1 /* Generic support for 64-bit ELF
2 Copyright 1999, 2000 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 #include "elf64-hppa.h"
29 #define PLT_ENTRY_SIZE 0x10
30 #define DLT_ENTRY_SIZE 0x8
31 #define OPD_ENTRY_SIZE 0x20
33 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35 /* The stub is supposed to load the target address and target's DP
36 value out of the PLT, then do an external branch to the target
41 LDD PLTOFF+8(%r27),%r27
43 Note that we must use the LDD with a 14 bit displacement, not the one
44 with a 5 bit displacement. */
45 static char plt_stub
[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
46 0x53, 0x7b, 0x00, 0x00 };
48 struct elf64_hppa_dyn_hash_entry
50 struct bfd_hash_entry root
;
52 /* Offsets for this symbol in various linker sections. */
58 /* The symbol table entry, if any, that this was derrived from. */
59 struct elf_link_hash_entry
*h
;
61 /* The index of the (possibly local) symbol in the input bfd and its
62 associated BFD. Needed so that we can have relocs against local
63 symbols in shared libraries. */
64 unsigned long sym_indx
;
67 /* Dynamic symbols may need to have two different values. One for
68 the dynamic symbol table, one for the normal symbol table.
70 In such cases we store the symbol's real value and section
71 index here so we can restore the real value before we write
72 the normal symbol table. */
76 /* Used to count non-got, non-plt relocations for delayed sizing
77 of relocation sections. */
78 struct elf64_hppa_dyn_reloc_entry
80 /* Next relocation in the chain. */
81 struct elf64_hppa_dyn_reloc_entry
*next
;
83 /* The type of the relocation. */
86 /* The input section of the relocation. */
89 /* The index of the section symbol for the input section of
90 the relocation. Only needed when building shared libraries. */
93 /* The offset within the input section of the relocation. */
96 /* The addend for the relocation. */
101 /* Nonzero if this symbol needs an entry in one of the linker
109 struct elf64_hppa_dyn_hash_table
111 struct bfd_hash_table root
;
114 struct elf64_hppa_link_hash_table
116 struct elf_link_hash_table root
;
118 /* Shortcuts to get to the various linker defined sections. */
120 asection
*dlt_rel_sec
;
122 asection
*plt_rel_sec
;
124 asection
*opd_rel_sec
;
125 asection
*other_rel_sec
;
127 /* Offset of __gp within .plt section. When the PLT gets large we want
128 to slide __gp into the PLT section so that we can continue to use
129 single DP relative instructions to load values out of the PLT. */
132 /* Note this is not strictly correct. We should create a stub section for
133 each input section with calls. The stub section should be placed before
134 the section with the call. */
137 bfd_vma text_segment_base
;
138 bfd_vma data_segment_base
;
140 struct elf64_hppa_dyn_hash_table dyn_hash_table
;
142 /* We build tables to map from an input section back to its
143 symbol index. This is the BFD for which we currently have
145 bfd
*section_syms_bfd
;
147 /* Array of symbol numbers for each input section attached to the
152 #define elf64_hppa_hash_table(p) \
153 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155 typedef struct bfd_hash_entry
*(*new_hash_entry_func
)
156 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
158 static boolean elf64_hppa_dyn_hash_table_init
159 PARAMS ((struct elf64_hppa_dyn_hash_table
*ht
, bfd
*abfd
,
160 new_hash_entry_func
new));
161 static struct bfd_hash_entry
*elf64_hppa_new_dyn_hash_entry
162 PARAMS ((struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
163 const char *string
));
164 static struct bfd_link_hash_table
*elf64_hppa_hash_table_create
165 PARAMS ((bfd
*abfd
));
166 static struct elf64_hppa_dyn_hash_entry
*elf64_hppa_dyn_hash_lookup
167 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
, const char *string
,
168 boolean create
, boolean copy
));
169 static void elf64_hppa_dyn_hash_traverse
170 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
,
171 boolean (*func
)(struct elf64_hppa_dyn_hash_entry
*, PTR
),
174 static const char *get_dyn_name
175 PARAMS ((bfd
*abfd
, struct elf_link_hash_entry
*h
,
176 const Elf_Internal_Rela
*rel
, char **pbuf
, size_t *plen
));
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
184 static boolean elf64_hppa_object_p
187 static boolean elf64_hppa_section_from_shdr
188 PARAMS ((bfd
*, Elf64_Internal_Shdr
*, char *));
190 static void elf64_hppa_post_process_headers
191 PARAMS ((bfd
*, struct bfd_link_info
*));
193 static boolean elf64_hppa_create_dynamic_sections
194 PARAMS ((bfd
*, struct bfd_link_info
*));
196 static boolean elf64_hppa_adjust_dynamic_symbol
197 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
199 static boolean elf64_hppa_size_dynamic_sections
200 PARAMS ((bfd
*, struct bfd_link_info
*));
202 static boolean elf64_hppa_finish_dynamic_symbol
203 PARAMS ((bfd
*, struct bfd_link_info
*,
204 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
206 static boolean elf64_hppa_finish_dynamic_sections
207 PARAMS ((bfd
*, struct bfd_link_info
*));
209 static boolean elf64_hppa_check_relocs
210 PARAMS ((bfd
*, struct bfd_link_info
*,
211 asection
*, const Elf_Internal_Rela
*));
213 static boolean elf64_hppa_dynamic_symbol_p
214 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*));
216 static boolean elf64_hppa_mark_exported_functions
217 PARAMS ((struct elf_link_hash_entry
*, PTR
));
219 static boolean elf64_hppa_finalize_opd
220 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
222 static boolean elf64_hppa_finalize_dlt
223 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
225 static boolean allocate_global_data_dlt
226 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
228 static boolean allocate_global_data_plt
229 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
231 static boolean allocate_global_data_stub
232 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
234 static boolean allocate_global_data_opd
235 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
237 static boolean get_reloc_section
238 PARAMS ((bfd
*, struct elf64_hppa_link_hash_table
*, asection
*));
240 static boolean count_dyn_reloc
241 PARAMS ((bfd
*, struct elf64_hppa_dyn_hash_entry
*,
242 int, asection
*, int, bfd_vma
, bfd_vma
));
244 static boolean allocate_dynrel_entries
245 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
247 static boolean elf64_hppa_finalize_dynreloc
248 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
250 static boolean get_opd
251 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
253 static boolean get_plt
254 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
256 static boolean get_dlt
257 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
259 static boolean get_stub
260 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
263 elf64_hppa_dyn_hash_table_init (ht
, abfd
, new)
264 struct elf64_hppa_dyn_hash_table
*ht
;
266 new_hash_entry_func
new;
268 memset (ht
, 0, sizeof(*ht
));
269 return bfd_hash_table_init (&ht
->root
, new);
272 static struct bfd_hash_entry
*
273 elf64_hppa_new_dyn_hash_entry (entry
, table
, string
)
274 struct bfd_hash_entry
*entry
;
275 struct bfd_hash_table
*table
;
278 struct elf64_hppa_dyn_hash_entry
*ret
;
279 ret
= (struct elf64_hppa_dyn_hash_entry
*) entry
;
281 /* Allocate the structure if it has not already been allocated by a
284 ret
= bfd_hash_allocate (table
, sizeof (*ret
));
289 /* Initialize our local data. All zeros, and definitely easier
290 than setting 8 bit fields. */
291 memset (ret
, 0, sizeof(*ret
));
293 /* Call the allocation method of the superclass. */
294 ret
= ((struct elf64_hppa_dyn_hash_entry
*)
295 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
300 /* Create the derived linker hash table. The PA64 ELF port uses this
301 derived hash table to keep information specific to the PA ElF
302 linker (without using static variables). */
304 static struct bfd_link_hash_table
*
305 elf64_hppa_hash_table_create (abfd
)
308 struct elf64_hppa_link_hash_table
*ret
;
310 ret
= bfd_zalloc (abfd
, sizeof (*ret
));
313 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
314 _bfd_elf_link_hash_newfunc
))
316 bfd_release (abfd
, ret
);
320 if (!elf64_hppa_dyn_hash_table_init (&ret
->dyn_hash_table
, abfd
,
321 elf64_hppa_new_dyn_hash_entry
))
323 return &ret
->root
.root
;
326 /* Look up an entry in a PA64 ELF linker hash table. */
328 static struct elf64_hppa_dyn_hash_entry
*
329 elf64_hppa_dyn_hash_lookup(table
, string
, create
, copy
)
330 struct elf64_hppa_dyn_hash_table
*table
;
332 boolean create
, copy
;
334 return ((struct elf64_hppa_dyn_hash_entry
*)
335 bfd_hash_lookup (&table
->root
, string
, create
, copy
));
338 /* Traverse a PA64 ELF linker hash table. */
341 elf64_hppa_dyn_hash_traverse (table
, func
, info
)
342 struct elf64_hppa_dyn_hash_table
*table
;
343 boolean (*func
) PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
348 (boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
))) func
,
352 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
354 Additionally we set the default architecture and machine. */
356 elf64_hppa_object_p (abfd
)
359 /* Set the right machine number for an HPPA ELF file. */
360 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
363 /* Given section type (hdr->sh_type), return a boolean indicating
364 whether or not the section is an elf64-hppa specific section. */
366 elf64_hppa_section_from_shdr (abfd
, hdr
, name
)
368 Elf64_Internal_Shdr
*hdr
;
373 switch (hdr
->sh_type
)
376 if (strcmp (name
, ".PARISC.archext") != 0)
379 case SHT_PARISC_UNWIND
:
380 if (strcmp (name
, ".PARISC.unwind") != 0)
384 case SHT_PARISC_ANNOT
:
389 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
391 newsect
= hdr
->bfd_section
;
397 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
398 name describes what was once potentially anonymous memory. We
399 allocate memory as necessary, possibly reusing PBUF/PLEN. */
402 get_dyn_name (abfd
, h
, rel
, pbuf
, plen
)
404 struct elf_link_hash_entry
*h
;
405 const Elf_Internal_Rela
*rel
;
413 if (h
&& rel
->r_addend
== 0)
414 return h
->root
.root
.string
;
417 nlen
= strlen (h
->root
.root
.string
);
420 nlen
= sizeof(void*)*2 + 1 + sizeof(bfd_vma
)*4 + 1 + 1;
421 nlen
+= 10; /* %p slop */
423 tlen
= nlen
+ 1 + 16 + 1;
431 *pbuf
= buf
= malloc (tlen
);
439 memcpy (buf
, h
->root
.root
.string
, nlen
);
440 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
444 nlen
= sprintf (buf
, "%p:%lx", abfd
, ELF64_R_SYM (rel
->r_info
));
448 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
455 /* SEC is a section containing relocs for an input BFD when linking; return
456 a suitable section for holding relocs in the output BFD for a link. */
459 get_reloc_section (abfd
, hppa_info
, sec
)
461 struct elf64_hppa_link_hash_table
*hppa_info
;
464 const char *srel_name
;
468 srel_name
= (bfd_elf_string_from_elf_section
469 (abfd
, elf_elfheader(abfd
)->e_shstrndx
,
470 elf_section_data(sec
)->rel_hdr
.sh_name
));
471 if (srel_name
== NULL
)
474 BFD_ASSERT ((strncmp (srel_name
, ".rela", 5) == 0
475 && strcmp (bfd_get_section_name (abfd
, sec
),
477 || (strncmp (srel_name
, ".rel", 4) == 0
478 && strcmp (bfd_get_section_name (abfd
, sec
),
481 dynobj
= hppa_info
->root
.dynobj
;
483 hppa_info
->root
.dynobj
= dynobj
= abfd
;
485 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
488 srel
= bfd_make_section (dynobj
, srel_name
);
490 || !bfd_set_section_flags (dynobj
, srel
,
497 || !bfd_set_section_alignment (dynobj
, srel
, 3))
501 hppa_info
->other_rel_sec
= srel
;
505 /* Add a new entry to the list of dynamic relocations against DYN_H.
507 We use this to keep a record of all the FPTR relocations against a
508 particular symbol so that we can create FPTR relocations in the
512 count_dyn_reloc (abfd
, dyn_h
, type
, sec
, sec_symndx
, offset
, addend
)
514 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
521 struct elf64_hppa_dyn_reloc_entry
*rent
;
523 rent
= (struct elf64_hppa_dyn_reloc_entry
*)
524 bfd_alloc (abfd
, sizeof (*rent
));
528 rent
->next
= dyn_h
->reloc_entries
;
531 rent
->sec_symndx
= sec_symndx
;
532 rent
->offset
= offset
;
533 rent
->addend
= addend
;
534 dyn_h
->reloc_entries
= rent
;
539 /* Scan the RELOCS and record the type of dynamic entries that each
540 referenced symbol needs. */
543 elf64_hppa_check_relocs (abfd
, info
, sec
, relocs
)
545 struct bfd_link_info
*info
;
547 const Elf_Internal_Rela
*relocs
;
549 struct elf64_hppa_link_hash_table
*hppa_info
;
550 const Elf_Internal_Rela
*relend
;
551 Elf_Internal_Shdr
*symtab_hdr
;
552 const Elf_Internal_Rela
*rel
;
553 asection
*dlt
, *plt
, *stubs
;
558 if (info
->relocateable
)
561 /* If this is the first dynamic object found in the link, create
562 the special sections required for dynamic linking. */
563 if (! elf_hash_table (info
)->dynamic_sections_created
)
565 if (! bfd_elf64_link_create_dynamic_sections (abfd
, info
))
569 hppa_info
= elf64_hppa_hash_table (info
);
570 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
572 /* If necessary, build a new table holding section symbols indices
573 for this BFD. This is disgusting. */
575 if (info
->shared
&& hppa_info
->section_syms_bfd
!= abfd
)
577 int i
, highest_shndx
;
579 Elf_Internal_Sym
*local_syms
, *isym
;
580 Elf64_External_Sym
*ext_syms
, *esym
;
582 /* We're done with the old cache of section index to section symbol
583 index information. Free it.
585 ?!? Note we leak the last section_syms array. Presumably we
586 could free it in one of the later routines in this file. */
587 if (hppa_info
->section_syms
)
588 free (hppa_info
->section_syms
);
590 /* Allocate memory for the internal and external symbols. */
592 = (Elf_Internal_Sym
*) bfd_malloc (symtab_hdr
->sh_info
593 * sizeof (Elf_Internal_Sym
));
594 if (local_syms
== NULL
)
598 = (Elf64_External_Sym
*) bfd_malloc (symtab_hdr
->sh_info
599 * sizeof (Elf64_External_Sym
));
600 if (ext_syms
== NULL
)
606 /* Read in the local symbols. */
607 if (bfd_seek (abfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
608 || bfd_read (ext_syms
, 1,
610 * sizeof (Elf64_External_Sym
)), abfd
)
611 != (symtab_hdr
->sh_info
* sizeof (Elf64_External_Sym
)))
618 /* Swap in the local symbols, also record the highest section index
619 referenced by the local symbols. */
623 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++, esym
++, isym
++)
625 bfd_elf64_swap_symbol_in (abfd
, esym
, isym
);
626 if (isym
->st_shndx
> highest_shndx
)
627 highest_shndx
= isym
->st_shndx
;
630 /* Now we can free the external symbols. */
633 /* Allocate an array to hold the section index to section symbol index
634 mapping. Bump by one since we start counting at zero. */
636 hppa_info
->section_syms
= (int *) bfd_malloc (highest_shndx
639 /* Now walk the local symbols again. If we find a section symbol,
640 record the index of the symbol into the section_syms array. */
641 for (isym
= local_syms
, i
= 0; i
< symtab_hdr
->sh_info
; i
++, isym
++)
643 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
644 hppa_info
->section_syms
[isym
->st_shndx
] = i
;
647 /* We are finished with the local symbols. Get rid of them. */
650 /* Record which BFD we built the section_syms mapping for. */
651 hppa_info
->section_syms_bfd
= abfd
;
654 /* Record the symbol index for this input section. We may need it for
655 relocations when building shared libraries. When not building shared
656 libraries this value is never really used, but assign it to zero to
657 prevent out of bounds memory accesses in other routines. */
660 sec_symndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
662 /* If we did not find a section symbol for this section, then
663 something went terribly wrong above. */
664 if (sec_symndx
== -1)
667 sec_symndx
= hppa_info
->section_syms
[sec_symndx
];
672 dlt
= plt
= stubs
= NULL
;
676 relend
= relocs
+ sec
->reloc_count
;
677 for (rel
= relocs
; rel
< relend
; ++rel
)
687 struct elf_link_hash_entry
*h
= NULL
;
688 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
689 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
691 const char *addr_name
;
692 boolean maybe_dynamic
;
693 int dynrel_type
= R_PARISC_NONE
;
694 static reloc_howto_type
*howto
;
696 if (r_symndx
>= symtab_hdr
->sh_info
)
698 /* We're dealing with a global symbol -- find its hash entry
699 and mark it as being referenced. */
700 long indx
= r_symndx
- symtab_hdr
->sh_info
;
701 h
= elf_sym_hashes (abfd
)[indx
];
702 while (h
->root
.type
== bfd_link_hash_indirect
703 || h
->root
.type
== bfd_link_hash_warning
)
704 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
706 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
709 /* We can only get preliminary data on whether a symbol is
710 locally or externally defined, as not all of the input files
711 have yet been processed. Do something with what we know, as
712 this may help reduce memory usage and processing time later. */
713 maybe_dynamic
= false;
714 if (h
&& ((info
->shared
&& ! info
->symbolic
)
715 || ! (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
716 || h
->root
.type
== bfd_link_hash_defweak
))
717 maybe_dynamic
= true;
719 howto
= elf_hppa_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
723 /* These are simple indirect references to symbols through the
724 DLT. We need to create a DLT entry for any symbols which
725 appears in a DLTIND relocation. */
726 case R_PARISC_DLTIND21L
:
727 case R_PARISC_DLTIND14R
:
728 case R_PARISC_DLTIND14F
:
729 case R_PARISC_DLTIND14WR
:
730 case R_PARISC_DLTIND14DR
:
731 need_entry
= NEED_DLT
;
734 /* ?!? These need a DLT entry. But I have no idea what to do with
735 the "link time TP value. */
736 case R_PARISC_LTOFF_TP21L
:
737 case R_PARISC_LTOFF_TP14R
:
738 case R_PARISC_LTOFF_TP14F
:
739 case R_PARISC_LTOFF_TP64
:
740 case R_PARISC_LTOFF_TP14WR
:
741 case R_PARISC_LTOFF_TP14DR
:
742 case R_PARISC_LTOFF_TP16F
:
743 case R_PARISC_LTOFF_TP16WF
:
744 case R_PARISC_LTOFF_TP16DF
:
745 need_entry
= NEED_DLT
;
748 /* These are function calls. Depending on their precise target we
749 may need to make a stub for them. The stub uses the PLT, so we
750 need to create PLT entries for these symbols too. */
751 case R_PARISC_PCREL17F
:
752 case R_PARISC_PCREL22F
:
753 case R_PARISC_PCREL32
:
754 case R_PARISC_PCREL64
:
755 case R_PARISC_PCREL21L
:
756 case R_PARISC_PCREL17R
:
757 case R_PARISC_PCREL17C
:
758 case R_PARISC_PCREL14R
:
759 case R_PARISC_PCREL14F
:
760 case R_PARISC_PCREL22C
:
761 case R_PARISC_PCREL14WR
:
762 case R_PARISC_PCREL14DR
:
763 case R_PARISC_PCREL16F
:
764 case R_PARISC_PCREL16WF
:
765 case R_PARISC_PCREL16DF
:
766 need_entry
= (NEED_PLT
| NEED_STUB
);
769 case R_PARISC_PLTOFF21L
:
770 case R_PARISC_PLTOFF14R
:
771 case R_PARISC_PLTOFF14F
:
772 case R_PARISC_PLTOFF14WR
:
773 case R_PARISC_PLTOFF14DR
:
774 case R_PARISC_PLTOFF16F
:
775 case R_PARISC_PLTOFF16WF
:
776 case R_PARISC_PLTOFF16DF
:
777 need_entry
= (NEED_PLT
);
781 if (info
->shared
|| maybe_dynamic
)
782 need_entry
= (NEED_DYNREL
);
783 dynrel_type
= R_PARISC_DIR64
;
786 /* This is an indirect reference through the DLT to get the address
787 of a OPD descriptor. Thus we need to make a DLT entry that points
789 case R_PARISC_LTOFF_FPTR21L
:
790 case R_PARISC_LTOFF_FPTR14R
:
791 case R_PARISC_LTOFF_FPTR14WR
:
792 case R_PARISC_LTOFF_FPTR14DR
:
793 case R_PARISC_LTOFF_FPTR32
:
794 case R_PARISC_LTOFF_FPTR64
:
795 case R_PARISC_LTOFF_FPTR16F
:
796 case R_PARISC_LTOFF_FPTR16WF
:
797 case R_PARISC_LTOFF_FPTR16DF
:
798 if (info
->shared
|| maybe_dynamic
)
799 need_entry
= (NEED_DLT
| NEED_OPD
);
801 need_entry
= (NEED_DLT
| NEED_OPD
);
802 dynrel_type
= R_PARISC_FPTR64
;
805 /* This is a simple OPD entry. */
806 case R_PARISC_FPTR64
:
807 if (info
->shared
|| maybe_dynamic
)
808 need_entry
= (NEED_OPD
| NEED_DYNREL
);
810 need_entry
= (NEED_OPD
);
811 dynrel_type
= R_PARISC_FPTR64
;
814 /* Add more cases as needed. */
820 /* Collect a canonical name for this address. */
821 addr_name
= get_dyn_name (abfd
, h
, rel
, &buf
, &buf_len
);
823 /* Collect the canonical entry data for this address. */
824 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
825 addr_name
, true, true);
828 /* Stash away enough information to be able to find this symbol
829 regardless of whether or not it is local or global. */
832 dyn_h
->sym_indx
= r_symndx
;
834 /* ?!? We may need to do some error checking in here. */
835 /* Create what's needed. */
836 if (need_entry
& NEED_DLT
)
838 if (! hppa_info
->dlt_sec
839 && ! get_dlt (abfd
, info
, hppa_info
))
844 if (need_entry
& NEED_PLT
)
846 if (! hppa_info
->plt_sec
847 && ! get_plt (abfd
, info
, hppa_info
))
852 if (need_entry
& NEED_STUB
)
854 if (! hppa_info
->stub_sec
855 && ! get_stub (abfd
, info
, hppa_info
))
857 dyn_h
->want_stub
= 1;
860 if (need_entry
& NEED_OPD
)
862 if (! hppa_info
->opd_sec
863 && ! get_opd (abfd
, info
, hppa_info
))
868 /* FPTRs are not allocated by the dynamic linker for PA64, though
869 it is possible that will change in the future. */
871 /* This could be a local function that had its address taken, in
872 which case H will be NULL. */
874 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
877 /* Add a new dynamic relocation to the chain of dynamic
878 relocations for this symbol. */
879 if ((need_entry
& NEED_DYNREL
) && (sec
->flags
& SEC_ALLOC
))
881 if (! hppa_info
->other_rel_sec
882 && ! get_reloc_section (abfd
, hppa_info
, sec
))
885 if (!count_dyn_reloc (abfd
, dyn_h
, dynrel_type
, sec
,
886 sec_symndx
, rel
->r_offset
, rel
->r_addend
))
889 /* If we are building a shared library and we just recorded
890 a dynamic R_PARISC_FPTR64 relocation, then make sure the
891 section symbol for this section ends up in the dynamic
893 if (info
->shared
&& dynrel_type
== R_PARISC_FPTR64
894 && ! (_bfd_elf64_link_record_local_dynamic_symbol
895 (info
, abfd
, sec_symndx
)))
910 struct elf64_hppa_allocate_data
912 struct bfd_link_info
*info
;
916 /* Should we do dynamic things to this symbol? */
919 elf64_hppa_dynamic_symbol_p (h
, info
)
920 struct elf_link_hash_entry
*h
;
921 struct bfd_link_info
*info
;
926 while (h
->root
.type
== bfd_link_hash_indirect
927 || h
->root
.type
== bfd_link_hash_warning
)
928 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
930 if (h
->dynindx
== -1)
933 if (h
->root
.type
== bfd_link_hash_undefweak
934 || h
->root
.type
== bfd_link_hash_defweak
)
937 if (h
->root
.root
.string
[0] == '$' && h
->root
.root
.string
[1] == '$')
940 if ((info
->shared
&& !info
->symbolic
)
941 || ((h
->elf_link_hash_flags
942 & (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR
))
943 == (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR
)))
949 /* Mark all funtions exported by this file so that we can later allocate
950 entries in .opd for them. */
953 elf64_hppa_mark_exported_functions (h
, data
)
954 struct elf_link_hash_entry
*h
;
957 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
958 struct elf64_hppa_link_hash_table
*hppa_info
;
960 hppa_info
= elf64_hppa_hash_table (info
);
963 && (h
->root
.type
== bfd_link_hash_defined
964 || h
->root
.type
== bfd_link_hash_defweak
)
965 && h
->root
.u
.def
.section
->output_section
!= NULL
966 && h
->type
== STT_FUNC
)
968 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
970 /* Add this symbol to the PA64 linker hash table. */
971 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
972 h
->root
.root
.string
, true, true);
976 if (! hppa_info
->opd_sec
977 && ! get_opd (hppa_info
->root
.dynobj
, info
, hppa_info
))
981 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
987 /* Allocate space for a DLT entry. */
990 allocate_global_data_dlt (dyn_h
, data
)
991 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
994 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
998 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1000 if (x
->info
->shared
)
1002 /* Possibly add the symbol to the local dynamic symbol
1003 table since we might need to create a dynamic relocation
1006 || (h
&& h
->dynindx
== -1))
1009 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1011 if (!_bfd_elf64_link_record_local_dynamic_symbol
1012 (x
->info
, owner
, dyn_h
->sym_indx
))
1017 dyn_h
->dlt_offset
= x
->ofs
;
1018 x
->ofs
+= DLT_ENTRY_SIZE
;
1023 /* Allocate space for a DLT.PLT entry. */
1026 allocate_global_data_plt (dyn_h
, data
)
1027 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1030 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1033 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1034 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1035 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1036 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1038 dyn_h
->plt_offset
= x
->ofs
;
1039 x
->ofs
+= PLT_ENTRY_SIZE
;
1040 if (dyn_h
->plt_offset
< 0x2000)
1041 elf64_hppa_hash_table (x
->info
)->gp_offset
= dyn_h
->plt_offset
;
1044 dyn_h
->want_plt
= 0;
1049 /* Allocate space for a STUB entry. */
1052 allocate_global_data_stub (dyn_h
, data
)
1053 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1056 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1058 if (dyn_h
->want_stub
1059 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1060 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1061 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1062 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1064 dyn_h
->stub_offset
= x
->ofs
;
1065 x
->ofs
+= sizeof (plt_stub
);
1068 dyn_h
->want_stub
= 0;
1072 /* Allocate space for a FPTR entry. */
1075 allocate_global_data_opd (dyn_h
, data
)
1076 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1079 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1081 if (dyn_h
->want_opd
)
1083 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1086 while (h
->root
.type
== bfd_link_hash_indirect
1087 || h
->root
.type
== bfd_link_hash_warning
)
1088 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1090 /* We never need an opd entry for a symbol which is not
1091 defined by this output file. */
1092 if (h
&& h
->root
.type
== bfd_link_hash_undefined
)
1093 dyn_h
->want_opd
= 0;
1095 /* If we are creating a shared library, took the address of a local
1096 function or might export this function from this object file, then
1097 we have to create an opd descriptor. */
1098 else if (x
->info
->shared
1101 || ((h
->root
.type
== bfd_link_hash_defined
1102 || h
->root
.type
== bfd_link_hash_defweak
)
1103 && h
->root
.u
.def
.section
->output_section
!= NULL
))
1105 /* If we are creating a shared library, then we will have to
1106 create a runtime relocation for the symbol to properly
1107 initialize the .opd entry. Make sure the symbol gets
1108 added to the dynamic symbol table. */
1110 && (h
== NULL
|| (h
->dynindx
== -1)))
1113 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1115 if (!_bfd_elf64_link_record_local_dynamic_symbol
1116 (x
->info
, owner
, dyn_h
->sym_indx
))
1120 /* This may not be necessary or desirable anymore now that
1121 we have some support for dealing with section symbols
1122 in dynamic relocs. But name munging does make the result
1123 much easier to debug. ie, the EPLT reloc will reference
1124 a symbol like .foobar, instead of .text + offset. */
1125 if (x
->info
->shared
&& h
)
1128 struct elf_link_hash_entry
*nh
;
1130 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
1132 strcpy (new_name
+ 1, h
->root
.root
.string
);
1134 nh
= elf_link_hash_lookup (elf_hash_table (x
->info
),
1135 new_name
, true, true, true);
1137 nh
->root
.type
= h
->root
.type
;
1138 nh
->root
.u
.def
.value
= h
->root
.u
.def
.value
;
1139 nh
->root
.u
.def
.section
= h
->root
.u
.def
.section
;
1141 if (! bfd_elf64_link_record_dynamic_symbol (x
->info
, nh
))
1145 dyn_h
->opd_offset
= x
->ofs
;
1146 x
->ofs
+= OPD_ENTRY_SIZE
;
1149 /* Otherwise we do not need an opd entry. */
1151 dyn_h
->want_opd
= 0;
1156 /* HP requires the EI_OSABI field to be filled in. The assignment to
1157 EI_ABIVERSION may not be strictly necessary. */
1160 elf64_hppa_post_process_headers (abfd
, link_info
)
1162 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
1164 Elf_Internal_Ehdr
* i_ehdrp
;
1166 i_ehdrp
= elf_elfheader (abfd
);
1168 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
1169 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;
1172 /* Create function descriptor section (.opd). This section is called .opd
1173 because it contains "official prodecure descriptors". The "official"
1174 refers to the fact that these descriptors are used when taking the address
1175 of a procedure, thus ensuring a unique address for each procedure. */
1178 get_opd (abfd
, info
, hppa_info
)
1180 struct bfd_link_info
*info
;
1181 struct elf64_hppa_link_hash_table
*hppa_info
;
1186 opd
= hppa_info
->opd_sec
;
1189 dynobj
= hppa_info
->root
.dynobj
;
1191 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1193 opd
= bfd_make_section (dynobj
, ".opd");
1195 || !bfd_set_section_flags (dynobj
, opd
,
1200 | SEC_LINKER_CREATED
))
1201 || !bfd_set_section_alignment (abfd
, opd
, 3))
1207 hppa_info
->opd_sec
= opd
;
1213 /* Create the PLT section. */
1216 get_plt (abfd
, info
, hppa_info
)
1218 struct bfd_link_info
*info
;
1219 struct elf64_hppa_link_hash_table
*hppa_info
;
1224 plt
= hppa_info
->plt_sec
;
1227 dynobj
= hppa_info
->root
.dynobj
;
1229 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1231 plt
= bfd_make_section (dynobj
, ".plt");
1233 || !bfd_set_section_flags (dynobj
, plt
,
1238 | SEC_LINKER_CREATED
))
1239 || !bfd_set_section_alignment (abfd
, plt
, 3))
1245 hppa_info
->plt_sec
= plt
;
1251 /* Create the DLT section. */
1254 get_dlt (abfd
, info
, hppa_info
)
1256 struct bfd_link_info
*info
;
1257 struct elf64_hppa_link_hash_table
*hppa_info
;
1262 dlt
= hppa_info
->dlt_sec
;
1265 dynobj
= hppa_info
->root
.dynobj
;
1267 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1269 dlt
= bfd_make_section (dynobj
, ".dlt");
1271 || !bfd_set_section_flags (dynobj
, dlt
,
1276 | SEC_LINKER_CREATED
))
1277 || !bfd_set_section_alignment (abfd
, dlt
, 3))
1283 hppa_info
->dlt_sec
= dlt
;
1289 /* Create the stubs section. */
1292 get_stub (abfd
, info
, hppa_info
)
1294 struct bfd_link_info
*info
;
1295 struct elf64_hppa_link_hash_table
*hppa_info
;
1300 stub
= hppa_info
->stub_sec
;
1303 dynobj
= hppa_info
->root
.dynobj
;
1305 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1307 stub
= bfd_make_section (dynobj
, ".stub");
1309 || !bfd_set_section_flags (dynobj
, stub
,
1315 | SEC_LINKER_CREATED
))
1316 || !bfd_set_section_alignment (abfd
, stub
, 3))
1322 hppa_info
->stub_sec
= stub
;
1328 /* Create sections necessary for dynamic linking. This is only a rough
1329 cut and will likely change as we learn more about the somewhat
1330 unusual dynamic linking scheme HP uses.
1333 Contains code to implement cross-space calls. The first time one
1334 of the stubs is used it will call into the dynamic linker, later
1335 calls will go straight to the target.
1337 The only stub we support right now looks like
1341 ldd OFFSET+8(%dp),%dp
1343 Other stubs may be needed in the future. We may want the remove
1344 the break/nop instruction. It is only used right now to keep the
1345 offset of a .plt entry and a .stub entry in sync.
1348 This is what most people call the .got. HP used a different name.
1352 Relocations for the DLT.
1355 Function pointers as address,gp pairs.
1358 Should contain dynamic IPLT (and EPLT?) relocations.
1364 EPLT relocations for symbols exported from shared libraries. */
1367 elf64_hppa_create_dynamic_sections (abfd
, info
)
1369 struct bfd_link_info
*info
;
1373 if (! get_stub (abfd
, info
, elf64_hppa_hash_table (info
)))
1376 if (! get_dlt (abfd
, info
, elf64_hppa_hash_table (info
)))
1379 if (! get_plt (abfd
, info
, elf64_hppa_hash_table (info
)))
1382 if (! get_opd (abfd
, info
, elf64_hppa_hash_table (info
)))
1385 s
= bfd_make_section(abfd
, ".rela.dlt");
1387 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1391 | SEC_LINKER_CREATED
))
1392 || !bfd_set_section_alignment (abfd
, s
, 3))
1394 elf64_hppa_hash_table (info
)->dlt_rel_sec
= s
;
1396 s
= bfd_make_section(abfd
, ".rela.plt");
1398 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1402 | SEC_LINKER_CREATED
))
1403 || !bfd_set_section_alignment (abfd
, s
, 3))
1405 elf64_hppa_hash_table (info
)->plt_rel_sec
= s
;
1407 s
= bfd_make_section(abfd
, ".rela.data");
1409 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1413 | SEC_LINKER_CREATED
))
1414 || !bfd_set_section_alignment (abfd
, s
, 3))
1416 elf64_hppa_hash_table (info
)->other_rel_sec
= s
;
1418 s
= bfd_make_section(abfd
, ".rela.opd");
1420 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1424 | SEC_LINKER_CREATED
))
1425 || !bfd_set_section_alignment (abfd
, s
, 3))
1427 elf64_hppa_hash_table (info
)->opd_rel_sec
= s
;
1432 /* Allocate dynamic relocations for those symbols that turned out
1436 allocate_dynrel_entries (dyn_h
, data
)
1437 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1440 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1441 struct elf64_hppa_link_hash_table
*hppa_info
;
1442 struct elf64_hppa_dyn_reloc_entry
*rent
;
1443 boolean dynamic_symbol
, shared
;
1445 hppa_info
= elf64_hppa_hash_table (x
->info
);
1446 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
);
1447 shared
= x
->info
->shared
;
1449 /* We may need to allocate relocations for a non-dynamic symbol
1450 when creating a shared library. */
1451 if (!dynamic_symbol
&& !shared
)
1454 /* Take care of the normal data relocations. */
1456 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
1460 case R_PARISC_FPTR64
:
1461 /* Allocate one iff we are not building a shared library and
1462 !want_opd, which by this point will be true only if we're
1463 actually allocating one statically in the main executable. */
1464 if (!x
->info
->shared
&& dyn_h
->want_opd
)
1468 hppa_info
->other_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1470 /* Make sure this symbol gets into the dynamic symbol table if it is
1471 not already recorded. ?!? This should not be in the loop since
1472 the symbol need only be added once. */
1473 if (dyn_h
->h
== 0 || dyn_h
->h
->dynindx
== -1)
1474 if (!_bfd_elf64_link_record_local_dynamic_symbol
1475 (x
->info
, rent
->sec
->owner
, dyn_h
->sym_indx
))
1479 /* Take care of the GOT and PLT relocations. */
1481 if ((dynamic_symbol
|| shared
) && dyn_h
->want_dlt
)
1482 hppa_info
->dlt_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1484 /* If we are building a shared library, then every symbol that has an
1485 opd entry will need an EPLT relocation to relocate the symbol's address
1486 and __gp value based on the runtime load address. */
1487 if (shared
&& dyn_h
->want_opd
)
1488 hppa_info
->opd_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1490 if (dyn_h
->want_plt
&& dynamic_symbol
)
1492 bfd_size_type t
= 0;
1494 /* Dynamic symbols get one IPLT relocation. Local symbols in
1495 shared libraries get two REL relocations. Local symbols in
1496 main applications get nothing. */
1498 t
= sizeof (Elf64_External_Rela
);
1500 t
= 2 * sizeof (Elf64_External_Rela
);
1502 hppa_info
->plt_rel_sec
->_raw_size
+= t
;
1508 /* Adjust a symbol defined by a dynamic object and referenced by a
1512 elf64_hppa_adjust_dynamic_symbol (info
, h
)
1513 struct bfd_link_info
*info
;
1514 struct elf_link_hash_entry
*h
;
1516 /* ??? Undefined symbols with PLT entries should be re-defined
1517 to be the PLT entry. */
1519 /* If this is a weak symbol, and there is a real definition, the
1520 processor independent code will have arranged for us to see the
1521 real definition first, and we can just use the same value. */
1522 if (h
->weakdef
!= NULL
)
1524 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1525 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1526 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1527 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1531 /* If this is a reference to a symbol defined by a dynamic object which
1532 is not a function, we might allocate the symbol in our .dynbss section
1533 and allocate a COPY dynamic relocation.
1535 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1541 /* Set the final sizes of the dynamic sections and allocate memory for
1542 the contents of our special sections. */
1545 elf64_hppa_size_dynamic_sections (output_bfd
, info
)
1547 struct bfd_link_info
*info
;
1555 struct elf64_hppa_allocate_data data
;
1556 struct elf64_hppa_link_hash_table
*hppa_info
;
1558 hppa_info
= elf64_hppa_hash_table (info
);
1560 dynobj
= elf_hash_table (info
)->dynobj
;
1561 BFD_ASSERT (dynobj
!= NULL
);
1563 if (elf_hash_table (info
)->dynamic_sections_created
)
1565 /* Set the contents of the .interp section to the interpreter. */
1568 s
= bfd_get_section_by_name (dynobj
, ".interp");
1569 BFD_ASSERT (s
!= NULL
);
1570 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1571 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1576 /* We may have created entries in the .rela.got section.
1577 However, if we are not creating the dynamic sections, we will
1578 not actually use these entries. Reset the size of .rela.dlt,
1579 which will cause it to get stripped from the output file
1581 s
= bfd_get_section_by_name (dynobj
, ".rela.dlt");
1586 /* Allocate the GOT entries. */
1589 if (elf64_hppa_hash_table (info
)->dlt_sec
)
1592 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1593 allocate_global_data_dlt
, &data
);
1594 hppa_info
->dlt_sec
->_raw_size
= data
.ofs
;
1597 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1598 allocate_global_data_plt
, &data
);
1599 hppa_info
->plt_sec
->_raw_size
= data
.ofs
;
1602 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1603 allocate_global_data_stub
, &data
);
1604 hppa_info
->stub_sec
->_raw_size
= data
.ofs
;
1607 /* Mark each function this program exports so that we will allocate
1608 space in the .opd section for each function's FPTR.
1610 We have to traverse the main linker hash table since we have to
1611 find functions which may not have been mentioned in any relocs. */
1612 elf_link_hash_traverse (elf_hash_table (info
),
1613 elf64_hppa_mark_exported_functions
,
1616 /* Allocate space for entries in the .opd section. */
1617 if (elf64_hppa_hash_table (info
)->opd_sec
)
1620 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1621 allocate_global_data_opd
, &data
);
1622 hppa_info
->opd_sec
->_raw_size
= data
.ofs
;
1625 /* Now allocate space for dynamic relocations, if necessary. */
1626 if (hppa_info
->root
.dynamic_sections_created
)
1627 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1628 allocate_dynrel_entries
, &data
);
1630 /* The sizes of all the sections are set. Allocate memory for them. */
1634 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1639 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1642 /* It's OK to base decisions on the section name, because none
1643 of the dynobj section names depend upon the input files. */
1644 name
= bfd_get_section_name (dynobj
, s
);
1648 if (strcmp (name
, ".plt") == 0)
1650 if (s
->_raw_size
== 0)
1652 /* Strip this section if we don't need it; see the
1658 /* Remember whether there is a PLT. */
1662 else if (strcmp (name
, ".dlt") == 0)
1664 if (s
->_raw_size
== 0)
1666 /* Strip this section if we don't need it; see the
1671 else if (strcmp (name
, ".opd") == 0)
1673 if (s
->_raw_size
== 0)
1675 /* Strip this section if we don't need it; see the
1680 else if (strncmp (name
, ".rela", 4) == 0)
1682 if (s
->_raw_size
== 0)
1684 /* If we don't need this section, strip it from the
1685 output file. This is mostly to handle .rela.bss and
1686 .rela.plt. We must create both sections in
1687 create_dynamic_sections, because they must be created
1688 before the linker maps input sections to output
1689 sections. The linker does that before
1690 adjust_dynamic_symbol is called, and it is that
1691 function which decides whether anything needs to go
1692 into these sections. */
1699 /* Remember whether there are any reloc sections other
1701 if (strcmp (name
, ".rela.plt") != 0)
1703 const char *outname
;
1707 /* If this relocation section applies to a read only
1708 section, then we probably need a DT_TEXTREL
1709 entry. The entries in the .rela.plt section
1710 really apply to the .got section, which we
1711 created ourselves and so know is not readonly. */
1712 outname
= bfd_get_section_name (output_bfd
,
1714 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1716 && (target
->flags
& SEC_READONLY
) != 0
1717 && (target
->flags
& SEC_ALLOC
) != 0)
1721 /* We use the reloc_count field as a counter if we need
1722 to copy relocs into the output file. */
1726 else if (strncmp (name
, ".dlt", 4) != 0
1727 && strcmp (name
, ".stub") != 0
1728 && strcmp (name
, ".got") != 0)
1730 /* It's not one of our sections, so don't allocate space. */
1736 _bfd_strip_section_from_output (info
, s
);
1740 /* Allocate memory for the section contents if it has not
1741 been allocated already. */
1742 if (s
->contents
== NULL
)
1744 s
->contents
= (bfd_byte
*) bfd_alloc (dynobj
, s
->_raw_size
);
1745 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1750 if (elf_hash_table (info
)->dynamic_sections_created
)
1752 /* Always create a DT_PLTGOT. It actually has nothing to do with
1753 the PLT, it is how we communicate the __gp value of a load
1754 module to the dynamic linker. */
1755 if (! bfd_elf64_add_dynamic_entry (info
, DT_HP_DLD_FLAGS
, 0)
1756 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTGOT
, 0))
1759 /* Add some entries to the .dynamic section. We fill in the
1760 values later, in elf64_hppa_finish_dynamic_sections, but we
1761 must add the entries now so that we get the correct size for
1762 the .dynamic section. The DT_DEBUG entry is filled in by the
1763 dynamic linker and used by the debugger. */
1766 if (! bfd_elf64_add_dynamic_entry (info
, DT_DEBUG
, 0)
1767 || ! bfd_elf64_add_dynamic_entry (info
, DT_HP_DLD_HOOK
, 0)
1768 || ! bfd_elf64_add_dynamic_entry (info
, DT_HP_LOAD_MAP
, 0))
1774 if (! bfd_elf64_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1775 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTREL
, DT_RELA
)
1776 || ! bfd_elf64_add_dynamic_entry (info
, DT_JMPREL
, 0))
1782 if (! bfd_elf64_add_dynamic_entry (info
, DT_RELA
, 0)
1783 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELASZ
, 0)
1784 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELAENT
,
1785 sizeof (Elf64_External_Rela
)))
1791 if (! bfd_elf64_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1799 /* Called after we have output the symbol into the dynamic symbol
1800 table, but before we output the symbol into the normal symbol
1803 For some symbols we had to change their address when outputting
1804 the dynamic symbol table. We undo that change here so that
1805 the symbols have their expected value in the normal symbol
1809 elf64_hppa_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
1811 struct bfd_link_info
*info
;
1813 Elf_Internal_Sym
*sym
;
1814 asection
*input_sec
;
1816 struct elf64_hppa_link_hash_table
*hppa_info
;
1817 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1819 /* We may be called with the file symbol or section symbols.
1820 They never need munging, so it is safe to ignore them. */
1824 /* Get the PA dyn_symbol (if any) associated with NAME. */
1825 hppa_info
= elf64_hppa_hash_table (info
);
1826 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1827 name
, false, false);
1829 /* Function symbols for which we created .opd entries were munged
1830 by finish_dynamic_symbol and have to be un-munged here. */
1831 if (dyn_h
&& dyn_h
->want_opd
)
1833 /* Restore the saved value and section index. */
1834 sym
->st_value
= dyn_h
->st_value
;
1835 sym
->st_shndx
= dyn_h
->st_shndx
;
1841 /* Finish up dynamic symbol handling. We set the contents of various
1842 dynamic sections here. */
1845 elf64_hppa_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1847 struct bfd_link_info
*info
;
1848 struct elf_link_hash_entry
*h
;
1849 Elf_Internal_Sym
*sym
;
1851 asection
*stub
, *splt
, *sdlt
, *sopd
, *spltrel
, *sdltrel
;
1852 struct elf64_hppa_link_hash_table
*hppa_info
;
1853 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1855 hppa_info
= elf64_hppa_hash_table (info
);
1856 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1857 h
->root
.root
.string
, false, false);
1859 stub
= hppa_info
->stub_sec
;
1860 splt
= hppa_info
->plt_sec
;
1861 sdlt
= hppa_info
->dlt_sec
;
1862 sopd
= hppa_info
->opd_sec
;
1863 spltrel
= hppa_info
->plt_rel_sec
;
1864 sdltrel
= hppa_info
->dlt_rel_sec
;
1866 BFD_ASSERT (stub
!= NULL
&& splt
!= NULL
1867 && sopd
!= NULL
&& sdlt
!= NULL
)
1869 /* Incredible. It is actually necessary to NOT use the symbol's real
1870 value when building the dynamic symbol table for a shared library.
1871 At least for symbols that refer to functions.
1873 We will store a new value and section index into the symbol long
1874 enough to output it into the dynamic symbol table, then we restore
1875 the original values (in elf64_hppa_link_output_symbol_hook). */
1876 if (dyn_h
&& dyn_h
->want_opd
)
1878 /* Save away the original value and section index so that we
1879 can restore them later. */
1880 dyn_h
->st_value
= sym
->st_value
;
1881 dyn_h
->st_shndx
= sym
->st_shndx
;
1883 /* For the dynamic symbol table entry, we want the value to be
1884 address of this symbol's entry within the .opd section. */
1885 sym
->st_value
= (dyn_h
->opd_offset
1886 + sopd
->output_offset
1887 + sopd
->output_section
->vma
);
1888 sym
->st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
1889 sopd
->output_section
);
1892 /* Initialize a .plt entry if requested. */
1893 if (dyn_h
&& dyn_h
->want_plt
1894 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
1897 Elf_Internal_Rela rel
;
1899 /* We do not actually care about the value in the PLT entry
1900 if we are creating a shared library and the symbol is
1901 still undefined, we create a dynamic relocation to fill
1902 in the correct value. */
1903 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
1906 value
= (h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->vma
);
1908 /* Fill in the entry in the procedure linkage table.
1910 The format of a plt entry is
1913 plt_offset is the offset within the PLT section at which to
1914 install the PLT entry.
1916 We are modifying the in-memory PLT contents here, so we do not add
1917 in the output_offset of the PLT section. */
1919 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
);
1920 value
= _bfd_get_gp_value (splt
->output_section
->owner
);
1921 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
+ 0x8);
1923 /* Create a dynamic IPLT relocation for this entry.
1925 We are creating a relocation in the output file's PLT section,
1926 which is included within the DLT secton. So we do need to include
1927 the PLT's output_offset in the computation of the relocation's
1929 rel
.r_offset
= (dyn_h
->plt_offset
+ splt
->output_offset
1930 + splt
->output_section
->vma
);
1931 rel
.r_info
= ELF64_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
1934 bfd_elf64_swap_reloca_out (splt
->output_section
->owner
, &rel
,
1935 (((Elf64_External_Rela
*)
1937 + spltrel
->reloc_count
));
1938 spltrel
->reloc_count
++;
1941 /* Initialize an external call stub entry if requested. */
1942 if (dyn_h
&& dyn_h
->want_stub
1943 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
1948 /* Install the generic stub template.
1950 We are modifying the contents of the stub section, so we do not
1951 need to include the stub section's output_offset here. */
1952 memcpy (stub
->contents
+ dyn_h
->stub_offset
, plt_stub
, sizeof (plt_stub
));
1954 /* Fix up the first ldd instruction.
1956 We are modifying the contents of the STUB section in memory,
1957 so we do not need to include its output offset in this computation.
1959 Note the plt_offset value is the value of the PLT entry relative to
1960 the start of the PLT section. These instructions will reference
1961 data relative to the value of __gp, which may not necessarily have
1962 the same address as the start of the PLT section.
1964 gp_offset contains the offset of __gp within the PLT section. */
1965 value
= dyn_h
->plt_offset
- hppa_info
->gp_offset
;
1967 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
);
1969 insn
|= ((value
& 0x2000) >> 13);
1972 bfd_put_32 (stub
->owner
, (insn
| value
),
1973 stub
->contents
+ dyn_h
->stub_offset
);
1975 /* Fix up the second ldd instruction. */
1976 value
= dyn_h
->plt_offset
- hppa_info
->gp_offset
+ 8;
1978 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
+ 8);
1980 insn
|= ((value
& 0x2000) >> 13);
1983 bfd_put_32 (stub
->owner
, (insn
| value
),
1984 stub
->contents
+ dyn_h
->stub_offset
+ 8);
1987 /* Millicode symbols should not be put in the dynamic
1988 symbol table under any circumstances. */
1989 if (ELF_ST_TYPE (sym
->st_info
) == STT_PARISC_MILLI
)
1995 /* The .opd section contains FPTRs for each function this file
1996 exports. Initialize the FPTR entries. */
1999 elf64_hppa_finalize_opd (dyn_h
, data
)
2000 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2003 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2004 struct elf64_hppa_link_hash_table
*hppa_info
;
2005 struct elf_link_hash_entry
*h
= dyn_h
->h
;
2009 hppa_info
= elf64_hppa_hash_table (info
);
2010 sopd
= hppa_info
->opd_sec
;
2011 sopdrel
= hppa_info
->opd_rel_sec
;
2013 if (h
&& dyn_h
&& dyn_h
->want_opd
)
2017 /* The first two words of an .opd entry are zero.
2019 We are modifying the contents of the OPD section in memory, so we
2020 do not need to include its output offset in this computation. */
2021 memset (sopd
->contents
+ dyn_h
->opd_offset
, 0, 16);
2023 value
= (h
->root
.u
.def
.value
2024 + h
->root
.u
.def
.section
->output_section
->vma
2025 + h
->root
.u
.def
.section
->output_offset
);
2027 /* The next word is the address of the function. */
2028 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 16);
2030 /* The last word is our local __gp value. */
2031 value
= _bfd_get_gp_value (sopd
->output_section
->owner
);
2032 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 24);
2035 /* If we are generating a shared library, we must generate EPLT relocations
2036 for each entry in the .opd, even for static functions (they may have
2037 had their address taken). */
2038 if (info
->shared
&& dyn_h
&& dyn_h
->want_opd
)
2040 Elf64_Internal_Rela rel
;
2044 /* We may need to do a relocation against a local symbol, in
2045 which case we have to look up it's dynamic symbol index off
2046 the local symbol hash table. */
2047 if (h
&& h
->dynindx
!= -1)
2048 dynindx
= h
->dynindx
;
2051 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2054 /* The offset of this relocation is the absolute address of the
2055 .opd entry for this symbol. */
2056 rel
.r_offset
= (dyn_h
->opd_offset
+ sopd
->output_offset
2057 + sopd
->output_section
->vma
);
2059 /* If H is non-null, then we have an external symbol.
2061 It is imperative that we use a different dynamic symbol for the
2062 EPLT relocation if the symbol has global scope.
2064 In the dynamic symbol table, the function symbol will have a value
2065 which is address of the function's .opd entry.
2067 Thus, we can not use that dynamic symbol for the EPLT relocation
2068 (if we did, the data in the .opd would reference itself rather
2069 than the actual address of the function). Instead we have to use
2070 a new dynamic symbol which has the same value as the original global
2073 We prefix the original symbol with a "." and use the new symbol in
2074 the EPLT relocation. This new symbol has already been recorded in
2075 the symbol table, we just have to look it up and use it.
2077 We do not have such problems with static functions because we do
2078 not make their addresses in the dynamic symbol table point to
2079 the .opd entry. Ultimately this should be safe since a static
2080 function can not be directly referenced outside of its shared
2083 We do have to play similar games for FPTR relocations in shared
2084 libraries, including those for static symbols. See the FPTR
2085 handling in elf64_hppa_finalize_dynreloc. */
2089 struct elf_link_hash_entry
*nh
;
2091 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
2093 strcpy (new_name
+ 1, h
->root
.root
.string
);
2095 nh
= elf_link_hash_lookup (elf_hash_table (info
),
2096 new_name
, false, false, false);
2098 /* All we really want from the new symbol is its dynamic
2100 dynindx
= nh
->dynindx
;
2104 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_EPLT
);
2106 bfd_elf64_swap_reloca_out (sopd
->output_section
->owner
, &rel
,
2107 (((Elf64_External_Rela
*)
2109 + sopdrel
->reloc_count
));
2110 sopdrel
->reloc_count
++;
2115 /* The .dlt section contains addresses for items referenced through the
2116 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2117 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2120 elf64_hppa_finalize_dlt (dyn_h
, data
)
2121 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2124 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2125 struct elf64_hppa_link_hash_table
*hppa_info
;
2126 asection
*sdlt
, *sdltrel
;
2127 struct elf_link_hash_entry
*h
= dyn_h
->h
;
2129 hppa_info
= elf64_hppa_hash_table (info
);
2131 sdlt
= hppa_info
->dlt_sec
;
2132 sdltrel
= hppa_info
->dlt_rel_sec
;
2134 /* H/DYN_H may refer to a local variable and we know it's
2135 address, so there is no need to create a relocation. Just install
2136 the proper value into the DLT, note this shortcut can not be
2137 skipped when building a shared library. */
2138 if (! info
->shared
&& h
&& dyn_h
&& dyn_h
->want_dlt
)
2142 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2143 to point to the FPTR entry in the .opd section.
2145 We include the OPD's output offset in this computation as
2146 we are referring to an absolute address in the resulting
2148 if (dyn_h
->want_opd
)
2150 value
= (dyn_h
->opd_offset
2151 + hppa_info
->opd_sec
->output_offset
2152 + hppa_info
->opd_sec
->output_section
->vma
);
2156 value
= (h
->root
.u
.def
.value
2157 + h
->root
.u
.def
.section
->output_offset
);
2159 if (h
->root
.u
.def
.section
->output_section
)
2160 value
+= h
->root
.u
.def
.section
->output_section
->vma
;
2162 value
+= h
->root
.u
.def
.section
->vma
;
2165 /* We do not need to include the output offset of the DLT section
2166 here because we are modifying the in-memory contents. */
2167 bfd_put_64 (sdlt
->owner
, value
, sdlt
->contents
+ dyn_h
->dlt_offset
);
2170 /* Create a relocation for the DLT entry assocated with this symbol.
2171 When building a shared library the symbol does not have to be dynamic. */
2173 && (elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
) || info
->shared
))
2175 Elf64_Internal_Rela rel
;
2178 /* We may need to do a relocation against a local symbol, in
2179 which case we have to look up it's dynamic symbol index off
2180 the local symbol hash table. */
2181 if (h
&& h
->dynindx
!= -1)
2182 dynindx
= h
->dynindx
;
2185 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2189 /* Create a dynamic relocation for this entry. Do include the output
2190 offset of the DLT entry since we need an absolute address in the
2191 resulting object file. */
2192 rel
.r_offset
= (dyn_h
->dlt_offset
+ sdlt
->output_offset
2193 + sdlt
->output_section
->vma
);
2194 if (h
&& h
->type
== STT_FUNC
)
2195 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_FPTR64
);
2197 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_DIR64
);
2200 bfd_elf64_swap_reloca_out (sdlt
->output_section
->owner
, &rel
,
2201 (((Elf64_External_Rela
*)
2203 + sdltrel
->reloc_count
));
2204 sdltrel
->reloc_count
++;
2209 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2210 for dynamic functions used to initialize static data. */
2213 elf64_hppa_finalize_dynreloc (dyn_h
, data
)
2214 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2217 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2218 struct elf64_hppa_link_hash_table
*hppa_info
;
2219 struct elf_link_hash_entry
*h
;
2222 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
);
2224 if (!dynamic_symbol
&& !info
->shared
)
2227 if (dyn_h
->reloc_entries
)
2229 struct elf64_hppa_dyn_reloc_entry
*rent
;
2232 hppa_info
= elf64_hppa_hash_table (info
);
2235 /* We may need to do a relocation against a local symbol, in
2236 which case we have to look up it's dynamic symbol index off
2237 the local symbol hash table. */
2238 if (h
&& h
->dynindx
!= -1)
2239 dynindx
= h
->dynindx
;
2242 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2245 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
2247 Elf64_Internal_Rela rel
;
2251 case R_PARISC_FPTR64
:
2252 /* Allocate one iff we are not building a shared library and
2253 !want_opd, which by this point will be true only if we're
2254 actually allocating one statically in the main executable. */
2255 if (!info
->shared
&& dyn_h
->want_opd
)
2260 /* Create a dynamic relocation for this entry.
2262 We need the output offset for the reloc's section because
2263 we are creating an absolute address in the resulting object
2265 rel
.r_offset
= (rent
->offset
+ rent
->sec
->output_offset
2266 + rent
->sec
->output_section
->vma
);
2268 /* An FPTR64 relocation implies that we took the address of
2269 a function and that the function has an entry in the .opd
2270 section. We want the FPTR64 relocation to reference the
2273 We could munge the symbol value in the dynamic symbol table
2274 (in fact we already do for functions with global scope) to point
2275 to the .opd entry. Then we could use that dynamic symbol in
2278 Or we could do something sensible, not munge the symbol's
2279 address and instead just use a different symbol to reference
2280 the .opd entry. At least that seems sensible until you
2281 realize there's no local dynamic symbols we can use for that
2282 purpose. Thus the hair in the check_relocs routine.
2284 We use a section symbol recorded by check_relocs as the
2285 base symbol for the relocation. The addend is the difference
2286 between the section symbol and the address of the .opd entry. */
2287 if (info
->shared
&& rent
->type
== R_PARISC_FPTR64
)
2289 bfd_vma value
, value2
;
2293 /* First compute the address of the opd entry for this symbol. */
2294 value
= (dyn_h
->opd_offset
2295 + hppa_info
->opd_sec
->output_section
->vma
2296 + hppa_info
->opd_sec
->output_offset
);
2298 /* Compute the value of the start of the section with
2300 value2
= (rent
->sec
->output_section
->vma
2301 + rent
->sec
->output_offset
);
2303 /* Compute the difference between the start of the section
2304 with the relocation and the opd entry. */
2307 /* The result becomes the addend of the relocation. */
2308 rel
.r_addend
= value
;
2310 /* The section symbol becomes the symbol for the dynamic
2313 = _bfd_elf_link_lookup_local_dynindx (info
,
2318 rel
.r_addend
= rent
->addend
;
2320 rel
.r_info
= ELF64_R_INFO (dynindx
, rent
->type
);
2322 bfd_elf64_swap_reloca_out (hppa_info
->other_rel_sec
->output_section
->owner
,
2324 (((Elf64_External_Rela
*)
2325 hppa_info
->other_rel_sec
->contents
)
2326 + hppa_info
->other_rel_sec
->reloc_count
));
2327 hppa_info
->other_rel_sec
->reloc_count
++;
2334 /* Finish up the dynamic sections. */
2337 elf64_hppa_finish_dynamic_sections (output_bfd
, info
)
2339 struct bfd_link_info
*info
;
2343 struct elf64_hppa_link_hash_table
*hppa_info
;
2345 hppa_info
= elf64_hppa_hash_table (info
);
2347 /* Finalize the contents of the .opd section. */
2348 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2349 elf64_hppa_finalize_opd
,
2352 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2353 elf64_hppa_finalize_dynreloc
,
2356 /* Finalize the contents of the .dlt section. */
2357 dynobj
= elf_hash_table (info
)->dynobj
;
2358 /* Finalize the contents of the .dlt section. */
2359 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2360 elf64_hppa_finalize_dlt
,
2364 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2366 if (elf_hash_table (info
)->dynamic_sections_created
)
2368 Elf64_External_Dyn
*dyncon
, *dynconend
;
2369 struct elf_link_hash_entry
*h
;
2371 BFD_ASSERT (sdyn
!= NULL
);
2373 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2374 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2375 for (; dyncon
< dynconend
; dyncon
++)
2377 Elf_Internal_Dyn dyn
;
2380 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2387 case DT_HP_LOAD_MAP
:
2388 /* Compute the absolute address of 16byte scratchpad area
2389 for the dynamic linker.
2391 By convention the linker script will allocate the scratchpad
2392 area at the start of the .data section. So all we have to
2393 to is find the start of the .data section. */
2394 s
= bfd_get_section_by_name (output_bfd
, ".data");
2395 dyn
.d_un
.d_ptr
= s
->vma
;
2396 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2400 /* HP's use PLTGOT to set the GOT register. */
2401 dyn
.d_un
.d_ptr
= _bfd_get_gp_value (output_bfd
);
2402 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2406 s
= hppa_info
->plt_rel_sec
;
2407 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2408 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2412 s
= hppa_info
->plt_rel_sec
;
2413 dyn
.d_un
.d_val
= s
->_raw_size
;
2414 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2418 s
= hppa_info
->other_rel_sec
;
2420 s
= hppa_info
->dlt_rel_sec
;
2421 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2422 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2426 s
= hppa_info
->other_rel_sec
;
2427 dyn
.d_un
.d_val
= s
->_raw_size
;
2428 s
= hppa_info
->dlt_rel_sec
;
2429 dyn
.d_un
.d_val
+= s
->_raw_size
;
2430 s
= hppa_info
->opd_rel_sec
;
2431 dyn
.d_un
.d_val
+= s
->_raw_size
;
2432 /* There is some question about whether or not the size of
2433 the PLT relocs should be included here. HP's tools do
2434 it, so we'll emulate them. */
2435 s
= hppa_info
->plt_rel_sec
;
2436 dyn
.d_un
.d_val
+= s
->_raw_size
;
2437 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2448 /* Return the number of additional phdrs we will need.
2450 The generic ELF code only creates PT_PHDRs for executables. The HP
2451 dynamic linker requires PT_PHDRs for dynamic libraries too.
2453 This routine indicates that the backend needs one additional program
2454 header for that case.
2456 Note we do not have access to the link info structure here, so we have
2457 to guess whether or not we are building a shared library based on the
2458 existence of a .interp section. */
2461 elf64_hppa_additional_program_headers (abfd
)
2466 /* If we are creating a shared library, then we have to create a
2467 PT_PHDR segment. HP's dynamic linker chokes without it. */
2468 s
= bfd_get_section_by_name (abfd
, ".interp");
2474 /* Allocate and initialize any program headers required by this
2477 The generic ELF code only creates PT_PHDRs for executables. The HP
2478 dynamic linker requires PT_PHDRs for dynamic libraries too.
2480 This allocates the PT_PHDR and initializes it in a manner suitable
2483 Note we do not have access to the link info structure here, so we have
2484 to guess whether or not we are building a shared library based on the
2485 existence of a .interp section. */
2488 elf64_hppa_modify_segment_map (abfd
)
2491 struct elf_segment_map
*m
, **pm
;
2494 s
= bfd_get_section_by_name (abfd
, ".interp");
2497 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2498 if (m
->p_type
== PT_PHDR
)
2502 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, sizeof *m
);
2506 m
->p_type
= PT_PHDR
;
2507 m
->p_flags
= PF_R
| PF_X
;
2508 m
->p_flags_valid
= 1;
2509 m
->p_paddr_valid
= 1;
2510 m
->includes_phdrs
= 1;
2512 m
->next
= elf_tdata (abfd
)->segment_map
;
2513 elf_tdata (abfd
)->segment_map
= m
;
2517 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2518 if (m
->p_type
== PT_LOAD
)
2522 for (i
= 0; i
< m
->count
; i
++)
2524 /* The code "hint" is not really a hint. It is a requirement
2525 for certain versions of the HP dynamic linker. Worse yet,
2526 it must be set even if the shared library does not have
2527 any code in its "text" segment (thus the check for .hash
2528 to catch this situation). */
2529 if (m
->sections
[i
]->flags
& SEC_CODE
2530 || (strcmp (m
->sections
[i
]->name
, ".hash") == 0))
2531 m
->p_flags
|= (PF_X
| PF_HP_CODE
);
2538 /* The hash bucket size is the standard one, namely 4. */
2540 const struct elf_size_info hppa64_elf_size_info
=
2542 sizeof (Elf64_External_Ehdr
),
2543 sizeof (Elf64_External_Phdr
),
2544 sizeof (Elf64_External_Shdr
),
2545 sizeof (Elf64_External_Rel
),
2546 sizeof (Elf64_External_Rela
),
2547 sizeof (Elf64_External_Sym
),
2548 sizeof (Elf64_External_Dyn
),
2549 sizeof (Elf_External_Note
),
2553 ELFCLASS64
, EV_CURRENT
,
2554 bfd_elf64_write_out_phdrs
,
2555 bfd_elf64_write_shdrs_and_ehdr
,
2556 bfd_elf64_write_relocs
,
2557 bfd_elf64_swap_symbol_out
,
2558 bfd_elf64_slurp_reloc_table
,
2559 bfd_elf64_slurp_symbol_table
,
2560 bfd_elf64_swap_dyn_in
,
2561 bfd_elf64_swap_dyn_out
,
2568 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2569 #define TARGET_BIG_NAME "elf64-hppa"
2570 #define ELF_ARCH bfd_arch_hppa
2571 #define ELF_MACHINE_CODE EM_PARISC
2572 /* This is not strictly correct. The maximum page size for PA2.0 is
2573 64M. But everything still uses 4k. */
2574 #define ELF_MAXPAGESIZE 0x1000
2575 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2576 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2577 #define elf_info_to_howto elf_hppa_info_to_howto
2578 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2580 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2581 #define elf_backend_object_p elf64_hppa_object_p
2582 #define elf_backend_final_write_processing \
2583 elf_hppa_final_write_processing
2584 #define elf_backend_fake_sections elf_hppa_fake_sections
2585 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2587 #define elf_backend_relocate_section elf_hppa_relocate_section
2589 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2591 #define elf_backend_create_dynamic_sections \
2592 elf64_hppa_create_dynamic_sections
2593 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2595 #define elf_backend_adjust_dynamic_symbol \
2596 elf64_hppa_adjust_dynamic_symbol
2598 #define elf_backend_size_dynamic_sections \
2599 elf64_hppa_size_dynamic_sections
2601 #define elf_backend_finish_dynamic_symbol \
2602 elf64_hppa_finish_dynamic_symbol
2603 #define elf_backend_finish_dynamic_sections \
2604 elf64_hppa_finish_dynamic_sections
2606 /* Stuff for the BFD linker: */
2607 #define bfd_elf64_bfd_link_hash_table_create \
2608 elf64_hppa_hash_table_create
2610 #define elf_backend_check_relocs \
2611 elf64_hppa_check_relocs
2613 #define elf_backend_size_info \
2614 hppa64_elf_size_info
2616 #define elf_backend_additional_program_headers \
2617 elf64_hppa_additional_program_headers
2619 #define elf_backend_modify_segment_map \
2620 elf64_hppa_modify_segment_map
2622 #define elf_backend_link_output_symbol_hook \
2623 elf64_hppa_link_output_symbol_hook
2626 #define elf_backend_want_got_plt 0
2627 #define elf_backend_plt_readonly 0
2628 #define elf_backend_want_plt_sym 0
2629 #define elf_backend_got_header_size 0
2630 #define elf_backend_plt_header_size 0
2631 #define elf_backend_type_change_ok true
2633 #include "elf64-target.h"