 1;
1889 unsigned ever_matched_something
: 1;
1891 } PREFIX(register_info_type
);
1893 # ifndef DEFINED_ONCE
1894 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1895 # define IS_ACTIVE(R) ((R).bits.is_active)
1896 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1897 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1900 /* Call this when have matched a real character; it sets `matched' flags
1901 for the subexpressions which we are currently inside. Also records
1902 that those subexprs have matched. */
1903 # define SET_REGS_MATCHED() \
1906 if (!set_regs_matched_done) \
1909 set_regs_matched_done = 1; \
1910 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1912 MATCHED_SOMETHING (reg_info[r]) \
1913 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1919 # endif /* not DEFINED_ONCE */
1921 /* Registers are set to a sentinel when they haven't yet matched. */
1922 static CHAR_T
PREFIX(reg_unset_dummy
);
1923 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1924 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1926 /* Subroutine declarations and macros for regex_compile. */
1927 static void PREFIX(store_op1
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
, int arg
));
1928 static void PREFIX(store_op2
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1929 int arg1
, int arg2
));
1930 static void PREFIX(insert_op1
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1931 int arg
, UCHAR_T
*end
));
1932 static void PREFIX(insert_op2
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1933 int arg1
, int arg2
, UCHAR_T
*end
));
1934 static boolean
PREFIX(at_begline_loc_p
) _RE_ARGS ((const CHAR_T
*pattern
,
1936 reg_syntax_t syntax
));
1937 static boolean
PREFIX(at_endline_loc_p
) _RE_ARGS ((const CHAR_T
*p
,
1939 reg_syntax_t syntax
));
1941 static reg_errcode_t wcs_compile_range
_RE_ARGS ((CHAR_T range_start
,
1942 const CHAR_T
**p_ptr
,
1945 reg_syntax_t syntax
,
1948 static void insert_space
_RE_ARGS ((int num
, CHAR_T
*loc
, CHAR_T
*end
));
1950 static reg_errcode_t byte_compile_range
_RE_ARGS ((unsigned int range_start
,
1954 reg_syntax_t syntax
,
1958 /* Fetch the next character in the uncompiled pattern---translating it
1959 if necessary. Also cast from a signed character in the constant
1960 string passed to us by the user to an unsigned char that we can use
1961 as an array index (in, e.g., `translate'). */
1962 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1963 because it is impossible to allocate 4GB array for some encodings
1964 which have 4 byte character_set like UCS4. */
1967 # define PATFETCH(c) \
1968 do {if (p == pend) return REG_EEND; \
1969 c = (UCHAR_T) *p++; \
1970 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1973 # define PATFETCH(c) \
1974 do {if (p == pend) return REG_EEND; \
1975 c = (unsigned char) *p++; \
1976 if (translate) c = (unsigned char) translate[c]; \
1981 /* Fetch the next character in the uncompiled pattern, with no
1983 # define PATFETCH_RAW(c) \
1984 do {if (p == pend) return REG_EEND; \
1985 c = (UCHAR_T) *p++; \
1988 /* Go backwards one character in the pattern. */
1989 # define PATUNFETCH p--
1992 /* If `translate' is non-null, return translate[D], else just D. We
1993 cast the subscript to translate because some data is declared as
1994 `char *', to avoid warnings when a string constant is passed. But
1995 when we use a character as a subscript we must make it unsigned. */
1996 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1997 because it is impossible to allocate 4GB array for some encodings
1998 which have 4 byte character_set like UCS4. */
2002 # define TRANSLATE(d) \
2003 ((translate && ((UCHAR_T) (d)) <= 0xff) \
2004 ? (char) translate[(unsigned char) (d)] : (d))
2006 # define TRANSLATE(d) \
2007 (translate ? (char) translate[(unsigned char) (d)] : (d))
2012 /* Macros for outputting the compiled pattern into `buffer'. */
2014 /* If the buffer isn't allocated when it comes in, use this. */
2015 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
2017 /* Make sure we have at least N more bytes of space in buffer. */
2019 # define GET_BUFFER_SPACE(n) \
2020 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
2021 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
2024 # define GET_BUFFER_SPACE(n) \
2025 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2029 /* Make sure we have one more byte of buffer space and then add C to it. */
2030 # define BUF_PUSH(c) \
2032 GET_BUFFER_SPACE (1); \
2033 *b++ = (UCHAR_T) (c); \
2037 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
2038 # define BUF_PUSH_2(c1, c2) \
2040 GET_BUFFER_SPACE (2); \
2041 *b++ = (UCHAR_T) (c1); \
2042 *b++ = (UCHAR_T) (c2); \
2046 /* As with BUF_PUSH_2, except for three bytes. */
2047 # define BUF_PUSH_3(c1, c2, c3) \
2049 GET_BUFFER_SPACE (3); \
2050 *b++ = (UCHAR_T) (c1); \
2051 *b++ = (UCHAR_T) (c2); \
2052 *b++ = (UCHAR_T) (c3); \
2055 /* Store a jump with opcode OP at LOC to location TO. We store a
2056 relative address offset by the three bytes the jump itself occupies. */
2057 # define STORE_JUMP(op, loc, to) \
2058 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2060 /* Likewise, for a two-argument jump. */
2061 # define STORE_JUMP2(op, loc, to, arg) \
2062 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2064 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2065 # define INSERT_JUMP(op, loc, to) \
2066 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2068 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2069 # define INSERT_JUMP2(op, loc, to, arg) \
2070 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2073 /* This is not an arbitrary limit: the arguments which represent offsets
2074 into the pattern are two bytes long. So if 2^16 bytes turns out to
2075 be too small, many things would have to change. */
2076 /* Any other compiler which, like MSC, has allocation limit below 2^16
2077 bytes will have to use approach similar to what was done below for
2078 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2079 reallocating to 0 bytes. Such thing is not going to work too well.
2080 You have been warned!! */
2081 # ifndef DEFINED_ONCE
2082 # if defined _MSC_VER && !defined WIN32
2083 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2084 The REALLOC define eliminates a flurry of conversion warnings,
2085 but is not required. */
2086 # define MAX_BUF_SIZE 65500L
2087 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2089 # define MAX_BUF_SIZE (1L << 16)
2090 # define REALLOC(p,s) realloc ((p), (s))
2093 /* Extend the buffer by twice its current size via realloc and
2094 reset the pointers that pointed into the old block to point to the
2095 correct places in the new one. If extending the buffer results in it
2096 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2097 # if __BOUNDED_POINTERS__
2098 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2099 # define MOVE_BUFFER_POINTER(P) \
2100 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2101 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2104 SET_HIGH_BOUND (b); \
2105 SET_HIGH_BOUND (begalt); \
2106 if (fixup_alt_jump) \
2107 SET_HIGH_BOUND (fixup_alt_jump); \
2109 SET_HIGH_BOUND (laststart); \
2110 if (pending_exact) \
2111 SET_HIGH_BOUND (pending_exact); \
2114 # define MOVE_BUFFER_POINTER(P) (P) += incr
2115 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2117 # endif /* not DEFINED_ONCE */
2120 # define EXTEND_BUFFER() \
2122 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2124 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2126 bufp->allocated <<= 1; \
2127 if (bufp->allocated > MAX_BUF_SIZE) \
2128 bufp->allocated = MAX_BUF_SIZE; \
2129 /* How many characters the new buffer can have? */ \
2130 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2131 if (wchar_count == 0) wchar_count = 1; \
2132 /* Truncate the buffer to CHAR_T align. */ \
2133 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2134 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2135 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2136 if (COMPILED_BUFFER_VAR == NULL) \
2137 return REG_ESPACE; \
2138 /* If the buffer moved, move all the pointers into it. */ \
2139 if (old_buffer != COMPILED_BUFFER_VAR) \
2141 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2142 MOVE_BUFFER_POINTER (b); \
2143 MOVE_BUFFER_POINTER (begalt); \
2144 if (fixup_alt_jump) \
2145 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2147 MOVE_BUFFER_POINTER (laststart); \
2148 if (pending_exact) \
2149 MOVE_BUFFER_POINTER (pending_exact); \
2151 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2154 # define EXTEND_BUFFER() \
2156 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2157 if (bufp->allocated == MAX_BUF_SIZE) \
2159 bufp->allocated <<= 1; \
2160 if (bufp->allocated > MAX_BUF_SIZE) \
2161 bufp->allocated = MAX_BUF_SIZE; \
2162 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2164 if (COMPILED_BUFFER_VAR == NULL) \
2165 return REG_ESPACE; \
2166 /* If the buffer moved, move all the pointers into it. */ \
2167 if (old_buffer != COMPILED_BUFFER_VAR) \
2169 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2170 MOVE_BUFFER_POINTER (b); \
2171 MOVE_BUFFER_POINTER (begalt); \
2172 if (fixup_alt_jump) \
2173 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2175 MOVE_BUFFER_POINTER (laststart); \
2176 if (pending_exact) \
2177 MOVE_BUFFER_POINTER (pending_exact); \
2179 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2183 # ifndef DEFINED_ONCE
2184 /* Since we have one byte reserved for the register number argument to
2185 {start,stop}_memory, the maximum number of groups we can report
2186 things about is what fits in that byte. */
2187 # define MAX_REGNUM 255
2189 /* But patterns can have more than `MAX_REGNUM' registers. We just
2190 ignore the excess. */
2191 typedef unsigned regnum_t
;
2194 /* Macros for the compile stack. */
2196 /* Since offsets can go either forwards or backwards, this type needs to
2197 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2198 /* int may be not enough when sizeof(int) == 2. */
2199 typedef long pattern_offset_t
;
2203 pattern_offset_t begalt_offset
;
2204 pattern_offset_t fixup_alt_jump
;
2205 pattern_offset_t inner_group_offset
;
2206 pattern_offset_t laststart_offset
;
2208 } compile_stack_elt_t
;
2213 compile_stack_elt_t
*stack
;
2215 unsigned avail
; /* Offset of next open position. */
2216 } compile_stack_type
;
2219 # define INIT_COMPILE_STACK_SIZE 32
2221 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2222 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2224 /* The next available element. */
2225 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2227 # endif /* not DEFINED_ONCE */
2229 /* Set the bit for character C in a list. */
2230 # ifndef DEFINED_ONCE
2231 # define SET_LIST_BIT(c) \
2232 (b[((unsigned char) (c)) / BYTEWIDTH] \
2233 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2234 # endif /* DEFINED_ONCE */
2236 /* Get the next unsigned number in the uncompiled pattern. */
2237 # define GET_UNSIGNED_NUMBER(num) \
2242 if (c < '0' || c > '9') \
2244 if (num <= RE_DUP_MAX) \
2248 num = num * 10 + c - '0'; \
2253 # ifndef DEFINED_ONCE
2254 # if defined _LIBC || WIDE_CHAR_SUPPORT
2255 /* The GNU C library provides support for user-defined character classes
2256 and the functions from ISO C amendement 1. */
2257 # ifdef CHARCLASS_NAME_MAX
2258 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2260 /* This shouldn't happen but some implementation might still have this
2261 problem. Use a reasonable default value. */
2262 # define CHAR_CLASS_MAX_LENGTH 256
2266 # define IS_CHAR_CLASS(string) __wctype (string)
2268 # define IS_CHAR_CLASS(string) wctype (string)
2271 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2273 # define IS_CHAR_CLASS(string) \
2274 (STREQ (string, "alpha") || STREQ (string, "upper") \
2275 || STREQ (string, "lower") || STREQ (string, "digit") \
2276 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2277 || STREQ (string, "space") || STREQ (string, "print") \
2278 || STREQ (string, "punct") || STREQ (string, "graph") \
2279 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2281 # endif /* DEFINED_ONCE */
2283 # ifndef MATCH_MAY_ALLOCATE
2285 /* If we cannot allocate large objects within re_match_2_internal,
2286 we make the fail stack and register vectors global.
2287 The fail stack, we grow to the maximum size when a regexp
2289 The register vectors, we adjust in size each time we
2290 compile a regexp, according to the number of registers it needs. */
2292 static PREFIX(fail_stack_type
) fail_stack
;
2294 /* Size with which the following vectors are currently allocated.
2295 That is so we can make them bigger as needed,
2296 but never make them smaller. */
2297 # ifdef DEFINED_ONCE
2298 static int regs_allocated_size
;
2300 static const char ** regstart
, ** regend
;
2301 static const char ** old_regstart
, ** old_regend
;
2302 static const char **best_regstart
, **best_regend
;
2303 static const char **reg_dummy
;
2304 # endif /* DEFINED_ONCE */
2306 static PREFIX(register_info_type
) *PREFIX(reg_info
);
2307 static PREFIX(register_info_type
) *PREFIX(reg_info_dummy
);
2309 /* Make the register vectors big enough for NUM_REGS registers,
2310 but don't make them smaller. */
2313 PREFIX(regex_grow_registers
) (num_regs
)
2316 if (num_regs
> regs_allocated_size
)
2318 RETALLOC_IF (regstart
, num_regs
, const char *);
2319 RETALLOC_IF (regend
, num_regs
, const char *);
2320 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2321 RETALLOC_IF (old_regend
, num_regs
, const char *);
2322 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2323 RETALLOC_IF (best_regend
, num_regs
, const char *);
2324 RETALLOC_IF (PREFIX(reg_info
), num_regs
, PREFIX(register_info_type
));
2325 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2326 RETALLOC_IF (PREFIX(reg_info_dummy
), num_regs
, PREFIX(register_info_type
));
2328 regs_allocated_size
= num_regs
;
2332 # endif /* not MATCH_MAY_ALLOCATE */
2334 # ifndef DEFINED_ONCE
2335 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2338 # endif /* not DEFINED_ONCE */
2340 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2341 Returns one of error codes defined in `regex.h', or zero for success.
2343 Assumes the `allocated' (and perhaps `buffer') and `translate'
2344 fields are set in BUFP on entry.
2346 If it succeeds, results are put in BUFP (if it returns an error, the
2347 contents of BUFP are undefined):
2348 `buffer' is the compiled pattern;
2349 `syntax' is set to SYNTAX;
2350 `used' is set to the length of the compiled pattern;
2351 `fastmap_accurate' is zero;
2352 `re_nsub' is the number of subexpressions in PATTERN;
2353 `not_bol' and `not_eol' are zero;
2355 The `fastmap' and `newline_anchor' fields are neither
2356 examined nor set. */
2358 /* Return, freeing storage we allocated. */
2360 # define FREE_STACK_RETURN(value) \
2361 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2363 # define FREE_STACK_RETURN(value) \
2364 return (free (compile_stack.stack), value)
2367 static reg_errcode_t
2368 PREFIX(regex_compile
) (ARG_PREFIX(pattern
), ARG_PREFIX(size
), syntax
, bufp
)
2369 const char *ARG_PREFIX(pattern
);
2370 size_t ARG_PREFIX(size
);
2371 reg_syntax_t syntax
;
2372 struct re_pattern_buffer
*bufp
;
2374 /* We fetch characters from PATTERN here. Even though PATTERN is
2375 `char *' (i.e., signed), we declare these variables as unsigned, so
2376 they can be reliably used as array indices. */
2377 register UCHAR_T c
, c1
;
2380 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2381 CHAR_T
*pattern
, *COMPILED_BUFFER_VAR
;
2383 /* offset buffer for optimization. See convert_mbs_to_wc. */
2384 int *mbs_offset
= NULL
;
2385 /* It hold whether each wchar_t is binary data or not. */
2386 char *is_binary
= NULL
;
2387 /* A flag whether exactn is handling binary data or not. */
2388 char is_exactn_bin
= FALSE
;
2391 /* A random temporary spot in PATTERN. */
2394 /* Points to the end of the buffer, where we should append. */
2395 register UCHAR_T
*b
;
2397 /* Keeps track of unclosed groups. */
2398 compile_stack_type compile_stack
;
2400 /* Points to the current (ending) position in the pattern. */
2405 const CHAR_T
*p
= pattern
;
2406 const CHAR_T
*pend
= pattern
+ size
;
2409 /* How to translate the characters in the pattern. */
2410 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2412 /* Address of the count-byte of the most recently inserted `exactn'
2413 command. This makes it possible to tell if a new exact-match
2414 character can be added to that command or if the character requires
2415 a new `exactn' command. */
2416 UCHAR_T
*pending_exact
= 0;
2418 /* Address of start of the most recently finished expression.
2419 This tells, e.g., postfix * where to find the start of its
2420 operand. Reset at the beginning of groups and alternatives. */
2421 UCHAR_T
*laststart
= 0;
2423 /* Address of beginning of regexp, or inside of last group. */
2426 /* Address of the place where a forward jump should go to the end of
2427 the containing expression. Each alternative of an `or' -- except the
2428 last -- ends with a forward jump of this sort. */
2429 UCHAR_T
*fixup_alt_jump
= 0;
2431 /* Counts open-groups as they are encountered. Remembered for the
2432 matching close-group on the compile stack, so the same register
2433 number is put in the stop_memory as the start_memory. */
2434 regnum_t regnum
= 0;
2437 /* Initialize the wchar_t PATTERN and offset_buffer. */
2438 p
= pend
= pattern
= TALLOC(csize
+ 1, CHAR_T
);
2439 mbs_offset
= TALLOC(csize
+ 1, int);
2440 is_binary
= TALLOC(csize
+ 1, char);
2441 if (pattern
== NULL
|| mbs_offset
== NULL
|| is_binary
== NULL
)
2448 pattern
[csize
] = L
'\0'; /* sentinel */
2449 size
= convert_mbs_to_wcs(pattern
, cpattern
, csize
, mbs_offset
, is_binary
);
2461 DEBUG_PRINT1 ("\nCompiling pattern: ");
2464 unsigned debug_count
;
2466 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2467 PUT_CHAR (pattern
[debug_count
]);
2472 /* Initialize the compile stack. */
2473 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2474 if (compile_stack
.stack
== NULL
)
2484 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2485 compile_stack
.avail
= 0;
2487 /* Initialize the pattern buffer. */
2488 bufp
->syntax
= syntax
;
2489 bufp
->fastmap_accurate
= 0;
2490 bufp
->not_bol
= bufp
->not_eol
= 0;
2492 /* Set `used' to zero, so that if we return an error, the pattern
2493 printer (for debugging) will think there's no pattern. We reset it
2497 /* Always count groups, whether or not bufp->no_sub is set. */
2500 #if !defined emacs && !defined SYNTAX_TABLE
2501 /* Initialize the syntax table. */
2502 init_syntax_once ();
2505 if (bufp
->allocated
== 0)
2508 { /* If zero allocated, but buffer is non-null, try to realloc
2509 enough space. This loses if buffer's address is bogus, but
2510 that is the user's responsibility. */
2512 /* Free bufp->buffer and allocate an array for wchar_t pattern
2515 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/sizeof(UCHAR_T
),
2518 RETALLOC (COMPILED_BUFFER_VAR
, INIT_BUF_SIZE
, UCHAR_T
);
2522 { /* Caller did not allocate a buffer. Do it for them. */
2523 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/ sizeof(UCHAR_T
),
2527 if (!COMPILED_BUFFER_VAR
) FREE_STACK_RETURN (REG_ESPACE
);
2529 bufp
->buffer
= (char*)COMPILED_BUFFER_VAR
;
2531 bufp
->allocated
= INIT_BUF_SIZE
;
2535 COMPILED_BUFFER_VAR
= (UCHAR_T
*) bufp
->buffer
;
2538 begalt
= b
= COMPILED_BUFFER_VAR
;
2540 /* Loop through the uncompiled pattern until we're at the end. */
2549 if ( /* If at start of pattern, it's an operator. */
2551 /* If context independent, it's an operator. */
2552 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2553 /* Otherwise, depends on what's come before. */
2554 || PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
))
2564 if ( /* If at end of pattern, it's an operator. */
2566 /* If context independent, it's an operator. */
2567 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2568 /* Otherwise, depends on what's next. */
2569 || PREFIX(at_endline_loc_p
) (p
, pend
, syntax
))
2579 if ((syntax
& RE_BK_PLUS_QM
)
2580 || (syntax
& RE_LIMITED_OPS
))
2584 /* If there is no previous pattern... */
2587 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2588 FREE_STACK_RETURN (REG_BADRPT
);
2589 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2594 /* Are we optimizing this jump? */
2595 boolean keep_string_p
= false;
2597 /* 1 means zero (many) matches is allowed. */
2598 char zero_times_ok
= 0, many_times_ok
= 0;
2600 /* If there is a sequence of repetition chars, collapse it
2601 down to just one (the right one). We can't combine
2602 interval operators with these because of, e.g., `a{2}*',
2603 which should only match an even number of `a's. */
2607 zero_times_ok
|= c
!= '+';
2608 many_times_ok
|= c
!= '?';
2616 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2619 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2621 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2624 if (!(c1
== '+' || c1
== '?'))
2639 /* If we get here, we found another repeat character. */
2642 /* Star, etc. applied to an empty pattern is equivalent
2643 to an empty pattern. */
2647 /* Now we know whether or not zero matches is allowed
2648 and also whether or not two or more matches is allowed. */
2650 { /* More than one repetition is allowed, so put in at the
2651 end a backward relative jump from `b' to before the next
2652 jump we're going to put in below (which jumps from
2653 laststart to after this jump).
2655 But if we are at the `*' in the exact sequence `.*\n',
2656 insert an unconditional jump backwards to the .,
2657 instead of the beginning of the loop. This way we only
2658 push a failure point once, instead of every time
2659 through the loop. */
2660 assert (p
- 1 > pattern
);
2662 /* Allocate the space for the jump. */
2663 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2665 /* We know we are not at the first character of the pattern,
2666 because laststart was nonzero. And we've already
2667 incremented `p', by the way, to be the character after
2668 the `*'. Do we have to do something analogous here
2669 for null bytes, because of RE_DOT_NOT_NULL? */
2670 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2672 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2673 && !(syntax
& RE_DOT_NEWLINE
))
2674 { /* We have .*\n. */
2675 STORE_JUMP (jump
, b
, laststart
);
2676 keep_string_p
= true;
2679 /* Anything else. */
2680 STORE_JUMP (maybe_pop_jump
, b
, laststart
-
2681 (1 + OFFSET_ADDRESS_SIZE
));
2683 /* We've added more stuff to the buffer. */
2684 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2687 /* On failure, jump from laststart to b + 3, which will be the
2688 end of the buffer after this jump is inserted. */
2689 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2691 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2692 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2694 laststart
, b
+ 1 + OFFSET_ADDRESS_SIZE
);
2696 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2700 /* At least one repetition is required, so insert a
2701 `dummy_failure_jump' before the initial
2702 `on_failure_jump' instruction of the loop. This
2703 effects a skip over that instruction the first time
2704 we hit that loop. */
2705 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2706 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+
2707 2 + 2 * OFFSET_ADDRESS_SIZE
);
2708 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2722 boolean had_char_class
= false;
2724 CHAR_T range_start
= 0xffffffff;
2726 unsigned int range_start
= 0xffffffff;
2728 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2731 /* We assume a charset(_not) structure as a wchar_t array.
2732 charset[0] = (re_opcode_t) charset(_not)
2733 charset[1] = l (= length of char_classes)
2734 charset[2] = m (= length of collating_symbols)
2735 charset[3] = n (= length of equivalence_classes)
2736 charset[4] = o (= length of char_ranges)
2737 charset[5] = p (= length of chars)
2739 charset[6] = char_class (wctype_t)
2740 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2742 charset[l+5] = char_class (wctype_t)
2744 charset[l+6] = collating_symbol (wchar_t)
2746 charset[l+m+5] = collating_symbol (wchar_t)
2747 ifdef _LIBC we use the index if
2748 _NL_COLLATE_SYMB_EXTRAMB instead of
2751 charset[l+m+6] = equivalence_classes (wchar_t)
2753 charset[l+m+n+5] = equivalence_classes (wchar_t)
2754 ifdef _LIBC we use the index in
2755 _NL_COLLATE_WEIGHT instead of
2758 charset[l+m+n+6] = range_start
2759 charset[l+m+n+7] = range_end
2761 charset[l+m+n+2o+4] = range_start
2762 charset[l+m+n+2o+5] = range_end
2763 ifdef _LIBC we use the value looked up
2764 in _NL_COLLATE_COLLSEQ instead of
2767 charset[l+m+n+2o+6] = char
2769 charset[l+m+n+2o+p+5] = char
2773 /* We need at least 6 spaces: the opcode, the length of
2774 char_classes, the length of collating_symbols, the length of
2775 equivalence_classes, the length of char_ranges, the length of
2777 GET_BUFFER_SPACE (6);
2779 /* Save b as laststart. And We use laststart as the pointer
2780 to the first element of the charset here.
2781 In other words, laststart[i] indicates charset[i]. */
2784 /* We test `*p == '^' twice, instead of using an if
2785 statement, so we only need one BUF_PUSH. */
2786 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2790 /* Push the length of char_classes, the length of
2791 collating_symbols, the length of equivalence_classes, the
2792 length of char_ranges and the length of chars. */
2793 BUF_PUSH_3 (0, 0, 0);
2796 /* Remember the first position in the bracket expression. */
2799 /* charset_not matches newline according to a syntax bit. */
2800 if ((re_opcode_t
) b
[-6] == charset_not
2801 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2804 laststart
[5]++; /* Update the length of characters */
2807 /* Read in characters and ranges, setting map bits. */
2810 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2814 /* \ might escape characters inside [...] and [^...]. */
2815 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2817 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2821 laststart
[5]++; /* Update the length of chars */
2826 /* Could be the end of the bracket expression. If it's
2827 not (i.e., when the bracket expression is `[]' so
2828 far), the ']' character bit gets set way below. */
2829 if (c
== ']' && p
!= p1
+ 1)
2832 /* Look ahead to see if it's a range when the last thing
2833 was a character class. */
2834 if (had_char_class
&& c
== '-' && *p
!= ']')
2835 FREE_STACK_RETURN (REG_ERANGE
);
2837 /* Look ahead to see if it's a range when the last thing
2838 was a character: if this is a hyphen not at the
2839 beginning or the end of a list, then it's the range
2842 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2843 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2847 /* Allocate the space for range_start and range_end. */
2848 GET_BUFFER_SPACE (2);
2849 /* Update the pointer to indicate end of buffer. */
2851 ret
= wcs_compile_range (range_start
, &p
, pend
, translate
,
2852 syntax
, b
, laststart
);
2853 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2854 range_start
= 0xffffffff;
2856 else if (p
[0] == '-' && p
[1] != ']')
2857 { /* This handles ranges made up of characters only. */
2860 /* Move past the `-'. */
2862 /* Allocate the space for range_start and range_end. */
2863 GET_BUFFER_SPACE (2);
2864 /* Update the pointer to indicate end of buffer. */
2866 ret
= wcs_compile_range (c
, &p
, pend
, translate
, syntax
, b
,
2868 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2869 range_start
= 0xffffffff;
2872 /* See if we're at the beginning of a possible character
2874 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2875 { /* Leave room for the null. */
2876 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2881 /* If pattern is `[[:'. */
2882 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2887 if ((c
== ':' && *p
== ']') || p
== pend
)
2889 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2892 /* This is in any case an invalid class name. */
2897 /* If isn't a word bracketed by `[:' and `:]':
2898 undo the ending character, the letters, and leave
2899 the leading `:' and `[' (but store them as character). */
2900 if (c
== ':' && *p
== ']')
2905 /* Query the character class as wctype_t. */
2906 wt
= IS_CHAR_CLASS (str
);
2908 FREE_STACK_RETURN (REG_ECTYPE
);
2910 /* Throw away the ] at the end of the character
2914 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2916 /* Allocate the space for character class. */
2917 GET_BUFFER_SPACE(CHAR_CLASS_SIZE
);
2918 /* Update the pointer to indicate end of buffer. */
2919 b
+= CHAR_CLASS_SIZE
;
2920 /* Move data which follow character classes
2921 not to violate the data. */
2922 insert_space(CHAR_CLASS_SIZE
,
2923 laststart
+ 6 + laststart
[1],
2925 alignedp
= ((uintptr_t)(laststart
+ 6 + laststart
[1])
2926 + __alignof__(wctype_t) - 1)
2927 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2928 /* Store the character class. */
2929 *((wctype_t*)alignedp
) = wt
;
2930 /* Update length of char_classes */
2931 laststart
[1] += CHAR_CLASS_SIZE
;
2933 had_char_class
= true;
2942 laststart
[5] += 2; /* Update the length of characters */
2944 had_char_class
= false;
2947 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && (*p
== '='
2950 CHAR_T str
[128]; /* Should be large enough. */
2951 CHAR_T delim
= *p
; /* '=' or '.' */
2954 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
2959 /* If pattern is `[[=' or '[[.'. */
2960 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2965 if ((c
== delim
&& *p
== ']') || p
== pend
)
2967 if (c1
< sizeof (str
) - 1)
2970 /* This is in any case an invalid class name. */
2975 if (c
== delim
&& *p
== ']' && str
[0] != '\0')
2977 unsigned int i
, offset
;
2978 /* If we have no collation data we use the default
2979 collation in which each character is in a class
2980 by itself. It also means that ASCII is the
2981 character set and therefore we cannot have character
2982 with more than one byte in the multibyte
2985 /* If not defined _LIBC, we push the name and
2986 `\0' for the sake of matching performance. */
2987 int datasize
= c1
+ 1;
2995 FREE_STACK_RETURN (REG_ECOLLATE
);
3000 const int32_t *table
;
3001 const int32_t *weights
;
3002 const int32_t *extra
;
3003 const int32_t *indirect
;
3006 /* This #include defines a local function! */
3007 # include <locale/weightwc.h>
3011 /* We push the index for equivalence class. */
3014 table
= (const int32_t *)
3015 _NL_CURRENT (LC_COLLATE
,
3016 _NL_COLLATE_TABLEWC
);
3017 weights
= (const int32_t *)
3018 _NL_CURRENT (LC_COLLATE
,
3019 _NL_COLLATE_WEIGHTWC
);
3020 extra
= (const int32_t *)
3021 _NL_CURRENT (LC_COLLATE
,
3022 _NL_COLLATE_EXTRAWC
);
3023 indirect
= (const int32_t *)
3024 _NL_CURRENT (LC_COLLATE
,
3025 _NL_COLLATE_INDIRECTWC
);
3027 idx
= findidx ((const wint_t**)&cp
);
3028 if (idx
== 0 || cp
< (wint_t*) str
+ c1
)
3029 /* This is no valid character. */
3030 FREE_STACK_RETURN (REG_ECOLLATE
);
3032 str
[0] = (wchar_t)idx
;
3034 else /* delim == '.' */
3036 /* We push collation sequence value
3037 for collating symbol. */
3039 const int32_t *symb_table
;
3040 const unsigned char *extra
;
3047 /* We have to convert the name to a single-byte
3048 string. This is possible since the names
3049 consist of ASCII characters and the internal
3050 representation is UCS4. */
3051 for (i
= 0; i
< c1
; ++i
)
3052 char_str
[i
] = str
[i
];
3055 _NL_CURRENT_WORD (LC_COLLATE
,
3056 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3057 symb_table
= (const int32_t *)
3058 _NL_CURRENT (LC_COLLATE
,
3059 _NL_COLLATE_SYMB_TABLEMB
);
3060 extra
= (const unsigned char *)
3061 _NL_CURRENT (LC_COLLATE
,
3062 _NL_COLLATE_SYMB_EXTRAMB
);
3064 /* Locate the character in the hashing table. */
3065 hash
= elem_hash (char_str
, c1
);
3068 elem
= hash
% table_size
;
3069 second
= hash
% (table_size
- 2);
3070 while (symb_table
[2 * elem
] != 0)
3072 /* First compare the hashing value. */
3073 if (symb_table
[2 * elem
] == hash
3074 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3075 && memcmp (char_str
,
3076 &extra
[symb_table
[2 * elem
+ 1]
3079 /* Yep, this is the entry. */
3080 idx
= symb_table
[2 * elem
+ 1];
3081 idx
+= 1 + extra
[idx
];
3089 if (symb_table
[2 * elem
] != 0)
3091 /* Compute the index of the byte sequence
3093 idx
+= 1 + extra
[idx
];
3094 /* Adjust for the alignment. */
3095 idx
= (idx
+ 3) & ~3;
3097 str
[0] = (wchar_t) idx
+ 4;
3099 else if (symb_table
[2 * elem
] == 0 && c1
== 1)
3101 /* No valid character. Match it as a
3102 single byte character. */
3103 had_char_class
= false;
3105 /* Update the length of characters */
3107 range_start
= str
[0];
3109 /* Throw away the ] at the end of the
3110 collating symbol. */
3112 /* exit from the switch block. */
3116 FREE_STACK_RETURN (REG_ECOLLATE
);
3121 /* Throw away the ] at the end of the equivalence
3122 class (or collating symbol). */
3125 /* Allocate the space for the equivalence class
3126 (or collating symbol) (and '\0' if needed). */
3127 GET_BUFFER_SPACE(datasize
);
3128 /* Update the pointer to indicate end of buffer. */
3132 { /* equivalence class */
3133 /* Calculate the offset of char_ranges,
3134 which is next to equivalence_classes. */
3135 offset
= laststart
[1] + laststart
[2]
3138 insert_space(datasize
, laststart
+ offset
, b
- 1);
3140 /* Write the equivalence_class and \0. */
3141 for (i
= 0 ; i
< datasize
; i
++)
3142 laststart
[offset
+ i
] = str
[i
];
3144 /* Update the length of equivalence_classes. */
3145 laststart
[3] += datasize
;
3146 had_char_class
= true;
3148 else /* delim == '.' */
3149 { /* collating symbol */
3150 /* Calculate the offset of the equivalence_classes,
3151 which is next to collating_symbols. */
3152 offset
= laststart
[1] + laststart
[2] + 6;
3153 /* Insert space and write the collationg_symbol
3155 insert_space(datasize
, laststart
+ offset
, b
-1);
3156 for (i
= 0 ; i
< datasize
; i
++)
3157 laststart
[offset
+ i
] = str
[i
];
3159 /* In re_match_2_internal if range_start < -1, we
3160 assume -range_start is the offset of the
3161 collating symbol which is specified as
3162 the character of the range start. So we assign
3163 -(laststart[1] + laststart[2] + 6) to
3165 range_start
= -(laststart
[1] + laststart
[2] + 6);
3166 /* Update the length of collating_symbol. */
3167 laststart
[2] += datasize
;
3168 had_char_class
= false;
3178 laststart
[5] += 2; /* Update the length of characters */
3179 range_start
= delim
;
3180 had_char_class
= false;
3185 had_char_class
= false;
3187 laststart
[5]++; /* Update the length of characters */
3193 /* Ensure that we have enough space to push a charset: the
3194 opcode, the length count, and the bitset; 34 bytes in all. */
3195 GET_BUFFER_SPACE (34);
3199 /* We test `*p == '^' twice, instead of using an if
3200 statement, so we only need one BUF_PUSH. */
3201 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
3205 /* Remember the first position in the bracket expression. */
3208 /* Push the number of bytes in the bitmap. */
3209 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
3211 /* Clear the whole map. */
3212 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
3214 /* charset_not matches newline according to a syntax bit. */
3215 if ((re_opcode_t
) b
[-2] == charset_not
3216 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
3217 SET_LIST_BIT ('\n');
3219 /* Read in characters and ranges, setting map bits. */
3222 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3226 /* \ might escape characters inside [...] and [^...]. */
3227 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
3229 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3237 /* Could be the end of the bracket expression. If it's
3238 not (i.e., when the bracket expression is `[]' so
3239 far), the ']' character bit gets set way below. */
3240 if (c
== ']' && p
!= p1
+ 1)
3243 /* Look ahead to see if it's a range when the last thing
3244 was a character class. */
3245 if (had_char_class
&& c
== '-' && *p
!= ']')
3246 FREE_STACK_RETURN (REG_ERANGE
);
3248 /* Look ahead to see if it's a range when the last thing
3249 was a character: if this is a hyphen not at the
3250 beginning or the end of a list, then it's the range
3253 && !(p
- 2 >= pattern
&& p
[-2] == '[')
3254 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
3258 = byte_compile_range (range_start
, &p
, pend
, translate
,
3260 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3261 range_start
= 0xffffffff;
3264 else if (p
[0] == '-' && p
[1] != ']')
3265 { /* This handles ranges made up of characters only. */
3268 /* Move past the `-'. */
3271 ret
= byte_compile_range (c
, &p
, pend
, translate
, syntax
, b
);
3272 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3273 range_start
= 0xffffffff;
3276 /* See if we're at the beginning of a possible character
3279 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3280 { /* Leave room for the null. */
3281 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3286 /* If pattern is `[[:'. */
3287 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3292 if ((c
== ':' && *p
== ']') || p
== pend
)
3294 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3297 /* This is in any case an invalid class name. */
3302 /* If isn't a word bracketed by `[:' and `:]':
3303 undo the ending character, the letters, and leave
3304 the leading `:' and `[' (but set bits for them). */
3305 if (c
== ':' && *p
== ']')
3307 # if defined _LIBC || WIDE_CHAR_SUPPORT
3308 boolean is_lower
= STREQ (str
, "lower");
3309 boolean is_upper
= STREQ (str
, "upper");
3313 wt
= IS_CHAR_CLASS (str
);
3315 FREE_STACK_RETURN (REG_ECTYPE
);
3317 /* Throw away the ] at the end of the character
3321 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3323 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
3326 if (__iswctype (__btowc (ch
), wt
))
3329 if (iswctype (btowc (ch
), wt
))
3333 if (translate
&& (is_upper
|| is_lower
)
3334 && (ISUPPER (ch
) || ISLOWER (ch
)))
3338 had_char_class
= true;
3341 boolean is_alnum
= STREQ (str
, "alnum");
3342 boolean is_alpha
= STREQ (str
, "alpha");
3343 boolean is_blank
= STREQ (str
, "blank");
3344 boolean is_cntrl
= STREQ (str
, "cntrl");
3345 boolean is_digit
= STREQ (str
, "digit");
3346 boolean is_graph
= STREQ (str
, "graph");
3347 boolean is_lower
= STREQ (str
, "lower");
3348 boolean is_print
= STREQ (str
, "print");
3349 boolean is_punct
= STREQ (str
, "punct");
3350 boolean is_space
= STREQ (str
, "space");
3351 boolean is_upper
= STREQ (str
, "upper");
3352 boolean is_xdigit
= STREQ (str
, "xdigit");
3354 if (!IS_CHAR_CLASS (str
))
3355 FREE_STACK_RETURN (REG_ECTYPE
);
3357 /* Throw away the ] at the end of the character
3361 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3363 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
3365 /* This was split into 3 if's to
3366 avoid an arbitrary limit in some compiler. */
3367 if ( (is_alnum
&& ISALNUM (ch
))
3368 || (is_alpha
&& ISALPHA (ch
))
3369 || (is_blank
&& ISBLANK (ch
))
3370 || (is_cntrl
&& ISCNTRL (ch
)))
3372 if ( (is_digit
&& ISDIGIT (ch
))
3373 || (is_graph
&& ISGRAPH (ch
))
3374 || (is_lower
&& ISLOWER (ch
))
3375 || (is_print
&& ISPRINT (ch
)))
3377 if ( (is_punct
&& ISPUNCT (ch
))
3378 || (is_space
&& ISSPACE (ch
))
3379 || (is_upper
&& ISUPPER (ch
))
3380 || (is_xdigit
&& ISXDIGIT (ch
)))
3382 if ( translate
&& (is_upper
|| is_lower
)
3383 && (ISUPPER (ch
) || ISLOWER (ch
)))
3386 had_char_class
= true;
3387 # endif /* libc || wctype.h */
3397 had_char_class
= false;
3400 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '=')
3402 unsigned char str
[MB_LEN_MAX
+ 1];
3405 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3411 /* If pattern is `[[='. */
3412 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3417 if ((c
== '=' && *p
== ']') || p
== pend
)
3419 if (c1
< MB_LEN_MAX
)
3422 /* This is in any case an invalid class name. */
3427 if (c
== '=' && *p
== ']' && str
[0] != '\0')
3429 /* If we have no collation data we use the default
3430 collation in which each character is in a class
3431 by itself. It also means that ASCII is the
3432 character set and therefore we cannot have character
3433 with more than one byte in the multibyte
3440 FREE_STACK_RETURN (REG_ECOLLATE
);
3442 /* Throw away the ] at the end of the equivalence
3446 /* Set the bit for the character. */
3447 SET_LIST_BIT (str
[0]);
3452 /* Try to match the byte sequence in `str' against
3453 those known to the collate implementation.
3454 First find out whether the bytes in `str' are
3455 actually from exactly one character. */
3456 const int32_t *table
;
3457 const unsigned char *weights
;
3458 const unsigned char *extra
;
3459 const int32_t *indirect
;
3461 const unsigned char *cp
= str
;
3464 /* This #include defines a local function! */
3465 # include <locale/weight.h>
3467 table
= (const int32_t *)
3468 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEMB
);
3469 weights
= (const unsigned char *)
3470 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTMB
);
3471 extra
= (const unsigned char *)
3472 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAMB
);
3473 indirect
= (const int32_t *)
3474 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTMB
);
3476 idx
= findidx (&cp
);
3477 if (idx
== 0 || cp
< str
+ c1
)
3478 /* This is no valid character. */
3479 FREE_STACK_RETURN (REG_ECOLLATE
);
3481 /* Throw away the ] at the end of the equivalence
3485 /* Now we have to go throught the whole table
3486 and find all characters which have the same
3489 XXX Note that this is not entirely correct.
3490 we would have to match multibyte sequences
3491 but this is not possible with the current
3493 for (ch
= 1; ch
< 256; ++ch
)
3494 /* XXX This test would have to be changed if we
3495 would allow matching multibyte sequences. */
3498 int32_t idx2
= table
[ch
];
3499 size_t len
= weights
[idx2
];
3501 /* Test whether the lenghts match. */
3502 if (weights
[idx
] == len
)
3504 /* They do. New compare the bytes of
3509 && (weights
[idx
+ 1 + cnt
]
3510 == weights
[idx2
+ 1 + cnt
]))
3514 /* They match. Mark the character as
3521 had_char_class
= true;
3531 had_char_class
= false;
3534 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '.')
3536 unsigned char str
[128]; /* Should be large enough. */
3539 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3545 /* If pattern is `[[.'. */
3546 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3551 if ((c
== '.' && *p
== ']') || p
== pend
)
3553 if (c1
< sizeof (str
))
3556 /* This is in any case an invalid class name. */
3561 if (c
== '.' && *p
== ']' && str
[0] != '\0')
3563 /* If we have no collation data we use the default
3564 collation in which each character is the name
3565 for its own class which contains only the one
3566 character. It also means that ASCII is the
3567 character set and therefore we cannot have character
3568 with more than one byte in the multibyte
3575 FREE_STACK_RETURN (REG_ECOLLATE
);
3577 /* Throw away the ] at the end of the equivalence
3581 /* Set the bit for the character. */
3582 SET_LIST_BIT (str
[0]);
3583 range_start
= ((const unsigned char *) str
)[0];
3588 /* Try to match the byte sequence in `str' against
3589 those known to the collate implementation.
3590 First find out whether the bytes in `str' are
3591 actually from exactly one character. */
3593 const int32_t *symb_table
;
3594 const unsigned char *extra
;
3601 _NL_CURRENT_WORD (LC_COLLATE
,
3602 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3603 symb_table
= (const int32_t *)
3604 _NL_CURRENT (LC_COLLATE
,
3605 _NL_COLLATE_SYMB_TABLEMB
);
3606 extra
= (const unsigned char *)
3607 _NL_CURRENT (LC_COLLATE
,
3608 _NL_COLLATE_SYMB_EXTRAMB
);
3610 /* Locate the character in the hashing table. */
3611 hash
= elem_hash (str
, c1
);
3614 elem
= hash
% table_size
;
3615 second
= hash
% (table_size
- 2);
3616 while (symb_table
[2 * elem
] != 0)
3618 /* First compare the hashing value. */
3619 if (symb_table
[2 * elem
] == hash
3620 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3622 &extra
[symb_table
[2 * elem
+ 1]
3626 /* Yep, this is the entry. */
3627 idx
= symb_table
[2 * elem
+ 1];
3628 idx
+= 1 + extra
[idx
];
3636 if (symb_table
[2 * elem
] == 0)
3637 /* This is no valid character. */
3638 FREE_STACK_RETURN (REG_ECOLLATE
);
3640 /* Throw away the ] at the end of the equivalence
3644 /* Now add the multibyte character(s) we found
3647 XXX Note that this is not entirely correct.
3648 we would have to match multibyte sequences
3649 but this is not possible with the current
3650 implementation. Also, we have to match
3651 collating symbols, which expand to more than
3652 one file, as a whole and not allow the
3653 individual bytes. */
3656 range_start
= extra
[idx
];
3659 SET_LIST_BIT (extra
[idx
]);
3664 had_char_class
= false;
3674 had_char_class
= false;
3679 had_char_class
= false;
3685 /* Discard any (non)matching list bytes that are all 0 at the
3686 end of the map. Decrease the map-length byte too. */
3687 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3696 if (syntax
& RE_NO_BK_PARENS
)
3703 if (syntax
& RE_NO_BK_PARENS
)
3710 if (syntax
& RE_NEWLINE_ALT
)
3717 if (syntax
& RE_NO_BK_VBAR
)
3724 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3725 goto handle_interval
;
3731 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3733 /* Do not translate the character after the \, so that we can
3734 distinguish, e.g., \B from \b, even if we normally would
3735 translate, e.g., B to b. */
3741 if (syntax
& RE_NO_BK_PARENS
)
3742 goto normal_backslash
;
3748 if (COMPILE_STACK_FULL
)
3750 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3751 compile_stack_elt_t
);
3752 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3754 compile_stack
.size
<<= 1;
3757 /* These are the values to restore when we hit end of this
3758 group. They are all relative offsets, so that if the
3759 whole pattern moves because of realloc, they will still
3761 COMPILE_STACK_TOP
.begalt_offset
= begalt
- COMPILED_BUFFER_VAR
;
3762 COMPILE_STACK_TOP
.fixup_alt_jump
3763 = fixup_alt_jump
? fixup_alt_jump
- COMPILED_BUFFER_VAR
+ 1 : 0;
3764 COMPILE_STACK_TOP
.laststart_offset
= b
- COMPILED_BUFFER_VAR
;
3765 COMPILE_STACK_TOP
.regnum
= regnum
;
3767 /* We will eventually replace the 0 with the number of
3768 groups inner to this one. But do not push a
3769 start_memory for groups beyond the last one we can
3770 represent in the compiled pattern. */
3771 if (regnum
<= MAX_REGNUM
)
3773 COMPILE_STACK_TOP
.inner_group_offset
= b
3774 - COMPILED_BUFFER_VAR
+ 2;
3775 BUF_PUSH_3 (start_memory
, regnum
, 0);
3778 compile_stack
.avail
++;
3783 /* If we've reached MAX_REGNUM groups, then this open
3784 won't actually generate any code, so we'll have to
3785 clear pending_exact explicitly. */
3791 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3793 if (COMPILE_STACK_EMPTY
)
3795 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3796 goto normal_backslash
;
3798 FREE_STACK_RETURN (REG_ERPAREN
);
3803 { /* Push a dummy failure point at the end of the
3804 alternative for a possible future
3805 `pop_failure_jump' to pop. See comments at
3806 `push_dummy_failure' in `re_match_2'. */
3807 BUF_PUSH (push_dummy_failure
);
3809 /* We allocated space for this jump when we assigned
3810 to `fixup_alt_jump', in the `handle_alt' case below. */
3811 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
3814 /* See similar code for backslashed left paren above. */
3815 if (COMPILE_STACK_EMPTY
)
3817 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3820 FREE_STACK_RETURN (REG_ERPAREN
);
3823 /* Since we just checked for an empty stack above, this
3824 ``can't happen''. */
3825 assert (compile_stack
.avail
!= 0);
3827 /* We don't just want to restore into `regnum', because
3828 later groups should continue to be numbered higher,
3829 as in `(ab)c(de)' -- the second group is #2. */
3830 regnum_t this_group_regnum
;
3832 compile_stack
.avail
--;
3833 begalt
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.begalt_offset
;
3835 = COMPILE_STACK_TOP
.fixup_alt_jump
3836 ? COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3838 laststart
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.laststart_offset
;
3839 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3840 /* If we've reached MAX_REGNUM groups, then this open
3841 won't actually generate any code, so we'll have to
3842 clear pending_exact explicitly. */
3845 /* We're at the end of the group, so now we know how many
3846 groups were inside this one. */
3847 if (this_group_regnum
<= MAX_REGNUM
)
3849 UCHAR_T
*inner_group_loc
3850 = COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.inner_group_offset
;
3852 *inner_group_loc
= regnum
- this_group_regnum
;
3853 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
3854 regnum
- this_group_regnum
);
3860 case '|': /* `\|'. */
3861 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3862 goto normal_backslash
;
3864 if (syntax
& RE_LIMITED_OPS
)
3867 /* Insert before the previous alternative a jump which
3868 jumps to this alternative if the former fails. */
3869 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3870 INSERT_JUMP (on_failure_jump
, begalt
,
3871 b
+ 2 + 2 * OFFSET_ADDRESS_SIZE
);
3873 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3875 /* The alternative before this one has a jump after it
3876 which gets executed if it gets matched. Adjust that
3877 jump so it will jump to this alternative's analogous
3878 jump (put in below, which in turn will jump to the next
3879 (if any) alternative's such jump, etc.). The last such
3880 jump jumps to the correct final destination. A picture:
3886 If we are at `b', then fixup_alt_jump right now points to a
3887 three-byte space after `a'. We'll put in the jump, set
3888 fixup_alt_jump to right after `b', and leave behind three
3889 bytes which we'll fill in when we get to after `c'. */
3892 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
3894 /* Mark and leave space for a jump after this alternative,
3895 to be filled in later either by next alternative or
3896 when know we're at the end of a series of alternatives. */
3898 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3899 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3907 /* If \{ is a literal. */
3908 if (!(syntax
& RE_INTERVALS
)
3909 /* If we're at `\{' and it's not the open-interval
3911 || (syntax
& RE_NO_BK_BRACES
))
3912 goto normal_backslash
;
3916 /* If got here, then the syntax allows intervals. */
3918 /* At least (most) this many matches must be made. */
3919 int lower_bound
= -1, upper_bound
= -1;
3921 /* Place in the uncompiled pattern (i.e., just after
3922 the '{') to go back to if the interval is invalid. */
3923 const CHAR_T
*beg_interval
= p
;
3926 goto invalid_interval
;
3928 GET_UNSIGNED_NUMBER (lower_bound
);
3932 GET_UNSIGNED_NUMBER (upper_bound
);
3933 if (upper_bound
< 0)
3934 upper_bound
= RE_DUP_MAX
;
3937 /* Interval such as `{1}' => match exactly once. */
3938 upper_bound
= lower_bound
;
3940 if (! (0 <= lower_bound
&& lower_bound
<= upper_bound
))
3941 goto invalid_interval
;
3943 if (!(syntax
& RE_NO_BK_BRACES
))
3945 if (c
!= '\\' || p
== pend
)
3946 goto invalid_interval
;
3951 goto invalid_interval
;
3953 /* If it's invalid to have no preceding re. */
3956 if (syntax
& RE_CONTEXT_INVALID_OPS
3957 && !(syntax
& RE_INVALID_INTERVAL_ORD
))
3958 FREE_STACK_RETURN (REG_BADRPT
);
3959 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3962 goto unfetch_interval
;
3965 /* We just parsed a valid interval. */
3967 if (RE_DUP_MAX
< upper_bound
)
3968 FREE_STACK_RETURN (REG_BADBR
);
3970 /* If the upper bound is zero, don't want to succeed at
3971 all; jump from `laststart' to `b + 3', which will be
3972 the end of the buffer after we insert the jump. */
3973 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3974 instead of 'b + 3'. */
3975 if (upper_bound
== 0)
3977 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3978 INSERT_JUMP (jump
, laststart
, b
+ 1
3979 + OFFSET_ADDRESS_SIZE
);
3980 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3983 /* Otherwise, we have a nontrivial interval. When
3984 we're all done, the pattern will look like:
3985 set_number_at <jump count> <upper bound>
3986 set_number_at <succeed_n count> <lower bound>
3987 succeed_n <after jump addr> <succeed_n count>
3989 jump_n <succeed_n addr> <jump count>
3990 (The upper bound and `jump_n' are omitted if
3991 `upper_bound' is 1, though.) */
3993 { /* If the upper bound is > 1, we need to insert
3994 more at the end of the loop. */
3995 unsigned nbytes
= 2 + 4 * OFFSET_ADDRESS_SIZE
+
3996 (upper_bound
> 1) * (2 + 4 * OFFSET_ADDRESS_SIZE
);
3998 GET_BUFFER_SPACE (nbytes
);
4000 /* Initialize lower bound of the `succeed_n', even
4001 though it will be set during matching by its
4002 attendant `set_number_at' (inserted next),
4003 because `re_compile_fastmap' needs to know.
4004 Jump to the `jump_n' we might insert below. */
4005 INSERT_JUMP2 (succeed_n
, laststart
,
4006 b
+ 1 + 2 * OFFSET_ADDRESS_SIZE
4007 + (upper_bound
> 1) * (1 + 2 * OFFSET_ADDRESS_SIZE
)
4009 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4011 /* Code to initialize the lower bound. Insert
4012 before the `succeed_n'. The `5' is the last two
4013 bytes of this `set_number_at', plus 3 bytes of
4014 the following `succeed_n'. */
4015 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
4016 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4017 of the following `succeed_n'. */
4018 PREFIX(insert_op2
) (set_number_at
, laststart
, 1
4019 + 2 * OFFSET_ADDRESS_SIZE
, lower_bound
, b
);
4020 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4022 if (upper_bound
> 1)
4023 { /* More than one repetition is allowed, so
4024 append a backward jump to the `succeed_n'
4025 that starts this interval.
4027 When we've reached this during matching,
4028 we'll have matched the interval once, so
4029 jump back only `upper_bound - 1' times. */
4030 STORE_JUMP2 (jump_n
, b
, laststart
4031 + 2 * OFFSET_ADDRESS_SIZE
+ 1,
4033 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4035 /* The location we want to set is the second
4036 parameter of the `jump_n'; that is `b-2' as
4037 an absolute address. `laststart' will be
4038 the `set_number_at' we're about to insert;
4039 `laststart+3' the number to set, the source
4040 for the relative address. But we are
4041 inserting into the middle of the pattern --
4042 so everything is getting moved up by 5.
4043 Conclusion: (b - 2) - (laststart + 3) + 5,
4044 i.e., b - laststart.
4046 We insert this at the beginning of the loop
4047 so that if we fail during matching, we'll
4048 reinitialize the bounds. */
4049 PREFIX(insert_op2
) (set_number_at
, laststart
,
4051 upper_bound
- 1, b
);
4052 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4059 if (!(syntax
& RE_INVALID_INTERVAL_ORD
))
4060 FREE_STACK_RETURN (p
== pend
? REG_EBRACE
: REG_BADBR
);
4062 /* Match the characters as literals. */
4065 if (syntax
& RE_NO_BK_BRACES
)
4068 goto normal_backslash
;
4072 /* There is no way to specify the before_dot and after_dot
4073 operators. rms says this is ok. --karl */
4081 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
4087 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
4093 if (syntax
& RE_NO_GNU_OPS
)
4096 BUF_PUSH (wordchar
);
4101 if (syntax
& RE_NO_GNU_OPS
)
4104 BUF_PUSH (notwordchar
);
4109 if (syntax
& RE_NO_GNU_OPS
)
4115 if (syntax
& RE_NO_GNU_OPS
)
4121 if (syntax
& RE_NO_GNU_OPS
)
4123 BUF_PUSH (wordbound
);
4127 if (syntax
& RE_NO_GNU_OPS
)
4129 BUF_PUSH (notwordbound
);
4133 if (syntax
& RE_NO_GNU_OPS
)
4139 if (syntax
& RE_NO_GNU_OPS
)
4144 case '1': case '2': case '3': case '4': case '5':
4145 case '6': case '7': case '8': case '9':
4146 if (syntax
& RE_NO_BK_REFS
)
4152 FREE_STACK_RETURN (REG_ESUBREG
);
4154 /* Can't back reference to a subexpression if inside of it. */
4155 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
4159 BUF_PUSH_2 (duplicate
, c1
);
4165 if (syntax
& RE_BK_PLUS_QM
)
4168 goto normal_backslash
;
4172 /* You might think it would be useful for \ to mean
4173 not to translate; but if we don't translate it
4174 it will never match anything. */
4182 /* Expects the character in `c'. */
4184 /* If no exactn currently being built. */
4187 /* If last exactn handle binary(or character) and
4188 new exactn handle character(or binary). */
4189 || is_exactn_bin
!= is_binary
[p
- 1 - pattern
]
4192 /* If last exactn not at current position. */
4193 || pending_exact
+ *pending_exact
+ 1 != b
4195 /* We have only one byte following the exactn for the count. */
4196 || *pending_exact
== (1 << BYTEWIDTH
) - 1
4198 /* If followed by a repetition operator. */
4199 || *p
== '*' || *p
== '^'
4200 || ((syntax
& RE_BK_PLUS_QM
)
4201 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
4202 : (*p
== '+' || *p
== '?'))
4203 || ((syntax
& RE_INTERVALS
)
4204 && ((syntax
& RE_NO_BK_BRACES
)
4206 : (p
[0] == '\\' && p
[1] == '{'))))
4208 /* Start building a new exactn. */
4213 /* Is this exactn binary data or character? */
4214 is_exactn_bin
= is_binary
[p
- 1 - pattern
];
4216 BUF_PUSH_2 (exactn_bin
, 0);
4218 BUF_PUSH_2 (exactn
, 0);
4220 BUF_PUSH_2 (exactn
, 0);
4222 pending_exact
= b
- 1;
4229 } /* while p != pend */
4232 /* Through the pattern now. */
4235 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
4237 if (!COMPILE_STACK_EMPTY
)
4238 FREE_STACK_RETURN (REG_EPAREN
);
4240 /* If we don't want backtracking, force success
4241 the first time we reach the end of the compiled pattern. */
4242 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
4250 free (compile_stack
.stack
);
4252 /* We have succeeded; set the length of the buffer. */
4254 bufp
->used
= (uintptr_t) b
- (uintptr_t) COMPILED_BUFFER_VAR
;
4256 bufp
->used
= b
- bufp
->buffer
;
4262 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4263 PREFIX(print_compiled_pattern
) (bufp
);
4267 #ifndef MATCH_MAY_ALLOCATE
4268 /* Initialize the failure stack to the largest possible stack. This
4269 isn't necessary unless we're trying to avoid calling alloca in
4270 the search and match routines. */
4272 int num_regs
= bufp
->re_nsub
+ 1;
4274 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4275 is strictly greater than re_max_failures, the largest possible stack
4276 is 2 * re_max_failures failure points. */
4277 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
4279 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
4282 if (! fail_stack
.stack
)
4284 = (PREFIX(fail_stack_elt_t
) *) xmalloc (fail_stack
.size
4285 * sizeof (PREFIX(fail_stack_elt_t
)));
4288 = (PREFIX(fail_stack_elt_t
) *) xrealloc (fail_stack
.stack
,
4290 * sizeof (PREFIX(fail_stack_elt_t
))));
4291 # else /* not emacs */
4292 if (! fail_stack
.stack
)
4294 = (PREFIX(fail_stack_elt_t
) *) malloc (fail_stack
.size
4295 * sizeof (PREFIX(fail_stack_elt_t
)));
4298 = (PREFIX(fail_stack_elt_t
) *) realloc (fail_stack
.stack
,
4300 * sizeof (PREFIX(fail_stack_elt_t
))));
4301 # endif /* not emacs */
4304 PREFIX(regex_grow_registers
) (num_regs
);
4306 #endif /* not MATCH_MAY_ALLOCATE */
4309 } /* regex_compile */
4311 /* Subroutines for `regex_compile'. */
4313 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4314 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4317 PREFIX(store_op1
) (op
, loc
, arg
)
4322 *loc
= (UCHAR_T
) op
;
4323 STORE_NUMBER (loc
+ 1, arg
);
4327 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4328 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4331 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
)
4336 *loc
= (UCHAR_T
) op
;
4337 STORE_NUMBER (loc
+ 1, arg1
);
4338 STORE_NUMBER (loc
+ 1 + OFFSET_ADDRESS_SIZE
, arg2
);
4342 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4343 for OP followed by two-byte integer parameter ARG. */
4344 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4347 PREFIX(insert_op1
) (op
, loc
, arg
, end
)
4353 register UCHAR_T
*pfrom
= end
;
4354 register UCHAR_T
*pto
= end
+ 1 + OFFSET_ADDRESS_SIZE
;
4356 while (pfrom
!= loc
)
4359 PREFIX(store_op1
) (op
, loc
, arg
);
4363 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4364 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4367 PREFIX(insert_op2
) (op
, loc
, arg1
, arg2
, end
)
4373 register UCHAR_T
*pfrom
= end
;
4374 register UCHAR_T
*pto
= end
+ 1 + 2 * OFFSET_ADDRESS_SIZE
;
4376 while (pfrom
!= loc
)
4379 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
);
4383 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4384 after an alternative or a begin-subexpression. We assume there is at
4385 least one character before the ^. */
4388 PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
)
4389 const CHAR_T
*pattern
, *p
;
4390 reg_syntax_t syntax
;
4392 const CHAR_T
*prev
= p
- 2;
4393 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
4396 /* After a subexpression? */
4397 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
4398 /* After an alternative? */
4399 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
4403 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4404 at least one character after the $, i.e., `P < PEND'. */
4407 PREFIX(at_endline_loc_p
) (p
, pend
, syntax
)
4408 const CHAR_T
*p
, *pend
;
4409 reg_syntax_t syntax
;
4411 const CHAR_T
*next
= p
;
4412 boolean next_backslash
= *next
== '\\';
4413 const CHAR_T
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
4416 /* Before a subexpression? */
4417 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
4418 : next_backslash
&& next_next
&& *next_next
== ')')
4419 /* Before an alternative? */
4420 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
4421 : next_backslash
&& next_next
&& *next_next
== '|');
4424 #else /* not INSIDE_RECURSION */
4426 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4427 false if it's not. */
4430 group_in_compile_stack (compile_stack
, regnum
)
4431 compile_stack_type compile_stack
;
4436 for (this_element
= compile_stack
.avail
- 1;
4439 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4444 #endif /* not INSIDE_RECURSION */
4446 #ifdef INSIDE_RECURSION
4449 /* This insert space, which size is "num", into the pattern at "loc".
4450 "end" must point the end of the allocated buffer. */
4452 insert_space (num
, loc
, end
)
4457 register CHAR_T
*pto
= end
;
4458 register CHAR_T
*pfrom
= end
- num
;
4460 while (pfrom
>= loc
)
4466 static reg_errcode_t
4467 wcs_compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
,
4469 CHAR_T range_start_char
;
4470 const CHAR_T
**p_ptr
, *pend
;
4471 CHAR_T
*char_set
, *b
;
4472 RE_TRANSLATE_TYPE translate
;
4473 reg_syntax_t syntax
;
4475 const CHAR_T
*p
= *p_ptr
;
4476 CHAR_T range_start
, range_end
;
4480 uint32_t start_val
, end_val
;
4486 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
4489 const char *collseq
= (const char *) _NL_CURRENT(LC_COLLATE
,
4490 _NL_COLLATE_COLLSEQWC
);
4491 const unsigned char *extra
= (const unsigned char *)
4492 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
4494 if (range_start_char
< -1)
4496 /* range_start is a collating symbol. */
4498 /* Retreive the index and get collation sequence value. */
4499 wextra
= (int32_t*)(extra
+ char_set
[-range_start_char
]);
4500 start_val
= wextra
[1 + *wextra
];
4503 start_val
= collseq_table_lookup(collseq
, TRANSLATE(range_start_char
));
4505 end_val
= collseq_table_lookup (collseq
, TRANSLATE (p
[0]));
4507 /* Report an error if the range is empty and the syntax prohibits
4509 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4510 && (start_val
> end_val
))? REG_ERANGE
: REG_NOERROR
;
4512 /* Insert space to the end of the char_ranges. */
4513 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4514 *(b
- char_set
[5] - 2) = (wchar_t)start_val
;
4515 *(b
- char_set
[5] - 1) = (wchar_t)end_val
;
4516 char_set
[4]++; /* ranges_index */
4521 range_start
= (range_start_char
>= 0)? TRANSLATE (range_start_char
):
4523 range_end
= TRANSLATE (p
[0]);
4524 /* Report an error if the range is empty and the syntax prohibits
4526 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4527 && (range_start
> range_end
))? REG_ERANGE
: REG_NOERROR
;
4529 /* Insert space to the end of the char_ranges. */
4530 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4531 *(b
- char_set
[5] - 2) = range_start
;
4532 *(b
- char_set
[5] - 1) = range_end
;
4533 char_set
[4]++; /* ranges_index */
4535 /* Have to increment the pointer into the pattern string, so the
4536 caller isn't still at the ending character. */
4542 /* Read the ending character of a range (in a bracket expression) from the
4543 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4544 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4545 Then we set the translation of all bits between the starting and
4546 ending characters (inclusive) in the compiled pattern B.
4548 Return an error code.
4550 We use these short variable names so we can use the same macros as
4551 `regex_compile' itself. */
4553 static reg_errcode_t
4554 byte_compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
)
4555 unsigned int range_start_char
;
4556 const char **p_ptr
, *pend
;
4557 RE_TRANSLATE_TYPE translate
;
4558 reg_syntax_t syntax
;
4562 const char *p
= *p_ptr
;
4565 const unsigned char *collseq
;
4566 unsigned int start_colseq
;
4567 unsigned int end_colseq
;
4575 /* Have to increment the pointer into the pattern string, so the
4576 caller isn't still at the ending character. */
4579 /* Report an error if the range is empty and the syntax prohibits this. */
4580 ret
= syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
4583 collseq
= (const unsigned char *) _NL_CURRENT (LC_COLLATE
,
4584 _NL_COLLATE_COLLSEQMB
);
4586 start_colseq
= collseq
[(unsigned char) TRANSLATE (range_start_char
)];
4587 end_colseq
= collseq
[(unsigned char) TRANSLATE (p
[0])];
4588 for (this_char
= 0; this_char
<= (unsigned char) -1; ++this_char
)
4590 unsigned int this_colseq
= collseq
[(unsigned char) TRANSLATE (this_char
)];
4592 if (start_colseq
<= this_colseq
&& this_colseq
<= end_colseq
)
4594 SET_LIST_BIT (TRANSLATE (this_char
));
4599 /* Here we see why `this_char' has to be larger than an `unsigned
4600 char' -- we would otherwise go into an infinite loop, since all
4601 characters <= 0xff. */
4602 range_start_char
= TRANSLATE (range_start_char
);
4603 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4604 and some compilers cast it to int implicitly, so following for_loop
4605 may fall to (almost) infinite loop.
4606 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4607 To avoid this, we cast p[0] to unsigned int and truncate it. */
4608 end_char
= ((unsigned)TRANSLATE(p
[0]) & ((1 << BYTEWIDTH
) - 1));
4610 for (this_char
= range_start_char
; this_char
<= end_char
; ++this_char
)
4612 SET_LIST_BIT (TRANSLATE (this_char
));
4621 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4622 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4623 characters can start a string that matches the pattern. This fastmap
4624 is used by re_search to skip quickly over impossible starting points.
4626 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4627 area as BUFP->fastmap.
4629 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4632 Returns 0 if we succeed, -2 if an internal error. */
4635 /* local function for re_compile_fastmap.
4636 truncate wchar_t character to char. */
4637 static unsigned char truncate_wchar (CHAR_T c
);
4639 static unsigned char
4643 unsigned char buf
[MB_CUR_MAX
];
4646 memset (&state
, '\0', sizeof (state
));
4648 retval
= __wcrtomb (buf
, c
, &state
);
4650 retval
= wcrtomb (buf
, c
, &state
);
4652 return retval
> 0 ? buf
[0] : (unsigned char) c
;
4657 PREFIX(re_compile_fastmap
) (bufp
)
4658 struct re_pattern_buffer
*bufp
;
4661 #ifdef MATCH_MAY_ALLOCATE
4662 PREFIX(fail_stack_type
) fail_stack
;
4664 #ifndef REGEX_MALLOC
4668 register char *fastmap
= bufp
->fastmap
;
4671 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4672 pattern to (char*) in regex_compile. */
4673 UCHAR_T
*pattern
= (UCHAR_T
*)bufp
->buffer
;
4674 register UCHAR_T
*pend
= (UCHAR_T
*) (bufp
->buffer
+ bufp
->used
);
4676 UCHAR_T
*pattern
= bufp
->buffer
;
4677 register UCHAR_T
*pend
= pattern
+ bufp
->used
;
4679 UCHAR_T
*p
= pattern
;
4682 /* This holds the pointer to the failure stack, when
4683 it is allocated relocatably. */
4684 fail_stack_elt_t
*failure_stack_ptr
;
4687 /* Assume that each path through the pattern can be null until
4688 proven otherwise. We set this false at the bottom of switch
4689 statement, to which we get only if a particular path doesn't
4690 match the empty string. */
4691 boolean path_can_be_null
= true;
4693 /* We aren't doing a `succeed_n' to begin with. */
4694 boolean succeed_n_p
= false;
4696 assert (fastmap
!= NULL
&& p
!= NULL
);
4699 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4700 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4701 bufp
->can_be_null
= 0;
4705 if (p
== pend
|| *p
== succeed
)
4707 /* We have reached the (effective) end of pattern. */
4708 if (!FAIL_STACK_EMPTY ())
4710 bufp
->can_be_null
|= path_can_be_null
;
4712 /* Reset for next path. */
4713 path_can_be_null
= true;
4715 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
4723 /* We should never be about to go beyond the end of the pattern. */
4726 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4729 /* I guess the idea here is to simply not bother with a fastmap
4730 if a backreference is used, since it's too hard to figure out
4731 the fastmap for the corresponding group. Setting
4732 `can_be_null' stops `re_search_2' from using the fastmap, so
4733 that is all we do. */
4735 bufp
->can_be_null
= 1;
4739 /* Following are the cases which match a character. These end
4744 fastmap
[truncate_wchar(p
[1])] = 1;
4758 /* It is hard to distinguish fastmap from (multi byte) characters
4759 which depends on current locale. */
4764 bufp
->can_be_null
= 1;
4768 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4769 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
4775 /* Chars beyond end of map must be allowed. */
4776 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
4779 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4780 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
4786 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4787 if (SYNTAX (j
) == Sword
)
4793 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4794 if (SYNTAX (j
) != Sword
)
4801 int fastmap_newline
= fastmap
['\n'];
4803 /* `.' matches anything ... */
4804 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4807 /* ... except perhaps newline. */
4808 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
4809 fastmap
['\n'] = fastmap_newline
;
4811 /* Return if we have already set `can_be_null'; if we have,
4812 then the fastmap is irrelevant. Something's wrong here. */
4813 else if (bufp
->can_be_null
)
4816 /* Otherwise, have to check alternative paths. */
4823 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4824 if (SYNTAX (j
) == (enum syntaxcode
) k
)
4831 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4832 if (SYNTAX (j
) != (enum syntaxcode
) k
)
4837 /* All cases after this match the empty string. These end with
4857 case push_dummy_failure
:
4862 case pop_failure_jump
:
4863 case maybe_pop_jump
:
4866 case dummy_failure_jump
:
4867 EXTRACT_NUMBER_AND_INCR (j
, p
);
4872 /* Jump backward implies we just went through the body of a
4873 loop and matched nothing. Opcode jumped to should be
4874 `on_failure_jump' or `succeed_n'. Just treat it like an
4875 ordinary jump. For a * loop, it has pushed its failure
4876 point already; if so, discard that as redundant. */
4877 if ((re_opcode_t
) *p
!= on_failure_jump
4878 && (re_opcode_t
) *p
!= succeed_n
)
4882 EXTRACT_NUMBER_AND_INCR (j
, p
);
4885 /* If what's on the stack is where we are now, pop it. */
4886 if (!FAIL_STACK_EMPTY ()
4887 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
4893 case on_failure_jump
:
4894 case on_failure_keep_string_jump
:
4895 handle_on_failure_jump
:
4896 EXTRACT_NUMBER_AND_INCR (j
, p
);
4898 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4899 end of the pattern. We don't want to push such a point,
4900 since when we restore it above, entering the switch will
4901 increment `p' past the end of the pattern. We don't need
4902 to push such a point since we obviously won't find any more
4903 fastmap entries beyond `pend'. Such a pattern can match
4904 the null string, though. */
4907 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
4909 RESET_FAIL_STACK ();
4914 bufp
->can_be_null
= 1;
4918 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
4919 succeed_n_p
= false;
4926 /* Get to the number of times to succeed. */
4927 p
+= OFFSET_ADDRESS_SIZE
;
4929 /* Increment p past the n for when k != 0. */
4930 EXTRACT_NUMBER_AND_INCR (k
, p
);
4933 p
-= 2 * OFFSET_ADDRESS_SIZE
;
4934 succeed_n_p
= true; /* Spaghetti code alert. */
4935 goto handle_on_failure_jump
;
4941 p
+= 2 * OFFSET_ADDRESS_SIZE
;
4952 abort (); /* We have listed all the cases. */
4955 /* Getting here means we have found the possible starting
4956 characters for one path of the pattern -- and that the empty
4957 string does not match. We need not follow this path further.
4958 Instead, look at the next alternative (remembered on the
4959 stack), or quit if no more. The test at the top of the loop
4960 does these things. */
4961 path_can_be_null
= false;
4965 /* Set `can_be_null' for the last path (also the first path, if the
4966 pattern is empty). */
4967 bufp
->can_be_null
|= path_can_be_null
;
4970 RESET_FAIL_STACK ();
4974 #else /* not INSIDE_RECURSION */
4977 re_compile_fastmap (bufp
)
4978 struct re_pattern_buffer
*bufp
;
4981 if (MB_CUR_MAX
!= 1)
4982 return wcs_re_compile_fastmap(bufp
);
4985 return byte_re_compile_fastmap(bufp
);
4986 } /* re_compile_fastmap */
4988 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
4992 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4993 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4994 this memory for recording register information. STARTS and ENDS
4995 must be allocated using the malloc library routine, and must each
4996 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4998 If NUM_REGS == 0, then subsequent matches should allocate their own
5001 Unless this function is called, the first search or match using
5002 PATTERN_BUFFER will allocate its own register data, without
5003 freeing the old data. */
5006 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
5007 struct re_pattern_buffer
*bufp
;
5008 struct re_registers
*regs
;
5010 regoff_t
*starts
, *ends
;
5014 bufp
->regs_allocated
= REGS_REALLOCATE
;
5015 regs
->num_regs
= num_regs
;
5016 regs
->start
= starts
;
5021 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5023 regs
->start
= regs
->end
= (regoff_t
*) 0;
5027 weak_alias (__re_set_registers
, re_set_registers
)
5030 /* Searching routines. */
5032 /* Like re_search_2, below, but only one string is specified, and
5033 doesn't let you say where to stop matching. */
5036 re_search (bufp
, string
, size
, startpos
, range
, regs
)
5037 struct re_pattern_buffer
*bufp
;
5039 int size
, startpos
, range
;
5040 struct re_registers
*regs
;
5042 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
5046 weak_alias (__re_search
, re_search
)
5050 /* Using the compiled pattern in BUFP->buffer, first tries to match the
5051 virtual concatenation of STRING1 and STRING2, starting first at index
5052 STARTPOS, then at STARTPOS + 1, and so on.
5054 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5056 RANGE is how far to scan while trying to match. RANGE = 0 means try
5057 only at STARTPOS; in general, the last start tried is STARTPOS +
5060 In REGS, return the indices of the virtual concatenation of STRING1
5061 and STRING2 that matched the entire BUFP->buffer and its contained
5064 Do not consider matching one past the index STOP in the virtual
5065 concatenation of STRING1 and STRING2.
5067 We return either the position in the strings at which the match was
5068 found, -1 if no match, or -2 if error (such as failure
5072 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
5073 struct re_pattern_buffer
*bufp
;
5074 const char *string1
, *string2
;
5078 struct re_registers
*regs
;
5082 if (MB_CUR_MAX
!= 1)
5083 return wcs_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
5087 return byte_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
5091 weak_alias (__re_search_2
, re_search_2
)
5094 #endif /* not INSIDE_RECURSION */
5096 #ifdef INSIDE_RECURSION
5098 #ifdef MATCH_MAY_ALLOCATE
5099 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5101 # define FREE_VAR(var) if (var) free (var); var = NULL
5105 # define MAX_ALLOCA_SIZE 2000
5107 # define FREE_WCS_BUFFERS() \
5109 if (size1 > MAX_ALLOCA_SIZE) \
5111 free (wcs_string1); \
5112 free (mbs_offset1); \
5116 FREE_VAR (wcs_string1); \
5117 FREE_VAR (mbs_offset1); \
5119 if (size2 > MAX_ALLOCA_SIZE) \
5121 free (wcs_string2); \
5122 free (mbs_offset2); \
5126 FREE_VAR (wcs_string2); \
5127 FREE_VAR (mbs_offset2); \
5135 PREFIX(re_search_2
) (bufp
, string1
, size1
, string2
, size2
, startpos
, range
,
5137 struct re_pattern_buffer
*bufp
;
5138 const char *string1
, *string2
;
5142 struct re_registers
*regs
;
5146 register char *fastmap
= bufp
->fastmap
;
5147 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5148 int total_size
= size1
+ size2
;
5149 int endpos
= startpos
+ range
;
5151 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5152 wchar_t *wcs_string1
= NULL
, *wcs_string2
= NULL
;
5153 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5154 int wcs_size1
= 0, wcs_size2
= 0;
5155 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5156 int *mbs_offset1
= NULL
, *mbs_offset2
= NULL
;
5157 /* They hold whether each wchar_t is binary data or not. */
5158 char *is_binary
= NULL
;
5161 /* Check for out-of-range STARTPOS. */
5162 if (startpos
< 0 || startpos
> total_size
)
5165 /* Fix up RANGE if it might eventually take us outside
5166 the virtual concatenation of STRING1 and STRING2.
5167 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5169 range
= 0 - startpos
;
5170 else if (endpos
> total_size
)
5171 range
= total_size
- startpos
;
5173 /* If the search isn't to be a backwards one, don't waste time in a
5174 search for a pattern that must be anchored. */
5175 if (bufp
->used
> 0 && range
> 0
5176 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
5177 /* `begline' is like `begbuf' if it cannot match at newlines. */
5178 || ((re_opcode_t
) bufp
->buffer
[0] == begline
5179 && !bufp
->newline_anchor
)))
5188 /* In a forward search for something that starts with \=.
5189 don't keep searching past point. */
5190 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
5192 range
= PT
- startpos
;
5198 /* Update the fastmap now if not correct already. */
5199 if (fastmap
&& !bufp
->fastmap_accurate
)
5200 if (re_compile_fastmap (bufp
) == -2)
5204 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5205 fill them with converted string. */
5208 if (size1
> MAX_ALLOCA_SIZE
)
5210 wcs_string1
= TALLOC (size1
+ 1, CHAR_T
);
5211 mbs_offset1
= TALLOC (size1
+ 1, int);
5212 is_binary
= TALLOC (size1
+ 1, char);
5216 wcs_string1
= REGEX_TALLOC (size1
+ 1, CHAR_T
);
5217 mbs_offset1
= REGEX_TALLOC (size1
+ 1, int);
5218 is_binary
= REGEX_TALLOC (size1
+ 1, char);
5220 if (!wcs_string1
|| !mbs_offset1
|| !is_binary
)
5222 if (size1
> MAX_ALLOCA_SIZE
)
5230 FREE_VAR (wcs_string1
);
5231 FREE_VAR (mbs_offset1
);
5232 FREE_VAR (is_binary
);
5236 wcs_size1
= convert_mbs_to_wcs(wcs_string1
, string1
, size1
,
5237 mbs_offset1
, is_binary
);
5238 wcs_string1
[wcs_size1
] = L
'\0'; /* for a sentinel */
5239 if (size1
> MAX_ALLOCA_SIZE
)
5242 FREE_VAR (is_binary
);
5246 if (size2
> MAX_ALLOCA_SIZE
)
5248 wcs_string2
= TALLOC (size2
+ 1, CHAR_T
);
5249 mbs_offset2
= TALLOC (size2
+ 1, int);
5250 is_binary
= TALLOC (size2
+ 1, char);
5254 wcs_string2
= REGEX_TALLOC (size2
+ 1, CHAR_T
);
5255 mbs_offset2
= REGEX_TALLOC (size2
+ 1, int);
5256 is_binary
= REGEX_TALLOC (size2
+ 1, char);
5258 if (!wcs_string2
|| !mbs_offset2
|| !is_binary
)
5260 FREE_WCS_BUFFERS ();
5261 if (size2
> MAX_ALLOCA_SIZE
)
5264 FREE_VAR (is_binary
);
5267 wcs_size2
= convert_mbs_to_wcs(wcs_string2
, string2
, size2
,
5268 mbs_offset2
, is_binary
);
5269 wcs_string2
[wcs_size2
] = L
'\0'; /* for a sentinel */
5270 if (size2
> MAX_ALLOCA_SIZE
)
5273 FREE_VAR (is_binary
);
5278 /* Loop through the string, looking for a place to start matching. */
5281 /* If a fastmap is supplied, skip quickly over characters that
5282 cannot be the start of a match. If the pattern can match the
5283 null string, however, we don't need to skip characters; we want
5284 the first null string. */
5285 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
5287 if (range
> 0) /* Searching forwards. */
5289 register const char *d
;
5290 register int lim
= 0;
5293 if (startpos
< size1
&& startpos
+ range
>= size1
)
5294 lim
= range
- (size1
- startpos
);
5296 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
5298 /* Written out as an if-else to avoid testing `translate'
5302 && !fastmap
[(unsigned char)
5303 translate
[(unsigned char) *d
++]])
5306 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
5309 startpos
+= irange
- range
;
5311 else /* Searching backwards. */
5313 register CHAR_T c
= (size1
== 0 || startpos
>= size1
5314 ? string2
[startpos
- size1
]
5315 : string1
[startpos
]);
5317 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
5322 /* If can't match the null string, and that's all we have left, fail. */
5323 if (range
>= 0 && startpos
== total_size
&& fastmap
5324 && !bufp
->can_be_null
)
5327 FREE_WCS_BUFFERS ();
5333 val
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
,
5334 size2
, startpos
, regs
, stop
,
5335 wcs_string1
, wcs_size1
,
5336 wcs_string2
, wcs_size2
,
5337 mbs_offset1
, mbs_offset2
);
5339 val
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
,
5340 size2
, startpos
, regs
, stop
);
5343 #ifndef REGEX_MALLOC
5352 FREE_WCS_BUFFERS ();
5360 FREE_WCS_BUFFERS ();
5380 FREE_WCS_BUFFERS ();
5386 /* This converts PTR, a pointer into one of the search wchar_t strings
5387 `string1' and `string2' into an multibyte string offset from the
5388 beginning of that string. We use mbs_offset to optimize.
5389 See convert_mbs_to_wcs. */
5390 # define POINTER_TO_OFFSET(ptr) \
5391 (FIRST_STRING_P (ptr) \
5392 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5393 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5396 /* This converts PTR, a pointer into one of the search strings `string1'
5397 and `string2' into an offset from the beginning of that string. */
5398 # define POINTER_TO_OFFSET(ptr) \
5399 (FIRST_STRING_P (ptr) \
5400 ? ((regoff_t) ((ptr) - string1)) \
5401 : ((regoff_t) ((ptr) - string2 + size1)))
5404 /* Macros for dealing with the split strings in re_match_2. */
5406 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5408 /* Call before fetching a character with *d. This switches over to
5409 string2 if necessary. */
5410 #define PREFETCH() \
5413 /* End of string2 => fail. */ \
5414 if (dend == end_match_2) \
5416 /* End of string1 => advance to string2. */ \
5418 dend = end_match_2; \
5421 /* Test if at very beginning or at very end of the virtual concatenation
5422 of `string1' and `string2'. If only one string, it's `string2'. */
5423 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5424 #define AT_STRINGS_END(d) ((d) == end2)
5427 /* Test if D points to a character which is word-constituent. We have
5428 two special cases to check for: if past the end of string1, look at
5429 the first character in string2; and if before the beginning of
5430 string2, look at the last character in string1. */
5432 /* Use internationalized API instead of SYNTAX. */
5433 # define WORDCHAR_P(d) \
5434 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5435 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5436 || ((d) == end1 ? *string2 \
5437 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5439 # define WORDCHAR_P(d) \
5440 (SYNTAX ((d) == end1 ? *string2 \
5441 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5445 /* Disabled due to a compiler bug -- see comment at case wordbound */
5447 /* Test if the character before D and the one at D differ with respect
5448 to being word-constituent. */
5449 #define AT_WORD_BOUNDARY(d) \
5450 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5451 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5454 /* Free everything we malloc. */
5455 #ifdef MATCH_MAY_ALLOCATE
5457 # define FREE_VARIABLES() \
5459 REGEX_FREE_STACK (fail_stack.stack); \
5460 FREE_VAR (regstart); \
5461 FREE_VAR (regend); \
5462 FREE_VAR (old_regstart); \
5463 FREE_VAR (old_regend); \
5464 FREE_VAR (best_regstart); \
5465 FREE_VAR (best_regend); \
5466 FREE_VAR (reg_info); \
5467 FREE_VAR (reg_dummy); \
5468 FREE_VAR (reg_info_dummy); \
5469 if (!cant_free_wcs_buf) \
5471 FREE_VAR (string1); \
5472 FREE_VAR (string2); \
5473 FREE_VAR (mbs_offset1); \
5474 FREE_VAR (mbs_offset2); \
5478 # define FREE_VARIABLES() \
5480 REGEX_FREE_STACK (fail_stack.stack); \
5481 FREE_VAR (regstart); \
5482 FREE_VAR (regend); \
5483 FREE_VAR (old_regstart); \
5484 FREE_VAR (old_regend); \
5485 FREE_VAR (best_regstart); \
5486 FREE_VAR (best_regend); \
5487 FREE_VAR (reg_info); \
5488 FREE_VAR (reg_dummy); \
5489 FREE_VAR (reg_info_dummy); \
5494 # define FREE_VARIABLES() \
5496 if (!cant_free_wcs_buf) \
5498 FREE_VAR (string1); \
5499 FREE_VAR (string2); \
5500 FREE_VAR (mbs_offset1); \
5501 FREE_VAR (mbs_offset2); \
5505 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5507 #endif /* not MATCH_MAY_ALLOCATE */
5509 /* These values must meet several constraints. They must not be valid
5510 register values; since we have a limit of 255 registers (because
5511 we use only one byte in the pattern for the register number), we can
5512 use numbers larger than 255. They must differ by 1, because of
5513 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5514 be larger than the value for the highest register, so we do not try
5515 to actually save any registers when none are active. */
5516 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5517 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5519 #else /* not INSIDE_RECURSION */
5520 /* Matching routines. */
5522 #ifndef emacs /* Emacs never uses this. */
5523 /* re_match is like re_match_2 except it takes only a single string. */
5526 re_match (bufp
, string
, size
, pos
, regs
)
5527 struct re_pattern_buffer
*bufp
;
5530 struct re_registers
*regs
;
5534 if (MB_CUR_MAX
!= 1)
5535 result
= wcs_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5537 NULL
, 0, NULL
, 0, NULL
, NULL
);
5540 result
= byte_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5542 # ifndef REGEX_MALLOC
5550 weak_alias (__re_match
, re_match
)
5552 #endif /* not emacs */
5554 #endif /* not INSIDE_RECURSION */
5556 #ifdef INSIDE_RECURSION
5557 static boolean
PREFIX(group_match_null_string_p
) _RE_ARGS ((UCHAR_T
**p
,
5559 PREFIX(register_info_type
) *reg_info
));
5560 static boolean
PREFIX(alt_match_null_string_p
) _RE_ARGS ((UCHAR_T
*p
,
5562 PREFIX(register_info_type
) *reg_info
));
5563 static boolean
PREFIX(common_op_match_null_string_p
) _RE_ARGS ((UCHAR_T
**p
,
5565 PREFIX(register_info_type
) *reg_info
));
5566 static int PREFIX(bcmp_translate
) _RE_ARGS ((const CHAR_T
*s1
, const CHAR_T
*s2
,
5567 int len
, char *translate
));
5568 #else /* not INSIDE_RECURSION */
5570 /* re_match_2 matches the compiled pattern in BUFP against the
5571 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5572 and SIZE2, respectively). We start matching at POS, and stop
5575 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5576 store offsets for the substring each group matched in REGS. See the
5577 documentation for exactly how many groups we fill.
5579 We return -1 if no match, -2 if an internal error (such as the
5580 failure stack overflowing). Otherwise, we return the length of the
5581 matched substring. */
5584 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5585 struct re_pattern_buffer
*bufp
;
5586 const char *string1
, *string2
;
5589 struct re_registers
*regs
;
5594 if (MB_CUR_MAX
!= 1)
5595 result
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5597 NULL
, 0, NULL
, 0, NULL
, NULL
);
5600 result
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5603 #ifndef REGEX_MALLOC
5611 weak_alias (__re_match_2
, re_match_2
)
5614 #endif /* not INSIDE_RECURSION */
5616 #ifdef INSIDE_RECURSION
5619 static int count_mbs_length
PARAMS ((int *, int));
5621 /* This check the substring (from 0, to length) of the multibyte string,
5622 to which offset_buffer correspond. And count how many wchar_t_characters
5623 the substring occupy. We use offset_buffer to optimization.
5624 See convert_mbs_to_wcs. */
5627 count_mbs_length(offset_buffer
, length
)
5633 /* Check whether the size is valid. */
5637 if (offset_buffer
== NULL
)
5640 /* If there are no multibyte character, offset_buffer[i] == i.
5641 Optmize for this case. */
5642 if (offset_buffer
[length
] == length
)
5645 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5651 int middle
= (lower
+ upper
) / 2;
5652 if (middle
== lower
|| middle
== upper
)
5654 if (offset_buffer
[middle
] > length
)
5656 else if (offset_buffer
[middle
] < length
)
5666 /* This is a separate function so that we can force an alloca cleanup
5670 wcs_re_match_2_internal (bufp
, cstring1
, csize1
, cstring2
, csize2
, pos
,
5671 regs
, stop
, string1
, size1
, string2
, size2
,
5672 mbs_offset1
, mbs_offset2
)
5673 struct re_pattern_buffer
*bufp
;
5674 const char *cstring1
, *cstring2
;
5677 struct re_registers
*regs
;
5679 /* string1 == string2 == NULL means string1/2, size1/2 and
5680 mbs_offset1/2 need seting up in this function. */
5681 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5682 wchar_t *string1
, *string2
;
5683 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5685 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5686 int *mbs_offset1
, *mbs_offset2
;
5689 byte_re_match_2_internal (bufp
, string1
, size1
,string2
, size2
, pos
,
5691 struct re_pattern_buffer
*bufp
;
5692 const char *string1
, *string2
;
5695 struct re_registers
*regs
;
5699 /* General temporaries. */
5703 /* They hold whether each wchar_t is binary data or not. */
5704 char *is_binary
= NULL
;
5705 /* If true, we can't free string1/2, mbs_offset1/2. */
5706 int cant_free_wcs_buf
= 1;
5709 /* Just past the end of the corresponding string. */
5710 const CHAR_T
*end1
, *end2
;
5712 /* Pointers into string1 and string2, just past the last characters in
5713 each to consider matching. */
5714 const CHAR_T
*end_match_1
, *end_match_2
;
5716 /* Where we are in the data, and the end of the current string. */
5717 const CHAR_T
*d
, *dend
;
5719 /* Where we are in the pattern, and the end of the pattern. */
5721 UCHAR_T
*pattern
, *p
;
5722 register UCHAR_T
*pend
;
5724 UCHAR_T
*p
= bufp
->buffer
;
5725 register UCHAR_T
*pend
= p
+ bufp
->used
;
5728 /* Mark the opcode just after a start_memory, so we can test for an
5729 empty subpattern when we get to the stop_memory. */
5730 UCHAR_T
*just_past_start_mem
= 0;
5732 /* We use this to map every character in the string. */
5733 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5735 /* Failure point stack. Each place that can handle a failure further
5736 down the line pushes a failure point on this stack. It consists of
5737 restart, regend, and reg_info for all registers corresponding to
5738 the subexpressions we're currently inside, plus the number of such
5739 registers, and, finally, two char *'s. The first char * is where
5740 to resume scanning the pattern; the second one is where to resume
5741 scanning the strings. If the latter is zero, the failure point is
5742 a ``dummy''; if a failure happens and the failure point is a dummy,
5743 it gets discarded and the next next one is tried. */
5744 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5745 PREFIX(fail_stack_type
) fail_stack
;
5748 static unsigned failure_id
;
5749 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5753 /* This holds the pointer to the failure stack, when
5754 it is allocated relocatably. */
5755 fail_stack_elt_t
*failure_stack_ptr
;
5758 /* We fill all the registers internally, independent of what we
5759 return, for use in backreferences. The number here includes
5760 an element for register zero. */
5761 size_t num_regs
= bufp
->re_nsub
+ 1;
5763 /* The currently active registers. */
5764 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
5765 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
5767 /* Information on the contents of registers. These are pointers into
5768 the input strings; they record just what was matched (on this
5769 attempt) by a subexpression part of the pattern, that is, the
5770 regnum-th regstart pointer points to where in the pattern we began
5771 matching and the regnum-th regend points to right after where we
5772 stopped matching the regnum-th subexpression. (The zeroth register
5773 keeps track of what the whole pattern matches.) */
5774 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5775 const CHAR_T
**regstart
, **regend
;
5778 /* If a group that's operated upon by a repetition operator fails to
5779 match anything, then the register for its start will need to be
5780 restored because it will have been set to wherever in the string we
5781 are when we last see its open-group operator. Similarly for a
5783 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5784 const CHAR_T
**old_regstart
, **old_regend
;
5787 /* The is_active field of reg_info helps us keep track of which (possibly
5788 nested) subexpressions we are currently in. The matched_something
5789 field of reg_info[reg_num] helps us tell whether or not we have
5790 matched any of the pattern so far this time through the reg_num-th
5791 subexpression. These two fields get reset each time through any
5792 loop their register is in. */
5793 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5794 PREFIX(register_info_type
) *reg_info
;
5797 /* The following record the register info as found in the above
5798 variables when we find a match better than any we've seen before.
5799 This happens as we backtrack through the failure points, which in
5800 turn happens only if we have not yet matched the entire string. */
5801 unsigned best_regs_set
= false;
5802 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5803 const CHAR_T
**best_regstart
, **best_regend
;
5806 /* Logically, this is `best_regend[0]'. But we don't want to have to
5807 allocate space for that if we're not allocating space for anything
5808 else (see below). Also, we never need info about register 0 for
5809 any of the other register vectors, and it seems rather a kludge to
5810 treat `best_regend' differently than the rest. So we keep track of
5811 the end of the best match so far in a separate variable. We
5812 initialize this to NULL so that when we backtrack the first time
5813 and need to test it, it's not garbage. */
5814 const CHAR_T
*match_end
= NULL
;
5816 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5817 int set_regs_matched_done
= 0;
5819 /* Used when we pop values we don't care about. */
5820 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5821 const CHAR_T
**reg_dummy
;
5822 PREFIX(register_info_type
) *reg_info_dummy
;
5826 /* Counts the total number of registers pushed. */
5827 unsigned num_regs_pushed
= 0;
5830 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5834 #ifdef MATCH_MAY_ALLOCATE
5835 /* Do not bother to initialize all the register variables if there are
5836 no groups in the pattern, as it takes a fair amount of time. If
5837 there are groups, we include space for register 0 (the whole
5838 pattern), even though we never use it, since it simplifies the
5839 array indexing. We should fix this. */
5842 regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5843 regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5844 old_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5845 old_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5846 best_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5847 best_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5848 reg_info
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5849 reg_dummy
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5850 reg_info_dummy
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5852 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
5853 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
5861 /* We must initialize all our variables to NULL, so that
5862 `FREE_VARIABLES' doesn't try to free them. */
5863 regstart
= regend
= old_regstart
= old_regend
= best_regstart
5864 = best_regend
= reg_dummy
= NULL
;
5865 reg_info
= reg_info_dummy
= (PREFIX(register_info_type
) *) NULL
;
5867 #endif /* MATCH_MAY_ALLOCATE */
5869 /* The starting position is bogus. */
5871 if (pos
< 0 || pos
> csize1
+ csize2
)
5873 if (pos
< 0 || pos
> size1
+ size2
)
5881 /* Allocate wchar_t array for string1 and string2 and
5882 fill them with converted string. */
5883 if (string1
== NULL
&& string2
== NULL
)
5885 /* We need seting up buffers here. */
5887 /* We must free wcs buffers in this function. */
5888 cant_free_wcs_buf
= 0;
5892 string1
= REGEX_TALLOC (csize1
+ 1, CHAR_T
);
5893 mbs_offset1
= REGEX_TALLOC (csize1
+ 1, int);
5894 is_binary
= REGEX_TALLOC (csize1
+ 1, char);
5895 if (!string1
|| !mbs_offset1
|| !is_binary
)
5898 FREE_VAR (mbs_offset1
);
5899 FREE_VAR (is_binary
);
5905 string2
= REGEX_TALLOC (csize2
+ 1, CHAR_T
);
5906 mbs_offset2
= REGEX_TALLOC (csize2
+ 1, int);
5907 is_binary
= REGEX_TALLOC (csize2
+ 1, char);
5908 if (!string2
|| !mbs_offset2
|| !is_binary
)
5911 FREE_VAR (mbs_offset1
);
5913 FREE_VAR (mbs_offset2
);
5914 FREE_VAR (is_binary
);
5917 size2
= convert_mbs_to_wcs(string2
, cstring2
, csize2
,
5918 mbs_offset2
, is_binary
);
5919 string2
[size2
] = L
'\0'; /* for a sentinel */
5920 FREE_VAR (is_binary
);
5924 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5925 pattern to (char*) in regex_compile. */
5926 p
= pattern
= (CHAR_T
*)bufp
->buffer
;
5927 pend
= (CHAR_T
*)(bufp
->buffer
+ bufp
->used
);
5931 /* Initialize subexpression text positions to -1 to mark ones that no
5932 start_memory/stop_memory has been seen for. Also initialize the
5933 register information struct. */
5934 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5936 regstart
[mcnt
] = regend
[mcnt
]
5937 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
5939 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
5940 IS_ACTIVE (reg_info
[mcnt
]) = 0;
5941 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5942 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5945 /* We move `string1' into `string2' if the latter's empty -- but not if
5946 `string1' is null. */
5947 if (size2
== 0 && string1
!= NULL
)
5954 mbs_offset2
= mbs_offset1
;
5960 end1
= string1
+ size1
;
5961 end2
= string2
+ size2
;
5963 /* Compute where to stop matching, within the two strings. */
5967 mcnt
= count_mbs_length(mbs_offset1
, stop
);
5968 end_match_1
= string1
+ mcnt
;
5969 end_match_2
= string2
;
5973 if (stop
> csize1
+ csize2
)
5974 stop
= csize1
+ csize2
;
5976 mcnt
= count_mbs_length(mbs_offset2
, stop
-csize1
);
5977 end_match_2
= string2
+ mcnt
;
5980 { /* count_mbs_length return error. */
5987 end_match_1
= string1
+ stop
;
5988 end_match_2
= string2
;
5993 end_match_2
= string2
+ stop
- size1
;
5997 /* `p' scans through the pattern as `d' scans through the data.
5998 `dend' is the end of the input string that `d' points within. `d'
5999 is advanced into the following input string whenever necessary, but
6000 this happens before fetching; therefore, at the beginning of the
6001 loop, `d' can be pointing at the end of a string, but it cannot
6004 if (size1
> 0 && pos
<= csize1
)
6006 mcnt
= count_mbs_length(mbs_offset1
, pos
);
6012 mcnt
= count_mbs_length(mbs_offset2
, pos
-csize1
);
6018 { /* count_mbs_length return error. */
6023 if (size1
> 0 && pos
<= size1
)
6030 d
= string2
+ pos
- size1
;
6035 DEBUG_PRINT1 ("The compiled pattern is:\n");
6036 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
6037 DEBUG_PRINT1 ("The string to match is: `");
6038 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
6039 DEBUG_PRINT1 ("'\n");
6041 /* This loops over pattern commands. It exits by returning from the
6042 function if the match is complete, or it drops through if the match
6043 fails at this starting point in the input data. */
6047 DEBUG_PRINT2 ("\n%p: ", p
);
6049 DEBUG_PRINT2 ("\n0x%x: ", p
);
6053 { /* End of pattern means we might have succeeded. */
6054 DEBUG_PRINT1 ("end of pattern ... ");
6056 /* If we haven't matched the entire string, and we want the
6057 longest match, try backtracking. */
6058 if (d
!= end_match_2
)
6060 /* 1 if this match ends in the same string (string1 or string2)
6061 as the best previous match. */
6062 boolean same_str_p
= (FIRST_STRING_P (match_end
)
6063 == MATCHING_IN_FIRST_STRING
);
6064 /* 1 if this match is the best seen so far. */
6065 boolean best_match_p
;
6067 /* AIX compiler got confused when this was combined
6068 with the previous declaration. */
6070 best_match_p
= d
> match_end
;
6072 best_match_p
= !MATCHING_IN_FIRST_STRING
;
6074 DEBUG_PRINT1 ("backtracking.\n");
6076 if (!FAIL_STACK_EMPTY ())
6077 { /* More failure points to try. */
6079 /* If exceeds best match so far, save it. */
6080 if (!best_regs_set
|| best_match_p
)
6082 best_regs_set
= true;
6085 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6087 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6089 best_regstart
[mcnt
] = regstart
[mcnt
];
6090 best_regend
[mcnt
] = regend
[mcnt
];
6096 /* If no failure points, don't restore garbage. And if
6097 last match is real best match, don't restore second
6099 else if (best_regs_set
&& !best_match_p
)
6102 /* Restore best match. It may happen that `dend ==
6103 end_match_1' while the restored d is in string2.
6104 For example, the pattern `x.*y.*z' against the
6105 strings `x-' and `y-z-', if the two strings are
6106 not consecutive in memory. */
6107 DEBUG_PRINT1 ("Restoring best registers.\n");
6110 dend
= ((d
>= string1
&& d
<= end1
)
6111 ? end_match_1
: end_match_2
);
6113 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6115 regstart
[mcnt
] = best_regstart
[mcnt
];
6116 regend
[mcnt
] = best_regend
[mcnt
];
6119 } /* d != end_match_2 */
6122 DEBUG_PRINT1 ("Accepting match.\n");
6123 /* If caller wants register contents data back, do it. */
6124 if (regs
&& !bufp
->no_sub
)
6126 /* Have the register data arrays been allocated? */
6127 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
6128 { /* No. So allocate them with malloc. We need one
6129 extra element beyond `num_regs' for the `-1' marker
6131 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
6132 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
6133 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
6134 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6139 bufp
->regs_allocated
= REGS_REALLOCATE
;
6141 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
6142 { /* Yes. If we need more elements than were already
6143 allocated, reallocate them. If we need fewer, just
6145 if (regs
->num_regs
< num_regs
+ 1)
6147 regs
->num_regs
= num_regs
+ 1;
6148 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
6149 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
6150 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6159 /* These braces fend off a "empty body in an else-statement"
6160 warning under GCC when assert expands to nothing. */
6161 assert (bufp
->regs_allocated
== REGS_FIXED
);
6164 /* Convert the pointer data in `regstart' and `regend' to
6165 indices. Register zero has to be set differently,
6166 since we haven't kept track of any info for it. */
6167 if (regs
->num_regs
> 0)
6169 regs
->start
[0] = pos
;
6171 if (MATCHING_IN_FIRST_STRING
)
6172 regs
->end
[0] = mbs_offset1
!= NULL
?
6173 mbs_offset1
[d
-string1
] : 0;
6175 regs
->end
[0] = csize1
+ (mbs_offset2
!= NULL
?
6176 mbs_offset2
[d
-string2
] : 0);
6178 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
6179 ? ((regoff_t
) (d
- string1
))
6180 : ((regoff_t
) (d
- string2
+ size1
)));
6184 /* Go through the first `min (num_regs, regs->num_regs)'
6185 registers, since that is all we initialized. */
6186 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
6189 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
6190 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6194 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
6196 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
6200 /* If the regs structure we return has more elements than
6201 were in the pattern, set the extra elements to -1. If
6202 we (re)allocated the registers, this is the case,
6203 because we always allocate enough to have at least one
6205 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
6206 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6207 } /* regs && !bufp->no_sub */
6209 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6210 nfailure_points_pushed
, nfailure_points_popped
,
6211 nfailure_points_pushed
- nfailure_points_popped
);
6212 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
6215 if (MATCHING_IN_FIRST_STRING
)
6216 mcnt
= mbs_offset1
!= NULL
? mbs_offset1
[d
-string1
] : 0;
6218 mcnt
= (mbs_offset2
!= NULL
? mbs_offset2
[d
-string2
] : 0) +
6222 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
6227 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
6233 /* Otherwise match next pattern command. */
6234 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
6236 /* Ignore these. Used to ignore the n of succeed_n's which
6237 currently have n == 0. */
6239 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6243 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6246 /* Match the next n pattern characters exactly. The following
6247 byte in the pattern defines n, and the n bytes after that
6248 are the characters to match. */
6254 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
6256 /* This is written out as an if-else so we don't waste time
6257 testing `translate' inside the loop. */
6266 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6272 if (*d
++ != (CHAR_T
) *p
++)
6276 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6288 if (*d
++ != (CHAR_T
) *p
++) goto fail
;
6292 SET_REGS_MATCHED ();
6296 /* Match any character except possibly a newline or a null. */
6298 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6302 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
6303 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
6306 SET_REGS_MATCHED ();
6307 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d
);
6317 unsigned int i
, char_class_length
, coll_symbol_length
,
6318 equiv_class_length
, ranges_length
, chars_length
, length
;
6319 CHAR_T
*workp
, *workp2
, *charset_top
;
6320 #define WORK_BUFFER_SIZE 128
6321 CHAR_T str_buf
[WORK_BUFFER_SIZE
];
6326 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
6328 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6330 c
= TRANSLATE (*d
); /* The character to match. */
6333 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
6335 charset_top
= p
- 1;
6336 char_class_length
= *p
++;
6337 coll_symbol_length
= *p
++;
6338 equiv_class_length
= *p
++;
6339 ranges_length
= *p
++;
6340 chars_length
= *p
++;
6341 /* p points charset[6], so the address of the next instruction
6342 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6343 where l=length of char_classes, m=length of collating_symbol,
6344 n=equivalence_class, o=length of char_range,
6345 p'=length of character. */
6347 /* Update p to indicate the next instruction. */
6348 p
+= char_class_length
+ coll_symbol_length
+ equiv_class_length
+
6349 2*ranges_length
+ chars_length
;
6351 /* match with char_class? */
6352 for (i
= 0; i
< char_class_length
; i
+= CHAR_CLASS_SIZE
)
6355 uintptr_t alignedp
= ((uintptr_t)workp
6356 + __alignof__(wctype_t) - 1)
6357 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6358 wctype
= *((wctype_t*)alignedp
);
6359 workp
+= CHAR_CLASS_SIZE
;
6361 if (__iswctype((wint_t)c
, wctype
))
6362 goto char_set_matched
;
6364 if (iswctype((wint_t)c
, wctype
))
6365 goto char_set_matched
;
6369 /* match with collating_symbol? */
6373 const unsigned char *extra
= (const unsigned char *)
6374 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
6376 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;
6380 wextra
= (int32_t*)(extra
+ *workp
++);
6381 for (i
= 0; i
< *wextra
; ++i
)
6382 if (TRANSLATE(d
[i
]) != wextra
[1 + i
])
6387 /* Update d, however d will be incremented at
6388 char_set_matched:, we decrement d here. */
6390 goto char_set_matched
;
6394 else /* (nrules == 0) */
6396 /* If we can't look up collation data, we use wcscoll
6399 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;)
6401 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6403 length
= __wcslen (workp
);
6405 length
= wcslen (workp
);
6408 /* If wcscoll(the collating symbol, whole string) > 0,
6409 any substring of the string never match with the
6410 collating symbol. */
6412 if (__wcscoll (workp
, d
) > 0)
6414 if (wcscoll (workp
, d
) > 0)
6417 workp
+= length
+ 1;
6421 /* First, we compare the collating symbol with
6422 the first character of the string.
6423 If it don't match, we add the next character to
6424 the compare buffer in turn. */
6425 for (i
= 0 ; i
< WORK_BUFFER_SIZE
-1 ; i
++, d
++)
6430 if (dend
== end_match_2
)
6436 /* add next character to the compare buffer. */
6437 str_buf
[i
] = TRANSLATE(*d
);
6438 str_buf
[i
+1] = '\0';
6441 match
= __wcscoll (workp
, str_buf
);
6443 match
= wcscoll (workp
, str_buf
);
6446 goto char_set_matched
;
6449 /* (str_buf > workp) indicate (str_buf + X > workp),
6450 because for all X (str_buf + X > str_buf).
6451 So we don't need continue this loop. */
6454 /* Otherwise(str_buf < workp),
6455 (str_buf+next_character) may equals (workp).
6456 So we continue this loop. */
6461 workp
+= length
+ 1;
6464 /* match with equivalence_class? */
6468 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6469 /* Try to match the equivalence class against
6470 those known to the collate implementation. */
6471 const int32_t *table
;
6472 const int32_t *weights
;
6473 const int32_t *extra
;
6474 const int32_t *indirect
;
6479 /* This #include defines a local function! */
6480 # include <locale/weightwc.h>
6482 table
= (const int32_t *)
6483 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEWC
);
6484 weights
= (const wint_t *)
6485 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTWC
);
6486 extra
= (const wint_t *)
6487 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAWC
);
6488 indirect
= (const int32_t *)
6489 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTWC
);
6491 /* Write 1 collating element to str_buf, and
6495 for (i
= 0 ; idx2
== 0 && i
< WORK_BUFFER_SIZE
- 1; i
++)
6497 cp
= (wint_t*)str_buf
;
6500 if (dend
== end_match_2
)
6505 str_buf
[i
] = TRANSLATE(*(d
+i
));
6506 str_buf
[i
+1] = '\0'; /* sentinel */
6507 idx2
= findidx ((const wint_t**)&cp
);
6510 /* Update d, however d will be incremented at
6511 char_set_matched:, we decrement d here. */
6512 d
= backup_d
+ ((wchar_t*)cp
- (wchar_t*)str_buf
- 1);
6515 if (dend
== end_match_2
)
6524 len
= weights
[idx2
];
6526 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;
6529 idx
= (int32_t)*workp
;
6530 /* We already checked idx != 0 in regex_compile. */
6532 if (idx2
!= 0 && len
== weights
[idx
])
6535 while (cnt
< len
&& (weights
[idx
+ 1 + cnt
]
6536 == weights
[idx2
+ 1 + cnt
]))
6540 goto char_set_matched
;
6547 else /* (nrules == 0) */
6549 /* If we can't look up collation data, we use wcscoll
6552 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;)
6554 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6556 length
= __wcslen (workp
);
6558 length
= wcslen (workp
);
6561 /* If wcscoll(the collating symbol, whole string) > 0,
6562 any substring of the string never match with the
6563 collating symbol. */
6565 if (__wcscoll (workp
, d
) > 0)
6567 if (wcscoll (workp
, d
) > 0)
6570 workp
+= length
+ 1;
6574 /* First, we compare the equivalence class with
6575 the first character of the string.
6576 If it don't match, we add the next character to
6577 the compare buffer in turn. */
6578 for (i
= 0 ; i
< WORK_BUFFER_SIZE
- 1 ; i
++, d
++)
6583 if (dend
== end_match_2
)
6589 /* add next character to the compare buffer. */
6590 str_buf
[i
] = TRANSLATE(*d
);
6591 str_buf
[i
+1] = '\0';
6594 match
= __wcscoll (workp
, str_buf
);
6596 match
= wcscoll (workp
, str_buf
);
6600 goto char_set_matched
;
6603 /* (str_buf > workp) indicate (str_buf + X > workp),
6604 because for all X (str_buf + X > str_buf).
6605 So we don't need continue this loop. */
6608 /* Otherwise(str_buf < workp),
6609 (str_buf+next_character) may equals (workp).
6610 So we continue this loop. */
6615 workp
+= length
+ 1;
6619 /* match with char_range? */
6623 uint32_t collseqval
;
6624 const char *collseq
= (const char *)
6625 _NL_CURRENT(LC_COLLATE
, _NL_COLLATE_COLLSEQWC
);
6627 collseqval
= collseq_table_lookup (collseq
, c
);
6629 for (; workp
< p
- chars_length
;)
6631 uint32_t start_val
, end_val
;
6633 /* We already compute the collation sequence value
6634 of the characters (or collating symbols). */
6635 start_val
= (uint32_t) *workp
++; /* range_start */
6636 end_val
= (uint32_t) *workp
++; /* range_end */
6638 if (start_val
<= collseqval
&& collseqval
<= end_val
)
6639 goto char_set_matched
;
6645 /* We set range_start_char at str_buf[0], range_end_char
6646 at str_buf[4], and compared char at str_buf[2]. */
6651 for (; workp
< p
- chars_length
;)
6653 wchar_t *range_start_char
, *range_end_char
;
6655 /* match if (range_start_char <= c <= range_end_char). */
6657 /* If range_start(or end) < 0, we assume -range_start(end)
6658 is the offset of the collating symbol which is specified
6659 as the character of the range start(end). */
6663 range_start_char
= charset_top
- (*workp
++);
6666 str_buf
[0] = *workp
++;
6667 range_start_char
= str_buf
;
6672 range_end_char
= charset_top
- (*workp
++);
6675 str_buf
[4] = *workp
++;
6676 range_end_char
= str_buf
+ 4;
6680 if (__wcscoll (range_start_char
, str_buf
+2) <= 0
6681 && __wcscoll (str_buf
+2, range_end_char
) <= 0)
6683 if (wcscoll (range_start_char
, str_buf
+2) <= 0
6684 && wcscoll (str_buf
+2, range_end_char
) <= 0)
6686 goto char_set_matched
;
6690 /* match with char? */
6691 for (; workp
< p
; workp
++)
6693 goto char_set_matched
;
6700 /* Cast to `unsigned' instead of `unsigned char' in case the
6701 bit list is a full 32 bytes long. */
6702 if (c
< (unsigned) (*p
* BYTEWIDTH
)
6703 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
6708 if (!not) goto fail
;
6709 #undef WORK_BUFFER_SIZE
6711 SET_REGS_MATCHED ();
6717 /* The beginning of a group is represented by start_memory.
6718 The arguments are the register number in the next byte, and the
6719 number of groups inner to this one in the next. The text
6720 matched within the group is recorded (in the internal
6721 registers data structure) under the register number. */
6723 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6724 (long int) *p
, (long int) p
[1]);
6726 /* Find out if this group can match the empty string. */
6727 p1
= p
; /* To send to group_match_null_string_p. */
6729 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
6730 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6731 = PREFIX(group_match_null_string_p
) (&p1
, pend
, reg_info
);
6733 /* Save the position in the string where we were the last time
6734 we were at this open-group operator in case the group is
6735 operated upon by a repetition operator, e.g., with `(a*)*b'
6736 against `ab'; then we want to ignore where we are now in
6737 the string in case this attempt to match fails. */
6738 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6739 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
6741 DEBUG_PRINT2 (" old_regstart: %d\n",
6742 POINTER_TO_OFFSET (old_regstart
[*p
]));
6745 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
6747 IS_ACTIVE (reg_info
[*p
]) = 1;
6748 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6750 /* Clear this whenever we change the register activity status. */
6751 set_regs_matched_done
= 0;
6753 /* This is the new highest active register. */
6754 highest_active_reg
= *p
;
6756 /* If nothing was active before, this is the new lowest active
6758 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6759 lowest_active_reg
= *p
;
6761 /* Move past the register number and inner group count. */
6763 just_past_start_mem
= p
;
6768 /* The stop_memory opcode represents the end of a group. Its
6769 arguments are the same as start_memory's: the register
6770 number, and the number of inner groups. */
6772 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6773 (long int) *p
, (long int) p
[1]);
6775 /* We need to save the string position the last time we were at
6776 this close-group operator in case the group is operated
6777 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6778 against `aba'; then we want to ignore where we are now in
6779 the string in case this attempt to match fails. */
6780 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6781 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
6783 DEBUG_PRINT2 (" old_regend: %d\n",
6784 POINTER_TO_OFFSET (old_regend
[*p
]));
6787 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
6789 /* This register isn't active anymore. */
6790 IS_ACTIVE (reg_info
[*p
]) = 0;
6792 /* Clear this whenever we change the register activity status. */
6793 set_regs_matched_done
= 0;
6795 /* If this was the only register active, nothing is active
6797 if (lowest_active_reg
== highest_active_reg
)
6799 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6800 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6803 { /* We must scan for the new highest active register, since
6804 it isn't necessarily one less than now: consider
6805 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6806 new highest active register is 1. */
6808 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
6811 /* If we end up at register zero, that means that we saved
6812 the registers as the result of an `on_failure_jump', not
6813 a `start_memory', and we jumped to past the innermost
6814 `stop_memory'. For example, in ((.)*) we save
6815 registers 1 and 2 as a result of the *, but when we pop
6816 back to the second ), we are at the stop_memory 1.
6817 Thus, nothing is active. */
6820 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6821 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6824 highest_active_reg
= r
;
6827 /* If just failed to match something this time around with a
6828 group that's operated on by a repetition operator, try to
6829 force exit from the ``loop'', and restore the register
6830 information for this group that we had before trying this
6832 if ((!MATCHED_SOMETHING (reg_info
[*p
])
6833 || just_past_start_mem
== p
- 1)
6836 boolean is_a_jump_n
= false;
6840 switch ((re_opcode_t
) *p1
++)
6844 case pop_failure_jump
:
6845 case maybe_pop_jump
:
6847 case dummy_failure_jump
:
6848 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6850 p1
+= OFFSET_ADDRESS_SIZE
;
6858 /* If the next operation is a jump backwards in the pattern
6859 to an on_failure_jump right before the start_memory
6860 corresponding to this stop_memory, exit from the loop
6861 by forcing a failure after pushing on the stack the
6862 on_failure_jump's jump in the pattern, and d. */
6863 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
6864 && (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == start_memory
6865 && p1
[2+OFFSET_ADDRESS_SIZE
] == *p
)
6867 /* If this group ever matched anything, then restore
6868 what its registers were before trying this last
6869 failed match, e.g., with `(a*)*b' against `ab' for
6870 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6871 against `aba' for regend[3].
6873 Also restore the registers for inner groups for,
6874 e.g., `((a*)(b*))*' against `aba' (register 3 would
6875 otherwise get trashed). */
6877 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
6881 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6883 /* Restore this and inner groups' (if any) registers. */
6884 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
6887 regstart
[r
] = old_regstart
[r
];
6889 /* xx why this test? */
6890 if (old_regend
[r
] >= regstart
[r
])
6891 regend
[r
] = old_regend
[r
];
6895 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6896 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
6902 /* Move past the register number and the inner group count. */
6907 /* \<digit> has been turned into a `duplicate' command which is
6908 followed by the numeric value of <digit> as the register number. */
6911 register const CHAR_T
*d2
, *dend2
;
6912 int regno
= *p
++; /* Get which register to match against. */
6913 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
6915 /* Can't back reference a group which we've never matched. */
6916 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
6919 /* Where in input to try to start matching. */
6920 d2
= regstart
[regno
];
6922 /* Where to stop matching; if both the place to start and
6923 the place to stop matching are in the same string, then
6924 set to the place to stop, otherwise, for now have to use
6925 the end of the first string. */
6927 dend2
= ((FIRST_STRING_P (regstart
[regno
])
6928 == FIRST_STRING_P (regend
[regno
]))
6929 ? regend
[regno
] : end_match_1
);
6932 /* If necessary, advance to next segment in register
6936 if (dend2
== end_match_2
) break;
6937 if (dend2
== regend
[regno
]) break;
6939 /* End of string1 => advance to string2. */
6941 dend2
= regend
[regno
];
6943 /* At end of register contents => success */
6944 if (d2
== dend2
) break;
6946 /* If necessary, advance to next segment in data. */
6949 /* How many characters left in this segment to match. */
6952 /* Want how many consecutive characters we can match in
6953 one shot, so, if necessary, adjust the count. */
6954 if (mcnt
> dend2
- d2
)
6957 /* Compare that many; failure if mismatch, else move
6960 ? PREFIX(bcmp_translate
) (d
, d2
, mcnt
, translate
)
6961 : memcmp (d
, d2
, mcnt
*sizeof(UCHAR_T
)))
6963 d
+= mcnt
, d2
+= mcnt
;
6965 /* Do this because we've match some characters. */
6966 SET_REGS_MATCHED ();
6972 /* begline matches the empty string at the beginning of the string
6973 (unless `not_bol' is set in `bufp'), and, if
6974 `newline_anchor' is set, after newlines. */
6976 DEBUG_PRINT1 ("EXECUTING begline.\n");
6978 if (AT_STRINGS_BEG (d
))
6980 if (!bufp
->not_bol
) break;
6982 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
6986 /* In all other cases, we fail. */
6990 /* endline is the dual of begline. */
6992 DEBUG_PRINT1 ("EXECUTING endline.\n");
6994 if (AT_STRINGS_END (d
))
6996 if (!bufp
->not_eol
) break;
6999 /* We have to ``prefetch'' the next character. */
7000 else if ((d
== end1
? *string2
: *d
) == '\n'
7001 && bufp
->newline_anchor
)
7008 /* Match at the very beginning of the data. */
7010 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
7011 if (AT_STRINGS_BEG (d
))
7016 /* Match at the very end of the data. */
7018 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
7019 if (AT_STRINGS_END (d
))
7024 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
7025 pushes NULL as the value for the string on the stack. Then
7026 `pop_failure_point' will keep the current value for the
7027 string, instead of restoring it. To see why, consider
7028 matching `foo\nbar' against `.*\n'. The .* matches the foo;
7029 then the . fails against the \n. But the next thing we want
7030 to do is match the \n against the \n; if we restored the
7031 string value, we would be back at the foo.
7033 Because this is used only in specific cases, we don't need to
7034 check all the things that `on_failure_jump' does, to make
7035 sure the right things get saved on the stack. Hence we don't
7036 share its code. The only reason to push anything on the
7037 stack at all is that otherwise we would have to change
7038 `anychar's code to do something besides goto fail in this
7039 case; that seems worse than this. */
7040 case on_failure_keep_string_jump
:
7041 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
7043 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7045 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
7047 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
7050 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
7054 /* Uses of on_failure_jump:
7056 Each alternative starts with an on_failure_jump that points
7057 to the beginning of the next alternative. Each alternative
7058 except the last ends with a jump that in effect jumps past
7059 the rest of the alternatives. (They really jump to the
7060 ending jump of the following alternative, because tensioning
7061 these jumps is a hassle.)
7063 Repeats start with an on_failure_jump that points past both
7064 the repetition text and either the following jump or
7065 pop_failure_jump back to this on_failure_jump. */
7066 case on_failure_jump
:
7068 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7070 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7072 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
7074 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
7077 /* If this on_failure_jump comes right before a group (i.e.,
7078 the original * applied to a group), save the information
7079 for that group and all inner ones, so that if we fail back
7080 to this point, the group's information will be correct.
7081 For example, in \(a*\)*\1, we need the preceding group,
7082 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7084 /* We can't use `p' to check ahead because we push
7085 a failure point to `p + mcnt' after we do this. */
7088 /* We need to skip no_op's before we look for the
7089 start_memory in case this on_failure_jump is happening as
7090 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7092 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
7095 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
7097 /* We have a new highest active register now. This will
7098 get reset at the start_memory we are about to get to,
7099 but we will have saved all the registers relevant to
7100 this repetition op, as described above. */
7101 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
7102 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
7103 lowest_active_reg
= *(p1
+ 1);
7106 DEBUG_PRINT1 (":\n");
7107 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
7111 /* A smart repeat ends with `maybe_pop_jump'.
7112 We change it to either `pop_failure_jump' or `jump'. */
7113 case maybe_pop_jump
:
7114 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7115 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
7117 register UCHAR_T
*p2
= p
;
7119 /* Compare the beginning of the repeat with what in the
7120 pattern follows its end. If we can establish that there
7121 is nothing that they would both match, i.e., that we
7122 would have to backtrack because of (as in, e.g., `a*a')
7123 then we can change to pop_failure_jump, because we'll
7124 never have to backtrack.
7126 This is not true in the case of alternatives: in
7127 `(a|ab)*' we do need to backtrack to the `ab' alternative
7128 (e.g., if the string was `ab'). But instead of trying to
7129 detect that here, the alternative has put on a dummy
7130 failure point which is what we will end up popping. */
7132 /* Skip over open/close-group commands.
7133 If what follows this loop is a ...+ construct,
7134 look at what begins its body, since we will have to
7135 match at least one of that. */
7139 && ((re_opcode_t
) *p2
== stop_memory
7140 || (re_opcode_t
) *p2
== start_memory
))
7142 else if (p2
+ 2 + 2 * OFFSET_ADDRESS_SIZE
< pend
7143 && (re_opcode_t
) *p2
== dummy_failure_jump
)
7144 p2
+= 2 + 2 * OFFSET_ADDRESS_SIZE
;
7150 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7151 to the `maybe_finalize_jump' of this case. Examine what
7154 /* If we're at the end of the pattern, we can change. */
7157 /* Consider what happens when matching ":\(.*\)"
7158 against ":/". I don't really understand this code
7160 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7163 (" End of pattern: change to `pop_failure_jump'.\n");
7166 else if ((re_opcode_t
) *p2
== exactn
7168 || (re_opcode_t
) *p2
== exactn_bin
7170 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
7173 = *p2
== (UCHAR_T
) endline
? '\n' : p2
[2];
7175 if (((re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn
7177 || (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn_bin
7179 ) && p1
[3+OFFSET_ADDRESS_SIZE
] != c
)
7181 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7184 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7186 (wint_t) p1
[3+OFFSET_ADDRESS_SIZE
]);
7188 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7190 (char) p1
[3+OFFSET_ADDRESS_SIZE
]);
7195 else if ((re_opcode_t
) p1
[3] == charset
7196 || (re_opcode_t
) p1
[3] == charset_not
)
7198 int not = (re_opcode_t
) p1
[3] == charset_not
;
7200 if (c
< (unsigned) (p1
[4] * BYTEWIDTH
)
7201 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
7204 /* `not' is equal to 1 if c would match, which means
7205 that we can't change to pop_failure_jump. */
7208 p
[-3] = (unsigned char) pop_failure_jump
;
7209 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7212 #endif /* not WCHAR */
7215 else if ((re_opcode_t
) *p2
== charset
)
7217 /* We win if the first character of the loop is not part
7219 if ((re_opcode_t
) p1
[3] == exactn
7220 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
7221 && (p2
[2 + p1
[5] / BYTEWIDTH
]
7222 & (1 << (p1
[5] % BYTEWIDTH
)))))
7224 p
[-3] = (unsigned char) pop_failure_jump
;
7225 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7228 else if ((re_opcode_t
) p1
[3] == charset_not
)
7231 /* We win if the charset_not inside the loop
7232 lists every character listed in the charset after. */
7233 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
7234 if (! (p2
[2 + idx
] == 0
7235 || (idx
< (int) p1
[4]
7236 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
7241 p
[-3] = (unsigned char) pop_failure_jump
;
7242 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7245 else if ((re_opcode_t
) p1
[3] == charset
)
7248 /* We win if the charset inside the loop
7249 has no overlap with the one after the loop. */
7251 idx
< (int) p2
[1] && idx
< (int) p1
[4];
7253 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
7256 if (idx
== p2
[1] || idx
== p1
[4])
7258 p
[-3] = (unsigned char) pop_failure_jump
;
7259 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7263 #endif /* not WCHAR */
7265 p
-= OFFSET_ADDRESS_SIZE
; /* Point at relative address again. */
7266 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
7268 p
[-1] = (UCHAR_T
) jump
;
7269 DEBUG_PRINT1 (" Match => jump.\n");
7270 goto unconditional_jump
;
7272 /* Note fall through. */
7275 /* The end of a simple repeat has a pop_failure_jump back to
7276 its matching on_failure_jump, where the latter will push a
7277 failure point. The pop_failure_jump takes off failure
7278 points put on by this pop_failure_jump's matching
7279 on_failure_jump; we got through the pattern to here from the
7280 matching on_failure_jump, so didn't fail. */
7281 case pop_failure_jump
:
7283 /* We need to pass separate storage for the lowest and
7284 highest registers, even though we don't care about the
7285 actual values. Otherwise, we will restore only one
7286 register from the stack, since lowest will == highest in
7287 `pop_failure_point'. */
7288 active_reg_t dummy_low_reg
, dummy_high_reg
;
7289 UCHAR_T
*pdummy
= NULL
;
7290 const CHAR_T
*sdummy
= NULL
;
7292 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7293 POP_FAILURE_POINT (sdummy
, pdummy
,
7294 dummy_low_reg
, dummy_high_reg
,
7295 reg_dummy
, reg_dummy
, reg_info_dummy
);
7297 /* Note fall through. */
7301 DEBUG_PRINT2 ("\n%p: ", p
);
7303 DEBUG_PRINT2 ("\n0x%x: ", p
);
7305 /* Note fall through. */
7307 /* Unconditionally jump (without popping any failure points). */
7309 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
7310 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
7311 p
+= mcnt
; /* Do the jump. */
7313 DEBUG_PRINT2 ("(to %p).\n", p
);
7315 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
7320 /* We need this opcode so we can detect where alternatives end
7321 in `group_match_null_string_p' et al. */
7323 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7324 goto unconditional_jump
;
7327 /* Normally, the on_failure_jump pushes a failure point, which
7328 then gets popped at pop_failure_jump. We will end up at
7329 pop_failure_jump, also, and with a pattern of, say, `a+', we
7330 are skipping over the on_failure_jump, so we have to push
7331 something meaningless for pop_failure_jump to pop. */
7332 case dummy_failure_jump
:
7333 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7334 /* It doesn't matter what we push for the string here. What
7335 the code at `fail' tests is the value for the pattern. */
7336 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7337 goto unconditional_jump
;
7340 /* At the end of an alternative, we need to push a dummy failure
7341 point in case we are followed by a `pop_failure_jump', because
7342 we don't want the failure point for the alternative to be
7343 popped. For example, matching `(a|ab)*' against `aab'
7344 requires that we match the `ab' alternative. */
7345 case push_dummy_failure
:
7346 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7347 /* See comments just above at `dummy_failure_jump' about the
7349 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7352 /* Have to succeed matching what follows at least n times.
7353 After that, handle like `on_failure_jump'. */
7355 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7356 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
7359 /* Originally, this is how many times we HAVE to succeed. */
7363 p
+= OFFSET_ADDRESS_SIZE
;
7364 STORE_NUMBER_AND_INCR (p
, mcnt
);
7366 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- OFFSET_ADDRESS_SIZE
7369 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- OFFSET_ADDRESS_SIZE
7376 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7377 p
+ OFFSET_ADDRESS_SIZE
);
7379 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7380 p
+ OFFSET_ADDRESS_SIZE
);
7384 p
[1] = (UCHAR_T
) no_op
;
7386 p
[2] = (UCHAR_T
) no_op
;
7387 p
[3] = (UCHAR_T
) no_op
;
7394 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7395 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
7397 /* Originally, this is how many times we CAN jump. */
7401 STORE_NUMBER (p
+ OFFSET_ADDRESS_SIZE
, mcnt
);
7404 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7407 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7410 goto unconditional_jump
;
7412 /* If don't have to jump any more, skip over the rest of command. */
7414 p
+= 2 * OFFSET_ADDRESS_SIZE
;
7419 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7421 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7423 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7425 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
7427 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
7429 STORE_NUMBER (p1
, mcnt
);
7434 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7435 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7436 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7437 macro and introducing temporary variables works around the bug. */
7440 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7441 if (AT_WORD_BOUNDARY (d
))
7446 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7447 if (AT_WORD_BOUNDARY (d
))
7453 boolean prevchar
, thischar
;
7455 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7456 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7459 prevchar
= WORDCHAR_P (d
- 1);
7460 thischar
= WORDCHAR_P (d
);
7461 if (prevchar
!= thischar
)
7468 boolean prevchar
, thischar
;
7470 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7471 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7474 prevchar
= WORDCHAR_P (d
- 1);
7475 thischar
= WORDCHAR_P (d
);
7476 if (prevchar
!= thischar
)
7483 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7484 if (!AT_STRINGS_END (d
) && WORDCHAR_P (d
)
7485 && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
7490 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7491 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
7492 && (AT_STRINGS_END (d
) || !WORDCHAR_P (d
)))
7498 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7499 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
7504 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7505 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
7510 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7511 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
7516 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
7521 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7525 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7527 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
7529 SET_REGS_MATCHED ();
7533 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
7535 goto matchnotsyntax
;
7538 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7542 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7544 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
7546 SET_REGS_MATCHED ();
7549 #else /* not emacs */
7551 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7553 if (!WORDCHAR_P (d
))
7555 SET_REGS_MATCHED ();
7560 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7564 SET_REGS_MATCHED ();
7567 #endif /* not emacs */
7572 continue; /* Successfully executed one pattern command; keep going. */
7575 /* We goto here if a matching operation fails. */
7577 if (!FAIL_STACK_EMPTY ())
7578 { /* A restart point is known. Restore to that state. */
7579 DEBUG_PRINT1 ("\nFAIL:\n");
7580 POP_FAILURE_POINT (d
, p
,
7581 lowest_active_reg
, highest_active_reg
,
7582 regstart
, regend
, reg_info
);
7584 /* If this failure point is a dummy, try the next one. */
7588 /* If we failed to the end of the pattern, don't examine *p. */
7592 boolean is_a_jump_n
= false;
7594 /* If failed to a backwards jump that's part of a repetition
7595 loop, need to pop this failure point and use the next one. */
7596 switch ((re_opcode_t
) *p
)
7600 case maybe_pop_jump
:
7601 case pop_failure_jump
:
7604 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7607 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
7609 && (re_opcode_t
) *p1
== on_failure_jump
))
7617 if (d
>= string1
&& d
<= end1
)
7621 break; /* Matching at this starting point really fails. */
7625 goto restore_best_regs
;
7629 return -1; /* Failure to match. */
7632 /* Subroutine definitions for re_match_2. */
7635 /* We are passed P pointing to a register number after a start_memory.
7637 Return true if the pattern up to the corresponding stop_memory can
7638 match the empty string, and false otherwise.
7640 If we find the matching stop_memory, sets P to point to one past its number.
7641 Otherwise, sets P to an undefined byte less than or equal to END.
7643 We don't handle duplicates properly (yet). */
7646 PREFIX(group_match_null_string_p
) (p
, end
, reg_info
)
7648 PREFIX(register_info_type
) *reg_info
;
7651 /* Point to after the args to the start_memory. */
7652 UCHAR_T
*p1
= *p
+ 2;
7656 /* Skip over opcodes that can match nothing, and return true or
7657 false, as appropriate, when we get to one that can't, or to the
7658 matching stop_memory. */
7660 switch ((re_opcode_t
) *p1
)
7662 /* Could be either a loop or a series of alternatives. */
7663 case on_failure_jump
:
7665 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7667 /* If the next operation is not a jump backwards in the
7672 /* Go through the on_failure_jumps of the alternatives,
7673 seeing if any of the alternatives cannot match nothing.
7674 The last alternative starts with only a jump,
7675 whereas the rest start with on_failure_jump and end
7676 with a jump, e.g., here is the pattern for `a|b|c':
7678 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7679 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7682 So, we have to first go through the first (n-1)
7683 alternatives and then deal with the last one separately. */
7686 /* Deal with the first (n-1) alternatives, which start
7687 with an on_failure_jump (see above) that jumps to right
7688 past a jump_past_alt. */
7690 while ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] ==
7693 /* `mcnt' holds how many bytes long the alternative
7694 is, including the ending `jump_past_alt' and
7697 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
-
7698 (1 + OFFSET_ADDRESS_SIZE
),
7702 /* Move to right after this alternative, including the
7706 /* Break if it's the beginning of an n-th alternative
7707 that doesn't begin with an on_failure_jump. */
7708 if ((re_opcode_t
) *p1
!= on_failure_jump
)
7711 /* Still have to check that it's not an n-th
7712 alternative that starts with an on_failure_jump. */
7714 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7715 if ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] !=
7718 /* Get to the beginning of the n-th alternative. */
7719 p1
-= 1 + OFFSET_ADDRESS_SIZE
;
7724 /* Deal with the last alternative: go back and get number
7725 of the `jump_past_alt' just before it. `mcnt' contains
7726 the length of the alternative. */
7727 EXTRACT_NUMBER (mcnt
, p1
- OFFSET_ADDRESS_SIZE
);
7729 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
, reg_info
))
7732 p1
+= mcnt
; /* Get past the n-th alternative. */
7738 assert (p1
[1] == **p
);
7744 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7747 } /* while p1 < end */
7750 } /* group_match_null_string_p */
7753 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7754 It expects P to be the first byte of a single alternative and END one
7755 byte past the last. The alternative can contain groups. */
7758 PREFIX(alt_match_null_string_p
) (p
, end
, reg_info
)
7760 PREFIX(register_info_type
) *reg_info
;
7767 /* Skip over opcodes that can match nothing, and break when we get
7768 to one that can't. */
7770 switch ((re_opcode_t
) *p1
)
7773 case on_failure_jump
:
7775 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7780 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7783 } /* while p1 < end */
7786 } /* alt_match_null_string_p */
7789 /* Deals with the ops common to group_match_null_string_p and
7790 alt_match_null_string_p.
7792 Sets P to one after the op and its arguments, if any. */
7795 PREFIX(common_op_match_null_string_p
) (p
, end
, reg_info
)
7797 PREFIX(register_info_type
) *reg_info
;
7804 switch ((re_opcode_t
) *p1
++)
7824 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
7825 ret
= PREFIX(group_match_null_string_p
) (&p1
, end
, reg_info
);
7827 /* Have to set this here in case we're checking a group which
7828 contains a group and a back reference to it. */
7830 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
7831 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
7837 /* If this is an optimized succeed_n for zero times, make the jump. */
7839 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7847 /* Get to the number of times to succeed. */
7848 p1
+= OFFSET_ADDRESS_SIZE
;
7849 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7853 p1
-= 2 * OFFSET_ADDRESS_SIZE
;
7854 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7862 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
7867 p1
+= 2 * OFFSET_ADDRESS_SIZE
;
7870 /* All other opcodes mean we cannot match the empty string. */
7876 } /* common_op_match_null_string_p */
7879 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7880 bytes; nonzero otherwise. */
7883 PREFIX(bcmp_translate
) (s1
, s2
, len
, translate
)
7884 const CHAR_T
*s1
, *s2
;
7886 RE_TRANSLATE_TYPE translate
;
7888 register const UCHAR_T
*p1
= (const UCHAR_T
*) s1
;
7889 register const UCHAR_T
*p2
= (const UCHAR_T
*) s2
;
7893 if (((*p1
<=0xff)?translate
[*p1
++]:*p1
++)
7894 != ((*p2
<=0xff)?translate
[*p2
++]:*p2
++))
7897 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
7905 #else /* not INSIDE_RECURSION */
7907 /* Entry points for GNU code. */
7909 /* re_compile_pattern is the GNU regular expression compiler: it
7910 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7911 Returns 0 if the pattern was valid, otherwise an error string.
7913 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7914 are set in BUFP on entry.
7916 We call regex_compile to do the actual compilation. */
7919 re_compile_pattern (pattern
, length
, bufp
)
7920 const char *pattern
;
7922 struct re_pattern_buffer
*bufp
;
7926 /* GNU code is written to assume at least RE_NREGS registers will be set
7927 (and at least one extra will be -1). */
7928 bufp
->regs_allocated
= REGS_UNALLOCATED
;
7930 /* And GNU code determines whether or not to get register information
7931 by passing null for the REGS argument to re_match, etc., not by
7935 /* Match anchors at newline. */
7936 bufp
->newline_anchor
= 1;
7939 if (MB_CUR_MAX
!= 1)
7940 ret
= wcs_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7943 ret
= byte_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7947 return gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
7950 weak_alias (__re_compile_pattern
, re_compile_pattern
)
7953 /* Entry points compatible with 4.2 BSD regex library. We don't define
7954 them unless specifically requested. */
7956 #if defined _REGEX_RE_COMP || defined _LIBC
7958 /* BSD has one and only one pattern buffer. */
7959 static struct re_pattern_buffer re_comp_buf
;
7963 /* Make these definitions weak in libc, so POSIX programs can redefine
7964 these names if they don't use our functions, and still use
7965 regcomp/regexec below without link errors. */
7975 if (!re_comp_buf
.buffer
)
7976 return gettext ("No previous regular expression");
7980 if (!re_comp_buf
.buffer
)
7982 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
7983 if (re_comp_buf
.buffer
== NULL
)
7984 return (char *) gettext (re_error_msgid
7985 + re_error_msgid_idx
[(int) REG_ESPACE
]);
7986 re_comp_buf
.allocated
= 200;
7988 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
7989 if (re_comp_buf
.fastmap
== NULL
)
7990 return (char *) gettext (re_error_msgid
7991 + re_error_msgid_idx
[(int) REG_ESPACE
]);
7994 /* Since `re_exec' always passes NULL for the `regs' argument, we
7995 don't need to initialize the pattern buffer fields which affect it. */
7997 /* Match anchors at newlines. */
7998 re_comp_buf
.newline_anchor
= 1;
8001 if (MB_CUR_MAX
!= 1)
8002 ret
= wcs_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
8005 ret
= byte_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
8010 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
8011 return (char *) gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
8022 const int len
= strlen (s
);
8024 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
8027 #endif /* _REGEX_RE_COMP */
8029 /* POSIX.2 functions. Don't define these for Emacs. */
8033 /* regcomp takes a regular expression as a string and compiles it.
8035 PREG is a regex_t *. We do not expect any fields to be initialized,
8036 since POSIX says we shouldn't. Thus, we set
8038 `buffer' to the compiled pattern;
8039 `used' to the length of the compiled pattern;
8040 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
8041 REG_EXTENDED bit in CFLAGS is set; otherwise, to
8042 RE_SYNTAX_POSIX_BASIC;
8043 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
8044 `fastmap' to an allocated space for the fastmap;
8045 `fastmap_accurate' to zero;
8046 `re_nsub' to the number of subexpressions in PATTERN.
8048 PATTERN is the address of the pattern string.
8050 CFLAGS is a series of bits which affect compilation.
8052 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8053 use POSIX basic syntax.
8055 If REG_NEWLINE is set, then . and [^...] don't match newline.
8056 Also, regexec will try a match beginning after every newline.
8058 If REG_ICASE is set, then we considers upper- and lowercase
8059 versions of letters to be equivalent when matching.
8061 If REG_NOSUB is set, then when PREG is passed to regexec, that
8062 routine will report only success or failure, and nothing about the
8065 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8066 the return codes and their meanings.) */
8069 regcomp (preg
, pattern
, cflags
)
8071 const char *pattern
;
8076 = (cflags
& REG_EXTENDED
) ?
8077 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
8079 /* regex_compile will allocate the space for the compiled pattern. */
8081 preg
->allocated
= 0;
8084 /* Try to allocate space for the fastmap. */
8085 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
8087 if (cflags
& REG_ICASE
)
8092 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
8093 * sizeof (*(RE_TRANSLATE_TYPE
)0));
8094 if (preg
->translate
== NULL
)
8095 return (int) REG_ESPACE
;
8097 /* Map uppercase characters to corresponding lowercase ones. */
8098 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
8099 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
8102 preg
->translate
= NULL
;
8104 /* If REG_NEWLINE is set, newlines are treated differently. */
8105 if (cflags
& REG_NEWLINE
)
8106 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8107 syntax
&= ~RE_DOT_NEWLINE
;
8108 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
8109 /* It also changes the matching behavior. */
8110 preg
->newline_anchor
= 1;
8113 preg
->newline_anchor
= 0;
8115 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
8117 /* POSIX says a null character in the pattern terminates it, so we
8118 can use strlen here in compiling the pattern. */
8120 if (MB_CUR_MAX
!= 1)
8121 ret
= wcs_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8124 ret
= byte_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8126 /* POSIX doesn't distinguish between an unmatched open-group and an
8127 unmatched close-group: both are REG_EPAREN. */
8128 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
8130 if (ret
== REG_NOERROR
&& preg
->fastmap
)
8132 /* Compute the fastmap now, since regexec cannot modify the pattern
8134 if (re_compile_fastmap (preg
) == -2)
8136 /* Some error occurred while computing the fastmap, just forget
8138 free (preg
->fastmap
);
8139 preg
->fastmap
= NULL
;
8146 weak_alias (__regcomp
, regcomp
)
8150 /* regexec searches for a given pattern, specified by PREG, in the
8153 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8154 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8155 least NMATCH elements, and we set them to the offsets of the
8156 corresponding matched substrings.
8158 EFLAGS specifies `execution flags' which affect matching: if
8159 REG_NOTBOL is set, then ^ does not match at the beginning of the
8160 string; if REG_NOTEOL is set, then $ does not match at the end.
8162 We return 0 if we find a match and REG_NOMATCH if not. */
8165 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
8166 const regex_t
*preg
;
8169 regmatch_t pmatch
[];
8173 struct re_registers regs
;
8174 regex_t private_preg
;
8175 int len
= strlen (string
);
8176 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
8178 private_preg
= *preg
;
8180 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
8181 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
8183 /* The user has told us exactly how many registers to return
8184 information about, via `nmatch'. We have to pass that on to the
8185 matching routines. */
8186 private_preg
.regs_allocated
= REGS_FIXED
;
8190 regs
.num_regs
= nmatch
;
8191 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
8192 if (regs
.start
== NULL
)
8193 return (int) REG_NOMATCH
;
8194 regs
.end
= regs
.start
+ nmatch
;
8197 /* Perform the searching operation. */
8198 ret
= re_search (&private_preg
, string
, len
,
8199 /* start: */ 0, /* range: */ len
,
8200 want_reg_info
? ®s
: (struct re_registers
*) 0);
8202 /* Copy the register information to the POSIX structure. */
8209 for (r
= 0; r
< nmatch
; r
++)
8211 pmatch
[r
].rm_so
= regs
.start
[r
];
8212 pmatch
[r
].rm_eo
= regs
.end
[r
];
8216 /* If we needed the temporary register info, free the space now. */
8220 /* We want zero return to mean success, unlike `re_search'. */
8221 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
8224 weak_alias (__regexec
, regexec
)
8228 /* Returns a message corresponding to an error code, ERRCODE, returned
8229 from either regcomp or regexec. We don't use PREG here. */
8232 regerror (errcode
, preg
, errbuf
, errbuf_size
)
8234 const regex_t
*preg
;
8242 || errcode
>= (int) (sizeof (re_error_msgid_idx
)
8243 / sizeof (re_error_msgid_idx
[0])))
8244 /* Only error codes returned by the rest of the code should be passed
8245 to this routine. If we are given anything else, or if other regex
8246 code generates an invalid error code, then the program has a bug.
8247 Dump core so we can fix it. */
8250 msg
= gettext (re_error_msgid
+ re_error_msgid_idx
[errcode
]);
8252 msg_size
= strlen (msg
) + 1; /* Includes the null. */
8254 if (errbuf_size
!= 0)
8256 if (msg_size
> errbuf_size
)
8258 #if defined HAVE_MEMPCPY || defined _LIBC
8259 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
8261 memcpy (errbuf
, msg
, errbuf_size
- 1);
8262 errbuf
[errbuf_size
- 1] = 0;
8266 memcpy (errbuf
, msg
, msg_size
);
8272 weak_alias (__regerror
, regerror
)
8276 /* Free dynamically allocated space used by PREG. */
8282 if (preg
->buffer
!= NULL
)
8283 free (preg
->buffer
);
8284 preg
->buffer
= NULL
;
8286 preg
->allocated
= 0;
8289 if (preg
->fastmap
!= NULL
)
8290 free (preg
->fastmap
);
8291 preg
->fastmap
= NULL
;
8292 preg
->fastmap_accurate
= 0;
8294 if (preg
->translate
!= NULL
)
8295 free (preg
->translate
);
8296 preg
->translate
= NULL
;
8299 weak_alias (__regfree
, regfree
)
8302 #endif /* not emacs */
8304 #endif /* not INSIDE_RECURSION */
8308 #undef STORE_NUMBER_AND_INCR
8309 #undef EXTRACT_NUMBER
8310 #undef EXTRACT_NUMBER_AND_INCR
8312 #undef DEBUG_PRINT_COMPILED_PATTERN
8313 #undef DEBUG_PRINT_DOUBLE_STRING
8315 #undef INIT_FAIL_STACK
8316 #undef RESET_FAIL_STACK
8317 #undef DOUBLE_FAIL_STACK
8318 #undef PUSH_PATTERN_OP
8319 #undef PUSH_FAILURE_POINTER
8320 #undef PUSH_FAILURE_INT
8321 #undef PUSH_FAILURE_ELT
8322 #undef POP_FAILURE_POINTER
8323 #undef POP_FAILURE_INT
8324 #undef POP_FAILURE_ELT
8327 #undef PUSH_FAILURE_POINT
8328 #undef POP_FAILURE_POINT
8330 #undef REG_UNSET_VALUE
8338 #undef INIT_BUF_SIZE
8339 #undef GET_BUFFER_SPACE
8347 #undef EXTEND_BUFFER
8348 #undef GET_UNSIGNED_NUMBER
8349 #undef FREE_STACK_RETURN
8351 # undef POINTER_TO_OFFSET
8352 # undef MATCHING_IN_FRST_STRING
8354 # undef AT_STRINGS_BEG
8355 # undef AT_STRINGS_END
8358 # undef FREE_VARIABLES
8359 # undef NO_HIGHEST_ACTIVE_REG
8360 # undef NO_LOWEST_ACTIVE_REG
8364 # undef COMPILED_BUFFER_VAR
8365 # undef OFFSET_ADDRESS_SIZE
8366 # undef CHAR_CLASS_SIZE
8373 # define DEFINED_ONCE