Update ChangeLog entry.
[binutils.git] / gold / arm.cc
blob76d466b97d4aa782617c8787df4c7c0a90179e79
1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
26 #include "gold.h"
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
55 namespace
58 using namespace gold;
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
64 class Stub_table;
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
81 class Arm_relobj;
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
90 class Target_arm;
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 // Thumb-2 and BE8.
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
134 class Insn_template
136 public:
137 // Types of instruction templates.
138 enum Type
140 THUMB16_TYPE = 1,
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
189 uint32_t
190 data() const
191 { return this->data_; }
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
208 size_t
209 size() const;
211 // Return byte-alignment of instruction template.
212 unsigned
213 alignment() const;
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
237 #define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
256 // Stub types.
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
261 arm_stub_none,
262 DEF_STUBS
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
274 // Last stub type.
275 arm_stub_type_last = arm_stub_v4_veneer_bx
276 } Stub_type;
277 #undef DEF_STUB
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
283 class Stub_template
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
288 ~Stub_template()
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
376 class Stub
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
382 public:
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
387 virtual
388 ~Stub()
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
405 void
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
432 virtual void
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
447 private:
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
470 Arm_address
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
512 if (symbol != NULL)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
517 else
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
525 ~Key()
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
564 size_t
565 hash_value() const
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
576 // Functors for STL associative containers.
577 struct hash
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
584 struct equal_to
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj. This is done to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
607 union
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
622 ~Reloc_stub()
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 // branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
663 public:
664 ~Cortex_a8_stub()
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
722 else
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
751 public:
752 ~Arm_v4bx_stub()
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
806 // Stub factory class.
808 class Stub_factory
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
815 static Stub_factory singleton;
816 return singleton;
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
854 Stub_factory();
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
869 public:
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
876 ~Stub_table()
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
884 // Whether this stub table is empty.
885 bool
886 empty() const
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
900 void
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
988 { return this->prev_addralign_; }
990 // Reset address and file offset.
991 void
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1000 private:
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1007 // Unordered map of relocation stubs.
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind : public Output_section_data
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1057 protected:
1058 void
1059 do_write(Output_file* of)
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1067 private:
1068 // Implement do_write for a given endianness.
1069 template<bool big_endian>
1070 void inline
1071 do_fixed_endian_write(Output_file*);
1073 // The object containing the section pointed by this.
1074 Relobj* relobj_;
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_;
1079 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section.
1083 typedef std::map<section_offset_type, section_offset_type>
1084 Arm_exidx_section_offset_map;
1086 // Arm_exidx_merged_section class. This represents an EXIDX input section
1087 // with some of its entries merged.
1089 class Arm_exidx_merged_section : public Output_relaxed_input_section
1091 public:
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section& exidx_input_section,
1099 const Arm_exidx_section_offset_map& section_offset_map,
1100 uint32_t deleted_bytes);
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_; }
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map&
1109 section_offset_map() const
1110 { return this->section_offset_map_; }
1112 protected:
1113 // Write merged section into file OF.
1114 void
1115 do_write(Output_file* of);
1117 bool
1118 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119 section_offset_type*) const;
1121 private:
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section& exidx_input_section_;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map& section_offset_map_;
1128 // A class to wrap an ordinary input section containing executable code.
1130 template<bool big_endian>
1131 class Arm_input_section : public Output_relaxed_input_section
1133 public:
1134 Arm_input_section(Relobj* relobj, unsigned int shndx)
1135 : Output_relaxed_input_section(relobj, shndx, 1),
1136 original_addralign_(1), original_size_(0), stub_table_(NULL)
1139 ~Arm_input_section()
1142 // Initialize.
1143 void
1144 init();
1146 // Whether this is a stub table owner.
1147 bool
1148 is_stub_table_owner() const
1149 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1151 // Return the stub table.
1152 Stub_table<big_endian>*
1153 stub_table() const
1154 { return this->stub_table_; }
1156 // Set the stub_table.
1157 void
1158 set_stub_table(Stub_table<big_endian>* stub_table)
1159 { this->stub_table_ = stub_table; }
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section<big_endian>*
1164 as_arm_input_section(Output_relaxed_input_section* poris)
1165 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1167 // Return the original size of the section.
1168 uint32_t
1169 original_size() const
1170 { return this->original_size_; }
1172 protected:
1173 // Write data to output file.
1174 void
1175 do_write(Output_file*);
1177 // Return required alignment of this.
1178 uint64_t
1179 do_addralign() const
1181 if (this->is_stub_table_owner())
1182 return std::max(this->stub_table_->addralign(),
1183 static_cast<uint64_t>(this->original_addralign_));
1184 else
1185 return this->original_addralign_;
1188 // Finalize data size.
1189 void
1190 set_final_data_size();
1192 // Reset address and file offset.
1193 void
1194 do_reset_address_and_file_offset();
1196 // Output offset.
1197 bool
1198 do_output_offset(const Relobj* object, unsigned int shndx,
1199 section_offset_type offset,
1200 section_offset_type* poutput) const
1202 if ((object == this->relobj())
1203 && (shndx == this->shndx())
1204 && (offset >= 0)
1205 && (offset <=
1206 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1208 *poutput = offset;
1209 return true;
1211 else
1212 return false;
1215 private:
1216 // Copying is not allowed.
1217 Arm_input_section(const Arm_input_section&);
1218 Arm_input_section& operator=(const Arm_input_section&);
1220 // Address alignment of the original input section.
1221 uint32_t original_addralign_;
1222 // Section size of the original input section.
1223 uint32_t original_size_;
1224 // Stub table.
1225 Stub_table<big_endian>* stub_table_;
1228 // Arm_exidx_fixup class. This is used to define a number of methods
1229 // and keep states for fixing up EXIDX coverage.
1231 class Arm_exidx_fixup
1233 public:
1234 Arm_exidx_fixup(Output_section* exidx_output_section,
1235 bool merge_exidx_entries = true)
1236 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1237 last_inlined_entry_(0), last_input_section_(NULL),
1238 section_offset_map_(NULL), first_output_text_section_(NULL),
1239 merge_exidx_entries_(merge_exidx_entries)
1242 ~Arm_exidx_fixup()
1243 { delete this->section_offset_map_; }
1245 // Process an EXIDX section for entry merging. Return number of bytes to
1246 // be deleted in output. If parts of the input EXIDX section are merged
1247 // a heap allocated Arm_exidx_section_offset_map is store in the located
1248 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1249 // releasing it.
1250 template<bool big_endian>
1251 uint32_t
1252 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1253 Arm_exidx_section_offset_map** psection_offset_map);
1255 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1256 // input section, if there is not one already.
1257 void
1258 add_exidx_cantunwind_as_needed();
1260 // Return the output section for the text section which is linked to the
1261 // first exidx input in output.
1262 Output_section*
1263 first_output_text_section() const
1264 { return this->first_output_text_section_; }
1266 private:
1267 // Copying is not allowed.
1268 Arm_exidx_fixup(const Arm_exidx_fixup&);
1269 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1271 // Type of EXIDX unwind entry.
1272 enum Unwind_type
1274 // No type.
1275 UT_NONE,
1276 // EXIDX_CANTUNWIND.
1277 UT_EXIDX_CANTUNWIND,
1278 // Inlined entry.
1279 UT_INLINED_ENTRY,
1280 // Normal entry.
1281 UT_NORMAL_ENTRY,
1284 // Process an EXIDX entry. We only care about the second word of the
1285 // entry. Return true if the entry can be deleted.
1286 bool
1287 process_exidx_entry(uint32_t second_word);
1289 // Update the current section offset map during EXIDX section fix-up.
1290 // If there is no map, create one. INPUT_OFFSET is the offset of a
1291 // reference point, DELETED_BYTES is the number of deleted by in the
1292 // section so far. If DELETE_ENTRY is true, the reference point and
1293 // all offsets after the previous reference point are discarded.
1294 void
1295 update_offset_map(section_offset_type input_offset,
1296 section_size_type deleted_bytes, bool delete_entry);
1298 // EXIDX output section.
1299 Output_section* exidx_output_section_;
1300 // Unwind type of the last EXIDX entry processed.
1301 Unwind_type last_unwind_type_;
1302 // Last seen inlined EXIDX entry.
1303 uint32_t last_inlined_entry_;
1304 // Last processed EXIDX input section.
1305 const Arm_exidx_input_section* last_input_section_;
1306 // Section offset map created in process_exidx_section.
1307 Arm_exidx_section_offset_map* section_offset_map_;
1308 // Output section for the text section which is linked to the first exidx
1309 // input in output.
1310 Output_section* first_output_text_section_;
1312 bool merge_exidx_entries_;
1315 // Arm output section class. This is defined mainly to add a number of
1316 // stub generation methods.
1318 template<bool big_endian>
1319 class Arm_output_section : public Output_section
1321 public:
1322 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1324 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1325 elfcpp::Elf_Xword flags)
1326 : Output_section(name, type, flags)
1329 ~Arm_output_section()
1332 // Group input sections for stub generation.
1333 void
1334 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1336 // Downcast a base pointer to an Arm_output_section pointer. This is
1337 // not type-safe but we only use Arm_output_section not the base class.
1338 static Arm_output_section<big_endian>*
1339 as_arm_output_section(Output_section* os)
1340 { return static_cast<Arm_output_section<big_endian>*>(os); }
1342 // Append all input text sections in this into LIST.
1343 void
1344 append_text_sections_to_list(Text_section_list* list);
1346 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1347 // is a list of text input sections sorted in ascending order of their
1348 // output addresses.
1349 void
1350 fix_exidx_coverage(Layout* layout,
1351 const Text_section_list& sorted_text_section,
1352 Symbol_table* symtab,
1353 bool merge_exidx_entries);
1355 private:
1356 // For convenience.
1357 typedef Output_section::Input_section Input_section;
1358 typedef Output_section::Input_section_list Input_section_list;
1360 // Create a stub group.
1361 void create_stub_group(Input_section_list::const_iterator,
1362 Input_section_list::const_iterator,
1363 Input_section_list::const_iterator,
1364 Target_arm<big_endian>*,
1365 std::vector<Output_relaxed_input_section*>*);
1368 // Arm_exidx_input_section class. This represents an EXIDX input section.
1370 class Arm_exidx_input_section
1372 public:
1373 static const section_offset_type invalid_offset =
1374 static_cast<section_offset_type>(-1);
1376 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1377 unsigned int link, uint32_t size, uint32_t addralign)
1378 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1379 addralign_(addralign)
1382 ~Arm_exidx_input_section()
1385 // Accessors: This is a read-only class.
1387 // Return the object containing this EXIDX input section.
1388 Relobj*
1389 relobj() const
1390 { return this->relobj_; }
1392 // Return the section index of this EXIDX input section.
1393 unsigned int
1394 shndx() const
1395 { return this->shndx_; }
1397 // Return the section index of linked text section in the same object.
1398 unsigned int
1399 link() const
1400 { return this->link_; }
1402 // Return size of the EXIDX input section.
1403 uint32_t
1404 size() const
1405 { return this->size_; }
1407 // Reutnr address alignment of EXIDX input section.
1408 uint32_t
1409 addralign() const
1410 { return this->addralign_; }
1412 private:
1413 // Object containing this.
1414 Relobj* relobj_;
1415 // Section index of this.
1416 unsigned int shndx_;
1417 // text section linked to this in the same object.
1418 unsigned int link_;
1419 // Size of this. For ARM 32-bit is sufficient.
1420 uint32_t size_;
1421 // Address alignment of this. For ARM 32-bit is sufficient.
1422 uint32_t addralign_;
1425 // Arm_relobj class.
1427 template<bool big_endian>
1428 class Arm_relobj : public Sized_relobj<32, big_endian>
1430 public:
1431 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1433 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1434 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1435 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1436 stub_tables_(), local_symbol_is_thumb_function_(),
1437 attributes_section_data_(NULL), mapping_symbols_info_(),
1438 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1439 output_local_symbol_count_needs_update_(false),
1440 merge_flags_and_attributes_(true)
1443 ~Arm_relobj()
1444 { delete this->attributes_section_data_; }
1446 // Return the stub table of the SHNDX-th section if there is one.
1447 Stub_table<big_endian>*
1448 stub_table(unsigned int shndx) const
1450 gold_assert(shndx < this->stub_tables_.size());
1451 return this->stub_tables_[shndx];
1454 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1455 void
1456 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1458 gold_assert(shndx < this->stub_tables_.size());
1459 this->stub_tables_[shndx] = stub_table;
1462 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1463 // index. This is only valid after do_count_local_symbol is called.
1464 bool
1465 local_symbol_is_thumb_function(unsigned int r_sym) const
1467 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1468 return this->local_symbol_is_thumb_function_[r_sym];
1471 // Scan all relocation sections for stub generation.
1472 void
1473 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1474 const Layout*);
1476 // Convert regular input section with index SHNDX to a relaxed section.
1477 void
1478 convert_input_section_to_relaxed_section(unsigned shndx)
1480 // The stubs have relocations and we need to process them after writing
1481 // out the stubs. So relocation now must follow section write.
1482 this->set_section_offset(shndx, -1ULL);
1483 this->set_relocs_must_follow_section_writes();
1486 // Downcast a base pointer to an Arm_relobj pointer. This is
1487 // not type-safe but we only use Arm_relobj not the base class.
1488 static Arm_relobj<big_endian>*
1489 as_arm_relobj(Relobj* relobj)
1490 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1492 // Processor-specific flags in ELF file header. This is valid only after
1493 // reading symbols.
1494 elfcpp::Elf_Word
1495 processor_specific_flags() const
1496 { return this->processor_specific_flags_; }
1498 // Attribute section data This is the contents of the .ARM.attribute section
1499 // if there is one.
1500 const Attributes_section_data*
1501 attributes_section_data() const
1502 { return this->attributes_section_data_; }
1504 // Mapping symbol location.
1505 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1507 // Functor for STL container.
1508 struct Mapping_symbol_position_less
1510 bool
1511 operator()(const Mapping_symbol_position& p1,
1512 const Mapping_symbol_position& p2) const
1514 return (p1.first < p2.first
1515 || (p1.first == p2.first && p1.second < p2.second));
1519 // We only care about the first character of a mapping symbol, so
1520 // we only store that instead of the whole symbol name.
1521 typedef std::map<Mapping_symbol_position, char,
1522 Mapping_symbol_position_less> Mapping_symbols_info;
1524 // Whether a section contains any Cortex-A8 workaround.
1525 bool
1526 section_has_cortex_a8_workaround(unsigned int shndx) const
1528 return (this->section_has_cortex_a8_workaround_ != NULL
1529 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1532 // Mark a section that has Cortex-A8 workaround.
1533 void
1534 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1536 if (this->section_has_cortex_a8_workaround_ == NULL)
1537 this->section_has_cortex_a8_workaround_ =
1538 new std::vector<bool>(this->shnum(), false);
1539 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1542 // Return the EXIDX section of an text section with index SHNDX or NULL
1543 // if the text section has no associated EXIDX section.
1544 const Arm_exidx_input_section*
1545 exidx_input_section_by_link(unsigned int shndx) const
1547 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1548 return ((p != this->exidx_section_map_.end()
1549 && p->second->link() == shndx)
1550 ? p->second
1551 : NULL);
1554 // Return the EXIDX section with index SHNDX or NULL if there is none.
1555 const Arm_exidx_input_section*
1556 exidx_input_section_by_shndx(unsigned shndx) const
1558 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1559 return ((p != this->exidx_section_map_.end()
1560 && p->second->shndx() == shndx)
1561 ? p->second
1562 : NULL);
1565 // Whether output local symbol count needs updating.
1566 bool
1567 output_local_symbol_count_needs_update() const
1568 { return this->output_local_symbol_count_needs_update_; }
1570 // Set output_local_symbol_count_needs_update flag to be true.
1571 void
1572 set_output_local_symbol_count_needs_update()
1573 { this->output_local_symbol_count_needs_update_ = true; }
1575 // Update output local symbol count at the end of relaxation.
1576 void
1577 update_output_local_symbol_count();
1579 // Whether we want to merge processor-specific flags and attributes.
1580 bool
1581 merge_flags_and_attributes() const
1582 { return this->merge_flags_and_attributes_; }
1584 protected:
1585 // Post constructor setup.
1586 void
1587 do_setup()
1589 // Call parent's setup method.
1590 Sized_relobj<32, big_endian>::do_setup();
1592 // Initialize look-up tables.
1593 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1594 this->stub_tables_.swap(empty_stub_table_list);
1597 // Count the local symbols.
1598 void
1599 do_count_local_symbols(Stringpool_template<char>*,
1600 Stringpool_template<char>*);
1602 void
1603 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1604 const unsigned char* pshdrs,
1605 typename Sized_relobj<32, big_endian>::Views* pivews);
1607 // Read the symbol information.
1608 void
1609 do_read_symbols(Read_symbols_data* sd);
1611 // Process relocs for garbage collection.
1612 void
1613 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1615 private:
1617 // Whether a section needs to be scanned for relocation stubs.
1618 bool
1619 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1620 const Relobj::Output_sections&,
1621 const Symbol_table *, const unsigned char*);
1623 // Whether a section is a scannable text section.
1624 bool
1625 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1626 const Output_section*, const Symbol_table *);
1628 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1629 bool
1630 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1631 unsigned int, Output_section*,
1632 const Symbol_table *);
1634 // Scan a section for the Cortex-A8 erratum.
1635 void
1636 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1637 unsigned int, Output_section*,
1638 Target_arm<big_endian>*);
1640 // Find the linked text section of an EXIDX section by looking at the
1641 // first reloction of the EXIDX section. PSHDR points to the section
1642 // headers of a relocation section and PSYMS points to the local symbols.
1643 // PSHNDX points to a location storing the text section index if found.
1644 // Return whether we can find the linked section.
1645 bool
1646 find_linked_text_section(const unsigned char* pshdr,
1647 const unsigned char* psyms, unsigned int* pshndx);
1650 // Make a new Arm_exidx_input_section object for EXIDX section with
1651 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1652 // index of the linked text section.
1653 void
1654 make_exidx_input_section(unsigned int shndx,
1655 const elfcpp::Shdr<32, big_endian>& shdr,
1656 unsigned int text_shndx);
1658 // Return the output address of either a plain input section or a
1659 // relaxed input section. SHNDX is the section index.
1660 Arm_address
1661 simple_input_section_output_address(unsigned int, Output_section*);
1663 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1664 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1665 Exidx_section_map;
1667 // List of stub tables.
1668 Stub_table_list stub_tables_;
1669 // Bit vector to tell if a local symbol is a thumb function or not.
1670 // This is only valid after do_count_local_symbol is called.
1671 std::vector<bool> local_symbol_is_thumb_function_;
1672 // processor-specific flags in ELF file header.
1673 elfcpp::Elf_Word processor_specific_flags_;
1674 // Object attributes if there is an .ARM.attributes section or NULL.
1675 Attributes_section_data* attributes_section_data_;
1676 // Mapping symbols information.
1677 Mapping_symbols_info mapping_symbols_info_;
1678 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1679 std::vector<bool>* section_has_cortex_a8_workaround_;
1680 // Map a text section to its associated .ARM.exidx section, if there is one.
1681 Exidx_section_map exidx_section_map_;
1682 // Whether output local symbol count needs updating.
1683 bool output_local_symbol_count_needs_update_;
1684 // Whether we merge processor flags and attributes of this object to
1685 // output.
1686 bool merge_flags_and_attributes_;
1689 // Arm_dynobj class.
1691 template<bool big_endian>
1692 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1694 public:
1695 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1696 const elfcpp::Ehdr<32, big_endian>& ehdr)
1697 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1698 processor_specific_flags_(0), attributes_section_data_(NULL)
1701 ~Arm_dynobj()
1702 { delete this->attributes_section_data_; }
1704 // Downcast a base pointer to an Arm_relobj pointer. This is
1705 // not type-safe but we only use Arm_relobj not the base class.
1706 static Arm_dynobj<big_endian>*
1707 as_arm_dynobj(Dynobj* dynobj)
1708 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1710 // Processor-specific flags in ELF file header. This is valid only after
1711 // reading symbols.
1712 elfcpp::Elf_Word
1713 processor_specific_flags() const
1714 { return this->processor_specific_flags_; }
1716 // Attributes section data.
1717 const Attributes_section_data*
1718 attributes_section_data() const
1719 { return this->attributes_section_data_; }
1721 protected:
1722 // Read the symbol information.
1723 void
1724 do_read_symbols(Read_symbols_data* sd);
1726 private:
1727 // processor-specific flags in ELF file header.
1728 elfcpp::Elf_Word processor_specific_flags_;
1729 // Object attributes if there is an .ARM.attributes section or NULL.
1730 Attributes_section_data* attributes_section_data_;
1733 // Functor to read reloc addends during stub generation.
1735 template<int sh_type, bool big_endian>
1736 struct Stub_addend_reader
1738 // Return the addend for a relocation of a particular type. Depending
1739 // on whether this is a REL or RELA relocation, read the addend from a
1740 // view or from a Reloc object.
1741 elfcpp::Elf_types<32>::Elf_Swxword
1742 operator()(
1743 unsigned int /* r_type */,
1744 const unsigned char* /* view */,
1745 const typename Reloc_types<sh_type,
1746 32, big_endian>::Reloc& /* reloc */) const;
1749 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1751 template<bool big_endian>
1752 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1754 elfcpp::Elf_types<32>::Elf_Swxword
1755 operator()(
1756 unsigned int,
1757 const unsigned char*,
1758 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1761 // Specialized Stub_addend_reader for RELA type relocation sections.
1762 // We currently do not handle RELA type relocation sections but it is trivial
1763 // to implement the addend reader. This is provided for completeness and to
1764 // make it easier to add support for RELA relocation sections in the future.
1766 template<bool big_endian>
1767 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1769 elfcpp::Elf_types<32>::Elf_Swxword
1770 operator()(
1771 unsigned int,
1772 const unsigned char*,
1773 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1774 big_endian>::Reloc& reloc) const
1775 { return reloc.get_r_addend(); }
1778 // Cortex_a8_reloc class. We keep record of relocation that may need
1779 // the Cortex-A8 erratum workaround.
1781 class Cortex_a8_reloc
1783 public:
1784 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1785 Arm_address destination)
1786 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1789 ~Cortex_a8_reloc()
1792 // Accessors: This is a read-only class.
1794 // Return the relocation stub associated with this relocation if there is
1795 // one.
1796 const Reloc_stub*
1797 reloc_stub() const
1798 { return this->reloc_stub_; }
1800 // Return the relocation type.
1801 unsigned int
1802 r_type() const
1803 { return this->r_type_; }
1805 // Return the destination address of the relocation. LSB stores the THUMB
1806 // bit.
1807 Arm_address
1808 destination() const
1809 { return this->destination_; }
1811 private:
1812 // Associated relocation stub if there is one, or NULL.
1813 const Reloc_stub* reloc_stub_;
1814 // Relocation type.
1815 unsigned int r_type_;
1816 // Destination address of this relocation. LSB is used to distinguish
1817 // ARM/THUMB mode.
1818 Arm_address destination_;
1821 // Arm_output_data_got class. We derive this from Output_data_got to add
1822 // extra methods to handle TLS relocations in a static link.
1824 template<bool big_endian>
1825 class Arm_output_data_got : public Output_data_got<32, big_endian>
1827 public:
1828 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1829 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1832 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1833 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1834 // applied in a static link.
1835 void
1836 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1837 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1839 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1840 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1841 // relocation that needs to be applied in a static link.
1842 void
1843 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1844 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1846 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1847 index));
1850 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1851 // The first one is initialized to be 1, which is the module index for
1852 // the main executable and the second one 0. A reloc of the type
1853 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1854 // be applied by gold. GSYM is a global symbol.
1855 void
1856 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1858 // Same as the above but for a local symbol in OBJECT with INDEX.
1859 void
1860 add_tls_gd32_with_static_reloc(unsigned int got_type,
1861 Sized_relobj<32, big_endian>* object,
1862 unsigned int index);
1864 protected:
1865 // Write out the GOT table.
1866 void
1867 do_write(Output_file*);
1869 private:
1870 // This class represent dynamic relocations that need to be applied by
1871 // gold because we are using TLS relocations in a static link.
1872 class Static_reloc
1874 public:
1875 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1876 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1877 { this->u_.global.symbol = gsym; }
1879 Static_reloc(unsigned int got_offset, unsigned int r_type,
1880 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1881 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1883 this->u_.local.relobj = relobj;
1884 this->u_.local.index = index;
1887 // Return the GOT offset.
1888 unsigned int
1889 got_offset() const
1890 { return this->got_offset_; }
1892 // Relocation type.
1893 unsigned int
1894 r_type() const
1895 { return this->r_type_; }
1897 // Whether the symbol is global or not.
1898 bool
1899 symbol_is_global() const
1900 { return this->symbol_is_global_; }
1902 // For a relocation against a global symbol, the global symbol.
1903 Symbol*
1904 symbol() const
1906 gold_assert(this->symbol_is_global_);
1907 return this->u_.global.symbol;
1910 // For a relocation against a local symbol, the defining object.
1911 Sized_relobj<32, big_endian>*
1912 relobj() const
1914 gold_assert(!this->symbol_is_global_);
1915 return this->u_.local.relobj;
1918 // For a relocation against a local symbol, the local symbol index.
1919 unsigned int
1920 index() const
1922 gold_assert(!this->symbol_is_global_);
1923 return this->u_.local.index;
1926 private:
1927 // GOT offset of the entry to which this relocation is applied.
1928 unsigned int got_offset_;
1929 // Type of relocation.
1930 unsigned int r_type_;
1931 // Whether this relocation is against a global symbol.
1932 bool symbol_is_global_;
1933 // A global or local symbol.
1934 union
1936 struct
1938 // For a global symbol, the symbol itself.
1939 Symbol* symbol;
1940 } global;
1941 struct
1943 // For a local symbol, the object defining object.
1944 Sized_relobj<32, big_endian>* relobj;
1945 // For a local symbol, the symbol index.
1946 unsigned int index;
1947 } local;
1948 } u_;
1951 // Symbol table of the output object.
1952 Symbol_table* symbol_table_;
1953 // Layout of the output object.
1954 Layout* layout_;
1955 // Static relocs to be applied to the GOT.
1956 std::vector<Static_reloc> static_relocs_;
1959 // The ARM target has many relocation types with odd-sizes or incontigious
1960 // bits. The default handling of relocatable relocation cannot process these
1961 // relocations. So we have to extend the default code.
1963 template<bool big_endian, int sh_type, typename Classify_reloc>
1964 class Arm_scan_relocatable_relocs :
1965 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
1967 public:
1968 // Return the strategy to use for a local symbol which is a section
1969 // symbol, given the relocation type.
1970 inline Relocatable_relocs::Reloc_strategy
1971 local_section_strategy(unsigned int r_type, Relobj*)
1973 if (sh_type == elfcpp::SHT_RELA)
1974 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
1975 else
1977 if (r_type == elfcpp::R_ARM_TARGET1
1978 || r_type == elfcpp::R_ARM_TARGET2)
1980 const Target_arm<big_endian>* arm_target =
1981 Target_arm<big_endian>::default_target();
1982 r_type = arm_target->get_real_reloc_type(r_type);
1985 switch(r_type)
1987 // Relocations that write nothing. These exclude R_ARM_TARGET1
1988 // and R_ARM_TARGET2.
1989 case elfcpp::R_ARM_NONE:
1990 case elfcpp::R_ARM_V4BX:
1991 case elfcpp::R_ARM_TLS_GOTDESC:
1992 case elfcpp::R_ARM_TLS_CALL:
1993 case elfcpp::R_ARM_TLS_DESCSEQ:
1994 case elfcpp::R_ARM_THM_TLS_CALL:
1995 case elfcpp::R_ARM_GOTRELAX:
1996 case elfcpp::R_ARM_GNU_VTENTRY:
1997 case elfcpp::R_ARM_GNU_VTINHERIT:
1998 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
1999 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2000 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2001 // These should have been converted to something else above.
2002 case elfcpp::R_ARM_TARGET1:
2003 case elfcpp::R_ARM_TARGET2:
2004 gold_unreachable();
2005 // Relocations that write full 32 bits.
2006 case elfcpp::R_ARM_ABS32:
2007 case elfcpp::R_ARM_REL32:
2008 case elfcpp::R_ARM_SBREL32:
2009 case elfcpp::R_ARM_GOTOFF32:
2010 case elfcpp::R_ARM_BASE_PREL:
2011 case elfcpp::R_ARM_GOT_BREL:
2012 case elfcpp::R_ARM_BASE_ABS:
2013 case elfcpp::R_ARM_ABS32_NOI:
2014 case elfcpp::R_ARM_REL32_NOI:
2015 case elfcpp::R_ARM_PLT32_ABS:
2016 case elfcpp::R_ARM_GOT_ABS:
2017 case elfcpp::R_ARM_GOT_PREL:
2018 case elfcpp::R_ARM_TLS_GD32:
2019 case elfcpp::R_ARM_TLS_LDM32:
2020 case elfcpp::R_ARM_TLS_LDO32:
2021 case elfcpp::R_ARM_TLS_IE32:
2022 case elfcpp::R_ARM_TLS_LE32:
2023 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2024 default:
2025 // For all other static relocations, return RELOC_SPECIAL.
2026 return Relocatable_relocs::RELOC_SPECIAL;
2032 // Utilities for manipulating integers of up to 32-bits
2034 namespace utils
2036 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2037 // an int32_t. NO_BITS must be between 1 to 32.
2038 template<int no_bits>
2039 static inline int32_t
2040 sign_extend(uint32_t bits)
2042 gold_assert(no_bits >= 0 && no_bits <= 32);
2043 if (no_bits == 32)
2044 return static_cast<int32_t>(bits);
2045 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2046 bits &= mask;
2047 uint32_t top_bit = 1U << (no_bits - 1);
2048 int32_t as_signed = static_cast<int32_t>(bits);
2049 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2052 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2053 template<int no_bits>
2054 static inline bool
2055 has_overflow(uint32_t bits)
2057 gold_assert(no_bits >= 0 && no_bits <= 32);
2058 if (no_bits == 32)
2059 return false;
2060 int32_t max = (1 << (no_bits - 1)) - 1;
2061 int32_t min = -(1 << (no_bits - 1));
2062 int32_t as_signed = static_cast<int32_t>(bits);
2063 return as_signed > max || as_signed < min;
2066 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2067 // fits in the given number of bits as either a signed or unsigned value.
2068 // For example, has_signed_unsigned_overflow<8> would check
2069 // -128 <= bits <= 255
2070 template<int no_bits>
2071 static inline bool
2072 has_signed_unsigned_overflow(uint32_t bits)
2074 gold_assert(no_bits >= 2 && no_bits <= 32);
2075 if (no_bits == 32)
2076 return false;
2077 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2078 int32_t min = -(1 << (no_bits - 1));
2079 int32_t as_signed = static_cast<int32_t>(bits);
2080 return as_signed > max || as_signed < min;
2083 // Select bits from A and B using bits in MASK. For each n in [0..31],
2084 // the n-th bit in the result is chosen from the n-th bits of A and B.
2085 // A zero selects A and a one selects B.
2086 static inline uint32_t
2087 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2088 { return (a & ~mask) | (b & mask); }
2091 template<bool big_endian>
2092 class Target_arm : public Sized_target<32, big_endian>
2094 public:
2095 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2096 Reloc_section;
2098 // When were are relocating a stub, we pass this as the relocation number.
2099 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2101 Target_arm()
2102 : Sized_target<32, big_endian>(&arm_info),
2103 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2104 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2105 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2106 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2107 may_use_blx_(false), should_force_pic_veneer_(false),
2108 arm_input_section_map_(), attributes_section_data_(NULL),
2109 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2112 // Virtual function which is set to return true by a target if
2113 // it can use relocation types to determine if a function's
2114 // pointer is taken.
2115 virtual bool
2116 can_check_for_function_pointers() const
2117 { return true; }
2119 // Whether a section called SECTION_NAME may have function pointers to
2120 // sections not eligible for safe ICF folding.
2121 virtual bool
2122 section_may_have_icf_unsafe_pointers(const char* section_name) const
2124 return (!is_prefix_of(".ARM.exidx", section_name)
2125 && !is_prefix_of(".ARM.extab", section_name)
2126 && Target::section_may_have_icf_unsafe_pointers(section_name));
2129 // Whether we can use BLX.
2130 bool
2131 may_use_blx() const
2132 { return this->may_use_blx_; }
2134 // Set use-BLX flag.
2135 void
2136 set_may_use_blx(bool value)
2137 { this->may_use_blx_ = value; }
2139 // Whether we force PCI branch veneers.
2140 bool
2141 should_force_pic_veneer() const
2142 { return this->should_force_pic_veneer_; }
2144 // Set PIC veneer flag.
2145 void
2146 set_should_force_pic_veneer(bool value)
2147 { this->should_force_pic_veneer_ = value; }
2149 // Whether we use THUMB-2 instructions.
2150 bool
2151 using_thumb2() const
2153 Object_attribute* attr =
2154 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2155 int arch = attr->int_value();
2156 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2159 // Whether we use THUMB/THUMB-2 instructions only.
2160 bool
2161 using_thumb_only() const
2163 Object_attribute* attr =
2164 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2166 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2167 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2168 return true;
2169 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2170 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2171 return false;
2172 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2173 return attr->int_value() == 'M';
2176 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2177 bool
2178 may_use_arm_nop() const
2180 Object_attribute* attr =
2181 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2182 int arch = attr->int_value();
2183 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2184 || arch == elfcpp::TAG_CPU_ARCH_V6K
2185 || arch == elfcpp::TAG_CPU_ARCH_V7
2186 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2189 // Whether we have THUMB-2 NOP.W instruction.
2190 bool
2191 may_use_thumb2_nop() const
2193 Object_attribute* attr =
2194 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2195 int arch = attr->int_value();
2196 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2197 || arch == elfcpp::TAG_CPU_ARCH_V7
2198 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2201 // Process the relocations to determine unreferenced sections for
2202 // garbage collection.
2203 void
2204 gc_process_relocs(Symbol_table* symtab,
2205 Layout* layout,
2206 Sized_relobj<32, big_endian>* object,
2207 unsigned int data_shndx,
2208 unsigned int sh_type,
2209 const unsigned char* prelocs,
2210 size_t reloc_count,
2211 Output_section* output_section,
2212 bool needs_special_offset_handling,
2213 size_t local_symbol_count,
2214 const unsigned char* plocal_symbols);
2216 // Scan the relocations to look for symbol adjustments.
2217 void
2218 scan_relocs(Symbol_table* symtab,
2219 Layout* layout,
2220 Sized_relobj<32, big_endian>* object,
2221 unsigned int data_shndx,
2222 unsigned int sh_type,
2223 const unsigned char* prelocs,
2224 size_t reloc_count,
2225 Output_section* output_section,
2226 bool needs_special_offset_handling,
2227 size_t local_symbol_count,
2228 const unsigned char* plocal_symbols);
2230 // Finalize the sections.
2231 void
2232 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2234 // Return the value to use for a dynamic symbol which requires special
2235 // treatment.
2236 uint64_t
2237 do_dynsym_value(const Symbol*) const;
2239 // Relocate a section.
2240 void
2241 relocate_section(const Relocate_info<32, big_endian>*,
2242 unsigned int sh_type,
2243 const unsigned char* prelocs,
2244 size_t reloc_count,
2245 Output_section* output_section,
2246 bool needs_special_offset_handling,
2247 unsigned char* view,
2248 Arm_address view_address,
2249 section_size_type view_size,
2250 const Reloc_symbol_changes*);
2252 // Scan the relocs during a relocatable link.
2253 void
2254 scan_relocatable_relocs(Symbol_table* symtab,
2255 Layout* layout,
2256 Sized_relobj<32, big_endian>* object,
2257 unsigned int data_shndx,
2258 unsigned int sh_type,
2259 const unsigned char* prelocs,
2260 size_t reloc_count,
2261 Output_section* output_section,
2262 bool needs_special_offset_handling,
2263 size_t local_symbol_count,
2264 const unsigned char* plocal_symbols,
2265 Relocatable_relocs*);
2267 // Relocate a section during a relocatable link.
2268 void
2269 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2270 unsigned int sh_type,
2271 const unsigned char* prelocs,
2272 size_t reloc_count,
2273 Output_section* output_section,
2274 off_t offset_in_output_section,
2275 const Relocatable_relocs*,
2276 unsigned char* view,
2277 Arm_address view_address,
2278 section_size_type view_size,
2279 unsigned char* reloc_view,
2280 section_size_type reloc_view_size);
2282 // Perform target-specific processing in a relocatable link. This is
2283 // only used if we use the relocation strategy RELOC_SPECIAL.
2284 void
2285 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2286 unsigned int sh_type,
2287 const unsigned char* preloc_in,
2288 size_t relnum,
2289 Output_section* output_section,
2290 off_t offset_in_output_section,
2291 unsigned char* view,
2292 typename elfcpp::Elf_types<32>::Elf_Addr
2293 view_address,
2294 section_size_type view_size,
2295 unsigned char* preloc_out);
2297 // Return whether SYM is defined by the ABI.
2298 bool
2299 do_is_defined_by_abi(Symbol* sym) const
2300 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2302 // Return whether there is a GOT section.
2303 bool
2304 has_got_section() const
2305 { return this->got_ != NULL; }
2307 // Return the size of the GOT section.
2308 section_size_type
2309 got_size()
2311 gold_assert(this->got_ != NULL);
2312 return this->got_->data_size();
2315 // Map platform-specific reloc types
2316 static unsigned int
2317 get_real_reloc_type (unsigned int r_type);
2320 // Methods to support stub-generations.
2323 // Return the stub factory
2324 const Stub_factory&
2325 stub_factory() const
2326 { return this->stub_factory_; }
2328 // Make a new Arm_input_section object.
2329 Arm_input_section<big_endian>*
2330 new_arm_input_section(Relobj*, unsigned int);
2332 // Find the Arm_input_section object corresponding to the SHNDX-th input
2333 // section of RELOBJ.
2334 Arm_input_section<big_endian>*
2335 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2337 // Make a new Stub_table
2338 Stub_table<big_endian>*
2339 new_stub_table(Arm_input_section<big_endian>*);
2341 // Scan a section for stub generation.
2342 void
2343 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2344 const unsigned char*, size_t, Output_section*,
2345 bool, const unsigned char*, Arm_address,
2346 section_size_type);
2348 // Relocate a stub.
2349 void
2350 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2351 Output_section*, unsigned char*, Arm_address,
2352 section_size_type);
2354 // Get the default ARM target.
2355 static Target_arm<big_endian>*
2356 default_target()
2358 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2359 && parameters->target().is_big_endian() == big_endian);
2360 return static_cast<Target_arm<big_endian>*>(
2361 parameters->sized_target<32, big_endian>());
2364 // Whether NAME belongs to a mapping symbol.
2365 static bool
2366 is_mapping_symbol_name(const char* name)
2368 return (name
2369 && name[0] == '$'
2370 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2371 && (name[2] == '\0' || name[2] == '.'));
2374 // Whether we work around the Cortex-A8 erratum.
2375 bool
2376 fix_cortex_a8() const
2377 { return this->fix_cortex_a8_; }
2379 // Whether we merge exidx entries in debuginfo.
2380 bool
2381 merge_exidx_entries() const
2382 { return parameters->options().merge_exidx_entries(); }
2384 // Whether we fix R_ARM_V4BX relocation.
2385 // 0 - do not fix
2386 // 1 - replace with MOV instruction (armv4 target)
2387 // 2 - make interworking veneer (>= armv4t targets only)
2388 General_options::Fix_v4bx
2389 fix_v4bx() const
2390 { return parameters->options().fix_v4bx(); }
2392 // Scan a span of THUMB code section for Cortex-A8 erratum.
2393 void
2394 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2395 section_size_type, section_size_type,
2396 const unsigned char*, Arm_address);
2398 // Apply Cortex-A8 workaround to a branch.
2399 void
2400 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2401 unsigned char*, Arm_address);
2403 protected:
2404 // Make an ELF object.
2405 Object*
2406 do_make_elf_object(const std::string&, Input_file*, off_t,
2407 const elfcpp::Ehdr<32, big_endian>& ehdr);
2409 Object*
2410 do_make_elf_object(const std::string&, Input_file*, off_t,
2411 const elfcpp::Ehdr<32, !big_endian>&)
2412 { gold_unreachable(); }
2414 Object*
2415 do_make_elf_object(const std::string&, Input_file*, off_t,
2416 const elfcpp::Ehdr<64, false>&)
2417 { gold_unreachable(); }
2419 Object*
2420 do_make_elf_object(const std::string&, Input_file*, off_t,
2421 const elfcpp::Ehdr<64, true>&)
2422 { gold_unreachable(); }
2424 // Make an output section.
2425 Output_section*
2426 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2427 elfcpp::Elf_Xword flags)
2428 { return new Arm_output_section<big_endian>(name, type, flags); }
2430 void
2431 do_adjust_elf_header(unsigned char* view, int len) const;
2433 // We only need to generate stubs, and hence perform relaxation if we are
2434 // not doing relocatable linking.
2435 bool
2436 do_may_relax() const
2437 { return !parameters->options().relocatable(); }
2439 bool
2440 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2442 // Determine whether an object attribute tag takes an integer, a
2443 // string or both.
2445 do_attribute_arg_type(int tag) const;
2447 // Reorder tags during output.
2449 do_attributes_order(int num) const;
2451 // This is called when the target is selected as the default.
2452 void
2453 do_select_as_default_target()
2455 // No locking is required since there should only be one default target.
2456 // We cannot have both the big-endian and little-endian ARM targets
2457 // as the default.
2458 gold_assert(arm_reloc_property_table == NULL);
2459 arm_reloc_property_table = new Arm_reloc_property_table();
2462 private:
2463 // The class which scans relocations.
2464 class Scan
2466 public:
2467 Scan()
2468 : issued_non_pic_error_(false)
2471 inline void
2472 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2473 Sized_relobj<32, big_endian>* object,
2474 unsigned int data_shndx,
2475 Output_section* output_section,
2476 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2477 const elfcpp::Sym<32, big_endian>& lsym);
2479 inline void
2480 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2481 Sized_relobj<32, big_endian>* object,
2482 unsigned int data_shndx,
2483 Output_section* output_section,
2484 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2485 Symbol* gsym);
2487 inline bool
2488 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2489 Sized_relobj<32, big_endian>* ,
2490 unsigned int ,
2491 Output_section* ,
2492 const elfcpp::Rel<32, big_endian>& ,
2493 unsigned int ,
2494 const elfcpp::Sym<32, big_endian>&);
2496 inline bool
2497 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2498 Sized_relobj<32, big_endian>* ,
2499 unsigned int ,
2500 Output_section* ,
2501 const elfcpp::Rel<32, big_endian>& ,
2502 unsigned int , Symbol*);
2504 private:
2505 static void
2506 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2507 unsigned int r_type);
2509 static void
2510 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2511 unsigned int r_type, Symbol*);
2513 void
2514 check_non_pic(Relobj*, unsigned int r_type);
2516 // Almost identical to Symbol::needs_plt_entry except that it also
2517 // handles STT_ARM_TFUNC.
2518 static bool
2519 symbol_needs_plt_entry(const Symbol* sym)
2521 // An undefined symbol from an executable does not need a PLT entry.
2522 if (sym->is_undefined() && !parameters->options().shared())
2523 return false;
2525 return (!parameters->doing_static_link()
2526 && (sym->type() == elfcpp::STT_FUNC
2527 || sym->type() == elfcpp::STT_ARM_TFUNC)
2528 && (sym->is_from_dynobj()
2529 || sym->is_undefined()
2530 || sym->is_preemptible()));
2533 inline bool
2534 possible_function_pointer_reloc(unsigned int r_type);
2536 // Whether we have issued an error about a non-PIC compilation.
2537 bool issued_non_pic_error_;
2540 // The class which implements relocation.
2541 class Relocate
2543 public:
2544 Relocate()
2547 ~Relocate()
2550 // Return whether the static relocation needs to be applied.
2551 inline bool
2552 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2553 int ref_flags,
2554 bool is_32bit,
2555 Output_section* output_section);
2557 // Do a relocation. Return false if the caller should not issue
2558 // any warnings about this relocation.
2559 inline bool
2560 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2561 Output_section*, size_t relnum,
2562 const elfcpp::Rel<32, big_endian>&,
2563 unsigned int r_type, const Sized_symbol<32>*,
2564 const Symbol_value<32>*,
2565 unsigned char*, Arm_address,
2566 section_size_type);
2568 // Return whether we want to pass flag NON_PIC_REF for this
2569 // reloc. This means the relocation type accesses a symbol not via
2570 // GOT or PLT.
2571 static inline bool
2572 reloc_is_non_pic (unsigned int r_type)
2574 switch (r_type)
2576 // These relocation types reference GOT or PLT entries explicitly.
2577 case elfcpp::R_ARM_GOT_BREL:
2578 case elfcpp::R_ARM_GOT_ABS:
2579 case elfcpp::R_ARM_GOT_PREL:
2580 case elfcpp::R_ARM_GOT_BREL12:
2581 case elfcpp::R_ARM_PLT32_ABS:
2582 case elfcpp::R_ARM_TLS_GD32:
2583 case elfcpp::R_ARM_TLS_LDM32:
2584 case elfcpp::R_ARM_TLS_IE32:
2585 case elfcpp::R_ARM_TLS_IE12GP:
2587 // These relocate types may use PLT entries.
2588 case elfcpp::R_ARM_CALL:
2589 case elfcpp::R_ARM_THM_CALL:
2590 case elfcpp::R_ARM_JUMP24:
2591 case elfcpp::R_ARM_THM_JUMP24:
2592 case elfcpp::R_ARM_THM_JUMP19:
2593 case elfcpp::R_ARM_PLT32:
2594 case elfcpp::R_ARM_THM_XPC22:
2595 case elfcpp::R_ARM_PREL31:
2596 case elfcpp::R_ARM_SBREL31:
2597 return false;
2599 default:
2600 return true;
2604 private:
2605 // Do a TLS relocation.
2606 inline typename Arm_relocate_functions<big_endian>::Status
2607 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2608 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2609 const Sized_symbol<32>*, const Symbol_value<32>*,
2610 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2611 section_size_type);
2615 // A class which returns the size required for a relocation type,
2616 // used while scanning relocs during a relocatable link.
2617 class Relocatable_size_for_reloc
2619 public:
2620 unsigned int
2621 get_size_for_reloc(unsigned int, Relobj*);
2624 // Adjust TLS relocation type based on the options and whether this
2625 // is a local symbol.
2626 static tls::Tls_optimization
2627 optimize_tls_reloc(bool is_final, int r_type);
2629 // Get the GOT section, creating it if necessary.
2630 Arm_output_data_got<big_endian>*
2631 got_section(Symbol_table*, Layout*);
2633 // Get the GOT PLT section.
2634 Output_data_space*
2635 got_plt_section() const
2637 gold_assert(this->got_plt_ != NULL);
2638 return this->got_plt_;
2641 // Create a PLT entry for a global symbol.
2642 void
2643 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2645 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2646 void
2647 define_tls_base_symbol(Symbol_table*, Layout*);
2649 // Create a GOT entry for the TLS module index.
2650 unsigned int
2651 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2652 Sized_relobj<32, big_endian>* object);
2654 // Get the PLT section.
2655 const Output_data_plt_arm<big_endian>*
2656 plt_section() const
2658 gold_assert(this->plt_ != NULL);
2659 return this->plt_;
2662 // Get the dynamic reloc section, creating it if necessary.
2663 Reloc_section*
2664 rel_dyn_section(Layout*);
2666 // Get the section to use for TLS_DESC relocations.
2667 Reloc_section*
2668 rel_tls_desc_section(Layout*) const;
2670 // Return true if the symbol may need a COPY relocation.
2671 // References from an executable object to non-function symbols
2672 // defined in a dynamic object may need a COPY relocation.
2673 bool
2674 may_need_copy_reloc(Symbol* gsym)
2676 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2677 && gsym->may_need_copy_reloc());
2680 // Add a potential copy relocation.
2681 void
2682 copy_reloc(Symbol_table* symtab, Layout* layout,
2683 Sized_relobj<32, big_endian>* object,
2684 unsigned int shndx, Output_section* output_section,
2685 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2687 this->copy_relocs_.copy_reloc(symtab, layout,
2688 symtab->get_sized_symbol<32>(sym),
2689 object, shndx, output_section, reloc,
2690 this->rel_dyn_section(layout));
2693 // Whether two EABI versions are compatible.
2694 static bool
2695 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2697 // Merge processor-specific flags from input object and those in the ELF
2698 // header of the output.
2699 void
2700 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2702 // Get the secondary compatible architecture.
2703 static int
2704 get_secondary_compatible_arch(const Attributes_section_data*);
2706 // Set the secondary compatible architecture.
2707 static void
2708 set_secondary_compatible_arch(Attributes_section_data*, int);
2710 static int
2711 tag_cpu_arch_combine(const char*, int, int*, int, int);
2713 // Helper to print AEABI enum tag value.
2714 static std::string
2715 aeabi_enum_name(unsigned int);
2717 // Return string value for TAG_CPU_name.
2718 static std::string
2719 tag_cpu_name_value(unsigned int);
2721 // Merge object attributes from input object and those in the output.
2722 void
2723 merge_object_attributes(const char*, const Attributes_section_data*);
2725 // Helper to get an AEABI object attribute
2726 Object_attribute*
2727 get_aeabi_object_attribute(int tag) const
2729 Attributes_section_data* pasd = this->attributes_section_data_;
2730 gold_assert(pasd != NULL);
2731 Object_attribute* attr =
2732 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2733 gold_assert(attr != NULL);
2734 return attr;
2738 // Methods to support stub-generations.
2741 // Group input sections for stub generation.
2742 void
2743 group_sections(Layout*, section_size_type, bool);
2745 // Scan a relocation for stub generation.
2746 void
2747 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2748 const Sized_symbol<32>*, unsigned int,
2749 const Symbol_value<32>*,
2750 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2752 // Scan a relocation section for stub.
2753 template<int sh_type>
2754 void
2755 scan_reloc_section_for_stubs(
2756 const Relocate_info<32, big_endian>* relinfo,
2757 const unsigned char* prelocs,
2758 size_t reloc_count,
2759 Output_section* output_section,
2760 bool needs_special_offset_handling,
2761 const unsigned char* view,
2762 elfcpp::Elf_types<32>::Elf_Addr view_address,
2763 section_size_type);
2765 // Fix .ARM.exidx section coverage.
2766 void
2767 fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2769 // Functors for STL set.
2770 struct output_section_address_less_than
2772 bool
2773 operator()(const Output_section* s1, const Output_section* s2) const
2774 { return s1->address() < s2->address(); }
2777 // Information about this specific target which we pass to the
2778 // general Target structure.
2779 static const Target::Target_info arm_info;
2781 // The types of GOT entries needed for this platform.
2782 enum Got_type
2784 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2785 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2786 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2787 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2788 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2791 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2793 // Map input section to Arm_input_section.
2794 typedef Unordered_map<Section_id,
2795 Arm_input_section<big_endian>*,
2796 Section_id_hash>
2797 Arm_input_section_map;
2799 // Map output addresses to relocs for Cortex-A8 erratum.
2800 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2801 Cortex_a8_relocs_info;
2803 // The GOT section.
2804 Arm_output_data_got<big_endian>* got_;
2805 // The PLT section.
2806 Output_data_plt_arm<big_endian>* plt_;
2807 // The GOT PLT section.
2808 Output_data_space* got_plt_;
2809 // The dynamic reloc section.
2810 Reloc_section* rel_dyn_;
2811 // Relocs saved to avoid a COPY reloc.
2812 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2813 // Space for variables copied with a COPY reloc.
2814 Output_data_space* dynbss_;
2815 // Offset of the GOT entry for the TLS module index.
2816 unsigned int got_mod_index_offset_;
2817 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2818 bool tls_base_symbol_defined_;
2819 // Vector of Stub_tables created.
2820 Stub_table_list stub_tables_;
2821 // Stub factory.
2822 const Stub_factory &stub_factory_;
2823 // Whether we can use BLX.
2824 bool may_use_blx_;
2825 // Whether we force PIC branch veneers.
2826 bool should_force_pic_veneer_;
2827 // Map for locating Arm_input_sections.
2828 Arm_input_section_map arm_input_section_map_;
2829 // Attributes section data in output.
2830 Attributes_section_data* attributes_section_data_;
2831 // Whether we want to fix code for Cortex-A8 erratum.
2832 bool fix_cortex_a8_;
2833 // Map addresses to relocs for Cortex-A8 erratum.
2834 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2837 template<bool big_endian>
2838 const Target::Target_info Target_arm<big_endian>::arm_info =
2840 32, // size
2841 big_endian, // is_big_endian
2842 elfcpp::EM_ARM, // machine_code
2843 false, // has_make_symbol
2844 false, // has_resolve
2845 false, // has_code_fill
2846 true, // is_default_stack_executable
2847 '\0', // wrap_char
2848 "/usr/lib/libc.so.1", // dynamic_linker
2849 0x8000, // default_text_segment_address
2850 0x1000, // abi_pagesize (overridable by -z max-page-size)
2851 0x1000, // common_pagesize (overridable by -z common-page-size)
2852 elfcpp::SHN_UNDEF, // small_common_shndx
2853 elfcpp::SHN_UNDEF, // large_common_shndx
2854 0, // small_common_section_flags
2855 0, // large_common_section_flags
2856 ".ARM.attributes", // attributes_section
2857 "aeabi" // attributes_vendor
2860 // Arm relocate functions class
2863 template<bool big_endian>
2864 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2866 public:
2867 typedef enum
2869 STATUS_OKAY, // No error during relocation.
2870 STATUS_OVERFLOW, // Relocation oveflow.
2871 STATUS_BAD_RELOC // Relocation cannot be applied.
2872 } Status;
2874 private:
2875 typedef Relocate_functions<32, big_endian> Base;
2876 typedef Arm_relocate_functions<big_endian> This;
2878 // Encoding of imm16 argument for movt and movw ARM instructions
2879 // from ARM ARM:
2881 // imm16 := imm4 | imm12
2883 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2884 // +-------+---------------+-------+-------+-----------------------+
2885 // | | |imm4 | |imm12 |
2886 // +-------+---------------+-------+-------+-----------------------+
2888 // Extract the relocation addend from VAL based on the ARM
2889 // instruction encoding described above.
2890 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2891 extract_arm_movw_movt_addend(
2892 typename elfcpp::Swap<32, big_endian>::Valtype val)
2894 // According to the Elf ABI for ARM Architecture the immediate
2895 // field is sign-extended to form the addend.
2896 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2899 // Insert X into VAL based on the ARM instruction encoding described
2900 // above.
2901 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2902 insert_val_arm_movw_movt(
2903 typename elfcpp::Swap<32, big_endian>::Valtype val,
2904 typename elfcpp::Swap<32, big_endian>::Valtype x)
2906 val &= 0xfff0f000;
2907 val |= x & 0x0fff;
2908 val |= (x & 0xf000) << 4;
2909 return val;
2912 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2913 // from ARM ARM:
2915 // imm16 := imm4 | i | imm3 | imm8
2917 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2918 // +---------+-+-----------+-------++-+-----+-------+---------------+
2919 // | |i| |imm4 || |imm3 | |imm8 |
2920 // +---------+-+-----------+-------++-+-----+-------+---------------+
2922 // Extract the relocation addend from VAL based on the Thumb2
2923 // instruction encoding described above.
2924 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2925 extract_thumb_movw_movt_addend(
2926 typename elfcpp::Swap<32, big_endian>::Valtype val)
2928 // According to the Elf ABI for ARM Architecture the immediate
2929 // field is sign-extended to form the addend.
2930 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2931 | ((val >> 15) & 0x0800)
2932 | ((val >> 4) & 0x0700)
2933 | (val & 0x00ff));
2936 // Insert X into VAL based on the Thumb2 instruction encoding
2937 // described above.
2938 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2939 insert_val_thumb_movw_movt(
2940 typename elfcpp::Swap<32, big_endian>::Valtype val,
2941 typename elfcpp::Swap<32, big_endian>::Valtype x)
2943 val &= 0xfbf08f00;
2944 val |= (x & 0xf000) << 4;
2945 val |= (x & 0x0800) << 15;
2946 val |= (x & 0x0700) << 4;
2947 val |= (x & 0x00ff);
2948 return val;
2951 // Calculate the smallest constant Kn for the specified residual.
2952 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2953 static uint32_t
2954 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2956 int32_t msb;
2958 if (residual == 0)
2959 return 0;
2960 // Determine the most significant bit in the residual and
2961 // align the resulting value to a 2-bit boundary.
2962 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2964 // The desired shift is now (msb - 6), or zero, whichever
2965 // is the greater.
2966 return (((msb - 6) < 0) ? 0 : (msb - 6));
2969 // Calculate the final residual for the specified group index.
2970 // If the passed group index is less than zero, the method will return
2971 // the value of the specified residual without any change.
2972 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2973 static typename elfcpp::Swap<32, big_endian>::Valtype
2974 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2975 const int group)
2977 for (int n = 0; n <= group; n++)
2979 // Calculate which part of the value to mask.
2980 uint32_t shift = calc_grp_kn(residual);
2981 // Calculate the residual for the next time around.
2982 residual &= ~(residual & (0xff << shift));
2985 return residual;
2988 // Calculate the value of Gn for the specified group index.
2989 // We return it in the form of an encoded constant-and-rotation.
2990 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2991 static typename elfcpp::Swap<32, big_endian>::Valtype
2992 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2993 const int group)
2995 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2996 uint32_t shift = 0;
2998 for (int n = 0; n <= group; n++)
3000 // Calculate which part of the value to mask.
3001 shift = calc_grp_kn(residual);
3002 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3003 gn = residual & (0xff << shift);
3004 // Calculate the residual for the next time around.
3005 residual &= ~gn;
3007 // Return Gn in the form of an encoded constant-and-rotation.
3008 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3011 public:
3012 // Handle ARM long branches.
3013 static typename This::Status
3014 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3015 unsigned char *, const Sized_symbol<32>*,
3016 const Arm_relobj<big_endian>*, unsigned int,
3017 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3019 // Handle THUMB long branches.
3020 static typename This::Status
3021 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3022 unsigned char *, const Sized_symbol<32>*,
3023 const Arm_relobj<big_endian>*, unsigned int,
3024 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3027 // Return the branch offset of a 32-bit THUMB branch.
3028 static inline int32_t
3029 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3031 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3032 // involving the J1 and J2 bits.
3033 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3034 uint32_t upper = upper_insn & 0x3ffU;
3035 uint32_t lower = lower_insn & 0x7ffU;
3036 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3037 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3038 uint32_t i1 = j1 ^ s ? 0 : 1;
3039 uint32_t i2 = j2 ^ s ? 0 : 1;
3041 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3042 | (upper << 12) | (lower << 1));
3045 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3046 // UPPER_INSN is the original upper instruction of the branch. Caller is
3047 // responsible for overflow checking and BLX offset adjustment.
3048 static inline uint16_t
3049 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3051 uint32_t s = offset < 0 ? 1 : 0;
3052 uint32_t bits = static_cast<uint32_t>(offset);
3053 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3056 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3057 // LOWER_INSN is the original lower instruction of the branch. Caller is
3058 // responsible for overflow checking and BLX offset adjustment.
3059 static inline uint16_t
3060 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3062 uint32_t s = offset < 0 ? 1 : 0;
3063 uint32_t bits = static_cast<uint32_t>(offset);
3064 return ((lower_insn & ~0x2fffU)
3065 | ((((bits >> 23) & 1) ^ !s) << 13)
3066 | ((((bits >> 22) & 1) ^ !s) << 11)
3067 | ((bits >> 1) & 0x7ffU));
3070 // Return the branch offset of a 32-bit THUMB conditional branch.
3071 static inline int32_t
3072 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3074 uint32_t s = (upper_insn & 0x0400U) >> 10;
3075 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3076 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3077 uint32_t lower = (lower_insn & 0x07ffU);
3078 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3080 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3083 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3084 // instruction. UPPER_INSN is the original upper instruction of the branch.
3085 // Caller is responsible for overflow checking.
3086 static inline uint16_t
3087 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3089 uint32_t s = offset < 0 ? 1 : 0;
3090 uint32_t bits = static_cast<uint32_t>(offset);
3091 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3094 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3095 // instruction. LOWER_INSN is the original lower instruction of the branch.
3096 // Caller is reponsible for overflow checking.
3097 static inline uint16_t
3098 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3100 uint32_t bits = static_cast<uint32_t>(offset);
3101 uint32_t j2 = (bits & 0x00080000U) >> 19;
3102 uint32_t j1 = (bits & 0x00040000U) >> 18;
3103 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3105 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3108 // R_ARM_ABS8: S + A
3109 static inline typename This::Status
3110 abs8(unsigned char *view,
3111 const Sized_relobj<32, big_endian>* object,
3112 const Symbol_value<32>* psymval)
3114 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3115 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3116 Valtype* wv = reinterpret_cast<Valtype*>(view);
3117 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3118 Reltype addend = utils::sign_extend<8>(val);
3119 Reltype x = psymval->value(object, addend);
3120 val = utils::bit_select(val, x, 0xffU);
3121 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3123 // R_ARM_ABS8 permits signed or unsigned results.
3124 int signed_x = static_cast<int32_t>(x);
3125 return ((signed_x < -128 || signed_x > 255)
3126 ? This::STATUS_OVERFLOW
3127 : This::STATUS_OKAY);
3130 // R_ARM_THM_ABS5: S + A
3131 static inline typename This::Status
3132 thm_abs5(unsigned char *view,
3133 const Sized_relobj<32, big_endian>* object,
3134 const Symbol_value<32>* psymval)
3136 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3137 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3138 Valtype* wv = reinterpret_cast<Valtype*>(view);
3139 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3140 Reltype addend = (val & 0x7e0U) >> 6;
3141 Reltype x = psymval->value(object, addend);
3142 val = utils::bit_select(val, x << 6, 0x7e0U);
3143 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3145 // R_ARM_ABS16 permits signed or unsigned results.
3146 int signed_x = static_cast<int32_t>(x);
3147 return ((signed_x < -32768 || signed_x > 65535)
3148 ? This::STATUS_OVERFLOW
3149 : This::STATUS_OKAY);
3152 // R_ARM_ABS12: S + A
3153 static inline typename This::Status
3154 abs12(unsigned char *view,
3155 const Sized_relobj<32, big_endian>* object,
3156 const Symbol_value<32>* psymval)
3158 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3159 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3160 Valtype* wv = reinterpret_cast<Valtype*>(view);
3161 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3162 Reltype addend = val & 0x0fffU;
3163 Reltype x = psymval->value(object, addend);
3164 val = utils::bit_select(val, x, 0x0fffU);
3165 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3166 return (utils::has_overflow<12>(x)
3167 ? This::STATUS_OVERFLOW
3168 : This::STATUS_OKAY);
3171 // R_ARM_ABS16: S + A
3172 static inline typename This::Status
3173 abs16(unsigned char *view,
3174 const Sized_relobj<32, big_endian>* object,
3175 const Symbol_value<32>* psymval)
3177 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3178 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3179 Valtype* wv = reinterpret_cast<Valtype*>(view);
3180 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3181 Reltype addend = utils::sign_extend<16>(val);
3182 Reltype x = psymval->value(object, addend);
3183 val = utils::bit_select(val, x, 0xffffU);
3184 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3185 return (utils::has_signed_unsigned_overflow<16>(x)
3186 ? This::STATUS_OVERFLOW
3187 : This::STATUS_OKAY);
3190 // R_ARM_ABS32: (S + A) | T
3191 static inline typename This::Status
3192 abs32(unsigned char *view,
3193 const Sized_relobj<32, big_endian>* object,
3194 const Symbol_value<32>* psymval,
3195 Arm_address thumb_bit)
3197 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3198 Valtype* wv = reinterpret_cast<Valtype*>(view);
3199 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3200 Valtype x = psymval->value(object, addend) | thumb_bit;
3201 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3202 return This::STATUS_OKAY;
3205 // R_ARM_REL32: (S + A) | T - P
3206 static inline typename This::Status
3207 rel32(unsigned char *view,
3208 const Sized_relobj<32, big_endian>* object,
3209 const Symbol_value<32>* psymval,
3210 Arm_address address,
3211 Arm_address thumb_bit)
3213 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3214 Valtype* wv = reinterpret_cast<Valtype*>(view);
3215 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3216 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3217 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3218 return This::STATUS_OKAY;
3221 // R_ARM_THM_JUMP24: (S + A) | T - P
3222 static typename This::Status
3223 thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3224 const Symbol_value<32>* psymval, Arm_address address,
3225 Arm_address thumb_bit);
3227 // R_ARM_THM_JUMP6: S + A – P
3228 static inline typename This::Status
3229 thm_jump6(unsigned char *view,
3230 const Sized_relobj<32, big_endian>* object,
3231 const Symbol_value<32>* psymval,
3232 Arm_address address)
3234 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3235 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3236 Valtype* wv = reinterpret_cast<Valtype*>(view);
3237 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3238 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3239 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3240 Reltype x = (psymval->value(object, addend) - address);
3241 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3242 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3243 // CZB does only forward jumps.
3244 return ((x > 0x007e)
3245 ? This::STATUS_OVERFLOW
3246 : This::STATUS_OKAY);
3249 // R_ARM_THM_JUMP8: S + A – P
3250 static inline typename This::Status
3251 thm_jump8(unsigned char *view,
3252 const Sized_relobj<32, big_endian>* object,
3253 const Symbol_value<32>* psymval,
3254 Arm_address address)
3256 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3257 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3258 Valtype* wv = reinterpret_cast<Valtype*>(view);
3259 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3260 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3261 Reltype x = (psymval->value(object, addend) - address);
3262 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3263 return (utils::has_overflow<8>(x)
3264 ? This::STATUS_OVERFLOW
3265 : This::STATUS_OKAY);
3268 // R_ARM_THM_JUMP11: S + A – P
3269 static inline typename This::Status
3270 thm_jump11(unsigned char *view,
3271 const Sized_relobj<32, big_endian>* object,
3272 const Symbol_value<32>* psymval,
3273 Arm_address address)
3275 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3276 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3277 Valtype* wv = reinterpret_cast<Valtype*>(view);
3278 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3279 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3280 Reltype x = (psymval->value(object, addend) - address);
3281 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3282 return (utils::has_overflow<11>(x)
3283 ? This::STATUS_OVERFLOW
3284 : This::STATUS_OKAY);
3287 // R_ARM_BASE_PREL: B(S) + A - P
3288 static inline typename This::Status
3289 base_prel(unsigned char* view,
3290 Arm_address origin,
3291 Arm_address address)
3293 Base::rel32(view, origin - address);
3294 return STATUS_OKAY;
3297 // R_ARM_BASE_ABS: B(S) + A
3298 static inline typename This::Status
3299 base_abs(unsigned char* view,
3300 Arm_address origin)
3302 Base::rel32(view, origin);
3303 return STATUS_OKAY;
3306 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3307 static inline typename This::Status
3308 got_brel(unsigned char* view,
3309 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3311 Base::rel32(view, got_offset);
3312 return This::STATUS_OKAY;
3315 // R_ARM_GOT_PREL: GOT(S) + A - P
3316 static inline typename This::Status
3317 got_prel(unsigned char *view,
3318 Arm_address got_entry,
3319 Arm_address address)
3321 Base::rel32(view, got_entry - address);
3322 return This::STATUS_OKAY;
3325 // R_ARM_PREL: (S + A) | T - P
3326 static inline typename This::Status
3327 prel31(unsigned char *view,
3328 const Sized_relobj<32, big_endian>* object,
3329 const Symbol_value<32>* psymval,
3330 Arm_address address,
3331 Arm_address thumb_bit)
3333 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3334 Valtype* wv = reinterpret_cast<Valtype*>(view);
3335 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3336 Valtype addend = utils::sign_extend<31>(val);
3337 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3338 val = utils::bit_select(val, x, 0x7fffffffU);
3339 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3340 return (utils::has_overflow<31>(x) ?
3341 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3344 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3345 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3346 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3347 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3348 static inline typename This::Status
3349 movw(unsigned char* view,
3350 const Sized_relobj<32, big_endian>* object,
3351 const Symbol_value<32>* psymval,
3352 Arm_address relative_address_base,
3353 Arm_address thumb_bit,
3354 bool check_overflow)
3356 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3357 Valtype* wv = reinterpret_cast<Valtype*>(view);
3358 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3359 Valtype addend = This::extract_arm_movw_movt_addend(val);
3360 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3361 - relative_address_base);
3362 val = This::insert_val_arm_movw_movt(val, x);
3363 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3364 return ((check_overflow && utils::has_overflow<16>(x))
3365 ? This::STATUS_OVERFLOW
3366 : This::STATUS_OKAY);
3369 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3370 // R_ARM_MOVT_PREL: S + A - P
3371 // R_ARM_MOVT_BREL: S + A - B(S)
3372 static inline typename This::Status
3373 movt(unsigned char* view,
3374 const Sized_relobj<32, big_endian>* object,
3375 const Symbol_value<32>* psymval,
3376 Arm_address relative_address_base)
3378 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3379 Valtype* wv = reinterpret_cast<Valtype*>(view);
3380 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3381 Valtype addend = This::extract_arm_movw_movt_addend(val);
3382 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3383 val = This::insert_val_arm_movw_movt(val, x);
3384 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3385 // FIXME: IHI0044D says that we should check for overflow.
3386 return This::STATUS_OKAY;
3389 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3390 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3391 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3392 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3393 static inline typename This::Status
3394 thm_movw(unsigned char *view,
3395 const Sized_relobj<32, big_endian>* object,
3396 const Symbol_value<32>* psymval,
3397 Arm_address relative_address_base,
3398 Arm_address thumb_bit,
3399 bool check_overflow)
3401 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3402 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3403 Valtype* wv = reinterpret_cast<Valtype*>(view);
3404 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3405 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3406 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3407 Reltype x =
3408 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3409 val = This::insert_val_thumb_movw_movt(val, x);
3410 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3411 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3412 return ((check_overflow && utils::has_overflow<16>(x))
3413 ? This::STATUS_OVERFLOW
3414 : This::STATUS_OKAY);
3417 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3418 // R_ARM_THM_MOVT_PREL: S + A - P
3419 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3420 static inline typename This::Status
3421 thm_movt(unsigned char* view,
3422 const Sized_relobj<32, big_endian>* object,
3423 const Symbol_value<32>* psymval,
3424 Arm_address relative_address_base)
3426 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3427 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3428 Valtype* wv = reinterpret_cast<Valtype*>(view);
3429 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3430 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3431 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3432 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3433 val = This::insert_val_thumb_movw_movt(val, x);
3434 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3435 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3436 return This::STATUS_OKAY;
3439 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3440 static inline typename This::Status
3441 thm_alu11(unsigned char* view,
3442 const Sized_relobj<32, big_endian>* object,
3443 const Symbol_value<32>* psymval,
3444 Arm_address address,
3445 Arm_address thumb_bit)
3447 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3448 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3449 Valtype* wv = reinterpret_cast<Valtype*>(view);
3450 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3451 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3453 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3454 // -----------------------------------------------------------------------
3455 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3456 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3457 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3458 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3459 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3460 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3462 // Determine a sign for the addend.
3463 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3464 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3465 // Thumb2 addend encoding:
3466 // imm12 := i | imm3 | imm8
3467 int32_t addend = (insn & 0xff)
3468 | ((insn & 0x00007000) >> 4)
3469 | ((insn & 0x04000000) >> 15);
3470 // Apply a sign to the added.
3471 addend *= sign;
3473 int32_t x = (psymval->value(object, addend) | thumb_bit)
3474 - (address & 0xfffffffc);
3475 Reltype val = abs(x);
3476 // Mask out the value and a distinct part of the ADD/SUB opcode
3477 // (bits 7:5 of opword).
3478 insn = (insn & 0xfb0f8f00)
3479 | (val & 0xff)
3480 | ((val & 0x700) << 4)
3481 | ((val & 0x800) << 15);
3482 // Set the opcode according to whether the value to go in the
3483 // place is negative.
3484 if (x < 0)
3485 insn |= 0x00a00000;
3487 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3488 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3489 return ((val > 0xfff) ?
3490 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3493 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3494 static inline typename This::Status
3495 thm_pc8(unsigned char* view,
3496 const Sized_relobj<32, big_endian>* object,
3497 const Symbol_value<32>* psymval,
3498 Arm_address address)
3500 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3501 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3502 Valtype* wv = reinterpret_cast<Valtype*>(view);
3503 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3504 Reltype addend = ((insn & 0x00ff) << 2);
3505 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3506 Reltype val = abs(x);
3507 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3509 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3510 return ((val > 0x03fc)
3511 ? This::STATUS_OVERFLOW
3512 : This::STATUS_OKAY);
3515 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3516 static inline typename This::Status
3517 thm_pc12(unsigned char* view,
3518 const Sized_relobj<32, big_endian>* object,
3519 const Symbol_value<32>* psymval,
3520 Arm_address address)
3522 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3523 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3524 Valtype* wv = reinterpret_cast<Valtype*>(view);
3525 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3526 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3527 // Determine a sign for the addend (positive if the U bit is 1).
3528 const int sign = (insn & 0x00800000) ? 1 : -1;
3529 int32_t addend = (insn & 0xfff);
3530 // Apply a sign to the added.
3531 addend *= sign;
3533 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3534 Reltype val = abs(x);
3535 // Mask out and apply the value and the U bit.
3536 insn = (insn & 0xff7ff000) | (val & 0xfff);
3537 // Set the U bit according to whether the value to go in the
3538 // place is positive.
3539 if (x >= 0)
3540 insn |= 0x00800000;
3542 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3543 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3544 return ((val > 0xfff) ?
3545 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3548 // R_ARM_V4BX
3549 static inline typename This::Status
3550 v4bx(const Relocate_info<32, big_endian>* relinfo,
3551 unsigned char *view,
3552 const Arm_relobj<big_endian>* object,
3553 const Arm_address address,
3554 const bool is_interworking)
3557 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3558 Valtype* wv = reinterpret_cast<Valtype*>(view);
3559 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3561 // Ensure that we have a BX instruction.
3562 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3563 const uint32_t reg = (val & 0xf);
3564 if (is_interworking && reg != 0xf)
3566 Stub_table<big_endian>* stub_table =
3567 object->stub_table(relinfo->data_shndx);
3568 gold_assert(stub_table != NULL);
3570 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3571 gold_assert(stub != NULL);
3573 int32_t veneer_address =
3574 stub_table->address() + stub->offset() - 8 - address;
3575 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3576 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3577 // Replace with a branch to veneer (B <addr>)
3578 val = (val & 0xf0000000) | 0x0a000000
3579 | ((veneer_address >> 2) & 0x00ffffff);
3581 else
3583 // Preserve Rm (lowest four bits) and the condition code
3584 // (highest four bits). Other bits encode MOV PC,Rm.
3585 val = (val & 0xf000000f) | 0x01a0f000;
3587 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3588 return This::STATUS_OKAY;
3591 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3592 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3593 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3594 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3595 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3596 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3597 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3598 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3599 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3600 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3601 static inline typename This::Status
3602 arm_grp_alu(unsigned char* view,
3603 const Sized_relobj<32, big_endian>* object,
3604 const Symbol_value<32>* psymval,
3605 const int group,
3606 Arm_address address,
3607 Arm_address thumb_bit,
3608 bool check_overflow)
3610 gold_assert(group >= 0 && group < 3);
3611 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3612 Valtype* wv = reinterpret_cast<Valtype*>(view);
3613 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3615 // ALU group relocations are allowed only for the ADD/SUB instructions.
3616 // (0x00800000 - ADD, 0x00400000 - SUB)
3617 const Valtype opcode = insn & 0x01e00000;
3618 if (opcode != 0x00800000 && opcode != 0x00400000)
3619 return This::STATUS_BAD_RELOC;
3621 // Determine a sign for the addend.
3622 const int sign = (opcode == 0x00800000) ? 1 : -1;
3623 // shifter = rotate_imm * 2
3624 const uint32_t shifter = (insn & 0xf00) >> 7;
3625 // Initial addend value.
3626 int32_t addend = insn & 0xff;
3627 // Rotate addend right by shifter.
3628 addend = (addend >> shifter) | (addend << (32 - shifter));
3629 // Apply a sign to the added.
3630 addend *= sign;
3632 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3633 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3634 // Check for overflow if required
3635 if (check_overflow
3636 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3637 return This::STATUS_OVERFLOW;
3639 // Mask out the value and the ADD/SUB part of the opcode; take care
3640 // not to destroy the S bit.
3641 insn &= 0xff1ff000;
3642 // Set the opcode according to whether the value to go in the
3643 // place is negative.
3644 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3645 // Encode the offset (encoded Gn).
3646 insn |= gn;
3648 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3649 return This::STATUS_OKAY;
3652 // R_ARM_LDR_PC_G0: S + A - P
3653 // R_ARM_LDR_PC_G1: S + A - P
3654 // R_ARM_LDR_PC_G2: S + A - P
3655 // R_ARM_LDR_SB_G0: S + A - B(S)
3656 // R_ARM_LDR_SB_G1: S + A - B(S)
3657 // R_ARM_LDR_SB_G2: S + A - B(S)
3658 static inline typename This::Status
3659 arm_grp_ldr(unsigned char* view,
3660 const Sized_relobj<32, big_endian>* object,
3661 const Symbol_value<32>* psymval,
3662 const int group,
3663 Arm_address address)
3665 gold_assert(group >= 0 && group < 3);
3666 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3667 Valtype* wv = reinterpret_cast<Valtype*>(view);
3668 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3670 const int sign = (insn & 0x00800000) ? 1 : -1;
3671 int32_t addend = (insn & 0xfff) * sign;
3672 int32_t x = (psymval->value(object, addend) - address);
3673 // Calculate the relevant G(n-1) value to obtain this stage residual.
3674 Valtype residual =
3675 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3676 if (residual >= 0x1000)
3677 return This::STATUS_OVERFLOW;
3679 // Mask out the value and U bit.
3680 insn &= 0xff7ff000;
3681 // Set the U bit for non-negative values.
3682 if (x >= 0)
3683 insn |= 0x00800000;
3684 insn |= residual;
3686 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3687 return This::STATUS_OKAY;
3690 // R_ARM_LDRS_PC_G0: S + A - P
3691 // R_ARM_LDRS_PC_G1: S + A - P
3692 // R_ARM_LDRS_PC_G2: S + A - P
3693 // R_ARM_LDRS_SB_G0: S + A - B(S)
3694 // R_ARM_LDRS_SB_G1: S + A - B(S)
3695 // R_ARM_LDRS_SB_G2: S + A - B(S)
3696 static inline typename This::Status
3697 arm_grp_ldrs(unsigned char* view,
3698 const Sized_relobj<32, big_endian>* object,
3699 const Symbol_value<32>* psymval,
3700 const int group,
3701 Arm_address address)
3703 gold_assert(group >= 0 && group < 3);
3704 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3705 Valtype* wv = reinterpret_cast<Valtype*>(view);
3706 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3708 const int sign = (insn & 0x00800000) ? 1 : -1;
3709 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3710 int32_t x = (psymval->value(object, addend) - address);
3711 // Calculate the relevant G(n-1) value to obtain this stage residual.
3712 Valtype residual =
3713 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3714 if (residual >= 0x100)
3715 return This::STATUS_OVERFLOW;
3717 // Mask out the value and U bit.
3718 insn &= 0xff7ff0f0;
3719 // Set the U bit for non-negative values.
3720 if (x >= 0)
3721 insn |= 0x00800000;
3722 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3724 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3725 return This::STATUS_OKAY;
3728 // R_ARM_LDC_PC_G0: S + A - P
3729 // R_ARM_LDC_PC_G1: S + A - P
3730 // R_ARM_LDC_PC_G2: S + A - P
3731 // R_ARM_LDC_SB_G0: S + A - B(S)
3732 // R_ARM_LDC_SB_G1: S + A - B(S)
3733 // R_ARM_LDC_SB_G2: S + A - B(S)
3734 static inline typename This::Status
3735 arm_grp_ldc(unsigned char* view,
3736 const Sized_relobj<32, big_endian>* object,
3737 const Symbol_value<32>* psymval,
3738 const int group,
3739 Arm_address address)
3741 gold_assert(group >= 0 && group < 3);
3742 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3743 Valtype* wv = reinterpret_cast<Valtype*>(view);
3744 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3746 const int sign = (insn & 0x00800000) ? 1 : -1;
3747 int32_t addend = ((insn & 0xff) << 2) * sign;
3748 int32_t x = (psymval->value(object, addend) - address);
3749 // Calculate the relevant G(n-1) value to obtain this stage residual.
3750 Valtype residual =
3751 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3752 if ((residual & 0x3) != 0 || residual >= 0x400)
3753 return This::STATUS_OVERFLOW;
3755 // Mask out the value and U bit.
3756 insn &= 0xff7fff00;
3757 // Set the U bit for non-negative values.
3758 if (x >= 0)
3759 insn |= 0x00800000;
3760 insn |= (residual >> 2);
3762 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3763 return This::STATUS_OKAY;
3767 // Relocate ARM long branches. This handles relocation types
3768 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3769 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3770 // undefined and we do not use PLT in this relocation. In such a case,
3771 // the branch is converted into an NOP.
3773 template<bool big_endian>
3774 typename Arm_relocate_functions<big_endian>::Status
3775 Arm_relocate_functions<big_endian>::arm_branch_common(
3776 unsigned int r_type,
3777 const Relocate_info<32, big_endian>* relinfo,
3778 unsigned char *view,
3779 const Sized_symbol<32>* gsym,
3780 const Arm_relobj<big_endian>* object,
3781 unsigned int r_sym,
3782 const Symbol_value<32>* psymval,
3783 Arm_address address,
3784 Arm_address thumb_bit,
3785 bool is_weakly_undefined_without_plt)
3787 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3788 Valtype* wv = reinterpret_cast<Valtype*>(view);
3789 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3791 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3792 && ((val & 0x0f000000UL) == 0x0a000000UL);
3793 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3794 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3795 && ((val & 0x0f000000UL) == 0x0b000000UL);
3796 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3797 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3799 // Check that the instruction is valid.
3800 if (r_type == elfcpp::R_ARM_CALL)
3802 if (!insn_is_uncond_bl && !insn_is_blx)
3803 return This::STATUS_BAD_RELOC;
3805 else if (r_type == elfcpp::R_ARM_JUMP24)
3807 if (!insn_is_b && !insn_is_cond_bl)
3808 return This::STATUS_BAD_RELOC;
3810 else if (r_type == elfcpp::R_ARM_PLT32)
3812 if (!insn_is_any_branch)
3813 return This::STATUS_BAD_RELOC;
3815 else if (r_type == elfcpp::R_ARM_XPC25)
3817 // FIXME: AAELF document IH0044C does not say much about it other
3818 // than it being obsolete.
3819 if (!insn_is_any_branch)
3820 return This::STATUS_BAD_RELOC;
3822 else
3823 gold_unreachable();
3825 // A branch to an undefined weak symbol is turned into a jump to
3826 // the next instruction unless a PLT entry will be created.
3827 // Do the same for local undefined symbols.
3828 // The jump to the next instruction is optimized as a NOP depending
3829 // on the architecture.
3830 const Target_arm<big_endian>* arm_target =
3831 Target_arm<big_endian>::default_target();
3832 if (is_weakly_undefined_without_plt)
3834 gold_assert(!parameters->options().relocatable());
3835 Valtype cond = val & 0xf0000000U;
3836 if (arm_target->may_use_arm_nop())
3837 val = cond | 0x0320f000;
3838 else
3839 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3840 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3841 return This::STATUS_OKAY;
3844 Valtype addend = utils::sign_extend<26>(val << 2);
3845 Valtype branch_target = psymval->value(object, addend);
3846 int32_t branch_offset = branch_target - address;
3848 // We need a stub if the branch offset is too large or if we need
3849 // to switch mode.
3850 bool may_use_blx = arm_target->may_use_blx();
3851 Reloc_stub* stub = NULL;
3853 if (!parameters->options().relocatable()
3854 && (utils::has_overflow<26>(branch_offset)
3855 || ((thumb_bit != 0)
3856 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3858 Valtype unadjusted_branch_target = psymval->value(object, 0);
3860 Stub_type stub_type =
3861 Reloc_stub::stub_type_for_reloc(r_type, address,
3862 unadjusted_branch_target,
3863 (thumb_bit != 0));
3864 if (stub_type != arm_stub_none)
3866 Stub_table<big_endian>* stub_table =
3867 object->stub_table(relinfo->data_shndx);
3868 gold_assert(stub_table != NULL);
3870 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3871 stub = stub_table->find_reloc_stub(stub_key);
3872 gold_assert(stub != NULL);
3873 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3874 branch_target = stub_table->address() + stub->offset() + addend;
3875 branch_offset = branch_target - address;
3876 gold_assert(!utils::has_overflow<26>(branch_offset));
3880 // At this point, if we still need to switch mode, the instruction
3881 // must either be a BLX or a BL that can be converted to a BLX.
3882 if (thumb_bit != 0)
3884 // Turn BL to BLX.
3885 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3886 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3889 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3890 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3891 return (utils::has_overflow<26>(branch_offset)
3892 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3895 // Relocate THUMB long branches. This handles relocation types
3896 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3897 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3898 // undefined and we do not use PLT in this relocation. In such a case,
3899 // the branch is converted into an NOP.
3901 template<bool big_endian>
3902 typename Arm_relocate_functions<big_endian>::Status
3903 Arm_relocate_functions<big_endian>::thumb_branch_common(
3904 unsigned int r_type,
3905 const Relocate_info<32, big_endian>* relinfo,
3906 unsigned char *view,
3907 const Sized_symbol<32>* gsym,
3908 const Arm_relobj<big_endian>* object,
3909 unsigned int r_sym,
3910 const Symbol_value<32>* psymval,
3911 Arm_address address,
3912 Arm_address thumb_bit,
3913 bool is_weakly_undefined_without_plt)
3915 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3916 Valtype* wv = reinterpret_cast<Valtype*>(view);
3917 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3918 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3920 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3921 // into account.
3922 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3923 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3925 // Check that the instruction is valid.
3926 if (r_type == elfcpp::R_ARM_THM_CALL)
3928 if (!is_bl_insn && !is_blx_insn)
3929 return This::STATUS_BAD_RELOC;
3931 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3933 // This cannot be a BLX.
3934 if (!is_bl_insn)
3935 return This::STATUS_BAD_RELOC;
3937 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3939 // Check for Thumb to Thumb call.
3940 if (!is_blx_insn)
3941 return This::STATUS_BAD_RELOC;
3942 if (thumb_bit != 0)
3944 gold_warning(_("%s: Thumb BLX instruction targets "
3945 "thumb function '%s'."),
3946 object->name().c_str(),
3947 (gsym ? gsym->name() : "(local)"));
3948 // Convert BLX to BL.
3949 lower_insn |= 0x1000U;
3952 else
3953 gold_unreachable();
3955 // A branch to an undefined weak symbol is turned into a jump to
3956 // the next instruction unless a PLT entry will be created.
3957 // The jump to the next instruction is optimized as a NOP.W for
3958 // Thumb-2 enabled architectures.
3959 const Target_arm<big_endian>* arm_target =
3960 Target_arm<big_endian>::default_target();
3961 if (is_weakly_undefined_without_plt)
3963 gold_assert(!parameters->options().relocatable());
3964 if (arm_target->may_use_thumb2_nop())
3966 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3967 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3969 else
3971 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3972 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3974 return This::STATUS_OKAY;
3977 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
3978 Arm_address branch_target = psymval->value(object, addend);
3980 // For BLX, bit 1 of target address comes from bit 1 of base address.
3981 bool may_use_blx = arm_target->may_use_blx();
3982 if (thumb_bit == 0 && may_use_blx)
3983 branch_target = utils::bit_select(branch_target, address, 0x2);
3985 int32_t branch_offset = branch_target - address;
3987 // We need a stub if the branch offset is too large or if we need
3988 // to switch mode.
3989 bool thumb2 = arm_target->using_thumb2();
3990 if (!parameters->options().relocatable()
3991 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
3992 || (thumb2 && utils::has_overflow<25>(branch_offset))
3993 || ((thumb_bit == 0)
3994 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3995 || r_type == elfcpp::R_ARM_THM_JUMP24))))
3997 Arm_address unadjusted_branch_target = psymval->value(object, 0);
3999 Stub_type stub_type =
4000 Reloc_stub::stub_type_for_reloc(r_type, address,
4001 unadjusted_branch_target,
4002 (thumb_bit != 0));
4004 if (stub_type != arm_stub_none)
4006 Stub_table<big_endian>* stub_table =
4007 object->stub_table(relinfo->data_shndx);
4008 gold_assert(stub_table != NULL);
4010 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4011 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4012 gold_assert(stub != NULL);
4013 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4014 branch_target = stub_table->address() + stub->offset() + addend;
4015 if (thumb_bit == 0 && may_use_blx)
4016 branch_target = utils::bit_select(branch_target, address, 0x2);
4017 branch_offset = branch_target - address;
4021 // At this point, if we still need to switch mode, the instruction
4022 // must either be a BLX or a BL that can be converted to a BLX.
4023 if (thumb_bit == 0)
4025 gold_assert(may_use_blx
4026 && (r_type == elfcpp::R_ARM_THM_CALL
4027 || r_type == elfcpp::R_ARM_THM_XPC22));
4028 // Make sure this is a BLX.
4029 lower_insn &= ~0x1000U;
4031 else
4033 // Make sure this is a BL.
4034 lower_insn |= 0x1000U;
4037 // For a BLX instruction, make sure that the relocation is rounded up
4038 // to a word boundary. This follows the semantics of the instruction
4039 // which specifies that bit 1 of the target address will come from bit
4040 // 1 of the base address.
4041 if ((lower_insn & 0x5000U) == 0x4000U)
4042 gold_assert((branch_offset & 3) == 0);
4044 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4045 // We use the Thumb-2 encoding, which is safe even if dealing with
4046 // a Thumb-1 instruction by virtue of our overflow check above. */
4047 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4048 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4050 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4051 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4053 gold_assert(!utils::has_overflow<25>(branch_offset));
4055 return ((thumb2
4056 ? utils::has_overflow<25>(branch_offset)
4057 : utils::has_overflow<23>(branch_offset))
4058 ? This::STATUS_OVERFLOW
4059 : This::STATUS_OKAY);
4062 // Relocate THUMB-2 long conditional branches.
4063 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4064 // undefined and we do not use PLT in this relocation. In such a case,
4065 // the branch is converted into an NOP.
4067 template<bool big_endian>
4068 typename Arm_relocate_functions<big_endian>::Status
4069 Arm_relocate_functions<big_endian>::thm_jump19(
4070 unsigned char *view,
4071 const Arm_relobj<big_endian>* object,
4072 const Symbol_value<32>* psymval,
4073 Arm_address address,
4074 Arm_address thumb_bit)
4076 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4077 Valtype* wv = reinterpret_cast<Valtype*>(view);
4078 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4079 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4080 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4082 Arm_address branch_target = psymval->value(object, addend);
4083 int32_t branch_offset = branch_target - address;
4085 // ??? Should handle interworking? GCC might someday try to
4086 // use this for tail calls.
4087 // FIXME: We do support thumb entry to PLT yet.
4088 if (thumb_bit == 0)
4090 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4091 return This::STATUS_BAD_RELOC;
4094 // Put RELOCATION back into the insn.
4095 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4096 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4098 // Put the relocated value back in the object file:
4099 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4100 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4102 return (utils::has_overflow<21>(branch_offset)
4103 ? This::STATUS_OVERFLOW
4104 : This::STATUS_OKAY);
4107 // Get the GOT section, creating it if necessary.
4109 template<bool big_endian>
4110 Arm_output_data_got<big_endian>*
4111 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4113 if (this->got_ == NULL)
4115 gold_assert(symtab != NULL && layout != NULL);
4117 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4119 Output_section* os;
4120 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4121 (elfcpp::SHF_ALLOC
4122 | elfcpp::SHF_WRITE),
4123 this->got_, false, false, false,
4124 true);
4125 // The old GNU linker creates a .got.plt section. We just
4126 // create another set of data in the .got section. Note that we
4127 // always create a PLT if we create a GOT, although the PLT
4128 // might be empty.
4129 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4130 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4131 (elfcpp::SHF_ALLOC
4132 | elfcpp::SHF_WRITE),
4133 this->got_plt_, false, false,
4134 false, false);
4136 // The first three entries are reserved.
4137 this->got_plt_->set_current_data_size(3 * 4);
4139 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4140 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4141 Symbol_table::PREDEFINED,
4142 this->got_plt_,
4143 0, 0, elfcpp::STT_OBJECT,
4144 elfcpp::STB_LOCAL,
4145 elfcpp::STV_HIDDEN, 0,
4146 false, false);
4148 return this->got_;
4151 // Get the dynamic reloc section, creating it if necessary.
4153 template<bool big_endian>
4154 typename Target_arm<big_endian>::Reloc_section*
4155 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4157 if (this->rel_dyn_ == NULL)
4159 gold_assert(layout != NULL);
4160 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4161 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4162 elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4163 false, false, false);
4165 return this->rel_dyn_;
4168 // Insn_template methods.
4170 // Return byte size of an instruction template.
4172 size_t
4173 Insn_template::size() const
4175 switch (this->type())
4177 case THUMB16_TYPE:
4178 case THUMB16_SPECIAL_TYPE:
4179 return 2;
4180 case ARM_TYPE:
4181 case THUMB32_TYPE:
4182 case DATA_TYPE:
4183 return 4;
4184 default:
4185 gold_unreachable();
4189 // Return alignment of an instruction template.
4191 unsigned
4192 Insn_template::alignment() const
4194 switch (this->type())
4196 case THUMB16_TYPE:
4197 case THUMB16_SPECIAL_TYPE:
4198 case THUMB32_TYPE:
4199 return 2;
4200 case ARM_TYPE:
4201 case DATA_TYPE:
4202 return 4;
4203 default:
4204 gold_unreachable();
4208 // Stub_template methods.
4210 Stub_template::Stub_template(
4211 Stub_type type, const Insn_template* insns,
4212 size_t insn_count)
4213 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4214 entry_in_thumb_mode_(false), relocs_()
4216 off_t offset = 0;
4218 // Compute byte size and alignment of stub template.
4219 for (size_t i = 0; i < insn_count; i++)
4221 unsigned insn_alignment = insns[i].alignment();
4222 size_t insn_size = insns[i].size();
4223 gold_assert((offset & (insn_alignment - 1)) == 0);
4224 this->alignment_ = std::max(this->alignment_, insn_alignment);
4225 switch (insns[i].type())
4227 case Insn_template::THUMB16_TYPE:
4228 case Insn_template::THUMB16_SPECIAL_TYPE:
4229 if (i == 0)
4230 this->entry_in_thumb_mode_ = true;
4231 break;
4233 case Insn_template::THUMB32_TYPE:
4234 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4235 this->relocs_.push_back(Reloc(i, offset));
4236 if (i == 0)
4237 this->entry_in_thumb_mode_ = true;
4238 break;
4240 case Insn_template::ARM_TYPE:
4241 // Handle cases where the target is encoded within the
4242 // instruction.
4243 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4244 this->relocs_.push_back(Reloc(i, offset));
4245 break;
4247 case Insn_template::DATA_TYPE:
4248 // Entry point cannot be data.
4249 gold_assert(i != 0);
4250 this->relocs_.push_back(Reloc(i, offset));
4251 break;
4253 default:
4254 gold_unreachable();
4256 offset += insn_size;
4258 this->size_ = offset;
4261 // Stub methods.
4263 // Template to implement do_write for a specific target endianness.
4265 template<bool big_endian>
4266 void inline
4267 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4269 const Stub_template* stub_template = this->stub_template();
4270 const Insn_template* insns = stub_template->insns();
4272 // FIXME: We do not handle BE8 encoding yet.
4273 unsigned char* pov = view;
4274 for (size_t i = 0; i < stub_template->insn_count(); i++)
4276 switch (insns[i].type())
4278 case Insn_template::THUMB16_TYPE:
4279 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4280 break;
4281 case Insn_template::THUMB16_SPECIAL_TYPE:
4282 elfcpp::Swap<16, big_endian>::writeval(
4283 pov,
4284 this->thumb16_special(i));
4285 break;
4286 case Insn_template::THUMB32_TYPE:
4288 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4289 uint32_t lo = insns[i].data() & 0xffff;
4290 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4291 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4293 break;
4294 case Insn_template::ARM_TYPE:
4295 case Insn_template::DATA_TYPE:
4296 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4297 break;
4298 default:
4299 gold_unreachable();
4301 pov += insns[i].size();
4303 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4306 // Reloc_stub::Key methods.
4308 // Dump a Key as a string for debugging.
4310 std::string
4311 Reloc_stub::Key::name() const
4313 if (this->r_sym_ == invalid_index)
4315 // Global symbol key name
4316 // <stub-type>:<symbol name>:<addend>.
4317 const std::string sym_name = this->u_.symbol->name();
4318 // We need to print two hex number and two colons. So just add 100 bytes
4319 // to the symbol name size.
4320 size_t len = sym_name.size() + 100;
4321 char* buffer = new char[len];
4322 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4323 sym_name.c_str(), this->addend_);
4324 gold_assert(c > 0 && c < static_cast<int>(len));
4325 delete[] buffer;
4326 return std::string(buffer);
4328 else
4330 // local symbol key name
4331 // <stub-type>:<object>:<r_sym>:<addend>.
4332 const size_t len = 200;
4333 char buffer[len];
4334 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4335 this->u_.relobj, this->r_sym_, this->addend_);
4336 gold_assert(c > 0 && c < static_cast<int>(len));
4337 return std::string(buffer);
4341 // Reloc_stub methods.
4343 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4344 // LOCATION to DESTINATION.
4345 // This code is based on the arm_type_of_stub function in
4346 // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4347 // class simple.
4349 Stub_type
4350 Reloc_stub::stub_type_for_reloc(
4351 unsigned int r_type,
4352 Arm_address location,
4353 Arm_address destination,
4354 bool target_is_thumb)
4356 Stub_type stub_type = arm_stub_none;
4358 // This is a bit ugly but we want to avoid using a templated class for
4359 // big and little endianities.
4360 bool may_use_blx;
4361 bool should_force_pic_veneer;
4362 bool thumb2;
4363 bool thumb_only;
4364 if (parameters->target().is_big_endian())
4366 const Target_arm<true>* big_endian_target =
4367 Target_arm<true>::default_target();
4368 may_use_blx = big_endian_target->may_use_blx();
4369 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4370 thumb2 = big_endian_target->using_thumb2();
4371 thumb_only = big_endian_target->using_thumb_only();
4373 else
4375 const Target_arm<false>* little_endian_target =
4376 Target_arm<false>::default_target();
4377 may_use_blx = little_endian_target->may_use_blx();
4378 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4379 thumb2 = little_endian_target->using_thumb2();
4380 thumb_only = little_endian_target->using_thumb_only();
4383 int64_t branch_offset;
4384 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4386 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4387 // base address (instruction address + 4).
4388 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4389 destination = utils::bit_select(destination, location, 0x2);
4390 branch_offset = static_cast<int64_t>(destination) - location;
4392 // Handle cases where:
4393 // - this call goes too far (different Thumb/Thumb2 max
4394 // distance)
4395 // - it's a Thumb->Arm call and blx is not available, or it's a
4396 // Thumb->Arm branch (not bl). A stub is needed in this case.
4397 if ((!thumb2
4398 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4399 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4400 || (thumb2
4401 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4402 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4403 || ((!target_is_thumb)
4404 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4405 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4407 if (target_is_thumb)
4409 // Thumb to thumb.
4410 if (!thumb_only)
4412 stub_type = (parameters->options().shared()
4413 || should_force_pic_veneer)
4414 // PIC stubs.
4415 ? ((may_use_blx
4416 && (r_type == elfcpp::R_ARM_THM_CALL))
4417 // V5T and above. Stub starts with ARM code, so
4418 // we must be able to switch mode before
4419 // reaching it, which is only possible for 'bl'
4420 // (ie R_ARM_THM_CALL relocation).
4421 ? arm_stub_long_branch_any_thumb_pic
4422 // On V4T, use Thumb code only.
4423 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4425 // non-PIC stubs.
4426 : ((may_use_blx
4427 && (r_type == elfcpp::R_ARM_THM_CALL))
4428 ? arm_stub_long_branch_any_any // V5T and above.
4429 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4431 else
4433 stub_type = (parameters->options().shared()
4434 || should_force_pic_veneer)
4435 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4436 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4439 else
4441 // Thumb to arm.
4443 // FIXME: We should check that the input section is from an
4444 // object that has interwork enabled.
4446 stub_type = (parameters->options().shared()
4447 || should_force_pic_veneer)
4448 // PIC stubs.
4449 ? ((may_use_blx
4450 && (r_type == elfcpp::R_ARM_THM_CALL))
4451 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4452 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4454 // non-PIC stubs.
4455 : ((may_use_blx
4456 && (r_type == elfcpp::R_ARM_THM_CALL))
4457 ? arm_stub_long_branch_any_any // V5T and above.
4458 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4460 // Handle v4t short branches.
4461 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4462 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4463 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4464 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4468 else if (r_type == elfcpp::R_ARM_CALL
4469 || r_type == elfcpp::R_ARM_JUMP24
4470 || r_type == elfcpp::R_ARM_PLT32)
4472 branch_offset = static_cast<int64_t>(destination) - location;
4473 if (target_is_thumb)
4475 // Arm to thumb.
4477 // FIXME: We should check that the input section is from an
4478 // object that has interwork enabled.
4480 // We have an extra 2-bytes reach because of
4481 // the mode change (bit 24 (H) of BLX encoding).
4482 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4483 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4484 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4485 || (r_type == elfcpp::R_ARM_JUMP24)
4486 || (r_type == elfcpp::R_ARM_PLT32))
4488 stub_type = (parameters->options().shared()
4489 || should_force_pic_veneer)
4490 // PIC stubs.
4491 ? (may_use_blx
4492 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4493 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4495 // non-PIC stubs.
4496 : (may_use_blx
4497 ? arm_stub_long_branch_any_any // V5T and above.
4498 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4501 else
4503 // Arm to arm.
4504 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4505 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4507 stub_type = (parameters->options().shared()
4508 || should_force_pic_veneer)
4509 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4510 : arm_stub_long_branch_any_any; /// non-PIC.
4515 return stub_type;
4518 // Cortex_a8_stub methods.
4520 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4521 // I is the position of the instruction template in the stub template.
4523 uint16_t
4524 Cortex_a8_stub::do_thumb16_special(size_t i)
4526 // The only use of this is to copy condition code from a conditional
4527 // branch being worked around to the corresponding conditional branch in
4528 // to the stub.
4529 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4530 && i == 0);
4531 uint16_t data = this->stub_template()->insns()[i].data();
4532 gold_assert((data & 0xff00U) == 0xd000U);
4533 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4534 return data;
4537 // Stub_factory methods.
4539 Stub_factory::Stub_factory()
4541 // The instruction template sequences are declared as static
4542 // objects and initialized first time the constructor runs.
4544 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4545 // to reach the stub if necessary.
4546 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4548 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4549 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4550 // dcd R_ARM_ABS32(X)
4553 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4554 // available.
4555 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4557 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4558 Insn_template::arm_insn(0xe12fff1c), // bx ip
4559 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4560 // dcd R_ARM_ABS32(X)
4563 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4564 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4566 Insn_template::thumb16_insn(0xb401), // push {r0}
4567 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4568 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4569 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4570 Insn_template::thumb16_insn(0x4760), // bx ip
4571 Insn_template::thumb16_insn(0xbf00), // nop
4572 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4573 // dcd R_ARM_ABS32(X)
4576 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4577 // allowed.
4578 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4580 Insn_template::thumb16_insn(0x4778), // bx pc
4581 Insn_template::thumb16_insn(0x46c0), // nop
4582 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4583 Insn_template::arm_insn(0xe12fff1c), // bx ip
4584 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4585 // dcd R_ARM_ABS32(X)
4588 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4589 // available.
4590 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4592 Insn_template::thumb16_insn(0x4778), // bx pc
4593 Insn_template::thumb16_insn(0x46c0), // nop
4594 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4595 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4596 // dcd R_ARM_ABS32(X)
4599 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4600 // one, when the destination is close enough.
4601 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4603 Insn_template::thumb16_insn(0x4778), // bx pc
4604 Insn_template::thumb16_insn(0x46c0), // nop
4605 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4608 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4609 // blx to reach the stub if necessary.
4610 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4612 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4613 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4614 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4615 // dcd R_ARM_REL32(X-4)
4618 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4619 // blx to reach the stub if necessary. We can not add into pc;
4620 // it is not guaranteed to mode switch (different in ARMv6 and
4621 // ARMv7).
4622 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4624 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4625 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4626 Insn_template::arm_insn(0xe12fff1c), // bx ip
4627 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4628 // dcd R_ARM_REL32(X)
4631 // V4T ARM -> ARM long branch stub, PIC.
4632 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4634 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4635 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4636 Insn_template::arm_insn(0xe12fff1c), // bx ip
4637 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4638 // dcd R_ARM_REL32(X)
4641 // V4T Thumb -> ARM long branch stub, PIC.
4642 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4644 Insn_template::thumb16_insn(0x4778), // bx pc
4645 Insn_template::thumb16_insn(0x46c0), // nop
4646 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4647 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4648 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4649 // dcd R_ARM_REL32(X)
4652 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4653 // architectures.
4654 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4656 Insn_template::thumb16_insn(0xb401), // push {r0}
4657 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4658 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4659 Insn_template::thumb16_insn(0x4484), // add ip, r0
4660 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4661 Insn_template::thumb16_insn(0x4760), // bx ip
4662 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4663 // dcd R_ARM_REL32(X)
4666 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4667 // allowed.
4668 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4670 Insn_template::thumb16_insn(0x4778), // bx pc
4671 Insn_template::thumb16_insn(0x46c0), // nop
4672 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4673 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4674 Insn_template::arm_insn(0xe12fff1c), // bx ip
4675 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4676 // dcd R_ARM_REL32(X)
4679 // Cortex-A8 erratum-workaround stubs.
4681 // Stub used for conditional branches (which may be beyond +/-1MB away,
4682 // so we can't use a conditional branch to reach this stub).
4684 // original code:
4686 // b<cond> X
4687 // after:
4689 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4691 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4692 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4693 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4694 // b.w X
4697 // Stub used for b.w and bl.w instructions.
4699 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4701 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4704 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4706 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4709 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4710 // instruction (which switches to ARM mode) to point to this stub. Jump to
4711 // the real destination using an ARM-mode branch.
4712 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4714 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4717 // Stub used to provide an interworking for R_ARM_V4BX relocation
4718 // (bx r[n] instruction).
4719 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4721 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4722 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4723 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4726 // Fill in the stub template look-up table. Stub templates are constructed
4727 // per instance of Stub_factory for fast look-up without locking
4728 // in a thread-enabled environment.
4730 this->stub_templates_[arm_stub_none] =
4731 new Stub_template(arm_stub_none, NULL, 0);
4733 #define DEF_STUB(x) \
4734 do \
4736 size_t array_size \
4737 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4738 Stub_type type = arm_stub_##x; \
4739 this->stub_templates_[type] = \
4740 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4742 while (0);
4744 DEF_STUBS
4745 #undef DEF_STUB
4748 // Stub_table methods.
4750 // Removel all Cortex-A8 stub.
4752 template<bool big_endian>
4753 void
4754 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4756 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4757 p != this->cortex_a8_stubs_.end();
4758 ++p)
4759 delete p->second;
4760 this->cortex_a8_stubs_.clear();
4763 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4765 template<bool big_endian>
4766 void
4767 Stub_table<big_endian>::relocate_stub(
4768 Stub* stub,
4769 const Relocate_info<32, big_endian>* relinfo,
4770 Target_arm<big_endian>* arm_target,
4771 Output_section* output_section,
4772 unsigned char* view,
4773 Arm_address address,
4774 section_size_type view_size)
4776 const Stub_template* stub_template = stub->stub_template();
4777 if (stub_template->reloc_count() != 0)
4779 // Adjust view to cover the stub only.
4780 section_size_type offset = stub->offset();
4781 section_size_type stub_size = stub_template->size();
4782 gold_assert(offset + stub_size <= view_size);
4784 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4785 address + offset, stub_size);
4789 // Relocate all stubs in this stub table.
4791 template<bool big_endian>
4792 void
4793 Stub_table<big_endian>::relocate_stubs(
4794 const Relocate_info<32, big_endian>* relinfo,
4795 Target_arm<big_endian>* arm_target,
4796 Output_section* output_section,
4797 unsigned char* view,
4798 Arm_address address,
4799 section_size_type view_size)
4801 // If we are passed a view bigger than the stub table's. we need to
4802 // adjust the view.
4803 gold_assert(address == this->address()
4804 && (view_size
4805 == static_cast<section_size_type>(this->data_size())));
4807 // Relocate all relocation stubs.
4808 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4809 p != this->reloc_stubs_.end();
4810 ++p)
4811 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4812 address, view_size);
4814 // Relocate all Cortex-A8 stubs.
4815 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4816 p != this->cortex_a8_stubs_.end();
4817 ++p)
4818 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4819 address, view_size);
4821 // Relocate all ARM V4BX stubs.
4822 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4823 p != this->arm_v4bx_stubs_.end();
4824 ++p)
4826 if (*p != NULL)
4827 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4828 address, view_size);
4832 // Write out the stubs to file.
4834 template<bool big_endian>
4835 void
4836 Stub_table<big_endian>::do_write(Output_file* of)
4838 off_t offset = this->offset();
4839 const section_size_type oview_size =
4840 convert_to_section_size_type(this->data_size());
4841 unsigned char* const oview = of->get_output_view(offset, oview_size);
4843 // Write relocation stubs.
4844 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4845 p != this->reloc_stubs_.end();
4846 ++p)
4848 Reloc_stub* stub = p->second;
4849 Arm_address address = this->address() + stub->offset();
4850 gold_assert(address
4851 == align_address(address,
4852 stub->stub_template()->alignment()));
4853 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4854 big_endian);
4857 // Write Cortex-A8 stubs.
4858 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4859 p != this->cortex_a8_stubs_.end();
4860 ++p)
4862 Cortex_a8_stub* stub = p->second;
4863 Arm_address address = this->address() + stub->offset();
4864 gold_assert(address
4865 == align_address(address,
4866 stub->stub_template()->alignment()));
4867 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4868 big_endian);
4871 // Write ARM V4BX relocation stubs.
4872 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4873 p != this->arm_v4bx_stubs_.end();
4874 ++p)
4876 if (*p == NULL)
4877 continue;
4879 Arm_address address = this->address() + (*p)->offset();
4880 gold_assert(address
4881 == align_address(address,
4882 (*p)->stub_template()->alignment()));
4883 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4884 big_endian);
4887 of->write_output_view(this->offset(), oview_size, oview);
4890 // Update the data size and address alignment of the stub table at the end
4891 // of a relaxation pass. Return true if either the data size or the
4892 // alignment changed in this relaxation pass.
4894 template<bool big_endian>
4895 bool
4896 Stub_table<big_endian>::update_data_size_and_addralign()
4898 // Go over all stubs in table to compute data size and address alignment.
4899 off_t size = this->reloc_stubs_size_;
4900 unsigned addralign = this->reloc_stubs_addralign_;
4902 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4903 p != this->cortex_a8_stubs_.end();
4904 ++p)
4906 const Stub_template* stub_template = p->second->stub_template();
4907 addralign = std::max(addralign, stub_template->alignment());
4908 size = (align_address(size, stub_template->alignment())
4909 + stub_template->size());
4912 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4913 p != this->arm_v4bx_stubs_.end();
4914 ++p)
4916 if (*p == NULL)
4917 continue;
4919 const Stub_template* stub_template = (*p)->stub_template();
4920 addralign = std::max(addralign, stub_template->alignment());
4921 size = (align_address(size, stub_template->alignment())
4922 + stub_template->size());
4925 // Check if either data size or alignment changed in this pass.
4926 // Update prev_data_size_ and prev_addralign_. These will be used
4927 // as the current data size and address alignment for the next pass.
4928 bool changed = size != this->prev_data_size_;
4929 this->prev_data_size_ = size;
4931 if (addralign != this->prev_addralign_)
4932 changed = true;
4933 this->prev_addralign_ = addralign;
4935 return changed;
4938 // Finalize the stubs. This sets the offsets of the stubs within the stub
4939 // table. It also marks all input sections needing Cortex-A8 workaround.
4941 template<bool big_endian>
4942 void
4943 Stub_table<big_endian>::finalize_stubs()
4945 off_t off = this->reloc_stubs_size_;
4946 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4947 p != this->cortex_a8_stubs_.end();
4948 ++p)
4950 Cortex_a8_stub* stub = p->second;
4951 const Stub_template* stub_template = stub->stub_template();
4952 uint64_t stub_addralign = stub_template->alignment();
4953 off = align_address(off, stub_addralign);
4954 stub->set_offset(off);
4955 off += stub_template->size();
4957 // Mark input section so that we can determine later if a code section
4958 // needs the Cortex-A8 workaround quickly.
4959 Arm_relobj<big_endian>* arm_relobj =
4960 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4961 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4964 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4965 p != this->arm_v4bx_stubs_.end();
4966 ++p)
4968 if (*p == NULL)
4969 continue;
4971 const Stub_template* stub_template = (*p)->stub_template();
4972 uint64_t stub_addralign = stub_template->alignment();
4973 off = align_address(off, stub_addralign);
4974 (*p)->set_offset(off);
4975 off += stub_template->size();
4978 gold_assert(off <= this->prev_data_size_);
4981 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4982 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
4983 // of the address range seen by the linker.
4985 template<bool big_endian>
4986 void
4987 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4988 Target_arm<big_endian>* arm_target,
4989 unsigned char* view,
4990 Arm_address view_address,
4991 section_size_type view_size)
4993 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4994 for (Cortex_a8_stub_list::const_iterator p =
4995 this->cortex_a8_stubs_.lower_bound(view_address);
4996 ((p != this->cortex_a8_stubs_.end())
4997 && (p->first < (view_address + view_size)));
4998 ++p)
5000 // We do not store the THUMB bit in the LSB of either the branch address
5001 // or the stub offset. There is no need to strip the LSB.
5002 Arm_address branch_address = p->first;
5003 const Cortex_a8_stub* stub = p->second;
5004 Arm_address stub_address = this->address() + stub->offset();
5006 // Offset of the branch instruction relative to this view.
5007 section_size_type offset =
5008 convert_to_section_size_type(branch_address - view_address);
5009 gold_assert((offset + 4) <= view_size);
5011 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5012 view + offset, branch_address);
5016 // Arm_input_section methods.
5018 // Initialize an Arm_input_section.
5020 template<bool big_endian>
5021 void
5022 Arm_input_section<big_endian>::init()
5024 Relobj* relobj = this->relobj();
5025 unsigned int shndx = this->shndx();
5027 // Cache these to speed up size and alignment queries. It is too slow
5028 // to call section_addraglin and section_size every time.
5029 this->original_addralign_ =
5030 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5031 this->original_size_ =
5032 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5034 // We want to make this look like the original input section after
5035 // output sections are finalized.
5036 Output_section* os = relobj->output_section(shndx);
5037 off_t offset = relobj->output_section_offset(shndx);
5038 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5039 this->set_address(os->address() + offset);
5040 this->set_file_offset(os->offset() + offset);
5042 this->set_current_data_size(this->original_size_);
5043 this->finalize_data_size();
5046 template<bool big_endian>
5047 void
5048 Arm_input_section<big_endian>::do_write(Output_file* of)
5050 // We have to write out the original section content.
5051 section_size_type section_size;
5052 const unsigned char* section_contents =
5053 this->relobj()->section_contents(this->shndx(), &section_size, false);
5054 of->write(this->offset(), section_contents, section_size);
5056 // If this owns a stub table and it is not empty, write it.
5057 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5058 this->stub_table_->write(of);
5061 // Finalize data size.
5063 template<bool big_endian>
5064 void
5065 Arm_input_section<big_endian>::set_final_data_size()
5067 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5069 if (this->is_stub_table_owner())
5071 this->stub_table_->finalize_data_size();
5072 off = align_address(off, this->stub_table_->addralign());
5073 off += this->stub_table_->data_size();
5075 this->set_data_size(off);
5078 // Reset address and file offset.
5080 template<bool big_endian>
5081 void
5082 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5084 // Size of the original input section contents.
5085 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5087 // If this is a stub table owner, account for the stub table size.
5088 if (this->is_stub_table_owner())
5090 Stub_table<big_endian>* stub_table = this->stub_table_;
5092 // Reset the stub table's address and file offset. The
5093 // current data size for child will be updated after that.
5094 stub_table_->reset_address_and_file_offset();
5095 off = align_address(off, stub_table_->addralign());
5096 off += stub_table->current_data_size();
5099 this->set_current_data_size(off);
5102 // Arm_exidx_cantunwind methods.
5104 // Write this to Output file OF for a fixed endianness.
5106 template<bool big_endian>
5107 void
5108 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5110 off_t offset = this->offset();
5111 const section_size_type oview_size = 8;
5112 unsigned char* const oview = of->get_output_view(offset, oview_size);
5114 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5115 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5117 Output_section* os = this->relobj_->output_section(this->shndx_);
5118 gold_assert(os != NULL);
5120 Arm_relobj<big_endian>* arm_relobj =
5121 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5122 Arm_address output_offset =
5123 arm_relobj->get_output_section_offset(this->shndx_);
5124 Arm_address section_start;
5125 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5126 section_start = os->address() + output_offset;
5127 else
5129 // Currently this only happens for a relaxed section.
5130 const Output_relaxed_input_section* poris =
5131 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5132 gold_assert(poris != NULL);
5133 section_start = poris->address();
5136 // We always append this to the end of an EXIDX section.
5137 Arm_address output_address =
5138 section_start + this->relobj_->section_size(this->shndx_);
5140 // Write out the entry. The first word either points to the beginning
5141 // or after the end of a text section. The second word is the special
5142 // EXIDX_CANTUNWIND value.
5143 uint32_t prel31_offset = output_address - this->address();
5144 if (utils::has_overflow<31>(offset))
5145 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5146 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5147 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5149 of->write_output_view(this->offset(), oview_size, oview);
5152 // Arm_exidx_merged_section methods.
5154 // Constructor for Arm_exidx_merged_section.
5155 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5156 // SECTION_OFFSET_MAP points to a section offset map describing how
5157 // parts of the input section are mapped to output. DELETED_BYTES is
5158 // the number of bytes deleted from the EXIDX input section.
5160 Arm_exidx_merged_section::Arm_exidx_merged_section(
5161 const Arm_exidx_input_section& exidx_input_section,
5162 const Arm_exidx_section_offset_map& section_offset_map,
5163 uint32_t deleted_bytes)
5164 : Output_relaxed_input_section(exidx_input_section.relobj(),
5165 exidx_input_section.shndx(),
5166 exidx_input_section.addralign()),
5167 exidx_input_section_(exidx_input_section),
5168 section_offset_map_(section_offset_map)
5170 // Fix size here so that we do not need to implement set_final_data_size.
5171 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5172 this->fix_data_size();
5175 // Given an input OBJECT, an input section index SHNDX within that
5176 // object, and an OFFSET relative to the start of that input
5177 // section, return whether or not the corresponding offset within
5178 // the output section is known. If this function returns true, it
5179 // sets *POUTPUT to the output offset. The value -1 indicates that
5180 // this input offset is being discarded.
5182 bool
5183 Arm_exidx_merged_section::do_output_offset(
5184 const Relobj* relobj,
5185 unsigned int shndx,
5186 section_offset_type offset,
5187 section_offset_type* poutput) const
5189 // We only handle offsets for the original EXIDX input section.
5190 if (relobj != this->exidx_input_section_.relobj()
5191 || shndx != this->exidx_input_section_.shndx())
5192 return false;
5194 section_offset_type section_size =
5195 convert_types<section_offset_type>(this->exidx_input_section_.size());
5196 if (offset < 0 || offset >= section_size)
5197 // Input offset is out of valid range.
5198 *poutput = -1;
5199 else
5201 // We need to look up the section offset map to determine the output
5202 // offset. Find the reference point in map that is first offset
5203 // bigger than or equal to this offset.
5204 Arm_exidx_section_offset_map::const_iterator p =
5205 this->section_offset_map_.lower_bound(offset);
5207 // The section offset maps are build such that this should not happen if
5208 // input offset is in the valid range.
5209 gold_assert(p != this->section_offset_map_.end());
5211 // We need to check if this is dropped.
5212 section_offset_type ref = p->first;
5213 section_offset_type mapped_ref = p->second;
5215 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5216 // Offset is present in output.
5217 *poutput = mapped_ref + (offset - ref);
5218 else
5219 // Offset is discarded owing to EXIDX entry merging.
5220 *poutput = -1;
5223 return true;
5226 // Write this to output file OF.
5228 void
5229 Arm_exidx_merged_section::do_write(Output_file* of)
5231 // If we retain or discard the whole EXIDX input section, we would
5232 // not be here.
5233 gold_assert(this->data_size() != this->exidx_input_section_.size()
5234 && this->data_size() != 0);
5236 off_t offset = this->offset();
5237 const section_size_type oview_size = this->data_size();
5238 unsigned char* const oview = of->get_output_view(offset, oview_size);
5240 Output_section* os = this->relobj()->output_section(this->shndx());
5241 gold_assert(os != NULL);
5243 // Get contents of EXIDX input section.
5244 section_size_type section_size;
5245 const unsigned char* section_contents =
5246 this->relobj()->section_contents(this->shndx(), &section_size, false);
5247 gold_assert(section_size == this->exidx_input_section_.size());
5249 // Go over spans of input offsets and write only those that are not
5250 // discarded.
5251 section_offset_type in_start = 0;
5252 section_offset_type out_start = 0;
5253 for(Arm_exidx_section_offset_map::const_iterator p =
5254 this->section_offset_map_.begin();
5255 p != this->section_offset_map_.end();
5256 ++p)
5258 section_offset_type in_end = p->first;
5259 gold_assert(in_end >= in_start);
5260 section_offset_type out_end = p->second;
5261 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5262 if (out_end != -1)
5264 size_t out_chunk_size =
5265 convert_types<size_t>(out_end - out_start + 1);
5266 gold_assert(out_chunk_size == in_chunk_size);
5267 memcpy(oview + out_start, section_contents + in_start,
5268 out_chunk_size);
5269 out_start += out_chunk_size;
5271 in_start += in_chunk_size;
5274 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5275 of->write_output_view(this->offset(), oview_size, oview);
5278 // Arm_exidx_fixup methods.
5280 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5281 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5282 // points to the end of the last seen EXIDX section.
5284 void
5285 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5287 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5288 && this->last_input_section_ != NULL)
5290 Relobj* relobj = this->last_input_section_->relobj();
5291 unsigned int text_shndx = this->last_input_section_->link();
5292 Arm_exidx_cantunwind* cantunwind =
5293 new Arm_exidx_cantunwind(relobj, text_shndx);
5294 this->exidx_output_section_->add_output_section_data(cantunwind);
5295 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5299 // Process an EXIDX section entry in input. Return whether this entry
5300 // can be deleted in the output. SECOND_WORD in the second word of the
5301 // EXIDX entry.
5303 bool
5304 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5306 bool delete_entry;
5307 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5309 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5310 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5311 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5313 else if ((second_word & 0x80000000) != 0)
5315 // Inlined unwinding data. Merge if equal to previous.
5316 delete_entry = (merge_exidx_entries_
5317 && this->last_unwind_type_ == UT_INLINED_ENTRY
5318 && this->last_inlined_entry_ == second_word);
5319 this->last_unwind_type_ = UT_INLINED_ENTRY;
5320 this->last_inlined_entry_ = second_word;
5322 else
5324 // Normal table entry. In theory we could merge these too,
5325 // but duplicate entries are likely to be much less common.
5326 delete_entry = false;
5327 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5329 return delete_entry;
5332 // Update the current section offset map during EXIDX section fix-up.
5333 // If there is no map, create one. INPUT_OFFSET is the offset of a
5334 // reference point, DELETED_BYTES is the number of deleted by in the
5335 // section so far. If DELETE_ENTRY is true, the reference point and
5336 // all offsets after the previous reference point are discarded.
5338 void
5339 Arm_exidx_fixup::update_offset_map(
5340 section_offset_type input_offset,
5341 section_size_type deleted_bytes,
5342 bool delete_entry)
5344 if (this->section_offset_map_ == NULL)
5345 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5346 section_offset_type output_offset;
5347 if (delete_entry)
5348 output_offset = Arm_exidx_input_section::invalid_offset;
5349 else
5350 output_offset = input_offset - deleted_bytes;
5351 (*this->section_offset_map_)[input_offset] = output_offset;
5354 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5355 // bytes deleted. If some entries are merged, also store a pointer to a newly
5356 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5357 // caller owns the map and is responsible for releasing it after use.
5359 template<bool big_endian>
5360 uint32_t
5361 Arm_exidx_fixup::process_exidx_section(
5362 const Arm_exidx_input_section* exidx_input_section,
5363 Arm_exidx_section_offset_map** psection_offset_map)
5365 Relobj* relobj = exidx_input_section->relobj();
5366 unsigned shndx = exidx_input_section->shndx();
5367 section_size_type section_size;
5368 const unsigned char* section_contents =
5369 relobj->section_contents(shndx, &section_size, false);
5371 if ((section_size % 8) != 0)
5373 // Something is wrong with this section. Better not touch it.
5374 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5375 relobj->name().c_str(), shndx);
5376 this->last_input_section_ = exidx_input_section;
5377 this->last_unwind_type_ = UT_NONE;
5378 return 0;
5381 uint32_t deleted_bytes = 0;
5382 bool prev_delete_entry = false;
5383 gold_assert(this->section_offset_map_ == NULL);
5385 for (section_size_type i = 0; i < section_size; i += 8)
5387 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5388 const Valtype* wv =
5389 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5390 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5392 bool delete_entry = this->process_exidx_entry(second_word);
5394 // Entry deletion causes changes in output offsets. We use a std::map
5395 // to record these. And entry (x, y) means input offset x
5396 // is mapped to output offset y. If y is invalid_offset, then x is
5397 // dropped in the output. Because of the way std::map::lower_bound
5398 // works, we record the last offset in a region w.r.t to keeping or
5399 // dropping. If there is no entry (x0, y0) for an input offset x0,
5400 // the output offset y0 of it is determined by the output offset y1 of
5401 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5402 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5403 // y0 is also -1.
5404 if (delete_entry != prev_delete_entry && i != 0)
5405 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5407 // Update total deleted bytes for this entry.
5408 if (delete_entry)
5409 deleted_bytes += 8;
5411 prev_delete_entry = delete_entry;
5414 // If section offset map is not NULL, make an entry for the end of
5415 // section.
5416 if (this->section_offset_map_ != NULL)
5417 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5419 *psection_offset_map = this->section_offset_map_;
5420 this->section_offset_map_ = NULL;
5421 this->last_input_section_ = exidx_input_section;
5423 // Set the first output text section so that we can link the EXIDX output
5424 // section to it. Ignore any EXIDX input section that is completely merged.
5425 if (this->first_output_text_section_ == NULL
5426 && deleted_bytes != section_size)
5428 unsigned int link = exidx_input_section->link();
5429 Output_section* os = relobj->output_section(link);
5430 gold_assert(os != NULL);
5431 this->first_output_text_section_ = os;
5434 return deleted_bytes;
5437 // Arm_output_section methods.
5439 // Create a stub group for input sections from BEGIN to END. OWNER
5440 // points to the input section to be the owner a new stub table.
5442 template<bool big_endian>
5443 void
5444 Arm_output_section<big_endian>::create_stub_group(
5445 Input_section_list::const_iterator begin,
5446 Input_section_list::const_iterator end,
5447 Input_section_list::const_iterator owner,
5448 Target_arm<big_endian>* target,
5449 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5451 // We use a different kind of relaxed section in an EXIDX section.
5452 // The static casting from Output_relaxed_input_section to
5453 // Arm_input_section is invalid in an EXIDX section. We are okay
5454 // because we should not be calling this for an EXIDX section.
5455 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5457 // Currently we convert ordinary input sections into relaxed sections only
5458 // at this point but we may want to support creating relaxed input section
5459 // very early. So we check here to see if owner is already a relaxed
5460 // section.
5462 Arm_input_section<big_endian>* arm_input_section;
5463 if (owner->is_relaxed_input_section())
5465 arm_input_section =
5466 Arm_input_section<big_endian>::as_arm_input_section(
5467 owner->relaxed_input_section());
5469 else
5471 gold_assert(owner->is_input_section());
5472 // Create a new relaxed input section.
5473 arm_input_section =
5474 target->new_arm_input_section(owner->relobj(), owner->shndx());
5475 new_relaxed_sections->push_back(arm_input_section);
5478 // Create a stub table.
5479 Stub_table<big_endian>* stub_table =
5480 target->new_stub_table(arm_input_section);
5482 arm_input_section->set_stub_table(stub_table);
5484 Input_section_list::const_iterator p = begin;
5485 Input_section_list::const_iterator prev_p;
5487 // Look for input sections or relaxed input sections in [begin ... end].
5490 if (p->is_input_section() || p->is_relaxed_input_section())
5492 // The stub table information for input sections live
5493 // in their objects.
5494 Arm_relobj<big_endian>* arm_relobj =
5495 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5496 arm_relobj->set_stub_table(p->shndx(), stub_table);
5498 prev_p = p++;
5500 while (prev_p != end);
5503 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5504 // of stub groups. We grow a stub group by adding input section until the
5505 // size is just below GROUP_SIZE. The last input section will be converted
5506 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5507 // input section after the stub table, effectively double the group size.
5509 // This is similar to the group_sections() function in elf32-arm.c but is
5510 // implemented differently.
5512 template<bool big_endian>
5513 void
5514 Arm_output_section<big_endian>::group_sections(
5515 section_size_type group_size,
5516 bool stubs_always_after_branch,
5517 Target_arm<big_endian>* target)
5519 // We only care about sections containing code.
5520 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5521 return;
5523 // States for grouping.
5524 typedef enum
5526 // No group is being built.
5527 NO_GROUP,
5528 // A group is being built but the stub table is not found yet.
5529 // We keep group a stub group until the size is just under GROUP_SIZE.
5530 // The last input section in the group will be used as the stub table.
5531 FINDING_STUB_SECTION,
5532 // A group is being built and we have already found a stub table.
5533 // We enter this state to grow a stub group by adding input section
5534 // after the stub table. This effectively doubles the group size.
5535 HAS_STUB_SECTION
5536 } State;
5538 // Any newly created relaxed sections are stored here.
5539 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5541 State state = NO_GROUP;
5542 section_size_type off = 0;
5543 section_size_type group_begin_offset = 0;
5544 section_size_type group_end_offset = 0;
5545 section_size_type stub_table_end_offset = 0;
5546 Input_section_list::const_iterator group_begin =
5547 this->input_sections().end();
5548 Input_section_list::const_iterator stub_table =
5549 this->input_sections().end();
5550 Input_section_list::const_iterator group_end = this->input_sections().end();
5551 for (Input_section_list::const_iterator p = this->input_sections().begin();
5552 p != this->input_sections().end();
5553 ++p)
5555 section_size_type section_begin_offset =
5556 align_address(off, p->addralign());
5557 section_size_type section_end_offset =
5558 section_begin_offset + p->data_size();
5560 // Check to see if we should group the previously seens sections.
5561 switch (state)
5563 case NO_GROUP:
5564 break;
5566 case FINDING_STUB_SECTION:
5567 // Adding this section makes the group larger than GROUP_SIZE.
5568 if (section_end_offset - group_begin_offset >= group_size)
5570 if (stubs_always_after_branch)
5572 gold_assert(group_end != this->input_sections().end());
5573 this->create_stub_group(group_begin, group_end, group_end,
5574 target, &new_relaxed_sections);
5575 state = NO_GROUP;
5577 else
5579 // But wait, there's more! Input sections up to
5580 // stub_group_size bytes after the stub table can be
5581 // handled by it too.
5582 state = HAS_STUB_SECTION;
5583 stub_table = group_end;
5584 stub_table_end_offset = group_end_offset;
5587 break;
5589 case HAS_STUB_SECTION:
5590 // Adding this section makes the post stub-section group larger
5591 // than GROUP_SIZE.
5592 if (section_end_offset - stub_table_end_offset >= group_size)
5594 gold_assert(group_end != this->input_sections().end());
5595 this->create_stub_group(group_begin, group_end, stub_table,
5596 target, &new_relaxed_sections);
5597 state = NO_GROUP;
5599 break;
5601 default:
5602 gold_unreachable();
5605 // If we see an input section and currently there is no group, start
5606 // a new one. Skip any empty sections.
5607 if ((p->is_input_section() || p->is_relaxed_input_section())
5608 && (p->relobj()->section_size(p->shndx()) != 0))
5610 if (state == NO_GROUP)
5612 state = FINDING_STUB_SECTION;
5613 group_begin = p;
5614 group_begin_offset = section_begin_offset;
5617 // Keep track of the last input section seen.
5618 group_end = p;
5619 group_end_offset = section_end_offset;
5622 off = section_end_offset;
5625 // Create a stub group for any ungrouped sections.
5626 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5628 gold_assert(group_end != this->input_sections().end());
5629 this->create_stub_group(group_begin, group_end,
5630 (state == FINDING_STUB_SECTION
5631 ? group_end
5632 : stub_table),
5633 target, &new_relaxed_sections);
5636 // Convert input section into relaxed input section in a batch.
5637 if (!new_relaxed_sections.empty())
5638 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5640 // Update the section offsets
5641 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5643 Arm_relobj<big_endian>* arm_relobj =
5644 Arm_relobj<big_endian>::as_arm_relobj(
5645 new_relaxed_sections[i]->relobj());
5646 unsigned int shndx = new_relaxed_sections[i]->shndx();
5647 // Tell Arm_relobj that this input section is converted.
5648 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5652 // Append non empty text sections in this to LIST in ascending
5653 // order of their position in this.
5655 template<bool big_endian>
5656 void
5657 Arm_output_section<big_endian>::append_text_sections_to_list(
5658 Text_section_list* list)
5660 // We only care about text sections.
5661 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5662 return;
5664 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5666 for (Input_section_list::const_iterator p = this->input_sections().begin();
5667 p != this->input_sections().end();
5668 ++p)
5670 // We only care about plain or relaxed input sections. We also
5671 // ignore any merged sections.
5672 if ((p->is_input_section() || p->is_relaxed_input_section())
5673 && p->data_size() != 0)
5674 list->push_back(Text_section_list::value_type(p->relobj(),
5675 p->shndx()));
5679 template<bool big_endian>
5680 void
5681 Arm_output_section<big_endian>::fix_exidx_coverage(
5682 Layout* layout,
5683 const Text_section_list& sorted_text_sections,
5684 Symbol_table* symtab,
5685 bool merge_exidx_entries)
5687 // We should only do this for the EXIDX output section.
5688 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5690 // We don't want the relaxation loop to undo these changes, so we discard
5691 // the current saved states and take another one after the fix-up.
5692 this->discard_states();
5694 // Remove all input sections.
5695 uint64_t address = this->address();
5696 typedef std::list<Output_section::Input_section> Input_section_list;
5697 Input_section_list input_sections;
5698 this->reset_address_and_file_offset();
5699 this->get_input_sections(address, std::string(""), &input_sections);
5701 if (!this->input_sections().empty())
5702 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5704 // Go through all the known input sections and record them.
5705 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5706 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5707 Section_id_hash> Text_to_exidx_map;
5708 Text_to_exidx_map text_to_exidx_map;
5709 for (Input_section_list::const_iterator p = input_sections.begin();
5710 p != input_sections.end();
5711 ++p)
5713 // This should never happen. At this point, we should only see
5714 // plain EXIDX input sections.
5715 gold_assert(!p->is_relaxed_input_section());
5716 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5719 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5721 // Go over the sorted text sections.
5722 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5723 Section_id_set processed_input_sections;
5724 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5725 p != sorted_text_sections.end();
5726 ++p)
5728 Relobj* relobj = p->first;
5729 unsigned int shndx = p->second;
5731 Arm_relobj<big_endian>* arm_relobj =
5732 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5733 const Arm_exidx_input_section* exidx_input_section =
5734 arm_relobj->exidx_input_section_by_link(shndx);
5736 // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5737 // entry pointing to the end of the last seen EXIDX section.
5738 if (exidx_input_section == NULL)
5740 exidx_fixup.add_exidx_cantunwind_as_needed();
5741 continue;
5744 Relobj* exidx_relobj = exidx_input_section->relobj();
5745 unsigned int exidx_shndx = exidx_input_section->shndx();
5746 Section_id sid(exidx_relobj, exidx_shndx);
5747 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5748 if (iter == text_to_exidx_map.end())
5750 // This is odd. We have not seen this EXIDX input section before.
5751 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5752 // issue a warning instead. We assume the user knows what he
5753 // or she is doing. Otherwise, this is an error.
5754 if (layout->script_options()->saw_sections_clause())
5755 gold_warning(_("unwinding may not work because EXIDX input section"
5756 " %u of %s is not in EXIDX output section"),
5757 exidx_shndx, exidx_relobj->name().c_str());
5758 else
5759 gold_error(_("unwinding may not work because EXIDX input section"
5760 " %u of %s is not in EXIDX output section"),
5761 exidx_shndx, exidx_relobj->name().c_str());
5763 exidx_fixup.add_exidx_cantunwind_as_needed();
5764 continue;
5767 // Fix up coverage and append input section to output data list.
5768 Arm_exidx_section_offset_map* section_offset_map = NULL;
5769 uint32_t deleted_bytes =
5770 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5771 &section_offset_map);
5773 if (deleted_bytes == exidx_input_section->size())
5775 // The whole EXIDX section got merged. Remove it from output.
5776 gold_assert(section_offset_map == NULL);
5777 exidx_relobj->set_output_section(exidx_shndx, NULL);
5779 // All local symbols defined in this input section will be dropped.
5780 // We need to adjust output local symbol count.
5781 arm_relobj->set_output_local_symbol_count_needs_update();
5783 else if (deleted_bytes > 0)
5785 // Some entries are merged. We need to convert this EXIDX input
5786 // section into a relaxed section.
5787 gold_assert(section_offset_map != NULL);
5788 Arm_exidx_merged_section* merged_section =
5789 new Arm_exidx_merged_section(*exidx_input_section,
5790 *section_offset_map, deleted_bytes);
5791 this->add_relaxed_input_section(merged_section);
5792 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5794 // All local symbols defined in discarded portions of this input
5795 // section will be dropped. We need to adjust output local symbol
5796 // count.
5797 arm_relobj->set_output_local_symbol_count_needs_update();
5799 else
5801 // Just add back the EXIDX input section.
5802 gold_assert(section_offset_map == NULL);
5803 const Output_section::Input_section* pis = iter->second;
5804 gold_assert(pis->is_input_section());
5805 this->add_script_input_section(*pis);
5808 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5811 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5812 exidx_fixup.add_exidx_cantunwind_as_needed();
5814 // Remove any known EXIDX input sections that are not processed.
5815 for (Input_section_list::const_iterator p = input_sections.begin();
5816 p != input_sections.end();
5817 ++p)
5819 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5820 == processed_input_sections.end())
5822 // We only discard a known EXIDX section because its linked
5823 // text section has been folded by ICF.
5824 Arm_relobj<big_endian>* arm_relobj =
5825 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5826 const Arm_exidx_input_section* exidx_input_section =
5827 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5828 gold_assert(exidx_input_section != NULL);
5829 unsigned int text_shndx = exidx_input_section->link();
5830 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5832 // Remove this from link. We also need to recount the
5833 // local symbols.
5834 p->relobj()->set_output_section(p->shndx(), NULL);
5835 arm_relobj->set_output_local_symbol_count_needs_update();
5839 // Link exidx output section to the first seen output section and
5840 // set correct entry size.
5841 this->set_link_section(exidx_fixup.first_output_text_section());
5842 this->set_entsize(8);
5844 // Make changes permanent.
5845 this->save_states();
5846 this->set_section_offsets_need_adjustment();
5849 // Arm_relobj methods.
5851 // Determine if an input section is scannable for stub processing. SHDR is
5852 // the header of the section and SHNDX is the section index. OS is the output
5853 // section for the input section and SYMTAB is the global symbol table used to
5854 // look up ICF information.
5856 template<bool big_endian>
5857 bool
5858 Arm_relobj<big_endian>::section_is_scannable(
5859 const elfcpp::Shdr<32, big_endian>& shdr,
5860 unsigned int shndx,
5861 const Output_section* os,
5862 const Symbol_table *symtab)
5864 // Skip any empty sections, unallocated sections or sections whose
5865 // type are not SHT_PROGBITS.
5866 if (shdr.get_sh_size() == 0
5867 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5868 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5869 return false;
5871 // Skip any discarded or ICF'ed sections.
5872 if (os == NULL || symtab->is_section_folded(this, shndx))
5873 return false;
5875 // If this requires special offset handling, check to see if it is
5876 // a relaxed section. If this is not, then it is a merged section that
5877 // we cannot handle.
5878 if (this->is_output_section_offset_invalid(shndx))
5880 const Output_relaxed_input_section* poris =
5881 os->find_relaxed_input_section(this, shndx);
5882 if (poris == NULL)
5883 return false;
5886 return true;
5889 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5890 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5892 template<bool big_endian>
5893 bool
5894 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5895 const elfcpp::Shdr<32, big_endian>& shdr,
5896 const Relobj::Output_sections& out_sections,
5897 const Symbol_table *symtab,
5898 const unsigned char* pshdrs)
5900 unsigned int sh_type = shdr.get_sh_type();
5901 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5902 return false;
5904 // Ignore empty section.
5905 off_t sh_size = shdr.get_sh_size();
5906 if (sh_size == 0)
5907 return false;
5909 // Ignore reloc section with unexpected symbol table. The
5910 // error will be reported in the final link.
5911 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5912 return false;
5914 unsigned int reloc_size;
5915 if (sh_type == elfcpp::SHT_REL)
5916 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5917 else
5918 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5920 // Ignore reloc section with unexpected entsize or uneven size.
5921 // The error will be reported in the final link.
5922 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5923 return false;
5925 // Ignore reloc section with bad info. This error will be
5926 // reported in the final link.
5927 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5928 if (index >= this->shnum())
5929 return false;
5931 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5932 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5933 return this->section_is_scannable(text_shdr, index,
5934 out_sections[index], symtab);
5937 // Return the output address of either a plain input section or a relaxed
5938 // input section. SHNDX is the section index. We define and use this
5939 // instead of calling Output_section::output_address because that is slow
5940 // for large output.
5942 template<bool big_endian>
5943 Arm_address
5944 Arm_relobj<big_endian>::simple_input_section_output_address(
5945 unsigned int shndx,
5946 Output_section* os)
5948 if (this->is_output_section_offset_invalid(shndx))
5950 const Output_relaxed_input_section* poris =
5951 os->find_relaxed_input_section(this, shndx);
5952 // We do not handle merged sections here.
5953 gold_assert(poris != NULL);
5954 return poris->address();
5956 else
5957 return os->address() + this->get_output_section_offset(shndx);
5960 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5961 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5963 template<bool big_endian>
5964 bool
5965 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5966 const elfcpp::Shdr<32, big_endian>& shdr,
5967 unsigned int shndx,
5968 Output_section* os,
5969 const Symbol_table* symtab)
5971 if (!this->section_is_scannable(shdr, shndx, os, symtab))
5972 return false;
5974 // If the section does not cross any 4K-boundaries, it does not need to
5975 // be scanned.
5976 Arm_address address = this->simple_input_section_output_address(shndx, os);
5977 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5978 return false;
5980 return true;
5983 // Scan a section for Cortex-A8 workaround.
5985 template<bool big_endian>
5986 void
5987 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5988 const elfcpp::Shdr<32, big_endian>& shdr,
5989 unsigned int shndx,
5990 Output_section* os,
5991 Target_arm<big_endian>* arm_target)
5993 // Look for the first mapping symbol in this section. It should be
5994 // at (shndx, 0).
5995 Mapping_symbol_position section_start(shndx, 0);
5996 typename Mapping_symbols_info::const_iterator p =
5997 this->mapping_symbols_info_.lower_bound(section_start);
5999 // There are no mapping symbols for this section. Treat it as a data-only
6000 // section. Issue a warning if section is marked as containing
6001 // instructions.
6002 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6004 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6005 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6006 "erratum because it has no mapping symbols."),
6007 shndx, this->name().c_str());
6008 return;
6011 Arm_address output_address =
6012 this->simple_input_section_output_address(shndx, os);
6014 // Get the section contents.
6015 section_size_type input_view_size = 0;
6016 const unsigned char* input_view =
6017 this->section_contents(shndx, &input_view_size, false);
6019 // We need to go through the mapping symbols to determine what to
6020 // scan. There are two reasons. First, we should look at THUMB code and
6021 // THUMB code only. Second, we only want to look at the 4K-page boundary
6022 // to speed up the scanning.
6024 while (p != this->mapping_symbols_info_.end()
6025 && p->first.first == shndx)
6027 typename Mapping_symbols_info::const_iterator next =
6028 this->mapping_symbols_info_.upper_bound(p->first);
6030 // Only scan part of a section with THUMB code.
6031 if (p->second == 't')
6033 // Determine the end of this range.
6034 section_size_type span_start =
6035 convert_to_section_size_type(p->first.second);
6036 section_size_type span_end;
6037 if (next != this->mapping_symbols_info_.end()
6038 && next->first.first == shndx)
6039 span_end = convert_to_section_size_type(next->first.second);
6040 else
6041 span_end = convert_to_section_size_type(shdr.get_sh_size());
6043 if (((span_start + output_address) & ~0xfffUL)
6044 != ((span_end + output_address - 1) & ~0xfffUL))
6046 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6047 span_start, span_end,
6048 input_view,
6049 output_address);
6053 p = next;
6057 // Scan relocations for stub generation.
6059 template<bool big_endian>
6060 void
6061 Arm_relobj<big_endian>::scan_sections_for_stubs(
6062 Target_arm<big_endian>* arm_target,
6063 const Symbol_table* symtab,
6064 const Layout* layout)
6066 unsigned int shnum = this->shnum();
6067 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6069 // Read the section headers.
6070 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6071 shnum * shdr_size,
6072 true, true);
6074 // To speed up processing, we set up hash tables for fast lookup of
6075 // input offsets to output addresses.
6076 this->initialize_input_to_output_maps();
6078 const Relobj::Output_sections& out_sections(this->output_sections());
6080 Relocate_info<32, big_endian> relinfo;
6081 relinfo.symtab = symtab;
6082 relinfo.layout = layout;
6083 relinfo.object = this;
6085 // Do relocation stubs scanning.
6086 const unsigned char* p = pshdrs + shdr_size;
6087 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6089 const elfcpp::Shdr<32, big_endian> shdr(p);
6090 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6091 pshdrs))
6093 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6094 Arm_address output_offset = this->get_output_section_offset(index);
6095 Arm_address output_address;
6096 if (output_offset != invalid_address)
6097 output_address = out_sections[index]->address() + output_offset;
6098 else
6100 // Currently this only happens for a relaxed section.
6101 const Output_relaxed_input_section* poris =
6102 out_sections[index]->find_relaxed_input_section(this, index);
6103 gold_assert(poris != NULL);
6104 output_address = poris->address();
6107 // Get the relocations.
6108 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6109 shdr.get_sh_size(),
6110 true, false);
6112 // Get the section contents. This does work for the case in which
6113 // we modify the contents of an input section. We need to pass the
6114 // output view under such circumstances.
6115 section_size_type input_view_size = 0;
6116 const unsigned char* input_view =
6117 this->section_contents(index, &input_view_size, false);
6119 relinfo.reloc_shndx = i;
6120 relinfo.data_shndx = index;
6121 unsigned int sh_type = shdr.get_sh_type();
6122 unsigned int reloc_size;
6123 if (sh_type == elfcpp::SHT_REL)
6124 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6125 else
6126 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6128 Output_section* os = out_sections[index];
6129 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6130 shdr.get_sh_size() / reloc_size,
6132 output_offset == invalid_address,
6133 input_view, output_address,
6134 input_view_size);
6138 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6139 // after its relocation section, if there is one, is processed for
6140 // relocation stubs. Merging this loop with the one above would have been
6141 // complicated since we would have had to make sure that relocation stub
6142 // scanning is done first.
6143 if (arm_target->fix_cortex_a8())
6145 const unsigned char* p = pshdrs + shdr_size;
6146 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6148 const elfcpp::Shdr<32, big_endian> shdr(p);
6149 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6150 out_sections[i],
6151 symtab))
6152 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6153 arm_target);
6157 // After we've done the relocations, we release the hash tables,
6158 // since we no longer need them.
6159 this->free_input_to_output_maps();
6162 // Count the local symbols. The ARM backend needs to know if a symbol
6163 // is a THUMB function or not. For global symbols, it is easy because
6164 // the Symbol object keeps the ELF symbol type. For local symbol it is
6165 // harder because we cannot access this information. So we override the
6166 // do_count_local_symbol in parent and scan local symbols to mark
6167 // THUMB functions. This is not the most efficient way but I do not want to
6168 // slow down other ports by calling a per symbol targer hook inside
6169 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6171 template<bool big_endian>
6172 void
6173 Arm_relobj<big_endian>::do_count_local_symbols(
6174 Stringpool_template<char>* pool,
6175 Stringpool_template<char>* dynpool)
6177 // We need to fix-up the values of any local symbols whose type are
6178 // STT_ARM_TFUNC.
6180 // Ask parent to count the local symbols.
6181 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6182 const unsigned int loccount = this->local_symbol_count();
6183 if (loccount == 0)
6184 return;
6186 // Intialize the thumb function bit-vector.
6187 std::vector<bool> empty_vector(loccount, false);
6188 this->local_symbol_is_thumb_function_.swap(empty_vector);
6190 // Read the symbol table section header.
6191 const unsigned int symtab_shndx = this->symtab_shndx();
6192 elfcpp::Shdr<32, big_endian>
6193 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6194 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6196 // Read the local symbols.
6197 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6198 gold_assert(loccount == symtabshdr.get_sh_info());
6199 off_t locsize = loccount * sym_size;
6200 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6201 locsize, true, true);
6203 // For mapping symbol processing, we need to read the symbol names.
6204 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6205 if (strtab_shndx >= this->shnum())
6207 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6208 return;
6211 elfcpp::Shdr<32, big_endian>
6212 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6213 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6215 this->error(_("symbol table name section has wrong type: %u"),
6216 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6217 return;
6219 const char* pnames =
6220 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6221 strtabshdr.get_sh_size(),
6222 false, false));
6224 // Loop over the local symbols and mark any local symbols pointing
6225 // to THUMB functions.
6227 // Skip the first dummy symbol.
6228 psyms += sym_size;
6229 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6230 this->local_values();
6231 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6233 elfcpp::Sym<32, big_endian> sym(psyms);
6234 elfcpp::STT st_type = sym.get_st_type();
6235 Symbol_value<32>& lv((*plocal_values)[i]);
6236 Arm_address input_value = lv.input_value();
6238 // Check to see if this is a mapping symbol.
6239 const char* sym_name = pnames + sym.get_st_name();
6240 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6242 bool is_ordinary;
6243 unsigned int input_shndx =
6244 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6245 gold_assert(is_ordinary);
6247 // Strip of LSB in case this is a THUMB symbol.
6248 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6249 this->mapping_symbols_info_[msp] = sym_name[1];
6252 if (st_type == elfcpp::STT_ARM_TFUNC
6253 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6255 // This is a THUMB function. Mark this and canonicalize the
6256 // symbol value by setting LSB.
6257 this->local_symbol_is_thumb_function_[i] = true;
6258 if ((input_value & 1) == 0)
6259 lv.set_input_value(input_value | 1);
6264 // Relocate sections.
6265 template<bool big_endian>
6266 void
6267 Arm_relobj<big_endian>::do_relocate_sections(
6268 const Symbol_table* symtab,
6269 const Layout* layout,
6270 const unsigned char* pshdrs,
6271 typename Sized_relobj<32, big_endian>::Views* pviews)
6273 // Call parent to relocate sections.
6274 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6275 pviews);
6277 // We do not generate stubs if doing a relocatable link.
6278 if (parameters->options().relocatable())
6279 return;
6281 // Relocate stub tables.
6282 unsigned int shnum = this->shnum();
6284 Target_arm<big_endian>* arm_target =
6285 Target_arm<big_endian>::default_target();
6287 Relocate_info<32, big_endian> relinfo;
6288 relinfo.symtab = symtab;
6289 relinfo.layout = layout;
6290 relinfo.object = this;
6292 for (unsigned int i = 1; i < shnum; ++i)
6294 Arm_input_section<big_endian>* arm_input_section =
6295 arm_target->find_arm_input_section(this, i);
6297 if (arm_input_section != NULL
6298 && arm_input_section->is_stub_table_owner()
6299 && !arm_input_section->stub_table()->empty())
6301 // We cannot discard a section if it owns a stub table.
6302 Output_section* os = this->output_section(i);
6303 gold_assert(os != NULL);
6305 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6306 relinfo.reloc_shdr = NULL;
6307 relinfo.data_shndx = i;
6308 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6310 gold_assert((*pviews)[i].view != NULL);
6312 // We are passed the output section view. Adjust it to cover the
6313 // stub table only.
6314 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6315 gold_assert((stub_table->address() >= (*pviews)[i].address)
6316 && ((stub_table->address() + stub_table->data_size())
6317 <= (*pviews)[i].address + (*pviews)[i].view_size));
6319 off_t offset = stub_table->address() - (*pviews)[i].address;
6320 unsigned char* view = (*pviews)[i].view + offset;
6321 Arm_address address = stub_table->address();
6322 section_size_type view_size = stub_table->data_size();
6324 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6325 view_size);
6328 // Apply Cortex A8 workaround if applicable.
6329 if (this->section_has_cortex_a8_workaround(i))
6331 unsigned char* view = (*pviews)[i].view;
6332 Arm_address view_address = (*pviews)[i].address;
6333 section_size_type view_size = (*pviews)[i].view_size;
6334 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6336 // Adjust view to cover section.
6337 Output_section* os = this->output_section(i);
6338 gold_assert(os != NULL);
6339 Arm_address section_address =
6340 this->simple_input_section_output_address(i, os);
6341 uint64_t section_size = this->section_size(i);
6343 gold_assert(section_address >= view_address
6344 && ((section_address + section_size)
6345 <= (view_address + view_size)));
6347 unsigned char* section_view = view + (section_address - view_address);
6349 // Apply the Cortex-A8 workaround to the output address range
6350 // corresponding to this input section.
6351 stub_table->apply_cortex_a8_workaround_to_address_range(
6352 arm_target,
6353 section_view,
6354 section_address,
6355 section_size);
6360 // Find the linked text section of an EXIDX section by looking the the first
6361 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6362 // must be linked to to its associated code section via the sh_link field of
6363 // its section header. However, some tools are broken and the link is not
6364 // always set. LD just drops such an EXIDX section silently, causing the
6365 // associated code not unwindabled. Here we try a little bit harder to
6366 // discover the linked code section.
6368 // PSHDR points to the section header of a relocation section of an EXIDX
6369 // section. If we can find a linked text section, return true and
6370 // store the text section index in the location PSHNDX. Otherwise
6371 // return false.
6373 template<bool big_endian>
6374 bool
6375 Arm_relobj<big_endian>::find_linked_text_section(
6376 const unsigned char* pshdr,
6377 const unsigned char* psyms,
6378 unsigned int* pshndx)
6380 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6382 // If there is no relocation, we cannot find the linked text section.
6383 size_t reloc_size;
6384 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6385 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6386 else
6387 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6388 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6390 // Get the relocations.
6391 const unsigned char* prelocs =
6392 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6394 // Find the REL31 relocation for the first word of the first EXIDX entry.
6395 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6397 Arm_address r_offset;
6398 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6399 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6401 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6402 r_info = reloc.get_r_info();
6403 r_offset = reloc.get_r_offset();
6405 else
6407 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6408 r_info = reloc.get_r_info();
6409 r_offset = reloc.get_r_offset();
6412 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6413 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6414 continue;
6416 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6417 if (r_sym == 0
6418 || r_sym >= this->local_symbol_count()
6419 || r_offset != 0)
6420 continue;
6422 // This is the relocation for the first word of the first EXIDX entry.
6423 // We expect to see a local section symbol.
6424 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6425 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6426 if (sym.get_st_type() == elfcpp::STT_SECTION)
6428 bool is_ordinary;
6429 *pshndx =
6430 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6431 gold_assert(is_ordinary);
6432 return true;
6434 else
6435 return false;
6438 return false;
6441 // Make an EXIDX input section object for an EXIDX section whose index is
6442 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6443 // is the section index of the linked text section.
6445 template<bool big_endian>
6446 void
6447 Arm_relobj<big_endian>::make_exidx_input_section(
6448 unsigned int shndx,
6449 const elfcpp::Shdr<32, big_endian>& shdr,
6450 unsigned int text_shndx)
6452 // Issue an error and ignore this EXIDX section if it points to a text
6453 // section already has an EXIDX section.
6454 if (this->exidx_section_map_[text_shndx] != NULL)
6456 gold_error(_("EXIDX sections %u and %u both link to text section %u "
6457 "in %s"),
6458 shndx, this->exidx_section_map_[text_shndx]->shndx(),
6459 text_shndx, this->name().c_str());
6460 return;
6463 // Create an Arm_exidx_input_section object for this EXIDX section.
6464 Arm_exidx_input_section* exidx_input_section =
6465 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6466 shdr.get_sh_addralign());
6467 this->exidx_section_map_[text_shndx] = exidx_input_section;
6469 // Also map the EXIDX section index to this.
6470 gold_assert(this->exidx_section_map_[shndx] == NULL);
6471 this->exidx_section_map_[shndx] = exidx_input_section;
6474 // Read the symbol information.
6476 template<bool big_endian>
6477 void
6478 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6480 // Call parent class to read symbol information.
6481 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6483 // If this input file is a binary file, it has no processor
6484 // specific flags and attributes section.
6485 Input_file::Format format = this->input_file()->format();
6486 if (format != Input_file::FORMAT_ELF)
6488 gold_assert(format == Input_file::FORMAT_BINARY);
6489 this->merge_flags_and_attributes_ = false;
6490 return;
6493 // Read processor-specific flags in ELF file header.
6494 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6495 elfcpp::Elf_sizes<32>::ehdr_size,
6496 true, false);
6497 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6498 this->processor_specific_flags_ = ehdr.get_e_flags();
6500 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6501 // sections.
6502 std::vector<unsigned int> deferred_exidx_sections;
6503 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6504 const unsigned char* pshdrs = sd->section_headers->data();
6505 const unsigned char *ps = pshdrs + shdr_size;
6506 bool must_merge_flags_and_attributes = false;
6507 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6509 elfcpp::Shdr<32, big_endian> shdr(ps);
6511 // Sometimes an object has no contents except the section name string
6512 // table and an empty symbol table with the undefined symbol. We
6513 // don't want to merge processor-specific flags from such an object.
6514 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6516 // Symbol table is not empty.
6517 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6518 elfcpp::Elf_sizes<32>::sym_size;
6519 if (shdr.get_sh_size() > sym_size)
6520 must_merge_flags_and_attributes = true;
6522 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6523 // If this is neither an empty symbol table nor a string table,
6524 // be conservative.
6525 must_merge_flags_and_attributes = true;
6527 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6529 gold_assert(this->attributes_section_data_ == NULL);
6530 section_offset_type section_offset = shdr.get_sh_offset();
6531 section_size_type section_size =
6532 convert_to_section_size_type(shdr.get_sh_size());
6533 File_view* view = this->get_lasting_view(section_offset,
6534 section_size, true, false);
6535 this->attributes_section_data_ =
6536 new Attributes_section_data(view->data(), section_size);
6538 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6540 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6541 if (text_shndx >= this->shnum())
6542 gold_error(_("EXIDX section %u linked to invalid section %u"),
6543 i, text_shndx);
6544 else if (text_shndx == elfcpp::SHN_UNDEF)
6545 deferred_exidx_sections.push_back(i);
6546 else
6547 this->make_exidx_input_section(i, shdr, text_shndx);
6551 // This is rare.
6552 if (!must_merge_flags_and_attributes)
6554 this->merge_flags_and_attributes_ = false;
6555 return;
6558 // Some tools are broken and they do not set the link of EXIDX sections.
6559 // We look at the first relocation to figure out the linked sections.
6560 if (!deferred_exidx_sections.empty())
6562 // We need to go over the section headers again to find the mapping
6563 // from sections being relocated to their relocation sections. This is
6564 // a bit inefficient as we could do that in the loop above. However,
6565 // we do not expect any deferred EXIDX sections normally. So we do not
6566 // want to slow down the most common path.
6567 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6568 Reloc_map reloc_map;
6569 ps = pshdrs + shdr_size;
6570 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6572 elfcpp::Shdr<32, big_endian> shdr(ps);
6573 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6574 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6576 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6577 if (info_shndx >= this->shnum())
6578 gold_error(_("relocation section %u has invalid info %u"),
6579 i, info_shndx);
6580 Reloc_map::value_type value(info_shndx, i);
6581 std::pair<Reloc_map::iterator, bool> result =
6582 reloc_map.insert(value);
6583 if (!result.second)
6584 gold_error(_("section %u has multiple relocation sections "
6585 "%u and %u"),
6586 info_shndx, i, reloc_map[info_shndx]);
6590 // Read the symbol table section header.
6591 const unsigned int symtab_shndx = this->symtab_shndx();
6592 elfcpp::Shdr<32, big_endian>
6593 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6594 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6596 // Read the local symbols.
6597 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6598 const unsigned int loccount = this->local_symbol_count();
6599 gold_assert(loccount == symtabshdr.get_sh_info());
6600 off_t locsize = loccount * sym_size;
6601 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6602 locsize, true, true);
6604 // Process the deferred EXIDX sections.
6605 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6607 unsigned int shndx = deferred_exidx_sections[i];
6608 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6609 unsigned int text_shndx;
6610 Reloc_map::const_iterator it = reloc_map.find(shndx);
6611 if (it != reloc_map.end()
6612 && find_linked_text_section(pshdrs + it->second * shdr_size,
6613 psyms, &text_shndx))
6614 this->make_exidx_input_section(shndx, shdr, text_shndx);
6615 else
6616 gold_error(_("EXIDX section %u has no linked text section."),
6617 shndx);
6622 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6623 // sections for unwinding. These sections are referenced implicitly by
6624 // text sections linked in the section headers. If we ignore these implict
6625 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6626 // will be garbage-collected incorrectly. Hence we override the same function
6627 // in the base class to handle these implicit references.
6629 template<bool big_endian>
6630 void
6631 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6632 Layout* layout,
6633 Read_relocs_data* rd)
6635 // First, call base class method to process relocations in this object.
6636 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6638 // If --gc-sections is not specified, there is nothing more to do.
6639 // This happens when --icf is used but --gc-sections is not.
6640 if (!parameters->options().gc_sections())
6641 return;
6643 unsigned int shnum = this->shnum();
6644 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6645 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6646 shnum * shdr_size,
6647 true, true);
6649 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6650 // to these from the linked text sections.
6651 const unsigned char* ps = pshdrs + shdr_size;
6652 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6654 elfcpp::Shdr<32, big_endian> shdr(ps);
6655 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6657 // Found an .ARM.exidx section, add it to the set of reachable
6658 // sections from its linked text section.
6659 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6660 symtab->gc()->add_reference(this, text_shndx, this, i);
6665 // Update output local symbol count. Owing to EXIDX entry merging, some local
6666 // symbols will be removed in output. Adjust output local symbol count
6667 // accordingly. We can only changed the static output local symbol count. It
6668 // is too late to change the dynamic symbols.
6670 template<bool big_endian>
6671 void
6672 Arm_relobj<big_endian>::update_output_local_symbol_count()
6674 // Caller should check that this needs updating. We want caller checking
6675 // because output_local_symbol_count_needs_update() is most likely inlined.
6676 gold_assert(this->output_local_symbol_count_needs_update_);
6678 gold_assert(this->symtab_shndx() != -1U);
6679 if (this->symtab_shndx() == 0)
6681 // This object has no symbols. Weird but legal.
6682 return;
6685 // Read the symbol table section header.
6686 const unsigned int symtab_shndx = this->symtab_shndx();
6687 elfcpp::Shdr<32, big_endian>
6688 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6689 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6691 // Read the local symbols.
6692 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6693 const unsigned int loccount = this->local_symbol_count();
6694 gold_assert(loccount == symtabshdr.get_sh_info());
6695 off_t locsize = loccount * sym_size;
6696 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6697 locsize, true, true);
6699 // Loop over the local symbols.
6701 typedef typename Sized_relobj<32, big_endian>::Output_sections
6702 Output_sections;
6703 const Output_sections& out_sections(this->output_sections());
6704 unsigned int shnum = this->shnum();
6705 unsigned int count = 0;
6706 // Skip the first, dummy, symbol.
6707 psyms += sym_size;
6708 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6710 elfcpp::Sym<32, big_endian> sym(psyms);
6712 Symbol_value<32>& lv((*this->local_values())[i]);
6714 // This local symbol was already discarded by do_count_local_symbols.
6715 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6716 continue;
6718 bool is_ordinary;
6719 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6720 &is_ordinary);
6722 if (shndx < shnum)
6724 Output_section* os = out_sections[shndx];
6726 // This local symbol no longer has an output section. Discard it.
6727 if (os == NULL)
6729 lv.set_no_output_symtab_entry();
6730 continue;
6733 // Currently we only discard parts of EXIDX input sections.
6734 // We explicitly check for a merged EXIDX input section to avoid
6735 // calling Output_section_data::output_offset unless necessary.
6736 if ((this->get_output_section_offset(shndx) == invalid_address)
6737 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6739 section_offset_type output_offset =
6740 os->output_offset(this, shndx, lv.input_value());
6741 if (output_offset == -1)
6743 // This symbol is defined in a part of an EXIDX input section
6744 // that is discarded due to entry merging.
6745 lv.set_no_output_symtab_entry();
6746 continue;
6751 ++count;
6754 this->set_output_local_symbol_count(count);
6755 this->output_local_symbol_count_needs_update_ = false;
6758 // Arm_dynobj methods.
6760 // Read the symbol information.
6762 template<bool big_endian>
6763 void
6764 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6766 // Call parent class to read symbol information.
6767 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6769 // Read processor-specific flags in ELF file header.
6770 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6771 elfcpp::Elf_sizes<32>::ehdr_size,
6772 true, false);
6773 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6774 this->processor_specific_flags_ = ehdr.get_e_flags();
6776 // Read the attributes section if there is one.
6777 // We read from the end because gas seems to put it near the end of
6778 // the section headers.
6779 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6780 const unsigned char *ps =
6781 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6782 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6784 elfcpp::Shdr<32, big_endian> shdr(ps);
6785 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6787 section_offset_type section_offset = shdr.get_sh_offset();
6788 section_size_type section_size =
6789 convert_to_section_size_type(shdr.get_sh_size());
6790 File_view* view = this->get_lasting_view(section_offset,
6791 section_size, true, false);
6792 this->attributes_section_data_ =
6793 new Attributes_section_data(view->data(), section_size);
6794 break;
6799 // Stub_addend_reader methods.
6801 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6803 template<bool big_endian>
6804 elfcpp::Elf_types<32>::Elf_Swxword
6805 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6806 unsigned int r_type,
6807 const unsigned char* view,
6808 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6810 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6812 switch (r_type)
6814 case elfcpp::R_ARM_CALL:
6815 case elfcpp::R_ARM_JUMP24:
6816 case elfcpp::R_ARM_PLT32:
6818 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6819 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6820 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6821 return utils::sign_extend<26>(val << 2);
6824 case elfcpp::R_ARM_THM_CALL:
6825 case elfcpp::R_ARM_THM_JUMP24:
6826 case elfcpp::R_ARM_THM_XPC22:
6828 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6829 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6830 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6831 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6832 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6835 case elfcpp::R_ARM_THM_JUMP19:
6837 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6838 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6839 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6840 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6841 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6844 default:
6845 gold_unreachable();
6849 // Arm_output_data_got methods.
6851 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6852 // The first one is initialized to be 1, which is the module index for
6853 // the main executable and the second one 0. A reloc of the type
6854 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6855 // be applied by gold. GSYM is a global symbol.
6857 template<bool big_endian>
6858 void
6859 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6860 unsigned int got_type,
6861 Symbol* gsym)
6863 if (gsym->has_got_offset(got_type))
6864 return;
6866 // We are doing a static link. Just mark it as belong to module 1,
6867 // the executable.
6868 unsigned int got_offset = this->add_constant(1);
6869 gsym->set_got_offset(got_type, got_offset);
6870 got_offset = this->add_constant(0);
6871 this->static_relocs_.push_back(Static_reloc(got_offset,
6872 elfcpp::R_ARM_TLS_DTPOFF32,
6873 gsym));
6876 // Same as the above but for a local symbol.
6878 template<bool big_endian>
6879 void
6880 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6881 unsigned int got_type,
6882 Sized_relobj<32, big_endian>* object,
6883 unsigned int index)
6885 if (object->local_has_got_offset(index, got_type))
6886 return;
6888 // We are doing a static link. Just mark it as belong to module 1,
6889 // the executable.
6890 unsigned int got_offset = this->add_constant(1);
6891 object->set_local_got_offset(index, got_type, got_offset);
6892 got_offset = this->add_constant(0);
6893 this->static_relocs_.push_back(Static_reloc(got_offset,
6894 elfcpp::R_ARM_TLS_DTPOFF32,
6895 object, index));
6898 template<bool big_endian>
6899 void
6900 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6902 // Call parent to write out GOT.
6903 Output_data_got<32, big_endian>::do_write(of);
6905 // We are done if there is no fix up.
6906 if (this->static_relocs_.empty())
6907 return;
6909 gold_assert(parameters->doing_static_link());
6911 const off_t offset = this->offset();
6912 const section_size_type oview_size =
6913 convert_to_section_size_type(this->data_size());
6914 unsigned char* const oview = of->get_output_view(offset, oview_size);
6916 Output_segment* tls_segment = this->layout_->tls_segment();
6917 gold_assert(tls_segment != NULL);
6919 // The thread pointer $tp points to the TCB, which is followed by the
6920 // TLS. So we need to adjust $tp relative addressing by this amount.
6921 Arm_address aligned_tcb_size =
6922 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6924 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6926 Static_reloc& reloc(this->static_relocs_[i]);
6928 Arm_address value;
6929 if (!reloc.symbol_is_global())
6931 Sized_relobj<32, big_endian>* object = reloc.relobj();
6932 const Symbol_value<32>* psymval =
6933 reloc.relobj()->local_symbol(reloc.index());
6935 // We are doing static linking. Issue an error and skip this
6936 // relocation if the symbol is undefined or in a discarded_section.
6937 bool is_ordinary;
6938 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6939 if ((shndx == elfcpp::SHN_UNDEF)
6940 || (is_ordinary
6941 && shndx != elfcpp::SHN_UNDEF
6942 && !object->is_section_included(shndx)
6943 && !this->symbol_table_->is_section_folded(object, shndx)))
6945 gold_error(_("undefined or discarded local symbol %u from "
6946 " object %s in GOT"),
6947 reloc.index(), reloc.relobj()->name().c_str());
6948 continue;
6951 value = psymval->value(object, 0);
6953 else
6955 const Symbol* gsym = reloc.symbol();
6956 gold_assert(gsym != NULL);
6957 if (gsym->is_forwarder())
6958 gsym = this->symbol_table_->resolve_forwards(gsym);
6960 // We are doing static linking. Issue an error and skip this
6961 // relocation if the symbol is undefined or in a discarded_section
6962 // unless it is a weakly_undefined symbol.
6963 if ((gsym->is_defined_in_discarded_section()
6964 || gsym->is_undefined())
6965 && !gsym->is_weak_undefined())
6967 gold_error(_("undefined or discarded symbol %s in GOT"),
6968 gsym->name());
6969 continue;
6972 if (!gsym->is_weak_undefined())
6974 const Sized_symbol<32>* sym =
6975 static_cast<const Sized_symbol<32>*>(gsym);
6976 value = sym->value();
6978 else
6979 value = 0;
6982 unsigned got_offset = reloc.got_offset();
6983 gold_assert(got_offset < oview_size);
6985 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6986 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6987 Valtype x;
6988 switch (reloc.r_type())
6990 case elfcpp::R_ARM_TLS_DTPOFF32:
6991 x = value;
6992 break;
6993 case elfcpp::R_ARM_TLS_TPOFF32:
6994 x = value + aligned_tcb_size;
6995 break;
6996 default:
6997 gold_unreachable();
6999 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7002 of->write_output_view(offset, oview_size, oview);
7005 // A class to handle the PLT data.
7007 template<bool big_endian>
7008 class Output_data_plt_arm : public Output_section_data
7010 public:
7011 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7012 Reloc_section;
7014 Output_data_plt_arm(Layout*, Output_data_space*);
7016 // Add an entry to the PLT.
7017 void
7018 add_entry(Symbol* gsym);
7020 // Return the .rel.plt section data.
7021 const Reloc_section*
7022 rel_plt() const
7023 { return this->rel_; }
7025 protected:
7026 void
7027 do_adjust_output_section(Output_section* os);
7029 // Write to a map file.
7030 void
7031 do_print_to_mapfile(Mapfile* mapfile) const
7032 { mapfile->print_output_data(this, _("** PLT")); }
7034 private:
7035 // Template for the first PLT entry.
7036 static const uint32_t first_plt_entry[5];
7038 // Template for subsequent PLT entries.
7039 static const uint32_t plt_entry[3];
7041 // Set the final size.
7042 void
7043 set_final_data_size()
7045 this->set_data_size(sizeof(first_plt_entry)
7046 + this->count_ * sizeof(plt_entry));
7049 // Write out the PLT data.
7050 void
7051 do_write(Output_file*);
7053 // The reloc section.
7054 Reloc_section* rel_;
7055 // The .got.plt section.
7056 Output_data_space* got_plt_;
7057 // The number of PLT entries.
7058 unsigned int count_;
7061 // Create the PLT section. The ordinary .got section is an argument,
7062 // since we need to refer to the start. We also create our own .got
7063 // section just for PLT entries.
7065 template<bool big_endian>
7066 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7067 Output_data_space* got_plt)
7068 : Output_section_data(4), got_plt_(got_plt), count_(0)
7070 this->rel_ = new Reloc_section(false);
7071 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7072 elfcpp::SHF_ALLOC, this->rel_, true, false,
7073 false, false);
7076 template<bool big_endian>
7077 void
7078 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7080 os->set_entsize(0);
7083 // Add an entry to the PLT.
7085 template<bool big_endian>
7086 void
7087 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7089 gold_assert(!gsym->has_plt_offset());
7091 // Note that when setting the PLT offset we skip the initial
7092 // reserved PLT entry.
7093 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7094 + sizeof(first_plt_entry));
7096 ++this->count_;
7098 section_offset_type got_offset = this->got_plt_->current_data_size();
7100 // Every PLT entry needs a GOT entry which points back to the PLT
7101 // entry (this will be changed by the dynamic linker, normally
7102 // lazily when the function is called).
7103 this->got_plt_->set_current_data_size(got_offset + 4);
7105 // Every PLT entry needs a reloc.
7106 gsym->set_needs_dynsym_entry();
7107 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7108 got_offset);
7110 // Note that we don't need to save the symbol. The contents of the
7111 // PLT are independent of which symbols are used. The symbols only
7112 // appear in the relocations.
7115 // ARM PLTs.
7116 // FIXME: This is not very flexible. Right now this has only been tested
7117 // on armv5te. If we are to support additional architecture features like
7118 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7120 // The first entry in the PLT.
7121 template<bool big_endian>
7122 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7124 0xe52de004, // str lr, [sp, #-4]!
7125 0xe59fe004, // ldr lr, [pc, #4]
7126 0xe08fe00e, // add lr, pc, lr
7127 0xe5bef008, // ldr pc, [lr, #8]!
7128 0x00000000, // &GOT[0] - .
7131 // Subsequent entries in the PLT.
7133 template<bool big_endian>
7134 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7136 0xe28fc600, // add ip, pc, #0xNN00000
7137 0xe28cca00, // add ip, ip, #0xNN000
7138 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7141 // Write out the PLT. This uses the hand-coded instructions above,
7142 // and adjusts them as needed. This is all specified by the arm ELF
7143 // Processor Supplement.
7145 template<bool big_endian>
7146 void
7147 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7149 const off_t offset = this->offset();
7150 const section_size_type oview_size =
7151 convert_to_section_size_type(this->data_size());
7152 unsigned char* const oview = of->get_output_view(offset, oview_size);
7154 const off_t got_file_offset = this->got_plt_->offset();
7155 const section_size_type got_size =
7156 convert_to_section_size_type(this->got_plt_->data_size());
7157 unsigned char* const got_view = of->get_output_view(got_file_offset,
7158 got_size);
7159 unsigned char* pov = oview;
7161 Arm_address plt_address = this->address();
7162 Arm_address got_address = this->got_plt_->address();
7164 // Write first PLT entry. All but the last word are constants.
7165 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7166 / sizeof(plt_entry[0]));
7167 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7168 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7169 // Last word in first PLT entry is &GOT[0] - .
7170 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7171 got_address - (plt_address + 16));
7172 pov += sizeof(first_plt_entry);
7174 unsigned char* got_pov = got_view;
7176 memset(got_pov, 0, 12);
7177 got_pov += 12;
7179 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7180 unsigned int plt_offset = sizeof(first_plt_entry);
7181 unsigned int plt_rel_offset = 0;
7182 unsigned int got_offset = 12;
7183 const unsigned int count = this->count_;
7184 for (unsigned int i = 0;
7185 i < count;
7186 ++i,
7187 pov += sizeof(plt_entry),
7188 got_pov += 4,
7189 plt_offset += sizeof(plt_entry),
7190 plt_rel_offset += rel_size,
7191 got_offset += 4)
7193 // Set and adjust the PLT entry itself.
7194 int32_t offset = ((got_address + got_offset)
7195 - (plt_address + plt_offset + 8));
7197 gold_assert(offset >= 0 && offset < 0x0fffffff);
7198 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7199 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7200 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7201 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7202 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7203 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7205 // Set the entry in the GOT.
7206 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7209 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7210 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7212 of->write_output_view(offset, oview_size, oview);
7213 of->write_output_view(got_file_offset, got_size, got_view);
7216 // Create a PLT entry for a global symbol.
7218 template<bool big_endian>
7219 void
7220 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7221 Symbol* gsym)
7223 if (gsym->has_plt_offset())
7224 return;
7226 if (this->plt_ == NULL)
7228 // Create the GOT sections first.
7229 this->got_section(symtab, layout);
7231 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7232 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7233 (elfcpp::SHF_ALLOC
7234 | elfcpp::SHF_EXECINSTR),
7235 this->plt_, false, false, false, false);
7237 this->plt_->add_entry(gsym);
7240 // Get the section to use for TLS_DESC relocations.
7242 template<bool big_endian>
7243 typename Target_arm<big_endian>::Reloc_section*
7244 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7246 return this->plt_section()->rel_tls_desc(layout);
7249 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7251 template<bool big_endian>
7252 void
7253 Target_arm<big_endian>::define_tls_base_symbol(
7254 Symbol_table* symtab,
7255 Layout* layout)
7257 if (this->tls_base_symbol_defined_)
7258 return;
7260 Output_segment* tls_segment = layout->tls_segment();
7261 if (tls_segment != NULL)
7263 bool is_exec = parameters->options().output_is_executable();
7264 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7265 Symbol_table::PREDEFINED,
7266 tls_segment, 0, 0,
7267 elfcpp::STT_TLS,
7268 elfcpp::STB_LOCAL,
7269 elfcpp::STV_HIDDEN, 0,
7270 (is_exec
7271 ? Symbol::SEGMENT_END
7272 : Symbol::SEGMENT_START),
7273 true);
7275 this->tls_base_symbol_defined_ = true;
7278 // Create a GOT entry for the TLS module index.
7280 template<bool big_endian>
7281 unsigned int
7282 Target_arm<big_endian>::got_mod_index_entry(
7283 Symbol_table* symtab,
7284 Layout* layout,
7285 Sized_relobj<32, big_endian>* object)
7287 if (this->got_mod_index_offset_ == -1U)
7289 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7290 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7291 unsigned int got_offset;
7292 if (!parameters->doing_static_link())
7294 got_offset = got->add_constant(0);
7295 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7296 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7297 got_offset);
7299 else
7301 // We are doing a static link. Just mark it as belong to module 1,
7302 // the executable.
7303 got_offset = got->add_constant(1);
7306 got->add_constant(0);
7307 this->got_mod_index_offset_ = got_offset;
7309 return this->got_mod_index_offset_;
7312 // Optimize the TLS relocation type based on what we know about the
7313 // symbol. IS_FINAL is true if the final address of this symbol is
7314 // known at link time.
7316 template<bool big_endian>
7317 tls::Tls_optimization
7318 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7320 // FIXME: Currently we do not do any TLS optimization.
7321 return tls::TLSOPT_NONE;
7324 // Report an unsupported relocation against a local symbol.
7326 template<bool big_endian>
7327 void
7328 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7329 Sized_relobj<32, big_endian>* object,
7330 unsigned int r_type)
7332 gold_error(_("%s: unsupported reloc %u against local symbol"),
7333 object->name().c_str(), r_type);
7336 // We are about to emit a dynamic relocation of type R_TYPE. If the
7337 // dynamic linker does not support it, issue an error. The GNU linker
7338 // only issues a non-PIC error for an allocated read-only section.
7339 // Here we know the section is allocated, but we don't know that it is
7340 // read-only. But we check for all the relocation types which the
7341 // glibc dynamic linker supports, so it seems appropriate to issue an
7342 // error even if the section is not read-only.
7344 template<bool big_endian>
7345 void
7346 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7347 unsigned int r_type)
7349 switch (r_type)
7351 // These are the relocation types supported by glibc for ARM.
7352 case elfcpp::R_ARM_RELATIVE:
7353 case elfcpp::R_ARM_COPY:
7354 case elfcpp::R_ARM_GLOB_DAT:
7355 case elfcpp::R_ARM_JUMP_SLOT:
7356 case elfcpp::R_ARM_ABS32:
7357 case elfcpp::R_ARM_ABS32_NOI:
7358 case elfcpp::R_ARM_PC24:
7359 // FIXME: The following 3 types are not supported by Android's dynamic
7360 // linker.
7361 case elfcpp::R_ARM_TLS_DTPMOD32:
7362 case elfcpp::R_ARM_TLS_DTPOFF32:
7363 case elfcpp::R_ARM_TLS_TPOFF32:
7364 return;
7366 default:
7368 // This prevents us from issuing more than one error per reloc
7369 // section. But we can still wind up issuing more than one
7370 // error per object file.
7371 if (this->issued_non_pic_error_)
7372 return;
7373 const Arm_reloc_property* reloc_property =
7374 arm_reloc_property_table->get_reloc_property(r_type);
7375 gold_assert(reloc_property != NULL);
7376 object->error(_("requires unsupported dynamic reloc %s; "
7377 "recompile with -fPIC"),
7378 reloc_property->name().c_str());
7379 this->issued_non_pic_error_ = true;
7380 return;
7383 case elfcpp::R_ARM_NONE:
7384 gold_unreachable();
7388 // Scan a relocation for a local symbol.
7389 // FIXME: This only handles a subset of relocation types used by Android
7390 // on ARM v5te devices.
7392 template<bool big_endian>
7393 inline void
7394 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7395 Layout* layout,
7396 Target_arm* target,
7397 Sized_relobj<32, big_endian>* object,
7398 unsigned int data_shndx,
7399 Output_section* output_section,
7400 const elfcpp::Rel<32, big_endian>& reloc,
7401 unsigned int r_type,
7402 const elfcpp::Sym<32, big_endian>& lsym)
7404 r_type = get_real_reloc_type(r_type);
7405 switch (r_type)
7407 case elfcpp::R_ARM_NONE:
7408 case elfcpp::R_ARM_V4BX:
7409 case elfcpp::R_ARM_GNU_VTENTRY:
7410 case elfcpp::R_ARM_GNU_VTINHERIT:
7411 break;
7413 case elfcpp::R_ARM_ABS32:
7414 case elfcpp::R_ARM_ABS32_NOI:
7415 // If building a shared library (or a position-independent
7416 // executable), we need to create a dynamic relocation for
7417 // this location. The relocation applied at link time will
7418 // apply the link-time value, so we flag the location with
7419 // an R_ARM_RELATIVE relocation so the dynamic loader can
7420 // relocate it easily.
7421 if (parameters->options().output_is_position_independent())
7423 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7424 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7425 // If we are to add more other reloc types than R_ARM_ABS32,
7426 // we need to add check_non_pic(object, r_type) here.
7427 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7428 output_section, data_shndx,
7429 reloc.get_r_offset());
7431 break;
7433 case elfcpp::R_ARM_ABS16:
7434 case elfcpp::R_ARM_ABS12:
7435 case elfcpp::R_ARM_THM_ABS5:
7436 case elfcpp::R_ARM_ABS8:
7437 case elfcpp::R_ARM_BASE_ABS:
7438 case elfcpp::R_ARM_MOVW_ABS_NC:
7439 case elfcpp::R_ARM_MOVT_ABS:
7440 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7441 case elfcpp::R_ARM_THM_MOVT_ABS:
7442 // If building a shared library (or a position-independent
7443 // executable), we need to create a dynamic relocation for
7444 // this location. Because the addend needs to remain in the
7445 // data section, we need to be careful not to apply this
7446 // relocation statically.
7447 if (parameters->options().output_is_position_independent())
7449 check_non_pic(object, r_type);
7450 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7451 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7452 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7453 rel_dyn->add_local(object, r_sym, r_type, output_section,
7454 data_shndx, reloc.get_r_offset());
7455 else
7457 gold_assert(lsym.get_st_value() == 0);
7458 unsigned int shndx = lsym.get_st_shndx();
7459 bool is_ordinary;
7460 shndx = object->adjust_sym_shndx(r_sym, shndx,
7461 &is_ordinary);
7462 if (!is_ordinary)
7463 object->error(_("section symbol %u has bad shndx %u"),
7464 r_sym, shndx);
7465 else
7466 rel_dyn->add_local_section(object, shndx,
7467 r_type, output_section,
7468 data_shndx, reloc.get_r_offset());
7471 break;
7473 case elfcpp::R_ARM_PC24:
7474 case elfcpp::R_ARM_REL32:
7475 case elfcpp::R_ARM_LDR_PC_G0:
7476 case elfcpp::R_ARM_SBREL32:
7477 case elfcpp::R_ARM_THM_CALL:
7478 case elfcpp::R_ARM_THM_PC8:
7479 case elfcpp::R_ARM_BASE_PREL:
7480 case elfcpp::R_ARM_PLT32:
7481 case elfcpp::R_ARM_CALL:
7482 case elfcpp::R_ARM_JUMP24:
7483 case elfcpp::R_ARM_THM_JUMP24:
7484 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7485 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7486 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7487 case elfcpp::R_ARM_SBREL31:
7488 case elfcpp::R_ARM_PREL31:
7489 case elfcpp::R_ARM_MOVW_PREL_NC:
7490 case elfcpp::R_ARM_MOVT_PREL:
7491 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7492 case elfcpp::R_ARM_THM_MOVT_PREL:
7493 case elfcpp::R_ARM_THM_JUMP19:
7494 case elfcpp::R_ARM_THM_JUMP6:
7495 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7496 case elfcpp::R_ARM_THM_PC12:
7497 case elfcpp::R_ARM_REL32_NOI:
7498 case elfcpp::R_ARM_ALU_PC_G0_NC:
7499 case elfcpp::R_ARM_ALU_PC_G0:
7500 case elfcpp::R_ARM_ALU_PC_G1_NC:
7501 case elfcpp::R_ARM_ALU_PC_G1:
7502 case elfcpp::R_ARM_ALU_PC_G2:
7503 case elfcpp::R_ARM_LDR_PC_G1:
7504 case elfcpp::R_ARM_LDR_PC_G2:
7505 case elfcpp::R_ARM_LDRS_PC_G0:
7506 case elfcpp::R_ARM_LDRS_PC_G1:
7507 case elfcpp::R_ARM_LDRS_PC_G2:
7508 case elfcpp::R_ARM_LDC_PC_G0:
7509 case elfcpp::R_ARM_LDC_PC_G1:
7510 case elfcpp::R_ARM_LDC_PC_G2:
7511 case elfcpp::R_ARM_ALU_SB_G0_NC:
7512 case elfcpp::R_ARM_ALU_SB_G0:
7513 case elfcpp::R_ARM_ALU_SB_G1_NC:
7514 case elfcpp::R_ARM_ALU_SB_G1:
7515 case elfcpp::R_ARM_ALU_SB_G2:
7516 case elfcpp::R_ARM_LDR_SB_G0:
7517 case elfcpp::R_ARM_LDR_SB_G1:
7518 case elfcpp::R_ARM_LDR_SB_G2:
7519 case elfcpp::R_ARM_LDRS_SB_G0:
7520 case elfcpp::R_ARM_LDRS_SB_G1:
7521 case elfcpp::R_ARM_LDRS_SB_G2:
7522 case elfcpp::R_ARM_LDC_SB_G0:
7523 case elfcpp::R_ARM_LDC_SB_G1:
7524 case elfcpp::R_ARM_LDC_SB_G2:
7525 case elfcpp::R_ARM_MOVW_BREL_NC:
7526 case elfcpp::R_ARM_MOVT_BREL:
7527 case elfcpp::R_ARM_MOVW_BREL:
7528 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7529 case elfcpp::R_ARM_THM_MOVT_BREL:
7530 case elfcpp::R_ARM_THM_MOVW_BREL:
7531 case elfcpp::R_ARM_THM_JUMP11:
7532 case elfcpp::R_ARM_THM_JUMP8:
7533 // We don't need to do anything for a relative addressing relocation
7534 // against a local symbol if it does not reference the GOT.
7535 break;
7537 case elfcpp::R_ARM_GOTOFF32:
7538 case elfcpp::R_ARM_GOTOFF12:
7539 // We need a GOT section:
7540 target->got_section(symtab, layout);
7541 break;
7543 case elfcpp::R_ARM_GOT_BREL:
7544 case elfcpp::R_ARM_GOT_PREL:
7546 // The symbol requires a GOT entry.
7547 Arm_output_data_got<big_endian>* got =
7548 target->got_section(symtab, layout);
7549 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7550 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7552 // If we are generating a shared object, we need to add a
7553 // dynamic RELATIVE relocation for this symbol's GOT entry.
7554 if (parameters->options().output_is_position_independent())
7556 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7557 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7558 rel_dyn->add_local_relative(
7559 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7560 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7564 break;
7566 case elfcpp::R_ARM_TARGET1:
7567 case elfcpp::R_ARM_TARGET2:
7568 // This should have been mapped to another type already.
7569 // Fall through.
7570 case elfcpp::R_ARM_COPY:
7571 case elfcpp::R_ARM_GLOB_DAT:
7572 case elfcpp::R_ARM_JUMP_SLOT:
7573 case elfcpp::R_ARM_RELATIVE:
7574 // These are relocations which should only be seen by the
7575 // dynamic linker, and should never be seen here.
7576 gold_error(_("%s: unexpected reloc %u in object file"),
7577 object->name().c_str(), r_type);
7578 break;
7581 // These are initial TLS relocs, which are expected when
7582 // linking.
7583 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7584 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7585 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7586 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7587 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7589 bool output_is_shared = parameters->options().shared();
7590 const tls::Tls_optimization optimized_type
7591 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7592 r_type);
7593 switch (r_type)
7595 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7596 if (optimized_type == tls::TLSOPT_NONE)
7598 // Create a pair of GOT entries for the module index and
7599 // dtv-relative offset.
7600 Arm_output_data_got<big_endian>* got
7601 = target->got_section(symtab, layout);
7602 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7603 unsigned int shndx = lsym.get_st_shndx();
7604 bool is_ordinary;
7605 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7606 if (!is_ordinary)
7608 object->error(_("local symbol %u has bad shndx %u"),
7609 r_sym, shndx);
7610 break;
7613 if (!parameters->doing_static_link())
7614 got->add_local_pair_with_rel(object, r_sym, shndx,
7615 GOT_TYPE_TLS_PAIR,
7616 target->rel_dyn_section(layout),
7617 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7618 else
7619 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7620 object, r_sym);
7622 else
7623 // FIXME: TLS optimization not supported yet.
7624 gold_unreachable();
7625 break;
7627 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7628 if (optimized_type == tls::TLSOPT_NONE)
7630 // Create a GOT entry for the module index.
7631 target->got_mod_index_entry(symtab, layout, object);
7633 else
7634 // FIXME: TLS optimization not supported yet.
7635 gold_unreachable();
7636 break;
7638 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7639 break;
7641 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7642 layout->set_has_static_tls();
7643 if (optimized_type == tls::TLSOPT_NONE)
7645 // Create a GOT entry for the tp-relative offset.
7646 Arm_output_data_got<big_endian>* got
7647 = target->got_section(symtab, layout);
7648 unsigned int r_sym =
7649 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7650 if (!parameters->doing_static_link())
7651 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7652 target->rel_dyn_section(layout),
7653 elfcpp::R_ARM_TLS_TPOFF32);
7654 else if (!object->local_has_got_offset(r_sym,
7655 GOT_TYPE_TLS_OFFSET))
7657 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7658 unsigned int got_offset =
7659 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7660 got->add_static_reloc(got_offset,
7661 elfcpp::R_ARM_TLS_TPOFF32, object,
7662 r_sym);
7665 else
7666 // FIXME: TLS optimization not supported yet.
7667 gold_unreachable();
7668 break;
7670 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7671 layout->set_has_static_tls();
7672 if (output_is_shared)
7674 // We need to create a dynamic relocation.
7675 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7676 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7677 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7678 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7679 output_section, data_shndx,
7680 reloc.get_r_offset());
7682 break;
7684 default:
7685 gold_unreachable();
7688 break;
7690 default:
7691 unsupported_reloc_local(object, r_type);
7692 break;
7696 // Report an unsupported relocation against a global symbol.
7698 template<bool big_endian>
7699 void
7700 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7701 Sized_relobj<32, big_endian>* object,
7702 unsigned int r_type,
7703 Symbol* gsym)
7705 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7706 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7709 template<bool big_endian>
7710 inline bool
7711 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
7712 unsigned int r_type)
7714 switch (r_type)
7716 case elfcpp::R_ARM_PC24:
7717 case elfcpp::R_ARM_THM_CALL:
7718 case elfcpp::R_ARM_PLT32:
7719 case elfcpp::R_ARM_CALL:
7720 case elfcpp::R_ARM_JUMP24:
7721 case elfcpp::R_ARM_THM_JUMP24:
7722 case elfcpp::R_ARM_SBREL31:
7723 case elfcpp::R_ARM_PREL31:
7724 case elfcpp::R_ARM_THM_JUMP19:
7725 case elfcpp::R_ARM_THM_JUMP6:
7726 case elfcpp::R_ARM_THM_JUMP11:
7727 case elfcpp::R_ARM_THM_JUMP8:
7728 // All the relocations above are branches except SBREL31 and PREL31.
7729 return false;
7731 default:
7732 // Be conservative and assume this is a function pointer.
7733 return true;
7737 template<bool big_endian>
7738 inline bool
7739 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
7740 Symbol_table*,
7741 Layout*,
7742 Target_arm<big_endian>* target,
7743 Sized_relobj<32, big_endian>*,
7744 unsigned int,
7745 Output_section*,
7746 const elfcpp::Rel<32, big_endian>&,
7747 unsigned int r_type,
7748 const elfcpp::Sym<32, big_endian>&)
7750 r_type = target->get_real_reloc_type(r_type);
7751 return possible_function_pointer_reloc(r_type);
7754 template<bool big_endian>
7755 inline bool
7756 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
7757 Symbol_table*,
7758 Layout*,
7759 Target_arm<big_endian>* target,
7760 Sized_relobj<32, big_endian>*,
7761 unsigned int,
7762 Output_section*,
7763 const elfcpp::Rel<32, big_endian>&,
7764 unsigned int r_type,
7765 Symbol* gsym)
7767 // GOT is not a function.
7768 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7769 return false;
7771 r_type = target->get_real_reloc_type(r_type);
7772 return possible_function_pointer_reloc(r_type);
7775 // Scan a relocation for a global symbol.
7777 template<bool big_endian>
7778 inline void
7779 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7780 Layout* layout,
7781 Target_arm* target,
7782 Sized_relobj<32, big_endian>* object,
7783 unsigned int data_shndx,
7784 Output_section* output_section,
7785 const elfcpp::Rel<32, big_endian>& reloc,
7786 unsigned int r_type,
7787 Symbol* gsym)
7789 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7790 // section. We check here to avoid creating a dynamic reloc against
7791 // _GLOBAL_OFFSET_TABLE_.
7792 if (!target->has_got_section()
7793 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7794 target->got_section(symtab, layout);
7796 r_type = get_real_reloc_type(r_type);
7797 switch (r_type)
7799 case elfcpp::R_ARM_NONE:
7800 case elfcpp::R_ARM_V4BX:
7801 case elfcpp::R_ARM_GNU_VTENTRY:
7802 case elfcpp::R_ARM_GNU_VTINHERIT:
7803 break;
7805 case elfcpp::R_ARM_ABS32:
7806 case elfcpp::R_ARM_ABS16:
7807 case elfcpp::R_ARM_ABS12:
7808 case elfcpp::R_ARM_THM_ABS5:
7809 case elfcpp::R_ARM_ABS8:
7810 case elfcpp::R_ARM_BASE_ABS:
7811 case elfcpp::R_ARM_MOVW_ABS_NC:
7812 case elfcpp::R_ARM_MOVT_ABS:
7813 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7814 case elfcpp::R_ARM_THM_MOVT_ABS:
7815 case elfcpp::R_ARM_ABS32_NOI:
7816 // Absolute addressing relocations.
7818 // Make a PLT entry if necessary.
7819 if (this->symbol_needs_plt_entry(gsym))
7821 target->make_plt_entry(symtab, layout, gsym);
7822 // Since this is not a PC-relative relocation, we may be
7823 // taking the address of a function. In that case we need to
7824 // set the entry in the dynamic symbol table to the address of
7825 // the PLT entry.
7826 if (gsym->is_from_dynobj() && !parameters->options().shared())
7827 gsym->set_needs_dynsym_value();
7829 // Make a dynamic relocation if necessary.
7830 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7832 if (gsym->may_need_copy_reloc())
7834 target->copy_reloc(symtab, layout, object,
7835 data_shndx, output_section, gsym, reloc);
7837 else if ((r_type == elfcpp::R_ARM_ABS32
7838 || r_type == elfcpp::R_ARM_ABS32_NOI)
7839 && gsym->can_use_relative_reloc(false))
7841 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7842 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7843 output_section, object,
7844 data_shndx, reloc.get_r_offset());
7846 else
7848 check_non_pic(object, r_type);
7849 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7850 rel_dyn->add_global(gsym, r_type, output_section, object,
7851 data_shndx, reloc.get_r_offset());
7855 break;
7857 case elfcpp::R_ARM_GOTOFF32:
7858 case elfcpp::R_ARM_GOTOFF12:
7859 // We need a GOT section.
7860 target->got_section(symtab, layout);
7861 break;
7863 case elfcpp::R_ARM_REL32:
7864 case elfcpp::R_ARM_LDR_PC_G0:
7865 case elfcpp::R_ARM_SBREL32:
7866 case elfcpp::R_ARM_THM_PC8:
7867 case elfcpp::R_ARM_BASE_PREL:
7868 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7869 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7870 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7871 case elfcpp::R_ARM_MOVW_PREL_NC:
7872 case elfcpp::R_ARM_MOVT_PREL:
7873 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7874 case elfcpp::R_ARM_THM_MOVT_PREL:
7875 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7876 case elfcpp::R_ARM_THM_PC12:
7877 case elfcpp::R_ARM_REL32_NOI:
7878 case elfcpp::R_ARM_ALU_PC_G0_NC:
7879 case elfcpp::R_ARM_ALU_PC_G0:
7880 case elfcpp::R_ARM_ALU_PC_G1_NC:
7881 case elfcpp::R_ARM_ALU_PC_G1:
7882 case elfcpp::R_ARM_ALU_PC_G2:
7883 case elfcpp::R_ARM_LDR_PC_G1:
7884 case elfcpp::R_ARM_LDR_PC_G2:
7885 case elfcpp::R_ARM_LDRS_PC_G0:
7886 case elfcpp::R_ARM_LDRS_PC_G1:
7887 case elfcpp::R_ARM_LDRS_PC_G2:
7888 case elfcpp::R_ARM_LDC_PC_G0:
7889 case elfcpp::R_ARM_LDC_PC_G1:
7890 case elfcpp::R_ARM_LDC_PC_G2:
7891 case elfcpp::R_ARM_ALU_SB_G0_NC:
7892 case elfcpp::R_ARM_ALU_SB_G0:
7893 case elfcpp::R_ARM_ALU_SB_G1_NC:
7894 case elfcpp::R_ARM_ALU_SB_G1:
7895 case elfcpp::R_ARM_ALU_SB_G2:
7896 case elfcpp::R_ARM_LDR_SB_G0:
7897 case elfcpp::R_ARM_LDR_SB_G1:
7898 case elfcpp::R_ARM_LDR_SB_G2:
7899 case elfcpp::R_ARM_LDRS_SB_G0:
7900 case elfcpp::R_ARM_LDRS_SB_G1:
7901 case elfcpp::R_ARM_LDRS_SB_G2:
7902 case elfcpp::R_ARM_LDC_SB_G0:
7903 case elfcpp::R_ARM_LDC_SB_G1:
7904 case elfcpp::R_ARM_LDC_SB_G2:
7905 case elfcpp::R_ARM_MOVW_BREL_NC:
7906 case elfcpp::R_ARM_MOVT_BREL:
7907 case elfcpp::R_ARM_MOVW_BREL:
7908 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7909 case elfcpp::R_ARM_THM_MOVT_BREL:
7910 case elfcpp::R_ARM_THM_MOVW_BREL:
7911 // Relative addressing relocations.
7913 // Make a dynamic relocation if necessary.
7914 int flags = Symbol::NON_PIC_REF;
7915 if (gsym->needs_dynamic_reloc(flags))
7917 if (target->may_need_copy_reloc(gsym))
7919 target->copy_reloc(symtab, layout, object,
7920 data_shndx, output_section, gsym, reloc);
7922 else
7924 check_non_pic(object, r_type);
7925 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7926 rel_dyn->add_global(gsym, r_type, output_section, object,
7927 data_shndx, reloc.get_r_offset());
7931 break;
7933 case elfcpp::R_ARM_PC24:
7934 case elfcpp::R_ARM_THM_CALL:
7935 case elfcpp::R_ARM_PLT32:
7936 case elfcpp::R_ARM_CALL:
7937 case elfcpp::R_ARM_JUMP24:
7938 case elfcpp::R_ARM_THM_JUMP24:
7939 case elfcpp::R_ARM_SBREL31:
7940 case elfcpp::R_ARM_PREL31:
7941 case elfcpp::R_ARM_THM_JUMP19:
7942 case elfcpp::R_ARM_THM_JUMP6:
7943 case elfcpp::R_ARM_THM_JUMP11:
7944 case elfcpp::R_ARM_THM_JUMP8:
7945 // All the relocation above are branches except for the PREL31 ones.
7946 // A PREL31 relocation can point to a personality function in a shared
7947 // library. In that case we want to use a PLT because we want to
7948 // call the personality routine and the dyanmic linkers we care about
7949 // do not support dynamic PREL31 relocations. An REL31 relocation may
7950 // point to a function whose unwinding behaviour is being described but
7951 // we will not mistakenly generate a PLT for that because we should use
7952 // a local section symbol.
7954 // If the symbol is fully resolved, this is just a relative
7955 // local reloc. Otherwise we need a PLT entry.
7956 if (gsym->final_value_is_known())
7957 break;
7958 // If building a shared library, we can also skip the PLT entry
7959 // if the symbol is defined in the output file and is protected
7960 // or hidden.
7961 if (gsym->is_defined()
7962 && !gsym->is_from_dynobj()
7963 && !gsym->is_preemptible())
7964 break;
7965 target->make_plt_entry(symtab, layout, gsym);
7966 break;
7968 case elfcpp::R_ARM_GOT_BREL:
7969 case elfcpp::R_ARM_GOT_ABS:
7970 case elfcpp::R_ARM_GOT_PREL:
7972 // The symbol requires a GOT entry.
7973 Arm_output_data_got<big_endian>* got =
7974 target->got_section(symtab, layout);
7975 if (gsym->final_value_is_known())
7976 got->add_global(gsym, GOT_TYPE_STANDARD);
7977 else
7979 // If this symbol is not fully resolved, we need to add a
7980 // GOT entry with a dynamic relocation.
7981 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7982 if (gsym->is_from_dynobj()
7983 || gsym->is_undefined()
7984 || gsym->is_preemptible())
7985 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7986 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7987 else
7989 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7990 rel_dyn->add_global_relative(
7991 gsym, elfcpp::R_ARM_RELATIVE, got,
7992 gsym->got_offset(GOT_TYPE_STANDARD));
7996 break;
7998 case elfcpp::R_ARM_TARGET1:
7999 case elfcpp::R_ARM_TARGET2:
8000 // These should have been mapped to other types already.
8001 // Fall through.
8002 case elfcpp::R_ARM_COPY:
8003 case elfcpp::R_ARM_GLOB_DAT:
8004 case elfcpp::R_ARM_JUMP_SLOT:
8005 case elfcpp::R_ARM_RELATIVE:
8006 // These are relocations which should only be seen by the
8007 // dynamic linker, and should never be seen here.
8008 gold_error(_("%s: unexpected reloc %u in object file"),
8009 object->name().c_str(), r_type);
8010 break;
8012 // These are initial tls relocs, which are expected when
8013 // linking.
8014 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8015 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8016 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8017 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8018 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8020 const bool is_final = gsym->final_value_is_known();
8021 const tls::Tls_optimization optimized_type
8022 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8023 switch (r_type)
8025 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8026 if (optimized_type == tls::TLSOPT_NONE)
8028 // Create a pair of GOT entries for the module index and
8029 // dtv-relative offset.
8030 Arm_output_data_got<big_endian>* got
8031 = target->got_section(symtab, layout);
8032 if (!parameters->doing_static_link())
8033 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8034 target->rel_dyn_section(layout),
8035 elfcpp::R_ARM_TLS_DTPMOD32,
8036 elfcpp::R_ARM_TLS_DTPOFF32);
8037 else
8038 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8040 else
8041 // FIXME: TLS optimization not supported yet.
8042 gold_unreachable();
8043 break;
8045 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8046 if (optimized_type == tls::TLSOPT_NONE)
8048 // Create a GOT entry for the module index.
8049 target->got_mod_index_entry(symtab, layout, object);
8051 else
8052 // FIXME: TLS optimization not supported yet.
8053 gold_unreachable();
8054 break;
8056 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8057 break;
8059 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8060 layout->set_has_static_tls();
8061 if (optimized_type == tls::TLSOPT_NONE)
8063 // Create a GOT entry for the tp-relative offset.
8064 Arm_output_data_got<big_endian>* got
8065 = target->got_section(symtab, layout);
8066 if (!parameters->doing_static_link())
8067 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8068 target->rel_dyn_section(layout),
8069 elfcpp::R_ARM_TLS_TPOFF32);
8070 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8072 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8073 unsigned int got_offset =
8074 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8075 got->add_static_reloc(got_offset,
8076 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8079 else
8080 // FIXME: TLS optimization not supported yet.
8081 gold_unreachable();
8082 break;
8084 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8085 layout->set_has_static_tls();
8086 if (parameters->options().shared())
8088 // We need to create a dynamic relocation.
8089 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8090 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8091 output_section, object,
8092 data_shndx, reloc.get_r_offset());
8094 break;
8096 default:
8097 gold_unreachable();
8100 break;
8102 default:
8103 unsupported_reloc_global(object, r_type, gsym);
8104 break;
8108 // Process relocations for gc.
8110 template<bool big_endian>
8111 void
8112 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
8113 Layout* layout,
8114 Sized_relobj<32, big_endian>* object,
8115 unsigned int data_shndx,
8116 unsigned int,
8117 const unsigned char* prelocs,
8118 size_t reloc_count,
8119 Output_section* output_section,
8120 bool needs_special_offset_handling,
8121 size_t local_symbol_count,
8122 const unsigned char* plocal_symbols)
8124 typedef Target_arm<big_endian> Arm;
8125 typedef typename Target_arm<big_endian>::Scan Scan;
8127 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
8128 symtab,
8129 layout,
8130 this,
8131 object,
8132 data_shndx,
8133 prelocs,
8134 reloc_count,
8135 output_section,
8136 needs_special_offset_handling,
8137 local_symbol_count,
8138 plocal_symbols);
8141 // Scan relocations for a section.
8143 template<bool big_endian>
8144 void
8145 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8146 Layout* layout,
8147 Sized_relobj<32, big_endian>* object,
8148 unsigned int data_shndx,
8149 unsigned int sh_type,
8150 const unsigned char* prelocs,
8151 size_t reloc_count,
8152 Output_section* output_section,
8153 bool needs_special_offset_handling,
8154 size_t local_symbol_count,
8155 const unsigned char* plocal_symbols)
8157 typedef typename Target_arm<big_endian>::Scan Scan;
8158 if (sh_type == elfcpp::SHT_RELA)
8160 gold_error(_("%s: unsupported RELA reloc section"),
8161 object->name().c_str());
8162 return;
8165 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8166 symtab,
8167 layout,
8168 this,
8169 object,
8170 data_shndx,
8171 prelocs,
8172 reloc_count,
8173 output_section,
8174 needs_special_offset_handling,
8175 local_symbol_count,
8176 plocal_symbols);
8179 // Finalize the sections.
8181 template<bool big_endian>
8182 void
8183 Target_arm<big_endian>::do_finalize_sections(
8184 Layout* layout,
8185 const Input_objects* input_objects,
8186 Symbol_table* symtab)
8188 bool merged_any_attributes = false;
8189 // Merge processor-specific flags.
8190 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8191 p != input_objects->relobj_end();
8192 ++p)
8194 Arm_relobj<big_endian>* arm_relobj =
8195 Arm_relobj<big_endian>::as_arm_relobj(*p);
8196 if (arm_relobj->merge_flags_and_attributes())
8198 this->merge_processor_specific_flags(
8199 arm_relobj->name(),
8200 arm_relobj->processor_specific_flags());
8201 this->merge_object_attributes(arm_relobj->name().c_str(),
8202 arm_relobj->attributes_section_data());
8203 merged_any_attributes = true;
8207 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8208 p != input_objects->dynobj_end();
8209 ++p)
8211 Arm_dynobj<big_endian>* arm_dynobj =
8212 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8213 this->merge_processor_specific_flags(
8214 arm_dynobj->name(),
8215 arm_dynobj->processor_specific_flags());
8216 this->merge_object_attributes(arm_dynobj->name().c_str(),
8217 arm_dynobj->attributes_section_data());
8218 merged_any_attributes = true;
8221 // Create an empty uninitialized attribute section if we still don't have it
8222 // at this moment. This happens if there is no attributes sections in all
8223 // inputs.
8224 if (this->attributes_section_data_ == NULL)
8225 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8227 // Check BLX use.
8228 const Object_attribute* cpu_arch_attr =
8229 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8230 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8231 this->set_may_use_blx(true);
8233 // Check if we need to use Cortex-A8 workaround.
8234 if (parameters->options().user_set_fix_cortex_a8())
8235 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8236 else
8238 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8239 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8240 // profile.
8241 const Object_attribute* cpu_arch_profile_attr =
8242 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8243 this->fix_cortex_a8_ =
8244 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8245 && (cpu_arch_profile_attr->int_value() == 'A'
8246 || cpu_arch_profile_attr->int_value() == 0));
8249 // Check if we can use V4BX interworking.
8250 // The V4BX interworking stub contains BX instruction,
8251 // which is not specified for some profiles.
8252 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8253 && !this->may_use_blx())
8254 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8255 "the target profile does not support BX instruction"));
8257 // Fill in some more dynamic tags.
8258 const Reloc_section* rel_plt = (this->plt_ == NULL
8259 ? NULL
8260 : this->plt_->rel_plt());
8261 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8262 this->rel_dyn_, true, false);
8264 // Emit any relocs we saved in an attempt to avoid generating COPY
8265 // relocs.
8266 if (this->copy_relocs_.any_saved_relocs())
8267 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8269 // Handle the .ARM.exidx section.
8270 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8271 if (exidx_section != NULL
8272 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8273 && !parameters->options().relocatable())
8275 // Create __exidx_start and __exdix_end symbols.
8276 symtab->define_in_output_data("__exidx_start", NULL,
8277 Symbol_table::PREDEFINED,
8278 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8279 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8280 false, true);
8281 symtab->define_in_output_data("__exidx_end", NULL,
8282 Symbol_table::PREDEFINED,
8283 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8284 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8285 true, true);
8287 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8288 // the .ARM.exidx section.
8289 if (!layout->script_options()->saw_phdrs_clause())
8291 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8292 == NULL);
8293 Output_segment* exidx_segment =
8294 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8295 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8296 false);
8300 // Create an .ARM.attributes section if we have merged any attributes
8301 // from inputs.
8302 if (merged_any_attributes)
8304 Output_attributes_section_data* attributes_section =
8305 new Output_attributes_section_data(*this->attributes_section_data_);
8306 layout->add_output_section_data(".ARM.attributes",
8307 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8308 attributes_section, false, false, false,
8309 false);
8313 // Return whether a direct absolute static relocation needs to be applied.
8314 // In cases where Scan::local() or Scan::global() has created
8315 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8316 // of the relocation is carried in the data, and we must not
8317 // apply the static relocation.
8319 template<bool big_endian>
8320 inline bool
8321 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8322 const Sized_symbol<32>* gsym,
8323 int ref_flags,
8324 bool is_32bit,
8325 Output_section* output_section)
8327 // If the output section is not allocated, then we didn't call
8328 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8329 // the reloc here.
8330 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8331 return true;
8333 // For local symbols, we will have created a non-RELATIVE dynamic
8334 // relocation only if (a) the output is position independent,
8335 // (b) the relocation is absolute (not pc- or segment-relative), and
8336 // (c) the relocation is not 32 bits wide.
8337 if (gsym == NULL)
8338 return !(parameters->options().output_is_position_independent()
8339 && (ref_flags & Symbol::ABSOLUTE_REF)
8340 && !is_32bit);
8342 // For global symbols, we use the same helper routines used in the
8343 // scan pass. If we did not create a dynamic relocation, or if we
8344 // created a RELATIVE dynamic relocation, we should apply the static
8345 // relocation.
8346 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8347 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8348 && gsym->can_use_relative_reloc(ref_flags
8349 & Symbol::FUNCTION_CALL);
8350 return !has_dyn || is_rel;
8353 // Perform a relocation.
8355 template<bool big_endian>
8356 inline bool
8357 Target_arm<big_endian>::Relocate::relocate(
8358 const Relocate_info<32, big_endian>* relinfo,
8359 Target_arm* target,
8360 Output_section *output_section,
8361 size_t relnum,
8362 const elfcpp::Rel<32, big_endian>& rel,
8363 unsigned int r_type,
8364 const Sized_symbol<32>* gsym,
8365 const Symbol_value<32>* psymval,
8366 unsigned char* view,
8367 Arm_address address,
8368 section_size_type view_size)
8370 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8372 r_type = get_real_reloc_type(r_type);
8373 const Arm_reloc_property* reloc_property =
8374 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8375 if (reloc_property == NULL)
8377 std::string reloc_name =
8378 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8379 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8380 _("cannot relocate %s in object file"),
8381 reloc_name.c_str());
8382 return true;
8385 const Arm_relobj<big_endian>* object =
8386 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8388 // If the final branch target of a relocation is THUMB instruction, this
8389 // is 1. Otherwise it is 0.
8390 Arm_address thumb_bit = 0;
8391 Symbol_value<32> symval;
8392 bool is_weakly_undefined_without_plt = false;
8393 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8395 if (gsym != NULL)
8397 // This is a global symbol. Determine if we use PLT and if the
8398 // final target is THUMB.
8399 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8401 // This uses a PLT, change the symbol value.
8402 symval.set_output_value(target->plt_section()->address()
8403 + gsym->plt_offset());
8404 psymval = &symval;
8406 else if (gsym->is_weak_undefined())
8408 // This is a weakly undefined symbol and we do not use PLT
8409 // for this relocation. A branch targeting this symbol will
8410 // be converted into an NOP.
8411 is_weakly_undefined_without_plt = true;
8413 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8415 // This relocation uses the symbol value but the symbol is
8416 // undefined. Exit early and have the caller reporting an
8417 // error.
8418 return true;
8420 else
8422 // Set thumb bit if symbol:
8423 // -Has type STT_ARM_TFUNC or
8424 // -Has type STT_FUNC, is defined and with LSB in value set.
8425 thumb_bit =
8426 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8427 || (gsym->type() == elfcpp::STT_FUNC
8428 && !gsym->is_undefined()
8429 && ((psymval->value(object, 0) & 1) != 0)))
8431 : 0);
8434 else
8436 // This is a local symbol. Determine if the final target is THUMB.
8437 // We saved this information when all the local symbols were read.
8438 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8439 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8440 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8443 else
8445 // This is a fake relocation synthesized for a stub. It does not have
8446 // a real symbol. We just look at the LSB of the symbol value to
8447 // determine if the target is THUMB or not.
8448 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8451 // Strip LSB if this points to a THUMB target.
8452 if (thumb_bit != 0
8453 && reloc_property->uses_thumb_bit()
8454 && ((psymval->value(object, 0) & 1) != 0))
8456 Arm_address stripped_value =
8457 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8458 symval.set_output_value(stripped_value);
8459 psymval = &symval;
8462 // Get the GOT offset if needed.
8463 // The GOT pointer points to the end of the GOT section.
8464 // We need to subtract the size of the GOT section to get
8465 // the actual offset to use in the relocation.
8466 bool have_got_offset = false;
8467 unsigned int got_offset = 0;
8468 switch (r_type)
8470 case elfcpp::R_ARM_GOT_BREL:
8471 case elfcpp::R_ARM_GOT_PREL:
8472 if (gsym != NULL)
8474 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8475 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8476 - target->got_size());
8478 else
8480 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8481 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8482 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8483 - target->got_size());
8485 have_got_offset = true;
8486 break;
8488 default:
8489 break;
8492 // To look up relocation stubs, we need to pass the symbol table index of
8493 // a local symbol.
8494 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8496 // Get the addressing origin of the output segment defining the
8497 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8498 Arm_address sym_origin = 0;
8499 if (reloc_property->uses_symbol_base())
8501 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8502 // R_ARM_BASE_ABS with the NULL symbol will give the
8503 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8504 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8505 sym_origin = target->got_plt_section()->address();
8506 else if (gsym == NULL)
8507 sym_origin = 0;
8508 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8509 sym_origin = gsym->output_segment()->vaddr();
8510 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8511 sym_origin = gsym->output_data()->address();
8513 // TODO: Assumes the segment base to be zero for the global symbols
8514 // till the proper support for the segment-base-relative addressing
8515 // will be implemented. This is consistent with GNU ld.
8518 // For relative addressing relocation, find out the relative address base.
8519 Arm_address relative_address_base = 0;
8520 switch(reloc_property->relative_address_base())
8522 case Arm_reloc_property::RAB_NONE:
8523 // Relocations with relative address bases RAB_TLS and RAB_tp are
8524 // handled by relocate_tls. So we do not need to do anything here.
8525 case Arm_reloc_property::RAB_TLS:
8526 case Arm_reloc_property::RAB_tp:
8527 break;
8528 case Arm_reloc_property::RAB_B_S:
8529 relative_address_base = sym_origin;
8530 break;
8531 case Arm_reloc_property::RAB_GOT_ORG:
8532 relative_address_base = target->got_plt_section()->address();
8533 break;
8534 case Arm_reloc_property::RAB_P:
8535 relative_address_base = address;
8536 break;
8537 case Arm_reloc_property::RAB_Pa:
8538 relative_address_base = address & 0xfffffffcU;
8539 break;
8540 default:
8541 gold_unreachable();
8544 typename Arm_relocate_functions::Status reloc_status =
8545 Arm_relocate_functions::STATUS_OKAY;
8546 bool check_overflow = reloc_property->checks_overflow();
8547 switch (r_type)
8549 case elfcpp::R_ARM_NONE:
8550 break;
8552 case elfcpp::R_ARM_ABS8:
8553 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8554 output_section))
8555 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8556 break;
8558 case elfcpp::R_ARM_ABS12:
8559 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8560 output_section))
8561 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8562 break;
8564 case elfcpp::R_ARM_ABS16:
8565 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8566 output_section))
8567 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8568 break;
8570 case elfcpp::R_ARM_ABS32:
8571 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8572 output_section))
8573 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8574 thumb_bit);
8575 break;
8577 case elfcpp::R_ARM_ABS32_NOI:
8578 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8579 output_section))
8580 // No thumb bit for this relocation: (S + A)
8581 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8583 break;
8585 case elfcpp::R_ARM_MOVW_ABS_NC:
8586 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8587 output_section))
8588 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8589 0, thumb_bit,
8590 check_overflow);
8591 break;
8593 case elfcpp::R_ARM_MOVT_ABS:
8594 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8595 output_section))
8596 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8597 break;
8599 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8600 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8601 output_section))
8602 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8603 0, thumb_bit, false);
8604 break;
8606 case elfcpp::R_ARM_THM_MOVT_ABS:
8607 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8608 output_section))
8609 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8610 psymval, 0);
8611 break;
8613 case elfcpp::R_ARM_MOVW_PREL_NC:
8614 case elfcpp::R_ARM_MOVW_BREL_NC:
8615 case elfcpp::R_ARM_MOVW_BREL:
8616 reloc_status =
8617 Arm_relocate_functions::movw(view, object, psymval,
8618 relative_address_base, thumb_bit,
8619 check_overflow);
8620 break;
8622 case elfcpp::R_ARM_MOVT_PREL:
8623 case elfcpp::R_ARM_MOVT_BREL:
8624 reloc_status =
8625 Arm_relocate_functions::movt(view, object, psymval,
8626 relative_address_base);
8627 break;
8629 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8630 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8631 case elfcpp::R_ARM_THM_MOVW_BREL:
8632 reloc_status =
8633 Arm_relocate_functions::thm_movw(view, object, psymval,
8634 relative_address_base,
8635 thumb_bit, check_overflow);
8636 break;
8638 case elfcpp::R_ARM_THM_MOVT_PREL:
8639 case elfcpp::R_ARM_THM_MOVT_BREL:
8640 reloc_status =
8641 Arm_relocate_functions::thm_movt(view, object, psymval,
8642 relative_address_base);
8643 break;
8645 case elfcpp::R_ARM_REL32:
8646 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8647 address, thumb_bit);
8648 break;
8650 case elfcpp::R_ARM_THM_ABS5:
8651 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8652 output_section))
8653 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8654 break;
8656 // Thumb long branches.
8657 case elfcpp::R_ARM_THM_CALL:
8658 case elfcpp::R_ARM_THM_XPC22:
8659 case elfcpp::R_ARM_THM_JUMP24:
8660 reloc_status =
8661 Arm_relocate_functions::thumb_branch_common(
8662 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8663 thumb_bit, is_weakly_undefined_without_plt);
8664 break;
8666 case elfcpp::R_ARM_GOTOFF32:
8668 Arm_address got_origin;
8669 got_origin = target->got_plt_section()->address();
8670 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8671 got_origin, thumb_bit);
8673 break;
8675 case elfcpp::R_ARM_BASE_PREL:
8676 gold_assert(gsym != NULL);
8677 reloc_status =
8678 Arm_relocate_functions::base_prel(view, sym_origin, address);
8679 break;
8681 case elfcpp::R_ARM_BASE_ABS:
8683 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8684 output_section))
8685 break;
8687 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8689 break;
8691 case elfcpp::R_ARM_GOT_BREL:
8692 gold_assert(have_got_offset);
8693 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8694 break;
8696 case elfcpp::R_ARM_GOT_PREL:
8697 gold_assert(have_got_offset);
8698 // Get the address origin for GOT PLT, which is allocated right
8699 // after the GOT section, to calculate an absolute address of
8700 // the symbol GOT entry (got_origin + got_offset).
8701 Arm_address got_origin;
8702 got_origin = target->got_plt_section()->address();
8703 reloc_status = Arm_relocate_functions::got_prel(view,
8704 got_origin + got_offset,
8705 address);
8706 break;
8708 case elfcpp::R_ARM_PLT32:
8709 case elfcpp::R_ARM_CALL:
8710 case elfcpp::R_ARM_JUMP24:
8711 case elfcpp::R_ARM_XPC25:
8712 gold_assert(gsym == NULL
8713 || gsym->has_plt_offset()
8714 || gsym->final_value_is_known()
8715 || (gsym->is_defined()
8716 && !gsym->is_from_dynobj()
8717 && !gsym->is_preemptible()));
8718 reloc_status =
8719 Arm_relocate_functions::arm_branch_common(
8720 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8721 thumb_bit, is_weakly_undefined_without_plt);
8722 break;
8724 case elfcpp::R_ARM_THM_JUMP19:
8725 reloc_status =
8726 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8727 thumb_bit);
8728 break;
8730 case elfcpp::R_ARM_THM_JUMP6:
8731 reloc_status =
8732 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8733 break;
8735 case elfcpp::R_ARM_THM_JUMP8:
8736 reloc_status =
8737 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8738 break;
8740 case elfcpp::R_ARM_THM_JUMP11:
8741 reloc_status =
8742 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8743 break;
8745 case elfcpp::R_ARM_PREL31:
8746 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8747 address, thumb_bit);
8748 break;
8750 case elfcpp::R_ARM_V4BX:
8751 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8753 const bool is_v4bx_interworking =
8754 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8755 reloc_status =
8756 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8757 is_v4bx_interworking);
8759 break;
8761 case elfcpp::R_ARM_THM_PC8:
8762 reloc_status =
8763 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8764 break;
8766 case elfcpp::R_ARM_THM_PC12:
8767 reloc_status =
8768 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8769 break;
8771 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8772 reloc_status =
8773 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8774 thumb_bit);
8775 break;
8777 case elfcpp::R_ARM_ALU_PC_G0_NC:
8778 case elfcpp::R_ARM_ALU_PC_G0:
8779 case elfcpp::R_ARM_ALU_PC_G1_NC:
8780 case elfcpp::R_ARM_ALU_PC_G1:
8781 case elfcpp::R_ARM_ALU_PC_G2:
8782 case elfcpp::R_ARM_ALU_SB_G0_NC:
8783 case elfcpp::R_ARM_ALU_SB_G0:
8784 case elfcpp::R_ARM_ALU_SB_G1_NC:
8785 case elfcpp::R_ARM_ALU_SB_G1:
8786 case elfcpp::R_ARM_ALU_SB_G2:
8787 reloc_status =
8788 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8789 reloc_property->group_index(),
8790 relative_address_base,
8791 thumb_bit, check_overflow);
8792 break;
8794 case elfcpp::R_ARM_LDR_PC_G0:
8795 case elfcpp::R_ARM_LDR_PC_G1:
8796 case elfcpp::R_ARM_LDR_PC_G2:
8797 case elfcpp::R_ARM_LDR_SB_G0:
8798 case elfcpp::R_ARM_LDR_SB_G1:
8799 case elfcpp::R_ARM_LDR_SB_G2:
8800 reloc_status =
8801 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8802 reloc_property->group_index(),
8803 relative_address_base);
8804 break;
8806 case elfcpp::R_ARM_LDRS_PC_G0:
8807 case elfcpp::R_ARM_LDRS_PC_G1:
8808 case elfcpp::R_ARM_LDRS_PC_G2:
8809 case elfcpp::R_ARM_LDRS_SB_G0:
8810 case elfcpp::R_ARM_LDRS_SB_G1:
8811 case elfcpp::R_ARM_LDRS_SB_G2:
8812 reloc_status =
8813 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8814 reloc_property->group_index(),
8815 relative_address_base);
8816 break;
8818 case elfcpp::R_ARM_LDC_PC_G0:
8819 case elfcpp::R_ARM_LDC_PC_G1:
8820 case elfcpp::R_ARM_LDC_PC_G2:
8821 case elfcpp::R_ARM_LDC_SB_G0:
8822 case elfcpp::R_ARM_LDC_SB_G1:
8823 case elfcpp::R_ARM_LDC_SB_G2:
8824 reloc_status =
8825 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8826 reloc_property->group_index(),
8827 relative_address_base);
8828 break;
8830 // These are initial tls relocs, which are expected when
8831 // linking.
8832 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8833 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8834 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8835 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8836 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8837 reloc_status =
8838 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8839 view, address, view_size);
8840 break;
8842 default:
8843 gold_unreachable();
8846 // Report any errors.
8847 switch (reloc_status)
8849 case Arm_relocate_functions::STATUS_OKAY:
8850 break;
8851 case Arm_relocate_functions::STATUS_OVERFLOW:
8852 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8853 _("relocation overflow in %s"),
8854 reloc_property->name().c_str());
8855 break;
8856 case Arm_relocate_functions::STATUS_BAD_RELOC:
8857 gold_error_at_location(
8858 relinfo,
8859 relnum,
8860 rel.get_r_offset(),
8861 _("unexpected opcode while processing relocation %s"),
8862 reloc_property->name().c_str());
8863 break;
8864 default:
8865 gold_unreachable();
8868 return true;
8871 // Perform a TLS relocation.
8873 template<bool big_endian>
8874 inline typename Arm_relocate_functions<big_endian>::Status
8875 Target_arm<big_endian>::Relocate::relocate_tls(
8876 const Relocate_info<32, big_endian>* relinfo,
8877 Target_arm<big_endian>* target,
8878 size_t relnum,
8879 const elfcpp::Rel<32, big_endian>& rel,
8880 unsigned int r_type,
8881 const Sized_symbol<32>* gsym,
8882 const Symbol_value<32>* psymval,
8883 unsigned char* view,
8884 elfcpp::Elf_types<32>::Elf_Addr address,
8885 section_size_type /*view_size*/ )
8887 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8888 typedef Relocate_functions<32, big_endian> RelocFuncs;
8889 Output_segment* tls_segment = relinfo->layout->tls_segment();
8891 const Sized_relobj<32, big_endian>* object = relinfo->object;
8893 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8895 const bool is_final = (gsym == NULL
8896 ? !parameters->options().shared()
8897 : gsym->final_value_is_known());
8898 const tls::Tls_optimization optimized_type
8899 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8900 switch (r_type)
8902 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8904 unsigned int got_type = GOT_TYPE_TLS_PAIR;
8905 unsigned int got_offset;
8906 if (gsym != NULL)
8908 gold_assert(gsym->has_got_offset(got_type));
8909 got_offset = gsym->got_offset(got_type) - target->got_size();
8911 else
8913 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8914 gold_assert(object->local_has_got_offset(r_sym, got_type));
8915 got_offset = (object->local_got_offset(r_sym, got_type)
8916 - target->got_size());
8918 if (optimized_type == tls::TLSOPT_NONE)
8920 Arm_address got_entry =
8921 target->got_plt_section()->address() + got_offset;
8923 // Relocate the field with the PC relative offset of the pair of
8924 // GOT entries.
8925 RelocFuncs::pcrel32(view, got_entry, address);
8926 return ArmRelocFuncs::STATUS_OKAY;
8929 break;
8931 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8932 if (optimized_type == tls::TLSOPT_NONE)
8934 // Relocate the field with the offset of the GOT entry for
8935 // the module index.
8936 unsigned int got_offset;
8937 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8938 - target->got_size());
8939 Arm_address got_entry =
8940 target->got_plt_section()->address() + got_offset;
8942 // Relocate the field with the PC relative offset of the pair of
8943 // GOT entries.
8944 RelocFuncs::pcrel32(view, got_entry, address);
8945 return ArmRelocFuncs::STATUS_OKAY;
8947 break;
8949 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8950 RelocFuncs::rel32(view, value);
8951 return ArmRelocFuncs::STATUS_OKAY;
8953 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8954 if (optimized_type == tls::TLSOPT_NONE)
8956 // Relocate the field with the offset of the GOT entry for
8957 // the tp-relative offset of the symbol.
8958 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8959 unsigned int got_offset;
8960 if (gsym != NULL)
8962 gold_assert(gsym->has_got_offset(got_type));
8963 got_offset = gsym->got_offset(got_type);
8965 else
8967 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8968 gold_assert(object->local_has_got_offset(r_sym, got_type));
8969 got_offset = object->local_got_offset(r_sym, got_type);
8972 // All GOT offsets are relative to the end of the GOT.
8973 got_offset -= target->got_size();
8975 Arm_address got_entry =
8976 target->got_plt_section()->address() + got_offset;
8978 // Relocate the field with the PC relative offset of the GOT entry.
8979 RelocFuncs::pcrel32(view, got_entry, address);
8980 return ArmRelocFuncs::STATUS_OKAY;
8982 break;
8984 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8985 // If we're creating a shared library, a dynamic relocation will
8986 // have been created for this location, so do not apply it now.
8987 if (!parameters->options().shared())
8989 gold_assert(tls_segment != NULL);
8991 // $tp points to the TCB, which is followed by the TLS, so we
8992 // need to add TCB size to the offset.
8993 Arm_address aligned_tcb_size =
8994 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8995 RelocFuncs::rel32(view, value + aligned_tcb_size);
8998 return ArmRelocFuncs::STATUS_OKAY;
9000 default:
9001 gold_unreachable();
9004 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9005 _("unsupported reloc %u"),
9006 r_type);
9007 return ArmRelocFuncs::STATUS_BAD_RELOC;
9010 // Relocate section data.
9012 template<bool big_endian>
9013 void
9014 Target_arm<big_endian>::relocate_section(
9015 const Relocate_info<32, big_endian>* relinfo,
9016 unsigned int sh_type,
9017 const unsigned char* prelocs,
9018 size_t reloc_count,
9019 Output_section* output_section,
9020 bool needs_special_offset_handling,
9021 unsigned char* view,
9022 Arm_address address,
9023 section_size_type view_size,
9024 const Reloc_symbol_changes* reloc_symbol_changes)
9026 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9027 gold_assert(sh_type == elfcpp::SHT_REL);
9029 // See if we are relocating a relaxed input section. If so, the view
9030 // covers the whole output section and we need to adjust accordingly.
9031 if (needs_special_offset_handling)
9033 const Output_relaxed_input_section* poris =
9034 output_section->find_relaxed_input_section(relinfo->object,
9035 relinfo->data_shndx);
9036 if (poris != NULL)
9038 Arm_address section_address = poris->address();
9039 section_size_type section_size = poris->data_size();
9041 gold_assert((section_address >= address)
9042 && ((section_address + section_size)
9043 <= (address + view_size)));
9045 off_t offset = section_address - address;
9046 view += offset;
9047 address += offset;
9048 view_size = section_size;
9052 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9053 Arm_relocate>(
9054 relinfo,
9055 this,
9056 prelocs,
9057 reloc_count,
9058 output_section,
9059 needs_special_offset_handling,
9060 view,
9061 address,
9062 view_size,
9063 reloc_symbol_changes);
9066 // Return the size of a relocation while scanning during a relocatable
9067 // link.
9069 template<bool big_endian>
9070 unsigned int
9071 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9072 unsigned int r_type,
9073 Relobj* object)
9075 r_type = get_real_reloc_type(r_type);
9076 const Arm_reloc_property* arp =
9077 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9078 if (arp != NULL)
9079 return arp->size();
9080 else
9082 std::string reloc_name =
9083 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9084 gold_error(_("%s: unexpected %s in object file"),
9085 object->name().c_str(), reloc_name.c_str());
9086 return 0;
9090 // Scan the relocs during a relocatable link.
9092 template<bool big_endian>
9093 void
9094 Target_arm<big_endian>::scan_relocatable_relocs(
9095 Symbol_table* symtab,
9096 Layout* layout,
9097 Sized_relobj<32, big_endian>* object,
9098 unsigned int data_shndx,
9099 unsigned int sh_type,
9100 const unsigned char* prelocs,
9101 size_t reloc_count,
9102 Output_section* output_section,
9103 bool needs_special_offset_handling,
9104 size_t local_symbol_count,
9105 const unsigned char* plocal_symbols,
9106 Relocatable_relocs* rr)
9108 gold_assert(sh_type == elfcpp::SHT_REL);
9110 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9111 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9113 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9114 Scan_relocatable_relocs>(
9115 symtab,
9116 layout,
9117 object,
9118 data_shndx,
9119 prelocs,
9120 reloc_count,
9121 output_section,
9122 needs_special_offset_handling,
9123 local_symbol_count,
9124 plocal_symbols,
9125 rr);
9128 // Relocate a section during a relocatable link.
9130 template<bool big_endian>
9131 void
9132 Target_arm<big_endian>::relocate_for_relocatable(
9133 const Relocate_info<32, big_endian>* relinfo,
9134 unsigned int sh_type,
9135 const unsigned char* prelocs,
9136 size_t reloc_count,
9137 Output_section* output_section,
9138 off_t offset_in_output_section,
9139 const Relocatable_relocs* rr,
9140 unsigned char* view,
9141 Arm_address view_address,
9142 section_size_type view_size,
9143 unsigned char* reloc_view,
9144 section_size_type reloc_view_size)
9146 gold_assert(sh_type == elfcpp::SHT_REL);
9148 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9149 relinfo,
9150 prelocs,
9151 reloc_count,
9152 output_section,
9153 offset_in_output_section,
9155 view,
9156 view_address,
9157 view_size,
9158 reloc_view,
9159 reloc_view_size);
9162 // Perform target-specific processing in a relocatable link. This is
9163 // only used if we use the relocation strategy RELOC_SPECIAL.
9165 template<bool big_endian>
9166 void
9167 Target_arm<big_endian>::relocate_special_relocatable(
9168 const Relocate_info<32, big_endian>* relinfo,
9169 unsigned int sh_type,
9170 const unsigned char* preloc_in,
9171 size_t relnum,
9172 Output_section* output_section,
9173 off_t offset_in_output_section,
9174 unsigned char* view,
9175 elfcpp::Elf_types<32>::Elf_Addr view_address,
9176 section_size_type,
9177 unsigned char* preloc_out)
9179 // We can only handle REL type relocation sections.
9180 gold_assert(sh_type == elfcpp::SHT_REL);
9182 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9183 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9184 Reltype_write;
9185 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9187 const Arm_relobj<big_endian>* object =
9188 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9189 const unsigned int local_count = object->local_symbol_count();
9191 Reltype reloc(preloc_in);
9192 Reltype_write reloc_write(preloc_out);
9194 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9195 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9196 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9198 const Arm_reloc_property* arp =
9199 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9200 gold_assert(arp != NULL);
9202 // Get the new symbol index.
9203 // We only use RELOC_SPECIAL strategy in local relocations.
9204 gold_assert(r_sym < local_count);
9206 // We are adjusting a section symbol. We need to find
9207 // the symbol table index of the section symbol for
9208 // the output section corresponding to input section
9209 // in which this symbol is defined.
9210 bool is_ordinary;
9211 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9212 gold_assert(is_ordinary);
9213 Output_section* os = object->output_section(shndx);
9214 gold_assert(os != NULL);
9215 gold_assert(os->needs_symtab_index());
9216 unsigned int new_symndx = os->symtab_index();
9218 // Get the new offset--the location in the output section where
9219 // this relocation should be applied.
9221 Arm_address offset = reloc.get_r_offset();
9222 Arm_address new_offset;
9223 if (offset_in_output_section != invalid_address)
9224 new_offset = offset + offset_in_output_section;
9225 else
9227 section_offset_type sot_offset =
9228 convert_types<section_offset_type, Arm_address>(offset);
9229 section_offset_type new_sot_offset =
9230 output_section->output_offset(object, relinfo->data_shndx,
9231 sot_offset);
9232 gold_assert(new_sot_offset != -1);
9233 new_offset = new_sot_offset;
9236 // In an object file, r_offset is an offset within the section.
9237 // In an executable or dynamic object, generated by
9238 // --emit-relocs, r_offset is an absolute address.
9239 if (!parameters->options().relocatable())
9241 new_offset += view_address;
9242 if (offset_in_output_section != invalid_address)
9243 new_offset -= offset_in_output_section;
9246 reloc_write.put_r_offset(new_offset);
9247 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9249 // Handle the reloc addend.
9250 // The relocation uses a section symbol in the input file.
9251 // We are adjusting it to use a section symbol in the output
9252 // file. The input section symbol refers to some address in
9253 // the input section. We need the relocation in the output
9254 // file to refer to that same address. This adjustment to
9255 // the addend is the same calculation we use for a simple
9256 // absolute relocation for the input section symbol.
9258 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9260 // Handle THUMB bit.
9261 Symbol_value<32> symval;
9262 Arm_address thumb_bit =
9263 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9264 if (thumb_bit != 0
9265 && arp->uses_thumb_bit()
9266 && ((psymval->value(object, 0) & 1) != 0))
9268 Arm_address stripped_value =
9269 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9270 symval.set_output_value(stripped_value);
9271 psymval = &symval;
9274 unsigned char* paddend = view + offset;
9275 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9276 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9277 switch (r_type)
9279 case elfcpp::R_ARM_ABS8:
9280 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9281 psymval);
9282 break;
9284 case elfcpp::R_ARM_ABS12:
9285 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9286 psymval);
9287 break;
9289 case elfcpp::R_ARM_ABS16:
9290 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9291 psymval);
9292 break;
9294 case elfcpp::R_ARM_THM_ABS5:
9295 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9296 object,
9297 psymval);
9298 break;
9300 case elfcpp::R_ARM_MOVW_ABS_NC:
9301 case elfcpp::R_ARM_MOVW_PREL_NC:
9302 case elfcpp::R_ARM_MOVW_BREL_NC:
9303 case elfcpp::R_ARM_MOVW_BREL:
9304 reloc_status = Arm_relocate_functions<big_endian>::movw(
9305 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9306 break;
9308 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9309 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9310 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9311 case elfcpp::R_ARM_THM_MOVW_BREL:
9312 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9313 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9314 break;
9316 case elfcpp::R_ARM_THM_CALL:
9317 case elfcpp::R_ARM_THM_XPC22:
9318 case elfcpp::R_ARM_THM_JUMP24:
9319 reloc_status =
9320 Arm_relocate_functions<big_endian>::thumb_branch_common(
9321 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9322 false);
9323 break;
9325 case elfcpp::R_ARM_PLT32:
9326 case elfcpp::R_ARM_CALL:
9327 case elfcpp::R_ARM_JUMP24:
9328 case elfcpp::R_ARM_XPC25:
9329 reloc_status =
9330 Arm_relocate_functions<big_endian>::arm_branch_common(
9331 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9332 false);
9333 break;
9335 case elfcpp::R_ARM_THM_JUMP19:
9336 reloc_status =
9337 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9338 psymval, 0, thumb_bit);
9339 break;
9341 case elfcpp::R_ARM_THM_JUMP6:
9342 reloc_status =
9343 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9345 break;
9347 case elfcpp::R_ARM_THM_JUMP8:
9348 reloc_status =
9349 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9351 break;
9353 case elfcpp::R_ARM_THM_JUMP11:
9354 reloc_status =
9355 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9357 break;
9359 case elfcpp::R_ARM_PREL31:
9360 reloc_status =
9361 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9362 thumb_bit);
9363 break;
9365 case elfcpp::R_ARM_THM_PC8:
9366 reloc_status =
9367 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9369 break;
9371 case elfcpp::R_ARM_THM_PC12:
9372 reloc_status =
9373 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9375 break;
9377 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9378 reloc_status =
9379 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9380 0, thumb_bit);
9381 break;
9383 // These relocation truncate relocation results so we cannot handle them
9384 // in a relocatable link.
9385 case elfcpp::R_ARM_MOVT_ABS:
9386 case elfcpp::R_ARM_THM_MOVT_ABS:
9387 case elfcpp::R_ARM_MOVT_PREL:
9388 case elfcpp::R_ARM_MOVT_BREL:
9389 case elfcpp::R_ARM_THM_MOVT_PREL:
9390 case elfcpp::R_ARM_THM_MOVT_BREL:
9391 case elfcpp::R_ARM_ALU_PC_G0_NC:
9392 case elfcpp::R_ARM_ALU_PC_G0:
9393 case elfcpp::R_ARM_ALU_PC_G1_NC:
9394 case elfcpp::R_ARM_ALU_PC_G1:
9395 case elfcpp::R_ARM_ALU_PC_G2:
9396 case elfcpp::R_ARM_ALU_SB_G0_NC:
9397 case elfcpp::R_ARM_ALU_SB_G0:
9398 case elfcpp::R_ARM_ALU_SB_G1_NC:
9399 case elfcpp::R_ARM_ALU_SB_G1:
9400 case elfcpp::R_ARM_ALU_SB_G2:
9401 case elfcpp::R_ARM_LDR_PC_G0:
9402 case elfcpp::R_ARM_LDR_PC_G1:
9403 case elfcpp::R_ARM_LDR_PC_G2:
9404 case elfcpp::R_ARM_LDR_SB_G0:
9405 case elfcpp::R_ARM_LDR_SB_G1:
9406 case elfcpp::R_ARM_LDR_SB_G2:
9407 case elfcpp::R_ARM_LDRS_PC_G0:
9408 case elfcpp::R_ARM_LDRS_PC_G1:
9409 case elfcpp::R_ARM_LDRS_PC_G2:
9410 case elfcpp::R_ARM_LDRS_SB_G0:
9411 case elfcpp::R_ARM_LDRS_SB_G1:
9412 case elfcpp::R_ARM_LDRS_SB_G2:
9413 case elfcpp::R_ARM_LDC_PC_G0:
9414 case elfcpp::R_ARM_LDC_PC_G1:
9415 case elfcpp::R_ARM_LDC_PC_G2:
9416 case elfcpp::R_ARM_LDC_SB_G0:
9417 case elfcpp::R_ARM_LDC_SB_G1:
9418 case elfcpp::R_ARM_LDC_SB_G2:
9419 gold_error(_("cannot handle %s in a relocatable link"),
9420 arp->name().c_str());
9421 break;
9423 default:
9424 gold_unreachable();
9427 // Report any errors.
9428 switch (reloc_status)
9430 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9431 break;
9432 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9433 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9434 _("relocation overflow in %s"),
9435 arp->name().c_str());
9436 break;
9437 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9438 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9439 _("unexpected opcode while processing relocation %s"),
9440 arp->name().c_str());
9441 break;
9442 default:
9443 gold_unreachable();
9447 // Return the value to use for a dynamic symbol which requires special
9448 // treatment. This is how we support equality comparisons of function
9449 // pointers across shared library boundaries, as described in the
9450 // processor specific ABI supplement.
9452 template<bool big_endian>
9453 uint64_t
9454 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9456 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9457 return this->plt_section()->address() + gsym->plt_offset();
9460 // Map platform-specific relocs to real relocs
9462 template<bool big_endian>
9463 unsigned int
9464 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
9466 switch (r_type)
9468 case elfcpp::R_ARM_TARGET1:
9469 // This is either R_ARM_ABS32 or R_ARM_REL32;
9470 return elfcpp::R_ARM_ABS32;
9472 case elfcpp::R_ARM_TARGET2:
9473 // This can be any reloc type but ususally is R_ARM_GOT_PREL
9474 return elfcpp::R_ARM_GOT_PREL;
9476 default:
9477 return r_type;
9481 // Whether if two EABI versions V1 and V2 are compatible.
9483 template<bool big_endian>
9484 bool
9485 Target_arm<big_endian>::are_eabi_versions_compatible(
9486 elfcpp::Elf_Word v1,
9487 elfcpp::Elf_Word v2)
9489 // v4 and v5 are the same spec before and after it was released,
9490 // so allow mixing them.
9491 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9492 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9493 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9494 return true;
9496 return v1 == v2;
9499 // Combine FLAGS from an input object called NAME and the processor-specific
9500 // flags in the ELF header of the output. Much of this is adapted from the
9501 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9502 // in bfd/elf32-arm.c.
9504 template<bool big_endian>
9505 void
9506 Target_arm<big_endian>::merge_processor_specific_flags(
9507 const std::string& name,
9508 elfcpp::Elf_Word flags)
9510 if (this->are_processor_specific_flags_set())
9512 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9514 // Nothing to merge if flags equal to those in output.
9515 if (flags == out_flags)
9516 return;
9518 // Complain about various flag mismatches.
9519 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9520 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9521 if (!this->are_eabi_versions_compatible(version1, version2)
9522 && parameters->options().warn_mismatch())
9523 gold_error(_("Source object %s has EABI version %d but output has "
9524 "EABI version %d."),
9525 name.c_str(),
9526 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9527 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9529 else
9531 // If the input is the default architecture and had the default
9532 // flags then do not bother setting the flags for the output
9533 // architecture, instead allow future merges to do this. If no
9534 // future merges ever set these flags then they will retain their
9535 // uninitialised values, which surprise surprise, correspond
9536 // to the default values.
9537 if (flags == 0)
9538 return;
9540 // This is the first time, just copy the flags.
9541 // We only copy the EABI version for now.
9542 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9546 // Adjust ELF file header.
9547 template<bool big_endian>
9548 void
9549 Target_arm<big_endian>::do_adjust_elf_header(
9550 unsigned char* view,
9551 int len) const
9553 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9555 elfcpp::Ehdr<32, big_endian> ehdr(view);
9556 unsigned char e_ident[elfcpp::EI_NIDENT];
9557 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9559 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9560 == elfcpp::EF_ARM_EABI_UNKNOWN)
9561 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9562 else
9563 e_ident[elfcpp::EI_OSABI] = 0;
9564 e_ident[elfcpp::EI_ABIVERSION] = 0;
9566 // FIXME: Do EF_ARM_BE8 adjustment.
9568 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9569 oehdr.put_e_ident(e_ident);
9572 // do_make_elf_object to override the same function in the base class.
9573 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9574 // to store ARM specific information. Hence we need to have our own
9575 // ELF object creation.
9577 template<bool big_endian>
9578 Object*
9579 Target_arm<big_endian>::do_make_elf_object(
9580 const std::string& name,
9581 Input_file* input_file,
9582 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9584 int et = ehdr.get_e_type();
9585 if (et == elfcpp::ET_REL)
9587 Arm_relobj<big_endian>* obj =
9588 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9589 obj->setup();
9590 return obj;
9592 else if (et == elfcpp::ET_DYN)
9594 Sized_dynobj<32, big_endian>* obj =
9595 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9596 obj->setup();
9597 return obj;
9599 else
9601 gold_error(_("%s: unsupported ELF file type %d"),
9602 name.c_str(), et);
9603 return NULL;
9607 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9608 // Returns -1 if no architecture could be read.
9609 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9611 template<bool big_endian>
9613 Target_arm<big_endian>::get_secondary_compatible_arch(
9614 const Attributes_section_data* pasd)
9616 const Object_attribute *known_attributes =
9617 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9619 // Note: the tag and its argument below are uleb128 values, though
9620 // currently-defined values fit in one byte for each.
9621 const std::string& sv =
9622 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9623 if (sv.size() == 2
9624 && sv.data()[0] == elfcpp::Tag_CPU_arch
9625 && (sv.data()[1] & 128) != 128)
9626 return sv.data()[1];
9628 // This tag is "safely ignorable", so don't complain if it looks funny.
9629 return -1;
9632 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9633 // The tag is removed if ARCH is -1.
9634 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9636 template<bool big_endian>
9637 void
9638 Target_arm<big_endian>::set_secondary_compatible_arch(
9639 Attributes_section_data* pasd,
9640 int arch)
9642 Object_attribute *known_attributes =
9643 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9645 if (arch == -1)
9647 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9648 return;
9651 // Note: the tag and its argument below are uleb128 values, though
9652 // currently-defined values fit in one byte for each.
9653 char sv[3];
9654 sv[0] = elfcpp::Tag_CPU_arch;
9655 gold_assert(arch != 0);
9656 sv[1] = arch;
9657 sv[2] = '\0';
9659 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9662 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9663 // into account.
9664 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9666 template<bool big_endian>
9668 Target_arm<big_endian>::tag_cpu_arch_combine(
9669 const char* name,
9670 int oldtag,
9671 int* secondary_compat_out,
9672 int newtag,
9673 int secondary_compat)
9675 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9676 static const int v6t2[] =
9678 T(V6T2), // PRE_V4.
9679 T(V6T2), // V4.
9680 T(V6T2), // V4T.
9681 T(V6T2), // V5T.
9682 T(V6T2), // V5TE.
9683 T(V6T2), // V5TEJ.
9684 T(V6T2), // V6.
9685 T(V7), // V6KZ.
9686 T(V6T2) // V6T2.
9688 static const int v6k[] =
9690 T(V6K), // PRE_V4.
9691 T(V6K), // V4.
9692 T(V6K), // V4T.
9693 T(V6K), // V5T.
9694 T(V6K), // V5TE.
9695 T(V6K), // V5TEJ.
9696 T(V6K), // V6.
9697 T(V6KZ), // V6KZ.
9698 T(V7), // V6T2.
9699 T(V6K) // V6K.
9701 static const int v7[] =
9703 T(V7), // PRE_V4.
9704 T(V7), // V4.
9705 T(V7), // V4T.
9706 T(V7), // V5T.
9707 T(V7), // V5TE.
9708 T(V7), // V5TEJ.
9709 T(V7), // V6.
9710 T(V7), // V6KZ.
9711 T(V7), // V6T2.
9712 T(V7), // V6K.
9713 T(V7) // V7.
9715 static const int v6_m[] =
9717 -1, // PRE_V4.
9718 -1, // V4.
9719 T(V6K), // V4T.
9720 T(V6K), // V5T.
9721 T(V6K), // V5TE.
9722 T(V6K), // V5TEJ.
9723 T(V6K), // V6.
9724 T(V6KZ), // V6KZ.
9725 T(V7), // V6T2.
9726 T(V6K), // V6K.
9727 T(V7), // V7.
9728 T(V6_M) // V6_M.
9730 static const int v6s_m[] =
9732 -1, // PRE_V4.
9733 -1, // V4.
9734 T(V6K), // V4T.
9735 T(V6K), // V5T.
9736 T(V6K), // V5TE.
9737 T(V6K), // V5TEJ.
9738 T(V6K), // V6.
9739 T(V6KZ), // V6KZ.
9740 T(V7), // V6T2.
9741 T(V6K), // V6K.
9742 T(V7), // V7.
9743 T(V6S_M), // V6_M.
9744 T(V6S_M) // V6S_M.
9746 static const int v7e_m[] =
9748 -1, // PRE_V4.
9749 -1, // V4.
9750 T(V7E_M), // V4T.
9751 T(V7E_M), // V5T.
9752 T(V7E_M), // V5TE.
9753 T(V7E_M), // V5TEJ.
9754 T(V7E_M), // V6.
9755 T(V7E_M), // V6KZ.
9756 T(V7E_M), // V6T2.
9757 T(V7E_M), // V6K.
9758 T(V7E_M), // V7.
9759 T(V7E_M), // V6_M.
9760 T(V7E_M), // V6S_M.
9761 T(V7E_M) // V7E_M.
9763 static const int v4t_plus_v6_m[] =
9765 -1, // PRE_V4.
9766 -1, // V4.
9767 T(V4T), // V4T.
9768 T(V5T), // V5T.
9769 T(V5TE), // V5TE.
9770 T(V5TEJ), // V5TEJ.
9771 T(V6), // V6.
9772 T(V6KZ), // V6KZ.
9773 T(V6T2), // V6T2.
9774 T(V6K), // V6K.
9775 T(V7), // V7.
9776 T(V6_M), // V6_M.
9777 T(V6S_M), // V6S_M.
9778 T(V7E_M), // V7E_M.
9779 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9781 static const int *comb[] =
9783 v6t2,
9784 v6k,
9786 v6_m,
9787 v6s_m,
9788 v7e_m,
9789 // Pseudo-architecture.
9790 v4t_plus_v6_m
9793 // Check we've not got a higher architecture than we know about.
9795 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9797 gold_error(_("%s: unknown CPU architecture"), name);
9798 return -1;
9801 // Override old tag if we have a Tag_also_compatible_with on the output.
9803 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9804 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9805 oldtag = T(V4T_PLUS_V6_M);
9807 // And override the new tag if we have a Tag_also_compatible_with on the
9808 // input.
9810 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9811 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9812 newtag = T(V4T_PLUS_V6_M);
9814 // Architectures before V6KZ add features monotonically.
9815 int tagh = std::max(oldtag, newtag);
9816 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9817 return tagh;
9819 int tagl = std::min(oldtag, newtag);
9820 int result = comb[tagh - T(V6T2)][tagl];
9822 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9823 // as the canonical version.
9824 if (result == T(V4T_PLUS_V6_M))
9826 result = T(V4T);
9827 *secondary_compat_out = T(V6_M);
9829 else
9830 *secondary_compat_out = -1;
9832 if (result == -1)
9834 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9835 name, oldtag, newtag);
9836 return -1;
9839 return result;
9840 #undef T
9843 // Helper to print AEABI enum tag value.
9845 template<bool big_endian>
9846 std::string
9847 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9849 static const char *aeabi_enum_names[] =
9850 { "", "variable-size", "32-bit", "" };
9851 const size_t aeabi_enum_names_size =
9852 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9854 if (value < aeabi_enum_names_size)
9855 return std::string(aeabi_enum_names[value]);
9856 else
9858 char buffer[100];
9859 sprintf(buffer, "<unknown value %u>", value);
9860 return std::string(buffer);
9864 // Return the string value to store in TAG_CPU_name.
9866 template<bool big_endian>
9867 std::string
9868 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9870 static const char *name_table[] = {
9871 // These aren't real CPU names, but we can't guess
9872 // that from the architecture version alone.
9873 "Pre v4",
9874 "ARM v4",
9875 "ARM v4T",
9876 "ARM v5T",
9877 "ARM v5TE",
9878 "ARM v5TEJ",
9879 "ARM v6",
9880 "ARM v6KZ",
9881 "ARM v6T2",
9882 "ARM v6K",
9883 "ARM v7",
9884 "ARM v6-M",
9885 "ARM v6S-M",
9886 "ARM v7E-M"
9888 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9890 if (value < name_table_size)
9891 return std::string(name_table[value]);
9892 else
9894 char buffer[100];
9895 sprintf(buffer, "<unknown CPU value %u>", value);
9896 return std::string(buffer);
9900 // Merge object attributes from input file called NAME with those of the
9901 // output. The input object attributes are in the object pointed by PASD.
9903 template<bool big_endian>
9904 void
9905 Target_arm<big_endian>::merge_object_attributes(
9906 const char* name,
9907 const Attributes_section_data* pasd)
9909 // Return if there is no attributes section data.
9910 if (pasd == NULL)
9911 return;
9913 // If output has no object attributes, just copy.
9914 const int vendor = Object_attribute::OBJ_ATTR_PROC;
9915 if (this->attributes_section_data_ == NULL)
9917 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9918 Object_attribute* out_attr =
9919 this->attributes_section_data_->known_attributes(vendor);
9921 // We do not output objects with Tag_MPextension_use_legacy - we move
9922 // the attribute's value to Tag_MPextension_use. */
9923 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
9925 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
9926 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
9927 != out_attr[elfcpp::Tag_MPextension_use].int_value())
9929 gold_error(_("%s has both the current and legacy "
9930 "Tag_MPextension_use attributes"),
9931 name);
9934 out_attr[elfcpp::Tag_MPextension_use] =
9935 out_attr[elfcpp::Tag_MPextension_use_legacy];
9936 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
9937 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
9940 return;
9943 const Object_attribute* in_attr = pasd->known_attributes(vendor);
9944 Object_attribute* out_attr =
9945 this->attributes_section_data_->known_attributes(vendor);
9947 // This needs to happen before Tag_ABI_FP_number_model is merged. */
9948 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9949 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9951 // Ignore mismatches if the object doesn't use floating point. */
9952 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9953 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9954 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
9955 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
9956 && parameters->options().warn_mismatch())
9957 gold_error(_("%s uses VFP register arguments, output does not"),
9958 name);
9961 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9963 // Merge this attribute with existing attributes.
9964 switch (i)
9966 case elfcpp::Tag_CPU_raw_name:
9967 case elfcpp::Tag_CPU_name:
9968 // These are merged after Tag_CPU_arch.
9969 break;
9971 case elfcpp::Tag_ABI_optimization_goals:
9972 case elfcpp::Tag_ABI_FP_optimization_goals:
9973 // Use the first value seen.
9974 break;
9976 case elfcpp::Tag_CPU_arch:
9978 unsigned int saved_out_attr = out_attr->int_value();
9979 // Merge Tag_CPU_arch and Tag_also_compatible_with.
9980 int secondary_compat =
9981 this->get_secondary_compatible_arch(pasd);
9982 int secondary_compat_out =
9983 this->get_secondary_compatible_arch(
9984 this->attributes_section_data_);
9985 out_attr[i].set_int_value(
9986 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9987 &secondary_compat_out,
9988 in_attr[i].int_value(),
9989 secondary_compat));
9990 this->set_secondary_compatible_arch(this->attributes_section_data_,
9991 secondary_compat_out);
9993 // Merge Tag_CPU_name and Tag_CPU_raw_name.
9994 if (out_attr[i].int_value() == saved_out_attr)
9995 ; // Leave the names alone.
9996 else if (out_attr[i].int_value() == in_attr[i].int_value())
9998 // The output architecture has been changed to match the
9999 // input architecture. Use the input names.
10000 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10001 in_attr[elfcpp::Tag_CPU_name].string_value());
10002 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10003 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10005 else
10007 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10008 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10011 // If we still don't have a value for Tag_CPU_name,
10012 // make one up now. Tag_CPU_raw_name remains blank.
10013 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10015 const std::string cpu_name =
10016 this->tag_cpu_name_value(out_attr[i].int_value());
10017 // FIXME: If we see an unknown CPU, this will be set
10018 // to "<unknown CPU n>", where n is the attribute value.
10019 // This is different from BFD, which leaves the name alone.
10020 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10023 break;
10025 case elfcpp::Tag_ARM_ISA_use:
10026 case elfcpp::Tag_THUMB_ISA_use:
10027 case elfcpp::Tag_WMMX_arch:
10028 case elfcpp::Tag_Advanced_SIMD_arch:
10029 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10030 case elfcpp::Tag_ABI_FP_rounding:
10031 case elfcpp::Tag_ABI_FP_exceptions:
10032 case elfcpp::Tag_ABI_FP_user_exceptions:
10033 case elfcpp::Tag_ABI_FP_number_model:
10034 case elfcpp::Tag_VFP_HP_extension:
10035 case elfcpp::Tag_CPU_unaligned_access:
10036 case elfcpp::Tag_T2EE_use:
10037 case elfcpp::Tag_Virtualization_use:
10038 case elfcpp::Tag_MPextension_use:
10039 // Use the largest value specified.
10040 if (in_attr[i].int_value() > out_attr[i].int_value())
10041 out_attr[i].set_int_value(in_attr[i].int_value());
10042 break;
10044 case elfcpp::Tag_ABI_align8_preserved:
10045 case elfcpp::Tag_ABI_PCS_RO_data:
10046 // Use the smallest value specified.
10047 if (in_attr[i].int_value() < out_attr[i].int_value())
10048 out_attr[i].set_int_value(in_attr[i].int_value());
10049 break;
10051 case elfcpp::Tag_ABI_align8_needed:
10052 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10053 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10054 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10055 == 0)))
10057 // This error message should be enabled once all non-conformant
10058 // binaries in the toolchain have had the attributes set
10059 // properly.
10060 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10061 // name);
10063 // Fall through.
10064 case elfcpp::Tag_ABI_FP_denormal:
10065 case elfcpp::Tag_ABI_PCS_GOT_use:
10067 // These tags have 0 = don't care, 1 = strong requirement,
10068 // 2 = weak requirement.
10069 static const int order_021[3] = {0, 2, 1};
10071 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10072 // value if greater than 2 (for future-proofing).
10073 if ((in_attr[i].int_value() > 2
10074 && in_attr[i].int_value() > out_attr[i].int_value())
10075 || (in_attr[i].int_value() <= 2
10076 && out_attr[i].int_value() <= 2
10077 && (order_021[in_attr[i].int_value()]
10078 > order_021[out_attr[i].int_value()])))
10079 out_attr[i].set_int_value(in_attr[i].int_value());
10081 break;
10083 case elfcpp::Tag_CPU_arch_profile:
10084 if (out_attr[i].int_value() != in_attr[i].int_value())
10086 // 0 will merge with anything.
10087 // 'A' and 'S' merge to 'A'.
10088 // 'R' and 'S' merge to 'R'.
10089 // 'M' and 'A|R|S' is an error.
10090 if (out_attr[i].int_value() == 0
10091 || (out_attr[i].int_value() == 'S'
10092 && (in_attr[i].int_value() == 'A'
10093 || in_attr[i].int_value() == 'R')))
10094 out_attr[i].set_int_value(in_attr[i].int_value());
10095 else if (in_attr[i].int_value() == 0
10096 || (in_attr[i].int_value() == 'S'
10097 && (out_attr[i].int_value() == 'A'
10098 || out_attr[i].int_value() == 'R')))
10099 ; // Do nothing.
10100 else if (parameters->options().warn_mismatch())
10102 gold_error
10103 (_("conflicting architecture profiles %c/%c"),
10104 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10105 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10108 break;
10109 case elfcpp::Tag_VFP_arch:
10111 static const struct
10113 int ver;
10114 int regs;
10115 } vfp_versions[7] =
10117 {0, 0},
10118 {1, 16},
10119 {2, 16},
10120 {3, 32},
10121 {3, 16},
10122 {4, 32},
10123 {4, 16}
10126 // Values greater than 6 aren't defined, so just pick the
10127 // biggest.
10128 if (in_attr[i].int_value() > 6
10129 && in_attr[i].int_value() > out_attr[i].int_value())
10131 *out_attr = *in_attr;
10132 break;
10134 // The output uses the superset of input features
10135 // (ISA version) and registers.
10136 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10137 vfp_versions[out_attr[i].int_value()].ver);
10138 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10139 vfp_versions[out_attr[i].int_value()].regs);
10140 // This assumes all possible supersets are also a valid
10141 // options.
10142 int newval;
10143 for (newval = 6; newval > 0; newval--)
10145 if (regs == vfp_versions[newval].regs
10146 && ver == vfp_versions[newval].ver)
10147 break;
10149 out_attr[i].set_int_value(newval);
10151 break;
10152 case elfcpp::Tag_PCS_config:
10153 if (out_attr[i].int_value() == 0)
10154 out_attr[i].set_int_value(in_attr[i].int_value());
10155 else if (in_attr[i].int_value() != 0
10156 && out_attr[i].int_value() != 0
10157 && parameters->options().warn_mismatch())
10159 // It's sometimes ok to mix different configs, so this is only
10160 // a warning.
10161 gold_warning(_("%s: conflicting platform configuration"), name);
10163 break;
10164 case elfcpp::Tag_ABI_PCS_R9_use:
10165 if (in_attr[i].int_value() != out_attr[i].int_value()
10166 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10167 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10168 && parameters->options().warn_mismatch())
10170 gold_error(_("%s: conflicting use of R9"), name);
10172 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10173 out_attr[i].set_int_value(in_attr[i].int_value());
10174 break;
10175 case elfcpp::Tag_ABI_PCS_RW_data:
10176 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10177 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10178 != elfcpp::AEABI_R9_SB)
10179 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10180 != elfcpp::AEABI_R9_unused)
10181 && parameters->options().warn_mismatch())
10183 gold_error(_("%s: SB relative addressing conflicts with use "
10184 "of R9"),
10185 name);
10187 // Use the smallest value specified.
10188 if (in_attr[i].int_value() < out_attr[i].int_value())
10189 out_attr[i].set_int_value(in_attr[i].int_value());
10190 break;
10191 case elfcpp::Tag_ABI_PCS_wchar_t:
10192 // FIXME: Make it possible to turn off this warning.
10193 if (out_attr[i].int_value()
10194 && in_attr[i].int_value()
10195 && out_attr[i].int_value() != in_attr[i].int_value()
10196 && parameters->options().warn_mismatch())
10198 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10199 "use %u-byte wchar_t; use of wchar_t values "
10200 "across objects may fail"),
10201 name, in_attr[i].int_value(),
10202 out_attr[i].int_value());
10204 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10205 out_attr[i].set_int_value(in_attr[i].int_value());
10206 break;
10207 case elfcpp::Tag_ABI_enum_size:
10208 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10210 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10211 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10213 // The existing object is compatible with anything.
10214 // Use whatever requirements the new object has.
10215 out_attr[i].set_int_value(in_attr[i].int_value());
10217 // FIXME: Make it possible to turn off this warning.
10218 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10219 && out_attr[i].int_value() != in_attr[i].int_value()
10220 && parameters->options().warn_mismatch())
10222 unsigned int in_value = in_attr[i].int_value();
10223 unsigned int out_value = out_attr[i].int_value();
10224 gold_warning(_("%s uses %s enums yet the output is to use "
10225 "%s enums; use of enum values across objects "
10226 "may fail"),
10227 name,
10228 this->aeabi_enum_name(in_value).c_str(),
10229 this->aeabi_enum_name(out_value).c_str());
10232 break;
10233 case elfcpp::Tag_ABI_VFP_args:
10234 // Aready done.
10235 break;
10236 case elfcpp::Tag_ABI_WMMX_args:
10237 if (in_attr[i].int_value() != out_attr[i].int_value()
10238 && parameters->options().warn_mismatch())
10240 gold_error(_("%s uses iWMMXt register arguments, output does "
10241 "not"),
10242 name);
10244 break;
10245 case Object_attribute::Tag_compatibility:
10246 // Merged in target-independent code.
10247 break;
10248 case elfcpp::Tag_ABI_HardFP_use:
10249 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10250 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10251 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10252 out_attr[i].set_int_value(3);
10253 else if (in_attr[i].int_value() > out_attr[i].int_value())
10254 out_attr[i].set_int_value(in_attr[i].int_value());
10255 break;
10256 case elfcpp::Tag_ABI_FP_16bit_format:
10257 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10259 if (in_attr[i].int_value() != out_attr[i].int_value()
10260 && parameters->options().warn_mismatch())
10261 gold_error(_("fp16 format mismatch between %s and output"),
10262 name);
10264 if (in_attr[i].int_value() != 0)
10265 out_attr[i].set_int_value(in_attr[i].int_value());
10266 break;
10268 case elfcpp::Tag_DIV_use:
10269 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10270 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10271 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10272 // CPU. We will merge as follows: If the input attribute's value
10273 // is one then the output attribute's value remains unchanged. If
10274 // the input attribute's value is zero or two then if the output
10275 // attribute's value is one the output value is set to the input
10276 // value, otherwise the output value must be the same as the
10277 // inputs. */
10278 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10280 if (in_attr[i].int_value() != out_attr[i].int_value())
10282 gold_error(_("DIV usage mismatch between %s and output"),
10283 name);
10287 if (in_attr[i].int_value() != 1)
10288 out_attr[i].set_int_value(in_attr[i].int_value());
10290 break;
10292 case elfcpp::Tag_MPextension_use_legacy:
10293 // We don't output objects with Tag_MPextension_use_legacy - we
10294 // move the value to Tag_MPextension_use.
10295 if (in_attr[i].int_value() != 0
10296 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10298 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10299 != in_attr[i].int_value())
10301 gold_error(_("%s has has both the current and legacy "
10302 "Tag_MPextension_use attributes"),
10303 name);
10307 if (in_attr[i].int_value()
10308 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10309 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10311 break;
10313 case elfcpp::Tag_nodefaults:
10314 // This tag is set if it exists, but the value is unused (and is
10315 // typically zero). We don't actually need to do anything here -
10316 // the merge happens automatically when the type flags are merged
10317 // below.
10318 break;
10319 case elfcpp::Tag_also_compatible_with:
10320 // Already done in Tag_CPU_arch.
10321 break;
10322 case elfcpp::Tag_conformance:
10323 // Keep the attribute if it matches. Throw it away otherwise.
10324 // No attribute means no claim to conform.
10325 if (in_attr[i].string_value() != out_attr[i].string_value())
10326 out_attr[i].set_string_value("");
10327 break;
10329 default:
10331 const char* err_object = NULL;
10333 // The "known_obj_attributes" table does contain some undefined
10334 // attributes. Ensure that there are unused.
10335 if (out_attr[i].int_value() != 0
10336 || out_attr[i].string_value() != "")
10337 err_object = "output";
10338 else if (in_attr[i].int_value() != 0
10339 || in_attr[i].string_value() != "")
10340 err_object = name;
10342 if (err_object != NULL
10343 && parameters->options().warn_mismatch())
10345 // Attribute numbers >=64 (mod 128) can be safely ignored.
10346 if ((i & 127) < 64)
10347 gold_error(_("%s: unknown mandatory EABI object attribute "
10348 "%d"),
10349 err_object, i);
10350 else
10351 gold_warning(_("%s: unknown EABI object attribute %d"),
10352 err_object, i);
10355 // Only pass on attributes that match in both inputs.
10356 if (!in_attr[i].matches(out_attr[i]))
10358 out_attr[i].set_int_value(0);
10359 out_attr[i].set_string_value("");
10364 // If out_attr was copied from in_attr then it won't have a type yet.
10365 if (in_attr[i].type() && !out_attr[i].type())
10366 out_attr[i].set_type(in_attr[i].type());
10369 // Merge Tag_compatibility attributes and any common GNU ones.
10370 this->attributes_section_data_->merge(name, pasd);
10372 // Check for any attributes not known on ARM.
10373 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10374 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10375 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10376 Other_attributes* out_other_attributes =
10377 this->attributes_section_data_->other_attributes(vendor);
10378 Other_attributes::iterator out_iter = out_other_attributes->begin();
10380 while (in_iter != in_other_attributes->end()
10381 || out_iter != out_other_attributes->end())
10383 const char* err_object = NULL;
10384 int err_tag = 0;
10386 // The tags for each list are in numerical order.
10387 // If the tags are equal, then merge.
10388 if (out_iter != out_other_attributes->end()
10389 && (in_iter == in_other_attributes->end()
10390 || in_iter->first > out_iter->first))
10392 // This attribute only exists in output. We can't merge, and we
10393 // don't know what the tag means, so delete it.
10394 err_object = "output";
10395 err_tag = out_iter->first;
10396 int saved_tag = out_iter->first;
10397 delete out_iter->second;
10398 out_other_attributes->erase(out_iter);
10399 out_iter = out_other_attributes->upper_bound(saved_tag);
10401 else if (in_iter != in_other_attributes->end()
10402 && (out_iter != out_other_attributes->end()
10403 || in_iter->first < out_iter->first))
10405 // This attribute only exists in input. We can't merge, and we
10406 // don't know what the tag means, so ignore it.
10407 err_object = name;
10408 err_tag = in_iter->first;
10409 ++in_iter;
10411 else // The tags are equal.
10413 // As present, all attributes in the list are unknown, and
10414 // therefore can't be merged meaningfully.
10415 err_object = "output";
10416 err_tag = out_iter->first;
10418 // Only pass on attributes that match in both inputs.
10419 if (!in_iter->second->matches(*(out_iter->second)))
10421 // No match. Delete the attribute.
10422 int saved_tag = out_iter->first;
10423 delete out_iter->second;
10424 out_other_attributes->erase(out_iter);
10425 out_iter = out_other_attributes->upper_bound(saved_tag);
10427 else
10429 // Matched. Keep the attribute and move to the next.
10430 ++out_iter;
10431 ++in_iter;
10435 if (err_object && parameters->options().warn_mismatch())
10437 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10438 if ((err_tag & 127) < 64)
10440 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10441 err_object, err_tag);
10443 else
10445 gold_warning(_("%s: unknown EABI object attribute %d"),
10446 err_object, err_tag);
10452 // Stub-generation methods for Target_arm.
10454 // Make a new Arm_input_section object.
10456 template<bool big_endian>
10457 Arm_input_section<big_endian>*
10458 Target_arm<big_endian>::new_arm_input_section(
10459 Relobj* relobj,
10460 unsigned int shndx)
10462 Section_id sid(relobj, shndx);
10464 Arm_input_section<big_endian>* arm_input_section =
10465 new Arm_input_section<big_endian>(relobj, shndx);
10466 arm_input_section->init();
10468 // Register new Arm_input_section in map for look-up.
10469 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10470 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10472 // Make sure that it we have not created another Arm_input_section
10473 // for this input section already.
10474 gold_assert(ins.second);
10476 return arm_input_section;
10479 // Find the Arm_input_section object corresponding to the SHNDX-th input
10480 // section of RELOBJ.
10482 template<bool big_endian>
10483 Arm_input_section<big_endian>*
10484 Target_arm<big_endian>::find_arm_input_section(
10485 Relobj* relobj,
10486 unsigned int shndx) const
10488 Section_id sid(relobj, shndx);
10489 typename Arm_input_section_map::const_iterator p =
10490 this->arm_input_section_map_.find(sid);
10491 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10494 // Make a new stub table.
10496 template<bool big_endian>
10497 Stub_table<big_endian>*
10498 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10500 Stub_table<big_endian>* stub_table =
10501 new Stub_table<big_endian>(owner);
10502 this->stub_tables_.push_back(stub_table);
10504 stub_table->set_address(owner->address() + owner->data_size());
10505 stub_table->set_file_offset(owner->offset() + owner->data_size());
10506 stub_table->finalize_data_size();
10508 return stub_table;
10511 // Scan a relocation for stub generation.
10513 template<bool big_endian>
10514 void
10515 Target_arm<big_endian>::scan_reloc_for_stub(
10516 const Relocate_info<32, big_endian>* relinfo,
10517 unsigned int r_type,
10518 const Sized_symbol<32>* gsym,
10519 unsigned int r_sym,
10520 const Symbol_value<32>* psymval,
10521 elfcpp::Elf_types<32>::Elf_Swxword addend,
10522 Arm_address address)
10524 typedef typename Target_arm<big_endian>::Relocate Relocate;
10526 const Arm_relobj<big_endian>* arm_relobj =
10527 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10529 bool target_is_thumb;
10530 Symbol_value<32> symval;
10531 if (gsym != NULL)
10533 // This is a global symbol. Determine if we use PLT and if the
10534 // final target is THUMB.
10535 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
10537 // This uses a PLT, change the symbol value.
10538 symval.set_output_value(this->plt_section()->address()
10539 + gsym->plt_offset());
10540 psymval = &symval;
10541 target_is_thumb = false;
10543 else if (gsym->is_undefined())
10544 // There is no need to generate a stub symbol is undefined.
10545 return;
10546 else
10548 target_is_thumb =
10549 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10550 || (gsym->type() == elfcpp::STT_FUNC
10551 && !gsym->is_undefined()
10552 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10555 else
10557 // This is a local symbol. Determine if the final target is THUMB.
10558 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10561 // Strip LSB if this points to a THUMB target.
10562 const Arm_reloc_property* reloc_property =
10563 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10564 gold_assert(reloc_property != NULL);
10565 if (target_is_thumb
10566 && reloc_property->uses_thumb_bit()
10567 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10569 Arm_address stripped_value =
10570 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10571 symval.set_output_value(stripped_value);
10572 psymval = &symval;
10575 // Get the symbol value.
10576 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10578 // Owing to pipelining, the PC relative branches below actually skip
10579 // two instructions when the branch offset is 0.
10580 Arm_address destination;
10581 switch (r_type)
10583 case elfcpp::R_ARM_CALL:
10584 case elfcpp::R_ARM_JUMP24:
10585 case elfcpp::R_ARM_PLT32:
10586 // ARM branches.
10587 destination = value + addend + 8;
10588 break;
10589 case elfcpp::R_ARM_THM_CALL:
10590 case elfcpp::R_ARM_THM_XPC22:
10591 case elfcpp::R_ARM_THM_JUMP24:
10592 case elfcpp::R_ARM_THM_JUMP19:
10593 // THUMB branches.
10594 destination = value + addend + 4;
10595 break;
10596 default:
10597 gold_unreachable();
10600 Reloc_stub* stub = NULL;
10601 Stub_type stub_type =
10602 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10603 target_is_thumb);
10604 if (stub_type != arm_stub_none)
10606 // Try looking up an existing stub from a stub table.
10607 Stub_table<big_endian>* stub_table =
10608 arm_relobj->stub_table(relinfo->data_shndx);
10609 gold_assert(stub_table != NULL);
10611 // Locate stub by destination.
10612 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10614 // Create a stub if there is not one already
10615 stub = stub_table->find_reloc_stub(stub_key);
10616 if (stub == NULL)
10618 // create a new stub and add it to stub table.
10619 stub = this->stub_factory().make_reloc_stub(stub_type);
10620 stub_table->add_reloc_stub(stub, stub_key);
10623 // Record the destination address.
10624 stub->set_destination_address(destination
10625 | (target_is_thumb ? 1 : 0));
10628 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10629 if (this->fix_cortex_a8_
10630 && (r_type == elfcpp::R_ARM_THM_JUMP24
10631 || r_type == elfcpp::R_ARM_THM_JUMP19
10632 || r_type == elfcpp::R_ARM_THM_CALL
10633 || r_type == elfcpp::R_ARM_THM_XPC22)
10634 && (address & 0xfffU) == 0xffeU)
10636 // Found a candidate. Note we haven't checked the destination is
10637 // within 4K here: if we do so (and don't create a record) we can't
10638 // tell that a branch should have been relocated when scanning later.
10639 this->cortex_a8_relocs_info_[address] =
10640 new Cortex_a8_reloc(stub, r_type,
10641 destination | (target_is_thumb ? 1 : 0));
10645 // This function scans a relocation sections for stub generation.
10646 // The template parameter Relocate must be a class type which provides
10647 // a single function, relocate(), which implements the machine
10648 // specific part of a relocation.
10650 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10651 // SHT_REL or SHT_RELA.
10653 // PRELOCS points to the relocation data. RELOC_COUNT is the number
10654 // of relocs. OUTPUT_SECTION is the output section.
10655 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10656 // mapped to output offsets.
10658 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10659 // VIEW_SIZE is the size. These refer to the input section, unless
10660 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10661 // the output section.
10663 template<bool big_endian>
10664 template<int sh_type>
10665 void inline
10666 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10667 const Relocate_info<32, big_endian>* relinfo,
10668 const unsigned char* prelocs,
10669 size_t reloc_count,
10670 Output_section* output_section,
10671 bool needs_special_offset_handling,
10672 const unsigned char* view,
10673 elfcpp::Elf_types<32>::Elf_Addr view_address,
10674 section_size_type)
10676 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10677 const int reloc_size =
10678 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10680 Arm_relobj<big_endian>* arm_object =
10681 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10682 unsigned int local_count = arm_object->local_symbol_count();
10684 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10686 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10688 Reltype reloc(prelocs);
10690 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10691 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10692 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10694 r_type = this->get_real_reloc_type(r_type);
10696 // Only a few relocation types need stubs.
10697 if ((r_type != elfcpp::R_ARM_CALL)
10698 && (r_type != elfcpp::R_ARM_JUMP24)
10699 && (r_type != elfcpp::R_ARM_PLT32)
10700 && (r_type != elfcpp::R_ARM_THM_CALL)
10701 && (r_type != elfcpp::R_ARM_THM_XPC22)
10702 && (r_type != elfcpp::R_ARM_THM_JUMP24)
10703 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10704 && (r_type != elfcpp::R_ARM_V4BX))
10705 continue;
10707 section_offset_type offset =
10708 convert_to_section_size_type(reloc.get_r_offset());
10710 if (needs_special_offset_handling)
10712 offset = output_section->output_offset(relinfo->object,
10713 relinfo->data_shndx,
10714 offset);
10715 if (offset == -1)
10716 continue;
10719 // Create a v4bx stub if --fix-v4bx-interworking is used.
10720 if (r_type == elfcpp::R_ARM_V4BX)
10722 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10724 // Get the BX instruction.
10725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10726 const Valtype* wv =
10727 reinterpret_cast<const Valtype*>(view + offset);
10728 elfcpp::Elf_types<32>::Elf_Swxword insn =
10729 elfcpp::Swap<32, big_endian>::readval(wv);
10730 const uint32_t reg = (insn & 0xf);
10732 if (reg < 0xf)
10734 // Try looking up an existing stub from a stub table.
10735 Stub_table<big_endian>* stub_table =
10736 arm_object->stub_table(relinfo->data_shndx);
10737 gold_assert(stub_table != NULL);
10739 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10741 // create a new stub and add it to stub table.
10742 Arm_v4bx_stub* stub =
10743 this->stub_factory().make_arm_v4bx_stub(reg);
10744 gold_assert(stub != NULL);
10745 stub_table->add_arm_v4bx_stub(stub);
10749 continue;
10752 // Get the addend.
10753 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10754 elfcpp::Elf_types<32>::Elf_Swxword addend =
10755 stub_addend_reader(r_type, view + offset, reloc);
10757 const Sized_symbol<32>* sym;
10759 Symbol_value<32> symval;
10760 const Symbol_value<32> *psymval;
10761 if (r_sym < local_count)
10763 sym = NULL;
10764 psymval = arm_object->local_symbol(r_sym);
10766 // If the local symbol belongs to a section we are discarding,
10767 // and that section is a debug section, try to find the
10768 // corresponding kept section and map this symbol to its
10769 // counterpart in the kept section. The symbol must not
10770 // correspond to a section we are folding.
10771 bool is_ordinary;
10772 unsigned int shndx = psymval->input_shndx(&is_ordinary);
10773 if (is_ordinary
10774 && shndx != elfcpp::SHN_UNDEF
10775 && !arm_object->is_section_included(shndx)
10776 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10778 if (comdat_behavior == CB_UNDETERMINED)
10780 std::string name =
10781 arm_object->section_name(relinfo->data_shndx);
10782 comdat_behavior = get_comdat_behavior(name.c_str());
10784 if (comdat_behavior == CB_PRETEND)
10786 bool found;
10787 typename elfcpp::Elf_types<32>::Elf_Addr value =
10788 arm_object->map_to_kept_section(shndx, &found);
10789 if (found)
10790 symval.set_output_value(value + psymval->input_value());
10791 else
10792 symval.set_output_value(0);
10794 else
10796 symval.set_output_value(0);
10798 symval.set_no_output_symtab_entry();
10799 psymval = &symval;
10802 else
10804 const Symbol* gsym = arm_object->global_symbol(r_sym);
10805 gold_assert(gsym != NULL);
10806 if (gsym->is_forwarder())
10807 gsym = relinfo->symtab->resolve_forwards(gsym);
10809 sym = static_cast<const Sized_symbol<32>*>(gsym);
10810 if (sym->has_symtab_index())
10811 symval.set_output_symtab_index(sym->symtab_index());
10812 else
10813 symval.set_no_output_symtab_entry();
10815 // We need to compute the would-be final value of this global
10816 // symbol.
10817 const Symbol_table* symtab = relinfo->symtab;
10818 const Sized_symbol<32>* sized_symbol =
10819 symtab->get_sized_symbol<32>(gsym);
10820 Symbol_table::Compute_final_value_status status;
10821 Arm_address value =
10822 symtab->compute_final_value<32>(sized_symbol, &status);
10824 // Skip this if the symbol has not output section.
10825 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10826 continue;
10828 symval.set_output_value(value);
10829 psymval = &symval;
10832 // If symbol is a section symbol, we don't know the actual type of
10833 // destination. Give up.
10834 if (psymval->is_section_symbol())
10835 continue;
10837 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10838 addend, view_address + offset);
10842 // Scan an input section for stub generation.
10844 template<bool big_endian>
10845 void
10846 Target_arm<big_endian>::scan_section_for_stubs(
10847 const Relocate_info<32, big_endian>* relinfo,
10848 unsigned int sh_type,
10849 const unsigned char* prelocs,
10850 size_t reloc_count,
10851 Output_section* output_section,
10852 bool needs_special_offset_handling,
10853 const unsigned char* view,
10854 Arm_address view_address,
10855 section_size_type view_size)
10857 if (sh_type == elfcpp::SHT_REL)
10858 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10859 relinfo,
10860 prelocs,
10861 reloc_count,
10862 output_section,
10863 needs_special_offset_handling,
10864 view,
10865 view_address,
10866 view_size);
10867 else if (sh_type == elfcpp::SHT_RELA)
10868 // We do not support RELA type relocations yet. This is provided for
10869 // completeness.
10870 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10871 relinfo,
10872 prelocs,
10873 reloc_count,
10874 output_section,
10875 needs_special_offset_handling,
10876 view,
10877 view_address,
10878 view_size);
10879 else
10880 gold_unreachable();
10883 // Group input sections for stub generation.
10885 // We goup input sections in an output sections so that the total size,
10886 // including any padding space due to alignment is smaller than GROUP_SIZE
10887 // unless the only input section in group is bigger than GROUP_SIZE already.
10888 // Then an ARM stub table is created to follow the last input section
10889 // in group. For each group an ARM stub table is created an is placed
10890 // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10891 // extend the group after the stub table.
10893 template<bool big_endian>
10894 void
10895 Target_arm<big_endian>::group_sections(
10896 Layout* layout,
10897 section_size_type group_size,
10898 bool stubs_always_after_branch)
10900 // Group input sections and insert stub table
10901 Layout::Section_list section_list;
10902 layout->get_allocated_sections(&section_list);
10903 for (Layout::Section_list::const_iterator p = section_list.begin();
10904 p != section_list.end();
10905 ++p)
10907 Arm_output_section<big_endian>* output_section =
10908 Arm_output_section<big_endian>::as_arm_output_section(*p);
10909 output_section->group_sections(group_size, stubs_always_after_branch,
10910 this);
10914 // Relaxation hook. This is where we do stub generation.
10916 template<bool big_endian>
10917 bool
10918 Target_arm<big_endian>::do_relax(
10919 int pass,
10920 const Input_objects* input_objects,
10921 Symbol_table* symtab,
10922 Layout* layout)
10924 // No need to generate stubs if this is a relocatable link.
10925 gold_assert(!parameters->options().relocatable());
10927 // If this is the first pass, we need to group input sections into
10928 // stub groups.
10929 bool done_exidx_fixup = false;
10930 typedef typename Stub_table_list::iterator Stub_table_iterator;
10931 if (pass == 1)
10933 // Determine the stub group size. The group size is the absolute
10934 // value of the parameter --stub-group-size. If --stub-group-size
10935 // is passed a negative value, we restict stubs to be always after
10936 // the stubbed branches.
10937 int32_t stub_group_size_param =
10938 parameters->options().stub_group_size();
10939 bool stubs_always_after_branch = stub_group_size_param < 0;
10940 section_size_type stub_group_size = abs(stub_group_size_param);
10942 if (stub_group_size == 1)
10944 // Default value.
10945 // Thumb branch range is +-4MB has to be used as the default
10946 // maximum size (a given section can contain both ARM and Thumb
10947 // code, so the worst case has to be taken into account). If we are
10948 // fixing cortex-a8 errata, the branch range has to be even smaller,
10949 // since wide conditional branch has a range of +-1MB only.
10951 // This value is 48K less than that, which allows for 4096
10952 // 12-byte stubs. If we exceed that, then we will fail to link.
10953 // The user will have to relink with an explicit group size
10954 // option.
10955 stub_group_size = 4145152;
10958 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10959 // page as the first half of a 32-bit branch straddling two 4K pages.
10960 // This is a crude way of enforcing that. In addition, long conditional
10961 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
10962 // erratum, limit the group size to (1M - 12k) to avoid unreachable
10963 // cortex-A8 stubs from long conditional branches.
10964 if (this->fix_cortex_a8_)
10966 stubs_always_after_branch = true;
10967 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
10968 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
10971 group_sections(layout, stub_group_size, stubs_always_after_branch);
10973 // Also fix .ARM.exidx section coverage.
10974 Output_section* os = layout->find_output_section(".ARM.exidx");
10975 if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10977 Arm_output_section<big_endian>* exidx_output_section =
10978 Arm_output_section<big_endian>::as_arm_output_section(os);
10979 this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10980 done_exidx_fixup = true;
10983 else
10985 // If this is not the first pass, addresses and file offsets have
10986 // been reset at this point, set them here.
10987 for (Stub_table_iterator sp = this->stub_tables_.begin();
10988 sp != this->stub_tables_.end();
10989 ++sp)
10991 Arm_input_section<big_endian>* owner = (*sp)->owner();
10992 off_t off = align_address(owner->original_size(),
10993 (*sp)->addralign());
10994 (*sp)->set_address_and_file_offset(owner->address() + off,
10995 owner->offset() + off);
10999 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11000 // beginning of each relaxation pass, just blow away all the stubs.
11001 // Alternatively, we could selectively remove only the stubs and reloc
11002 // information for code sections that have moved since the last pass.
11003 // That would require more book-keeping.
11004 if (this->fix_cortex_a8_)
11006 // Clear all Cortex-A8 reloc information.
11007 for (typename Cortex_a8_relocs_info::const_iterator p =
11008 this->cortex_a8_relocs_info_.begin();
11009 p != this->cortex_a8_relocs_info_.end();
11010 ++p)
11011 delete p->second;
11012 this->cortex_a8_relocs_info_.clear();
11014 // Remove all Cortex-A8 stubs.
11015 for (Stub_table_iterator sp = this->stub_tables_.begin();
11016 sp != this->stub_tables_.end();
11017 ++sp)
11018 (*sp)->remove_all_cortex_a8_stubs();
11021 // Scan relocs for relocation stubs
11022 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11023 op != input_objects->relobj_end();
11024 ++op)
11026 Arm_relobj<big_endian>* arm_relobj =
11027 Arm_relobj<big_endian>::as_arm_relobj(*op);
11028 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11031 // Check all stub tables to see if any of them have their data sizes
11032 // or addresses alignments changed. These are the only things that
11033 // matter.
11034 bool any_stub_table_changed = false;
11035 Unordered_set<const Output_section*> sections_needing_adjustment;
11036 for (Stub_table_iterator sp = this->stub_tables_.begin();
11037 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11038 ++sp)
11040 if ((*sp)->update_data_size_and_addralign())
11042 // Update data size of stub table owner.
11043 Arm_input_section<big_endian>* owner = (*sp)->owner();
11044 uint64_t address = owner->address();
11045 off_t offset = owner->offset();
11046 owner->reset_address_and_file_offset();
11047 owner->set_address_and_file_offset(address, offset);
11049 sections_needing_adjustment.insert(owner->output_section());
11050 any_stub_table_changed = true;
11054 // Output_section_data::output_section() returns a const pointer but we
11055 // need to update output sections, so we record all output sections needing
11056 // update above and scan the sections here to find out what sections need
11057 // to be updated.
11058 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
11059 p != layout->section_list().end();
11060 ++p)
11062 if (sections_needing_adjustment.find(*p)
11063 != sections_needing_adjustment.end())
11064 (*p)->set_section_offsets_need_adjustment();
11067 // Stop relaxation if no EXIDX fix-up and no stub table change.
11068 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11070 // Finalize the stubs in the last relaxation pass.
11071 if (!continue_relaxation)
11073 for (Stub_table_iterator sp = this->stub_tables_.begin();
11074 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11075 ++sp)
11076 (*sp)->finalize_stubs();
11078 // Update output local symbol counts of objects if necessary.
11079 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11080 op != input_objects->relobj_end();
11081 ++op)
11083 Arm_relobj<big_endian>* arm_relobj =
11084 Arm_relobj<big_endian>::as_arm_relobj(*op);
11086 // Update output local symbol counts. We need to discard local
11087 // symbols defined in parts of input sections that are discarded by
11088 // relaxation.
11089 if (arm_relobj->output_local_symbol_count_needs_update())
11090 arm_relobj->update_output_local_symbol_count();
11094 return continue_relaxation;
11097 // Relocate a stub.
11099 template<bool big_endian>
11100 void
11101 Target_arm<big_endian>::relocate_stub(
11102 Stub* stub,
11103 const Relocate_info<32, big_endian>* relinfo,
11104 Output_section* output_section,
11105 unsigned char* view,
11106 Arm_address address,
11107 section_size_type view_size)
11109 Relocate relocate;
11110 const Stub_template* stub_template = stub->stub_template();
11111 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11113 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11114 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11116 unsigned int r_type = insn->r_type();
11117 section_size_type reloc_offset = stub_template->reloc_offset(i);
11118 section_size_type reloc_size = insn->size();
11119 gold_assert(reloc_offset + reloc_size <= view_size);
11121 // This is the address of the stub destination.
11122 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11123 Symbol_value<32> symval;
11124 symval.set_output_value(target);
11126 // Synthesize a fake reloc just in case. We don't have a symbol so
11127 // we use 0.
11128 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11129 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11130 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11131 reloc_write.put_r_offset(reloc_offset);
11132 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11133 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11135 relocate.relocate(relinfo, this, output_section,
11136 this->fake_relnum_for_stubs, rel, r_type,
11137 NULL, &symval, view + reloc_offset,
11138 address + reloc_offset, reloc_size);
11142 // Determine whether an object attribute tag takes an integer, a
11143 // string or both.
11145 template<bool big_endian>
11147 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11149 if (tag == Object_attribute::Tag_compatibility)
11150 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11151 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11152 else if (tag == elfcpp::Tag_nodefaults)
11153 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11154 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11155 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11156 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11157 else if (tag < 32)
11158 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11159 else
11160 return ((tag & 1) != 0
11161 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11162 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11165 // Reorder attributes.
11167 // The ABI defines that Tag_conformance should be emitted first, and that
11168 // Tag_nodefaults should be second (if either is defined). This sets those
11169 // two positions, and bumps up the position of all the remaining tags to
11170 // compensate.
11172 template<bool big_endian>
11174 Target_arm<big_endian>::do_attributes_order(int num) const
11176 // Reorder the known object attributes in output. We want to move
11177 // Tag_conformance to position 4 and Tag_conformance to position 5
11178 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
11179 if (num == 4)
11180 return elfcpp::Tag_conformance;
11181 if (num == 5)
11182 return elfcpp::Tag_nodefaults;
11183 if ((num - 2) < elfcpp::Tag_nodefaults)
11184 return num - 2;
11185 if ((num - 1) < elfcpp::Tag_conformance)
11186 return num - 1;
11187 return num;
11190 // Scan a span of THUMB code for Cortex-A8 erratum.
11192 template<bool big_endian>
11193 void
11194 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11195 Arm_relobj<big_endian>* arm_relobj,
11196 unsigned int shndx,
11197 section_size_type span_start,
11198 section_size_type span_end,
11199 const unsigned char* view,
11200 Arm_address address)
11202 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11204 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11205 // The branch target is in the same 4KB region as the
11206 // first half of the branch.
11207 // The instruction before the branch is a 32-bit
11208 // length non-branch instruction.
11209 section_size_type i = span_start;
11210 bool last_was_32bit = false;
11211 bool last_was_branch = false;
11212 while (i < span_end)
11214 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11215 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11216 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11217 bool is_blx = false, is_b = false;
11218 bool is_bl = false, is_bcc = false;
11220 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11221 if (insn_32bit)
11223 // Load the rest of the insn (in manual-friendly order).
11224 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11226 // Encoding T4: B<c>.W.
11227 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11228 // Encoding T1: BL<c>.W.
11229 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11230 // Encoding T2: BLX<c>.W.
11231 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11232 // Encoding T3: B<c>.W (not permitted in IT block).
11233 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11234 && (insn & 0x07f00000U) != 0x03800000U);
11237 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11239 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11240 // page boundary and it follows 32-bit non-branch instruction,
11241 // we need to work around.
11242 if (is_32bit_branch
11243 && ((address + i) & 0xfffU) == 0xffeU
11244 && last_was_32bit
11245 && !last_was_branch)
11247 // Check to see if there is a relocation stub for this branch.
11248 bool force_target_arm = false;
11249 bool force_target_thumb = false;
11250 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11251 Cortex_a8_relocs_info::const_iterator p =
11252 this->cortex_a8_relocs_info_.find(address + i);
11254 if (p != this->cortex_a8_relocs_info_.end())
11256 cortex_a8_reloc = p->second;
11257 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11259 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11260 && !target_is_thumb)
11261 force_target_arm = true;
11262 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11263 && target_is_thumb)
11264 force_target_thumb = true;
11267 off_t offset;
11268 Stub_type stub_type = arm_stub_none;
11270 // Check if we have an offending branch instruction.
11271 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11272 uint16_t lower_insn = insn & 0xffffU;
11273 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11275 if (cortex_a8_reloc != NULL
11276 && cortex_a8_reloc->reloc_stub() != NULL)
11277 // We've already made a stub for this instruction, e.g.
11278 // it's a long branch or a Thumb->ARM stub. Assume that
11279 // stub will suffice to work around the A8 erratum (see
11280 // setting of always_after_branch above).
11282 else if (is_bcc)
11284 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11285 lower_insn);
11286 stub_type = arm_stub_a8_veneer_b_cond;
11288 else if (is_b || is_bl || is_blx)
11290 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11291 lower_insn);
11292 if (is_blx)
11293 offset &= ~3;
11295 stub_type = (is_blx
11296 ? arm_stub_a8_veneer_blx
11297 : (is_bl
11298 ? arm_stub_a8_veneer_bl
11299 : arm_stub_a8_veneer_b));
11302 if (stub_type != arm_stub_none)
11304 Arm_address pc_for_insn = address + i + 4;
11306 // The original instruction is a BL, but the target is
11307 // an ARM instruction. If we were not making a stub,
11308 // the BL would have been converted to a BLX. Use the
11309 // BLX stub instead in that case.
11310 if (this->may_use_blx() && force_target_arm
11311 && stub_type == arm_stub_a8_veneer_bl)
11313 stub_type = arm_stub_a8_veneer_blx;
11314 is_blx = true;
11315 is_bl = false;
11317 // Conversely, if the original instruction was
11318 // BLX but the target is Thumb mode, use the BL stub.
11319 else if (force_target_thumb
11320 && stub_type == arm_stub_a8_veneer_blx)
11322 stub_type = arm_stub_a8_veneer_bl;
11323 is_blx = false;
11324 is_bl = true;
11327 if (is_blx)
11328 pc_for_insn &= ~3;
11330 // If we found a relocation, use the proper destination,
11331 // not the offset in the (unrelocated) instruction.
11332 // Note this is always done if we switched the stub type above.
11333 if (cortex_a8_reloc != NULL)
11334 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11336 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11338 // Add a new stub if destination address in in the same page.
11339 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11341 Cortex_a8_stub* stub =
11342 this->stub_factory_.make_cortex_a8_stub(stub_type,
11343 arm_relobj, shndx,
11344 address + i,
11345 target, insn);
11346 Stub_table<big_endian>* stub_table =
11347 arm_relobj->stub_table(shndx);
11348 gold_assert(stub_table != NULL);
11349 stub_table->add_cortex_a8_stub(address + i, stub);
11354 i += insn_32bit ? 4 : 2;
11355 last_was_32bit = insn_32bit;
11356 last_was_branch = is_32bit_branch;
11360 // Apply the Cortex-A8 workaround.
11362 template<bool big_endian>
11363 void
11364 Target_arm<big_endian>::apply_cortex_a8_workaround(
11365 const Cortex_a8_stub* stub,
11366 Arm_address stub_address,
11367 unsigned char* insn_view,
11368 Arm_address insn_address)
11370 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11371 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11372 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11373 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11374 off_t branch_offset = stub_address - (insn_address + 4);
11376 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11377 switch (stub->stub_template()->type())
11379 case arm_stub_a8_veneer_b_cond:
11380 // For a conditional branch, we re-write it to be a uncondition
11381 // branch to the stub. We use the THUMB-2 encoding here.
11382 upper_insn = 0xf000U;
11383 lower_insn = 0xb800U;
11384 // Fall through
11385 case arm_stub_a8_veneer_b:
11386 case arm_stub_a8_veneer_bl:
11387 case arm_stub_a8_veneer_blx:
11388 if ((lower_insn & 0x5000U) == 0x4000U)
11389 // For a BLX instruction, make sure that the relocation is
11390 // rounded up to a word boundary. This follows the semantics of
11391 // the instruction which specifies that bit 1 of the target
11392 // address will come from bit 1 of the base address.
11393 branch_offset = (branch_offset + 2) & ~3;
11395 // Put BRANCH_OFFSET back into the insn.
11396 gold_assert(!utils::has_overflow<25>(branch_offset));
11397 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11398 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11399 break;
11401 default:
11402 gold_unreachable();
11405 // Put the relocated value back in the object file:
11406 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11407 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11410 template<bool big_endian>
11411 class Target_selector_arm : public Target_selector
11413 public:
11414 Target_selector_arm()
11415 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11416 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11419 Target*
11420 do_instantiate_target()
11421 { return new Target_arm<big_endian>(); }
11424 // Fix .ARM.exidx section coverage.
11426 template<bool big_endian>
11427 void
11428 Target_arm<big_endian>::fix_exidx_coverage(
11429 Layout* layout,
11430 Arm_output_section<big_endian>* exidx_section,
11431 Symbol_table* symtab)
11433 // We need to look at all the input sections in output in ascending
11434 // order of of output address. We do that by building a sorted list
11435 // of output sections by addresses. Then we looks at the output sections
11436 // in order. The input sections in an output section are already sorted
11437 // by addresses within the output section.
11439 typedef std::set<Output_section*, output_section_address_less_than>
11440 Sorted_output_section_list;
11441 Sorted_output_section_list sorted_output_sections;
11442 Layout::Section_list section_list;
11443 layout->get_allocated_sections(&section_list);
11444 for (Layout::Section_list::const_iterator p = section_list.begin();
11445 p != section_list.end();
11446 ++p)
11448 // We only care about output sections that contain executable code.
11449 if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
11450 sorted_output_sections.insert(*p);
11453 // Go over the output sections in ascending order of output addresses.
11454 typedef typename Arm_output_section<big_endian>::Text_section_list
11455 Text_section_list;
11456 Text_section_list sorted_text_sections;
11457 for(typename Sorted_output_section_list::iterator p =
11458 sorted_output_sections.begin();
11459 p != sorted_output_sections.end();
11460 ++p)
11462 Arm_output_section<big_endian>* arm_output_section =
11463 Arm_output_section<big_endian>::as_arm_output_section(*p);
11464 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11467 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11468 merge_exidx_entries());
11471 Target_selector_arm<false> target_selector_arm;
11472 Target_selector_arm<true> target_selector_armbe;
11474 } // End anonymous namespace.