1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "libiberty.h" // for unlink_if_ordinary()
35 #include "parameters.h"
42 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 # define MAP_ANONYMOUS MAP_ANON
50 // Output_data variables.
52 bool Output_data::allocated_sizes_are_fixed
;
54 // Output_data methods.
56 Output_data::~Output_data()
60 // Return the default alignment for the target size.
63 Output_data::default_alignment()
65 return Output_data::default_alignment_for_size(
66 parameters
->target().get_size());
69 // Return the default alignment for a size--32 or 64.
72 Output_data::default_alignment_for_size(int size
)
82 // Output_section_header methods. This currently assumes that the
83 // segment and section lists are complete at construction time.
85 Output_section_headers::Output_section_headers(
87 const Layout::Segment_list
* segment_list
,
88 const Layout::Section_list
* section_list
,
89 const Layout::Section_list
* unattached_section_list
,
90 const Stringpool
* secnamepool
,
91 const Output_section
* shstrtab_section
)
93 segment_list_(segment_list
),
94 section_list_(section_list
),
95 unattached_section_list_(unattached_section_list
),
96 secnamepool_(secnamepool
),
97 shstrtab_section_(shstrtab_section
)
99 // Count all the sections. Start with 1 for the null section.
101 if (!parameters
->options().relocatable())
103 for (Layout::Segment_list::const_iterator p
= segment_list
->begin();
104 p
!= segment_list
->end();
106 if ((*p
)->type() == elfcpp::PT_LOAD
)
107 count
+= (*p
)->output_section_count();
111 for (Layout::Section_list::const_iterator p
= section_list
->begin();
112 p
!= section_list
->end();
114 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
117 count
+= unattached_section_list
->size();
119 const int size
= parameters
->target().get_size();
122 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
124 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
128 this->set_data_size(count
* shdr_size
);
131 // Write out the section headers.
134 Output_section_headers::do_write(Output_file
* of
)
136 switch (parameters
->size_and_endianness())
138 #ifdef HAVE_TARGET_32_LITTLE
139 case Parameters::TARGET_32_LITTLE
:
140 this->do_sized_write
<32, false>(of
);
143 #ifdef HAVE_TARGET_32_BIG
144 case Parameters::TARGET_32_BIG
:
145 this->do_sized_write
<32, true>(of
);
148 #ifdef HAVE_TARGET_64_LITTLE
149 case Parameters::TARGET_64_LITTLE
:
150 this->do_sized_write
<64, false>(of
);
153 #ifdef HAVE_TARGET_64_BIG
154 case Parameters::TARGET_64_BIG
:
155 this->do_sized_write
<64, true>(of
);
163 template<int size
, bool big_endian
>
165 Output_section_headers::do_sized_write(Output_file
* of
)
167 off_t all_shdrs_size
= this->data_size();
168 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
170 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
171 unsigned char* v
= view
;
174 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
175 oshdr
.put_sh_name(0);
176 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
177 oshdr
.put_sh_flags(0);
178 oshdr
.put_sh_addr(0);
179 oshdr
.put_sh_offset(0);
181 size_t section_count
= (this->data_size()
182 / elfcpp::Elf_sizes
<size
>::shdr_size
);
183 if (section_count
< elfcpp::SHN_LORESERVE
)
184 oshdr
.put_sh_size(0);
186 oshdr
.put_sh_size(section_count
);
188 unsigned int shstrndx
= this->shstrtab_section_
->out_shndx();
189 if (shstrndx
< elfcpp::SHN_LORESERVE
)
190 oshdr
.put_sh_link(0);
192 oshdr
.put_sh_link(shstrndx
);
194 oshdr
.put_sh_info(0);
195 oshdr
.put_sh_addralign(0);
196 oshdr
.put_sh_entsize(0);
201 unsigned int shndx
= 1;
202 if (!parameters
->options().relocatable())
204 for (Layout::Segment_list::const_iterator p
=
205 this->segment_list_
->begin();
206 p
!= this->segment_list_
->end();
208 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
215 for (Layout::Section_list::const_iterator p
=
216 this->section_list_
->begin();
217 p
!= this->section_list_
->end();
220 // We do unallocated sections below, except that group
221 // sections have to come first.
222 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
223 && (*p
)->type() != elfcpp::SHT_GROUP
)
225 gold_assert(shndx
== (*p
)->out_shndx());
226 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
227 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
233 for (Layout::Section_list::const_iterator p
=
234 this->unattached_section_list_
->begin();
235 p
!= this->unattached_section_list_
->end();
238 // For a relocatable link, we did unallocated group sections
239 // above, since they have to come first.
240 if ((*p
)->type() == elfcpp::SHT_GROUP
241 && parameters
->options().relocatable())
243 gold_assert(shndx
== (*p
)->out_shndx());
244 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
245 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
250 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
253 // Output_segment_header methods.
255 Output_segment_headers::Output_segment_headers(
256 const Layout::Segment_list
& segment_list
)
257 : segment_list_(segment_list
)
259 const int size
= parameters
->target().get_size();
262 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
264 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
268 this->set_data_size(segment_list
.size() * phdr_size
);
272 Output_segment_headers::do_write(Output_file
* of
)
274 switch (parameters
->size_and_endianness())
276 #ifdef HAVE_TARGET_32_LITTLE
277 case Parameters::TARGET_32_LITTLE
:
278 this->do_sized_write
<32, false>(of
);
281 #ifdef HAVE_TARGET_32_BIG
282 case Parameters::TARGET_32_BIG
:
283 this->do_sized_write
<32, true>(of
);
286 #ifdef HAVE_TARGET_64_LITTLE
287 case Parameters::TARGET_64_LITTLE
:
288 this->do_sized_write
<64, false>(of
);
291 #ifdef HAVE_TARGET_64_BIG
292 case Parameters::TARGET_64_BIG
:
293 this->do_sized_write
<64, true>(of
);
301 template<int size
, bool big_endian
>
303 Output_segment_headers::do_sized_write(Output_file
* of
)
305 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
306 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
307 gold_assert(all_phdrs_size
== this->data_size());
308 unsigned char* view
= of
->get_output_view(this->offset(),
310 unsigned char* v
= view
;
311 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
312 p
!= this->segment_list_
.end();
315 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
316 (*p
)->write_header(&ophdr
);
320 gold_assert(v
- view
== all_phdrs_size
);
322 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
325 // Output_file_header methods.
327 Output_file_header::Output_file_header(const Target
* target
,
328 const Symbol_table
* symtab
,
329 const Output_segment_headers
* osh
,
333 segment_header_(osh
),
334 section_header_(NULL
),
338 const int size
= parameters
->target().get_size();
341 ehdr_size
= elfcpp::Elf_sizes
<32>::ehdr_size
;
343 ehdr_size
= elfcpp::Elf_sizes
<64>::ehdr_size
;
347 this->set_data_size(ehdr_size
);
350 // Set the section table information for a file header.
353 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
354 const Output_section
* shstrtab
)
356 this->section_header_
= shdrs
;
357 this->shstrtab_
= shstrtab
;
360 // Write out the file header.
363 Output_file_header::do_write(Output_file
* of
)
365 gold_assert(this->offset() == 0);
367 switch (parameters
->size_and_endianness())
369 #ifdef HAVE_TARGET_32_LITTLE
370 case Parameters::TARGET_32_LITTLE
:
371 this->do_sized_write
<32, false>(of
);
374 #ifdef HAVE_TARGET_32_BIG
375 case Parameters::TARGET_32_BIG
:
376 this->do_sized_write
<32, true>(of
);
379 #ifdef HAVE_TARGET_64_LITTLE
380 case Parameters::TARGET_64_LITTLE
:
381 this->do_sized_write
<64, false>(of
);
384 #ifdef HAVE_TARGET_64_BIG
385 case Parameters::TARGET_64_BIG
:
386 this->do_sized_write
<64, true>(of
);
394 // Write out the file header with appropriate size and endianess.
396 template<int size
, bool big_endian
>
398 Output_file_header::do_sized_write(Output_file
* of
)
400 gold_assert(this->offset() == 0);
402 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
403 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
404 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
406 unsigned char e_ident
[elfcpp::EI_NIDENT
];
407 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
408 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
409 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
410 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
411 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
413 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
415 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
418 e_ident
[elfcpp::EI_DATA
] = (big_endian
419 ? elfcpp::ELFDATA2MSB
420 : elfcpp::ELFDATA2LSB
);
421 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
422 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
423 oehdr
.put_e_ident(e_ident
);
426 if (parameters
->options().relocatable())
427 e_type
= elfcpp::ET_REL
;
428 else if (parameters
->options().shared())
429 e_type
= elfcpp::ET_DYN
;
431 e_type
= elfcpp::ET_EXEC
;
432 oehdr
.put_e_type(e_type
);
434 oehdr
.put_e_machine(this->target_
->machine_code());
435 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
437 oehdr
.put_e_entry(this->entry
<size
>());
439 if (this->segment_header_
== NULL
)
440 oehdr
.put_e_phoff(0);
442 oehdr
.put_e_phoff(this->segment_header_
->offset());
444 oehdr
.put_e_shoff(this->section_header_
->offset());
446 // FIXME: The target needs to set the flags.
447 oehdr
.put_e_flags(0);
449 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
451 if (this->segment_header_
== NULL
)
453 oehdr
.put_e_phentsize(0);
454 oehdr
.put_e_phnum(0);
458 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
459 oehdr
.put_e_phnum(this->segment_header_
->data_size()
460 / elfcpp::Elf_sizes
<size
>::phdr_size
);
463 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
464 size_t section_count
= (this->section_header_
->data_size()
465 / elfcpp::Elf_sizes
<size
>::shdr_size
);
467 if (section_count
< elfcpp::SHN_LORESERVE
)
468 oehdr
.put_e_shnum(this->section_header_
->data_size()
469 / elfcpp::Elf_sizes
<size
>::shdr_size
);
471 oehdr
.put_e_shnum(0);
473 unsigned int shstrndx
= this->shstrtab_
->out_shndx();
474 if (shstrndx
< elfcpp::SHN_LORESERVE
)
475 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
477 oehdr
.put_e_shstrndx(elfcpp::SHN_XINDEX
);
479 of
->write_output_view(0, ehdr_size
, view
);
482 // Return the value to use for the entry address. THIS->ENTRY_ is the
483 // symbol specified on the command line, if any.
486 typename
elfcpp::Elf_types
<size
>::Elf_Addr
487 Output_file_header::entry()
489 const bool should_issue_warning
= (this->entry_
!= NULL
490 && !parameters
->options().relocatable()
491 && !parameters
->options().shared());
493 // FIXME: Need to support target specific entry symbol.
494 const char* entry
= this->entry_
;
498 Symbol
* sym
= this->symtab_
->lookup(entry
);
500 typename Sized_symbol
<size
>::Value_type v
;
503 Sized_symbol
<size
>* ssym
;
504 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
505 if (!ssym
->is_defined() && should_issue_warning
)
506 gold_warning("entry symbol '%s' exists but is not defined", entry
);
511 // We couldn't find the entry symbol. See if we can parse it as
512 // a number. This supports, e.g., -e 0x1000.
514 v
= strtoull(entry
, &endptr
, 0);
517 if (should_issue_warning
)
518 gold_warning("cannot find entry symbol '%s'", entry
);
526 // Output_data_const methods.
529 Output_data_const::do_write(Output_file
* of
)
531 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
534 // Output_data_const_buffer methods.
537 Output_data_const_buffer::do_write(Output_file
* of
)
539 of
->write(this->offset(), this->p_
, this->data_size());
542 // Output_section_data methods.
544 // Record the output section, and set the entry size and such.
547 Output_section_data::set_output_section(Output_section
* os
)
549 gold_assert(this->output_section_
== NULL
);
550 this->output_section_
= os
;
551 this->do_adjust_output_section(os
);
554 // Return the section index of the output section.
557 Output_section_data::do_out_shndx() const
559 gold_assert(this->output_section_
!= NULL
);
560 return this->output_section_
->out_shndx();
563 // Set the alignment, which means we may need to update the alignment
564 // of the output section.
567 Output_section_data::set_addralign(uint64_t addralign
)
569 this->addralign_
= addralign
;
570 if (this->output_section_
!= NULL
571 && this->output_section_
->addralign() < addralign
)
572 this->output_section_
->set_addralign(addralign
);
575 // Output_data_strtab methods.
577 // Set the final data size.
580 Output_data_strtab::set_final_data_size()
582 this->strtab_
->set_string_offsets();
583 this->set_data_size(this->strtab_
->get_strtab_size());
586 // Write out a string table.
589 Output_data_strtab::do_write(Output_file
* of
)
591 this->strtab_
->write(of
, this->offset());
594 // Output_reloc methods.
596 // A reloc against a global symbol.
598 template<bool dynamic
, int size
, bool big_endian
>
599 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
605 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
606 is_relative_(is_relative
), is_section_symbol_(false), shndx_(INVALID_CODE
)
608 // this->type_ is a bitfield; make sure TYPE fits.
609 gold_assert(this->type_
== type
);
610 this->u1_
.gsym
= gsym
;
613 this->set_needs_dynsym_index();
616 template<bool dynamic
, int size
, bool big_endian
>
617 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
620 Sized_relobj
<size
, big_endian
>* relobj
,
624 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
625 is_relative_(is_relative
), is_section_symbol_(false), shndx_(shndx
)
627 gold_assert(shndx
!= INVALID_CODE
);
628 // this->type_ is a bitfield; make sure TYPE fits.
629 gold_assert(this->type_
== type
);
630 this->u1_
.gsym
= gsym
;
631 this->u2_
.relobj
= relobj
;
633 this->set_needs_dynsym_index();
636 // A reloc against a local symbol.
638 template<bool dynamic
, int size
, bool big_endian
>
639 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
640 Sized_relobj
<size
, big_endian
>* relobj
,
641 unsigned int local_sym_index
,
646 bool is_section_symbol
)
647 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
648 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
651 gold_assert(local_sym_index
!= GSYM_CODE
652 && local_sym_index
!= INVALID_CODE
);
653 // this->type_ is a bitfield; make sure TYPE fits.
654 gold_assert(this->type_
== type
);
655 this->u1_
.relobj
= relobj
;
658 this->set_needs_dynsym_index();
661 template<bool dynamic
, int size
, bool big_endian
>
662 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
663 Sized_relobj
<size
, big_endian
>* relobj
,
664 unsigned int local_sym_index
,
669 bool is_section_symbol
)
670 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
671 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
674 gold_assert(local_sym_index
!= GSYM_CODE
675 && local_sym_index
!= INVALID_CODE
);
676 gold_assert(shndx
!= INVALID_CODE
);
677 // this->type_ is a bitfield; make sure TYPE fits.
678 gold_assert(this->type_
== type
);
679 this->u1_
.relobj
= relobj
;
680 this->u2_
.relobj
= relobj
;
682 this->set_needs_dynsym_index();
685 // A reloc against the STT_SECTION symbol of an output section.
687 template<bool dynamic
, int size
, bool big_endian
>
688 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
693 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
694 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE
)
696 // this->type_ is a bitfield; make sure TYPE fits.
697 gold_assert(this->type_
== type
);
701 this->set_needs_dynsym_index();
703 os
->set_needs_symtab_index();
706 template<bool dynamic
, int size
, bool big_endian
>
707 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
710 Sized_relobj
<size
, big_endian
>* relobj
,
713 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
714 is_relative_(false), is_section_symbol_(true), shndx_(shndx
)
716 gold_assert(shndx
!= INVALID_CODE
);
717 // this->type_ is a bitfield; make sure TYPE fits.
718 gold_assert(this->type_
== type
);
720 this->u2_
.relobj
= relobj
;
722 this->set_needs_dynsym_index();
724 os
->set_needs_symtab_index();
727 // Record that we need a dynamic symbol index for this relocation.
729 template<bool dynamic
, int size
, bool big_endian
>
731 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
732 set_needs_dynsym_index()
734 if (this->is_relative_
)
736 switch (this->local_sym_index_
)
742 this->u1_
.gsym
->set_needs_dynsym_entry();
746 this->u1_
.os
->set_needs_dynsym_index();
754 const unsigned int lsi
= this->local_sym_index_
;
755 if (!this->is_section_symbol_
)
756 this->u1_
.relobj
->set_needs_output_dynsym_entry(lsi
);
758 this->u1_
.relobj
->output_section(lsi
)->set_needs_dynsym_index();
764 // Get the symbol index of a relocation.
766 template<bool dynamic
, int size
, bool big_endian
>
768 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
772 switch (this->local_sym_index_
)
778 if (this->u1_
.gsym
== NULL
)
781 index
= this->u1_
.gsym
->dynsym_index();
783 index
= this->u1_
.gsym
->symtab_index();
788 index
= this->u1_
.os
->dynsym_index();
790 index
= this->u1_
.os
->symtab_index();
794 // Relocations without symbols use a symbol index of 0.
800 const unsigned int lsi
= this->local_sym_index_
;
801 if (!this->is_section_symbol_
)
804 index
= this->u1_
.relobj
->dynsym_index(lsi
);
806 index
= this->u1_
.relobj
->symtab_index(lsi
);
810 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
811 gold_assert(os
!= NULL
);
813 index
= os
->dynsym_index();
815 index
= os
->symtab_index();
820 gold_assert(index
!= -1U);
824 // For a local section symbol, get the address of the offset ADDEND
825 // within the input section.
827 template<bool dynamic
, int size
, bool big_endian
>
828 typename
elfcpp::Elf_types
<size
>::Elf_Addr
829 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
830 local_section_offset(Addend addend
) const
832 gold_assert(this->local_sym_index_
!= GSYM_CODE
833 && this->local_sym_index_
!= SECTION_CODE
834 && this->local_sym_index_
!= INVALID_CODE
835 && this->is_section_symbol_
);
836 const unsigned int lsi
= this->local_sym_index_
;
837 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
838 gold_assert(os
!= NULL
);
839 Address offset
= this->u1_
.relobj
->get_output_section_offset(lsi
);
841 return offset
+ addend
;
842 // This is a merge section.
843 offset
= os
->output_address(this->u1_
.relobj
, lsi
, addend
);
844 gold_assert(offset
!= -1U);
848 // Get the output address of a relocation.
850 template<bool dynamic
, int size
, bool big_endian
>
851 typename
elfcpp::Elf_types
<size
>::Elf_Addr
852 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_address() const
854 Address address
= this->address_
;
855 if (this->shndx_
!= INVALID_CODE
)
857 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
);
858 gold_assert(os
!= NULL
);
859 Address off
= this->u2_
.relobj
->get_output_section_offset(this->shndx_
);
861 address
+= os
->address() + off
;
864 address
= os
->output_address(this->u2_
.relobj
, this->shndx_
,
866 gold_assert(address
!= -1U);
869 else if (this->u2_
.od
!= NULL
)
870 address
+= this->u2_
.od
->address();
874 // Write out the offset and info fields of a Rel or Rela relocation
877 template<bool dynamic
, int size
, bool big_endian
>
878 template<typename Write_rel
>
880 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
883 wr
->put_r_offset(this->get_address());
884 unsigned int sym_index
= this->is_relative_
? 0 : this->get_symbol_index();
885 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
888 // Write out a Rel relocation.
890 template<bool dynamic
, int size
, bool big_endian
>
892 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
893 unsigned char* pov
) const
895 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
896 this->write_rel(&orel
);
899 // Get the value of the symbol referred to by a Rel relocation.
901 template<bool dynamic
, int size
, bool big_endian
>
902 typename
elfcpp::Elf_types
<size
>::Elf_Addr
903 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value(
906 if (this->local_sym_index_
== GSYM_CODE
)
908 const Sized_symbol
<size
>* sym
;
909 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
910 return sym
->value() + addend
;
912 gold_assert(this->local_sym_index_
!= SECTION_CODE
913 && this->local_sym_index_
!= INVALID_CODE
914 && !this->is_section_symbol_
);
915 const unsigned int lsi
= this->local_sym_index_
;
916 const Symbol_value
<size
>* symval
= this->u1_
.relobj
->local_symbol(lsi
);
917 return symval
->value(this->u1_
.relobj
, addend
);
920 // Reloc comparison. This function sorts the dynamic relocs for the
921 // benefit of the dynamic linker. First we sort all relative relocs
922 // to the front. Among relative relocs, we sort by output address.
923 // Among non-relative relocs, we sort by symbol index, then by output
926 template<bool dynamic
, int size
, bool big_endian
>
928 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
929 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
932 if (this->is_relative_
)
934 if (!r2
.is_relative_
)
936 // Otherwise sort by reloc address below.
938 else if (r2
.is_relative_
)
942 unsigned int sym1
= this->get_symbol_index();
943 unsigned int sym2
= r2
.get_symbol_index();
946 else if (sym1
> sym2
)
948 // Otherwise sort by reloc address.
951 section_offset_type addr1
= this->get_address();
952 section_offset_type addr2
= r2
.get_address();
955 else if (addr1
> addr2
)
958 // Final tie breaker, in order to generate the same output on any
960 unsigned int type1
= this->type_
;
961 unsigned int type2
= r2
.type_
;
964 else if (type1
> type2
)
967 // These relocs appear to be exactly the same.
971 // Write out a Rela relocation.
973 template<bool dynamic
, int size
, bool big_endian
>
975 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
976 unsigned char* pov
) const
978 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
979 this->rel_
.write_rel(&orel
);
980 Addend addend
= this->addend_
;
981 if (this->rel_
.is_relative())
982 addend
= this->rel_
.symbol_value(addend
);
983 else if (this->rel_
.is_local_section_symbol())
984 addend
= this->rel_
.local_section_offset(addend
);
985 orel
.put_r_addend(addend
);
988 // Output_data_reloc_base methods.
990 // Adjust the output section.
992 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
994 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
995 ::do_adjust_output_section(Output_section
* os
)
997 if (sh_type
== elfcpp::SHT_REL
)
998 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
999 else if (sh_type
== elfcpp::SHT_RELA
)
1000 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1004 os
->set_should_link_to_dynsym();
1006 os
->set_should_link_to_symtab();
1009 // Write out relocation data.
1011 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1013 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
1016 const off_t off
= this->offset();
1017 const off_t oview_size
= this->data_size();
1018 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1020 if (this->sort_relocs_
)
1022 gold_assert(dynamic
);
1023 std::sort(this->relocs_
.begin(), this->relocs_
.end(),
1024 Sort_relocs_comparison());
1027 unsigned char* pov
= oview
;
1028 for (typename
Relocs::const_iterator p
= this->relocs_
.begin();
1029 p
!= this->relocs_
.end();
1036 gold_assert(pov
- oview
== oview_size
);
1038 of
->write_output_view(off
, oview_size
, oview
);
1040 // We no longer need the relocation entries.
1041 this->relocs_
.clear();
1044 // Class Output_relocatable_relocs.
1046 template<int sh_type
, int size
, bool big_endian
>
1048 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
1050 this->set_data_size(this->rr_
->output_reloc_count()
1051 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
1054 // class Output_data_group.
1056 template<int size
, bool big_endian
>
1057 Output_data_group
<size
, big_endian
>::Output_data_group(
1058 Sized_relobj
<size
, big_endian
>* relobj
,
1059 section_size_type entry_count
,
1060 elfcpp::Elf_Word flags
,
1061 std::vector
<unsigned int>* input_shndxes
)
1062 : Output_section_data(entry_count
* 4, 4),
1066 this->input_shndxes_
.swap(*input_shndxes
);
1069 // Write out the section group, which means translating the section
1070 // indexes to apply to the output file.
1072 template<int size
, bool big_endian
>
1074 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1076 const off_t off
= this->offset();
1077 const section_size_type oview_size
=
1078 convert_to_section_size_type(this->data_size());
1079 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1081 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1082 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1085 for (std::vector
<unsigned int>::const_iterator p
=
1086 this->input_shndxes_
.begin();
1087 p
!= this->input_shndxes_
.end();
1090 Output_section
* os
= this->relobj_
->output_section(*p
);
1092 unsigned int output_shndx
;
1094 output_shndx
= os
->out_shndx();
1097 this->relobj_
->error(_("section group retained but "
1098 "group element discarded"));
1102 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1105 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1106 gold_assert(wrote
== oview_size
);
1108 of
->write_output_view(off
, oview_size
, oview
);
1110 // We no longer need this information.
1111 this->input_shndxes_
.clear();
1114 // Output_data_got::Got_entry methods.
1116 // Write out the entry.
1118 template<int size
, bool big_endian
>
1120 Output_data_got
<size
, big_endian
>::Got_entry::write(unsigned char* pov
) const
1124 switch (this->local_sym_index_
)
1128 // If the symbol is resolved locally, we need to write out the
1129 // link-time value, which will be relocated dynamically by a
1130 // RELATIVE relocation.
1131 Symbol
* gsym
= this->u_
.gsym
;
1132 Sized_symbol
<size
>* sgsym
;
1133 // This cast is a bit ugly. We don't want to put a
1134 // virtual method in Symbol, because we want Symbol to be
1135 // as small as possible.
1136 sgsym
= static_cast<Sized_symbol
<size
>*>(gsym
);
1137 val
= sgsym
->value();
1142 val
= this->u_
.constant
;
1147 const unsigned int lsi
= this->local_sym_index_
;
1148 const Symbol_value
<size
>* symval
= this->u_
.object
->local_symbol(lsi
);
1149 val
= symval
->value(this->u_
.object
, 0);
1154 elfcpp::Swap
<size
, big_endian
>::writeval(pov
, val
);
1157 // Output_data_got methods.
1159 // Add an entry for a global symbol to the GOT. This returns true if
1160 // this is a new GOT entry, false if the symbol already had a GOT
1163 template<int size
, bool big_endian
>
1165 Output_data_got
<size
, big_endian
>::add_global(
1167 unsigned int got_type
)
1169 if (gsym
->has_got_offset(got_type
))
1172 this->entries_
.push_back(Got_entry(gsym
));
1173 this->set_got_size();
1174 gsym
->set_got_offset(got_type
, this->last_got_offset());
1178 // Add an entry for a global symbol to the GOT, and add a dynamic
1179 // relocation of type R_TYPE for the GOT entry.
1180 template<int size
, bool big_endian
>
1182 Output_data_got
<size
, big_endian
>::add_global_with_rel(
1184 unsigned int got_type
,
1186 unsigned int r_type
)
1188 if (gsym
->has_got_offset(got_type
))
1191 this->entries_
.push_back(Got_entry());
1192 this->set_got_size();
1193 unsigned int got_offset
= this->last_got_offset();
1194 gsym
->set_got_offset(got_type
, got_offset
);
1195 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1198 template<int size
, bool big_endian
>
1200 Output_data_got
<size
, big_endian
>::add_global_with_rela(
1202 unsigned int got_type
,
1204 unsigned int r_type
)
1206 if (gsym
->has_got_offset(got_type
))
1209 this->entries_
.push_back(Got_entry());
1210 this->set_got_size();
1211 unsigned int got_offset
= this->last_got_offset();
1212 gsym
->set_got_offset(got_type
, got_offset
);
1213 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1216 // Add a pair of entries for a global symbol to the GOT, and add
1217 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1218 // If R_TYPE_2 == 0, add the second entry with no relocation.
1219 template<int size
, bool big_endian
>
1221 Output_data_got
<size
, big_endian
>::add_global_pair_with_rel(
1223 unsigned int got_type
,
1225 unsigned int r_type_1
,
1226 unsigned int r_type_2
)
1228 if (gsym
->has_got_offset(got_type
))
1231 this->entries_
.push_back(Got_entry());
1232 unsigned int got_offset
= this->last_got_offset();
1233 gsym
->set_got_offset(got_type
, got_offset
);
1234 rel_dyn
->add_global(gsym
, r_type_1
, this, got_offset
);
1236 this->entries_
.push_back(Got_entry());
1239 got_offset
= this->last_got_offset();
1240 rel_dyn
->add_global(gsym
, r_type_2
, this, got_offset
);
1243 this->set_got_size();
1246 template<int size
, bool big_endian
>
1248 Output_data_got
<size
, big_endian
>::add_global_pair_with_rela(
1250 unsigned int got_type
,
1252 unsigned int r_type_1
,
1253 unsigned int r_type_2
)
1255 if (gsym
->has_got_offset(got_type
))
1258 this->entries_
.push_back(Got_entry());
1259 unsigned int got_offset
= this->last_got_offset();
1260 gsym
->set_got_offset(got_type
, got_offset
);
1261 rela_dyn
->add_global(gsym
, r_type_1
, this, got_offset
, 0);
1263 this->entries_
.push_back(Got_entry());
1266 got_offset
= this->last_got_offset();
1267 rela_dyn
->add_global(gsym
, r_type_2
, this, got_offset
, 0);
1270 this->set_got_size();
1273 // Add an entry for a local symbol to the GOT. This returns true if
1274 // this is a new GOT entry, false if the symbol already has a GOT
1277 template<int size
, bool big_endian
>
1279 Output_data_got
<size
, big_endian
>::add_local(
1280 Sized_relobj
<size
, big_endian
>* object
,
1281 unsigned int symndx
,
1282 unsigned int got_type
)
1284 if (object
->local_has_got_offset(symndx
, got_type
))
1287 this->entries_
.push_back(Got_entry(object
, symndx
));
1288 this->set_got_size();
1289 object
->set_local_got_offset(symndx
, got_type
, this->last_got_offset());
1293 // Add an entry for a local symbol to the GOT, and add a dynamic
1294 // relocation of type R_TYPE for the GOT entry.
1295 template<int size
, bool big_endian
>
1297 Output_data_got
<size
, big_endian
>::add_local_with_rel(
1298 Sized_relobj
<size
, big_endian
>* object
,
1299 unsigned int symndx
,
1300 unsigned int got_type
,
1302 unsigned int r_type
)
1304 if (object
->local_has_got_offset(symndx
, got_type
))
1307 this->entries_
.push_back(Got_entry());
1308 this->set_got_size();
1309 unsigned int got_offset
= this->last_got_offset();
1310 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1311 rel_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
);
1314 template<int size
, bool big_endian
>
1316 Output_data_got
<size
, big_endian
>::add_local_with_rela(
1317 Sized_relobj
<size
, big_endian
>* object
,
1318 unsigned int symndx
,
1319 unsigned int got_type
,
1321 unsigned int r_type
)
1323 if (object
->local_has_got_offset(symndx
, got_type
))
1326 this->entries_
.push_back(Got_entry());
1327 this->set_got_size();
1328 unsigned int got_offset
= this->last_got_offset();
1329 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1330 rela_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
, 0);
1333 // Add a pair of entries for a local symbol to the GOT, and add
1334 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1335 // If R_TYPE_2 == 0, add the second entry with no relocation.
1336 template<int size
, bool big_endian
>
1338 Output_data_got
<size
, big_endian
>::add_local_pair_with_rel(
1339 Sized_relobj
<size
, big_endian
>* object
,
1340 unsigned int symndx
,
1342 unsigned int got_type
,
1344 unsigned int r_type_1
,
1345 unsigned int r_type_2
)
1347 if (object
->local_has_got_offset(symndx
, got_type
))
1350 this->entries_
.push_back(Got_entry());
1351 unsigned int got_offset
= this->last_got_offset();
1352 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1353 Output_section
* os
= object
->output_section(shndx
);
1354 rel_dyn
->add_output_section(os
, r_type_1
, this, got_offset
);
1356 this->entries_
.push_back(Got_entry(object
, symndx
));
1359 got_offset
= this->last_got_offset();
1360 rel_dyn
->add_output_section(os
, r_type_2
, this, got_offset
);
1363 this->set_got_size();
1366 template<int size
, bool big_endian
>
1368 Output_data_got
<size
, big_endian
>::add_local_pair_with_rela(
1369 Sized_relobj
<size
, big_endian
>* object
,
1370 unsigned int symndx
,
1372 unsigned int got_type
,
1374 unsigned int r_type_1
,
1375 unsigned int r_type_2
)
1377 if (object
->local_has_got_offset(symndx
, got_type
))
1380 this->entries_
.push_back(Got_entry());
1381 unsigned int got_offset
= this->last_got_offset();
1382 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1383 Output_section
* os
= object
->output_section(shndx
);
1384 rela_dyn
->add_output_section(os
, r_type_1
, this, got_offset
, 0);
1386 this->entries_
.push_back(Got_entry(object
, symndx
));
1389 got_offset
= this->last_got_offset();
1390 rela_dyn
->add_output_section(os
, r_type_2
, this, got_offset
, 0);
1393 this->set_got_size();
1396 // Write out the GOT.
1398 template<int size
, bool big_endian
>
1400 Output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
1402 const int add
= size
/ 8;
1404 const off_t off
= this->offset();
1405 const off_t oview_size
= this->data_size();
1406 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1408 unsigned char* pov
= oview
;
1409 for (typename
Got_entries::const_iterator p
= this->entries_
.begin();
1410 p
!= this->entries_
.end();
1417 gold_assert(pov
- oview
== oview_size
);
1419 of
->write_output_view(off
, oview_size
, oview
);
1421 // We no longer need the GOT entries.
1422 this->entries_
.clear();
1425 // Output_data_dynamic::Dynamic_entry methods.
1427 // Write out the entry.
1429 template<int size
, bool big_endian
>
1431 Output_data_dynamic::Dynamic_entry::write(
1433 const Stringpool
* pool
) const
1435 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1436 switch (this->offset_
)
1438 case DYNAMIC_NUMBER
:
1442 case DYNAMIC_SECTION_SIZE
:
1443 val
= this->u_
.od
->data_size();
1446 case DYNAMIC_SYMBOL
:
1448 const Sized_symbol
<size
>* s
=
1449 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1454 case DYNAMIC_STRING
:
1455 val
= pool
->get_offset(this->u_
.str
);
1459 val
= this->u_
.od
->address() + this->offset_
;
1463 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1464 dw
.put_d_tag(this->tag_
);
1468 // Output_data_dynamic methods.
1470 // Adjust the output section to set the entry size.
1473 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1475 if (parameters
->target().get_size() == 32)
1476 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1477 else if (parameters
->target().get_size() == 64)
1478 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1483 // Set the final data size.
1486 Output_data_dynamic::set_final_data_size()
1488 // Add the terminating entry.
1489 this->add_constant(elfcpp::DT_NULL
, 0);
1492 if (parameters
->target().get_size() == 32)
1493 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1494 else if (parameters
->target().get_size() == 64)
1495 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1498 this->set_data_size(this->entries_
.size() * dyn_size
);
1501 // Write out the dynamic entries.
1504 Output_data_dynamic::do_write(Output_file
* of
)
1506 switch (parameters
->size_and_endianness())
1508 #ifdef HAVE_TARGET_32_LITTLE
1509 case Parameters::TARGET_32_LITTLE
:
1510 this->sized_write
<32, false>(of
);
1513 #ifdef HAVE_TARGET_32_BIG
1514 case Parameters::TARGET_32_BIG
:
1515 this->sized_write
<32, true>(of
);
1518 #ifdef HAVE_TARGET_64_LITTLE
1519 case Parameters::TARGET_64_LITTLE
:
1520 this->sized_write
<64, false>(of
);
1523 #ifdef HAVE_TARGET_64_BIG
1524 case Parameters::TARGET_64_BIG
:
1525 this->sized_write
<64, true>(of
);
1533 template<int size
, bool big_endian
>
1535 Output_data_dynamic::sized_write(Output_file
* of
)
1537 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1539 const off_t offset
= this->offset();
1540 const off_t oview_size
= this->data_size();
1541 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1543 unsigned char* pov
= oview
;
1544 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1545 p
!= this->entries_
.end();
1548 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1552 gold_assert(pov
- oview
== oview_size
);
1554 of
->write_output_view(offset
, oview_size
, oview
);
1556 // We no longer need the dynamic entries.
1557 this->entries_
.clear();
1560 // Class Output_symtab_xindex.
1563 Output_symtab_xindex::do_write(Output_file
* of
)
1565 const off_t offset
= this->offset();
1566 const off_t oview_size
= this->data_size();
1567 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1569 memset(oview
, 0, oview_size
);
1571 if (parameters
->target().is_big_endian())
1572 this->endian_do_write
<true>(oview
);
1574 this->endian_do_write
<false>(oview
);
1576 of
->write_output_view(offset
, oview_size
, oview
);
1578 // We no longer need the data.
1579 this->entries_
.clear();
1582 template<bool big_endian
>
1584 Output_symtab_xindex::endian_do_write(unsigned char* const oview
)
1586 for (Xindex_entries::const_iterator p
= this->entries_
.begin();
1587 p
!= this->entries_
.end();
1589 elfcpp::Swap
<32, big_endian
>::writeval(oview
+ p
->first
* 4, p
->second
);
1592 // Output_section::Input_section methods.
1594 // Return the data size. For an input section we store the size here.
1595 // For an Output_section_data, we have to ask it for the size.
1598 Output_section::Input_section::data_size() const
1600 if (this->is_input_section())
1601 return this->u1_
.data_size
;
1603 return this->u2_
.posd
->data_size();
1606 // Set the address and file offset.
1609 Output_section::Input_section::set_address_and_file_offset(
1612 off_t section_file_offset
)
1614 if (this->is_input_section())
1615 this->u2_
.object
->set_section_offset(this->shndx_
,
1616 file_offset
- section_file_offset
);
1618 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
1621 // Reset the address and file offset.
1624 Output_section::Input_section::reset_address_and_file_offset()
1626 if (!this->is_input_section())
1627 this->u2_
.posd
->reset_address_and_file_offset();
1630 // Finalize the data size.
1633 Output_section::Input_section::finalize_data_size()
1635 if (!this->is_input_section())
1636 this->u2_
.posd
->finalize_data_size();
1639 // Try to turn an input offset into an output offset. We want to
1640 // return the output offset relative to the start of this
1641 // Input_section in the output section.
1644 Output_section::Input_section::output_offset(
1645 const Relobj
* object
,
1647 section_offset_type offset
,
1648 section_offset_type
*poutput
) const
1650 if (!this->is_input_section())
1651 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
1654 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
1661 // Return whether this is the merge section for the input section
1665 Output_section::Input_section::is_merge_section_for(const Relobj
* object
,
1666 unsigned int shndx
) const
1668 if (this->is_input_section())
1670 return this->u2_
.posd
->is_merge_section_for(object
, shndx
);
1673 // Write out the data. We don't have to do anything for an input
1674 // section--they are handled via Object::relocate--but this is where
1675 // we write out the data for an Output_section_data.
1678 Output_section::Input_section::write(Output_file
* of
)
1680 if (!this->is_input_section())
1681 this->u2_
.posd
->write(of
);
1684 // Write the data to a buffer. As for write(), we don't have to do
1685 // anything for an input section.
1688 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
1690 if (!this->is_input_section())
1691 this->u2_
.posd
->write_to_buffer(buffer
);
1694 // Print to a map file.
1697 Output_section::Input_section::print_to_mapfile(Mapfile
* mapfile
) const
1699 switch (this->shndx_
)
1701 case OUTPUT_SECTION_CODE
:
1702 case MERGE_DATA_SECTION_CODE
:
1703 case MERGE_STRING_SECTION_CODE
:
1704 this->u2_
.posd
->print_to_mapfile(mapfile
);
1708 mapfile
->print_input_section(this->u2_
.object
, this->shndx_
);
1713 // Output_section methods.
1715 // Construct an Output_section. NAME will point into a Stringpool.
1717 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
1718 elfcpp::Elf_Xword flags
)
1723 link_section_(NULL
),
1725 info_section_(NULL
),
1734 first_input_offset_(0),
1736 postprocessing_buffer_(NULL
),
1737 needs_symtab_index_(false),
1738 needs_dynsym_index_(false),
1739 should_link_to_symtab_(false),
1740 should_link_to_dynsym_(false),
1741 after_input_sections_(false),
1742 requires_postprocessing_(false),
1743 found_in_sections_clause_(false),
1744 has_load_address_(false),
1745 info_uses_section_index_(false),
1746 may_sort_attached_input_sections_(false),
1747 must_sort_attached_input_sections_(false),
1748 attached_input_sections_are_sorted_(false),
1750 is_relro_local_(false),
1753 // An unallocated section has no address. Forcing this means that
1754 // we don't need special treatment for symbols defined in debug
1756 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
1757 this->set_address(0);
1760 Output_section::~Output_section()
1764 // Set the entry size.
1767 Output_section::set_entsize(uint64_t v
)
1769 if (this->entsize_
== 0)
1772 gold_assert(this->entsize_
== v
);
1775 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1776 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1777 // relocation section which applies to this section, or 0 if none, or
1778 // -1U if more than one. Return the offset of the input section
1779 // within the output section. Return -1 if the input section will
1780 // receive special handling. In the normal case we don't always keep
1781 // track of input sections for an Output_section. Instead, each
1782 // Object keeps track of the Output_section for each of its input
1783 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1784 // track of input sections here; this is used when SECTIONS appears in
1787 template<int size
, bool big_endian
>
1789 Output_section::add_input_section(Sized_relobj
<size
, big_endian
>* object
,
1791 const char* secname
,
1792 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1793 unsigned int reloc_shndx
,
1794 bool have_sections_script
)
1796 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
1797 if ((addralign
& (addralign
- 1)) != 0)
1799 object
->error(_("invalid alignment %lu for section \"%s\""),
1800 static_cast<unsigned long>(addralign
), secname
);
1804 if (addralign
> this->addralign_
)
1805 this->addralign_
= addralign
;
1807 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
1808 this->update_flags_for_input_section(sh_flags
);
1810 uint64_t entsize
= shdr
.get_sh_entsize();
1812 // .debug_str is a mergeable string section, but is not always so
1813 // marked by compilers. Mark manually here so we can optimize.
1814 if (strcmp(secname
, ".debug_str") == 0)
1816 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
1820 // If this is a SHF_MERGE section, we pass all the input sections to
1821 // a Output_data_merge. We don't try to handle relocations for such
1823 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
1824 && reloc_shndx
== 0)
1826 if (this->add_merge_input_section(object
, shndx
, sh_flags
,
1827 entsize
, addralign
))
1829 // Tell the relocation routines that they need to call the
1830 // output_offset method to determine the final address.
1835 off_t offset_in_section
= this->current_data_size_for_child();
1836 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1839 if (aligned_offset_in_section
> offset_in_section
1840 && !have_sections_script
1841 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
1842 && object
->target()->has_code_fill())
1844 // We need to add some fill data. Using fill_list_ when
1845 // possible is an optimization, since we will often have fill
1846 // sections without input sections.
1847 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
1848 if (this->input_sections_
.empty())
1849 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
1852 // FIXME: When relaxing, the size needs to adjust to
1853 // maintain a constant alignment.
1854 std::string
fill_data(object
->target()->code_fill(fill_len
));
1855 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
1856 this->input_sections_
.push_back(Input_section(odc
));
1860 this->set_current_data_size_for_child(aligned_offset_in_section
1861 + shdr
.get_sh_size());
1863 // We need to keep track of this section if we are already keeping
1864 // track of sections, or if we are relaxing. Also, if this is a
1865 // section which requires sorting, or which may require sorting in
1866 // the future, we keep track of the sections. FIXME: Add test for
1868 if (have_sections_script
1869 || !this->input_sections_
.empty()
1870 || this->may_sort_attached_input_sections()
1871 || this->must_sort_attached_input_sections()
1872 || parameters
->options().user_set_Map())
1873 this->input_sections_
.push_back(Input_section(object
, shndx
,
1877 return aligned_offset_in_section
;
1880 // Add arbitrary data to an output section.
1883 Output_section::add_output_section_data(Output_section_data
* posd
)
1885 Input_section
inp(posd
);
1886 this->add_output_section_data(&inp
);
1888 if (posd
->is_data_size_valid())
1890 off_t offset_in_section
= this->current_data_size_for_child();
1891 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1893 this->set_current_data_size_for_child(aligned_offset_in_section
1894 + posd
->data_size());
1898 // Add arbitrary data to an output section by Input_section.
1901 Output_section::add_output_section_data(Input_section
* inp
)
1903 if (this->input_sections_
.empty())
1904 this->first_input_offset_
= this->current_data_size_for_child();
1906 this->input_sections_
.push_back(*inp
);
1908 uint64_t addralign
= inp
->addralign();
1909 if (addralign
> this->addralign_
)
1910 this->addralign_
= addralign
;
1912 inp
->set_output_section(this);
1915 // Add a merge section to an output section.
1918 Output_section::add_output_merge_section(Output_section_data
* posd
,
1919 bool is_string
, uint64_t entsize
)
1921 Input_section
inp(posd
, is_string
, entsize
);
1922 this->add_output_section_data(&inp
);
1925 // Add an input section to a SHF_MERGE section.
1928 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
1929 uint64_t flags
, uint64_t entsize
,
1932 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
1934 // We only merge strings if the alignment is not more than the
1935 // character size. This could be handled, but it's unusual.
1936 if (is_string
&& addralign
> entsize
)
1939 Input_section_list::iterator p
;
1940 for (p
= this->input_sections_
.begin();
1941 p
!= this->input_sections_
.end();
1943 if (p
->is_merge_section(is_string
, entsize
, addralign
))
1945 p
->add_input_section(object
, shndx
);
1949 // We handle the actual constant merging in Output_merge_data or
1950 // Output_merge_string_data.
1951 Output_section_data
* posd
;
1953 posd
= new Output_merge_data(entsize
, addralign
);
1959 posd
= new Output_merge_string
<char>(addralign
);
1962 posd
= new Output_merge_string
<uint16_t>(addralign
);
1965 posd
= new Output_merge_string
<uint32_t>(addralign
);
1972 this->add_output_merge_section(posd
, is_string
, entsize
);
1973 posd
->add_input_section(object
, shndx
);
1978 // Given an address OFFSET relative to the start of input section
1979 // SHNDX in OBJECT, return whether this address is being included in
1980 // the final link. This should only be called if SHNDX in OBJECT has
1981 // a special mapping.
1984 Output_section::is_input_address_mapped(const Relobj
* object
,
1988 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
1989 p
!= this->input_sections_
.end();
1992 section_offset_type output_offset
;
1993 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
1994 return output_offset
!= -1;
1997 // By default we assume that the address is mapped. This should
1998 // only be called after we have passed all sections to Layout. At
1999 // that point we should know what we are discarding.
2003 // Given an address OFFSET relative to the start of input section
2004 // SHNDX in object OBJECT, return the output offset relative to the
2005 // start of the input section in the output section. This should only
2006 // be called if SHNDX in OBJECT has a special mapping.
2009 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
2010 section_offset_type offset
) const
2012 // This can only be called meaningfully when layout is complete.
2013 gold_assert(Output_data::is_layout_complete());
2015 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2016 p
!= this->input_sections_
.end();
2019 section_offset_type output_offset
;
2020 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2021 return output_offset
;
2026 // Return the output virtual address of OFFSET relative to the start
2027 // of input section SHNDX in object OBJECT.
2030 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
2033 uint64_t addr
= this->address() + this->first_input_offset_
;
2034 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2035 p
!= this->input_sections_
.end();
2038 addr
= align_address(addr
, p
->addralign());
2039 section_offset_type output_offset
;
2040 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2042 if (output_offset
== -1)
2044 return addr
+ output_offset
;
2046 addr
+= p
->data_size();
2049 // If we get here, it means that we don't know the mapping for this
2050 // input section. This might happen in principle if
2051 // add_input_section were called before add_output_section_data.
2052 // But it should never actually happen.
2057 // Return the output address of the start of the merged section for
2058 // input section SHNDX in object OBJECT.
2061 Output_section::starting_output_address(const Relobj
* object
,
2062 unsigned int shndx
) const
2064 uint64_t addr
= this->address() + this->first_input_offset_
;
2065 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2066 p
!= this->input_sections_
.end();
2069 addr
= align_address(addr
, p
->addralign());
2071 // It would be nice if we could use the existing output_offset
2072 // method to get the output offset of input offset 0.
2073 // Unfortunately we don't know for sure that input offset 0 is
2075 if (p
->is_merge_section_for(object
, shndx
))
2078 addr
+= p
->data_size();
2083 // Set the data size of an Output_section. This is where we handle
2084 // setting the addresses of any Output_section_data objects.
2087 Output_section::set_final_data_size()
2089 if (this->input_sections_
.empty())
2091 this->set_data_size(this->current_data_size_for_child());
2095 if (this->must_sort_attached_input_sections())
2096 this->sort_attached_input_sections();
2098 uint64_t address
= this->address();
2099 off_t startoff
= this->offset();
2100 off_t off
= startoff
+ this->first_input_offset_
;
2101 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2102 p
!= this->input_sections_
.end();
2105 off
= align_address(off
, p
->addralign());
2106 p
->set_address_and_file_offset(address
+ (off
- startoff
), off
,
2108 off
+= p
->data_size();
2111 this->set_data_size(off
- startoff
);
2114 // Reset the address and file offset.
2117 Output_section::do_reset_address_and_file_offset()
2119 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2120 p
!= this->input_sections_
.end();
2122 p
->reset_address_and_file_offset();
2125 // Set the TLS offset. Called only for SHT_TLS sections.
2128 Output_section::do_set_tls_offset(uint64_t tls_base
)
2130 this->tls_offset_
= this->address() - tls_base
;
2133 // In a few cases we need to sort the input sections attached to an
2134 // output section. This is used to implement the type of constructor
2135 // priority ordering implemented by the GNU linker, in which the
2136 // priority becomes part of the section name and the sections are
2137 // sorted by name. We only do this for an output section if we see an
2138 // attached input section matching ".ctor.*", ".dtor.*",
2139 // ".init_array.*" or ".fini_array.*".
2141 class Output_section::Input_section_sort_entry
2144 Input_section_sort_entry()
2145 : input_section_(), index_(-1U), section_has_name_(false),
2149 Input_section_sort_entry(const Input_section
& input_section
,
2151 : input_section_(input_section
), index_(index
),
2152 section_has_name_(input_section
.is_input_section())
2154 if (this->section_has_name_
)
2156 // This is only called single-threaded from Layout::finalize,
2157 // so it is OK to lock. Unfortunately we have no way to pass
2159 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
2160 Object
* obj
= input_section
.relobj();
2161 Task_lock_obj
<Object
> tl(dummy_task
, obj
);
2163 // This is a slow operation, which should be cached in
2164 // Layout::layout if this becomes a speed problem.
2165 this->section_name_
= obj
->section_name(input_section
.shndx());
2169 // Return the Input_section.
2170 const Input_section
&
2171 input_section() const
2173 gold_assert(this->index_
!= -1U);
2174 return this->input_section_
;
2177 // The index of this entry in the original list. This is used to
2178 // make the sort stable.
2182 gold_assert(this->index_
!= -1U);
2183 return this->index_
;
2186 // Whether there is a section name.
2188 section_has_name() const
2189 { return this->section_has_name_
; }
2191 // The section name.
2193 section_name() const
2195 gold_assert(this->section_has_name_
);
2196 return this->section_name_
;
2199 // Return true if the section name has a priority. This is assumed
2200 // to be true if it has a dot after the initial dot.
2202 has_priority() const
2204 gold_assert(this->section_has_name_
);
2205 return this->section_name_
.find('.', 1);
2208 // Return true if this an input file whose base name matches
2209 // FILE_NAME. The base name must have an extension of ".o", and
2210 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2211 // This is to match crtbegin.o as well as crtbeginS.o without
2212 // getting confused by other possibilities. Overall matching the
2213 // file name this way is a dreadful hack, but the GNU linker does it
2214 // in order to better support gcc, and we need to be compatible.
2216 match_file_name(const char* match_file_name
) const
2218 const std::string
& file_name(this->input_section_
.relobj()->name());
2219 const char* base_name
= lbasename(file_name
.c_str());
2220 size_t match_len
= strlen(match_file_name
);
2221 if (strncmp(base_name
, match_file_name
, match_len
) != 0)
2223 size_t base_len
= strlen(base_name
);
2224 if (base_len
!= match_len
+ 2 && base_len
!= match_len
+ 3)
2226 return memcmp(base_name
+ base_len
- 2, ".o", 2) == 0;
2230 // The Input_section we are sorting.
2231 Input_section input_section_
;
2232 // The index of this Input_section in the original list.
2233 unsigned int index_
;
2234 // Whether this Input_section has a section name--it won't if this
2235 // is some random Output_section_data.
2236 bool section_has_name_
;
2237 // The section name if there is one.
2238 std::string section_name_
;
2241 // Return true if S1 should come before S2 in the output section.
2244 Output_section::Input_section_sort_compare::operator()(
2245 const Output_section::Input_section_sort_entry
& s1
,
2246 const Output_section::Input_section_sort_entry
& s2
) const
2248 // crtbegin.o must come first.
2249 bool s1_begin
= s1
.match_file_name("crtbegin");
2250 bool s2_begin
= s2
.match_file_name("crtbegin");
2251 if (s1_begin
|| s2_begin
)
2257 return s1
.index() < s2
.index();
2260 // crtend.o must come last.
2261 bool s1_end
= s1
.match_file_name("crtend");
2262 bool s2_end
= s2
.match_file_name("crtend");
2263 if (s1_end
|| s2_end
)
2269 return s1
.index() < s2
.index();
2272 // We sort all the sections with no names to the end.
2273 if (!s1
.section_has_name() || !s2
.section_has_name())
2275 if (s1
.section_has_name())
2277 if (s2
.section_has_name())
2279 return s1
.index() < s2
.index();
2282 // A section with a priority follows a section without a priority.
2283 // The GNU linker does this for all but .init_array sections; until
2284 // further notice we'll assume that that is an mistake.
2285 bool s1_has_priority
= s1
.has_priority();
2286 bool s2_has_priority
= s2
.has_priority();
2287 if (s1_has_priority
&& !s2_has_priority
)
2289 if (!s1_has_priority
&& s2_has_priority
)
2292 // Otherwise we sort by name.
2293 int compare
= s1
.section_name().compare(s2
.section_name());
2297 // Otherwise we keep the input order.
2298 return s1
.index() < s2
.index();
2301 // Sort the input sections attached to an output section.
2304 Output_section::sort_attached_input_sections()
2306 if (this->attached_input_sections_are_sorted_
)
2309 // The only thing we know about an input section is the object and
2310 // the section index. We need the section name. Recomputing this
2311 // is slow but this is an unusual case. If this becomes a speed
2312 // problem we can cache the names as required in Layout::layout.
2314 // We start by building a larger vector holding a copy of each
2315 // Input_section, plus its current index in the list and its name.
2316 std::vector
<Input_section_sort_entry
> sort_list
;
2319 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2320 p
!= this->input_sections_
.end();
2322 sort_list
.push_back(Input_section_sort_entry(*p
, i
));
2324 // Sort the input sections.
2325 std::sort(sort_list
.begin(), sort_list
.end(), Input_section_sort_compare());
2327 // Copy the sorted input sections back to our list.
2328 this->input_sections_
.clear();
2329 for (std::vector
<Input_section_sort_entry
>::iterator p
= sort_list
.begin();
2330 p
!= sort_list
.end();
2332 this->input_sections_
.push_back(p
->input_section());
2334 // Remember that we sorted the input sections, since we might get
2336 this->attached_input_sections_are_sorted_
= true;
2339 // Write the section header to *OSHDR.
2341 template<int size
, bool big_endian
>
2343 Output_section::write_header(const Layout
* layout
,
2344 const Stringpool
* secnamepool
,
2345 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
2347 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
2348 oshdr
->put_sh_type(this->type_
);
2350 elfcpp::Elf_Xword flags
= this->flags_
;
2351 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
2352 flags
|= elfcpp::SHF_INFO_LINK
;
2353 oshdr
->put_sh_flags(flags
);
2355 oshdr
->put_sh_addr(this->address());
2356 oshdr
->put_sh_offset(this->offset());
2357 oshdr
->put_sh_size(this->data_size());
2358 if (this->link_section_
!= NULL
)
2359 oshdr
->put_sh_link(this->link_section_
->out_shndx());
2360 else if (this->should_link_to_symtab_
)
2361 oshdr
->put_sh_link(layout
->symtab_section()->out_shndx());
2362 else if (this->should_link_to_dynsym_
)
2363 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
2365 oshdr
->put_sh_link(this->link_
);
2367 elfcpp::Elf_Word info
;
2368 if (this->info_section_
!= NULL
)
2370 if (this->info_uses_section_index_
)
2371 info
= this->info_section_
->out_shndx();
2373 info
= this->info_section_
->symtab_index();
2375 else if (this->info_symndx_
!= NULL
)
2376 info
= this->info_symndx_
->symtab_index();
2379 oshdr
->put_sh_info(info
);
2381 oshdr
->put_sh_addralign(this->addralign_
);
2382 oshdr
->put_sh_entsize(this->entsize_
);
2385 // Write out the data. For input sections the data is written out by
2386 // Object::relocate, but we have to handle Output_section_data objects
2390 Output_section::do_write(Output_file
* of
)
2392 gold_assert(!this->requires_postprocessing());
2394 off_t output_section_file_offset
= this->offset();
2395 for (Fill_list::iterator p
= this->fills_
.begin();
2396 p
!= this->fills_
.end();
2399 std::string
fill_data(parameters
->target().code_fill(p
->length()));
2400 of
->write(output_section_file_offset
+ p
->section_offset(),
2401 fill_data
.data(), fill_data
.size());
2404 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2405 p
!= this->input_sections_
.end();
2410 // If a section requires postprocessing, create the buffer to use.
2413 Output_section::create_postprocessing_buffer()
2415 gold_assert(this->requires_postprocessing());
2417 if (this->postprocessing_buffer_
!= NULL
)
2420 if (!this->input_sections_
.empty())
2422 off_t off
= this->first_input_offset_
;
2423 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2424 p
!= this->input_sections_
.end();
2427 off
= align_address(off
, p
->addralign());
2428 p
->finalize_data_size();
2429 off
+= p
->data_size();
2431 this->set_current_data_size_for_child(off
);
2434 off_t buffer_size
= this->current_data_size_for_child();
2435 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
2438 // Write all the data of an Output_section into the postprocessing
2439 // buffer. This is used for sections which require postprocessing,
2440 // such as compression. Input sections are handled by
2441 // Object::Relocate.
2444 Output_section::write_to_postprocessing_buffer()
2446 gold_assert(this->requires_postprocessing());
2448 unsigned char* buffer
= this->postprocessing_buffer();
2449 for (Fill_list::iterator p
= this->fills_
.begin();
2450 p
!= this->fills_
.end();
2453 std::string
fill_data(parameters
->target().code_fill(p
->length()));
2454 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
2458 off_t off
= this->first_input_offset_
;
2459 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2460 p
!= this->input_sections_
.end();
2463 off
= align_address(off
, p
->addralign());
2464 p
->write_to_buffer(buffer
+ off
);
2465 off
+= p
->data_size();
2469 // Get the input sections for linker script processing. We leave
2470 // behind the Output_section_data entries. Note that this may be
2471 // slightly incorrect for merge sections. We will leave them behind,
2472 // but it is possible that the script says that they should follow
2473 // some other input sections, as in:
2474 // .rodata { *(.rodata) *(.rodata.cst*) }
2475 // For that matter, we don't handle this correctly:
2476 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2477 // With luck this will never matter.
2480 Output_section::get_input_sections(
2482 const std::string
& fill
,
2483 std::list
<std::pair
<Relobj
*, unsigned int> >* input_sections
)
2485 uint64_t orig_address
= address
;
2487 address
= align_address(address
, this->addralign());
2489 Input_section_list remaining
;
2490 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2491 p
!= this->input_sections_
.end();
2494 if (p
->is_input_section())
2495 input_sections
->push_back(std::make_pair(p
->relobj(), p
->shndx()));
2498 uint64_t aligned_address
= align_address(address
, p
->addralign());
2499 if (aligned_address
!= address
&& !fill
.empty())
2501 section_size_type length
=
2502 convert_to_section_size_type(aligned_address
- address
);
2503 std::string this_fill
;
2504 this_fill
.reserve(length
);
2505 while (this_fill
.length() + fill
.length() <= length
)
2507 if (this_fill
.length() < length
)
2508 this_fill
.append(fill
, 0, length
- this_fill
.length());
2510 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
2511 remaining
.push_back(Input_section(posd
));
2513 address
= aligned_address
;
2515 remaining
.push_back(*p
);
2517 p
->finalize_data_size();
2518 address
+= p
->data_size();
2522 this->input_sections_
.swap(remaining
);
2523 this->first_input_offset_
= 0;
2525 uint64_t data_size
= address
- orig_address
;
2526 this->set_current_data_size_for_child(data_size
);
2530 // Add an input section from a script.
2533 Output_section::add_input_section_for_script(Relobj
* object
,
2538 if (addralign
> this->addralign_
)
2539 this->addralign_
= addralign
;
2541 off_t offset_in_section
= this->current_data_size_for_child();
2542 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2545 this->set_current_data_size_for_child(aligned_offset_in_section
2548 this->input_sections_
.push_back(Input_section(object
, shndx
,
2549 data_size
, addralign
));
2552 // Print to the map file.
2555 Output_section::do_print_to_mapfile(Mapfile
* mapfile
) const
2557 mapfile
->print_output_section(this);
2559 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2560 p
!= this->input_sections_
.end();
2562 p
->print_to_mapfile(mapfile
);
2565 // Print stats for merge sections to stderr.
2568 Output_section::print_merge_stats()
2570 Input_section_list::iterator p
;
2571 for (p
= this->input_sections_
.begin();
2572 p
!= this->input_sections_
.end();
2574 p
->print_merge_stats(this->name_
);
2577 // Output segment methods.
2579 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
2591 is_max_align_known_(false),
2592 are_addresses_set_(false)
2596 // Add an Output_section to an Output_segment.
2599 Output_segment::add_output_section(Output_section
* os
,
2600 elfcpp::Elf_Word seg_flags
)
2602 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
2603 gold_assert(!this->is_max_align_known_
);
2605 // Update the segment flags.
2606 this->flags_
|= seg_flags
;
2608 Output_segment::Output_data_list
* pdl
;
2609 if (os
->type() == elfcpp::SHT_NOBITS
)
2610 pdl
= &this->output_bss_
;
2612 pdl
= &this->output_data_
;
2614 // So that PT_NOTE segments will work correctly, we need to ensure
2615 // that all SHT_NOTE sections are adjacent. This will normally
2616 // happen automatically, because all the SHT_NOTE input sections
2617 // will wind up in the same output section. However, it is possible
2618 // for multiple SHT_NOTE input sections to have different section
2619 // flags, and thus be in different output sections, but for the
2620 // different section flags to map into the same segment flags and
2621 // thus the same output segment.
2623 // Note that while there may be many input sections in an output
2624 // section, there are normally only a few output sections in an
2625 // output segment. This loop is expected to be fast.
2627 if (os
->type() == elfcpp::SHT_NOTE
&& !pdl
->empty())
2629 Output_segment::Output_data_list::iterator p
= pdl
->end();
2633 if ((*p
)->is_section_type(elfcpp::SHT_NOTE
))
2640 while (p
!= pdl
->begin());
2643 // Similarly, so that PT_TLS segments will work, we need to group
2644 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2645 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2646 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2647 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2648 // and the PT_TLS segment -- we do this grouping only for the
2650 if (this->type_
!= elfcpp::PT_TLS
2651 && (os
->flags() & elfcpp::SHF_TLS
) != 0
2652 && !this->output_data_
.empty())
2654 pdl
= &this->output_data_
;
2655 bool nobits
= os
->type() == elfcpp::SHT_NOBITS
;
2656 bool sawtls
= false;
2657 Output_segment::Output_data_list::iterator p
= pdl
->end();
2662 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
2665 // Put a NOBITS section after the first TLS section.
2666 // Put a PROGBITS section after the first TLS/PROGBITS
2668 insert
= nobits
|| !(*p
)->is_section_type(elfcpp::SHT_NOBITS
);
2672 // If we've gone past the TLS sections, but we've seen a
2673 // TLS section, then we need to insert this section now.
2684 while (p
!= pdl
->begin());
2686 // There are no TLS sections yet; put this one at the requested
2687 // location in the section list.
2690 // For the PT_GNU_RELRO segment, we need to group relro sections,
2691 // and we need to put them before any non-relro sections. Also,
2692 // relro local sections go before relro non-local sections.
2693 if (parameters
->options().relro() && os
->is_relro())
2695 gold_assert(pdl
== &this->output_data_
);
2696 Output_segment::Output_data_list::iterator p
;
2697 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
2699 if (!(*p
)->is_section())
2702 Output_section
* pos
= (*p
)->output_section();
2703 if (!pos
->is_relro()
2704 || (os
->is_relro_local() && !pos
->is_relro_local()))
2715 // Remove an Output_section from this segment. It is an error if it
2719 Output_segment::remove_output_section(Output_section
* os
)
2721 // We only need this for SHT_PROGBITS.
2722 gold_assert(os
->type() == elfcpp::SHT_PROGBITS
);
2723 for (Output_data_list::iterator p
= this->output_data_
.begin();
2724 p
!= this->output_data_
.end();
2729 this->output_data_
.erase(p
);
2736 // Add an Output_data (which is not an Output_section) to the start of
2740 Output_segment::add_initial_output_data(Output_data
* od
)
2742 gold_assert(!this->is_max_align_known_
);
2743 this->output_data_
.push_front(od
);
2746 // Return whether the first data section is a relro section.
2749 Output_segment::is_first_section_relro() const
2751 return (!this->output_data_
.empty()
2752 && this->output_data_
.front()->is_section()
2753 && this->output_data_
.front()->output_section()->is_relro());
2756 // Return the maximum alignment of the Output_data in Output_segment.
2759 Output_segment::maximum_alignment()
2761 if (!this->is_max_align_known_
)
2765 addralign
= Output_segment::maximum_alignment_list(&this->output_data_
);
2766 if (addralign
> this->max_align_
)
2767 this->max_align_
= addralign
;
2769 addralign
= Output_segment::maximum_alignment_list(&this->output_bss_
);
2770 if (addralign
> this->max_align_
)
2771 this->max_align_
= addralign
;
2773 // If -z relro is in effect, and the first section in this
2774 // segment is a relro section, then the segment must be aligned
2775 // to at least the common page size. This ensures that the
2776 // PT_GNU_RELRO segment will start at a page boundary.
2777 if (parameters
->options().relro() && this->is_first_section_relro())
2779 addralign
= parameters
->target().common_pagesize();
2780 if (addralign
> this->max_align_
)
2781 this->max_align_
= addralign
;
2784 this->is_max_align_known_
= true;
2787 return this->max_align_
;
2790 // Return the maximum alignment of a list of Output_data.
2793 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
2796 for (Output_data_list::const_iterator p
= pdl
->begin();
2800 uint64_t addralign
= (*p
)->addralign();
2801 if (addralign
> ret
)
2807 // Return the number of dynamic relocs applied to this segment.
2810 Output_segment::dynamic_reloc_count() const
2812 return (this->dynamic_reloc_count_list(&this->output_data_
)
2813 + this->dynamic_reloc_count_list(&this->output_bss_
));
2816 // Return the number of dynamic relocs applied to an Output_data_list.
2819 Output_segment::dynamic_reloc_count_list(const Output_data_list
* pdl
) const
2821 unsigned int count
= 0;
2822 for (Output_data_list::const_iterator p
= pdl
->begin();
2825 count
+= (*p
)->dynamic_reloc_count();
2829 // Set the section addresses for an Output_segment. If RESET is true,
2830 // reset the addresses first. ADDR is the address and *POFF is the
2831 // file offset. Set the section indexes starting with *PSHNDX.
2832 // Return the address of the immediately following segment. Update
2833 // *POFF and *PSHNDX.
2836 Output_segment::set_section_addresses(const Layout
* layout
, bool reset
,
2837 uint64_t addr
, off_t
* poff
,
2838 unsigned int* pshndx
)
2840 gold_assert(this->type_
== elfcpp::PT_LOAD
);
2842 if (!reset
&& this->are_addresses_set_
)
2844 gold_assert(this->paddr_
== addr
);
2845 addr
= this->vaddr_
;
2849 this->vaddr_
= addr
;
2850 this->paddr_
= addr
;
2851 this->are_addresses_set_
= true;
2854 bool in_tls
= false;
2856 bool in_relro
= (parameters
->options().relro()
2857 && this->is_first_section_relro());
2859 off_t orig_off
= *poff
;
2860 this->offset_
= orig_off
;
2862 addr
= this->set_section_list_addresses(layout
, reset
, &this->output_data_
,
2863 addr
, poff
, pshndx
, &in_tls
,
2865 this->filesz_
= *poff
- orig_off
;
2869 uint64_t ret
= this->set_section_list_addresses(layout
, reset
,
2872 &in_tls
, &in_relro
);
2874 // If the last section was a TLS section, align upward to the
2875 // alignment of the TLS segment, so that the overall size of the TLS
2876 // segment is aligned.
2879 uint64_t segment_align
= layout
->tls_segment()->maximum_alignment();
2880 *poff
= align_address(*poff
, segment_align
);
2883 // If all the sections were relro sections, align upward to the
2884 // common page size.
2887 uint64_t page_align
= parameters
->target().common_pagesize();
2888 *poff
= align_address(*poff
, page_align
);
2891 this->memsz_
= *poff
- orig_off
;
2893 // Ignore the file offset adjustments made by the BSS Output_data
2900 // Set the addresses and file offsets in a list of Output_data
2904 Output_segment::set_section_list_addresses(const Layout
* layout
, bool reset
,
2905 Output_data_list
* pdl
,
2906 uint64_t addr
, off_t
* poff
,
2907 unsigned int* pshndx
,
2908 bool* in_tls
, bool* in_relro
)
2910 off_t startoff
= *poff
;
2912 off_t off
= startoff
;
2913 for (Output_data_list::iterator p
= pdl
->begin();
2918 (*p
)->reset_address_and_file_offset();
2920 // When using a linker script the section will most likely
2921 // already have an address.
2922 if (!(*p
)->is_address_valid())
2924 uint64_t align
= (*p
)->addralign();
2926 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
2928 // Give the first TLS section the alignment of the
2929 // entire TLS segment. Otherwise the TLS segment as a
2930 // whole may be misaligned.
2933 Output_segment
* tls_segment
= layout
->tls_segment();
2934 gold_assert(tls_segment
!= NULL
);
2935 uint64_t segment_align
= tls_segment
->maximum_alignment();
2936 gold_assert(segment_align
>= align
);
2937 align
= segment_align
;
2944 // If this is the first section after the TLS segment,
2945 // align it to at least the alignment of the TLS
2946 // segment, so that the size of the overall TLS segment
2950 uint64_t segment_align
=
2951 layout
->tls_segment()->maximum_alignment();
2952 if (segment_align
> align
)
2953 align
= segment_align
;
2959 // If this is a non-relro section after a relro section,
2960 // align it to a common page boundary so that the dynamic
2961 // linker has a page to mark as read-only.
2963 && (!(*p
)->is_section()
2964 || !(*p
)->output_section()->is_relro()))
2966 uint64_t page_align
= parameters
->target().common_pagesize();
2967 if (page_align
> align
)
2972 off
= align_address(off
, align
);
2973 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
2977 // The script may have inserted a skip forward, but it
2978 // better not have moved backward.
2979 gold_assert((*p
)->address() >= addr
+ (off
- startoff
));
2980 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
2981 (*p
)->set_file_offset(off
);
2982 (*p
)->finalize_data_size();
2985 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2986 // section. Such a section does not affect the size of a
2988 if (!(*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
2989 || !(*p
)->is_section_type(elfcpp::SHT_NOBITS
))
2990 off
+= (*p
)->data_size();
2992 if ((*p
)->is_section())
2994 (*p
)->set_out_shndx(*pshndx
);
3000 return addr
+ (off
- startoff
);
3003 // For a non-PT_LOAD segment, set the offset from the sections, if
3007 Output_segment::set_offset()
3009 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
3011 gold_assert(!this->are_addresses_set_
);
3013 if (this->output_data_
.empty() && this->output_bss_
.empty())
3017 this->are_addresses_set_
= true;
3019 this->min_p_align_
= 0;
3025 const Output_data
* first
;
3026 if (this->output_data_
.empty())
3027 first
= this->output_bss_
.front();
3029 first
= this->output_data_
.front();
3030 this->vaddr_
= first
->address();
3031 this->paddr_
= (first
->has_load_address()
3032 ? first
->load_address()
3034 this->are_addresses_set_
= true;
3035 this->offset_
= first
->offset();
3037 if (this->output_data_
.empty())
3041 const Output_data
* last_data
= this->output_data_
.back();
3042 this->filesz_
= (last_data
->address()
3043 + last_data
->data_size()
3047 const Output_data
* last
;
3048 if (this->output_bss_
.empty())
3049 last
= this->output_data_
.back();
3051 last
= this->output_bss_
.back();
3052 this->memsz_
= (last
->address()
3056 // If this is a TLS segment, align the memory size. The code in
3057 // set_section_list ensures that the section after the TLS segment
3058 // is aligned to give us room.
3059 if (this->type_
== elfcpp::PT_TLS
)
3061 uint64_t segment_align
= this->maximum_alignment();
3062 gold_assert(this->vaddr_
== align_address(this->vaddr_
, segment_align
));
3063 this->memsz_
= align_address(this->memsz_
, segment_align
);
3066 // If this is a RELRO segment, align the memory size. The code in
3067 // set_section_list ensures that the section after the RELRO segment
3068 // is aligned to give us room.
3069 if (this->type_
== elfcpp::PT_GNU_RELRO
)
3071 uint64_t page_align
= parameters
->target().common_pagesize();
3072 gold_assert(this->vaddr_
== align_address(this->vaddr_
, page_align
));
3073 this->memsz_
= align_address(this->memsz_
, page_align
);
3077 // Set the TLS offsets of the sections in the PT_TLS segment.
3080 Output_segment::set_tls_offsets()
3082 gold_assert(this->type_
== elfcpp::PT_TLS
);
3084 for (Output_data_list::iterator p
= this->output_data_
.begin();
3085 p
!= this->output_data_
.end();
3087 (*p
)->set_tls_offset(this->vaddr_
);
3089 for (Output_data_list::iterator p
= this->output_bss_
.begin();
3090 p
!= this->output_bss_
.end();
3092 (*p
)->set_tls_offset(this->vaddr_
);
3095 // Return the address of the first section.
3098 Output_segment::first_section_load_address() const
3100 for (Output_data_list::const_iterator p
= this->output_data_
.begin();
3101 p
!= this->output_data_
.end();
3103 if ((*p
)->is_section())
3104 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
3106 for (Output_data_list::const_iterator p
= this->output_bss_
.begin();
3107 p
!= this->output_bss_
.end();
3109 if ((*p
)->is_section())
3110 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
3115 // Return the number of Output_sections in an Output_segment.
3118 Output_segment::output_section_count() const
3120 return (this->output_section_count_list(&this->output_data_
)
3121 + this->output_section_count_list(&this->output_bss_
));
3124 // Return the number of Output_sections in an Output_data_list.
3127 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
3129 unsigned int count
= 0;
3130 for (Output_data_list::const_iterator p
= pdl
->begin();
3134 if ((*p
)->is_section())
3140 // Return the section attached to the list segment with the lowest
3141 // load address. This is used when handling a PHDRS clause in a
3145 Output_segment::section_with_lowest_load_address() const
3147 Output_section
* found
= NULL
;
3148 uint64_t found_lma
= 0;
3149 this->lowest_load_address_in_list(&this->output_data_
, &found
, &found_lma
);
3151 Output_section
* found_data
= found
;
3152 this->lowest_load_address_in_list(&this->output_bss_
, &found
, &found_lma
);
3153 if (found
!= found_data
&& found_data
!= NULL
)
3155 gold_error(_("nobits section %s may not precede progbits section %s "
3157 found
->name(), found_data
->name());
3164 // Look through a list for a section with a lower load address.
3167 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
3168 Output_section
** found
,
3169 uint64_t* found_lma
) const
3171 for (Output_data_list::const_iterator p
= pdl
->begin();
3175 if (!(*p
)->is_section())
3177 Output_section
* os
= static_cast<Output_section
*>(*p
);
3178 uint64_t lma
= (os
->has_load_address()
3179 ? os
->load_address()
3181 if (*found
== NULL
|| lma
< *found_lma
)
3189 // Write the segment data into *OPHDR.
3191 template<int size
, bool big_endian
>
3193 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
3195 ophdr
->put_p_type(this->type_
);
3196 ophdr
->put_p_offset(this->offset_
);
3197 ophdr
->put_p_vaddr(this->vaddr_
);
3198 ophdr
->put_p_paddr(this->paddr_
);
3199 ophdr
->put_p_filesz(this->filesz_
);
3200 ophdr
->put_p_memsz(this->memsz_
);
3201 ophdr
->put_p_flags(this->flags_
);
3202 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
3205 // Write the section headers into V.
3207 template<int size
, bool big_endian
>
3209 Output_segment::write_section_headers(const Layout
* layout
,
3210 const Stringpool
* secnamepool
,
3212 unsigned int *pshndx
) const
3214 // Every section that is attached to a segment must be attached to a
3215 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3217 if (this->type_
!= elfcpp::PT_LOAD
)
3220 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
3221 &this->output_data_
,
3223 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
3229 template<int size
, bool big_endian
>
3231 Output_segment::write_section_headers_list(const Layout
* layout
,
3232 const Stringpool
* secnamepool
,
3233 const Output_data_list
* pdl
,
3235 unsigned int* pshndx
) const
3237 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
3238 for (Output_data_list::const_iterator p
= pdl
->begin();
3242 if ((*p
)->is_section())
3244 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
3245 gold_assert(*pshndx
== ps
->out_shndx());
3246 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
3247 ps
->write_header(layout
, secnamepool
, &oshdr
);
3255 // Print the output sections to the map file.
3258 Output_segment::print_sections_to_mapfile(Mapfile
* mapfile
) const
3260 if (this->type() != elfcpp::PT_LOAD
)
3262 this->print_section_list_to_mapfile(mapfile
, &this->output_data_
);
3263 this->print_section_list_to_mapfile(mapfile
, &this->output_bss_
);
3266 // Print an output section list to the map file.
3269 Output_segment::print_section_list_to_mapfile(Mapfile
* mapfile
,
3270 const Output_data_list
* pdl
) const
3272 for (Output_data_list::const_iterator p
= pdl
->begin();
3275 (*p
)->print_to_mapfile(mapfile
);
3278 // Output_file methods.
3280 Output_file::Output_file(const char* name
)
3285 map_is_anonymous_(false),
3286 is_temporary_(false)
3290 // Open the output file.
3293 Output_file::open(off_t file_size
)
3295 this->file_size_
= file_size
;
3297 // Unlink the file first; otherwise the open() may fail if the file
3298 // is busy (e.g. it's an executable that's currently being executed).
3300 // However, the linker may be part of a system where a zero-length
3301 // file is created for it to write to, with tight permissions (gcc
3302 // 2.95 did something like this). Unlinking the file would work
3303 // around those permission controls, so we only unlink if the file
3304 // has a non-zero size. We also unlink only regular files to avoid
3305 // trouble with directories/etc.
3307 // If we fail, continue; this command is merely a best-effort attempt
3308 // to improve the odds for open().
3310 // We let the name "-" mean "stdout"
3311 if (!this->is_temporary_
)
3313 if (strcmp(this->name_
, "-") == 0)
3314 this->o_
= STDOUT_FILENO
;
3318 if (::stat(this->name_
, &s
) == 0 && s
.st_size
!= 0)
3319 unlink_if_ordinary(this->name_
);
3321 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
3322 int o
= ::open(this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
, mode
);
3324 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
3332 // Resize the output file.
3335 Output_file::resize(off_t file_size
)
3337 // If the mmap is mapping an anonymous memory buffer, this is easy:
3338 // just mremap to the new size. If it's mapping to a file, we want
3339 // to unmap to flush to the file, then remap after growing the file.
3340 if (this->map_is_anonymous_
)
3342 void* base
= ::mremap(this->base_
, this->file_size_
, file_size
,
3344 if (base
== MAP_FAILED
)
3345 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
3346 this->base_
= static_cast<unsigned char*>(base
);
3347 this->file_size_
= file_size
;
3352 this->file_size_
= file_size
;
3357 // Map the file into memory.
3362 const int o
= this->o_
;
3364 // If the output file is not a regular file, don't try to mmap it;
3365 // instead, we'll mmap a block of memory (an anonymous buffer), and
3366 // then later write the buffer to the file.
3368 struct stat statbuf
;
3369 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
3370 || ::fstat(o
, &statbuf
) != 0
3371 || !S_ISREG(statbuf
.st_mode
)
3372 || this->is_temporary_
)
3374 this->map_is_anonymous_
= true;
3375 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
3376 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
3380 // Write out one byte to make the file the right size.
3381 if (::lseek(o
, this->file_size_
- 1, SEEK_SET
) < 0)
3382 gold_fatal(_("%s: lseek: %s"), this->name_
, strerror(errno
));
3384 if (::write(o
, &b
, 1) != 1)
3385 gold_fatal(_("%s: write: %s"), this->name_
, strerror(errno
));
3387 // Map the file into memory.
3388 this->map_is_anonymous_
= false;
3389 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
3392 if (base
== MAP_FAILED
)
3393 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
3394 this->base_
= static_cast<unsigned char*>(base
);
3397 // Unmap the file from memory.
3400 Output_file::unmap()
3402 if (::munmap(this->base_
, this->file_size_
) < 0)
3403 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
3407 // Close the output file.
3410 Output_file::close()
3412 // If the map isn't file-backed, we need to write it now.
3413 if (this->map_is_anonymous_
&& !this->is_temporary_
)
3415 size_t bytes_to_write
= this->file_size_
;
3416 while (bytes_to_write
> 0)
3418 ssize_t bytes_written
= ::write(this->o_
, this->base_
, bytes_to_write
);
3419 if (bytes_written
== 0)
3420 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
3421 else if (bytes_written
< 0)
3422 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
3424 bytes_to_write
-= bytes_written
;
3429 // We don't close stdout or stderr
3430 if (this->o_
!= STDOUT_FILENO
3431 && this->o_
!= STDERR_FILENO
3432 && !this->is_temporary_
)
3433 if (::close(this->o_
) < 0)
3434 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
3438 // Instantiate the templates we need. We could use the configure
3439 // script to restrict this to only the ones for implemented targets.
3441 #ifdef HAVE_TARGET_32_LITTLE
3444 Output_section::add_input_section
<32, false>(
3445 Sized_relobj
<32, false>* object
,
3447 const char* secname
,
3448 const elfcpp::Shdr
<32, false>& shdr
,
3449 unsigned int reloc_shndx
,
3450 bool have_sections_script
);
3453 #ifdef HAVE_TARGET_32_BIG
3456 Output_section::add_input_section
<32, true>(
3457 Sized_relobj
<32, true>* object
,
3459 const char* secname
,
3460 const elfcpp::Shdr
<32, true>& shdr
,
3461 unsigned int reloc_shndx
,
3462 bool have_sections_script
);
3465 #ifdef HAVE_TARGET_64_LITTLE
3468 Output_section::add_input_section
<64, false>(
3469 Sized_relobj
<64, false>* object
,
3471 const char* secname
,
3472 const elfcpp::Shdr
<64, false>& shdr
,
3473 unsigned int reloc_shndx
,
3474 bool have_sections_script
);
3477 #ifdef HAVE_TARGET_64_BIG
3480 Output_section::add_input_section
<64, true>(
3481 Sized_relobj
<64, true>* object
,
3483 const char* secname
,
3484 const elfcpp::Shdr
<64, true>& shdr
,
3485 unsigned int reloc_shndx
,
3486 bool have_sections_script
);
3489 #ifdef HAVE_TARGET_32_LITTLE
3491 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
3494 #ifdef HAVE_TARGET_32_BIG
3496 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
3499 #ifdef HAVE_TARGET_64_LITTLE
3501 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
3504 #ifdef HAVE_TARGET_64_BIG
3506 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
3509 #ifdef HAVE_TARGET_32_LITTLE
3511 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
3514 #ifdef HAVE_TARGET_32_BIG
3516 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
3519 #ifdef HAVE_TARGET_64_LITTLE
3521 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
3524 #ifdef HAVE_TARGET_64_BIG
3526 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
3529 #ifdef HAVE_TARGET_32_LITTLE
3531 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
3534 #ifdef HAVE_TARGET_32_BIG
3536 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
3539 #ifdef HAVE_TARGET_64_LITTLE
3541 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
3544 #ifdef HAVE_TARGET_64_BIG
3546 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
3549 #ifdef HAVE_TARGET_32_LITTLE
3551 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
3554 #ifdef HAVE_TARGET_32_BIG
3556 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
3559 #ifdef HAVE_TARGET_64_LITTLE
3561 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
3564 #ifdef HAVE_TARGET_64_BIG
3566 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
3569 #ifdef HAVE_TARGET_32_LITTLE
3571 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
3574 #ifdef HAVE_TARGET_32_BIG
3576 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
3579 #ifdef HAVE_TARGET_64_LITTLE
3581 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
3584 #ifdef HAVE_TARGET_64_BIG
3586 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
3589 #ifdef HAVE_TARGET_32_LITTLE
3591 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
3594 #ifdef HAVE_TARGET_32_BIG
3596 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
3599 #ifdef HAVE_TARGET_64_LITTLE
3601 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
3604 #ifdef HAVE_TARGET_64_BIG
3606 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
3609 #ifdef HAVE_TARGET_32_LITTLE
3611 class Output_data_group
<32, false>;
3614 #ifdef HAVE_TARGET_32_BIG
3616 class Output_data_group
<32, true>;
3619 #ifdef HAVE_TARGET_64_LITTLE
3621 class Output_data_group
<64, false>;
3624 #ifdef HAVE_TARGET_64_BIG
3626 class Output_data_group
<64, true>;
3629 #ifdef HAVE_TARGET_32_LITTLE
3631 class Output_data_got
<32, false>;
3634 #ifdef HAVE_TARGET_32_BIG
3636 class Output_data_got
<32, true>;
3639 #ifdef HAVE_TARGET_64_LITTLE
3641 class Output_data_got
<64, false>;
3644 #ifdef HAVE_TARGET_64_BIG
3646 class Output_data_got
<64, true>;
3649 } // End namespace gold.