gas/
[binutils.git] / gas / config / tc-i386.c
blob26684c8e9847fa7b8fd1ed035d483cbba01715ef
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcodes/i386-opc.h"
36 #include "elf/x86-64.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
52 #endif
54 #ifndef DEFAULT_ARCH
55 #define DEFAULT_ARCH "i386"
56 #endif
58 #ifndef INLINE
59 #if __GNUC__ >= 2
60 #define INLINE __inline__
61 #else
62 #define INLINE
63 #endif
64 #endif
66 static void set_code_flag (int);
67 static void set_16bit_gcc_code_flag (int);
68 static void set_intel_syntax (int);
69 static void set_cpu_arch (int);
70 #ifdef TE_PE
71 static void pe_directive_secrel (int);
72 #endif
73 static void signed_cons (int);
74 static char *output_invalid (int c);
75 static int i386_operand (char *);
76 static int i386_intel_operand (char *, int);
77 static const reg_entry *parse_register (char *, char **);
78 static char *parse_insn (char *, char *);
79 static char *parse_operands (char *, const char *);
80 static void swap_operands (void);
81 static void swap_2_operands (int, int);
82 static void optimize_imm (void);
83 static void optimize_disp (void);
84 static int match_template (void);
85 static int check_string (void);
86 static int process_suffix (void);
87 static int check_byte_reg (void);
88 static int check_long_reg (void);
89 static int check_qword_reg (void);
90 static int check_word_reg (void);
91 static int finalize_imm (void);
92 static int process_operands (void);
93 static const seg_entry *build_modrm_byte (void);
94 static void output_insn (void);
95 static void output_imm (fragS *, offsetT);
96 static void output_disp (fragS *, offsetT);
97 #ifndef I386COFF
98 static void s_bss (int);
99 #endif
100 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
101 static void handle_large_common (int small ATTRIBUTE_UNUSED);
102 #endif
104 static const char *default_arch = DEFAULT_ARCH;
106 /* 'md_assemble ()' gathers together information and puts it into a
107 i386_insn. */
109 union i386_op
111 expressionS *disps;
112 expressionS *imms;
113 const reg_entry *regs;
116 struct _i386_insn
118 /* TM holds the template for the insn were currently assembling. */
119 template tm;
121 /* SUFFIX holds the instruction mnemonic suffix if given.
122 (e.g. 'l' for 'movl') */
123 char suffix;
125 /* OPERANDS gives the number of given operands. */
126 unsigned int operands;
128 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
129 of given register, displacement, memory operands and immediate
130 operands. */
131 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
133 /* TYPES [i] is the type (see above #defines) which tells us how to
134 use OP[i] for the corresponding operand. */
135 unsigned int types[MAX_OPERANDS];
137 /* Displacement expression, immediate expression, or register for each
138 operand. */
139 union i386_op op[MAX_OPERANDS];
141 /* Flags for operands. */
142 unsigned int flags[MAX_OPERANDS];
143 #define Operand_PCrel 1
145 /* Relocation type for operand */
146 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
148 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
149 the base index byte below. */
150 const reg_entry *base_reg;
151 const reg_entry *index_reg;
152 unsigned int log2_scale_factor;
154 /* SEG gives the seg_entries of this insn. They are zero unless
155 explicit segment overrides are given. */
156 const seg_entry *seg[2];
158 /* PREFIX holds all the given prefix opcodes (usually null).
159 PREFIXES is the number of prefix opcodes. */
160 unsigned int prefixes;
161 unsigned char prefix[MAX_PREFIXES];
163 /* RM and SIB are the modrm byte and the sib byte where the
164 addressing modes of this insn are encoded. */
166 modrm_byte rm;
167 rex_byte rex;
168 sib_byte sib;
171 typedef struct _i386_insn i386_insn;
173 /* List of chars besides those in app.c:symbol_chars that can start an
174 operand. Used to prevent the scrubber eating vital white-space. */
175 const char extra_symbol_chars[] = "*%-(["
176 #ifdef LEX_AT
178 #endif
179 #ifdef LEX_QM
181 #endif
184 #if (defined (TE_I386AIX) \
185 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
186 && !defined (TE_GNU) \
187 && !defined (TE_LINUX) \
188 && !defined (TE_NETWARE) \
189 && !defined (TE_FreeBSD) \
190 && !defined (TE_NetBSD)))
191 /* This array holds the chars that always start a comment. If the
192 pre-processor is disabled, these aren't very useful. The option
193 --divide will remove '/' from this list. */
194 const char *i386_comment_chars = "#/";
195 #define SVR4_COMMENT_CHARS 1
196 #define PREFIX_SEPARATOR '\\'
198 #else
199 const char *i386_comment_chars = "#";
200 #define PREFIX_SEPARATOR '/'
201 #endif
203 /* This array holds the chars that only start a comment at the beginning of
204 a line. If the line seems to have the form '# 123 filename'
205 .line and .file directives will appear in the pre-processed output.
206 Note that input_file.c hand checks for '#' at the beginning of the
207 first line of the input file. This is because the compiler outputs
208 #NO_APP at the beginning of its output.
209 Also note that comments started like this one will always work if
210 '/' isn't otherwise defined. */
211 const char line_comment_chars[] = "#/";
213 const char line_separator_chars[] = ";";
215 /* Chars that can be used to separate mant from exp in floating point
216 nums. */
217 const char EXP_CHARS[] = "eE";
219 /* Chars that mean this number is a floating point constant
220 As in 0f12.456
221 or 0d1.2345e12. */
222 const char FLT_CHARS[] = "fFdDxX";
224 /* Tables for lexical analysis. */
225 static char mnemonic_chars[256];
226 static char register_chars[256];
227 static char operand_chars[256];
228 static char identifier_chars[256];
229 static char digit_chars[256];
231 /* Lexical macros. */
232 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
233 #define is_operand_char(x) (operand_chars[(unsigned char) x])
234 #define is_register_char(x) (register_chars[(unsigned char) x])
235 #define is_space_char(x) ((x) == ' ')
236 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
237 #define is_digit_char(x) (digit_chars[(unsigned char) x])
239 /* All non-digit non-letter characters that may occur in an operand. */
240 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
242 /* md_assemble() always leaves the strings it's passed unaltered. To
243 effect this we maintain a stack of saved characters that we've smashed
244 with '\0's (indicating end of strings for various sub-fields of the
245 assembler instruction). */
246 static char save_stack[32];
247 static char *save_stack_p;
248 #define END_STRING_AND_SAVE(s) \
249 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
250 #define RESTORE_END_STRING(s) \
251 do { *(s) = *--save_stack_p; } while (0)
253 /* The instruction we're assembling. */
254 static i386_insn i;
256 /* Possible templates for current insn. */
257 static const templates *current_templates;
259 /* Per instruction expressionS buffers: max displacements & immediates. */
260 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
261 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
263 /* Current operand we are working on. */
264 static int this_operand;
266 /* We support four different modes. FLAG_CODE variable is used to distinguish
267 these. */
269 enum flag_code {
270 CODE_32BIT,
271 CODE_16BIT,
272 CODE_64BIT };
273 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
275 static enum flag_code flag_code;
276 static unsigned int object_64bit;
277 static int use_rela_relocations = 0;
279 /* The names used to print error messages. */
280 static const char *flag_code_names[] =
282 "32",
283 "16",
284 "64"
287 /* 1 for intel syntax,
288 0 if att syntax. */
289 static int intel_syntax = 0;
291 /* 1 if register prefix % not required. */
292 static int allow_naked_reg = 0;
294 /* Register prefix used for error message. */
295 static const char *register_prefix = "%";
297 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
298 leave, push, and pop instructions so that gcc has the same stack
299 frame as in 32 bit mode. */
300 static char stackop_size = '\0';
302 /* Non-zero to optimize code alignment. */
303 int optimize_align_code = 1;
305 /* Non-zero to quieten some warnings. */
306 static int quiet_warnings = 0;
308 /* CPU name. */
309 static const char *cpu_arch_name = NULL;
310 static const char *cpu_sub_arch_name = NULL;
312 /* CPU feature flags. */
313 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
315 /* If we have selected a cpu we are generating instructions for. */
316 static int cpu_arch_tune_set = 0;
318 /* Cpu we are generating instructions for. */
319 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
321 /* CPU feature flags of cpu we are generating instructions for. */
322 static unsigned int cpu_arch_tune_flags = 0;
324 /* CPU instruction set architecture used. */
325 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
327 /* CPU feature flags of instruction set architecture used. */
328 static unsigned int cpu_arch_isa_flags = 0;
330 /* If set, conditional jumps are not automatically promoted to handle
331 larger than a byte offset. */
332 static unsigned int no_cond_jump_promotion = 0;
334 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
335 static symbolS *GOT_symbol;
337 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
338 unsigned int x86_dwarf2_return_column;
340 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
341 int x86_cie_data_alignment;
343 /* Interface to relax_segment.
344 There are 3 major relax states for 386 jump insns because the
345 different types of jumps add different sizes to frags when we're
346 figuring out what sort of jump to choose to reach a given label. */
348 /* Types. */
349 #define UNCOND_JUMP 0
350 #define COND_JUMP 1
351 #define COND_JUMP86 2
353 /* Sizes. */
354 #define CODE16 1
355 #define SMALL 0
356 #define SMALL16 (SMALL | CODE16)
357 #define BIG 2
358 #define BIG16 (BIG | CODE16)
360 #ifndef INLINE
361 #ifdef __GNUC__
362 #define INLINE __inline__
363 #else
364 #define INLINE
365 #endif
366 #endif
368 #define ENCODE_RELAX_STATE(type, size) \
369 ((relax_substateT) (((type) << 2) | (size)))
370 #define TYPE_FROM_RELAX_STATE(s) \
371 ((s) >> 2)
372 #define DISP_SIZE_FROM_RELAX_STATE(s) \
373 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
375 /* This table is used by relax_frag to promote short jumps to long
376 ones where necessary. SMALL (short) jumps may be promoted to BIG
377 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
378 don't allow a short jump in a 32 bit code segment to be promoted to
379 a 16 bit offset jump because it's slower (requires data size
380 prefix), and doesn't work, unless the destination is in the bottom
381 64k of the code segment (The top 16 bits of eip are zeroed). */
383 const relax_typeS md_relax_table[] =
385 /* The fields are:
386 1) most positive reach of this state,
387 2) most negative reach of this state,
388 3) how many bytes this mode will have in the variable part of the frag
389 4) which index into the table to try if we can't fit into this one. */
391 /* UNCOND_JUMP states. */
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
393 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
394 /* dword jmp adds 4 bytes to frag:
395 0 extra opcode bytes, 4 displacement bytes. */
396 {0, 0, 4, 0},
397 /* word jmp adds 2 byte2 to frag:
398 0 extra opcode bytes, 2 displacement bytes. */
399 {0, 0, 2, 0},
401 /* COND_JUMP states. */
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
403 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
404 /* dword conditionals adds 5 bytes to frag:
405 1 extra opcode byte, 4 displacement bytes. */
406 {0, 0, 5, 0},
407 /* word conditionals add 3 bytes to frag:
408 1 extra opcode byte, 2 displacement bytes. */
409 {0, 0, 3, 0},
411 /* COND_JUMP86 states. */
412 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
413 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
414 /* dword conditionals adds 5 bytes to frag:
415 1 extra opcode byte, 4 displacement bytes. */
416 {0, 0, 5, 0},
417 /* word conditionals add 4 bytes to frag:
418 1 displacement byte and a 3 byte long branch insn. */
419 {0, 0, 4, 0}
422 static const arch_entry cpu_arch[] =
424 {"generic32", PROCESSOR_GENERIC32,
425 Cpu186|Cpu286|Cpu386},
426 {"generic64", PROCESSOR_GENERIC64,
427 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
428 |CpuMMX2|CpuSSE|CpuSSE2},
429 {"i8086", PROCESSOR_UNKNOWN,
431 {"i186", PROCESSOR_UNKNOWN,
432 Cpu186},
433 {"i286", PROCESSOR_UNKNOWN,
434 Cpu186|Cpu286},
435 {"i386", PROCESSOR_GENERIC32,
436 Cpu186|Cpu286|Cpu386},
437 {"i486", PROCESSOR_I486,
438 Cpu186|Cpu286|Cpu386|Cpu486},
439 {"i586", PROCESSOR_PENTIUM,
440 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
441 {"i686", PROCESSOR_PENTIUMPRO,
442 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
443 {"pentium", PROCESSOR_PENTIUM,
444 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
445 {"pentiumpro",PROCESSOR_PENTIUMPRO,
446 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
447 {"pentiumii", PROCESSOR_PENTIUMPRO,
448 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
449 {"pentiumiii",PROCESSOR_PENTIUMPRO,
450 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
451 {"pentium4", PROCESSOR_PENTIUM4,
452 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
453 |CpuMMX2|CpuSSE|CpuSSE2},
454 {"prescott", PROCESSOR_NOCONA,
455 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
456 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
457 {"nocona", PROCESSOR_NOCONA,
458 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
459 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
460 {"yonah", PROCESSOR_CORE,
461 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
462 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
463 {"core", PROCESSOR_CORE,
464 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
465 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
466 {"merom", PROCESSOR_CORE2,
467 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
468 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
469 {"core2", PROCESSOR_CORE2,
470 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
471 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
472 {"k6", PROCESSOR_K6,
473 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
474 {"k6_2", PROCESSOR_K6,
475 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
476 {"athlon", PROCESSOR_ATHLON,
477 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
478 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
479 {"sledgehammer", PROCESSOR_K8,
480 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
481 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
482 {"opteron", PROCESSOR_K8,
483 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
484 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
485 {"k8", PROCESSOR_K8,
486 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
487 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
488 {"amdfam10", PROCESSOR_AMDFAM10,
489 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
490 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
491 |CpuABM},
492 {".mmx", PROCESSOR_UNKNOWN,
493 CpuMMX},
494 {".sse", PROCESSOR_UNKNOWN,
495 CpuMMX|CpuMMX2|CpuSSE},
496 {".sse2", PROCESSOR_UNKNOWN,
497 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
498 {".sse3", PROCESSOR_UNKNOWN,
499 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
500 {".ssse3", PROCESSOR_UNKNOWN,
501 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
502 {".3dnow", PROCESSOR_UNKNOWN,
503 CpuMMX|Cpu3dnow},
504 {".3dnowa", PROCESSOR_UNKNOWN,
505 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
506 {".padlock", PROCESSOR_UNKNOWN,
507 CpuPadLock},
508 {".pacifica", PROCESSOR_UNKNOWN,
509 CpuSVME},
510 {".svme", PROCESSOR_UNKNOWN,
511 CpuSVME},
512 {".sse4a", PROCESSOR_UNKNOWN,
513 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
514 {".abm", PROCESSOR_UNKNOWN,
515 CpuABM}
518 const pseudo_typeS md_pseudo_table[] =
520 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
521 {"align", s_align_bytes, 0},
522 #else
523 {"align", s_align_ptwo, 0},
524 #endif
525 {"arch", set_cpu_arch, 0},
526 #ifndef I386COFF
527 {"bss", s_bss, 0},
528 #endif
529 {"ffloat", float_cons, 'f'},
530 {"dfloat", float_cons, 'd'},
531 {"tfloat", float_cons, 'x'},
532 {"value", cons, 2},
533 {"slong", signed_cons, 4},
534 {"noopt", s_ignore, 0},
535 {"optim", s_ignore, 0},
536 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
537 {"code16", set_code_flag, CODE_16BIT},
538 {"code32", set_code_flag, CODE_32BIT},
539 {"code64", set_code_flag, CODE_64BIT},
540 {"intel_syntax", set_intel_syntax, 1},
541 {"att_syntax", set_intel_syntax, 0},
542 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
543 {"largecomm", handle_large_common, 0},
544 #else
545 {"file", (void (*) (int)) dwarf2_directive_file, 0},
546 {"loc", dwarf2_directive_loc, 0},
547 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
548 #endif
549 #ifdef TE_PE
550 {"secrel32", pe_directive_secrel, 0},
551 #endif
552 {0, 0, 0}
555 /* For interface with expression (). */
556 extern char *input_line_pointer;
558 /* Hash table for instruction mnemonic lookup. */
559 static struct hash_control *op_hash;
561 /* Hash table for register lookup. */
562 static struct hash_control *reg_hash;
564 void
565 i386_align_code (fragS *fragP, int count)
567 /* Various efficient no-op patterns for aligning code labels.
568 Note: Don't try to assemble the instructions in the comments.
569 0L and 0w are not legal. */
570 static const char f32_1[] =
571 {0x90}; /* nop */
572 static const char f32_2[] =
573 {0x66,0x90}; /* xchg %ax,%ax */
574 static const char f32_3[] =
575 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
576 static const char f32_4[] =
577 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
578 static const char f32_5[] =
579 {0x90, /* nop */
580 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
581 static const char f32_6[] =
582 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
583 static const char f32_7[] =
584 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
585 static const char f32_8[] =
586 {0x90, /* nop */
587 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
588 static const char f32_9[] =
589 {0x89,0xf6, /* movl %esi,%esi */
590 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
591 static const char f32_10[] =
592 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
593 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
594 static const char f32_11[] =
595 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
596 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
597 static const char f32_12[] =
598 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
599 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
600 static const char f32_13[] =
601 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
602 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
603 static const char f32_14[] =
604 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
605 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
606 static const char f32_15[] =
607 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
608 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
609 static const char f16_3[] =
610 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
611 static const char f16_4[] =
612 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
613 static const char f16_5[] =
614 {0x90, /* nop */
615 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
616 static const char f16_6[] =
617 {0x89,0xf6, /* mov %si,%si */
618 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
619 static const char f16_7[] =
620 {0x8d,0x74,0x00, /* lea 0(%si),%si */
621 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
622 static const char f16_8[] =
623 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
624 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
625 static const char *const f32_patt[] = {
626 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
627 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
629 static const char *const f16_patt[] = {
630 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
631 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
633 /* nopl (%[re]ax) */
634 static const char alt_3[] =
635 {0x0f,0x1f,0x00};
636 /* nopl 0(%[re]ax) */
637 static const char alt_4[] =
638 {0x0f,0x1f,0x40,0x00};
639 /* nopl 0(%[re]ax,%[re]ax,1) */
640 static const char alt_5[] =
641 {0x0f,0x1f,0x44,0x00,0x00};
642 /* nopw 0(%[re]ax,%[re]ax,1) */
643 static const char alt_6[] =
644 {0x66,0x0f,0x1f,0x44,0x00,0x00};
645 /* nopl 0L(%[re]ax) */
646 static const char alt_7[] =
647 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
648 /* nopl 0L(%[re]ax,%[re]ax,1) */
649 static const char alt_8[] =
650 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
651 /* nopw 0L(%[re]ax,%[re]ax,1) */
652 static const char alt_9[] =
653 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
654 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
655 static const char alt_10[] =
656 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
657 /* data16
658 nopw %cs:0L(%[re]ax,%[re]ax,1) */
659 static const char alt_long_11[] =
660 {0x66,
661 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
662 /* data16
663 data16
664 nopw %cs:0L(%[re]ax,%[re]ax,1) */
665 static const char alt_long_12[] =
666 {0x66,
667 0x66,
668 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
669 /* data16
670 data16
671 data16
672 nopw %cs:0L(%[re]ax,%[re]ax,1) */
673 static const char alt_long_13[] =
674 {0x66,
675 0x66,
676 0x66,
677 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
678 /* data16
679 data16
680 data16
681 data16
682 nopw %cs:0L(%[re]ax,%[re]ax,1) */
683 static const char alt_long_14[] =
684 {0x66,
685 0x66,
686 0x66,
687 0x66,
688 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
689 /* data16
690 data16
691 data16
692 data16
693 data16
694 nopw %cs:0L(%[re]ax,%[re]ax,1) */
695 static const char alt_long_15[] =
696 {0x66,
697 0x66,
698 0x66,
699 0x66,
700 0x66,
701 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
702 /* nopl 0(%[re]ax,%[re]ax,1)
703 nopw 0(%[re]ax,%[re]ax,1) */
704 static const char alt_short_11[] =
705 {0x0f,0x1f,0x44,0x00,0x00,
706 0x66,0x0f,0x1f,0x44,0x00,0x00};
707 /* nopw 0(%[re]ax,%[re]ax,1)
708 nopw 0(%[re]ax,%[re]ax,1) */
709 static const char alt_short_12[] =
710 {0x66,0x0f,0x1f,0x44,0x00,0x00,
711 0x66,0x0f,0x1f,0x44,0x00,0x00};
712 /* nopw 0(%[re]ax,%[re]ax,1)
713 nopl 0L(%[re]ax) */
714 static const char alt_short_13[] =
715 {0x66,0x0f,0x1f,0x44,0x00,0x00,
716 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
717 /* nopl 0L(%[re]ax)
718 nopl 0L(%[re]ax) */
719 static const char alt_short_14[] =
720 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
721 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
722 /* nopl 0L(%[re]ax)
723 nopl 0L(%[re]ax,%[re]ax,1) */
724 static const char alt_short_15[] =
725 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
726 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
727 static const char *const alt_short_patt[] = {
728 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
729 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
730 alt_short_14, alt_short_15
732 static const char *const alt_long_patt[] = {
733 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
734 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
735 alt_long_14, alt_long_15
738 if (count <= 0 || count > 15)
739 return;
741 /* We need to decide which NOP sequence to use for 32bit and
742 64bit. When -mtune= is used:
744 1. For PROCESSOR_I486, PROCESSOR_PENTIUM and PROCESSOR_GENERIC32,
745 f32_patt will be used.
746 2. For PROCESSOR_K8 and PROCESSOR_AMDFAM10 in 64bit, NOPs with
747 0x66 prefix will be used.
748 3. For PROCESSOR_CORE2, alt_long_patt will be used.
749 4. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
750 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_K6, PROCESSOR_ATHLON
751 and PROCESSOR_GENERIC64, alt_short_patt will be used.
753 When -mtune= isn't used, alt_short_patt will be used if
754 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will be used.
756 When -march= or .arch is used, we can't use anything beyond
757 cpu_arch_isa_flags. */
759 if (flag_code == CODE_16BIT)
761 memcpy (fragP->fr_literal + fragP->fr_fix,
762 f16_patt[count - 1], count);
763 if (count > 8)
764 /* Adjust jump offset. */
765 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
767 else if (flag_code == CODE_64BIT && cpu_arch_tune == PROCESSOR_K8)
769 int i;
770 int nnops = (count + 3) / 4;
771 int len = count / nnops;
772 int remains = count - nnops * len;
773 int pos = 0;
775 /* The recommended way to pad 64bit code is to use NOPs preceded
776 by maximally four 0x66 prefixes. Balance the size of nops. */
777 for (i = 0; i < remains; i++)
779 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
780 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
781 pos += len + 1;
783 for (; i < nnops; i++)
785 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
786 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
787 pos += len;
790 else
792 const char *const *patt = NULL;
794 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
796 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
797 switch (cpu_arch_tune)
799 case PROCESSOR_UNKNOWN:
800 /* We use cpu_arch_isa_flags to check if we SHOULD
801 optimize for Cpu686. */
802 if ((cpu_arch_isa_flags & Cpu686) != 0)
803 patt = alt_short_patt;
804 else
805 patt = f32_patt;
806 break;
807 case PROCESSOR_CORE2:
808 patt = alt_long_patt;
809 break;
810 case PROCESSOR_PENTIUMPRO:
811 case PROCESSOR_PENTIUM4:
812 case PROCESSOR_NOCONA:
813 case PROCESSOR_CORE:
814 case PROCESSOR_K6:
815 case PROCESSOR_ATHLON:
816 case PROCESSOR_K8:
817 case PROCESSOR_GENERIC64:
818 case PROCESSOR_AMDFAM10:
819 patt = alt_short_patt;
820 break;
821 case PROCESSOR_I486:
822 case PROCESSOR_PENTIUM:
823 case PROCESSOR_GENERIC32:
824 patt = f32_patt;
825 break;
828 else
830 switch (cpu_arch_tune)
832 case PROCESSOR_UNKNOWN:
833 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
834 PROCESSOR_UNKNOWN. */
835 abort ();
836 break;
838 case PROCESSOR_I486:
839 case PROCESSOR_PENTIUM:
840 case PROCESSOR_PENTIUMPRO:
841 case PROCESSOR_PENTIUM4:
842 case PROCESSOR_NOCONA:
843 case PROCESSOR_CORE:
844 case PROCESSOR_K6:
845 case PROCESSOR_ATHLON:
846 case PROCESSOR_K8:
847 case PROCESSOR_AMDFAM10:
848 case PROCESSOR_GENERIC32:
849 /* We use cpu_arch_isa_flags to check if we CAN optimize
850 for Cpu686. */
851 if ((cpu_arch_isa_flags & Cpu686) != 0)
852 patt = alt_short_patt;
853 else
854 patt = f32_patt;
855 break;
856 case PROCESSOR_CORE2:
857 if ((cpu_arch_isa_flags & Cpu686) != 0)
858 patt = alt_long_patt;
859 else
860 patt = f32_patt;
861 break;
862 case PROCESSOR_GENERIC64:
863 patt = alt_short_patt;
864 break;
868 memcpy (fragP->fr_literal + fragP->fr_fix,
869 patt[count - 1], count);
871 fragP->fr_var = count;
874 static INLINE unsigned int
875 mode_from_disp_size (unsigned int t)
877 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
880 static INLINE int
881 fits_in_signed_byte (offsetT num)
883 return (num >= -128) && (num <= 127);
886 static INLINE int
887 fits_in_unsigned_byte (offsetT num)
889 return (num & 0xff) == num;
892 static INLINE int
893 fits_in_unsigned_word (offsetT num)
895 return (num & 0xffff) == num;
898 static INLINE int
899 fits_in_signed_word (offsetT num)
901 return (-32768 <= num) && (num <= 32767);
904 static INLINE int
905 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
907 #ifndef BFD64
908 return 1;
909 #else
910 return (!(((offsetT) -1 << 31) & num)
911 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
912 #endif
913 } /* fits_in_signed_long() */
915 static INLINE int
916 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
918 #ifndef BFD64
919 return 1;
920 #else
921 return (num & (((offsetT) 2 << 31) - 1)) == num;
922 #endif
923 } /* fits_in_unsigned_long() */
925 static unsigned int
926 smallest_imm_type (offsetT num)
928 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
930 /* This code is disabled on the 486 because all the Imm1 forms
931 in the opcode table are slower on the i486. They're the
932 versions with the implicitly specified single-position
933 displacement, which has another syntax if you really want to
934 use that form. */
935 if (num == 1)
936 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
938 return (fits_in_signed_byte (num)
939 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
940 : fits_in_unsigned_byte (num)
941 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
942 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
943 ? (Imm16 | Imm32 | Imm32S | Imm64)
944 : fits_in_signed_long (num)
945 ? (Imm32 | Imm32S | Imm64)
946 : fits_in_unsigned_long (num)
947 ? (Imm32 | Imm64)
948 : Imm64);
951 static offsetT
952 offset_in_range (offsetT val, int size)
954 addressT mask;
956 switch (size)
958 case 1: mask = ((addressT) 1 << 8) - 1; break;
959 case 2: mask = ((addressT) 1 << 16) - 1; break;
960 case 4: mask = ((addressT) 2 << 31) - 1; break;
961 #ifdef BFD64
962 case 8: mask = ((addressT) 2 << 63) - 1; break;
963 #endif
964 default: abort ();
967 /* If BFD64, sign extend val. */
968 if (!use_rela_relocations)
969 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
970 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
972 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
974 char buf1[40], buf2[40];
976 sprint_value (buf1, val);
977 sprint_value (buf2, val & mask);
978 as_warn (_("%s shortened to %s"), buf1, buf2);
980 return val & mask;
983 /* Returns 0 if attempting to add a prefix where one from the same
984 class already exists, 1 if non rep/repne added, 2 if rep/repne
985 added. */
986 static int
987 add_prefix (unsigned int prefix)
989 int ret = 1;
990 unsigned int q;
992 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
993 && flag_code == CODE_64BIT)
995 if ((i.prefix[REX_PREFIX] & prefix & REX_MODE64)
996 || ((i.prefix[REX_PREFIX] & (REX_EXTX | REX_EXTY | REX_EXTZ))
997 && (prefix & (REX_EXTX | REX_EXTY | REX_EXTZ))))
998 ret = 0;
999 q = REX_PREFIX;
1001 else
1003 switch (prefix)
1005 default:
1006 abort ();
1008 case CS_PREFIX_OPCODE:
1009 case DS_PREFIX_OPCODE:
1010 case ES_PREFIX_OPCODE:
1011 case FS_PREFIX_OPCODE:
1012 case GS_PREFIX_OPCODE:
1013 case SS_PREFIX_OPCODE:
1014 q = SEG_PREFIX;
1015 break;
1017 case REPNE_PREFIX_OPCODE:
1018 case REPE_PREFIX_OPCODE:
1019 ret = 2;
1020 /* fall thru */
1021 case LOCK_PREFIX_OPCODE:
1022 q = LOCKREP_PREFIX;
1023 break;
1025 case FWAIT_OPCODE:
1026 q = WAIT_PREFIX;
1027 break;
1029 case ADDR_PREFIX_OPCODE:
1030 q = ADDR_PREFIX;
1031 break;
1033 case DATA_PREFIX_OPCODE:
1034 q = DATA_PREFIX;
1035 break;
1037 if (i.prefix[q] != 0)
1038 ret = 0;
1041 if (ret)
1043 if (!i.prefix[q])
1044 ++i.prefixes;
1045 i.prefix[q] |= prefix;
1047 else
1048 as_bad (_("same type of prefix used twice"));
1050 return ret;
1053 static void
1054 set_code_flag (int value)
1056 flag_code = value;
1057 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1058 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1059 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1061 as_bad (_("64bit mode not supported on this CPU."));
1063 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1065 as_bad (_("32bit mode not supported on this CPU."));
1067 stackop_size = '\0';
1070 static void
1071 set_16bit_gcc_code_flag (int new_code_flag)
1073 flag_code = new_code_flag;
1074 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1075 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1076 stackop_size = LONG_MNEM_SUFFIX;
1079 static void
1080 set_intel_syntax (int syntax_flag)
1082 /* Find out if register prefixing is specified. */
1083 int ask_naked_reg = 0;
1085 SKIP_WHITESPACE ();
1086 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1088 char *string = input_line_pointer;
1089 int e = get_symbol_end ();
1091 if (strcmp (string, "prefix") == 0)
1092 ask_naked_reg = 1;
1093 else if (strcmp (string, "noprefix") == 0)
1094 ask_naked_reg = -1;
1095 else
1096 as_bad (_("bad argument to syntax directive."));
1097 *input_line_pointer = e;
1099 demand_empty_rest_of_line ();
1101 intel_syntax = syntax_flag;
1103 if (ask_naked_reg == 0)
1104 allow_naked_reg = (intel_syntax
1105 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1106 else
1107 allow_naked_reg = (ask_naked_reg < 0);
1109 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1110 identifier_chars['$'] = intel_syntax ? '$' : 0;
1111 register_prefix = allow_naked_reg ? "" : "%";
1114 static void
1115 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1117 SKIP_WHITESPACE ();
1119 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1121 char *string = input_line_pointer;
1122 int e = get_symbol_end ();
1123 unsigned int i;
1125 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1127 if (strcmp (string, cpu_arch[i].name) == 0)
1129 if (*string != '.')
1131 cpu_arch_name = cpu_arch[i].name;
1132 cpu_sub_arch_name = NULL;
1133 cpu_arch_flags = (cpu_arch[i].flags
1134 | (flag_code == CODE_64BIT
1135 ? Cpu64 : CpuNo64));
1136 cpu_arch_isa = cpu_arch[i].type;
1137 cpu_arch_isa_flags = cpu_arch[i].flags;
1138 if (!cpu_arch_tune_set)
1140 cpu_arch_tune = cpu_arch_isa;
1141 cpu_arch_tune_flags = cpu_arch_isa_flags;
1143 break;
1145 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1147 cpu_sub_arch_name = cpu_arch[i].name;
1148 cpu_arch_flags |= cpu_arch[i].flags;
1150 *input_line_pointer = e;
1151 demand_empty_rest_of_line ();
1152 return;
1155 if (i >= ARRAY_SIZE (cpu_arch))
1156 as_bad (_("no such architecture: `%s'"), string);
1158 *input_line_pointer = e;
1160 else
1161 as_bad (_("missing cpu architecture"));
1163 no_cond_jump_promotion = 0;
1164 if (*input_line_pointer == ','
1165 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1167 char *string = ++input_line_pointer;
1168 int e = get_symbol_end ();
1170 if (strcmp (string, "nojumps") == 0)
1171 no_cond_jump_promotion = 1;
1172 else if (strcmp (string, "jumps") == 0)
1174 else
1175 as_bad (_("no such architecture modifier: `%s'"), string);
1177 *input_line_pointer = e;
1180 demand_empty_rest_of_line ();
1183 unsigned long
1184 i386_mach ()
1186 if (!strcmp (default_arch, "x86_64"))
1187 return bfd_mach_x86_64;
1188 else if (!strcmp (default_arch, "i386"))
1189 return bfd_mach_i386_i386;
1190 else
1191 as_fatal (_("Unknown architecture"));
1194 void
1195 md_begin ()
1197 const char *hash_err;
1199 /* Initialize op_hash hash table. */
1200 op_hash = hash_new ();
1203 const template *optab;
1204 templates *core_optab;
1206 /* Setup for loop. */
1207 optab = i386_optab;
1208 core_optab = (templates *) xmalloc (sizeof (templates));
1209 core_optab->start = optab;
1211 while (1)
1213 ++optab;
1214 if (optab->name == NULL
1215 || strcmp (optab->name, (optab - 1)->name) != 0)
1217 /* different name --> ship out current template list;
1218 add to hash table; & begin anew. */
1219 core_optab->end = optab;
1220 hash_err = hash_insert (op_hash,
1221 (optab - 1)->name,
1222 (PTR) core_optab);
1223 if (hash_err)
1225 as_fatal (_("Internal Error: Can't hash %s: %s"),
1226 (optab - 1)->name,
1227 hash_err);
1229 if (optab->name == NULL)
1230 break;
1231 core_optab = (templates *) xmalloc (sizeof (templates));
1232 core_optab->start = optab;
1237 /* Initialize reg_hash hash table. */
1238 reg_hash = hash_new ();
1240 const reg_entry *regtab;
1242 for (regtab = i386_regtab; regtab->reg_name != NULL; regtab++)
1244 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1245 if (hash_err)
1246 as_fatal (_("Internal Error: Can't hash %s: %s"),
1247 regtab->reg_name,
1248 hash_err);
1252 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1254 int c;
1255 char *p;
1257 for (c = 0; c < 256; c++)
1259 if (ISDIGIT (c))
1261 digit_chars[c] = c;
1262 mnemonic_chars[c] = c;
1263 register_chars[c] = c;
1264 operand_chars[c] = c;
1266 else if (ISLOWER (c))
1268 mnemonic_chars[c] = c;
1269 register_chars[c] = c;
1270 operand_chars[c] = c;
1272 else if (ISUPPER (c))
1274 mnemonic_chars[c] = TOLOWER (c);
1275 register_chars[c] = mnemonic_chars[c];
1276 operand_chars[c] = c;
1279 if (ISALPHA (c) || ISDIGIT (c))
1280 identifier_chars[c] = c;
1281 else if (c >= 128)
1283 identifier_chars[c] = c;
1284 operand_chars[c] = c;
1288 #ifdef LEX_AT
1289 identifier_chars['@'] = '@';
1290 #endif
1291 #ifdef LEX_QM
1292 identifier_chars['?'] = '?';
1293 operand_chars['?'] = '?';
1294 #endif
1295 digit_chars['-'] = '-';
1296 mnemonic_chars['-'] = '-';
1297 identifier_chars['_'] = '_';
1298 identifier_chars['.'] = '.';
1300 for (p = operand_special_chars; *p != '\0'; p++)
1301 operand_chars[(unsigned char) *p] = *p;
1304 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1305 if (IS_ELF)
1307 record_alignment (text_section, 2);
1308 record_alignment (data_section, 2);
1309 record_alignment (bss_section, 2);
1311 #endif
1313 if (flag_code == CODE_64BIT)
1315 x86_dwarf2_return_column = 16;
1316 x86_cie_data_alignment = -8;
1318 else
1320 x86_dwarf2_return_column = 8;
1321 x86_cie_data_alignment = -4;
1325 void
1326 i386_print_statistics (FILE *file)
1328 hash_print_statistics (file, "i386 opcode", op_hash);
1329 hash_print_statistics (file, "i386 register", reg_hash);
1332 #ifdef DEBUG386
1334 /* Debugging routines for md_assemble. */
1335 static void pte (template *);
1336 static void pt (unsigned int);
1337 static void pe (expressionS *);
1338 static void ps (symbolS *);
1340 static void
1341 pi (char *line, i386_insn *x)
1343 unsigned int i;
1345 fprintf (stdout, "%s: template ", line);
1346 pte (&x->tm);
1347 fprintf (stdout, " address: base %s index %s scale %x\n",
1348 x->base_reg ? x->base_reg->reg_name : "none",
1349 x->index_reg ? x->index_reg->reg_name : "none",
1350 x->log2_scale_factor);
1351 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1352 x->rm.mode, x->rm.reg, x->rm.regmem);
1353 fprintf (stdout, " sib: base %x index %x scale %x\n",
1354 x->sib.base, x->sib.index, x->sib.scale);
1355 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1356 (x->rex & REX_MODE64) != 0,
1357 (x->rex & REX_EXTX) != 0,
1358 (x->rex & REX_EXTY) != 0,
1359 (x->rex & REX_EXTZ) != 0);
1360 for (i = 0; i < x->operands; i++)
1362 fprintf (stdout, " #%d: ", i + 1);
1363 pt (x->types[i]);
1364 fprintf (stdout, "\n");
1365 if (x->types[i]
1366 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1367 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1368 if (x->types[i] & Imm)
1369 pe (x->op[i].imms);
1370 if (x->types[i] & Disp)
1371 pe (x->op[i].disps);
1375 static void
1376 pte (template *t)
1378 unsigned int i;
1379 fprintf (stdout, " %d operands ", t->operands);
1380 fprintf (stdout, "opcode %x ", t->base_opcode);
1381 if (t->extension_opcode != None)
1382 fprintf (stdout, "ext %x ", t->extension_opcode);
1383 if (t->opcode_modifier & D)
1384 fprintf (stdout, "D");
1385 if (t->opcode_modifier & W)
1386 fprintf (stdout, "W");
1387 fprintf (stdout, "\n");
1388 for (i = 0; i < t->operands; i++)
1390 fprintf (stdout, " #%d type ", i + 1);
1391 pt (t->operand_types[i]);
1392 fprintf (stdout, "\n");
1396 static void
1397 pe (expressionS *e)
1399 fprintf (stdout, " operation %d\n", e->X_op);
1400 fprintf (stdout, " add_number %ld (%lx)\n",
1401 (long) e->X_add_number, (long) e->X_add_number);
1402 if (e->X_add_symbol)
1404 fprintf (stdout, " add_symbol ");
1405 ps (e->X_add_symbol);
1406 fprintf (stdout, "\n");
1408 if (e->X_op_symbol)
1410 fprintf (stdout, " op_symbol ");
1411 ps (e->X_op_symbol);
1412 fprintf (stdout, "\n");
1416 static void
1417 ps (symbolS *s)
1419 fprintf (stdout, "%s type %s%s",
1420 S_GET_NAME (s),
1421 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1422 segment_name (S_GET_SEGMENT (s)));
1425 static struct type_name
1427 unsigned int mask;
1428 char *tname;
1430 const type_names[] =
1432 { Reg8, "r8" },
1433 { Reg16, "r16" },
1434 { Reg32, "r32" },
1435 { Reg64, "r64" },
1436 { Imm8, "i8" },
1437 { Imm8S, "i8s" },
1438 { Imm16, "i16" },
1439 { Imm32, "i32" },
1440 { Imm32S, "i32s" },
1441 { Imm64, "i64" },
1442 { Imm1, "i1" },
1443 { BaseIndex, "BaseIndex" },
1444 { Disp8, "d8" },
1445 { Disp16, "d16" },
1446 { Disp32, "d32" },
1447 { Disp32S, "d32s" },
1448 { Disp64, "d64" },
1449 { InOutPortReg, "InOutPortReg" },
1450 { ShiftCount, "ShiftCount" },
1451 { Control, "control reg" },
1452 { Test, "test reg" },
1453 { Debug, "debug reg" },
1454 { FloatReg, "FReg" },
1455 { FloatAcc, "FAcc" },
1456 { SReg2, "SReg2" },
1457 { SReg3, "SReg3" },
1458 { Acc, "Acc" },
1459 { JumpAbsolute, "Jump Absolute" },
1460 { RegMMX, "rMMX" },
1461 { RegXMM, "rXMM" },
1462 { EsSeg, "es" },
1463 { 0, "" }
1466 static void
1467 pt (t)
1468 unsigned int t;
1470 const struct type_name *ty;
1472 for (ty = type_names; ty->mask; ty++)
1473 if (t & ty->mask)
1474 fprintf (stdout, "%s, ", ty->tname);
1475 fflush (stdout);
1478 #endif /* DEBUG386 */
1480 static bfd_reloc_code_real_type
1481 reloc (unsigned int size,
1482 int pcrel,
1483 int sign,
1484 bfd_reloc_code_real_type other)
1486 if (other != NO_RELOC)
1488 reloc_howto_type *reloc;
1490 if (size == 8)
1491 switch (other)
1493 case BFD_RELOC_X86_64_GOT32:
1494 return BFD_RELOC_X86_64_GOT64;
1495 break;
1496 case BFD_RELOC_X86_64_PLTOFF64:
1497 return BFD_RELOC_X86_64_PLTOFF64;
1498 break;
1499 case BFD_RELOC_X86_64_GOTPC32:
1500 other = BFD_RELOC_X86_64_GOTPC64;
1501 break;
1502 case BFD_RELOC_X86_64_GOTPCREL:
1503 other = BFD_RELOC_X86_64_GOTPCREL64;
1504 break;
1505 case BFD_RELOC_X86_64_TPOFF32:
1506 other = BFD_RELOC_X86_64_TPOFF64;
1507 break;
1508 case BFD_RELOC_X86_64_DTPOFF32:
1509 other = BFD_RELOC_X86_64_DTPOFF64;
1510 break;
1511 default:
1512 break;
1515 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1516 if (size == 4 && flag_code != CODE_64BIT)
1517 sign = -1;
1519 reloc = bfd_reloc_type_lookup (stdoutput, other);
1520 if (!reloc)
1521 as_bad (_("unknown relocation (%u)"), other);
1522 else if (size != bfd_get_reloc_size (reloc))
1523 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1524 bfd_get_reloc_size (reloc),
1525 size);
1526 else if (pcrel && !reloc->pc_relative)
1527 as_bad (_("non-pc-relative relocation for pc-relative field"));
1528 else if ((reloc->complain_on_overflow == complain_overflow_signed
1529 && !sign)
1530 || (reloc->complain_on_overflow == complain_overflow_unsigned
1531 && sign > 0))
1532 as_bad (_("relocated field and relocation type differ in signedness"));
1533 else
1534 return other;
1535 return NO_RELOC;
1538 if (pcrel)
1540 if (!sign)
1541 as_bad (_("there are no unsigned pc-relative relocations"));
1542 switch (size)
1544 case 1: return BFD_RELOC_8_PCREL;
1545 case 2: return BFD_RELOC_16_PCREL;
1546 case 4: return BFD_RELOC_32_PCREL;
1547 case 8: return BFD_RELOC_64_PCREL;
1549 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1551 else
1553 if (sign > 0)
1554 switch (size)
1556 case 4: return BFD_RELOC_X86_64_32S;
1558 else
1559 switch (size)
1561 case 1: return BFD_RELOC_8;
1562 case 2: return BFD_RELOC_16;
1563 case 4: return BFD_RELOC_32;
1564 case 8: return BFD_RELOC_64;
1566 as_bad (_("cannot do %s %u byte relocation"),
1567 sign > 0 ? "signed" : "unsigned", size);
1570 abort ();
1571 return BFD_RELOC_NONE;
1574 /* Here we decide which fixups can be adjusted to make them relative to
1575 the beginning of the section instead of the symbol. Basically we need
1576 to make sure that the dynamic relocations are done correctly, so in
1577 some cases we force the original symbol to be used. */
1580 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
1582 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1583 if (!IS_ELF)
1584 return 1;
1586 /* Don't adjust pc-relative references to merge sections in 64-bit
1587 mode. */
1588 if (use_rela_relocations
1589 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1590 && fixP->fx_pcrel)
1591 return 0;
1593 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1594 and changed later by validate_fix. */
1595 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1596 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1597 return 0;
1599 /* adjust_reloc_syms doesn't know about the GOT. */
1600 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1601 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1602 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1603 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1604 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1605 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1606 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1607 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1608 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1609 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1610 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1611 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1612 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1613 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1614 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1615 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1616 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1617 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1618 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1619 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1620 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1621 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1622 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1623 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1624 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1625 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1626 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1627 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1628 return 0;
1629 #endif
1630 return 1;
1633 static int
1634 intel_float_operand (const char *mnemonic)
1636 /* Note that the value returned is meaningful only for opcodes with (memory)
1637 operands, hence the code here is free to improperly handle opcodes that
1638 have no operands (for better performance and smaller code). */
1640 if (mnemonic[0] != 'f')
1641 return 0; /* non-math */
1643 switch (mnemonic[1])
1645 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1646 the fs segment override prefix not currently handled because no
1647 call path can make opcodes without operands get here */
1648 case 'i':
1649 return 2 /* integer op */;
1650 case 'l':
1651 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1652 return 3; /* fldcw/fldenv */
1653 break;
1654 case 'n':
1655 if (mnemonic[2] != 'o' /* fnop */)
1656 return 3; /* non-waiting control op */
1657 break;
1658 case 'r':
1659 if (mnemonic[2] == 's')
1660 return 3; /* frstor/frstpm */
1661 break;
1662 case 's':
1663 if (mnemonic[2] == 'a')
1664 return 3; /* fsave */
1665 if (mnemonic[2] == 't')
1667 switch (mnemonic[3])
1669 case 'c': /* fstcw */
1670 case 'd': /* fstdw */
1671 case 'e': /* fstenv */
1672 case 's': /* fsts[gw] */
1673 return 3;
1676 break;
1677 case 'x':
1678 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1679 return 0; /* fxsave/fxrstor are not really math ops */
1680 break;
1683 return 1;
1686 /* This is the guts of the machine-dependent assembler. LINE points to a
1687 machine dependent instruction. This function is supposed to emit
1688 the frags/bytes it assembles to. */
1690 void
1691 md_assemble (line)
1692 char *line;
1694 int j;
1695 char mnemonic[MAX_MNEM_SIZE];
1697 /* Initialize globals. */
1698 memset (&i, '\0', sizeof (i));
1699 for (j = 0; j < MAX_OPERANDS; j++)
1700 i.reloc[j] = NO_RELOC;
1701 memset (disp_expressions, '\0', sizeof (disp_expressions));
1702 memset (im_expressions, '\0', sizeof (im_expressions));
1703 save_stack_p = save_stack;
1705 /* First parse an instruction mnemonic & call i386_operand for the operands.
1706 We assume that the scrubber has arranged it so that line[0] is the valid
1707 start of a (possibly prefixed) mnemonic. */
1709 line = parse_insn (line, mnemonic);
1710 if (line == NULL)
1711 return;
1713 line = parse_operands (line, mnemonic);
1714 if (line == NULL)
1715 return;
1717 /* The order of the immediates should be reversed
1718 for 2 immediates extrq and insertq instructions */
1719 if ((i.imm_operands == 2)
1720 && ((strcmp (mnemonic, "extrq") == 0)
1721 || (strcmp (mnemonic, "insertq") == 0)))
1723 swap_2_operands (0, 1);
1724 /* "extrq" and insertq" are the only two instructions whose operands
1725 have to be reversed even though they have two immediate operands.
1727 if (intel_syntax)
1728 swap_operands ();
1731 /* Now we've parsed the mnemonic into a set of templates, and have the
1732 operands at hand. */
1734 /* All intel opcodes have reversed operands except for "bound" and
1735 "enter". We also don't reverse intersegment "jmp" and "call"
1736 instructions with 2 immediate operands so that the immediate segment
1737 precedes the offset, as it does when in AT&T mode. */
1738 if (intel_syntax
1739 && i.operands > 1
1740 && (strcmp (mnemonic, "bound") != 0)
1741 && (strcmp (mnemonic, "invlpga") != 0)
1742 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1743 swap_operands ();
1745 if (i.imm_operands)
1746 optimize_imm ();
1748 /* Don't optimize displacement for movabs since it only takes 64bit
1749 displacement. */
1750 if (i.disp_operands
1751 && (flag_code != CODE_64BIT
1752 || strcmp (mnemonic, "movabs") != 0))
1753 optimize_disp ();
1755 /* Next, we find a template that matches the given insn,
1756 making sure the overlap of the given operands types is consistent
1757 with the template operand types. */
1759 if (!match_template ())
1760 return;
1762 if (intel_syntax)
1764 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1765 if (SYSV386_COMPAT
1766 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1767 i.tm.base_opcode ^= Opcode_FloatR;
1769 /* Zap movzx and movsx suffix. The suffix may have been set from
1770 "word ptr" or "byte ptr" on the source operand, but we'll use
1771 the suffix later to choose the destination register. */
1772 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1774 if (i.reg_operands < 2
1775 && !i.suffix
1776 && (~i.tm.opcode_modifier
1777 & (No_bSuf
1778 | No_wSuf
1779 | No_lSuf
1780 | No_sSuf
1781 | No_xSuf
1782 | No_qSuf)))
1783 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1785 i.suffix = 0;
1789 if (i.tm.opcode_modifier & FWait)
1790 if (!add_prefix (FWAIT_OPCODE))
1791 return;
1793 /* Check string instruction segment overrides. */
1794 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1796 if (!check_string ())
1797 return;
1800 if (!process_suffix ())
1801 return;
1803 /* Make still unresolved immediate matches conform to size of immediate
1804 given in i.suffix. */
1805 if (!finalize_imm ())
1806 return;
1808 if (i.types[0] & Imm1)
1809 i.imm_operands = 0; /* kludge for shift insns. */
1810 if (i.types[0] & ImplicitRegister)
1811 i.reg_operands--;
1812 if (i.types[1] & ImplicitRegister)
1813 i.reg_operands--;
1814 if (i.types[2] & ImplicitRegister)
1815 i.reg_operands--;
1817 if (i.tm.opcode_modifier & ImmExt)
1819 expressionS *exp;
1821 if ((i.tm.cpu_flags & CpuSSE3) && i.operands > 0)
1823 /* Streaming SIMD extensions 3 Instructions have the fixed
1824 operands with an opcode suffix which is coded in the same
1825 place as an 8-bit immediate field would be. Here we check
1826 those operands and remove them afterwards. */
1827 unsigned int x;
1829 for (x = 0; x < i.operands; x++)
1830 if (i.op[x].regs->reg_num != x)
1831 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1832 i.op[x].regs->reg_name, x + 1, i.tm.name);
1833 i.operands = 0;
1836 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1837 opcode suffix which is coded in the same place as an 8-bit
1838 immediate field would be. Here we fake an 8-bit immediate
1839 operand from the opcode suffix stored in tm.extension_opcode. */
1841 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1843 exp = &im_expressions[i.imm_operands++];
1844 i.op[i.operands].imms = exp;
1845 i.types[i.operands++] = Imm8;
1846 exp->X_op = O_constant;
1847 exp->X_add_number = i.tm.extension_opcode;
1848 i.tm.extension_opcode = None;
1851 /* For insns with operands there are more diddles to do to the opcode. */
1852 if (i.operands)
1854 if (!process_operands ())
1855 return;
1857 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1859 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1860 as_warn (_("translating to `%sp'"), i.tm.name);
1863 /* Handle conversion of 'int $3' --> special int3 insn. */
1864 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1866 i.tm.base_opcode = INT3_OPCODE;
1867 i.imm_operands = 0;
1870 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1871 && i.op[0].disps->X_op == O_constant)
1873 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1874 the absolute address given by the constant. Since ix86 jumps and
1875 calls are pc relative, we need to generate a reloc. */
1876 i.op[0].disps->X_add_symbol = &abs_symbol;
1877 i.op[0].disps->X_op = O_symbol;
1880 if ((i.tm.opcode_modifier & Rex64) != 0)
1881 i.rex |= REX_MODE64;
1883 /* For 8 bit registers we need an empty rex prefix. Also if the
1884 instruction already has a prefix, we need to convert old
1885 registers to new ones. */
1887 if (((i.types[0] & Reg8) != 0
1888 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1889 || ((i.types[1] & Reg8) != 0
1890 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1891 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1892 && i.rex != 0))
1894 int x;
1896 i.rex |= REX_OPCODE;
1897 for (x = 0; x < 2; x++)
1899 /* Look for 8 bit operand that uses old registers. */
1900 if ((i.types[x] & Reg8) != 0
1901 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1903 /* In case it is "hi" register, give up. */
1904 if (i.op[x].regs->reg_num > 3)
1905 as_bad (_("can't encode register '%%%s' in an "
1906 "instruction requiring REX prefix."),
1907 i.op[x].regs->reg_name);
1909 /* Otherwise it is equivalent to the extended register.
1910 Since the encoding doesn't change this is merely
1911 cosmetic cleanup for debug output. */
1913 i.op[x].regs = i.op[x].regs + 8;
1918 if (i.rex != 0)
1919 add_prefix (REX_OPCODE | i.rex);
1921 /* We are ready to output the insn. */
1922 output_insn ();
1925 static char *
1926 parse_insn (char *line, char *mnemonic)
1928 char *l = line;
1929 char *token_start = l;
1930 char *mnem_p;
1931 int supported;
1932 const template *t;
1934 /* Non-zero if we found a prefix only acceptable with string insns. */
1935 const char *expecting_string_instruction = NULL;
1937 while (1)
1939 mnem_p = mnemonic;
1940 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1942 mnem_p++;
1943 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1945 as_bad (_("no such instruction: `%s'"), token_start);
1946 return NULL;
1948 l++;
1950 if (!is_space_char (*l)
1951 && *l != END_OF_INSN
1952 && (intel_syntax
1953 || (*l != PREFIX_SEPARATOR
1954 && *l != ',')))
1956 as_bad (_("invalid character %s in mnemonic"),
1957 output_invalid (*l));
1958 return NULL;
1960 if (token_start == l)
1962 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1963 as_bad (_("expecting prefix; got nothing"));
1964 else
1965 as_bad (_("expecting mnemonic; got nothing"));
1966 return NULL;
1969 /* Look up instruction (or prefix) via hash table. */
1970 current_templates = hash_find (op_hash, mnemonic);
1972 if (*l != END_OF_INSN
1973 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1974 && current_templates
1975 && (current_templates->start->opcode_modifier & IsPrefix))
1977 if (current_templates->start->cpu_flags
1978 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
1980 as_bad ((flag_code != CODE_64BIT
1981 ? _("`%s' is only supported in 64-bit mode")
1982 : _("`%s' is not supported in 64-bit mode")),
1983 current_templates->start->name);
1984 return NULL;
1986 /* If we are in 16-bit mode, do not allow addr16 or data16.
1987 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1988 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1989 && flag_code != CODE_64BIT
1990 && (((current_templates->start->opcode_modifier & Size32) != 0)
1991 ^ (flag_code == CODE_16BIT)))
1993 as_bad (_("redundant %s prefix"),
1994 current_templates->start->name);
1995 return NULL;
1997 /* Add prefix, checking for repeated prefixes. */
1998 switch (add_prefix (current_templates->start->base_opcode))
2000 case 0:
2001 return NULL;
2002 case 2:
2003 expecting_string_instruction = current_templates->start->name;
2004 break;
2006 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2007 token_start = ++l;
2009 else
2010 break;
2013 if (!current_templates)
2015 /* See if we can get a match by trimming off a suffix. */
2016 switch (mnem_p[-1])
2018 case WORD_MNEM_SUFFIX:
2019 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2020 i.suffix = SHORT_MNEM_SUFFIX;
2021 else
2022 case BYTE_MNEM_SUFFIX:
2023 case QWORD_MNEM_SUFFIX:
2024 i.suffix = mnem_p[-1];
2025 mnem_p[-1] = '\0';
2026 current_templates = hash_find (op_hash, mnemonic);
2027 break;
2028 case SHORT_MNEM_SUFFIX:
2029 case LONG_MNEM_SUFFIX:
2030 if (!intel_syntax)
2032 i.suffix = mnem_p[-1];
2033 mnem_p[-1] = '\0';
2034 current_templates = hash_find (op_hash, mnemonic);
2036 break;
2038 /* Intel Syntax. */
2039 case 'd':
2040 if (intel_syntax)
2042 if (intel_float_operand (mnemonic) == 1)
2043 i.suffix = SHORT_MNEM_SUFFIX;
2044 else
2045 i.suffix = LONG_MNEM_SUFFIX;
2046 mnem_p[-1] = '\0';
2047 current_templates = hash_find (op_hash, mnemonic);
2049 break;
2051 if (!current_templates)
2053 as_bad (_("no such instruction: `%s'"), token_start);
2054 return NULL;
2058 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2060 /* Check for a branch hint. We allow ",pt" and ",pn" for
2061 predict taken and predict not taken respectively.
2062 I'm not sure that branch hints actually do anything on loop
2063 and jcxz insns (JumpByte) for current Pentium4 chips. They
2064 may work in the future and it doesn't hurt to accept them
2065 now. */
2066 if (l[0] == ',' && l[1] == 'p')
2068 if (l[2] == 't')
2070 if (!add_prefix (DS_PREFIX_OPCODE))
2071 return NULL;
2072 l += 3;
2074 else if (l[2] == 'n')
2076 if (!add_prefix (CS_PREFIX_OPCODE))
2077 return NULL;
2078 l += 3;
2082 /* Any other comma loses. */
2083 if (*l == ',')
2085 as_bad (_("invalid character %s in mnemonic"),
2086 output_invalid (*l));
2087 return NULL;
2090 /* Check if instruction is supported on specified architecture. */
2091 supported = 0;
2092 for (t = current_templates->start; t < current_templates->end; ++t)
2094 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2095 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2096 supported |= 1;
2097 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2098 supported |= 2;
2100 if (!(supported & 2))
2102 as_bad (flag_code == CODE_64BIT
2103 ? _("`%s' is not supported in 64-bit mode")
2104 : _("`%s' is only supported in 64-bit mode"),
2105 current_templates->start->name);
2106 return NULL;
2108 if (!(supported & 1))
2110 as_warn (_("`%s' is not supported on `%s%s'"),
2111 current_templates->start->name,
2112 cpu_arch_name,
2113 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2115 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2117 as_warn (_("use .code16 to ensure correct addressing mode"));
2120 /* Check for rep/repne without a string instruction. */
2121 if (expecting_string_instruction)
2123 static templates override;
2125 for (t = current_templates->start; t < current_templates->end; ++t)
2126 if (t->opcode_modifier & IsString)
2127 break;
2128 if (t >= current_templates->end)
2130 as_bad (_("expecting string instruction after `%s'"),
2131 expecting_string_instruction);
2132 return NULL;
2134 for (override.start = t; t < current_templates->end; ++t)
2135 if (!(t->opcode_modifier & IsString))
2136 break;
2137 override.end = t;
2138 current_templates = &override;
2141 return l;
2144 static char *
2145 parse_operands (char *l, const char *mnemonic)
2147 char *token_start;
2149 /* 1 if operand is pending after ','. */
2150 unsigned int expecting_operand = 0;
2152 /* Non-zero if operand parens not balanced. */
2153 unsigned int paren_not_balanced;
2155 while (*l != END_OF_INSN)
2157 /* Skip optional white space before operand. */
2158 if (is_space_char (*l))
2159 ++l;
2160 if (!is_operand_char (*l) && *l != END_OF_INSN)
2162 as_bad (_("invalid character %s before operand %d"),
2163 output_invalid (*l),
2164 i.operands + 1);
2165 return NULL;
2167 token_start = l; /* after white space */
2168 paren_not_balanced = 0;
2169 while (paren_not_balanced || *l != ',')
2171 if (*l == END_OF_INSN)
2173 if (paren_not_balanced)
2175 if (!intel_syntax)
2176 as_bad (_("unbalanced parenthesis in operand %d."),
2177 i.operands + 1);
2178 else
2179 as_bad (_("unbalanced brackets in operand %d."),
2180 i.operands + 1);
2181 return NULL;
2183 else
2184 break; /* we are done */
2186 else if (!is_operand_char (*l) && !is_space_char (*l))
2188 as_bad (_("invalid character %s in operand %d"),
2189 output_invalid (*l),
2190 i.operands + 1);
2191 return NULL;
2193 if (!intel_syntax)
2195 if (*l == '(')
2196 ++paren_not_balanced;
2197 if (*l == ')')
2198 --paren_not_balanced;
2200 else
2202 if (*l == '[')
2203 ++paren_not_balanced;
2204 if (*l == ']')
2205 --paren_not_balanced;
2207 l++;
2209 if (l != token_start)
2210 { /* Yes, we've read in another operand. */
2211 unsigned int operand_ok;
2212 this_operand = i.operands++;
2213 if (i.operands > MAX_OPERANDS)
2215 as_bad (_("spurious operands; (%d operands/instruction max)"),
2216 MAX_OPERANDS);
2217 return NULL;
2219 /* Now parse operand adding info to 'i' as we go along. */
2220 END_STRING_AND_SAVE (l);
2222 if (intel_syntax)
2223 operand_ok =
2224 i386_intel_operand (token_start,
2225 intel_float_operand (mnemonic));
2226 else
2227 operand_ok = i386_operand (token_start);
2229 RESTORE_END_STRING (l);
2230 if (!operand_ok)
2231 return NULL;
2233 else
2235 if (expecting_operand)
2237 expecting_operand_after_comma:
2238 as_bad (_("expecting operand after ','; got nothing"));
2239 return NULL;
2241 if (*l == ',')
2243 as_bad (_("expecting operand before ','; got nothing"));
2244 return NULL;
2248 /* Now *l must be either ',' or END_OF_INSN. */
2249 if (*l == ',')
2251 if (*++l == END_OF_INSN)
2253 /* Just skip it, if it's \n complain. */
2254 goto expecting_operand_after_comma;
2256 expecting_operand = 1;
2259 return l;
2262 static void
2263 swap_2_operands (int xchg1, int xchg2)
2265 union i386_op temp_op;
2266 unsigned int temp_type;
2267 enum bfd_reloc_code_real temp_reloc;
2269 temp_type = i.types[xchg2];
2270 i.types[xchg2] = i.types[xchg1];
2271 i.types[xchg1] = temp_type;
2272 temp_op = i.op[xchg2];
2273 i.op[xchg2] = i.op[xchg1];
2274 i.op[xchg1] = temp_op;
2275 temp_reloc = i.reloc[xchg2];
2276 i.reloc[xchg2] = i.reloc[xchg1];
2277 i.reloc[xchg1] = temp_reloc;
2280 static void
2281 swap_operands (void)
2283 switch (i.operands)
2285 case 4:
2286 swap_2_operands (1, i.operands - 2);
2287 case 3:
2288 case 2:
2289 swap_2_operands (0, i.operands - 1);
2290 break;
2291 default:
2292 abort ();
2295 if (i.mem_operands == 2)
2297 const seg_entry *temp_seg;
2298 temp_seg = i.seg[0];
2299 i.seg[0] = i.seg[1];
2300 i.seg[1] = temp_seg;
2304 /* Try to ensure constant immediates are represented in the smallest
2305 opcode possible. */
2306 static void
2307 optimize_imm (void)
2309 char guess_suffix = 0;
2310 int op;
2312 if (i.suffix)
2313 guess_suffix = i.suffix;
2314 else if (i.reg_operands)
2316 /* Figure out a suffix from the last register operand specified.
2317 We can't do this properly yet, ie. excluding InOutPortReg,
2318 but the following works for instructions with immediates.
2319 In any case, we can't set i.suffix yet. */
2320 for (op = i.operands; --op >= 0;)
2321 if (i.types[op] & Reg)
2323 if (i.types[op] & Reg8)
2324 guess_suffix = BYTE_MNEM_SUFFIX;
2325 else if (i.types[op] & Reg16)
2326 guess_suffix = WORD_MNEM_SUFFIX;
2327 else if (i.types[op] & Reg32)
2328 guess_suffix = LONG_MNEM_SUFFIX;
2329 else if (i.types[op] & Reg64)
2330 guess_suffix = QWORD_MNEM_SUFFIX;
2331 break;
2334 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2335 guess_suffix = WORD_MNEM_SUFFIX;
2337 for (op = i.operands; --op >= 0;)
2338 if (i.types[op] & Imm)
2340 switch (i.op[op].imms->X_op)
2342 case O_constant:
2343 /* If a suffix is given, this operand may be shortened. */
2344 switch (guess_suffix)
2346 case LONG_MNEM_SUFFIX:
2347 i.types[op] |= Imm32 | Imm64;
2348 break;
2349 case WORD_MNEM_SUFFIX:
2350 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2351 break;
2352 case BYTE_MNEM_SUFFIX:
2353 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2354 break;
2357 /* If this operand is at most 16 bits, convert it
2358 to a signed 16 bit number before trying to see
2359 whether it will fit in an even smaller size.
2360 This allows a 16-bit operand such as $0xffe0 to
2361 be recognised as within Imm8S range. */
2362 if ((i.types[op] & Imm16)
2363 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2365 i.op[op].imms->X_add_number =
2366 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2368 if ((i.types[op] & Imm32)
2369 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2370 == 0))
2372 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2373 ^ ((offsetT) 1 << 31))
2374 - ((offsetT) 1 << 31));
2376 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2378 /* We must avoid matching of Imm32 templates when 64bit
2379 only immediate is available. */
2380 if (guess_suffix == QWORD_MNEM_SUFFIX)
2381 i.types[op] &= ~Imm32;
2382 break;
2384 case O_absent:
2385 case O_register:
2386 abort ();
2388 /* Symbols and expressions. */
2389 default:
2390 /* Convert symbolic operand to proper sizes for matching, but don't
2391 prevent matching a set of insns that only supports sizes other
2392 than those matching the insn suffix. */
2394 unsigned int mask, allowed = 0;
2395 const template *t;
2397 for (t = current_templates->start;
2398 t < current_templates->end;
2399 ++t)
2400 allowed |= t->operand_types[op];
2401 switch (guess_suffix)
2403 case QWORD_MNEM_SUFFIX:
2404 mask = Imm64 | Imm32S;
2405 break;
2406 case LONG_MNEM_SUFFIX:
2407 mask = Imm32;
2408 break;
2409 case WORD_MNEM_SUFFIX:
2410 mask = Imm16;
2411 break;
2412 case BYTE_MNEM_SUFFIX:
2413 mask = Imm8;
2414 break;
2415 default:
2416 mask = 0;
2417 break;
2419 if (mask & allowed)
2420 i.types[op] &= mask;
2422 break;
2427 /* Try to use the smallest displacement type too. */
2428 static void
2429 optimize_disp (void)
2431 int op;
2433 for (op = i.operands; --op >= 0;)
2434 if (i.types[op] & Disp)
2436 if (i.op[op].disps->X_op == O_constant)
2438 offsetT disp = i.op[op].disps->X_add_number;
2440 if ((i.types[op] & Disp16)
2441 && (disp & ~(offsetT) 0xffff) == 0)
2443 /* If this operand is at most 16 bits, convert
2444 to a signed 16 bit number and don't use 64bit
2445 displacement. */
2446 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2447 i.types[op] &= ~Disp64;
2449 if ((i.types[op] & Disp32)
2450 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2452 /* If this operand is at most 32 bits, convert
2453 to a signed 32 bit number and don't use 64bit
2454 displacement. */
2455 disp &= (((offsetT) 2 << 31) - 1);
2456 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2457 i.types[op] &= ~Disp64;
2459 if (!disp && (i.types[op] & BaseIndex))
2461 i.types[op] &= ~Disp;
2462 i.op[op].disps = 0;
2463 i.disp_operands--;
2465 else if (flag_code == CODE_64BIT)
2467 if (fits_in_signed_long (disp))
2469 i.types[op] &= ~Disp64;
2470 i.types[op] |= Disp32S;
2472 if (fits_in_unsigned_long (disp))
2473 i.types[op] |= Disp32;
2475 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2476 && fits_in_signed_byte (disp))
2477 i.types[op] |= Disp8;
2479 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2480 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2482 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2483 i.op[op].disps, 0, i.reloc[op]);
2484 i.types[op] &= ~Disp;
2486 else
2487 /* We only support 64bit displacement on constants. */
2488 i.types[op] &= ~Disp64;
2492 static int
2493 match_template (void)
2495 /* Points to template once we've found it. */
2496 const template *t;
2497 unsigned int overlap0, overlap1, overlap2, overlap3;
2498 unsigned int found_reverse_match;
2499 int suffix_check;
2500 unsigned int operand_types [MAX_OPERANDS];
2501 int addr_prefix_disp;
2502 unsigned int j;
2504 #if MAX_OPERANDS != 4
2505 # error "MAX_OPERANDS must be 4."
2506 #endif
2508 #define MATCH(overlap, given, template) \
2509 ((overlap & ~JumpAbsolute) \
2510 && (((given) & (BaseIndex | JumpAbsolute)) \
2511 == ((overlap) & (BaseIndex | JumpAbsolute))))
2513 /* If given types r0 and r1 are registers they must be of the same type
2514 unless the expected operand type register overlap is null.
2515 Note that Acc in a template matches every size of reg. */
2516 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2517 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2518 || ((g0) & Reg) == ((g1) & Reg) \
2519 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2521 overlap0 = 0;
2522 overlap1 = 0;
2523 overlap2 = 0;
2524 overlap3 = 0;
2525 found_reverse_match = 0;
2526 for (j = 0; j < MAX_OPERANDS; j++)
2527 operand_types [j] = 0;
2528 addr_prefix_disp = -1;
2529 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2530 ? No_bSuf
2531 : (i.suffix == WORD_MNEM_SUFFIX
2532 ? No_wSuf
2533 : (i.suffix == SHORT_MNEM_SUFFIX
2534 ? No_sSuf
2535 : (i.suffix == LONG_MNEM_SUFFIX
2536 ? No_lSuf
2537 : (i.suffix == QWORD_MNEM_SUFFIX
2538 ? No_qSuf
2539 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2540 ? No_xSuf : 0))))));
2542 for (t = current_templates->start; t < current_templates->end; t++)
2544 addr_prefix_disp = -1;
2546 /* Must have right number of operands. */
2547 if (i.operands != t->operands)
2548 continue;
2550 /* Check the suffix, except for some instructions in intel mode. */
2551 if ((t->opcode_modifier & suffix_check)
2552 && !(intel_syntax
2553 && (t->opcode_modifier & IgnoreSize)))
2554 continue;
2556 for (j = 0; j < MAX_OPERANDS; j++)
2557 operand_types [j] = t->operand_types [j];
2559 /* In general, don't allow 64-bit operands in 32-bit mode. */
2560 if (i.suffix == QWORD_MNEM_SUFFIX
2561 && flag_code != CODE_64BIT
2562 && (intel_syntax
2563 ? (!(t->opcode_modifier & IgnoreSize)
2564 && !intel_float_operand (t->name))
2565 : intel_float_operand (t->name) != 2)
2566 && (!(operand_types[0] & (RegMMX | RegXMM))
2567 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2568 && (t->base_opcode != 0x0fc7
2569 || t->extension_opcode != 1 /* cmpxchg8b */))
2570 continue;
2572 /* Do not verify operands when there are none. */
2573 else if (!t->operands)
2575 if (t->cpu_flags & ~cpu_arch_flags)
2576 continue;
2577 /* We've found a match; break out of loop. */
2578 break;
2581 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2582 into Disp32/Disp16/Disp32 operand. */
2583 if (i.prefix[ADDR_PREFIX] != 0)
2585 unsigned int DispOn = 0, DispOff = 0;
2587 switch (flag_code)
2589 case CODE_16BIT:
2590 DispOn = Disp32;
2591 DispOff = Disp16;
2592 break;
2593 case CODE_32BIT:
2594 DispOn = Disp16;
2595 DispOff = Disp32;
2596 break;
2597 case CODE_64BIT:
2598 DispOn = Disp32;
2599 DispOff = Disp64;
2600 break;
2603 for (j = 0; j < MAX_OPERANDS; j++)
2605 /* There should be only one Disp operand. */
2606 if ((operand_types[j] & DispOff))
2608 addr_prefix_disp = j;
2609 operand_types[j] |= DispOn;
2610 operand_types[j] &= ~DispOff;
2611 break;
2616 overlap0 = i.types[0] & operand_types[0];
2617 switch (t->operands)
2619 case 1:
2620 if (!MATCH (overlap0, i.types[0], operand_types[0]))
2621 continue;
2622 break;
2623 case 2:
2624 case 3:
2625 case 4:
2626 overlap1 = i.types[1] & operand_types[1];
2627 if (!MATCH (overlap0, i.types[0], operand_types[0])
2628 || !MATCH (overlap1, i.types[1], operand_types[1])
2629 /* monitor in SSE3 is a very special case. The first
2630 register and the second register may have different
2631 sizes. */
2632 || !((t->base_opcode == 0x0f01
2633 && t->extension_opcode == 0xc8)
2634 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2635 operand_types[0],
2636 overlap1, i.types[1],
2637 operand_types[1])))
2639 /* Check if other direction is valid ... */
2640 if ((t->opcode_modifier & (D | FloatD)) == 0)
2641 continue;
2643 /* Try reversing direction of operands. */
2644 overlap0 = i.types[0] & operand_types[1];
2645 overlap1 = i.types[1] & operand_types[0];
2646 if (!MATCH (overlap0, i.types[0], operand_types[1])
2647 || !MATCH (overlap1, i.types[1], operand_types[0])
2648 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2649 operand_types[1],
2650 overlap1, i.types[1],
2651 operand_types[0]))
2653 /* Does not match either direction. */
2654 continue;
2656 /* found_reverse_match holds which of D or FloatDR
2657 we've found. */
2658 if ((t->opcode_modifier & D))
2659 found_reverse_match = Opcode_D;
2660 else if ((t->opcode_modifier & FloatD))
2661 found_reverse_match = Opcode_FloatD;
2662 else
2663 found_reverse_match = 0;
2664 if ((t->opcode_modifier & FloatR))
2665 found_reverse_match |= Opcode_FloatR;
2667 else
2669 /* Found a forward 2 operand match here. */
2670 switch (t->operands)
2672 case 4:
2673 overlap3 = i.types[3] & operand_types[3];
2674 case 3:
2675 overlap2 = i.types[2] & operand_types[2];
2676 break;
2679 switch (t->operands)
2681 case 4:
2682 if (!MATCH (overlap3, i.types[3], operand_types[3])
2683 || !CONSISTENT_REGISTER_MATCH (overlap2,
2684 i.types[2],
2685 operand_types[2],
2686 overlap3,
2687 i.types[3],
2688 operand_types[3]))
2689 continue;
2690 case 3:
2691 /* Here we make use of the fact that there are no
2692 reverse match 3 operand instructions, and all 3
2693 operand instructions only need to be checked for
2694 register consistency between operands 2 and 3. */
2695 if (!MATCH (overlap2, i.types[2], operand_types[2])
2696 || !CONSISTENT_REGISTER_MATCH (overlap1,
2697 i.types[1],
2698 operand_types[1],
2699 overlap2,
2700 i.types[2],
2701 operand_types[2]))
2702 continue;
2703 break;
2706 /* Found either forward/reverse 2, 3 or 4 operand match here:
2707 slip through to break. */
2709 if (t->cpu_flags & ~cpu_arch_flags)
2711 found_reverse_match = 0;
2712 continue;
2714 /* We've found a match; break out of loop. */
2715 break;
2718 if (t == current_templates->end)
2720 /* We found no match. */
2721 as_bad (_("suffix or operands invalid for `%s'"),
2722 current_templates->start->name);
2723 return 0;
2726 if (!quiet_warnings)
2728 if (!intel_syntax
2729 && ((i.types[0] & JumpAbsolute)
2730 != (operand_types[0] & JumpAbsolute)))
2732 as_warn (_("indirect %s without `*'"), t->name);
2735 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2736 == (IsPrefix | IgnoreSize))
2738 /* Warn them that a data or address size prefix doesn't
2739 affect assembly of the next line of code. */
2740 as_warn (_("stand-alone `%s' prefix"), t->name);
2744 /* Copy the template we found. */
2745 i.tm = *t;
2747 if (addr_prefix_disp != -1)
2748 i.tm.operand_types[addr_prefix_disp]
2749 = operand_types[addr_prefix_disp];
2751 if (found_reverse_match)
2753 /* If we found a reverse match we must alter the opcode
2754 direction bit. found_reverse_match holds bits to change
2755 (different for int & float insns). */
2757 i.tm.base_opcode ^= found_reverse_match;
2759 i.tm.operand_types[0] = operand_types[1];
2760 i.tm.operand_types[1] = operand_types[0];
2763 return 1;
2766 static int
2767 check_string (void)
2769 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2770 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2772 if (i.seg[0] != NULL && i.seg[0] != &es)
2774 as_bad (_("`%s' operand %d must use `%%es' segment"),
2775 i.tm.name,
2776 mem_op + 1);
2777 return 0;
2779 /* There's only ever one segment override allowed per instruction.
2780 This instruction possibly has a legal segment override on the
2781 second operand, so copy the segment to where non-string
2782 instructions store it, allowing common code. */
2783 i.seg[0] = i.seg[1];
2785 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2787 if (i.seg[1] != NULL && i.seg[1] != &es)
2789 as_bad (_("`%s' operand %d must use `%%es' segment"),
2790 i.tm.name,
2791 mem_op + 2);
2792 return 0;
2795 return 1;
2798 static int
2799 process_suffix (void)
2801 /* If matched instruction specifies an explicit instruction mnemonic
2802 suffix, use it. */
2803 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2805 if (i.tm.opcode_modifier & Size16)
2806 i.suffix = WORD_MNEM_SUFFIX;
2807 else if (i.tm.opcode_modifier & Size64)
2808 i.suffix = QWORD_MNEM_SUFFIX;
2809 else
2810 i.suffix = LONG_MNEM_SUFFIX;
2812 else if (i.reg_operands)
2814 /* If there's no instruction mnemonic suffix we try to invent one
2815 based on register operands. */
2816 if (!i.suffix)
2818 /* We take i.suffix from the last register operand specified,
2819 Destination register type is more significant than source
2820 register type. */
2821 int op;
2823 for (op = i.operands; --op >= 0;)
2824 if ((i.types[op] & Reg)
2825 && !(i.tm.operand_types[op] & InOutPortReg))
2827 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2828 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2829 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2830 LONG_MNEM_SUFFIX);
2831 break;
2834 else if (i.suffix == BYTE_MNEM_SUFFIX)
2836 if (!check_byte_reg ())
2837 return 0;
2839 else if (i.suffix == LONG_MNEM_SUFFIX)
2841 if (!check_long_reg ())
2842 return 0;
2844 else if (i.suffix == QWORD_MNEM_SUFFIX)
2846 if (!check_qword_reg ())
2847 return 0;
2849 else if (i.suffix == WORD_MNEM_SUFFIX)
2851 if (!check_word_reg ())
2852 return 0;
2854 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2855 /* Do nothing if the instruction is going to ignore the prefix. */
2857 else
2858 abort ();
2860 else if ((i.tm.opcode_modifier & DefaultSize)
2861 && !i.suffix
2862 /* exclude fldenv/frstor/fsave/fstenv */
2863 && (i.tm.opcode_modifier & No_sSuf))
2865 i.suffix = stackop_size;
2867 else if (intel_syntax
2868 && !i.suffix
2869 && ((i.tm.operand_types[0] & JumpAbsolute)
2870 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2871 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2872 && i.tm.extension_opcode <= 3)))
2874 switch (flag_code)
2876 case CODE_64BIT:
2877 if (!(i.tm.opcode_modifier & No_qSuf))
2879 i.suffix = QWORD_MNEM_SUFFIX;
2880 break;
2882 case CODE_32BIT:
2883 if (!(i.tm.opcode_modifier & No_lSuf))
2884 i.suffix = LONG_MNEM_SUFFIX;
2885 break;
2886 case CODE_16BIT:
2887 if (!(i.tm.opcode_modifier & No_wSuf))
2888 i.suffix = WORD_MNEM_SUFFIX;
2889 break;
2893 if (!i.suffix)
2895 if (!intel_syntax)
2897 if (i.tm.opcode_modifier & W)
2899 as_bad (_("no instruction mnemonic suffix given and "
2900 "no register operands; can't size instruction"));
2901 return 0;
2904 else
2906 unsigned int suffixes = (~i.tm.opcode_modifier
2907 & (No_bSuf
2908 | No_wSuf
2909 | No_lSuf
2910 | No_sSuf
2911 | No_xSuf
2912 | No_qSuf));
2914 if ((i.tm.opcode_modifier & W)
2915 || ((suffixes & (suffixes - 1))
2916 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2918 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2919 return 0;
2924 /* Change the opcode based on the operand size given by i.suffix;
2925 We don't need to change things for byte insns. */
2927 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2929 /* It's not a byte, select word/dword operation. */
2930 if (i.tm.opcode_modifier & W)
2932 if (i.tm.opcode_modifier & ShortForm)
2933 i.tm.base_opcode |= 8;
2934 else
2935 i.tm.base_opcode |= 1;
2938 /* Now select between word & dword operations via the operand
2939 size prefix, except for instructions that will ignore this
2940 prefix anyway. */
2941 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2943 /* monitor in SSE3 is a very special case. The default size
2944 of AX is the size of mode. The address size override
2945 prefix will change the size of AX. */
2946 if (i.op->regs[0].reg_type &
2947 (flag_code == CODE_32BIT ? Reg16 : Reg32))
2948 if (!add_prefix (ADDR_PREFIX_OPCODE))
2949 return 0;
2951 else if (i.suffix != QWORD_MNEM_SUFFIX
2952 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2953 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2954 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2955 || (flag_code == CODE_64BIT
2956 && (i.tm.opcode_modifier & JumpByte))))
2958 unsigned int prefix = DATA_PREFIX_OPCODE;
2960 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2961 prefix = ADDR_PREFIX_OPCODE;
2963 if (!add_prefix (prefix))
2964 return 0;
2967 /* Set mode64 for an operand. */
2968 if (i.suffix == QWORD_MNEM_SUFFIX
2969 && flag_code == CODE_64BIT
2970 && (i.tm.opcode_modifier & NoRex64) == 0)
2972 /* Special case for xchg %rax,%rax. It is NOP and doesn't
2973 need rex64. */
2974 if (i.operands != 2
2975 || i.types [0] != (Acc | Reg64)
2976 || i.types [1] != (Acc | Reg64)
2977 || strcmp (i.tm.name, "xchg") != 0)
2978 i.rex |= REX_MODE64;
2981 /* Size floating point instruction. */
2982 if (i.suffix == LONG_MNEM_SUFFIX)
2983 if (i.tm.opcode_modifier & FloatMF)
2984 i.tm.base_opcode ^= 4;
2987 return 1;
2990 static int
2991 check_byte_reg (void)
2993 int op;
2995 for (op = i.operands; --op >= 0;)
2997 /* If this is an eight bit register, it's OK. If it's the 16 or
2998 32 bit version of an eight bit register, we will just use the
2999 low portion, and that's OK too. */
3000 if (i.types[op] & Reg8)
3001 continue;
3003 /* movzx and movsx should not generate this warning. */
3004 if (intel_syntax
3005 && (i.tm.base_opcode == 0xfb7
3006 || i.tm.base_opcode == 0xfb6
3007 || i.tm.base_opcode == 0x63
3008 || i.tm.base_opcode == 0xfbe
3009 || i.tm.base_opcode == 0xfbf))
3010 continue;
3012 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3014 /* Prohibit these changes in the 64bit mode, since the
3015 lowering is more complicated. */
3016 if (flag_code == CODE_64BIT
3017 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3019 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3020 register_prefix, i.op[op].regs->reg_name,
3021 i.suffix);
3022 return 0;
3024 #if REGISTER_WARNINGS
3025 if (!quiet_warnings
3026 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3027 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3028 (i.op[op].regs + (i.types[op] & Reg16
3029 ? REGNAM_AL - REGNAM_AX
3030 : REGNAM_AL - REGNAM_EAX))->reg_name,
3031 i.op[op].regs->reg_name,
3032 i.suffix);
3033 #endif
3034 continue;
3036 /* Any other register is bad. */
3037 if (i.types[op] & (Reg | RegMMX | RegXMM
3038 | SReg2 | SReg3
3039 | Control | Debug | Test
3040 | FloatReg | FloatAcc))
3042 as_bad (_("`%%%s' not allowed with `%s%c'"),
3043 i.op[op].regs->reg_name,
3044 i.tm.name,
3045 i.suffix);
3046 return 0;
3049 return 1;
3052 static int
3053 check_long_reg (void)
3055 int op;
3057 for (op = i.operands; --op >= 0;)
3058 /* Reject eight bit registers, except where the template requires
3059 them. (eg. movzb) */
3060 if ((i.types[op] & Reg8) != 0
3061 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3063 as_bad (_("`%%%s' not allowed with `%s%c'"),
3064 i.op[op].regs->reg_name,
3065 i.tm.name,
3066 i.suffix);
3067 return 0;
3069 /* Warn if the e prefix on a general reg is missing. */
3070 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3071 && (i.types[op] & Reg16) != 0
3072 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3074 /* Prohibit these changes in the 64bit mode, since the
3075 lowering is more complicated. */
3076 if (flag_code == CODE_64BIT)
3078 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3079 register_prefix, i.op[op].regs->reg_name,
3080 i.suffix);
3081 return 0;
3083 #if REGISTER_WARNINGS
3084 else
3085 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3086 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3087 i.op[op].regs->reg_name,
3088 i.suffix);
3089 #endif
3091 /* Warn if the r prefix on a general reg is missing. */
3092 else if ((i.types[op] & Reg64) != 0
3093 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3095 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3096 register_prefix, i.op[op].regs->reg_name,
3097 i.suffix);
3098 return 0;
3100 return 1;
3103 static int
3104 check_qword_reg (void)
3106 int op;
3108 for (op = i.operands; --op >= 0; )
3109 /* Reject eight bit registers, except where the template requires
3110 them. (eg. movzb) */
3111 if ((i.types[op] & Reg8) != 0
3112 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3114 as_bad (_("`%%%s' not allowed with `%s%c'"),
3115 i.op[op].regs->reg_name,
3116 i.tm.name,
3117 i.suffix);
3118 return 0;
3120 /* Warn if the e prefix on a general reg is missing. */
3121 else if (((i.types[op] & Reg16) != 0
3122 || (i.types[op] & Reg32) != 0)
3123 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3125 /* Prohibit these changes in the 64bit mode, since the
3126 lowering is more complicated. */
3127 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3128 register_prefix, i.op[op].regs->reg_name,
3129 i.suffix);
3130 return 0;
3132 return 1;
3135 static int
3136 check_word_reg (void)
3138 int op;
3139 for (op = i.operands; --op >= 0;)
3140 /* Reject eight bit registers, except where the template requires
3141 them. (eg. movzb) */
3142 if ((i.types[op] & Reg8) != 0
3143 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3145 as_bad (_("`%%%s' not allowed with `%s%c'"),
3146 i.op[op].regs->reg_name,
3147 i.tm.name,
3148 i.suffix);
3149 return 0;
3151 /* Warn if the e prefix on a general reg is present. */
3152 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3153 && (i.types[op] & Reg32) != 0
3154 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3156 /* Prohibit these changes in the 64bit mode, since the
3157 lowering is more complicated. */
3158 if (flag_code == CODE_64BIT)
3160 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3161 register_prefix, i.op[op].regs->reg_name,
3162 i.suffix);
3163 return 0;
3165 else
3166 #if REGISTER_WARNINGS
3167 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3168 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3169 i.op[op].regs->reg_name,
3170 i.suffix);
3171 #endif
3173 return 1;
3176 static int
3177 finalize_imm (void)
3179 unsigned int overlap0, overlap1, overlap2;
3181 overlap0 = i.types[0] & i.tm.operand_types[0];
3182 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3183 && overlap0 != Imm8 && overlap0 != Imm8S
3184 && overlap0 != Imm16 && overlap0 != Imm32S
3185 && overlap0 != Imm32 && overlap0 != Imm64)
3187 if (i.suffix)
3189 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3190 ? Imm8 | Imm8S
3191 : (i.suffix == WORD_MNEM_SUFFIX
3192 ? Imm16
3193 : (i.suffix == QWORD_MNEM_SUFFIX
3194 ? Imm64 | Imm32S
3195 : Imm32)));
3197 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3198 || overlap0 == (Imm16 | Imm32)
3199 || overlap0 == (Imm16 | Imm32S))
3201 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3202 ? Imm16 : Imm32S);
3204 if (overlap0 != Imm8 && overlap0 != Imm8S
3205 && overlap0 != Imm16 && overlap0 != Imm32S
3206 && overlap0 != Imm32 && overlap0 != Imm64)
3208 as_bad (_("no instruction mnemonic suffix given; "
3209 "can't determine immediate size"));
3210 return 0;
3213 i.types[0] = overlap0;
3215 overlap1 = i.types[1] & i.tm.operand_types[1];
3216 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3217 && overlap1 != Imm8 && overlap1 != Imm8S
3218 && overlap1 != Imm16 && overlap1 != Imm32S
3219 && overlap1 != Imm32 && overlap1 != Imm64)
3221 if (i.suffix)
3223 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3224 ? Imm8 | Imm8S
3225 : (i.suffix == WORD_MNEM_SUFFIX
3226 ? Imm16
3227 : (i.suffix == QWORD_MNEM_SUFFIX
3228 ? Imm64 | Imm32S
3229 : Imm32)));
3231 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3232 || overlap1 == (Imm16 | Imm32)
3233 || overlap1 == (Imm16 | Imm32S))
3235 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3236 ? Imm16 : Imm32S);
3238 if (overlap1 != Imm8 && overlap1 != Imm8S
3239 && overlap1 != Imm16 && overlap1 != Imm32S
3240 && overlap1 != Imm32 && overlap1 != Imm64)
3242 as_bad (_("no instruction mnemonic suffix given; "
3243 "can't determine immediate size %x %c"),
3244 overlap1, i.suffix);
3245 return 0;
3248 i.types[1] = overlap1;
3250 overlap2 = i.types[2] & i.tm.operand_types[2];
3251 assert ((overlap2 & Imm) == 0);
3252 i.types[2] = overlap2;
3254 return 1;
3257 static int
3258 process_operands (void)
3260 /* Default segment register this instruction will use for memory
3261 accesses. 0 means unknown. This is only for optimizing out
3262 unnecessary segment overrides. */
3263 const seg_entry *default_seg = 0;
3265 /* The imul $imm, %reg instruction is converted into
3266 imul $imm, %reg, %reg, and the clr %reg instruction
3267 is converted into xor %reg, %reg. */
3268 if (i.tm.opcode_modifier & regKludge)
3270 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3271 /* Pretend we saw the extra register operand. */
3272 assert (i.reg_operands == 1
3273 && i.op[first_reg_op + 1].regs == 0);
3274 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3275 i.types[first_reg_op + 1] = i.types[first_reg_op];
3276 i.operands++;
3277 i.reg_operands++;
3280 if (i.tm.opcode_modifier & ShortForm)
3282 if (i.types[0] & (SReg2 | SReg3))
3284 if (i.tm.base_opcode == POP_SEG_SHORT
3285 && i.op[0].regs->reg_num == 1)
3287 as_bad (_("you can't `pop %%cs'"));
3288 return 0;
3290 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3291 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3292 i.rex |= REX_EXTZ;
3294 else
3296 /* The register or float register operand is in operand 0 or 1. */
3297 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3298 /* Register goes in low 3 bits of opcode. */
3299 i.tm.base_opcode |= i.op[op].regs->reg_num;
3300 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3301 i.rex |= REX_EXTZ;
3302 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3304 /* Warn about some common errors, but press on regardless.
3305 The first case can be generated by gcc (<= 2.8.1). */
3306 if (i.operands == 2)
3308 /* Reversed arguments on faddp, fsubp, etc. */
3309 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
3310 i.op[1].regs->reg_name,
3311 i.op[0].regs->reg_name);
3313 else
3315 /* Extraneous `l' suffix on fp insn. */
3316 as_warn (_("translating to `%s %%%s'"), i.tm.name,
3317 i.op[0].regs->reg_name);
3322 else if (i.tm.opcode_modifier & Modrm)
3324 /* The opcode is completed (modulo i.tm.extension_opcode which
3325 must be put into the modrm byte). Now, we make the modrm and
3326 index base bytes based on all the info we've collected. */
3328 default_seg = build_modrm_byte ();
3330 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
3332 default_seg = &ds;
3334 else if ((i.tm.opcode_modifier & IsString) != 0)
3336 /* For the string instructions that allow a segment override
3337 on one of their operands, the default segment is ds. */
3338 default_seg = &ds;
3341 if ((i.tm.base_opcode == 0x8d /* lea */
3342 || (i.tm.cpu_flags & CpuSVME))
3343 && i.seg[0] && !quiet_warnings)
3344 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3346 /* If a segment was explicitly specified, and the specified segment
3347 is not the default, use an opcode prefix to select it. If we
3348 never figured out what the default segment is, then default_seg
3349 will be zero at this point, and the specified segment prefix will
3350 always be used. */
3351 if ((i.seg[0]) && (i.seg[0] != default_seg))
3353 if (!add_prefix (i.seg[0]->seg_prefix))
3354 return 0;
3356 return 1;
3359 static const seg_entry *
3360 build_modrm_byte (void)
3362 const seg_entry *default_seg = 0;
3364 /* i.reg_operands MUST be the number of real register operands;
3365 implicit registers do not count. */
3366 if (i.reg_operands == 2)
3368 unsigned int source, dest;
3370 switch (i.operands)
3372 case 2:
3373 source = 0;
3374 break;
3375 case 3:
3376 /* When there are 3 operands, one of them may be immediate,
3377 which may be the first or the last operand. Otherwise,
3378 the first operand must be shift count register (cl). */
3379 assert (i.imm_operands == 1
3380 || (i.imm_operands == 0
3381 && (i.types[0] & ShiftCount)));
3382 source = (i.types[0] & (Imm | ShiftCount)) ? 1 : 0;
3383 break;
3384 case 4:
3385 /* When there are 4 operands, the first two must be immediate
3386 operands. The source operand will be the 3rd one. */
3387 assert (i.imm_operands == 2
3388 && (i.types[0] & Imm)
3389 && (i.types[1] & Imm));
3390 source = 2;
3391 break;
3392 default:
3393 abort ();
3396 dest = source + 1;
3398 i.rm.mode = 3;
3399 /* One of the register operands will be encoded in the i.tm.reg
3400 field, the other in the combined i.tm.mode and i.tm.regmem
3401 fields. If no form of this instruction supports a memory
3402 destination operand, then we assume the source operand may
3403 sometimes be a memory operand and so we need to store the
3404 destination in the i.rm.reg field. */
3405 if ((i.tm.operand_types[dest] & AnyMem) == 0)
3407 i.rm.reg = i.op[dest].regs->reg_num;
3408 i.rm.regmem = i.op[source].regs->reg_num;
3409 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3410 i.rex |= REX_EXTX;
3411 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3412 i.rex |= REX_EXTZ;
3414 else
3416 i.rm.reg = i.op[source].regs->reg_num;
3417 i.rm.regmem = i.op[dest].regs->reg_num;
3418 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3419 i.rex |= REX_EXTZ;
3420 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3421 i.rex |= REX_EXTX;
3423 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
3425 if (!((i.types[0] | i.types[1]) & Control))
3426 abort ();
3427 i.rex &= ~(REX_EXTX | REX_EXTZ);
3428 add_prefix (LOCK_PREFIX_OPCODE);
3431 else
3432 { /* If it's not 2 reg operands... */
3433 if (i.mem_operands)
3435 unsigned int fake_zero_displacement = 0;
3436 unsigned int op;
3438 for (op = 0; op < i.operands; op++)
3439 if ((i.types[op] & AnyMem))
3440 break;
3441 assert (op < i.operands);
3443 default_seg = &ds;
3445 if (i.base_reg == 0)
3447 i.rm.mode = 0;
3448 if (!i.disp_operands)
3449 fake_zero_displacement = 1;
3450 if (i.index_reg == 0)
3452 /* Operand is just <disp> */
3453 if (flag_code == CODE_64BIT)
3455 /* 64bit mode overwrites the 32bit absolute
3456 addressing by RIP relative addressing and
3457 absolute addressing is encoded by one of the
3458 redundant SIB forms. */
3459 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3460 i.sib.base = NO_BASE_REGISTER;
3461 i.sib.index = NO_INDEX_REGISTER;
3462 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
3463 ? Disp32S : Disp32);
3465 else if ((flag_code == CODE_16BIT)
3466 ^ (i.prefix[ADDR_PREFIX] != 0))
3468 i.rm.regmem = NO_BASE_REGISTER_16;
3469 i.types[op] = Disp16;
3471 else
3473 i.rm.regmem = NO_BASE_REGISTER;
3474 i.types[op] = Disp32;
3477 else /* !i.base_reg && i.index_reg */
3479 i.sib.index = i.index_reg->reg_num;
3480 i.sib.base = NO_BASE_REGISTER;
3481 i.sib.scale = i.log2_scale_factor;
3482 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3483 i.types[op] &= ~Disp;
3484 if (flag_code != CODE_64BIT)
3485 i.types[op] |= Disp32; /* Must be 32 bit */
3486 else
3487 i.types[op] |= Disp32S;
3488 if ((i.index_reg->reg_flags & RegRex) != 0)
3489 i.rex |= REX_EXTY;
3492 /* RIP addressing for 64bit mode. */
3493 else if (i.base_reg->reg_type == BaseIndex)
3495 i.rm.regmem = NO_BASE_REGISTER;
3496 i.types[op] &= ~ Disp;
3497 i.types[op] |= Disp32S;
3498 i.flags[op] |= Operand_PCrel;
3499 if (! i.disp_operands)
3500 fake_zero_displacement = 1;
3502 else if (i.base_reg->reg_type & Reg16)
3504 switch (i.base_reg->reg_num)
3506 case 3: /* (%bx) */
3507 if (i.index_reg == 0)
3508 i.rm.regmem = 7;
3509 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3510 i.rm.regmem = i.index_reg->reg_num - 6;
3511 break;
3512 case 5: /* (%bp) */
3513 default_seg = &ss;
3514 if (i.index_reg == 0)
3516 i.rm.regmem = 6;
3517 if ((i.types[op] & Disp) == 0)
3519 /* fake (%bp) into 0(%bp) */
3520 i.types[op] |= Disp8;
3521 fake_zero_displacement = 1;
3524 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3525 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3526 break;
3527 default: /* (%si) -> 4 or (%di) -> 5 */
3528 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3530 i.rm.mode = mode_from_disp_size (i.types[op]);
3532 else /* i.base_reg and 32/64 bit mode */
3534 if (flag_code == CODE_64BIT
3535 && (i.types[op] & Disp))
3536 i.types[op] = ((i.types[op] & Disp8)
3537 | (i.prefix[ADDR_PREFIX] == 0
3538 ? Disp32S : Disp32));
3540 i.rm.regmem = i.base_reg->reg_num;
3541 if ((i.base_reg->reg_flags & RegRex) != 0)
3542 i.rex |= REX_EXTZ;
3543 i.sib.base = i.base_reg->reg_num;
3544 /* x86-64 ignores REX prefix bit here to avoid decoder
3545 complications. */
3546 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3548 default_seg = &ss;
3549 if (i.disp_operands == 0)
3551 fake_zero_displacement = 1;
3552 i.types[op] |= Disp8;
3555 else if (i.base_reg->reg_num == ESP_REG_NUM)
3557 default_seg = &ss;
3559 i.sib.scale = i.log2_scale_factor;
3560 if (i.index_reg == 0)
3562 /* <disp>(%esp) becomes two byte modrm with no index
3563 register. We've already stored the code for esp
3564 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3565 Any base register besides %esp will not use the
3566 extra modrm byte. */
3567 i.sib.index = NO_INDEX_REGISTER;
3568 #if !SCALE1_WHEN_NO_INDEX
3569 /* Another case where we force the second modrm byte. */
3570 if (i.log2_scale_factor)
3571 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3572 #endif
3574 else
3576 i.sib.index = i.index_reg->reg_num;
3577 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3578 if ((i.index_reg->reg_flags & RegRex) != 0)
3579 i.rex |= REX_EXTY;
3582 if (i.disp_operands
3583 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3584 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3585 i.rm.mode = 0;
3586 else
3587 i.rm.mode = mode_from_disp_size (i.types[op]);
3590 if (fake_zero_displacement)
3592 /* Fakes a zero displacement assuming that i.types[op]
3593 holds the correct displacement size. */
3594 expressionS *exp;
3596 assert (i.op[op].disps == 0);
3597 exp = &disp_expressions[i.disp_operands++];
3598 i.op[op].disps = exp;
3599 exp->X_op = O_constant;
3600 exp->X_add_number = 0;
3601 exp->X_add_symbol = (symbolS *) 0;
3602 exp->X_op_symbol = (symbolS *) 0;
3606 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3607 (if any) based on i.tm.extension_opcode. Again, we must be
3608 careful to make sure that segment/control/debug/test/MMX
3609 registers are coded into the i.rm.reg field. */
3610 if (i.reg_operands)
3612 unsigned int op;
3614 for (op = 0; op < i.operands; op++)
3615 if ((i.types[op] & (Reg | RegMMX | RegXMM
3616 | SReg2 | SReg3
3617 | Control | Debug | Test)))
3618 break;
3619 assert (op < i.operands);
3621 /* If there is an extension opcode to put here, the register
3622 number must be put into the regmem field. */
3623 if (i.tm.extension_opcode != None)
3625 i.rm.regmem = i.op[op].regs->reg_num;
3626 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3627 i.rex |= REX_EXTZ;
3629 else
3631 i.rm.reg = i.op[op].regs->reg_num;
3632 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3633 i.rex |= REX_EXTX;
3636 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3637 must set it to 3 to indicate this is a register operand
3638 in the regmem field. */
3639 if (!i.mem_operands)
3640 i.rm.mode = 3;
3643 /* Fill in i.rm.reg field with extension opcode (if any). */
3644 if (i.tm.extension_opcode != None)
3645 i.rm.reg = i.tm.extension_opcode;
3647 return default_seg;
3650 static void
3651 output_branch (void)
3653 char *p;
3654 int code16;
3655 int prefix;
3656 relax_substateT subtype;
3657 symbolS *sym;
3658 offsetT off;
3660 code16 = 0;
3661 if (flag_code == CODE_16BIT)
3662 code16 = CODE16;
3664 prefix = 0;
3665 if (i.prefix[DATA_PREFIX] != 0)
3667 prefix = 1;
3668 i.prefixes -= 1;
3669 code16 ^= CODE16;
3671 /* Pentium4 branch hints. */
3672 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3673 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3675 prefix++;
3676 i.prefixes--;
3678 if (i.prefix[REX_PREFIX] != 0)
3680 prefix++;
3681 i.prefixes--;
3684 if (i.prefixes != 0 && !intel_syntax)
3685 as_warn (_("skipping prefixes on this instruction"));
3687 /* It's always a symbol; End frag & setup for relax.
3688 Make sure there is enough room in this frag for the largest
3689 instruction we may generate in md_convert_frag. This is 2
3690 bytes for the opcode and room for the prefix and largest
3691 displacement. */
3692 frag_grow (prefix + 2 + 4);
3693 /* Prefix and 1 opcode byte go in fr_fix. */
3694 p = frag_more (prefix + 1);
3695 if (i.prefix[DATA_PREFIX] != 0)
3696 *p++ = DATA_PREFIX_OPCODE;
3697 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3698 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3699 *p++ = i.prefix[SEG_PREFIX];
3700 if (i.prefix[REX_PREFIX] != 0)
3701 *p++ = i.prefix[REX_PREFIX];
3702 *p = i.tm.base_opcode;
3704 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3705 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3706 else if ((cpu_arch_flags & Cpu386) != 0)
3707 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3708 else
3709 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3710 subtype |= code16;
3712 sym = i.op[0].disps->X_add_symbol;
3713 off = i.op[0].disps->X_add_number;
3715 if (i.op[0].disps->X_op != O_constant
3716 && i.op[0].disps->X_op != O_symbol)
3718 /* Handle complex expressions. */
3719 sym = make_expr_symbol (i.op[0].disps);
3720 off = 0;
3723 /* 1 possible extra opcode + 4 byte displacement go in var part.
3724 Pass reloc in fr_var. */
3725 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3728 static void
3729 output_jump (void)
3731 char *p;
3732 int size;
3733 fixS *fixP;
3735 if (i.tm.opcode_modifier & JumpByte)
3737 /* This is a loop or jecxz type instruction. */
3738 size = 1;
3739 if (i.prefix[ADDR_PREFIX] != 0)
3741 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3742 i.prefixes -= 1;
3744 /* Pentium4 branch hints. */
3745 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3746 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3748 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3749 i.prefixes--;
3752 else
3754 int code16;
3756 code16 = 0;
3757 if (flag_code == CODE_16BIT)
3758 code16 = CODE16;
3760 if (i.prefix[DATA_PREFIX] != 0)
3762 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3763 i.prefixes -= 1;
3764 code16 ^= CODE16;
3767 size = 4;
3768 if (code16)
3769 size = 2;
3772 if (i.prefix[REX_PREFIX] != 0)
3774 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3775 i.prefixes -= 1;
3778 if (i.prefixes != 0 && !intel_syntax)
3779 as_warn (_("skipping prefixes on this instruction"));
3781 p = frag_more (1 + size);
3782 *p++ = i.tm.base_opcode;
3784 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3785 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3787 /* All jumps handled here are signed, but don't use a signed limit
3788 check for 32 and 16 bit jumps as we want to allow wrap around at
3789 4G and 64k respectively. */
3790 if (size == 1)
3791 fixP->fx_signed = 1;
3794 static void
3795 output_interseg_jump (void)
3797 char *p;
3798 int size;
3799 int prefix;
3800 int code16;
3802 code16 = 0;
3803 if (flag_code == CODE_16BIT)
3804 code16 = CODE16;
3806 prefix = 0;
3807 if (i.prefix[DATA_PREFIX] != 0)
3809 prefix = 1;
3810 i.prefixes -= 1;
3811 code16 ^= CODE16;
3813 if (i.prefix[REX_PREFIX] != 0)
3815 prefix++;
3816 i.prefixes -= 1;
3819 size = 4;
3820 if (code16)
3821 size = 2;
3823 if (i.prefixes != 0 && !intel_syntax)
3824 as_warn (_("skipping prefixes on this instruction"));
3826 /* 1 opcode; 2 segment; offset */
3827 p = frag_more (prefix + 1 + 2 + size);
3829 if (i.prefix[DATA_PREFIX] != 0)
3830 *p++ = DATA_PREFIX_OPCODE;
3832 if (i.prefix[REX_PREFIX] != 0)
3833 *p++ = i.prefix[REX_PREFIX];
3835 *p++ = i.tm.base_opcode;
3836 if (i.op[1].imms->X_op == O_constant)
3838 offsetT n = i.op[1].imms->X_add_number;
3840 if (size == 2
3841 && !fits_in_unsigned_word (n)
3842 && !fits_in_signed_word (n))
3844 as_bad (_("16-bit jump out of range"));
3845 return;
3847 md_number_to_chars (p, n, size);
3849 else
3850 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3851 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3852 if (i.op[0].imms->X_op != O_constant)
3853 as_bad (_("can't handle non absolute segment in `%s'"),
3854 i.tm.name);
3855 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3858 static void
3859 output_insn (void)
3861 fragS *insn_start_frag;
3862 offsetT insn_start_off;
3864 /* Tie dwarf2 debug info to the address at the start of the insn.
3865 We can't do this after the insn has been output as the current
3866 frag may have been closed off. eg. by frag_var. */
3867 dwarf2_emit_insn (0);
3869 insn_start_frag = frag_now;
3870 insn_start_off = frag_now_fix ();
3872 /* Output jumps. */
3873 if (i.tm.opcode_modifier & Jump)
3874 output_branch ();
3875 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3876 output_jump ();
3877 else if (i.tm.opcode_modifier & JumpInterSegment)
3878 output_interseg_jump ();
3879 else
3881 /* Output normal instructions here. */
3882 char *p;
3883 unsigned char *q;
3884 unsigned int prefix;
3886 /* All opcodes on i386 have either 1 or 2 bytes. Supplemental
3887 Streaming SIMD extensions 3 Instructions have 3 bytes. We may
3888 use one more higher byte to specify a prefix the instruction
3889 requires. */
3890 if ((i.tm.cpu_flags & CpuSSSE3) != 0)
3892 if (i.tm.base_opcode & 0xff000000)
3894 prefix = (i.tm.base_opcode >> 24) & 0xff;
3895 goto check_prefix;
3898 else if ((i.tm.base_opcode & 0xff0000) != 0)
3900 prefix = (i.tm.base_opcode >> 16) & 0xff;
3901 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3903 check_prefix:
3904 if (prefix != REPE_PREFIX_OPCODE
3905 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3906 add_prefix (prefix);
3908 else
3909 add_prefix (prefix);
3912 /* The prefix bytes. */
3913 for (q = i.prefix;
3914 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3915 q++)
3917 if (*q)
3919 p = frag_more (1);
3920 md_number_to_chars (p, (valueT) *q, 1);
3924 /* Now the opcode; be careful about word order here! */
3925 if (fits_in_unsigned_byte (i.tm.base_opcode))
3927 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3929 else
3931 if ((i.tm.cpu_flags & CpuSSSE3) != 0)
3933 p = frag_more (3);
3934 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3936 else
3937 p = frag_more (2);
3939 /* Put out high byte first: can't use md_number_to_chars! */
3940 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3941 *p = i.tm.base_opcode & 0xff;
3944 /* Now the modrm byte and sib byte (if present). */
3945 if (i.tm.opcode_modifier & Modrm)
3947 p = frag_more (1);
3948 md_number_to_chars (p,
3949 (valueT) (i.rm.regmem << 0
3950 | i.rm.reg << 3
3951 | i.rm.mode << 6),
3953 /* If i.rm.regmem == ESP (4)
3954 && i.rm.mode != (Register mode)
3955 && not 16 bit
3956 ==> need second modrm byte. */
3957 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3958 && i.rm.mode != 3
3959 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3961 p = frag_more (1);
3962 md_number_to_chars (p,
3963 (valueT) (i.sib.base << 0
3964 | i.sib.index << 3
3965 | i.sib.scale << 6),
3970 if (i.disp_operands)
3971 output_disp (insn_start_frag, insn_start_off);
3973 if (i.imm_operands)
3974 output_imm (insn_start_frag, insn_start_off);
3977 #ifdef DEBUG386
3978 if (flag_debug)
3980 pi ("" /*line*/, &i);
3982 #endif /* DEBUG386 */
3985 static void
3986 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
3988 char *p;
3989 unsigned int n;
3991 for (n = 0; n < i.operands; n++)
3993 if (i.types[n] & Disp)
3995 if (i.op[n].disps->X_op == O_constant)
3997 int size;
3998 offsetT val;
4000 size = 4;
4001 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4003 size = 2;
4004 if (i.types[n] & Disp8)
4005 size = 1;
4006 if (i.types[n] & Disp64)
4007 size = 8;
4009 val = offset_in_range (i.op[n].disps->X_add_number,
4010 size);
4011 p = frag_more (size);
4012 md_number_to_chars (p, val, size);
4014 else
4016 enum bfd_reloc_code_real reloc_type;
4017 int size = 4;
4018 int sign = 0;
4019 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4021 /* The PC relative address is computed relative
4022 to the instruction boundary, so in case immediate
4023 fields follows, we need to adjust the value. */
4024 if (pcrel && i.imm_operands)
4026 int imm_size = 4;
4027 unsigned int n1;
4029 for (n1 = 0; n1 < i.operands; n1++)
4030 if (i.types[n1] & Imm)
4032 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
4034 imm_size = 2;
4035 if (i.types[n1] & (Imm8 | Imm8S))
4036 imm_size = 1;
4037 if (i.types[n1] & Imm64)
4038 imm_size = 8;
4040 break;
4042 /* We should find the immediate. */
4043 if (n1 == i.operands)
4044 abort ();
4045 i.op[n].disps->X_add_number -= imm_size;
4048 if (i.types[n] & Disp32S)
4049 sign = 1;
4051 if (i.types[n] & (Disp16 | Disp64))
4053 size = 2;
4054 if (i.types[n] & Disp64)
4055 size = 8;
4058 p = frag_more (size);
4059 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4060 if (GOT_symbol
4061 && GOT_symbol == i.op[n].disps->X_add_symbol
4062 && (((reloc_type == BFD_RELOC_32
4063 || reloc_type == BFD_RELOC_X86_64_32S
4064 || (reloc_type == BFD_RELOC_64
4065 && object_64bit))
4066 && (i.op[n].disps->X_op == O_symbol
4067 || (i.op[n].disps->X_op == O_add
4068 && ((symbol_get_value_expression
4069 (i.op[n].disps->X_op_symbol)->X_op)
4070 == O_subtract))))
4071 || reloc_type == BFD_RELOC_32_PCREL))
4073 offsetT add;
4075 if (insn_start_frag == frag_now)
4076 add = (p - frag_now->fr_literal) - insn_start_off;
4077 else
4079 fragS *fr;
4081 add = insn_start_frag->fr_fix - insn_start_off;
4082 for (fr = insn_start_frag->fr_next;
4083 fr && fr != frag_now; fr = fr->fr_next)
4084 add += fr->fr_fix;
4085 add += p - frag_now->fr_literal;
4088 if (!object_64bit)
4090 reloc_type = BFD_RELOC_386_GOTPC;
4091 i.op[n].imms->X_add_number += add;
4093 else if (reloc_type == BFD_RELOC_64)
4094 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4095 else
4096 /* Don't do the adjustment for x86-64, as there
4097 the pcrel addressing is relative to the _next_
4098 insn, and that is taken care of in other code. */
4099 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4101 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4102 i.op[n].disps, pcrel, reloc_type);
4108 static void
4109 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4111 char *p;
4112 unsigned int n;
4114 for (n = 0; n < i.operands; n++)
4116 if (i.types[n] & Imm)
4118 if (i.op[n].imms->X_op == O_constant)
4120 int size;
4121 offsetT val;
4123 size = 4;
4124 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4126 size = 2;
4127 if (i.types[n] & (Imm8 | Imm8S))
4128 size = 1;
4129 else if (i.types[n] & Imm64)
4130 size = 8;
4132 val = offset_in_range (i.op[n].imms->X_add_number,
4133 size);
4134 p = frag_more (size);
4135 md_number_to_chars (p, val, size);
4137 else
4139 /* Not absolute_section.
4140 Need a 32-bit fixup (don't support 8bit
4141 non-absolute imms). Try to support other
4142 sizes ... */
4143 enum bfd_reloc_code_real reloc_type;
4144 int size = 4;
4145 int sign = 0;
4147 if ((i.types[n] & (Imm32S))
4148 && (i.suffix == QWORD_MNEM_SUFFIX
4149 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4150 sign = 1;
4151 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4153 size = 2;
4154 if (i.types[n] & (Imm8 | Imm8S))
4155 size = 1;
4156 if (i.types[n] & Imm64)
4157 size = 8;
4160 p = frag_more (size);
4161 reloc_type = reloc (size, 0, sign, i.reloc[n]);
4163 /* This is tough to explain. We end up with this one if we
4164 * have operands that look like
4165 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4166 * obtain the absolute address of the GOT, and it is strongly
4167 * preferable from a performance point of view to avoid using
4168 * a runtime relocation for this. The actual sequence of
4169 * instructions often look something like:
4171 * call .L66
4172 * .L66:
4173 * popl %ebx
4174 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4176 * The call and pop essentially return the absolute address
4177 * of the label .L66 and store it in %ebx. The linker itself
4178 * will ultimately change the first operand of the addl so
4179 * that %ebx points to the GOT, but to keep things simple, the
4180 * .o file must have this operand set so that it generates not
4181 * the absolute address of .L66, but the absolute address of
4182 * itself. This allows the linker itself simply treat a GOTPC
4183 * relocation as asking for a pcrel offset to the GOT to be
4184 * added in, and the addend of the relocation is stored in the
4185 * operand field for the instruction itself.
4187 * Our job here is to fix the operand so that it would add
4188 * the correct offset so that %ebx would point to itself. The
4189 * thing that is tricky is that .-.L66 will point to the
4190 * beginning of the instruction, so we need to further modify
4191 * the operand so that it will point to itself. There are
4192 * other cases where you have something like:
4194 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4196 * and here no correction would be required. Internally in
4197 * the assembler we treat operands of this form as not being
4198 * pcrel since the '.' is explicitly mentioned, and I wonder
4199 * whether it would simplify matters to do it this way. Who
4200 * knows. In earlier versions of the PIC patches, the
4201 * pcrel_adjust field was used to store the correction, but
4202 * since the expression is not pcrel, I felt it would be
4203 * confusing to do it this way. */
4205 if ((reloc_type == BFD_RELOC_32
4206 || reloc_type == BFD_RELOC_X86_64_32S
4207 || reloc_type == BFD_RELOC_64)
4208 && GOT_symbol
4209 && GOT_symbol == i.op[n].imms->X_add_symbol
4210 && (i.op[n].imms->X_op == O_symbol
4211 || (i.op[n].imms->X_op == O_add
4212 && ((symbol_get_value_expression
4213 (i.op[n].imms->X_op_symbol)->X_op)
4214 == O_subtract))))
4216 offsetT add;
4218 if (insn_start_frag == frag_now)
4219 add = (p - frag_now->fr_literal) - insn_start_off;
4220 else
4222 fragS *fr;
4224 add = insn_start_frag->fr_fix - insn_start_off;
4225 for (fr = insn_start_frag->fr_next;
4226 fr && fr != frag_now; fr = fr->fr_next)
4227 add += fr->fr_fix;
4228 add += p - frag_now->fr_literal;
4231 if (!object_64bit)
4232 reloc_type = BFD_RELOC_386_GOTPC;
4233 else if (size == 4)
4234 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4235 else if (size == 8)
4236 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4237 i.op[n].imms->X_add_number += add;
4239 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4240 i.op[n].imms, 0, reloc_type);
4246 /* x86_cons_fix_new is called via the expression parsing code when a
4247 reloc is needed. We use this hook to get the correct .got reloc. */
4248 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4249 static int cons_sign = -1;
4251 void
4252 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
4253 expressionS *exp)
4255 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4257 got_reloc = NO_RELOC;
4259 #ifdef TE_PE
4260 if (exp->X_op == O_secrel)
4262 exp->X_op = O_symbol;
4263 r = BFD_RELOC_32_SECREL;
4265 #endif
4267 fix_new_exp (frag, off, len, exp, 0, r);
4270 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4271 # define lex_got(reloc, adjust, types) NULL
4272 #else
4273 /* Parse operands of the form
4274 <symbol>@GOTOFF+<nnn>
4275 and similar .plt or .got references.
4277 If we find one, set up the correct relocation in RELOC and copy the
4278 input string, minus the `@GOTOFF' into a malloc'd buffer for
4279 parsing by the calling routine. Return this buffer, and if ADJUST
4280 is non-null set it to the length of the string we removed from the
4281 input line. Otherwise return NULL. */
4282 static char *
4283 lex_got (enum bfd_reloc_code_real *reloc,
4284 int *adjust,
4285 unsigned int *types)
4287 /* Some of the relocations depend on the size of what field is to
4288 be relocated. But in our callers i386_immediate and i386_displacement
4289 we don't yet know the operand size (this will be set by insn
4290 matching). Hence we record the word32 relocation here,
4291 and adjust the reloc according to the real size in reloc(). */
4292 static const struct {
4293 const char *str;
4294 const enum bfd_reloc_code_real rel[2];
4295 const unsigned int types64;
4296 } gotrel[] = {
4297 { "PLTOFF", { 0,
4298 BFD_RELOC_X86_64_PLTOFF64 },
4299 Imm64 },
4300 { "PLT", { BFD_RELOC_386_PLT32,
4301 BFD_RELOC_X86_64_PLT32 },
4302 Imm32 | Imm32S | Disp32 },
4303 { "GOTPLT", { 0,
4304 BFD_RELOC_X86_64_GOTPLT64 },
4305 Imm64 | Disp64 },
4306 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
4307 BFD_RELOC_X86_64_GOTOFF64 },
4308 Imm64 | Disp64 },
4309 { "GOTPCREL", { 0,
4310 BFD_RELOC_X86_64_GOTPCREL },
4311 Imm32 | Imm32S | Disp32 },
4312 { "TLSGD", { BFD_RELOC_386_TLS_GD,
4313 BFD_RELOC_X86_64_TLSGD },
4314 Imm32 | Imm32S | Disp32 },
4315 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
4316 0 },
4317 0 },
4318 { "TLSLD", { 0,
4319 BFD_RELOC_X86_64_TLSLD },
4320 Imm32 | Imm32S | Disp32 },
4321 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
4322 BFD_RELOC_X86_64_GOTTPOFF },
4323 Imm32 | Imm32S | Disp32 },
4324 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
4325 BFD_RELOC_X86_64_TPOFF32 },
4326 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4327 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
4328 0 },
4329 0 },
4330 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
4331 BFD_RELOC_X86_64_DTPOFF32 },
4332 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4333 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
4334 0 },
4335 0 },
4336 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
4337 0 },
4338 0 },
4339 { "GOT", { BFD_RELOC_386_GOT32,
4340 BFD_RELOC_X86_64_GOT32 },
4341 Imm32 | Imm32S | Disp32 | Imm64 },
4342 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
4343 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
4344 Imm32 | Imm32S | Disp32 },
4345 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
4346 BFD_RELOC_X86_64_TLSDESC_CALL },
4347 Imm32 | Imm32S | Disp32 }
4349 char *cp;
4350 unsigned int j;
4352 if (!IS_ELF)
4353 return NULL;
4355 for (cp = input_line_pointer; *cp != '@'; cp++)
4356 if (is_end_of_line[(unsigned char) *cp])
4357 return NULL;
4359 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4361 int len;
4363 len = strlen (gotrel[j].str);
4364 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4366 if (gotrel[j].rel[object_64bit] != 0)
4368 int first, second;
4369 char *tmpbuf, *past_reloc;
4371 *reloc = gotrel[j].rel[object_64bit];
4372 if (adjust)
4373 *adjust = len;
4375 if (types)
4377 if (flag_code != CODE_64BIT)
4378 *types = Imm32 | Disp32;
4379 else
4380 *types = gotrel[j].types64;
4383 if (GOT_symbol == NULL)
4384 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4386 /* Replace the relocation token with ' ', so that
4387 errors like foo@GOTOFF1 will be detected. */
4389 /* The length of the first part of our input line. */
4390 first = cp - input_line_pointer;
4392 /* The second part goes from after the reloc token until
4393 (and including) an end_of_line char. Don't use strlen
4394 here as the end_of_line char may not be a NUL. */
4395 past_reloc = cp + 1 + len;
4396 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4398 second = cp - past_reloc;
4400 /* Allocate and copy string. The trailing NUL shouldn't
4401 be necessary, but be safe. */
4402 tmpbuf = xmalloc (first + second + 2);
4403 memcpy (tmpbuf, input_line_pointer, first);
4404 tmpbuf[first] = ' ';
4405 memcpy (tmpbuf + first + 1, past_reloc, second);
4406 tmpbuf[first + second + 1] = '\0';
4407 return tmpbuf;
4410 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4411 gotrel[j].str, 1 << (5 + object_64bit));
4412 return NULL;
4416 /* Might be a symbol version string. Don't as_bad here. */
4417 return NULL;
4420 void
4421 x86_cons (expressionS *exp, int size)
4423 if (size == 4 || (object_64bit && size == 8))
4425 /* Handle @GOTOFF and the like in an expression. */
4426 char *save;
4427 char *gotfree_input_line;
4428 int adjust;
4430 save = input_line_pointer;
4431 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4432 if (gotfree_input_line)
4433 input_line_pointer = gotfree_input_line;
4435 expression (exp);
4437 if (gotfree_input_line)
4439 /* expression () has merrily parsed up to the end of line,
4440 or a comma - in the wrong buffer. Transfer how far
4441 input_line_pointer has moved to the right buffer. */
4442 input_line_pointer = (save
4443 + (input_line_pointer - gotfree_input_line)
4444 + adjust);
4445 free (gotfree_input_line);
4448 else
4449 expression (exp);
4451 #endif
4453 static void signed_cons (int size)
4455 if (flag_code == CODE_64BIT)
4456 cons_sign = 1;
4457 cons (size);
4458 cons_sign = -1;
4461 #ifdef TE_PE
4462 static void
4463 pe_directive_secrel (dummy)
4464 int dummy ATTRIBUTE_UNUSED;
4466 expressionS exp;
4470 expression (&exp);
4471 if (exp.X_op == O_symbol)
4472 exp.X_op = O_secrel;
4474 emit_expr (&exp, 4);
4476 while (*input_line_pointer++ == ',');
4478 input_line_pointer--;
4479 demand_empty_rest_of_line ();
4481 #endif
4483 static int
4484 i386_immediate (char *imm_start)
4486 char *save_input_line_pointer;
4487 char *gotfree_input_line;
4488 segT exp_seg = 0;
4489 expressionS *exp;
4490 unsigned int types = ~0U;
4492 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4494 as_bad (_("at most %d immediate operands are allowed"),
4495 MAX_IMMEDIATE_OPERANDS);
4496 return 0;
4499 exp = &im_expressions[i.imm_operands++];
4500 i.op[this_operand].imms = exp;
4502 if (is_space_char (*imm_start))
4503 ++imm_start;
4505 save_input_line_pointer = input_line_pointer;
4506 input_line_pointer = imm_start;
4508 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4509 if (gotfree_input_line)
4510 input_line_pointer = gotfree_input_line;
4512 exp_seg = expression (exp);
4514 SKIP_WHITESPACE ();
4515 if (*input_line_pointer)
4516 as_bad (_("junk `%s' after expression"), input_line_pointer);
4518 input_line_pointer = save_input_line_pointer;
4519 if (gotfree_input_line)
4520 free (gotfree_input_line);
4522 if (exp->X_op == O_absent || exp->X_op == O_big)
4524 /* Missing or bad expr becomes absolute 0. */
4525 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4526 imm_start);
4527 exp->X_op = O_constant;
4528 exp->X_add_number = 0;
4529 exp->X_add_symbol = (symbolS *) 0;
4530 exp->X_op_symbol = (symbolS *) 0;
4532 else if (exp->X_op == O_constant)
4534 /* Size it properly later. */
4535 i.types[this_operand] |= Imm64;
4536 /* If BFD64, sign extend val. */
4537 if (!use_rela_relocations
4538 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4539 exp->X_add_number
4540 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4542 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4543 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4544 && exp_seg != absolute_section
4545 && exp_seg != text_section
4546 && exp_seg != data_section
4547 && exp_seg != bss_section
4548 && exp_seg != undefined_section
4549 && !bfd_is_com_section (exp_seg))
4551 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4552 return 0;
4554 #endif
4555 else if (!intel_syntax && exp->X_op == O_register)
4557 as_bad (_("illegal immediate register operand %s"), imm_start);
4558 return 0;
4560 else
4562 /* This is an address. The size of the address will be
4563 determined later, depending on destination register,
4564 suffix, or the default for the section. */
4565 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4566 i.types[this_operand] &= types;
4569 return 1;
4572 static char *
4573 i386_scale (char *scale)
4575 offsetT val;
4576 char *save = input_line_pointer;
4578 input_line_pointer = scale;
4579 val = get_absolute_expression ();
4581 switch (val)
4583 case 1:
4584 i.log2_scale_factor = 0;
4585 break;
4586 case 2:
4587 i.log2_scale_factor = 1;
4588 break;
4589 case 4:
4590 i.log2_scale_factor = 2;
4591 break;
4592 case 8:
4593 i.log2_scale_factor = 3;
4594 break;
4595 default:
4597 char sep = *input_line_pointer;
4599 *input_line_pointer = '\0';
4600 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4601 scale);
4602 *input_line_pointer = sep;
4603 input_line_pointer = save;
4604 return NULL;
4607 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4609 as_warn (_("scale factor of %d without an index register"),
4610 1 << i.log2_scale_factor);
4611 #if SCALE1_WHEN_NO_INDEX
4612 i.log2_scale_factor = 0;
4613 #endif
4615 scale = input_line_pointer;
4616 input_line_pointer = save;
4617 return scale;
4620 static int
4621 i386_displacement (char *disp_start, char *disp_end)
4623 expressionS *exp;
4624 segT exp_seg = 0;
4625 char *save_input_line_pointer;
4626 char *gotfree_input_line;
4627 int bigdisp, override;
4628 unsigned int types = Disp;
4630 if (i.disp_operands == MAX_MEMORY_OPERANDS)
4632 as_bad (_("at most %d displacement operands are allowed"),
4633 MAX_MEMORY_OPERANDS);
4634 return 0;
4637 if ((i.types[this_operand] & JumpAbsolute)
4638 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4640 bigdisp = Disp32;
4641 override = (i.prefix[ADDR_PREFIX] != 0);
4643 else
4645 /* For PC-relative branches, the width of the displacement
4646 is dependent upon data size, not address size. */
4647 bigdisp = 0;
4648 override = (i.prefix[DATA_PREFIX] != 0);
4650 if (flag_code == CODE_64BIT)
4652 if (!bigdisp)
4653 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4654 ? Disp16
4655 : Disp32S | Disp32);
4656 else if (!override)
4657 bigdisp = Disp64 | Disp32S | Disp32;
4659 else
4661 if (!bigdisp)
4663 if (!override)
4664 override = (i.suffix == (flag_code != CODE_16BIT
4665 ? WORD_MNEM_SUFFIX
4666 : LONG_MNEM_SUFFIX));
4667 bigdisp = Disp32;
4669 if ((flag_code == CODE_16BIT) ^ override)
4670 bigdisp = Disp16;
4672 i.types[this_operand] |= bigdisp;
4674 exp = &disp_expressions[i.disp_operands];
4675 i.op[this_operand].disps = exp;
4676 i.disp_operands++;
4677 save_input_line_pointer = input_line_pointer;
4678 input_line_pointer = disp_start;
4679 END_STRING_AND_SAVE (disp_end);
4681 #ifndef GCC_ASM_O_HACK
4682 #define GCC_ASM_O_HACK 0
4683 #endif
4684 #if GCC_ASM_O_HACK
4685 END_STRING_AND_SAVE (disp_end + 1);
4686 if ((i.types[this_operand] & BaseIndex) != 0
4687 && displacement_string_end[-1] == '+')
4689 /* This hack is to avoid a warning when using the "o"
4690 constraint within gcc asm statements.
4691 For instance:
4693 #define _set_tssldt_desc(n,addr,limit,type) \
4694 __asm__ __volatile__ ( \
4695 "movw %w2,%0\n\t" \
4696 "movw %w1,2+%0\n\t" \
4697 "rorl $16,%1\n\t" \
4698 "movb %b1,4+%0\n\t" \
4699 "movb %4,5+%0\n\t" \
4700 "movb $0,6+%0\n\t" \
4701 "movb %h1,7+%0\n\t" \
4702 "rorl $16,%1" \
4703 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4705 This works great except that the output assembler ends
4706 up looking a bit weird if it turns out that there is
4707 no offset. You end up producing code that looks like:
4709 #APP
4710 movw $235,(%eax)
4711 movw %dx,2+(%eax)
4712 rorl $16,%edx
4713 movb %dl,4+(%eax)
4714 movb $137,5+(%eax)
4715 movb $0,6+(%eax)
4716 movb %dh,7+(%eax)
4717 rorl $16,%edx
4718 #NO_APP
4720 So here we provide the missing zero. */
4722 *displacement_string_end = '0';
4724 #endif
4725 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4726 if (gotfree_input_line)
4727 input_line_pointer = gotfree_input_line;
4729 exp_seg = expression (exp);
4731 SKIP_WHITESPACE ();
4732 if (*input_line_pointer)
4733 as_bad (_("junk `%s' after expression"), input_line_pointer);
4734 #if GCC_ASM_O_HACK
4735 RESTORE_END_STRING (disp_end + 1);
4736 #endif
4737 RESTORE_END_STRING (disp_end);
4738 input_line_pointer = save_input_line_pointer;
4739 if (gotfree_input_line)
4740 free (gotfree_input_line);
4742 /* We do this to make sure that the section symbol is in
4743 the symbol table. We will ultimately change the relocation
4744 to be relative to the beginning of the section. */
4745 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4746 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4747 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4749 if (exp->X_op != O_symbol)
4751 as_bad (_("bad expression used with @%s"),
4752 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4753 ? "GOTPCREL"
4754 : "GOTOFF"));
4755 return 0;
4758 if (S_IS_LOCAL (exp->X_add_symbol)
4759 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4760 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4761 exp->X_op = O_subtract;
4762 exp->X_op_symbol = GOT_symbol;
4763 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4764 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4765 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4766 i.reloc[this_operand] = BFD_RELOC_64;
4767 else
4768 i.reloc[this_operand] = BFD_RELOC_32;
4771 if (exp->X_op == O_absent || exp->X_op == O_big)
4773 /* Missing or bad expr becomes absolute 0. */
4774 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4775 disp_start);
4776 exp->X_op = O_constant;
4777 exp->X_add_number = 0;
4778 exp->X_add_symbol = (symbolS *) 0;
4779 exp->X_op_symbol = (symbolS *) 0;
4782 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4783 if (exp->X_op != O_constant
4784 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4785 && exp_seg != absolute_section
4786 && exp_seg != text_section
4787 && exp_seg != data_section
4788 && exp_seg != bss_section
4789 && exp_seg != undefined_section
4790 && !bfd_is_com_section (exp_seg))
4792 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4793 return 0;
4795 #endif
4797 if (!(i.types[this_operand] & ~Disp))
4798 i.types[this_operand] &= types;
4800 return 1;
4803 /* Make sure the memory operand we've been dealt is valid.
4804 Return 1 on success, 0 on a failure. */
4806 static int
4807 i386_index_check (const char *operand_string)
4809 int ok;
4810 #if INFER_ADDR_PREFIX
4811 int fudged = 0;
4813 tryprefix:
4814 #endif
4815 ok = 1;
4816 if ((current_templates->start->cpu_flags & CpuSVME)
4817 && current_templates->end[-1].operand_types[0] == AnyMem)
4819 /* Memory operands of SVME insns are special in that they only allow
4820 rAX as their memory address and ignore any segment override. */
4821 unsigned RegXX;
4823 /* SKINIT is even more restrictive: it always requires EAX. */
4824 if (strcmp (current_templates->start->name, "skinit") == 0)
4825 RegXX = Reg32;
4826 else if (flag_code == CODE_64BIT)
4827 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4828 else
4829 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4830 ? Reg16
4831 : Reg32);
4832 if (!i.base_reg
4833 || !(i.base_reg->reg_type & Acc)
4834 || !(i.base_reg->reg_type & RegXX)
4835 || i.index_reg
4836 || (i.types[0] & Disp))
4837 ok = 0;
4839 else if (flag_code == CODE_64BIT)
4841 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4843 if ((i.base_reg
4844 && ((i.base_reg->reg_type & RegXX) == 0)
4845 && (i.base_reg->reg_type != BaseIndex
4846 || i.index_reg))
4847 || (i.index_reg
4848 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4849 != (RegXX | BaseIndex))))
4850 ok = 0;
4852 else
4854 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4856 /* 16bit checks. */
4857 if ((i.base_reg
4858 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4859 != (Reg16 | BaseIndex)))
4860 || (i.index_reg
4861 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4862 != (Reg16 | BaseIndex))
4863 || !(i.base_reg
4864 && i.base_reg->reg_num < 6
4865 && i.index_reg->reg_num >= 6
4866 && i.log2_scale_factor == 0))))
4867 ok = 0;
4869 else
4871 /* 32bit checks. */
4872 if ((i.base_reg
4873 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4874 || (i.index_reg
4875 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4876 != (Reg32 | BaseIndex))))
4877 ok = 0;
4880 if (!ok)
4882 #if INFER_ADDR_PREFIX
4883 if (i.prefix[ADDR_PREFIX] == 0)
4885 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4886 i.prefixes += 1;
4887 /* Change the size of any displacement too. At most one of
4888 Disp16 or Disp32 is set.
4889 FIXME. There doesn't seem to be any real need for separate
4890 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4891 Removing them would probably clean up the code quite a lot. */
4892 if (flag_code != CODE_64BIT
4893 && (i.types[this_operand] & (Disp16 | Disp32)))
4894 i.types[this_operand] ^= (Disp16 | Disp32);
4895 fudged = 1;
4896 goto tryprefix;
4898 if (fudged)
4899 as_bad (_("`%s' is not a valid base/index expression"),
4900 operand_string);
4901 else
4902 #endif
4903 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4904 operand_string,
4905 flag_code_names[flag_code]);
4907 return ok;
4910 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4911 on error. */
4913 static int
4914 i386_operand (char *operand_string)
4916 const reg_entry *r;
4917 char *end_op;
4918 char *op_string = operand_string;
4920 if (is_space_char (*op_string))
4921 ++op_string;
4923 /* We check for an absolute prefix (differentiating,
4924 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4925 if (*op_string == ABSOLUTE_PREFIX)
4927 ++op_string;
4928 if (is_space_char (*op_string))
4929 ++op_string;
4930 i.types[this_operand] |= JumpAbsolute;
4933 /* Check if operand is a register. */
4934 if ((r = parse_register (op_string, &end_op)) != NULL)
4936 /* Check for a segment override by searching for ':' after a
4937 segment register. */
4938 op_string = end_op;
4939 if (is_space_char (*op_string))
4940 ++op_string;
4941 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4943 switch (r->reg_num)
4945 case 0:
4946 i.seg[i.mem_operands] = &es;
4947 break;
4948 case 1:
4949 i.seg[i.mem_operands] = &cs;
4950 break;
4951 case 2:
4952 i.seg[i.mem_operands] = &ss;
4953 break;
4954 case 3:
4955 i.seg[i.mem_operands] = &ds;
4956 break;
4957 case 4:
4958 i.seg[i.mem_operands] = &fs;
4959 break;
4960 case 5:
4961 i.seg[i.mem_operands] = &gs;
4962 break;
4965 /* Skip the ':' and whitespace. */
4966 ++op_string;
4967 if (is_space_char (*op_string))
4968 ++op_string;
4970 if (!is_digit_char (*op_string)
4971 && !is_identifier_char (*op_string)
4972 && *op_string != '('
4973 && *op_string != ABSOLUTE_PREFIX)
4975 as_bad (_("bad memory operand `%s'"), op_string);
4976 return 0;
4978 /* Handle case of %es:*foo. */
4979 if (*op_string == ABSOLUTE_PREFIX)
4981 ++op_string;
4982 if (is_space_char (*op_string))
4983 ++op_string;
4984 i.types[this_operand] |= JumpAbsolute;
4986 goto do_memory_reference;
4988 if (*op_string)
4990 as_bad (_("junk `%s' after register"), op_string);
4991 return 0;
4993 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4994 i.op[this_operand].regs = r;
4995 i.reg_operands++;
4997 else if (*op_string == REGISTER_PREFIX)
4999 as_bad (_("bad register name `%s'"), op_string);
5000 return 0;
5002 else if (*op_string == IMMEDIATE_PREFIX)
5004 ++op_string;
5005 if (i.types[this_operand] & JumpAbsolute)
5007 as_bad (_("immediate operand illegal with absolute jump"));
5008 return 0;
5010 if (!i386_immediate (op_string))
5011 return 0;
5013 else if (is_digit_char (*op_string)
5014 || is_identifier_char (*op_string)
5015 || *op_string == '(')
5017 /* This is a memory reference of some sort. */
5018 char *base_string;
5020 /* Start and end of displacement string expression (if found). */
5021 char *displacement_string_start;
5022 char *displacement_string_end;
5024 do_memory_reference:
5025 if ((i.mem_operands == 1
5026 && (current_templates->start->opcode_modifier & IsString) == 0)
5027 || i.mem_operands == 2)
5029 as_bad (_("too many memory references for `%s'"),
5030 current_templates->start->name);
5031 return 0;
5034 /* Check for base index form. We detect the base index form by
5035 looking for an ')' at the end of the operand, searching
5036 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5037 after the '('. */
5038 base_string = op_string + strlen (op_string);
5040 --base_string;
5041 if (is_space_char (*base_string))
5042 --base_string;
5044 /* If we only have a displacement, set-up for it to be parsed later. */
5045 displacement_string_start = op_string;
5046 displacement_string_end = base_string + 1;
5048 if (*base_string == ')')
5050 char *temp_string;
5051 unsigned int parens_balanced = 1;
5052 /* We've already checked that the number of left & right ()'s are
5053 equal, so this loop will not be infinite. */
5056 base_string--;
5057 if (*base_string == ')')
5058 parens_balanced++;
5059 if (*base_string == '(')
5060 parens_balanced--;
5062 while (parens_balanced);
5064 temp_string = base_string;
5066 /* Skip past '(' and whitespace. */
5067 ++base_string;
5068 if (is_space_char (*base_string))
5069 ++base_string;
5071 if (*base_string == ','
5072 || ((i.base_reg = parse_register (base_string, &end_op))
5073 != NULL))
5075 displacement_string_end = temp_string;
5077 i.types[this_operand] |= BaseIndex;
5079 if (i.base_reg)
5081 base_string = end_op;
5082 if (is_space_char (*base_string))
5083 ++base_string;
5086 /* There may be an index reg or scale factor here. */
5087 if (*base_string == ',')
5089 ++base_string;
5090 if (is_space_char (*base_string))
5091 ++base_string;
5093 if ((i.index_reg = parse_register (base_string, &end_op))
5094 != NULL)
5096 base_string = end_op;
5097 if (is_space_char (*base_string))
5098 ++base_string;
5099 if (*base_string == ',')
5101 ++base_string;
5102 if (is_space_char (*base_string))
5103 ++base_string;
5105 else if (*base_string != ')')
5107 as_bad (_("expecting `,' or `)' "
5108 "after index register in `%s'"),
5109 operand_string);
5110 return 0;
5113 else if (*base_string == REGISTER_PREFIX)
5115 as_bad (_("bad register name `%s'"), base_string);
5116 return 0;
5119 /* Check for scale factor. */
5120 if (*base_string != ')')
5122 char *end_scale = i386_scale (base_string);
5124 if (!end_scale)
5125 return 0;
5127 base_string = end_scale;
5128 if (is_space_char (*base_string))
5129 ++base_string;
5130 if (*base_string != ')')
5132 as_bad (_("expecting `)' "
5133 "after scale factor in `%s'"),
5134 operand_string);
5135 return 0;
5138 else if (!i.index_reg)
5140 as_bad (_("expecting index register or scale factor "
5141 "after `,'; got '%c'"),
5142 *base_string);
5143 return 0;
5146 else if (*base_string != ')')
5148 as_bad (_("expecting `,' or `)' "
5149 "after base register in `%s'"),
5150 operand_string);
5151 return 0;
5154 else if (*base_string == REGISTER_PREFIX)
5156 as_bad (_("bad register name `%s'"), base_string);
5157 return 0;
5161 /* If there's an expression beginning the operand, parse it,
5162 assuming displacement_string_start and
5163 displacement_string_end are meaningful. */
5164 if (displacement_string_start != displacement_string_end)
5166 if (!i386_displacement (displacement_string_start,
5167 displacement_string_end))
5168 return 0;
5171 /* Special case for (%dx) while doing input/output op. */
5172 if (i.base_reg
5173 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5174 && i.index_reg == 0
5175 && i.log2_scale_factor == 0
5176 && i.seg[i.mem_operands] == 0
5177 && (i.types[this_operand] & Disp) == 0)
5179 i.types[this_operand] = InOutPortReg;
5180 return 1;
5183 if (i386_index_check (operand_string) == 0)
5184 return 0;
5185 i.mem_operands++;
5187 else
5189 /* It's not a memory operand; argh! */
5190 as_bad (_("invalid char %s beginning operand %d `%s'"),
5191 output_invalid (*op_string),
5192 this_operand + 1,
5193 op_string);
5194 return 0;
5196 return 1; /* Normal return. */
5199 /* md_estimate_size_before_relax()
5201 Called just before relax() for rs_machine_dependent frags. The x86
5202 assembler uses these frags to handle variable size jump
5203 instructions.
5205 Any symbol that is now undefined will not become defined.
5206 Return the correct fr_subtype in the frag.
5207 Return the initial "guess for variable size of frag" to caller.
5208 The guess is actually the growth beyond the fixed part. Whatever
5209 we do to grow the fixed or variable part contributes to our
5210 returned value. */
5213 md_estimate_size_before_relax (fragP, segment)
5214 fragS *fragP;
5215 segT segment;
5217 /* We've already got fragP->fr_subtype right; all we have to do is
5218 check for un-relaxable symbols. On an ELF system, we can't relax
5219 an externally visible symbol, because it may be overridden by a
5220 shared library. */
5221 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5222 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5223 || (IS_ELF
5224 && (S_IS_EXTERNAL (fragP->fr_symbol)
5225 || S_IS_WEAK (fragP->fr_symbol)))
5226 #endif
5229 /* Symbol is undefined in this segment, or we need to keep a
5230 reloc so that weak symbols can be overridden. */
5231 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5232 enum bfd_reloc_code_real reloc_type;
5233 unsigned char *opcode;
5234 int old_fr_fix;
5236 if (fragP->fr_var != NO_RELOC)
5237 reloc_type = fragP->fr_var;
5238 else if (size == 2)
5239 reloc_type = BFD_RELOC_16_PCREL;
5240 else
5241 reloc_type = BFD_RELOC_32_PCREL;
5243 old_fr_fix = fragP->fr_fix;
5244 opcode = (unsigned char *) fragP->fr_opcode;
5246 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5248 case UNCOND_JUMP:
5249 /* Make jmp (0xeb) a (d)word displacement jump. */
5250 opcode[0] = 0xe9;
5251 fragP->fr_fix += size;
5252 fix_new (fragP, old_fr_fix, size,
5253 fragP->fr_symbol,
5254 fragP->fr_offset, 1,
5255 reloc_type);
5256 break;
5258 case COND_JUMP86:
5259 if (size == 2
5260 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5262 /* Negate the condition, and branch past an
5263 unconditional jump. */
5264 opcode[0] ^= 1;
5265 opcode[1] = 3;
5266 /* Insert an unconditional jump. */
5267 opcode[2] = 0xe9;
5268 /* We added two extra opcode bytes, and have a two byte
5269 offset. */
5270 fragP->fr_fix += 2 + 2;
5271 fix_new (fragP, old_fr_fix + 2, 2,
5272 fragP->fr_symbol,
5273 fragP->fr_offset, 1,
5274 reloc_type);
5275 break;
5277 /* Fall through. */
5279 case COND_JUMP:
5280 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5282 fixS *fixP;
5284 fragP->fr_fix += 1;
5285 fixP = fix_new (fragP, old_fr_fix, 1,
5286 fragP->fr_symbol,
5287 fragP->fr_offset, 1,
5288 BFD_RELOC_8_PCREL);
5289 fixP->fx_signed = 1;
5290 break;
5293 /* This changes the byte-displacement jump 0x7N
5294 to the (d)word-displacement jump 0x0f,0x8N. */
5295 opcode[1] = opcode[0] + 0x10;
5296 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5297 /* We've added an opcode byte. */
5298 fragP->fr_fix += 1 + size;
5299 fix_new (fragP, old_fr_fix + 1, size,
5300 fragP->fr_symbol,
5301 fragP->fr_offset, 1,
5302 reloc_type);
5303 break;
5305 default:
5306 BAD_CASE (fragP->fr_subtype);
5307 break;
5309 frag_wane (fragP);
5310 return fragP->fr_fix - old_fr_fix;
5313 /* Guess size depending on current relax state. Initially the relax
5314 state will correspond to a short jump and we return 1, because
5315 the variable part of the frag (the branch offset) is one byte
5316 long. However, we can relax a section more than once and in that
5317 case we must either set fr_subtype back to the unrelaxed state,
5318 or return the value for the appropriate branch. */
5319 return md_relax_table[fragP->fr_subtype].rlx_length;
5322 /* Called after relax() is finished.
5324 In: Address of frag.
5325 fr_type == rs_machine_dependent.
5326 fr_subtype is what the address relaxed to.
5328 Out: Any fixSs and constants are set up.
5329 Caller will turn frag into a ".space 0". */
5331 void
5332 md_convert_frag (abfd, sec, fragP)
5333 bfd *abfd ATTRIBUTE_UNUSED;
5334 segT sec ATTRIBUTE_UNUSED;
5335 fragS *fragP;
5337 unsigned char *opcode;
5338 unsigned char *where_to_put_displacement = NULL;
5339 offsetT target_address;
5340 offsetT opcode_address;
5341 unsigned int extension = 0;
5342 offsetT displacement_from_opcode_start;
5344 opcode = (unsigned char *) fragP->fr_opcode;
5346 /* Address we want to reach in file space. */
5347 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5349 /* Address opcode resides at in file space. */
5350 opcode_address = fragP->fr_address + fragP->fr_fix;
5352 /* Displacement from opcode start to fill into instruction. */
5353 displacement_from_opcode_start = target_address - opcode_address;
5355 if ((fragP->fr_subtype & BIG) == 0)
5357 /* Don't have to change opcode. */
5358 extension = 1; /* 1 opcode + 1 displacement */
5359 where_to_put_displacement = &opcode[1];
5361 else
5363 if (no_cond_jump_promotion
5364 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5365 as_warn_where (fragP->fr_file, fragP->fr_line,
5366 _("long jump required"));
5368 switch (fragP->fr_subtype)
5370 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5371 extension = 4; /* 1 opcode + 4 displacement */
5372 opcode[0] = 0xe9;
5373 where_to_put_displacement = &opcode[1];
5374 break;
5376 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5377 extension = 2; /* 1 opcode + 2 displacement */
5378 opcode[0] = 0xe9;
5379 where_to_put_displacement = &opcode[1];
5380 break;
5382 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5383 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5384 extension = 5; /* 2 opcode + 4 displacement */
5385 opcode[1] = opcode[0] + 0x10;
5386 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5387 where_to_put_displacement = &opcode[2];
5388 break;
5390 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5391 extension = 3; /* 2 opcode + 2 displacement */
5392 opcode[1] = opcode[0] + 0x10;
5393 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5394 where_to_put_displacement = &opcode[2];
5395 break;
5397 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5398 extension = 4;
5399 opcode[0] ^= 1;
5400 opcode[1] = 3;
5401 opcode[2] = 0xe9;
5402 where_to_put_displacement = &opcode[3];
5403 break;
5405 default:
5406 BAD_CASE (fragP->fr_subtype);
5407 break;
5411 /* If size if less then four we are sure that the operand fits,
5412 but if it's 4, then it could be that the displacement is larger
5413 then -/+ 2GB. */
5414 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5415 && object_64bit
5416 && ((addressT) (displacement_from_opcode_start - extension
5417 + ((addressT) 1 << 31))
5418 > (((addressT) 2 << 31) - 1)))
5420 as_bad_where (fragP->fr_file, fragP->fr_line,
5421 _("jump target out of range"));
5422 /* Make us emit 0. */
5423 displacement_from_opcode_start = extension;
5425 /* Now put displacement after opcode. */
5426 md_number_to_chars ((char *) where_to_put_displacement,
5427 (valueT) (displacement_from_opcode_start - extension),
5428 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5429 fragP->fr_fix += extension;
5432 /* Size of byte displacement jmp. */
5433 int md_short_jump_size = 2;
5435 /* Size of dword displacement jmp. */
5436 int md_long_jump_size = 5;
5438 void
5439 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5440 char *ptr;
5441 addressT from_addr, to_addr;
5442 fragS *frag ATTRIBUTE_UNUSED;
5443 symbolS *to_symbol ATTRIBUTE_UNUSED;
5445 offsetT offset;
5447 offset = to_addr - (from_addr + 2);
5448 /* Opcode for byte-disp jump. */
5449 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5450 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5453 void
5454 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5455 char *ptr;
5456 addressT from_addr, to_addr;
5457 fragS *frag ATTRIBUTE_UNUSED;
5458 symbolS *to_symbol ATTRIBUTE_UNUSED;
5460 offsetT offset;
5462 offset = to_addr - (from_addr + 5);
5463 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5464 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5467 /* Apply a fixup (fixS) to segment data, once it has been determined
5468 by our caller that we have all the info we need to fix it up.
5470 On the 386, immediates, displacements, and data pointers are all in
5471 the same (little-endian) format, so we don't need to care about which
5472 we are handling. */
5474 void
5475 md_apply_fix (fixP, valP, seg)
5476 /* The fix we're to put in. */
5477 fixS *fixP;
5478 /* Pointer to the value of the bits. */
5479 valueT *valP;
5480 /* Segment fix is from. */
5481 segT seg ATTRIBUTE_UNUSED;
5483 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5484 valueT value = *valP;
5486 #if !defined (TE_Mach)
5487 if (fixP->fx_pcrel)
5489 switch (fixP->fx_r_type)
5491 default:
5492 break;
5494 case BFD_RELOC_64:
5495 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5496 break;
5497 case BFD_RELOC_32:
5498 case BFD_RELOC_X86_64_32S:
5499 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5500 break;
5501 case BFD_RELOC_16:
5502 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5503 break;
5504 case BFD_RELOC_8:
5505 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5506 break;
5510 if (fixP->fx_addsy != NULL
5511 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5512 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5513 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5514 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5515 && !use_rela_relocations)
5517 /* This is a hack. There should be a better way to handle this.
5518 This covers for the fact that bfd_install_relocation will
5519 subtract the current location (for partial_inplace, PC relative
5520 relocations); see more below. */
5521 #ifndef OBJ_AOUT
5522 if (IS_ELF
5523 #ifdef TE_PE
5524 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5525 #endif
5527 value += fixP->fx_where + fixP->fx_frag->fr_address;
5528 #endif
5529 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5530 if (IS_ELF)
5532 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5534 if ((sym_seg == seg
5535 || (symbol_section_p (fixP->fx_addsy)
5536 && sym_seg != absolute_section))
5537 && !generic_force_reloc (fixP))
5539 /* Yes, we add the values in twice. This is because
5540 bfd_install_relocation subtracts them out again. I think
5541 bfd_install_relocation is broken, but I don't dare change
5542 it. FIXME. */
5543 value += fixP->fx_where + fixP->fx_frag->fr_address;
5546 #endif
5547 #if defined (OBJ_COFF) && defined (TE_PE)
5548 /* For some reason, the PE format does not store a
5549 section address offset for a PC relative symbol. */
5550 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5551 || S_IS_WEAK (fixP->fx_addsy))
5552 value += md_pcrel_from (fixP);
5553 #endif
5556 /* Fix a few things - the dynamic linker expects certain values here,
5557 and we must not disappoint it. */
5558 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5559 if (IS_ELF && fixP->fx_addsy)
5560 switch (fixP->fx_r_type)
5562 case BFD_RELOC_386_PLT32:
5563 case BFD_RELOC_X86_64_PLT32:
5564 /* Make the jump instruction point to the address of the operand. At
5565 runtime we merely add the offset to the actual PLT entry. */
5566 value = -4;
5567 break;
5569 case BFD_RELOC_386_TLS_GD:
5570 case BFD_RELOC_386_TLS_LDM:
5571 case BFD_RELOC_386_TLS_IE_32:
5572 case BFD_RELOC_386_TLS_IE:
5573 case BFD_RELOC_386_TLS_GOTIE:
5574 case BFD_RELOC_386_TLS_GOTDESC:
5575 case BFD_RELOC_X86_64_TLSGD:
5576 case BFD_RELOC_X86_64_TLSLD:
5577 case BFD_RELOC_X86_64_GOTTPOFF:
5578 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5579 value = 0; /* Fully resolved at runtime. No addend. */
5580 /* Fallthrough */
5581 case BFD_RELOC_386_TLS_LE:
5582 case BFD_RELOC_386_TLS_LDO_32:
5583 case BFD_RELOC_386_TLS_LE_32:
5584 case BFD_RELOC_X86_64_DTPOFF32:
5585 case BFD_RELOC_X86_64_DTPOFF64:
5586 case BFD_RELOC_X86_64_TPOFF32:
5587 case BFD_RELOC_X86_64_TPOFF64:
5588 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5589 break;
5591 case BFD_RELOC_386_TLS_DESC_CALL:
5592 case BFD_RELOC_X86_64_TLSDESC_CALL:
5593 value = 0; /* Fully resolved at runtime. No addend. */
5594 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5595 fixP->fx_done = 0;
5596 return;
5598 case BFD_RELOC_386_GOT32:
5599 case BFD_RELOC_X86_64_GOT32:
5600 value = 0; /* Fully resolved at runtime. No addend. */
5601 break;
5603 case BFD_RELOC_VTABLE_INHERIT:
5604 case BFD_RELOC_VTABLE_ENTRY:
5605 fixP->fx_done = 0;
5606 return;
5608 default:
5609 break;
5611 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5612 *valP = value;
5613 #endif /* !defined (TE_Mach) */
5615 /* Are we finished with this relocation now? */
5616 if (fixP->fx_addsy == NULL)
5617 fixP->fx_done = 1;
5618 else if (use_rela_relocations)
5620 fixP->fx_no_overflow = 1;
5621 /* Remember value for tc_gen_reloc. */
5622 fixP->fx_addnumber = value;
5623 value = 0;
5626 md_number_to_chars (p, value, fixP->fx_size);
5629 #define MAX_LITTLENUMS 6
5631 /* Turn the string pointed to by litP into a floating point constant
5632 of type TYPE, and emit the appropriate bytes. The number of
5633 LITTLENUMS emitted is stored in *SIZEP. An error message is
5634 returned, or NULL on OK. */
5636 char *
5637 md_atof (type, litP, sizeP)
5638 int type;
5639 char *litP;
5640 int *sizeP;
5642 int prec;
5643 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5644 LITTLENUM_TYPE *wordP;
5645 char *t;
5647 switch (type)
5649 case 'f':
5650 case 'F':
5651 prec = 2;
5652 break;
5654 case 'd':
5655 case 'D':
5656 prec = 4;
5657 break;
5659 case 'x':
5660 case 'X':
5661 prec = 5;
5662 break;
5664 default:
5665 *sizeP = 0;
5666 return _("Bad call to md_atof ()");
5668 t = atof_ieee (input_line_pointer, type, words);
5669 if (t)
5670 input_line_pointer = t;
5672 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5673 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5674 the bigendian 386. */
5675 for (wordP = words + prec - 1; prec--;)
5677 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5678 litP += sizeof (LITTLENUM_TYPE);
5680 return 0;
5683 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5685 static char *
5686 output_invalid (int c)
5688 if (ISPRINT (c))
5689 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5690 "'%c'", c);
5691 else
5692 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5693 "(0x%x)", (unsigned char) c);
5694 return output_invalid_buf;
5697 /* REG_STRING starts *before* REGISTER_PREFIX. */
5699 static const reg_entry *
5700 parse_real_register (char *reg_string, char **end_op)
5702 char *s = reg_string;
5703 char *p;
5704 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5705 const reg_entry *r;
5707 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5708 if (*s == REGISTER_PREFIX)
5709 ++s;
5711 if (is_space_char (*s))
5712 ++s;
5714 p = reg_name_given;
5715 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5717 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5718 return (const reg_entry *) NULL;
5719 s++;
5722 /* For naked regs, make sure that we are not dealing with an identifier.
5723 This prevents confusing an identifier like `eax_var' with register
5724 `eax'. */
5725 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5726 return (const reg_entry *) NULL;
5728 *end_op = s;
5730 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5732 /* Handle floating point regs, allowing spaces in the (i) part. */
5733 if (r == i386_regtab /* %st is first entry of table */)
5735 if (is_space_char (*s))
5736 ++s;
5737 if (*s == '(')
5739 ++s;
5740 if (is_space_char (*s))
5741 ++s;
5742 if (*s >= '0' && *s <= '7')
5744 r = &i386_float_regtab[*s - '0'];
5745 ++s;
5746 if (is_space_char (*s))
5747 ++s;
5748 if (*s == ')')
5750 *end_op = s + 1;
5751 return r;
5754 /* We have "%st(" then garbage. */
5755 return (const reg_entry *) NULL;
5759 if (r != NULL
5760 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5761 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5762 && flag_code != CODE_64BIT)
5763 return (const reg_entry *) NULL;
5765 return r;
5768 /* REG_STRING starts *before* REGISTER_PREFIX. */
5770 static const reg_entry *
5771 parse_register (char *reg_string, char **end_op)
5773 const reg_entry *r;
5775 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5776 r = parse_real_register (reg_string, end_op);
5777 else
5778 r = NULL;
5779 if (!r)
5781 char *save = input_line_pointer;
5782 char c;
5783 symbolS *symbolP;
5785 input_line_pointer = reg_string;
5786 c = get_symbol_end ();
5787 symbolP = symbol_find (reg_string);
5788 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5790 const expressionS *e = symbol_get_value_expression (symbolP);
5792 know (e->X_op == O_register);
5793 know (e->X_add_number >= 0
5794 && (valueT) e->X_add_number < ARRAY_SIZE (i386_regtab));
5795 r = i386_regtab + e->X_add_number;
5796 *end_op = input_line_pointer;
5798 *input_line_pointer = c;
5799 input_line_pointer = save;
5801 return r;
5805 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5807 const reg_entry *r;
5808 char *end = input_line_pointer;
5810 *end = *nextcharP;
5811 r = parse_register (name, &input_line_pointer);
5812 if (r && end <= input_line_pointer)
5814 *nextcharP = *input_line_pointer;
5815 *input_line_pointer = 0;
5816 e->X_op = O_register;
5817 e->X_add_number = r - i386_regtab;
5818 return 1;
5820 input_line_pointer = end;
5821 *end = 0;
5822 return 0;
5825 void
5826 md_operand (expressionS *e)
5828 if (*input_line_pointer == REGISTER_PREFIX)
5830 char *end;
5831 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5833 if (r)
5835 e->X_op = O_register;
5836 e->X_add_number = r - i386_regtab;
5837 input_line_pointer = end;
5843 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5844 const char *md_shortopts = "kVQ:sqn";
5845 #else
5846 const char *md_shortopts = "qn";
5847 #endif
5849 #define OPTION_32 (OPTION_MD_BASE + 0)
5850 #define OPTION_64 (OPTION_MD_BASE + 1)
5851 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5852 #define OPTION_MARCH (OPTION_MD_BASE + 3)
5853 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
5855 struct option md_longopts[] =
5857 {"32", no_argument, NULL, OPTION_32},
5858 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5859 {"64", no_argument, NULL, OPTION_64},
5860 #endif
5861 {"divide", no_argument, NULL, OPTION_DIVIDE},
5862 {"march", required_argument, NULL, OPTION_MARCH},
5863 {"mtune", required_argument, NULL, OPTION_MTUNE},
5864 {NULL, no_argument, NULL, 0}
5866 size_t md_longopts_size = sizeof (md_longopts);
5869 md_parse_option (int c, char *arg)
5871 unsigned int i;
5873 switch (c)
5875 case 'n':
5876 optimize_align_code = 0;
5877 break;
5879 case 'q':
5880 quiet_warnings = 1;
5881 break;
5883 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5884 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5885 should be emitted or not. FIXME: Not implemented. */
5886 case 'Q':
5887 break;
5889 /* -V: SVR4 argument to print version ID. */
5890 case 'V':
5891 print_version_id ();
5892 break;
5894 /* -k: Ignore for FreeBSD compatibility. */
5895 case 'k':
5896 break;
5898 case 's':
5899 /* -s: On i386 Solaris, this tells the native assembler to use
5900 .stab instead of .stab.excl. We always use .stab anyhow. */
5901 break;
5902 #endif
5903 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5904 case OPTION_64:
5906 const char **list, **l;
5908 list = bfd_target_list ();
5909 for (l = list; *l != NULL; l++)
5910 if (CONST_STRNEQ (*l, "elf64-x86-64")
5911 || strcmp (*l, "coff-x86-64") == 0
5912 || strcmp (*l, "pe-x86-64") == 0
5913 || strcmp (*l, "pei-x86-64") == 0)
5915 default_arch = "x86_64";
5916 break;
5918 if (*l == NULL)
5919 as_fatal (_("No compiled in support for x86_64"));
5920 free (list);
5922 break;
5923 #endif
5925 case OPTION_32:
5926 default_arch = "i386";
5927 break;
5929 case OPTION_DIVIDE:
5930 #ifdef SVR4_COMMENT_CHARS
5932 char *n, *t;
5933 const char *s;
5935 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
5936 t = n;
5937 for (s = i386_comment_chars; *s != '\0'; s++)
5938 if (*s != '/')
5939 *t++ = *s;
5940 *t = '\0';
5941 i386_comment_chars = n;
5943 #endif
5944 break;
5946 case OPTION_MARCH:
5947 if (*arg == '.')
5948 as_fatal (_("Invalid -march= option: `%s'"), arg);
5949 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
5951 if (strcmp (arg, cpu_arch [i].name) == 0)
5953 cpu_arch_isa = cpu_arch[i].type;
5954 cpu_arch_isa_flags = cpu_arch[i].flags;
5955 if (!cpu_arch_tune_set)
5957 cpu_arch_tune = cpu_arch_isa;
5958 cpu_arch_tune_flags = cpu_arch_isa_flags;
5960 break;
5963 if (i >= ARRAY_SIZE (cpu_arch))
5964 as_fatal (_("Invalid -march= option: `%s'"), arg);
5965 break;
5967 case OPTION_MTUNE:
5968 if (*arg == '.')
5969 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
5970 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
5972 if (strcmp (arg, cpu_arch [i].name) == 0)
5974 cpu_arch_tune_set = 1;
5975 cpu_arch_tune = cpu_arch [i].type;
5976 cpu_arch_tune_flags = cpu_arch[i].flags;
5977 break;
5980 if (i >= ARRAY_SIZE (cpu_arch))
5981 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
5982 break;
5984 default:
5985 return 0;
5987 return 1;
5990 void
5991 md_show_usage (stream)
5992 FILE *stream;
5994 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5995 fprintf (stream, _("\
5996 -Q ignored\n\
5997 -V print assembler version number\n\
5998 -k ignored\n"));
5999 #endif
6000 fprintf (stream, _("\
6001 -n Do not optimize code alignment\n\
6002 -q quieten some warnings\n"));
6003 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6004 fprintf (stream, _("\
6005 -s ignored\n"));
6006 #endif
6007 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6008 fprintf (stream, _("\
6009 --32/--64 generate 32bit/64bit code\n"));
6010 #endif
6011 #ifdef SVR4_COMMENT_CHARS
6012 fprintf (stream, _("\
6013 --divide do not treat `/' as a comment character\n"));
6014 #else
6015 fprintf (stream, _("\
6016 --divide ignored\n"));
6017 #endif
6018 fprintf (stream, _("\
6019 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
6020 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
6021 core, core2, k6, athlon, k8, generic32, generic64\n"));
6025 #if defined(TE_PEP)
6026 const char *
6027 x86_64_target_format (void)
6029 if (strcmp (default_arch, "x86_64") == 0)
6031 set_code_flag (CODE_64BIT);
6032 return COFF_TARGET_FORMAT;
6034 else if (strcmp (default_arch, "i386") == 0)
6036 set_code_flag (CODE_32BIT);
6037 return "coff-i386";
6040 as_fatal (_("Unknown architecture"));
6041 return NULL;
6043 #endif
6045 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6046 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6048 /* Pick the target format to use. */
6050 const char *
6051 i386_target_format (void)
6053 if (!strcmp (default_arch, "x86_64"))
6055 set_code_flag (CODE_64BIT);
6056 if (cpu_arch_isa_flags == 0)
6057 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6058 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6059 |CpuSSE|CpuSSE2;
6060 if (cpu_arch_tune_flags == 0)
6061 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6062 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6063 |CpuSSE|CpuSSE2;
6065 else if (!strcmp (default_arch, "i386"))
6067 set_code_flag (CODE_32BIT);
6068 if (cpu_arch_isa_flags == 0)
6069 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6070 if (cpu_arch_tune_flags == 0)
6071 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6073 else
6074 as_fatal (_("Unknown architecture"));
6075 switch (OUTPUT_FLAVOR)
6077 #ifdef OBJ_MAYBE_AOUT
6078 case bfd_target_aout_flavour:
6079 return AOUT_TARGET_FORMAT;
6080 #endif
6081 #ifdef OBJ_MAYBE_COFF
6082 case bfd_target_coff_flavour:
6083 return "coff-i386";
6084 #endif
6085 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6086 case bfd_target_elf_flavour:
6088 if (flag_code == CODE_64BIT)
6090 object_64bit = 1;
6091 use_rela_relocations = 1;
6093 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6095 #endif
6096 default:
6097 abort ();
6098 return NULL;
6102 #endif /* OBJ_MAYBE_ more than one */
6104 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6105 void
6106 i386_elf_emit_arch_note (void)
6108 if (IS_ELF && cpu_arch_name != NULL)
6110 char *p;
6111 asection *seg = now_seg;
6112 subsegT subseg = now_subseg;
6113 Elf_Internal_Note i_note;
6114 Elf_External_Note e_note;
6115 asection *note_secp;
6116 int len;
6118 /* Create the .note section. */
6119 note_secp = subseg_new (".note", 0);
6120 bfd_set_section_flags (stdoutput,
6121 note_secp,
6122 SEC_HAS_CONTENTS | SEC_READONLY);
6124 /* Process the arch string. */
6125 len = strlen (cpu_arch_name);
6127 i_note.namesz = len + 1;
6128 i_note.descsz = 0;
6129 i_note.type = NT_ARCH;
6130 p = frag_more (sizeof (e_note.namesz));
6131 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6132 p = frag_more (sizeof (e_note.descsz));
6133 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6134 p = frag_more (sizeof (e_note.type));
6135 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6136 p = frag_more (len + 1);
6137 strcpy (p, cpu_arch_name);
6139 frag_align (2, 0, 0);
6141 subseg_set (seg, subseg);
6144 #endif
6146 symbolS *
6147 md_undefined_symbol (name)
6148 char *name;
6150 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6151 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6152 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6153 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6155 if (!GOT_symbol)
6157 if (symbol_find (name))
6158 as_bad (_("GOT already in symbol table"));
6159 GOT_symbol = symbol_new (name, undefined_section,
6160 (valueT) 0, &zero_address_frag);
6162 return GOT_symbol;
6164 return 0;
6167 /* Round up a section size to the appropriate boundary. */
6169 valueT
6170 md_section_align (segment, size)
6171 segT segment ATTRIBUTE_UNUSED;
6172 valueT size;
6174 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6175 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6177 /* For a.out, force the section size to be aligned. If we don't do
6178 this, BFD will align it for us, but it will not write out the
6179 final bytes of the section. This may be a bug in BFD, but it is
6180 easier to fix it here since that is how the other a.out targets
6181 work. */
6182 int align;
6184 align = bfd_get_section_alignment (stdoutput, segment);
6185 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6187 #endif
6189 return size;
6192 /* On the i386, PC-relative offsets are relative to the start of the
6193 next instruction. That is, the address of the offset, plus its
6194 size, since the offset is always the last part of the insn. */
6196 long
6197 md_pcrel_from (fixS *fixP)
6199 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6202 #ifndef I386COFF
6204 static void
6205 s_bss (int ignore ATTRIBUTE_UNUSED)
6207 int temp;
6209 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6210 if (IS_ELF)
6211 obj_elf_section_change_hook ();
6212 #endif
6213 temp = get_absolute_expression ();
6214 subseg_set (bss_section, (subsegT) temp);
6215 demand_empty_rest_of_line ();
6218 #endif
6220 void
6221 i386_validate_fix (fixS *fixp)
6223 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6225 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6227 if (!object_64bit)
6228 abort ();
6229 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6231 else
6233 if (!object_64bit)
6234 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6235 else
6236 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6238 fixp->fx_subsy = 0;
6242 arelent *
6243 tc_gen_reloc (section, fixp)
6244 asection *section ATTRIBUTE_UNUSED;
6245 fixS *fixp;
6247 arelent *rel;
6248 bfd_reloc_code_real_type code;
6250 switch (fixp->fx_r_type)
6252 case BFD_RELOC_X86_64_PLT32:
6253 case BFD_RELOC_X86_64_GOT32:
6254 case BFD_RELOC_X86_64_GOTPCREL:
6255 case BFD_RELOC_386_PLT32:
6256 case BFD_RELOC_386_GOT32:
6257 case BFD_RELOC_386_GOTOFF:
6258 case BFD_RELOC_386_GOTPC:
6259 case BFD_RELOC_386_TLS_GD:
6260 case BFD_RELOC_386_TLS_LDM:
6261 case BFD_RELOC_386_TLS_LDO_32:
6262 case BFD_RELOC_386_TLS_IE_32:
6263 case BFD_RELOC_386_TLS_IE:
6264 case BFD_RELOC_386_TLS_GOTIE:
6265 case BFD_RELOC_386_TLS_LE_32:
6266 case BFD_RELOC_386_TLS_LE:
6267 case BFD_RELOC_386_TLS_GOTDESC:
6268 case BFD_RELOC_386_TLS_DESC_CALL:
6269 case BFD_RELOC_X86_64_TLSGD:
6270 case BFD_RELOC_X86_64_TLSLD:
6271 case BFD_RELOC_X86_64_DTPOFF32:
6272 case BFD_RELOC_X86_64_DTPOFF64:
6273 case BFD_RELOC_X86_64_GOTTPOFF:
6274 case BFD_RELOC_X86_64_TPOFF32:
6275 case BFD_RELOC_X86_64_TPOFF64:
6276 case BFD_RELOC_X86_64_GOTOFF64:
6277 case BFD_RELOC_X86_64_GOTPC32:
6278 case BFD_RELOC_X86_64_GOT64:
6279 case BFD_RELOC_X86_64_GOTPCREL64:
6280 case BFD_RELOC_X86_64_GOTPC64:
6281 case BFD_RELOC_X86_64_GOTPLT64:
6282 case BFD_RELOC_X86_64_PLTOFF64:
6283 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6284 case BFD_RELOC_X86_64_TLSDESC_CALL:
6285 case BFD_RELOC_RVA:
6286 case BFD_RELOC_VTABLE_ENTRY:
6287 case BFD_RELOC_VTABLE_INHERIT:
6288 #ifdef TE_PE
6289 case BFD_RELOC_32_SECREL:
6290 #endif
6291 code = fixp->fx_r_type;
6292 break;
6293 case BFD_RELOC_X86_64_32S:
6294 if (!fixp->fx_pcrel)
6296 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6297 code = fixp->fx_r_type;
6298 break;
6300 default:
6301 if (fixp->fx_pcrel)
6303 switch (fixp->fx_size)
6305 default:
6306 as_bad_where (fixp->fx_file, fixp->fx_line,
6307 _("can not do %d byte pc-relative relocation"),
6308 fixp->fx_size);
6309 code = BFD_RELOC_32_PCREL;
6310 break;
6311 case 1: code = BFD_RELOC_8_PCREL; break;
6312 case 2: code = BFD_RELOC_16_PCREL; break;
6313 case 4: code = BFD_RELOC_32_PCREL; break;
6314 #ifdef BFD64
6315 case 8: code = BFD_RELOC_64_PCREL; break;
6316 #endif
6319 else
6321 switch (fixp->fx_size)
6323 default:
6324 as_bad_where (fixp->fx_file, fixp->fx_line,
6325 _("can not do %d byte relocation"),
6326 fixp->fx_size);
6327 code = BFD_RELOC_32;
6328 break;
6329 case 1: code = BFD_RELOC_8; break;
6330 case 2: code = BFD_RELOC_16; break;
6331 case 4: code = BFD_RELOC_32; break;
6332 #ifdef BFD64
6333 case 8: code = BFD_RELOC_64; break;
6334 #endif
6337 break;
6340 if ((code == BFD_RELOC_32
6341 || code == BFD_RELOC_32_PCREL
6342 || code == BFD_RELOC_X86_64_32S)
6343 && GOT_symbol
6344 && fixp->fx_addsy == GOT_symbol)
6346 if (!object_64bit)
6347 code = BFD_RELOC_386_GOTPC;
6348 else
6349 code = BFD_RELOC_X86_64_GOTPC32;
6351 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6352 && GOT_symbol
6353 && fixp->fx_addsy == GOT_symbol)
6355 code = BFD_RELOC_X86_64_GOTPC64;
6358 rel = (arelent *) xmalloc (sizeof (arelent));
6359 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6360 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6362 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6364 if (!use_rela_relocations)
6366 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6367 vtable entry to be used in the relocation's section offset. */
6368 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6369 rel->address = fixp->fx_offset;
6371 rel->addend = 0;
6373 /* Use the rela in 64bit mode. */
6374 else
6376 if (!fixp->fx_pcrel)
6377 rel->addend = fixp->fx_offset;
6378 else
6379 switch (code)
6381 case BFD_RELOC_X86_64_PLT32:
6382 case BFD_RELOC_X86_64_GOT32:
6383 case BFD_RELOC_X86_64_GOTPCREL:
6384 case BFD_RELOC_X86_64_TLSGD:
6385 case BFD_RELOC_X86_64_TLSLD:
6386 case BFD_RELOC_X86_64_GOTTPOFF:
6387 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6388 case BFD_RELOC_X86_64_TLSDESC_CALL:
6389 rel->addend = fixp->fx_offset - fixp->fx_size;
6390 break;
6391 default:
6392 rel->addend = (section->vma
6393 - fixp->fx_size
6394 + fixp->fx_addnumber
6395 + md_pcrel_from (fixp));
6396 break;
6400 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6401 if (rel->howto == NULL)
6403 as_bad_where (fixp->fx_file, fixp->fx_line,
6404 _("cannot represent relocation type %s"),
6405 bfd_get_reloc_code_name (code));
6406 /* Set howto to a garbage value so that we can keep going. */
6407 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6408 assert (rel->howto != NULL);
6411 return rel;
6415 /* Parse operands using Intel syntax. This implements a recursive descent
6416 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6417 Programmer's Guide.
6419 FIXME: We do not recognize the full operand grammar defined in the MASM
6420 documentation. In particular, all the structure/union and
6421 high-level macro operands are missing.
6423 Uppercase words are terminals, lower case words are non-terminals.
6424 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6425 bars '|' denote choices. Most grammar productions are implemented in
6426 functions called 'intel_<production>'.
6428 Initial production is 'expr'.
6430 addOp + | -
6432 alpha [a-zA-Z]
6434 binOp & | AND | \| | OR | ^ | XOR
6436 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6438 constant digits [[ radixOverride ]]
6440 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6442 digits decdigit
6443 | digits decdigit
6444 | digits hexdigit
6446 decdigit [0-9]
6448 e04 e04 addOp e05
6449 | e05
6451 e05 e05 binOp e06
6452 | e06
6454 e06 e06 mulOp e09
6455 | e09
6457 e09 OFFSET e10
6458 | SHORT e10
6459 | + e10
6460 | - e10
6461 | ~ e10
6462 | NOT e10
6463 | e09 PTR e10
6464 | e09 : e10
6465 | e10
6467 e10 e10 [ expr ]
6468 | e11
6470 e11 ( expr )
6471 | [ expr ]
6472 | constant
6473 | dataType
6474 | id
6476 | register
6478 => expr expr cmpOp e04
6479 | e04
6481 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6482 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6484 hexdigit a | b | c | d | e | f
6485 | A | B | C | D | E | F
6487 id alpha
6488 | id alpha
6489 | id decdigit
6491 mulOp * | / | % | MOD | << | SHL | >> | SHR
6493 quote " | '
6495 register specialRegister
6496 | gpRegister
6497 | byteRegister
6499 segmentRegister CS | DS | ES | FS | GS | SS
6501 specialRegister CR0 | CR2 | CR3 | CR4
6502 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6503 | TR3 | TR4 | TR5 | TR6 | TR7
6505 We simplify the grammar in obvious places (e.g., register parsing is
6506 done by calling parse_register) and eliminate immediate left recursion
6507 to implement a recursive-descent parser.
6509 expr e04 expr'
6511 expr' cmpOp e04 expr'
6512 | Empty
6514 e04 e05 e04'
6516 e04' addOp e05 e04'
6517 | Empty
6519 e05 e06 e05'
6521 e05' binOp e06 e05'
6522 | Empty
6524 e06 e09 e06'
6526 e06' mulOp e09 e06'
6527 | Empty
6529 e09 OFFSET e10 e09'
6530 | SHORT e10'
6531 | + e10'
6532 | - e10'
6533 | ~ e10'
6534 | NOT e10'
6535 | e10 e09'
6537 e09' PTR e10 e09'
6538 | : e10 e09'
6539 | Empty
6541 e10 e11 e10'
6543 e10' [ expr ] e10'
6544 | Empty
6546 e11 ( expr )
6547 | [ expr ]
6548 | BYTE
6549 | WORD
6550 | DWORD
6551 | FWORD
6552 | QWORD
6553 | TBYTE
6554 | OWORD
6555 | XMMWORD
6558 | register
6559 | id
6560 | constant */
6562 /* Parsing structure for the intel syntax parser. Used to implement the
6563 semantic actions for the operand grammar. */
6564 struct intel_parser_s
6566 char *op_string; /* The string being parsed. */
6567 int got_a_float; /* Whether the operand is a float. */
6568 int op_modifier; /* Operand modifier. */
6569 int is_mem; /* 1 if operand is memory reference. */
6570 int in_offset; /* >=1 if parsing operand of offset. */
6571 int in_bracket; /* >=1 if parsing operand in brackets. */
6572 const reg_entry *reg; /* Last register reference found. */
6573 char *disp; /* Displacement string being built. */
6574 char *next_operand; /* Resume point when splitting operands. */
6577 static struct intel_parser_s intel_parser;
6579 /* Token structure for parsing intel syntax. */
6580 struct intel_token
6582 int code; /* Token code. */
6583 const reg_entry *reg; /* Register entry for register tokens. */
6584 char *str; /* String representation. */
6587 static struct intel_token cur_token, prev_token;
6589 /* Token codes for the intel parser. Since T_SHORT is already used
6590 by COFF, undefine it first to prevent a warning. */
6591 #define T_NIL -1
6592 #define T_CONST 1
6593 #define T_REG 2
6594 #define T_BYTE 3
6595 #define T_WORD 4
6596 #define T_DWORD 5
6597 #define T_FWORD 6
6598 #define T_QWORD 7
6599 #define T_TBYTE 8
6600 #define T_XMMWORD 9
6601 #undef T_SHORT
6602 #define T_SHORT 10
6603 #define T_OFFSET 11
6604 #define T_PTR 12
6605 #define T_ID 13
6606 #define T_SHL 14
6607 #define T_SHR 15
6609 /* Prototypes for intel parser functions. */
6610 static int intel_match_token (int);
6611 static void intel_putback_token (void);
6612 static void intel_get_token (void);
6613 static int intel_expr (void);
6614 static int intel_e04 (void);
6615 static int intel_e05 (void);
6616 static int intel_e06 (void);
6617 static int intel_e09 (void);
6618 static int intel_e10 (void);
6619 static int intel_e11 (void);
6621 static int
6622 i386_intel_operand (char *operand_string, int got_a_float)
6624 int ret;
6625 char *p;
6627 p = intel_parser.op_string = xstrdup (operand_string);
6628 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6630 for (;;)
6632 /* Initialize token holders. */
6633 cur_token.code = prev_token.code = T_NIL;
6634 cur_token.reg = prev_token.reg = NULL;
6635 cur_token.str = prev_token.str = NULL;
6637 /* Initialize parser structure. */
6638 intel_parser.got_a_float = got_a_float;
6639 intel_parser.op_modifier = 0;
6640 intel_parser.is_mem = 0;
6641 intel_parser.in_offset = 0;
6642 intel_parser.in_bracket = 0;
6643 intel_parser.reg = NULL;
6644 intel_parser.disp[0] = '\0';
6645 intel_parser.next_operand = NULL;
6647 /* Read the first token and start the parser. */
6648 intel_get_token ();
6649 ret = intel_expr ();
6651 if (!ret)
6652 break;
6654 if (cur_token.code != T_NIL)
6656 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6657 current_templates->start->name, cur_token.str);
6658 ret = 0;
6660 /* If we found a memory reference, hand it over to i386_displacement
6661 to fill in the rest of the operand fields. */
6662 else if (intel_parser.is_mem)
6664 if ((i.mem_operands == 1
6665 && (current_templates->start->opcode_modifier & IsString) == 0)
6666 || i.mem_operands == 2)
6668 as_bad (_("too many memory references for '%s'"),
6669 current_templates->start->name);
6670 ret = 0;
6672 else
6674 char *s = intel_parser.disp;
6675 i.mem_operands++;
6677 if (!quiet_warnings && intel_parser.is_mem < 0)
6678 /* See the comments in intel_bracket_expr. */
6679 as_warn (_("Treating `%s' as memory reference"), operand_string);
6681 /* Add the displacement expression. */
6682 if (*s != '\0')
6683 ret = i386_displacement (s, s + strlen (s));
6684 if (ret)
6686 /* Swap base and index in 16-bit memory operands like
6687 [si+bx]. Since i386_index_check is also used in AT&T
6688 mode we have to do that here. */
6689 if (i.base_reg
6690 && i.index_reg
6691 && (i.base_reg->reg_type & Reg16)
6692 && (i.index_reg->reg_type & Reg16)
6693 && i.base_reg->reg_num >= 6
6694 && i.index_reg->reg_num < 6)
6696 const reg_entry *base = i.index_reg;
6698 i.index_reg = i.base_reg;
6699 i.base_reg = base;
6701 ret = i386_index_check (operand_string);
6706 /* Constant and OFFSET expressions are handled by i386_immediate. */
6707 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6708 || intel_parser.reg == NULL)
6709 ret = i386_immediate (intel_parser.disp);
6711 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6712 ret = 0;
6713 if (!ret || !intel_parser.next_operand)
6714 break;
6715 intel_parser.op_string = intel_parser.next_operand;
6716 this_operand = i.operands++;
6719 free (p);
6720 free (intel_parser.disp);
6722 return ret;
6725 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6727 /* expr e04 expr'
6729 expr' cmpOp e04 expr'
6730 | Empty */
6731 static int
6732 intel_expr (void)
6734 /* XXX Implement the comparison operators. */
6735 return intel_e04 ();
6738 /* e04 e05 e04'
6740 e04' addOp e05 e04'
6741 | Empty */
6742 static int
6743 intel_e04 (void)
6745 int nregs = -1;
6747 for (;;)
6749 if (!intel_e05())
6750 return 0;
6752 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6753 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6755 if (cur_token.code == '+')
6756 nregs = -1;
6757 else if (cur_token.code == '-')
6758 nregs = NUM_ADDRESS_REGS;
6759 else
6760 return 1;
6762 strcat (intel_parser.disp, cur_token.str);
6763 intel_match_token (cur_token.code);
6767 /* e05 e06 e05'
6769 e05' binOp e06 e05'
6770 | Empty */
6771 static int
6772 intel_e05 (void)
6774 int nregs = ~NUM_ADDRESS_REGS;
6776 for (;;)
6778 if (!intel_e06())
6779 return 0;
6781 if (cur_token.code == '&'
6782 || cur_token.code == '|'
6783 || cur_token.code == '^')
6785 char str[2];
6787 str[0] = cur_token.code;
6788 str[1] = 0;
6789 strcat (intel_parser.disp, str);
6791 else
6792 break;
6794 intel_match_token (cur_token.code);
6796 if (nregs < 0)
6797 nregs = ~nregs;
6799 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6800 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6801 return 1;
6804 /* e06 e09 e06'
6806 e06' mulOp e09 e06'
6807 | Empty */
6808 static int
6809 intel_e06 (void)
6811 int nregs = ~NUM_ADDRESS_REGS;
6813 for (;;)
6815 if (!intel_e09())
6816 return 0;
6818 if (cur_token.code == '*'
6819 || cur_token.code == '/'
6820 || cur_token.code == '%')
6822 char str[2];
6824 str[0] = cur_token.code;
6825 str[1] = 0;
6826 strcat (intel_parser.disp, str);
6828 else if (cur_token.code == T_SHL)
6829 strcat (intel_parser.disp, "<<");
6830 else if (cur_token.code == T_SHR)
6831 strcat (intel_parser.disp, ">>");
6832 else
6833 break;
6835 intel_match_token (cur_token.code);
6837 if (nregs < 0)
6838 nregs = ~nregs;
6840 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6841 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6842 return 1;
6845 /* e09 OFFSET e09
6846 | SHORT e09
6847 | + e09
6848 | - e09
6849 | ~ e09
6850 | NOT e09
6851 | e10 e09'
6853 e09' PTR e10 e09'
6854 | : e10 e09'
6855 | Empty */
6856 static int
6857 intel_e09 (void)
6859 int nregs = ~NUM_ADDRESS_REGS;
6860 int in_offset = 0;
6862 for (;;)
6864 /* Don't consume constants here. */
6865 if (cur_token.code == '+' || cur_token.code == '-')
6867 /* Need to look one token ahead - if the next token
6868 is a constant, the current token is its sign. */
6869 int next_code;
6871 intel_match_token (cur_token.code);
6872 next_code = cur_token.code;
6873 intel_putback_token ();
6874 if (next_code == T_CONST)
6875 break;
6878 /* e09 OFFSET e09 */
6879 if (cur_token.code == T_OFFSET)
6881 if (!in_offset++)
6882 ++intel_parser.in_offset;
6885 /* e09 SHORT e09 */
6886 else if (cur_token.code == T_SHORT)
6887 intel_parser.op_modifier |= 1 << T_SHORT;
6889 /* e09 + e09 */
6890 else if (cur_token.code == '+')
6891 strcat (intel_parser.disp, "+");
6893 /* e09 - e09
6894 | ~ e09
6895 | NOT e09 */
6896 else if (cur_token.code == '-' || cur_token.code == '~')
6898 char str[2];
6900 if (nregs < 0)
6901 nregs = ~nregs;
6902 str[0] = cur_token.code;
6903 str[1] = 0;
6904 strcat (intel_parser.disp, str);
6907 /* e09 e10 e09' */
6908 else
6909 break;
6911 intel_match_token (cur_token.code);
6914 for (;;)
6916 if (!intel_e10 ())
6917 return 0;
6919 /* e09' PTR e10 e09' */
6920 if (cur_token.code == T_PTR)
6922 char suffix;
6924 if (prev_token.code == T_BYTE)
6925 suffix = BYTE_MNEM_SUFFIX;
6927 else if (prev_token.code == T_WORD)
6929 if (current_templates->start->name[0] == 'l'
6930 && current_templates->start->name[2] == 's'
6931 && current_templates->start->name[3] == 0)
6932 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6933 else if (intel_parser.got_a_float == 2) /* "fi..." */
6934 suffix = SHORT_MNEM_SUFFIX;
6935 else
6936 suffix = WORD_MNEM_SUFFIX;
6939 else if (prev_token.code == T_DWORD)
6941 if (current_templates->start->name[0] == 'l'
6942 && current_templates->start->name[2] == 's'
6943 && current_templates->start->name[3] == 0)
6944 suffix = WORD_MNEM_SUFFIX;
6945 else if (flag_code == CODE_16BIT
6946 && (current_templates->start->opcode_modifier
6947 & (Jump | JumpDword)))
6948 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6949 else if (intel_parser.got_a_float == 1) /* "f..." */
6950 suffix = SHORT_MNEM_SUFFIX;
6951 else
6952 suffix = LONG_MNEM_SUFFIX;
6955 else if (prev_token.code == T_FWORD)
6957 if (current_templates->start->name[0] == 'l'
6958 && current_templates->start->name[2] == 's'
6959 && current_templates->start->name[3] == 0)
6960 suffix = LONG_MNEM_SUFFIX;
6961 else if (!intel_parser.got_a_float)
6963 if (flag_code == CODE_16BIT)
6964 add_prefix (DATA_PREFIX_OPCODE);
6965 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6967 else
6968 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6971 else if (prev_token.code == T_QWORD)
6973 if (intel_parser.got_a_float == 1) /* "f..." */
6974 suffix = LONG_MNEM_SUFFIX;
6975 else
6976 suffix = QWORD_MNEM_SUFFIX;
6979 else if (prev_token.code == T_TBYTE)
6981 if (intel_parser.got_a_float == 1)
6982 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6983 else
6984 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6987 else if (prev_token.code == T_XMMWORD)
6989 /* XXX ignored for now, but accepted since gcc uses it */
6990 suffix = 0;
6993 else
6995 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6996 return 0;
6999 /* Operands for jump/call using 'ptr' notation denote absolute
7000 addresses. */
7001 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7002 i.types[this_operand] |= JumpAbsolute;
7004 if (current_templates->start->base_opcode == 0x8d /* lea */)
7006 else if (!i.suffix)
7007 i.suffix = suffix;
7008 else if (i.suffix != suffix)
7010 as_bad (_("Conflicting operand modifiers"));
7011 return 0;
7016 /* e09' : e10 e09' */
7017 else if (cur_token.code == ':')
7019 if (prev_token.code != T_REG)
7021 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7022 segment/group identifier (which we don't have), using comma
7023 as the operand separator there is even less consistent, since
7024 there all branches only have a single operand. */
7025 if (this_operand != 0
7026 || intel_parser.in_offset
7027 || intel_parser.in_bracket
7028 || (!(current_templates->start->opcode_modifier
7029 & (Jump|JumpDword|JumpInterSegment))
7030 && !(current_templates->start->operand_types[0]
7031 & JumpAbsolute)))
7032 return intel_match_token (T_NIL);
7033 /* Remember the start of the 2nd operand and terminate 1st
7034 operand here.
7035 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7036 another expression), but it gets at least the simplest case
7037 (a plain number or symbol on the left side) right. */
7038 intel_parser.next_operand = intel_parser.op_string;
7039 *--intel_parser.op_string = '\0';
7040 return intel_match_token (':');
7044 /* e09' Empty */
7045 else
7046 break;
7048 intel_match_token (cur_token.code);
7052 if (in_offset)
7054 --intel_parser.in_offset;
7055 if (nregs < 0)
7056 nregs = ~nregs;
7057 if (NUM_ADDRESS_REGS > nregs)
7059 as_bad (_("Invalid operand to `OFFSET'"));
7060 return 0;
7062 intel_parser.op_modifier |= 1 << T_OFFSET;
7065 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7066 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7067 return 1;
7070 static int
7071 intel_bracket_expr (void)
7073 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7074 const char *start = intel_parser.op_string;
7075 int len;
7077 if (i.op[this_operand].regs)
7078 return intel_match_token (T_NIL);
7080 intel_match_token ('[');
7082 /* Mark as a memory operand only if it's not already known to be an
7083 offset expression. If it's an offset expression, we need to keep
7084 the brace in. */
7085 if (!intel_parser.in_offset)
7087 ++intel_parser.in_bracket;
7089 /* Operands for jump/call inside brackets denote absolute addresses. */
7090 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7091 i.types[this_operand] |= JumpAbsolute;
7093 /* Unfortunately gas always diverged from MASM in a respect that can't
7094 be easily fixed without risking to break code sequences likely to be
7095 encountered (the testsuite even check for this): MASM doesn't consider
7096 an expression inside brackets unconditionally as a memory reference.
7097 When that is e.g. a constant, an offset expression, or the sum of the
7098 two, this is still taken as a constant load. gas, however, always
7099 treated these as memory references. As a compromise, we'll try to make
7100 offset expressions inside brackets work the MASM way (since that's
7101 less likely to be found in real world code), but make constants alone
7102 continue to work the traditional gas way. In either case, issue a
7103 warning. */
7104 intel_parser.op_modifier &= ~was_offset;
7106 else
7107 strcat (intel_parser.disp, "[");
7109 /* Add a '+' to the displacement string if necessary. */
7110 if (*intel_parser.disp != '\0'
7111 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7112 strcat (intel_parser.disp, "+");
7114 if (intel_expr ()
7115 && (len = intel_parser.op_string - start - 1,
7116 intel_match_token (']')))
7118 /* Preserve brackets when the operand is an offset expression. */
7119 if (intel_parser.in_offset)
7120 strcat (intel_parser.disp, "]");
7121 else
7123 --intel_parser.in_bracket;
7124 if (i.base_reg || i.index_reg)
7125 intel_parser.is_mem = 1;
7126 if (!intel_parser.is_mem)
7128 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7129 /* Defer the warning until all of the operand was parsed. */
7130 intel_parser.is_mem = -1;
7131 else if (!quiet_warnings)
7132 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
7133 len, start, len, start);
7136 intel_parser.op_modifier |= was_offset;
7138 return 1;
7140 return 0;
7143 /* e10 e11 e10'
7145 e10' [ expr ] e10'
7146 | Empty */
7147 static int
7148 intel_e10 (void)
7150 if (!intel_e11 ())
7151 return 0;
7153 while (cur_token.code == '[')
7155 if (!intel_bracket_expr ())
7156 return 0;
7159 return 1;
7162 /* e11 ( expr )
7163 | [ expr ]
7164 | BYTE
7165 | WORD
7166 | DWORD
7167 | FWORD
7168 | QWORD
7169 | TBYTE
7170 | OWORD
7171 | XMMWORD
7174 | register
7175 | id
7176 | constant */
7177 static int
7178 intel_e11 (void)
7180 switch (cur_token.code)
7182 /* e11 ( expr ) */
7183 case '(':
7184 intel_match_token ('(');
7185 strcat (intel_parser.disp, "(");
7187 if (intel_expr () && intel_match_token (')'))
7189 strcat (intel_parser.disp, ")");
7190 return 1;
7192 return 0;
7194 /* e11 [ expr ] */
7195 case '[':
7196 return intel_bracket_expr ();
7198 /* e11 $
7199 | . */
7200 case '.':
7201 strcat (intel_parser.disp, cur_token.str);
7202 intel_match_token (cur_token.code);
7204 /* Mark as a memory operand only if it's not already known to be an
7205 offset expression. */
7206 if (!intel_parser.in_offset)
7207 intel_parser.is_mem = 1;
7209 return 1;
7211 /* e11 register */
7212 case T_REG:
7214 const reg_entry *reg = intel_parser.reg = cur_token.reg;
7216 intel_match_token (T_REG);
7218 /* Check for segment change. */
7219 if (cur_token.code == ':')
7221 if (!(reg->reg_type & (SReg2 | SReg3)))
7223 as_bad (_("`%s' is not a valid segment register"),
7224 reg->reg_name);
7225 return 0;
7227 else if (i.seg[i.mem_operands])
7228 as_warn (_("Extra segment override ignored"));
7229 else
7231 if (!intel_parser.in_offset)
7232 intel_parser.is_mem = 1;
7233 switch (reg->reg_num)
7235 case 0:
7236 i.seg[i.mem_operands] = &es;
7237 break;
7238 case 1:
7239 i.seg[i.mem_operands] = &cs;
7240 break;
7241 case 2:
7242 i.seg[i.mem_operands] = &ss;
7243 break;
7244 case 3:
7245 i.seg[i.mem_operands] = &ds;
7246 break;
7247 case 4:
7248 i.seg[i.mem_operands] = &fs;
7249 break;
7250 case 5:
7251 i.seg[i.mem_operands] = &gs;
7252 break;
7257 /* Not a segment register. Check for register scaling. */
7258 else if (cur_token.code == '*')
7260 if (!intel_parser.in_bracket)
7262 as_bad (_("Register scaling only allowed in memory operands"));
7263 return 0;
7266 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7267 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7268 else if (i.index_reg)
7269 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7271 /* What follows must be a valid scale. */
7272 intel_match_token ('*');
7273 i.index_reg = reg;
7274 i.types[this_operand] |= BaseIndex;
7276 /* Set the scale after setting the register (otherwise,
7277 i386_scale will complain) */
7278 if (cur_token.code == '+' || cur_token.code == '-')
7280 char *str, sign = cur_token.code;
7281 intel_match_token (cur_token.code);
7282 if (cur_token.code != T_CONST)
7284 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7285 cur_token.str);
7286 return 0;
7288 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7289 strcpy (str + 1, cur_token.str);
7290 *str = sign;
7291 if (!i386_scale (str))
7292 return 0;
7293 free (str);
7295 else if (!i386_scale (cur_token.str))
7296 return 0;
7297 intel_match_token (cur_token.code);
7300 /* No scaling. If this is a memory operand, the register is either a
7301 base register (first occurrence) or an index register (second
7302 occurrence). */
7303 else if (intel_parser.in_bracket)
7306 if (!i.base_reg)
7307 i.base_reg = reg;
7308 else if (!i.index_reg)
7309 i.index_reg = reg;
7310 else
7312 as_bad (_("Too many register references in memory operand"));
7313 return 0;
7316 i.types[this_operand] |= BaseIndex;
7319 /* It's neither base nor index. */
7320 else if (!intel_parser.in_offset && !intel_parser.is_mem)
7322 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7323 i.op[this_operand].regs = reg;
7324 i.reg_operands++;
7326 else
7328 as_bad (_("Invalid use of register"));
7329 return 0;
7332 /* Since registers are not part of the displacement string (except
7333 when we're parsing offset operands), we may need to remove any
7334 preceding '+' from the displacement string. */
7335 if (*intel_parser.disp != '\0'
7336 && !intel_parser.in_offset)
7338 char *s = intel_parser.disp;
7339 s += strlen (s) - 1;
7340 if (*s == '+')
7341 *s = '\0';
7344 return 1;
7347 /* e11 BYTE
7348 | WORD
7349 | DWORD
7350 | FWORD
7351 | QWORD
7352 | TBYTE
7353 | OWORD
7354 | XMMWORD */
7355 case T_BYTE:
7356 case T_WORD:
7357 case T_DWORD:
7358 case T_FWORD:
7359 case T_QWORD:
7360 case T_TBYTE:
7361 case T_XMMWORD:
7362 intel_match_token (cur_token.code);
7364 if (cur_token.code == T_PTR)
7365 return 1;
7367 /* It must have been an identifier. */
7368 intel_putback_token ();
7369 cur_token.code = T_ID;
7370 /* FALLTHRU */
7372 /* e11 id
7373 | constant */
7374 case T_ID:
7375 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7377 symbolS *symbolP;
7379 /* The identifier represents a memory reference only if it's not
7380 preceded by an offset modifier and if it's not an equate. */
7381 symbolP = symbol_find(cur_token.str);
7382 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7383 intel_parser.is_mem = 1;
7385 /* FALLTHRU */
7387 case T_CONST:
7388 case '-':
7389 case '+':
7391 char *save_str, sign = 0;
7393 /* Allow constants that start with `+' or `-'. */
7394 if (cur_token.code == '-' || cur_token.code == '+')
7396 sign = cur_token.code;
7397 intel_match_token (cur_token.code);
7398 if (cur_token.code != T_CONST)
7400 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7401 cur_token.str);
7402 return 0;
7406 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7407 strcpy (save_str + !!sign, cur_token.str);
7408 if (sign)
7409 *save_str = sign;
7411 /* Get the next token to check for register scaling. */
7412 intel_match_token (cur_token.code);
7414 /* Check if this constant is a scaling factor for an
7415 index register. */
7416 if (cur_token.code == '*')
7418 if (intel_match_token ('*') && cur_token.code == T_REG)
7420 const reg_entry *reg = cur_token.reg;
7422 if (!intel_parser.in_bracket)
7424 as_bad (_("Register scaling only allowed "
7425 "in memory operands"));
7426 return 0;
7429 /* Disallow things like [1*si].
7430 sp and esp are invalid as index. */
7431 if (reg->reg_type & Reg16)
7432 reg = i386_regtab + REGNAM_AX + 4;
7433 else if (i.index_reg)
7434 reg = i386_regtab + REGNAM_EAX + 4;
7436 /* The constant is followed by `* reg', so it must be
7437 a valid scale. */
7438 i.index_reg = reg;
7439 i.types[this_operand] |= BaseIndex;
7441 /* Set the scale after setting the register (otherwise,
7442 i386_scale will complain) */
7443 if (!i386_scale (save_str))
7444 return 0;
7445 intel_match_token (T_REG);
7447 /* Since registers are not part of the displacement
7448 string, we may need to remove any preceding '+' from
7449 the displacement string. */
7450 if (*intel_parser.disp != '\0')
7452 char *s = intel_parser.disp;
7453 s += strlen (s) - 1;
7454 if (*s == '+')
7455 *s = '\0';
7458 free (save_str);
7460 return 1;
7463 /* The constant was not used for register scaling. Since we have
7464 already consumed the token following `*' we now need to put it
7465 back in the stream. */
7466 intel_putback_token ();
7469 /* Add the constant to the displacement string. */
7470 strcat (intel_parser.disp, save_str);
7471 free (save_str);
7473 return 1;
7477 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7478 return 0;
7481 /* Match the given token against cur_token. If they match, read the next
7482 token from the operand string. */
7483 static int
7484 intel_match_token (int code)
7486 if (cur_token.code == code)
7488 intel_get_token ();
7489 return 1;
7491 else
7493 as_bad (_("Unexpected token `%s'"), cur_token.str);
7494 return 0;
7498 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7499 static void
7500 intel_get_token (void)
7502 char *end_op;
7503 const reg_entry *reg;
7504 struct intel_token new_token;
7506 new_token.code = T_NIL;
7507 new_token.reg = NULL;
7508 new_token.str = NULL;
7510 /* Free the memory allocated to the previous token and move
7511 cur_token to prev_token. */
7512 if (prev_token.str)
7513 free (prev_token.str);
7515 prev_token = cur_token;
7517 /* Skip whitespace. */
7518 while (is_space_char (*intel_parser.op_string))
7519 intel_parser.op_string++;
7521 /* Return an empty token if we find nothing else on the line. */
7522 if (*intel_parser.op_string == '\0')
7524 cur_token = new_token;
7525 return;
7528 /* The new token cannot be larger than the remainder of the operand
7529 string. */
7530 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7531 new_token.str[0] = '\0';
7533 if (strchr ("0123456789", *intel_parser.op_string))
7535 char *p = new_token.str;
7536 char *q = intel_parser.op_string;
7537 new_token.code = T_CONST;
7539 /* Allow any kind of identifier char to encompass floating point and
7540 hexadecimal numbers. */
7541 while (is_identifier_char (*q))
7542 *p++ = *q++;
7543 *p = '\0';
7545 /* Recognize special symbol names [0-9][bf]. */
7546 if (strlen (intel_parser.op_string) == 2
7547 && (intel_parser.op_string[1] == 'b'
7548 || intel_parser.op_string[1] == 'f'))
7549 new_token.code = T_ID;
7552 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7554 size_t len = end_op - intel_parser.op_string;
7556 new_token.code = T_REG;
7557 new_token.reg = reg;
7559 memcpy (new_token.str, intel_parser.op_string, len);
7560 new_token.str[len] = '\0';
7563 else if (is_identifier_char (*intel_parser.op_string))
7565 char *p = new_token.str;
7566 char *q = intel_parser.op_string;
7568 /* A '.' or '$' followed by an identifier char is an identifier.
7569 Otherwise, it's operator '.' followed by an expression. */
7570 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7572 new_token.code = '.';
7573 new_token.str[0] = '.';
7574 new_token.str[1] = '\0';
7576 else
7578 while (is_identifier_char (*q) || *q == '@')
7579 *p++ = *q++;
7580 *p = '\0';
7582 if (strcasecmp (new_token.str, "NOT") == 0)
7583 new_token.code = '~';
7585 else if (strcasecmp (new_token.str, "MOD") == 0)
7586 new_token.code = '%';
7588 else if (strcasecmp (new_token.str, "AND") == 0)
7589 new_token.code = '&';
7591 else if (strcasecmp (new_token.str, "OR") == 0)
7592 new_token.code = '|';
7594 else if (strcasecmp (new_token.str, "XOR") == 0)
7595 new_token.code = '^';
7597 else if (strcasecmp (new_token.str, "SHL") == 0)
7598 new_token.code = T_SHL;
7600 else if (strcasecmp (new_token.str, "SHR") == 0)
7601 new_token.code = T_SHR;
7603 else if (strcasecmp (new_token.str, "BYTE") == 0)
7604 new_token.code = T_BYTE;
7606 else if (strcasecmp (new_token.str, "WORD") == 0)
7607 new_token.code = T_WORD;
7609 else if (strcasecmp (new_token.str, "DWORD") == 0)
7610 new_token.code = T_DWORD;
7612 else if (strcasecmp (new_token.str, "FWORD") == 0)
7613 new_token.code = T_FWORD;
7615 else if (strcasecmp (new_token.str, "QWORD") == 0)
7616 new_token.code = T_QWORD;
7618 else if (strcasecmp (new_token.str, "TBYTE") == 0
7619 /* XXX remove (gcc still uses it) */
7620 || strcasecmp (new_token.str, "XWORD") == 0)
7621 new_token.code = T_TBYTE;
7623 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7624 || strcasecmp (new_token.str, "OWORD") == 0)
7625 new_token.code = T_XMMWORD;
7627 else if (strcasecmp (new_token.str, "PTR") == 0)
7628 new_token.code = T_PTR;
7630 else if (strcasecmp (new_token.str, "SHORT") == 0)
7631 new_token.code = T_SHORT;
7633 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7635 new_token.code = T_OFFSET;
7637 /* ??? This is not mentioned in the MASM grammar but gcc
7638 makes use of it with -mintel-syntax. OFFSET may be
7639 followed by FLAT: */
7640 if (strncasecmp (q, " FLAT:", 6) == 0)
7641 strcat (new_token.str, " FLAT:");
7644 /* ??? This is not mentioned in the MASM grammar. */
7645 else if (strcasecmp (new_token.str, "FLAT") == 0)
7647 new_token.code = T_OFFSET;
7648 if (*q == ':')
7649 strcat (new_token.str, ":");
7650 else
7651 as_bad (_("`:' expected"));
7654 else
7655 new_token.code = T_ID;
7659 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7661 new_token.code = *intel_parser.op_string;
7662 new_token.str[0] = *intel_parser.op_string;
7663 new_token.str[1] = '\0';
7666 else if (strchr ("<>", *intel_parser.op_string)
7667 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7669 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7670 new_token.str[0] = *intel_parser.op_string;
7671 new_token.str[1] = *intel_parser.op_string;
7672 new_token.str[2] = '\0';
7675 else
7676 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7678 intel_parser.op_string += strlen (new_token.str);
7679 cur_token = new_token;
7682 /* Put cur_token back into the token stream and make cur_token point to
7683 prev_token. */
7684 static void
7685 intel_putback_token (void)
7687 if (cur_token.code != T_NIL)
7689 intel_parser.op_string -= strlen (cur_token.str);
7690 free (cur_token.str);
7692 cur_token = prev_token;
7694 /* Forget prev_token. */
7695 prev_token.code = T_NIL;
7696 prev_token.reg = NULL;
7697 prev_token.str = NULL;
7701 tc_x86_regname_to_dw2regnum (char *regname)
7703 unsigned int regnum;
7704 unsigned int regnames_count;
7705 static const char *const regnames_32[] =
7707 "eax", "ecx", "edx", "ebx",
7708 "esp", "ebp", "esi", "edi",
7709 "eip", "eflags", NULL,
7710 "st0", "st1", "st2", "st3",
7711 "st4", "st5", "st6", "st7",
7712 NULL, NULL,
7713 "xmm0", "xmm1", "xmm2", "xmm3",
7714 "xmm4", "xmm5", "xmm6", "xmm7",
7715 "mm0", "mm1", "mm2", "mm3",
7716 "mm4", "mm5", "mm6", "mm7",
7717 "fcw", "fsw", "mxcsr",
7718 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7719 "tr", "ldtr"
7721 static const char *const regnames_64[] =
7723 "rax", "rdx", "rcx", "rbx",
7724 "rsi", "rdi", "rbp", "rsp",
7725 "r8", "r9", "r10", "r11",
7726 "r12", "r13", "r14", "r15",
7727 "rip",
7728 "xmm0", "xmm1", "xmm2", "xmm3",
7729 "xmm4", "xmm5", "xmm6", "xmm7",
7730 "xmm8", "xmm9", "xmm10", "xmm11",
7731 "xmm12", "xmm13", "xmm14", "xmm15",
7732 "st0", "st1", "st2", "st3",
7733 "st4", "st5", "st6", "st7",
7734 "mm0", "mm1", "mm2", "mm3",
7735 "mm4", "mm5", "mm6", "mm7",
7736 "rflags",
7737 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7738 "fs.base", "gs.base", NULL, NULL,
7739 "tr", "ldtr",
7740 "mxcsr", "fcw", "fsw"
7742 const char *const *regnames;
7744 if (flag_code == CODE_64BIT)
7746 regnames = regnames_64;
7747 regnames_count = ARRAY_SIZE (regnames_64);
7749 else
7751 regnames = regnames_32;
7752 regnames_count = ARRAY_SIZE (regnames_32);
7755 for (regnum = 0; regnum < regnames_count; regnum++)
7756 if (regnames[regnum] != NULL
7757 && strcmp (regname, regnames[regnum]) == 0)
7758 return regnum;
7760 return -1;
7763 void
7764 tc_x86_frame_initial_instructions (void)
7766 static unsigned int sp_regno;
7768 if (!sp_regno)
7769 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7770 ? "rsp" : "esp");
7772 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7773 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7777 i386_elf_section_type (const char *str, size_t len)
7779 if (flag_code == CODE_64BIT
7780 && len == sizeof ("unwind") - 1
7781 && strncmp (str, "unwind", 6) == 0)
7782 return SHT_X86_64_UNWIND;
7784 return -1;
7787 #ifdef TE_PE
7788 void
7789 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7791 expressionS expr;
7793 expr.X_op = O_secrel;
7794 expr.X_add_symbol = symbol;
7795 expr.X_add_number = 0;
7796 emit_expr (&expr, size);
7798 #endif
7800 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7801 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7804 x86_64_section_letter (int letter, char **ptr_msg)
7806 if (flag_code == CODE_64BIT)
7808 if (letter == 'l')
7809 return SHF_X86_64_LARGE;
7811 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7813 else
7814 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7815 return -1;
7819 x86_64_section_word (char *str, size_t len)
7821 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
7822 return SHF_X86_64_LARGE;
7824 return -1;
7827 static void
7828 handle_large_common (int small ATTRIBUTE_UNUSED)
7830 if (flag_code != CODE_64BIT)
7832 s_comm_internal (0, elf_common_parse);
7833 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7835 else
7837 static segT lbss_section;
7838 asection *saved_com_section_ptr = elf_com_section_ptr;
7839 asection *saved_bss_section = bss_section;
7841 if (lbss_section == NULL)
7843 flagword applicable;
7844 segT seg = now_seg;
7845 subsegT subseg = now_subseg;
7847 /* The .lbss section is for local .largecomm symbols. */
7848 lbss_section = subseg_new (".lbss", 0);
7849 applicable = bfd_applicable_section_flags (stdoutput);
7850 bfd_set_section_flags (stdoutput, lbss_section,
7851 applicable & SEC_ALLOC);
7852 seg_info (lbss_section)->bss = 1;
7854 subseg_set (seg, subseg);
7857 elf_com_section_ptr = &_bfd_elf_large_com_section;
7858 bss_section = lbss_section;
7860 s_comm_internal (0, elf_common_parse);
7862 elf_com_section_ptr = saved_com_section_ptr;
7863 bss_section = saved_bss_section;
7866 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */