Add __ImageBase symbol to pe.em and pep.em.
[binutils.git] / gold / x86_64.cc
blob223523eb5f7470cbe20c11460ab57436379b02b0
1 // x86_64.cc -- x86_64 target support for gold.
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file. (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 // Library General Public License for more details.
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
32 #include "gold.h"
34 #include <cstring>
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
49 namespace
52 using namespace gold;
54 class Output_data_plt_x86_64;
56 // The x86_64 target class.
57 // See the ABI at
58 // http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 // http://people.redhat.com/drepper/tls.pdf
61 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
63 class Target_x86_64 : public Sized_target<64, false>
65 public:
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73 copy_relocs_(NULL), dynbss_(NULL)
74 { }
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
86 size_t local_symbol_count,
87 const unsigned char* plocal_symbols,
88 Symbol** global_symbols);
90 // Finalize the sections.
91 void
92 do_finalize_sections(Layout*);
94 // Return the value to use for a dynamic which requires special
95 // treatment.
96 uint64_t
97 do_dynsym_value(const Symbol*) const;
99 // Relocate a section.
100 void
101 relocate_section(const Relocate_info<64, false>*,
102 unsigned int sh_type,
103 const unsigned char* prelocs,
104 size_t reloc_count,
105 unsigned char* view,
106 elfcpp::Elf_types<64>::Elf_Addr view_address,
107 off_t view_size);
109 // Return a string used to fill a code section with nops.
110 std::string
111 do_code_fill(off_t length);
113 // Return the size of the GOT section.
114 off_t
115 got_size()
117 gold_assert(this->got_ != NULL);
118 return this->got_->data_size();
121 private:
122 // The class which scans relocations.
123 struct Scan
125 inline void
126 local(const General_options& options, Symbol_table* symtab,
127 Layout* layout, Target_x86_64* target,
128 Sized_relobj<64, false>* object,
129 unsigned int data_shndx,
130 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
131 const elfcpp::Sym<64, false>& lsym);
133 inline void
134 global(const General_options& options, Symbol_table* symtab,
135 Layout* layout, Target_x86_64* target,
136 Sized_relobj<64, false>* object,
137 unsigned int data_shndx,
138 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
139 Symbol* gsym);
141 static void
142 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
144 static void
145 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
146 Symbol*);
149 // The class which implements relocation.
150 class Relocate
152 public:
153 Relocate()
154 : skip_call_tls_get_addr_(false)
157 ~Relocate()
159 if (this->skip_call_tls_get_addr_)
161 // FIXME: This needs to specify the location somehow.
162 gold_error(_("missing expected TLS relocation"));
166 // Do a relocation. Return false if the caller should not issue
167 // any warnings about this relocation.
168 inline bool
169 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
170 const elfcpp::Rela<64, false>&,
171 unsigned int r_type, const Sized_symbol<64>*,
172 const Symbol_value<64>*,
173 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
174 off_t);
176 private:
177 // Do a TLS relocation.
178 inline void
179 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
180 const elfcpp::Rela<64, false>&,
181 unsigned int r_type, const Sized_symbol<64>*,
182 const Symbol_value<64>*,
183 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
185 // Do a TLS General-Dynamic to Local-Exec transition.
186 inline void
187 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
188 Output_segment* tls_segment,
189 const elfcpp::Rela<64, false>&, unsigned int r_type,
190 elfcpp::Elf_types<64>::Elf_Addr value,
191 unsigned char* view,
192 off_t view_size);
194 // Do a TLS Local-Dynamic to Local-Exec transition.
195 inline void
196 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
197 Output_segment* tls_segment,
198 const elfcpp::Rela<64, false>&, unsigned int r_type,
199 elfcpp::Elf_types<64>::Elf_Addr value,
200 unsigned char* view,
201 off_t view_size);
203 // Do a TLS Initial-Exec to Local-Exec transition.
204 static inline void
205 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
206 Output_segment* tls_segment,
207 const elfcpp::Rela<64, false>&, unsigned int r_type,
208 elfcpp::Elf_types<64>::Elf_Addr value,
209 unsigned char* view,
210 off_t view_size);
212 // This is set if we should skip the next reloc, which should be a
213 // PLT32 reloc against ___tls_get_addr.
214 bool skip_call_tls_get_addr_;
217 // Adjust TLS relocation type based on the options and whether this
218 // is a local symbol.
219 static tls::Tls_optimization
220 optimize_tls_reloc(bool is_final, int r_type);
222 // Get the GOT section, creating it if necessary.
223 Output_data_got<64, false>*
224 got_section(Symbol_table*, Layout*);
226 // Get the GOT PLT section.
227 Output_data_space*
228 got_plt_section() const
230 gold_assert(this->got_plt_ != NULL);
231 return this->got_plt_;
234 // Create a PLT entry for a global symbol.
235 void
236 make_plt_entry(Symbol_table*, Layout*, Symbol*);
238 // Get the PLT section.
239 Output_data_plt_x86_64*
240 plt_section() const
242 gold_assert(this->plt_ != NULL);
243 return this->plt_;
246 // Get the dynamic reloc section, creating it if necessary.
247 Reloc_section*
248 rela_dyn_section(Layout*);
250 // Copy a relocation against a global symbol.
251 void
252 copy_reloc(const General_options*, Symbol_table*, Layout*,
253 Sized_relobj<64, false>*, unsigned int,
254 Symbol*, const elfcpp::Rela<64, false>&);
256 // Information about this specific target which we pass to the
257 // general Target structure.
258 static const Target::Target_info x86_64_info;
260 // The GOT section.
261 Output_data_got<64, false>* got_;
262 // The PLT section.
263 Output_data_plt_x86_64* plt_;
264 // The GOT PLT section.
265 Output_data_space* got_plt_;
266 // The dynamic reloc section.
267 Reloc_section* rela_dyn_;
268 // Relocs saved to avoid a COPY reloc.
269 Copy_relocs<64, false>* copy_relocs_;
270 // Space for variables copied with a COPY reloc.
271 Output_data_space* dynbss_;
274 const Target::Target_info Target_x86_64::x86_64_info =
276 64, // size
277 false, // is_big_endian
278 elfcpp::EM_X86_64, // machine_code
279 false, // has_make_symbol
280 false, // has_resolve
281 true, // has_code_fill
282 true, // is_default_stack_executable
283 "/lib/ld64.so.1", // program interpreter
284 0x400000, // default_text_segment_address
285 0x1000, // abi_pagesize
286 0x1000 // common_pagesize
289 // Get the GOT section, creating it if necessary.
291 Output_data_got<64, false>*
292 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
294 if (this->got_ == NULL)
296 gold_assert(symtab != NULL && layout != NULL);
298 this->got_ = new Output_data_got<64, false>();
300 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
301 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
302 this->got_);
304 // The old GNU linker creates a .got.plt section. We just
305 // create another set of data in the .got section. Note that we
306 // always create a PLT if we create a GOT, although the PLT
307 // might be empty.
308 this->got_plt_ = new Output_data_space(8);
309 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
310 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
311 this->got_plt_);
313 // The first three entries are reserved.
314 this->got_plt_->set_space_size(3 * 8);
316 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
317 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
318 this->got_plt_,
319 0, 0, elfcpp::STT_OBJECT,
320 elfcpp::STB_LOCAL,
321 elfcpp::STV_HIDDEN, 0,
322 false, false);
325 return this->got_;
328 // Get the dynamic reloc section, creating it if necessary.
330 Target_x86_64::Reloc_section*
331 Target_x86_64::rela_dyn_section(Layout* layout)
333 if (this->rela_dyn_ == NULL)
335 gold_assert(layout != NULL);
336 this->rela_dyn_ = new Reloc_section();
337 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
338 elfcpp::SHF_ALLOC, this->rela_dyn_);
340 return this->rela_dyn_;
343 // A class to handle the PLT data.
345 class Output_data_plt_x86_64 : public Output_section_data
347 public:
348 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
350 Output_data_plt_x86_64(Layout*, Output_data_space*);
352 // Add an entry to the PLT.
353 void
354 add_entry(Symbol* gsym);
356 // Return the .rel.plt section data.
357 const Reloc_section*
358 rel_plt() const
359 { return this->rel_; }
361 protected:
362 void
363 do_adjust_output_section(Output_section* os);
365 private:
366 // The size of an entry in the PLT.
367 static const int plt_entry_size = 16;
369 // The first entry in the PLT.
370 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
371 // procedure linkage table for both programs and shared objects."
372 static unsigned char first_plt_entry[plt_entry_size];
374 // Other entries in the PLT for an executable.
375 static unsigned char plt_entry[plt_entry_size];
377 // Set the final size.
378 void
379 do_set_address(uint64_t, off_t)
380 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
382 // Write out the PLT data.
383 void
384 do_write(Output_file*);
386 // The reloc section.
387 Reloc_section* rel_;
388 // The .got.plt section.
389 Output_data_space* got_plt_;
390 // The number of PLT entries.
391 unsigned int count_;
394 // Create the PLT section. The ordinary .got section is an argument,
395 // since we need to refer to the start. We also create our own .got
396 // section just for PLT entries.
398 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
399 Output_data_space* got_plt)
400 : Output_section_data(8), got_plt_(got_plt), count_(0)
402 this->rel_ = new Reloc_section();
403 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
404 elfcpp::SHF_ALLOC, this->rel_);
407 void
408 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
410 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
411 // linker, and so do we.
412 os->set_entsize(4);
415 // Add an entry to the PLT.
417 void
418 Output_data_plt_x86_64::add_entry(Symbol* gsym)
420 gold_assert(!gsym->has_plt_offset());
422 // Note that when setting the PLT offset we skip the initial
423 // reserved PLT entry.
424 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
426 ++this->count_;
428 off_t got_offset = this->got_plt_->data_size();
430 // Every PLT entry needs a GOT entry which points back to the PLT
431 // entry (this will be changed by the dynamic linker, normally
432 // lazily when the function is called).
433 this->got_plt_->set_space_size(got_offset + 8);
435 // Every PLT entry needs a reloc.
436 gsym->set_needs_dynsym_entry();
437 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
438 got_offset, 0);
440 // Note that we don't need to save the symbol. The contents of the
441 // PLT are independent of which symbols are used. The symbols only
442 // appear in the relocations.
445 // The first entry in the PLT for an executable.
447 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
449 // From AMD64 ABI Draft 0.98, page 76
450 0xff, 0x35, // pushq contents of memory address
451 0, 0, 0, 0, // replaced with address of .got + 4
452 0xff, 0x25, // jmp indirect
453 0, 0, 0, 0, // replaced with address of .got + 8
454 0x90, 0x90, 0x90, 0x90 // noop (x4)
457 // Subsequent entries in the PLT for an executable.
459 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
461 // From AMD64 ABI Draft 0.98, page 76
462 0xff, 0x25, // jmpq indirect
463 0, 0, 0, 0, // replaced with address of symbol in .got
464 0x68, // pushq immediate
465 0, 0, 0, 0, // replaced with offset into relocation table
466 0xe9, // jmpq relative
467 0, 0, 0, 0 // replaced with offset to start of .plt
470 // Write out the PLT. This uses the hand-coded instructions above,
471 // and adjusts them as needed. This is specified by the AMD64 ABI.
473 void
474 Output_data_plt_x86_64::do_write(Output_file* of)
476 const off_t offset = this->offset();
477 const off_t oview_size = this->data_size();
478 unsigned char* const oview = of->get_output_view(offset, oview_size);
480 const off_t got_file_offset = this->got_plt_->offset();
481 const off_t got_size = this->got_plt_->data_size();
482 unsigned char* const got_view = of->get_output_view(got_file_offset,
483 got_size);
485 unsigned char* pov = oview;
487 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
488 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
490 memcpy(pov, first_plt_entry, plt_entry_size);
491 if (!parameters->output_is_shared())
493 // We do a jmp relative to the PC at the end of this instruction.
494 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
495 - (plt_address + 6));
496 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
497 - (plt_address + 12));
499 pov += plt_entry_size;
501 unsigned char* got_pov = got_view;
503 memset(got_pov, 0, 24);
504 got_pov += 24;
506 unsigned int plt_offset = plt_entry_size;
507 unsigned int got_offset = 24;
508 const unsigned int count = this->count_;
509 for (unsigned int plt_index = 0;
510 plt_index < count;
511 ++plt_index,
512 pov += plt_entry_size,
513 got_pov += 8,
514 plt_offset += plt_entry_size,
515 got_offset += 8)
517 // Set and adjust the PLT entry itself.
518 memcpy(pov, plt_entry, plt_entry_size);
519 if (parameters->output_is_shared())
520 // FIXME(csilvers): what's the right thing to write here?
521 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
522 else
523 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
524 (got_address + got_offset
525 - (plt_address + plt_offset
526 + 6)));
528 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
529 elfcpp::Swap<32, false>::writeval(pov + 12,
530 - (plt_offset + plt_entry_size));
532 // Set the entry in the GOT.
533 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
536 gold_assert(pov - oview == oview_size);
537 gold_assert(got_pov - got_view == got_size);
539 of->write_output_view(offset, oview_size, oview);
540 of->write_output_view(got_file_offset, got_size, got_view);
543 // Create a PLT entry for a global symbol.
545 void
546 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
547 Symbol* gsym)
549 if (gsym->has_plt_offset())
550 return;
552 if (this->plt_ == NULL)
554 // Create the GOT sections first.
555 this->got_section(symtab, layout);
557 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
558 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
559 (elfcpp::SHF_ALLOC
560 | elfcpp::SHF_EXECINSTR),
561 this->plt_);
564 this->plt_->add_entry(gsym);
567 // Handle a relocation against a non-function symbol defined in a
568 // dynamic object. The traditional way to handle this is to generate
569 // a COPY relocation to copy the variable at runtime from the shared
570 // object into the executable's data segment. However, this is
571 // undesirable in general, as if the size of the object changes in the
572 // dynamic object, the executable will no longer work correctly. If
573 // this relocation is in a writable section, then we can create a
574 // dynamic reloc and the dynamic linker will resolve it to the correct
575 // address at runtime. However, we do not want do that if the
576 // relocation is in a read-only section, as it would prevent the
577 // readonly segment from being shared. And if we have to eventually
578 // generate a COPY reloc, then any dynamic relocations will be
579 // useless. So this means that if this is a writable section, we need
580 // to save the relocation until we see whether we have to create a
581 // COPY relocation for this symbol for any other relocation.
583 void
584 Target_x86_64::copy_reloc(const General_options* options,
585 Symbol_table* symtab,
586 Layout* layout,
587 Sized_relobj<64, false>* object,
588 unsigned int data_shndx, Symbol* gsym,
589 const elfcpp::Rela<64, false>& rela)
591 Sized_symbol<64>* ssym;
592 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
593 SELECT_SIZE(64));
595 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
596 data_shndx, ssym))
598 // So far we do not need a COPY reloc. Save this relocation.
599 // If it turns out that we never need a COPY reloc for this
600 // symbol, then we will emit the relocation.
601 if (this->copy_relocs_ == NULL)
602 this->copy_relocs_ = new Copy_relocs<64, false>();
603 this->copy_relocs_->save(ssym, object, data_shndx, rela);
605 else
607 // Allocate space for this symbol in the .bss section.
609 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
611 // There is no defined way to determine the required alignment
612 // of the symbol. We pick the alignment based on the size. We
613 // set an arbitrary maximum of 256.
614 unsigned int align;
615 for (align = 1; align < 512; align <<= 1)
616 if ((symsize & align) != 0)
617 break;
619 if (this->dynbss_ == NULL)
621 this->dynbss_ = new Output_data_space(align);
622 layout->add_output_section_data(".bss",
623 elfcpp::SHT_NOBITS,
624 (elfcpp::SHF_ALLOC
625 | elfcpp::SHF_WRITE),
626 this->dynbss_);
629 Output_data_space* dynbss = this->dynbss_;
631 if (align > dynbss->addralign())
632 dynbss->set_space_alignment(align);
634 off_t dynbss_size = dynbss->data_size();
635 dynbss_size = align_address(dynbss_size, align);
636 off_t offset = dynbss_size;
637 dynbss->set_space_size(dynbss_size + symsize);
639 symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
641 // Add the COPY reloc.
642 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
643 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
648 // Optimize the TLS relocation type based on what we know about the
649 // symbol. IS_FINAL is true if the final address of this symbol is
650 // known at link time.
652 tls::Tls_optimization
653 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
655 // If we are generating a shared library, then we can't do anything
656 // in the linker.
657 if (parameters->output_is_shared())
658 return tls::TLSOPT_NONE;
660 switch (r_type)
662 case elfcpp::R_X86_64_TLSGD:
663 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
664 case elfcpp::R_X86_64_TLSDESC_CALL:
665 // These are General-Dynamic which permits fully general TLS
666 // access. Since we know that we are generating an executable,
667 // we can convert this to Initial-Exec. If we also know that
668 // this is a local symbol, we can further switch to Local-Exec.
669 if (is_final)
670 return tls::TLSOPT_TO_LE;
671 return tls::TLSOPT_TO_IE;
673 case elfcpp::R_X86_64_TLSLD:
674 // This is Local-Dynamic, which refers to a local symbol in the
675 // dynamic TLS block. Since we know that we generating an
676 // executable, we can switch to Local-Exec.
677 return tls::TLSOPT_TO_LE;
679 case elfcpp::R_X86_64_DTPOFF32:
680 case elfcpp::R_X86_64_DTPOFF64:
681 // Another Local-Dynamic reloc.
682 return tls::TLSOPT_TO_LE;
684 case elfcpp::R_X86_64_GOTTPOFF:
685 // These are Initial-Exec relocs which get the thread offset
686 // from the GOT. If we know that we are linking against the
687 // local symbol, we can switch to Local-Exec, which links the
688 // thread offset into the instruction.
689 if (is_final)
690 return tls::TLSOPT_TO_LE;
691 return tls::TLSOPT_NONE;
693 case elfcpp::R_X86_64_TPOFF32:
694 // When we already have Local-Exec, there is nothing further we
695 // can do.
696 return tls::TLSOPT_NONE;
698 default:
699 gold_unreachable();
703 // Report an unsupported relocation against a local symbol.
705 void
706 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
707 unsigned int r_type)
709 gold_error(_("%s: unsupported reloc %u against local symbol"),
710 object->name().c_str(), r_type);
713 // Scan a relocation for a local symbol.
715 inline void
716 Target_x86_64::Scan::local(const General_options&,
717 Symbol_table* symtab,
718 Layout* layout,
719 Target_x86_64* target,
720 Sized_relobj<64, false>* object,
721 unsigned int data_shndx,
722 const elfcpp::Rela<64, false>& reloc,
723 unsigned int r_type,
724 const elfcpp::Sym<64, false>&)
726 switch (r_type)
728 case elfcpp::R_X86_64_NONE:
729 case elfcpp::R_386_GNU_VTINHERIT:
730 case elfcpp::R_386_GNU_VTENTRY:
731 break;
733 case elfcpp::R_X86_64_64:
734 case elfcpp::R_X86_64_32:
735 case elfcpp::R_X86_64_32S:
736 case elfcpp::R_X86_64_16:
737 case elfcpp::R_X86_64_8:
738 // If building a shared library (or a position-independent
739 // executable), we need to create a dynamic relocation for
740 // this location. The relocation applied at link time will
741 // apply the link-time value, so we flag the location with
742 // an R_386_RELATIVE relocation so the dynamic loader can
743 // relocate it easily.
744 if (parameters->output_is_position_independent())
746 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
747 if (r_type == elfcpp::R_X86_64_64)
748 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
749 data_shndx, reloc.get_r_offset(), 0);
750 else
752 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
753 rela_dyn->add_local(object, r_sym, r_type, data_shndx,
754 reloc.get_r_offset(),
755 reloc.get_r_addend());
758 break;
760 case elfcpp::R_X86_64_PC64:
761 case elfcpp::R_X86_64_PC32:
762 case elfcpp::R_X86_64_PC16:
763 case elfcpp::R_X86_64_PC8:
764 break;
766 case elfcpp::R_X86_64_PLT32:
767 // Since we know this is a local symbol, we can handle this as a
768 // PC32 reloc.
769 break;
771 case elfcpp::R_X86_64_GOTPC32:
772 case elfcpp::R_X86_64_GOTOFF64:
773 case elfcpp::R_X86_64_GOTPC64:
774 case elfcpp::R_X86_64_PLTOFF64:
775 // We need a GOT section.
776 target->got_section(symtab, layout);
777 // For PLTOFF64, we'd normally want a PLT section, but since we
778 // know this is a local symbol, no PLT is needed.
779 break;
781 case elfcpp::R_X86_64_GOT64:
782 case elfcpp::R_X86_64_GOT32:
783 case elfcpp::R_X86_64_GOTPCREL64:
784 case elfcpp::R_X86_64_GOTPCREL:
785 case elfcpp::R_X86_64_GOTPLT64:
787 // The symbol requires a GOT entry.
788 Output_data_got<64, false>* got = target->got_section(symtab, layout);
789 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
790 if (got->add_local(object, r_sym))
792 // If we are generating a shared object, we need to add a
793 // dynamic RELATIVE relocation for this symbol.
794 if (parameters->output_is_position_independent())
796 // FIXME: R_X86_64_RELATIVE assumes a 64-bit relocation.
797 gold_assert(r_type != elfcpp::R_X86_64_GOT32);
799 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
800 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
801 data_shndx, reloc.get_r_offset(), 0);
804 // For GOTPLT64, we'd normally want a PLT section, but since
805 // we know this is a local symbol, no PLT is needed.
807 break;
809 case elfcpp::R_X86_64_COPY:
810 case elfcpp::R_X86_64_GLOB_DAT:
811 case elfcpp::R_X86_64_JUMP_SLOT:
812 case elfcpp::R_X86_64_RELATIVE:
813 // These are outstanding tls relocs, which are unexpected when linking
814 case elfcpp::R_X86_64_TPOFF64:
815 case elfcpp::R_X86_64_DTPMOD64:
816 case elfcpp::R_X86_64_TLSDESC:
817 gold_error(_("%s: unexpected reloc %u in object file"),
818 object->name().c_str(), r_type);
819 break;
821 // These are initial tls relocs, which are expected when linking
822 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
823 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
824 case elfcpp::R_X86_64_TLSDESC_CALL:
825 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
826 case elfcpp::R_X86_64_DTPOFF32:
827 case elfcpp::R_X86_64_DTPOFF64:
828 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
829 case elfcpp::R_X86_64_TPOFF32: // Local-exec
831 bool output_is_shared = parameters->output_is_shared();
832 const tls::Tls_optimization optimized_type
833 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
834 switch (r_type)
836 case elfcpp::R_X86_64_TLSGD: // General-dynamic
837 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
838 case elfcpp::R_X86_64_TLSDESC_CALL:
839 // FIXME: If not relaxing to LE, we need to generate
840 // DTPMOD64 and DTPOFF64 relocs.
841 if (optimized_type != tls::TLSOPT_TO_LE)
842 unsupported_reloc_local(object, r_type);
843 break;
845 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
846 case elfcpp::R_X86_64_DTPOFF32:
847 case elfcpp::R_X86_64_DTPOFF64:
848 // FIXME: If not relaxing to LE, we need to generate a
849 // DTPMOD64 reloc.
850 if (optimized_type != tls::TLSOPT_TO_LE)
851 unsupported_reloc_local(object, r_type);
852 break;
854 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
855 // FIXME: If not relaxing to LE, we need to generate a
856 // TPOFF64 reloc.
857 if (optimized_type != tls::TLSOPT_TO_LE)
858 unsupported_reloc_local(object, r_type);
859 break;
861 case elfcpp::R_X86_64_TPOFF32: // Local-exec
862 // FIXME: If generating a shared object, we need to copy
863 // this relocation into the object.
864 gold_assert(!output_is_shared);
865 break;
867 default:
868 gold_unreachable();
871 break;
873 case elfcpp::R_X86_64_SIZE32:
874 case elfcpp::R_X86_64_SIZE64:
875 default:
876 gold_error(_("%s: unsupported reloc %u against local symbol"),
877 object->name().c_str(), r_type);
878 break;
883 // Report an unsupported relocation against a global symbol.
885 void
886 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
887 unsigned int r_type,
888 Symbol* gsym)
890 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
891 object->name().c_str(), r_type, gsym->name());
894 // Scan a relocation for a global symbol.
896 inline void
897 Target_x86_64::Scan::global(const General_options& options,
898 Symbol_table* symtab,
899 Layout* layout,
900 Target_x86_64* target,
901 Sized_relobj<64, false>* object,
902 unsigned int data_shndx,
903 const elfcpp::Rela<64, false>& reloc,
904 unsigned int r_type,
905 Symbol* gsym)
907 switch (r_type)
909 case elfcpp::R_X86_64_NONE:
910 case elfcpp::R_386_GNU_VTINHERIT:
911 case elfcpp::R_386_GNU_VTENTRY:
912 break;
914 case elfcpp::R_X86_64_64:
915 case elfcpp::R_X86_64_PC64:
916 case elfcpp::R_X86_64_32:
917 case elfcpp::R_X86_64_32S:
918 case elfcpp::R_X86_64_PC32:
919 case elfcpp::R_X86_64_16:
920 case elfcpp::R_X86_64_PC16:
921 case elfcpp::R_X86_64_8:
922 case elfcpp::R_X86_64_PC8:
924 bool is_pcrel = (r_type == elfcpp::R_X86_64_PC64
925 || r_type == elfcpp::R_X86_64_PC32
926 || r_type == elfcpp::R_X86_64_PC16
927 || r_type == elfcpp::R_X86_64_PC8);
929 if (gsym->is_from_dynobj()
930 || (parameters->output_is_shared()
931 && gsym->is_preemptible()))
933 // (a) This symbol is defined in a dynamic object. If it is a
934 // function, we make a PLT entry. Otherwise we need to
935 // either generate a COPY reloc or copy this reloc.
936 // (b) We are building a shared object and this symbol is
937 // preemptible. If it is a function, we make a PLT entry.
938 // Otherwise, we copy the reloc.
939 if (gsym->type() == elfcpp::STT_FUNC)
941 target->make_plt_entry(symtab, layout, gsym);
943 // If this is not a PC relative reference, then we may
944 // be taking the address of the function. In that case
945 // we need to set the entry in the dynamic symbol table
946 // to the address of the PLT entry. We will also need to
947 // create a dynamic relocation.
948 if (!is_pcrel)
950 if (gsym->is_from_dynobj())
951 gsym->set_needs_dynsym_value();
952 if (parameters->output_is_position_independent())
954 Reloc_section* rela_dyn =
955 target->rela_dyn_section(layout);
956 rela_dyn->add_global(gsym, r_type, object, data_shndx,
957 reloc.get_r_offset(),
958 reloc.get_r_addend());
962 else if (parameters->output_is_shared())
964 // We do not make COPY relocs in shared objects.
965 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
966 rela_dyn->add_global(gsym, r_type, object, data_shndx,
967 reloc.get_r_offset(),
968 reloc.get_r_addend());
970 else
971 target->copy_reloc(&options, symtab, layout, object, data_shndx,
972 gsym, reloc);
974 else if (!is_pcrel && parameters->output_is_position_independent())
976 // This is not a PC-relative reference, so we need to generate
977 // a dynamic relocation. At this point, we know the symbol
978 // is not preemptible, so we can use the RELATIVE relocation.
979 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
980 if (r_type == elfcpp::R_X86_64_64)
981 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
982 data_shndx,
983 reloc.get_r_offset(), 0);
984 else
985 rela_dyn->add_global(gsym, r_type, object, data_shndx,
986 reloc.get_r_offset(),
987 reloc.get_r_addend());
990 break;
992 case elfcpp::R_X86_64_GOT64:
993 case elfcpp::R_X86_64_GOT32:
994 case elfcpp::R_X86_64_GOTPCREL64:
995 case elfcpp::R_X86_64_GOTPCREL:
996 case elfcpp::R_X86_64_GOTPLT64:
998 // The symbol requires a GOT entry.
999 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1000 if (got->add_global(gsym))
1002 // If this symbol is not fully resolved, we need to add a
1003 // dynamic relocation for it.
1004 if (!gsym->final_value_is_known())
1006 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1007 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
1008 gsym->got_offset(), 0);
1011 // For GOTPLT64, we also need a PLT entry (but only if the
1012 // symbol is not fully resolved).
1013 if (r_type == elfcpp::R_X86_64_GOTPLT64
1014 && !gsym->final_value_is_known())
1015 target->make_plt_entry(symtab, layout, gsym);
1017 break;
1019 case elfcpp::R_X86_64_PLT32:
1020 // If the symbol is fully resolved, this is just a PC32 reloc.
1021 // Otherwise we need a PLT entry.
1022 if (gsym->final_value_is_known())
1023 break;
1024 // If building a shared library, we can also skip the PLT entry
1025 // if the symbol is defined in the output file and is protected
1026 // or hidden.
1027 if (gsym->is_defined()
1028 && !gsym->is_from_dynobj()
1029 && !gsym->is_preemptible())
1030 break;
1031 target->make_plt_entry(symtab, layout, gsym);
1032 break;
1034 case elfcpp::R_X86_64_GOTPC32:
1035 case elfcpp::R_X86_64_GOTOFF64:
1036 case elfcpp::R_X86_64_GOTPC64:
1037 case elfcpp::R_X86_64_PLTOFF64:
1038 // We need a GOT section.
1039 target->got_section(symtab, layout);
1040 // For PLTOFF64, we also need a PLT entry (but only if the
1041 // symbol is not fully resolved).
1042 if (r_type == elfcpp::R_X86_64_PLTOFF64
1043 && !gsym->final_value_is_known())
1044 target->make_plt_entry(symtab, layout, gsym);
1045 break;
1047 case elfcpp::R_X86_64_COPY:
1048 case elfcpp::R_X86_64_GLOB_DAT:
1049 case elfcpp::R_X86_64_JUMP_SLOT:
1050 case elfcpp::R_X86_64_RELATIVE:
1051 // These are outstanding tls relocs, which are unexpected when linking
1052 case elfcpp::R_X86_64_TPOFF64:
1053 case elfcpp::R_X86_64_DTPMOD64:
1054 case elfcpp::R_X86_64_TLSDESC:
1055 gold_error(_("%s: unexpected reloc %u in object file"),
1056 object->name().c_str(), r_type);
1057 break;
1059 // These are initial tls relocs, which are expected for global()
1060 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1061 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1062 case elfcpp::R_X86_64_TLSDESC_CALL:
1063 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1064 case elfcpp::R_X86_64_DTPOFF32:
1065 case elfcpp::R_X86_64_DTPOFF64:
1066 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1067 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1069 const bool is_final = gsym->final_value_is_known();
1070 const tls::Tls_optimization optimized_type
1071 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1072 switch (r_type)
1074 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1075 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1076 case elfcpp::R_X86_64_TLSDESC_CALL:
1077 // FIXME: If not relaxing to LE, we need to generate
1078 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1079 if (optimized_type != tls::TLSOPT_TO_LE)
1080 unsupported_reloc_global(object, r_type, gsym);
1081 break;
1083 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1084 case elfcpp::R_X86_64_DTPOFF32:
1085 case elfcpp::R_X86_64_DTPOFF64:
1086 // FIXME: If not relaxing to LE, we need to generate a
1087 // DTPMOD64 reloc.
1088 if (optimized_type != tls::TLSOPT_TO_LE)
1089 unsupported_reloc_global(object, r_type, gsym);
1090 break;
1092 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1093 // FIXME: If not relaxing to LE, we need to generate a
1094 // TPOFF64 reloc.
1095 if (optimized_type != tls::TLSOPT_TO_LE)
1096 unsupported_reloc_global(object, r_type, gsym);
1097 break;
1099 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1100 // FIXME: If generating a shared object, we need to copy
1101 // this relocation into the object.
1102 gold_assert(is_final);
1103 break;
1105 default:
1106 gold_unreachable();
1109 break;
1111 case elfcpp::R_X86_64_SIZE32:
1112 case elfcpp::R_X86_64_SIZE64:
1113 default:
1114 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1115 object->name().c_str(), r_type, gsym->name());
1116 break;
1120 // Scan relocations for a section.
1122 void
1123 Target_x86_64::scan_relocs(const General_options& options,
1124 Symbol_table* symtab,
1125 Layout* layout,
1126 Sized_relobj<64, false>* object,
1127 unsigned int data_shndx,
1128 unsigned int sh_type,
1129 const unsigned char* prelocs,
1130 size_t reloc_count,
1131 size_t local_symbol_count,
1132 const unsigned char* plocal_symbols,
1133 Symbol** global_symbols)
1135 if (sh_type == elfcpp::SHT_REL)
1137 gold_error(_("%s: unsupported REL reloc section"),
1138 object->name().c_str());
1139 return;
1142 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1143 Target_x86_64::Scan>(
1144 options,
1145 symtab,
1146 layout,
1147 this,
1148 object,
1149 data_shndx,
1150 prelocs,
1151 reloc_count,
1152 local_symbol_count,
1153 plocal_symbols,
1154 global_symbols);
1157 // Finalize the sections.
1159 void
1160 Target_x86_64::do_finalize_sections(Layout* layout)
1162 // Fill in some more dynamic tags.
1163 Output_data_dynamic* const odyn = layout->dynamic_data();
1164 if (odyn != NULL)
1166 if (this->got_plt_ != NULL)
1167 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1169 if (this->plt_ != NULL)
1171 const Output_data* od = this->plt_->rel_plt();
1172 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1173 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1174 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1177 if (this->rela_dyn_ != NULL)
1179 const Output_data* od = this->rela_dyn_;
1180 odyn->add_section_address(elfcpp::DT_RELA, od);
1181 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1182 odyn->add_constant(elfcpp::DT_RELAENT,
1183 elfcpp::Elf_sizes<64>::rela_size);
1186 if (!parameters->output_is_shared())
1188 // The value of the DT_DEBUG tag is filled in by the dynamic
1189 // linker at run time, and used by the debugger.
1190 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1194 // Emit any relocs we saved in an attempt to avoid generating COPY
1195 // relocs.
1196 if (this->copy_relocs_ == NULL)
1197 return;
1198 if (this->copy_relocs_->any_to_emit())
1200 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1201 this->copy_relocs_->emit(rela_dyn);
1203 delete this->copy_relocs_;
1204 this->copy_relocs_ = NULL;
1207 // Perform a relocation.
1209 inline bool
1210 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1211 Target_x86_64* target,
1212 size_t relnum,
1213 const elfcpp::Rela<64, false>& rela,
1214 unsigned int r_type,
1215 const Sized_symbol<64>* gsym,
1216 const Symbol_value<64>* psymval,
1217 unsigned char* view,
1218 elfcpp::Elf_types<64>::Elf_Addr address,
1219 off_t view_size)
1221 if (this->skip_call_tls_get_addr_)
1223 if (r_type != elfcpp::R_X86_64_PLT32
1224 || gsym == NULL
1225 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1227 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1228 _("missing expected TLS relocation"));
1230 else
1232 this->skip_call_tls_get_addr_ = false;
1233 return false;
1237 // Pick the value to use for symbols defined in shared objects.
1238 Symbol_value<64> symval;
1239 if (gsym != NULL
1240 && (gsym->is_from_dynobj()
1241 || (parameters->output_is_shared()
1242 && gsym->is_preemptible()))
1243 && gsym->has_plt_offset())
1245 symval.set_output_value(target->plt_section()->address()
1246 + gsym->plt_offset());
1247 psymval = &symval;
1250 const Sized_relobj<64, false>* object = relinfo->object;
1251 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1253 // Get the GOT offset if needed.
1254 // The GOT pointer points to the end of the GOT section.
1255 // We need to subtract the size of the GOT section to get
1256 // the actual offset to use in the relocation.
1257 bool have_got_offset = false;
1258 unsigned int got_offset = 0;
1259 switch (r_type)
1261 case elfcpp::R_X86_64_GOT32:
1262 case elfcpp::R_X86_64_GOT64:
1263 case elfcpp::R_X86_64_GOTPLT64:
1264 case elfcpp::R_X86_64_GOTPCREL:
1265 case elfcpp::R_X86_64_GOTPCREL64:
1266 if (gsym != NULL)
1268 gold_assert(gsym->has_got_offset());
1269 got_offset = gsym->got_offset() - target->got_size();
1271 else
1273 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1274 got_offset = object->local_got_offset(r_sym) - target->got_size();
1276 have_got_offset = true;
1277 break;
1279 default:
1280 break;
1283 switch (r_type)
1285 case elfcpp::R_X86_64_NONE:
1286 case elfcpp::R_386_GNU_VTINHERIT:
1287 case elfcpp::R_386_GNU_VTENTRY:
1288 break;
1290 case elfcpp::R_X86_64_64:
1291 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1292 break;
1294 case elfcpp::R_X86_64_PC64:
1295 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1296 address);
1297 break;
1299 case elfcpp::R_X86_64_32:
1300 // FIXME: we need to verify that value + addend fits into 32 bits:
1301 // uint64_t x = value + addend;
1302 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1303 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1304 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1305 break;
1307 case elfcpp::R_X86_64_32S:
1308 // FIXME: we need to verify that value + addend fits into 32 bits:
1309 // int64_t x = value + addend; // note this quantity is signed!
1310 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1311 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1312 break;
1314 case elfcpp::R_X86_64_PC32:
1315 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1316 address);
1317 break;
1319 case elfcpp::R_X86_64_16:
1320 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1321 break;
1323 case elfcpp::R_X86_64_PC16:
1324 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1325 address);
1326 break;
1328 case elfcpp::R_X86_64_8:
1329 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1330 break;
1332 case elfcpp::R_X86_64_PC8:
1333 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1334 address);
1335 break;
1337 case elfcpp::R_X86_64_PLT32:
1338 gold_assert(gsym == NULL
1339 || gsym->has_plt_offset()
1340 || gsym->final_value_is_known());
1341 // Note: while this code looks the same as for R_X86_64_PC32, it
1342 // behaves differently because psymval was set to point to
1343 // the PLT entry, rather than the symbol, in Scan::global().
1344 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1345 address);
1346 break;
1348 case elfcpp::R_X86_64_PLTOFF64:
1350 gold_assert(gsym);
1351 gold_assert(gsym->has_plt_offset()
1352 || gsym->final_value_is_known());
1353 elfcpp::Elf_types<64>::Elf_Addr got_address;
1354 got_address = target->got_section(NULL, NULL)->address();
1355 Relocate_functions<64, false>::rela64(view, object, psymval,
1356 addend - got_address);
1359 case elfcpp::R_X86_64_GOT32:
1360 gold_assert(have_got_offset);
1361 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1362 break;
1364 case elfcpp::R_X86_64_GOTPC32:
1366 gold_assert(gsym);
1367 elfcpp::Elf_types<64>::Elf_Addr value;
1368 value = target->got_plt_section()->address();
1369 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1371 break;
1373 case elfcpp::R_X86_64_GOT64:
1374 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1375 // Since we always add a PLT entry, this is equivalent.
1376 case elfcpp::R_X86_64_GOTPLT64:
1377 gold_assert(have_got_offset);
1378 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1379 break;
1381 case elfcpp::R_X86_64_GOTPC64:
1383 gold_assert(gsym);
1384 elfcpp::Elf_types<64>::Elf_Addr value;
1385 value = target->got_plt_section()->address();
1386 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1388 break;
1390 case elfcpp::R_X86_64_GOTOFF64:
1392 elfcpp::Elf_types<64>::Elf_Addr value;
1393 value = (psymval->value(object, 0)
1394 - target->got_plt_section()->address());
1395 Relocate_functions<64, false>::rela64(view, value, addend);
1397 break;
1399 case elfcpp::R_X86_64_GOTPCREL:
1401 gold_assert(have_got_offset);
1402 elfcpp::Elf_types<64>::Elf_Addr value;
1403 value = target->got_plt_section()->address() + got_offset;
1404 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1406 break;
1408 case elfcpp::R_X86_64_GOTPCREL64:
1410 gold_assert(have_got_offset);
1411 elfcpp::Elf_types<64>::Elf_Addr value;
1412 value = target->got_plt_section()->address() + got_offset;
1413 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1415 break;
1417 case elfcpp::R_X86_64_COPY:
1418 case elfcpp::R_X86_64_GLOB_DAT:
1419 case elfcpp::R_X86_64_JUMP_SLOT:
1420 case elfcpp::R_X86_64_RELATIVE:
1421 // These are outstanding tls relocs, which are unexpected when linking
1422 case elfcpp::R_X86_64_TPOFF64:
1423 case elfcpp::R_X86_64_DTPMOD64:
1424 case elfcpp::R_X86_64_TLSDESC:
1425 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1426 _("unexpected reloc %u in object file"),
1427 r_type);
1428 break;
1430 // These are initial tls relocs, which are expected when linking
1431 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1432 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1433 case elfcpp::R_X86_64_TLSDESC_CALL:
1434 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1435 case elfcpp::R_X86_64_DTPOFF32:
1436 case elfcpp::R_X86_64_DTPOFF64:
1437 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1438 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1439 this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
1440 address, view_size);
1441 break;
1443 case elfcpp::R_X86_64_SIZE32:
1444 case elfcpp::R_X86_64_SIZE64:
1445 default:
1446 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1447 _("unsupported reloc %u"),
1448 r_type);
1449 break;
1452 return true;
1455 // Perform a TLS relocation.
1457 inline void
1458 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1459 size_t relnum,
1460 const elfcpp::Rela<64, false>& rela,
1461 unsigned int r_type,
1462 const Sized_symbol<64>* gsym,
1463 const Symbol_value<64>* psymval,
1464 unsigned char* view,
1465 elfcpp::Elf_types<64>::Elf_Addr,
1466 off_t view_size)
1468 Output_segment* tls_segment = relinfo->layout->tls_segment();
1469 if (tls_segment == NULL)
1471 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1472 _("TLS reloc but no TLS segment"));
1473 return;
1476 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1478 const bool is_final = (gsym == NULL
1479 ? !parameters->output_is_position_independent()
1480 : gsym->final_value_is_known());
1481 const tls::Tls_optimization optimized_type
1482 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1483 switch (r_type)
1485 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1486 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1487 case elfcpp::R_X86_64_TLSDESC_CALL:
1488 if (optimized_type == tls::TLSOPT_TO_LE)
1490 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1491 rela, r_type, value, view,
1492 view_size);
1493 break;
1495 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1496 _("unsupported reloc %u"), r_type);
1497 break;
1499 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1500 if (optimized_type == tls::TLSOPT_TO_LE)
1502 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1503 value, view, view_size);
1504 break;
1506 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1507 _("unsupported reloc %u"), r_type);
1508 break;
1510 case elfcpp::R_X86_64_DTPOFF32:
1511 if (optimized_type == tls::TLSOPT_TO_LE)
1512 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1513 else
1514 value = value - tls_segment->vaddr();
1515 Relocate_functions<64, false>::rel32(view, value);
1516 break;
1518 case elfcpp::R_X86_64_DTPOFF64:
1519 if (optimized_type == tls::TLSOPT_TO_LE)
1520 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1521 else
1522 value = value - tls_segment->vaddr();
1523 Relocate_functions<64, false>::rel64(view, value);
1524 break;
1526 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1527 if (optimized_type == tls::TLSOPT_TO_LE)
1529 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1530 rela, r_type, value, view,
1531 view_size);
1532 break;
1534 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1535 _("unsupported reloc type %u"),
1536 r_type);
1537 break;
1539 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1540 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1541 Relocate_functions<64, false>::rel32(view, value);
1542 break;
1546 // Do a relocation in which we convert a TLS General-Dynamic to a
1547 // Local-Exec.
1549 inline void
1550 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1551 size_t relnum,
1552 Output_segment* tls_segment,
1553 const elfcpp::Rela<64, false>& rela,
1554 unsigned int,
1555 elfcpp::Elf_types<64>::Elf_Addr value,
1556 unsigned char* view,
1557 off_t view_size)
1559 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1560 // .word 0x6666; rex64; call __tls_get_addr
1561 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1563 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1564 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1566 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1567 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1568 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1569 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1571 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1573 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1574 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1576 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1577 // We can skip it.
1578 this->skip_call_tls_get_addr_ = true;
1581 inline void
1582 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1583 size_t relnum,
1584 Output_segment*,
1585 const elfcpp::Rela<64, false>& rela,
1586 unsigned int,
1587 elfcpp::Elf_types<64>::Elf_Addr,
1588 unsigned char* view,
1589 off_t view_size)
1591 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1592 // ... leq foo@dtpoff(%rax),%reg
1593 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1595 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1596 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1598 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1599 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1601 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1603 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1605 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1606 // We can skip it.
1607 this->skip_call_tls_get_addr_ = true;
1610 // Do a relocation in which we convert a TLS Initial-Exec to a
1611 // Local-Exec.
1613 inline void
1614 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1615 size_t relnum,
1616 Output_segment* tls_segment,
1617 const elfcpp::Rela<64, false>& rela,
1618 unsigned int,
1619 elfcpp::Elf_types<64>::Elf_Addr value,
1620 unsigned char* view,
1621 off_t view_size)
1623 // We need to examine the opcodes to figure out which instruction we
1624 // are looking at.
1626 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1627 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1629 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1630 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1632 unsigned char op1 = view[-3];
1633 unsigned char op2 = view[-2];
1634 unsigned char op3 = view[-1];
1635 unsigned char reg = op3 >> 3;
1637 if (op2 == 0x8b)
1639 // movq
1640 if (op1 == 0x4c)
1641 view[-3] = 0x49;
1642 view[-2] = 0xc7;
1643 view[-1] = 0xc0 | reg;
1645 else if (reg == 4)
1647 // Special handling for %rsp.
1648 if (op1 == 0x4c)
1649 view[-3] = 0x49;
1650 view[-2] = 0x81;
1651 view[-1] = 0xc0 | reg;
1653 else
1655 // addq
1656 if (op1 == 0x4c)
1657 view[-3] = 0x4d;
1658 view[-2] = 0x8d;
1659 view[-1] = 0x80 | reg | (reg << 3);
1662 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1663 Relocate_functions<64, false>::rela32(view, value, 0);
1666 // Relocate section data.
1668 void
1669 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1670 unsigned int sh_type,
1671 const unsigned char* prelocs,
1672 size_t reloc_count,
1673 unsigned char* view,
1674 elfcpp::Elf_types<64>::Elf_Addr address,
1675 off_t view_size)
1677 gold_assert(sh_type == elfcpp::SHT_RELA);
1679 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1680 Target_x86_64::Relocate>(
1681 relinfo,
1682 this,
1683 prelocs,
1684 reloc_count,
1685 view,
1686 address,
1687 view_size);
1690 // Return the value to use for a dynamic which requires special
1691 // treatment. This is how we support equality comparisons of function
1692 // pointers across shared library boundaries, as described in the
1693 // processor specific ABI supplement.
1695 uint64_t
1696 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1698 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1699 return this->plt_section()->address() + gsym->plt_offset();
1702 // Return a string used to fill a code section with nops to take up
1703 // the specified length.
1705 std::string
1706 Target_x86_64::do_code_fill(off_t length)
1708 if (length >= 16)
1710 // Build a jmpq instruction to skip over the bytes.
1711 unsigned char jmp[5];
1712 jmp[0] = 0xe9;
1713 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1714 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1715 + std::string(length - 5, '\0'));
1718 // Nop sequences of various lengths.
1719 const char nop1[1] = { 0x90 }; // nop
1720 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1721 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1722 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1723 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1724 0x00 }; // leal 0(%esi,1),%esi
1725 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1726 0x00, 0x00 };
1727 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1728 0x00, 0x00, 0x00 };
1729 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1730 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1731 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1732 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1733 0x00 };
1734 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1735 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1736 0x00, 0x00 };
1737 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1738 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1739 0x00, 0x00, 0x00 };
1740 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1741 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1742 0x00, 0x00, 0x00, 0x00 };
1743 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1744 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1745 0x27, 0x00, 0x00, 0x00,
1746 0x00 };
1747 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1748 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1749 0xbc, 0x27, 0x00, 0x00,
1750 0x00, 0x00 };
1751 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1752 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1753 0x90, 0x90, 0x90, 0x90,
1754 0x90, 0x90, 0x90 };
1756 const char* nops[16] = {
1757 NULL,
1758 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1759 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1762 return std::string(nops[length], length);
1765 // The selector for x86_64 object files.
1767 class Target_selector_x86_64 : public Target_selector
1769 public:
1770 Target_selector_x86_64()
1771 : Target_selector(elfcpp::EM_X86_64, 64, false)
1774 Target*
1775 recognize(int machine, int osabi, int abiversion);
1777 private:
1778 Target_x86_64* target_;
1781 // Recognize an x86_64 object file when we already know that the machine
1782 // number is EM_X86_64.
1784 Target*
1785 Target_selector_x86_64::recognize(int, int, int)
1787 if (this->target_ == NULL)
1788 this->target_ = new Target_x86_64();
1789 return this->target_;
1792 Target_selector_x86_64 target_selector_x86_64;
1794 } // End anonymous namespace.