1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* No specific ABI or "processor-specific supplement" defined. */
24 - "Traditional" linker relaxation (shrinking whole sections).
25 - Merge reloc stubs jumping to same location.
26 - GETA stub relaxation (call a stub for out of range new
27 R_MMIX_GETA_STUBBABLE). */
34 #include "opcode/mmix.h"
36 #define MINUS_ONE (((bfd_vma) 0) - 1)
38 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
40 /* Put these everywhere in new code. */
42 _bfd_abort (__FILE__, __LINE__, \
43 "Internal: Non-debugged code (test-case missing)")
46 _bfd_abort (__FILE__, __LINE__, \
49 struct _mmix_elf_section_data
51 struct bfd_elf_section_data elf
;
54 struct bpo_reloc_section_info
*reloc
;
55 struct bpo_greg_section_info
*greg
;
58 struct pushj_stub_info
60 /* Maximum number of stubs needed for this section. */
61 bfd_size_type n_pushj_relocs
;
63 /* Size of stubs after a mmix_elf_relax_section round. */
64 bfd_size_type stubs_size_sum
;
66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
67 of these. Allocated in mmix_elf_check_common_relocs. */
68 bfd_size_type
*stub_size
;
70 /* Offset of next stub during relocation. Somewhat redundant with the
71 above: error coverage is easier and we don't have to reset the
72 stubs_size_sum for relocation. */
73 bfd_size_type stub_offset
;
77 #define mmix_elf_section_data(sec) \
78 ((struct _mmix_elf_section_data *) elf_section_data (sec))
80 /* For each section containing a base-plus-offset (BPO) reloc, we attach
81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
83 struct bpo_reloc_section_info
85 /* The base is 1; this is the first number in this section. */
86 size_t first_base_plus_offset_reloc
;
88 /* Number of BPO-relocs in this section. */
89 size_t n_bpo_relocs_this_section
;
91 /* Running index, used at relocation time. */
94 /* We don't have access to the bfd_link_info struct in
95 mmix_final_link_relocate. What we really want to get at is the
96 global single struct greg_relocation, so we stash it here. */
97 asection
*bpo_greg_section
;
100 /* Helper struct (in global context) for the one below.
101 There's one of these created for every BPO reloc. */
102 struct bpo_reloc_request
106 /* Valid after relaxation. The base is 0; the first register number
107 must be added. The offset is in range 0..255. */
111 /* The order number for this BPO reloc, corresponding to the order in
112 which BPO relocs were found. Used to create an index after reloc
113 requests are sorted. */
116 /* Set when the value is computed. Better than coding "guard values"
117 into the other members. Is FALSE only for BPO relocs in a GC:ed
122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124 which is linked into the register contents section
125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
126 linker; using the same hook as for usual with BPO relocs does not
128 struct bpo_greg_section_info
130 /* After GC, this reflects the number of remaining, non-excluded
134 /* This is the number of allocated bpo_reloc_requests; the size of
135 sorted_indexes. Valid after the check.*relocs functions are called
136 for all incoming sections. It includes the number of BPO relocs in
137 sections that were GC:ed. */
138 size_t n_max_bpo_relocs
;
140 /* A counter used to find out when to fold the BPO gregs, since we
141 don't have a single "after-relaxation" hook. */
142 size_t n_remaining_bpo_relocs_this_relaxation_round
;
144 /* The number of linker-allocated GREGs resulting from BPO relocs.
145 This is an approximation after _bfd_mmix_before_linker_allocation
146 and supposedly accurate after mmix_elf_relax_section is called for
147 all incoming non-collected sections. */
148 size_t n_allocated_bpo_gregs
;
150 /* Index into reloc_request[], sorted on increasing "value", secondary
151 by increasing index for strict sorting order. */
152 size_t *bpo_reloc_indexes
;
154 /* An array of all relocations, with the "value" member filled in by
155 the relaxation function. */
156 struct bpo_reloc_request
*reloc_request
;
159 static bfd_boolean mmix_elf_link_output_symbol_hook
160 PARAMS ((struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
161 asection
*, struct elf_link_hash_entry
*));
163 static bfd_reloc_status_type mmix_elf_reloc
164 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
166 static reloc_howto_type
*bfd_elf64_bfd_reloc_type_lookup
167 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
169 static void mmix_info_to_howto_rela
170 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
172 static int mmix_elf_sort_relocs
PARAMS ((const PTR
, const PTR
));
174 static bfd_boolean mmix_elf_new_section_hook
175 PARAMS ((bfd
*, asection
*));
177 static bfd_boolean mmix_elf_check_relocs
178 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
179 const Elf_Internal_Rela
*));
181 static bfd_boolean mmix_elf_check_common_relocs
182 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
183 const Elf_Internal_Rela
*));
185 static bfd_boolean mmix_elf_relocate_section
186 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
187 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
189 static asection
* mmix_elf_gc_mark_hook
190 PARAMS ((asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
191 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
193 static bfd_boolean mmix_elf_gc_sweep_hook
194 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
195 const Elf_Internal_Rela
*));
197 static bfd_reloc_status_type mmix_final_link_relocate
198 PARAMS ((reloc_howto_type
*, asection
*, bfd_byte
*,
199 bfd_vma
, bfd_signed_vma
, bfd_vma
, const char *, asection
*));
201 static bfd_reloc_status_type mmix_elf_perform_relocation
202 PARAMS ((asection
*, reloc_howto_type
*, PTR
, bfd_vma
, bfd_vma
));
204 static bfd_boolean mmix_elf_section_from_bfd_section
205 PARAMS ((bfd
*, asection
*, int *));
207 static bfd_boolean mmix_elf_add_symbol_hook
208 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
209 const char **, flagword
*, asection
**, bfd_vma
*));
211 static bfd_boolean mmix_elf_is_local_label_name
212 PARAMS ((bfd
*, const char *));
214 static int bpo_reloc_request_sort_fn
PARAMS ((const PTR
, const PTR
));
216 static bfd_boolean mmix_elf_relax_section
217 PARAMS ((bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
,
218 bfd_boolean
*again
));
220 extern bfd_boolean mmix_elf_final_link
PARAMS ((bfd
*, struct bfd_link_info
*));
222 extern void mmix_elf_symbol_processing
PARAMS ((bfd
*, asymbol
*));
224 /* Only intended to be called from a debugger. */
225 extern void mmix_dump_bpo_gregs
226 PARAMS ((struct bfd_link_info
*, bfd_error_handler_type
));
229 mmix_set_relaxable_size
230 PARAMS ((bfd
*, asection
*, void *));
233 mmix_elf_get_section_contents
234 PARAMS ((bfd
*, sec_ptr
, void *, file_ptr
, bfd_size_type
));
237 /* Watch out: this currently needs to have elements with the same index as
238 their R_MMIX_ number. */
239 static reloc_howto_type elf_mmix_howto_table
[] =
241 /* This reloc does nothing. */
242 HOWTO (R_MMIX_NONE
, /* type */
244 2, /* size (0 = byte, 1 = short, 2 = long) */
246 FALSE
, /* pc_relative */
248 complain_overflow_bitfield
, /* complain_on_overflow */
249 bfd_elf_generic_reloc
, /* special_function */
250 "R_MMIX_NONE", /* name */
251 FALSE
, /* partial_inplace */
254 FALSE
), /* pcrel_offset */
256 /* An 8 bit absolute relocation. */
257 HOWTO (R_MMIX_8
, /* type */
259 0, /* size (0 = byte, 1 = short, 2 = long) */
261 FALSE
, /* pc_relative */
263 complain_overflow_bitfield
, /* complain_on_overflow */
264 bfd_elf_generic_reloc
, /* special_function */
265 "R_MMIX_8", /* name */
266 FALSE
, /* partial_inplace */
269 FALSE
), /* pcrel_offset */
271 /* An 16 bit absolute relocation. */
272 HOWTO (R_MMIX_16
, /* type */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
276 FALSE
, /* pc_relative */
278 complain_overflow_bitfield
, /* complain_on_overflow */
279 bfd_elf_generic_reloc
, /* special_function */
280 "R_MMIX_16", /* name */
281 FALSE
, /* partial_inplace */
283 0xffff, /* dst_mask */
284 FALSE
), /* pcrel_offset */
286 /* An 24 bit absolute relocation. */
287 HOWTO (R_MMIX_24
, /* type */
289 2, /* size (0 = byte, 1 = short, 2 = long) */
291 FALSE
, /* pc_relative */
293 complain_overflow_bitfield
, /* complain_on_overflow */
294 bfd_elf_generic_reloc
, /* special_function */
295 "R_MMIX_24", /* name */
296 FALSE
, /* partial_inplace */
297 ~0xffffff, /* src_mask */
298 0xffffff, /* dst_mask */
299 FALSE
), /* pcrel_offset */
301 /* A 32 bit absolute relocation. */
302 HOWTO (R_MMIX_32
, /* type */
304 2, /* size (0 = byte, 1 = short, 2 = long) */
306 FALSE
, /* pc_relative */
308 complain_overflow_bitfield
, /* complain_on_overflow */
309 bfd_elf_generic_reloc
, /* special_function */
310 "R_MMIX_32", /* name */
311 FALSE
, /* partial_inplace */
313 0xffffffff, /* dst_mask */
314 FALSE
), /* pcrel_offset */
316 /* 64 bit relocation. */
317 HOWTO (R_MMIX_64
, /* type */
319 4, /* size (0 = byte, 1 = short, 2 = long) */
321 FALSE
, /* pc_relative */
323 complain_overflow_bitfield
, /* complain_on_overflow */
324 bfd_elf_generic_reloc
, /* special_function */
325 "R_MMIX_64", /* name */
326 FALSE
, /* partial_inplace */
328 MINUS_ONE
, /* dst_mask */
329 FALSE
), /* pcrel_offset */
331 /* An 8 bit PC-relative relocation. */
332 HOWTO (R_MMIX_PC_8
, /* type */
334 0, /* size (0 = byte, 1 = short, 2 = long) */
336 TRUE
, /* pc_relative */
338 complain_overflow_bitfield
, /* complain_on_overflow */
339 bfd_elf_generic_reloc
, /* special_function */
340 "R_MMIX_PC_8", /* name */
341 FALSE
, /* partial_inplace */
344 TRUE
), /* pcrel_offset */
346 /* An 16 bit PC-relative relocation. */
347 HOWTO (R_MMIX_PC_16
, /* type */
349 1, /* size (0 = byte, 1 = short, 2 = long) */
351 TRUE
, /* pc_relative */
353 complain_overflow_bitfield
, /* complain_on_overflow */
354 bfd_elf_generic_reloc
, /* special_function */
355 "R_MMIX_PC_16", /* name */
356 FALSE
, /* partial_inplace */
358 0xffff, /* dst_mask */
359 TRUE
), /* pcrel_offset */
361 /* An 24 bit PC-relative relocation. */
362 HOWTO (R_MMIX_PC_24
, /* type */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
366 TRUE
, /* pc_relative */
368 complain_overflow_bitfield
, /* complain_on_overflow */
369 bfd_elf_generic_reloc
, /* special_function */
370 "R_MMIX_PC_24", /* name */
371 FALSE
, /* partial_inplace */
372 ~0xffffff, /* src_mask */
373 0xffffff, /* dst_mask */
374 TRUE
), /* pcrel_offset */
376 /* A 32 bit absolute PC-relative relocation. */
377 HOWTO (R_MMIX_PC_32
, /* type */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
381 TRUE
, /* pc_relative */
383 complain_overflow_bitfield
, /* complain_on_overflow */
384 bfd_elf_generic_reloc
, /* special_function */
385 "R_MMIX_PC_32", /* name */
386 FALSE
, /* partial_inplace */
388 0xffffffff, /* dst_mask */
389 TRUE
), /* pcrel_offset */
391 /* 64 bit PC-relative relocation. */
392 HOWTO (R_MMIX_PC_64
, /* type */
394 4, /* size (0 = byte, 1 = short, 2 = long) */
396 TRUE
, /* pc_relative */
398 complain_overflow_bitfield
, /* complain_on_overflow */
399 bfd_elf_generic_reloc
, /* special_function */
400 "R_MMIX_PC_64", /* name */
401 FALSE
, /* partial_inplace */
403 MINUS_ONE
, /* dst_mask */
404 TRUE
), /* pcrel_offset */
406 /* GNU extension to record C++ vtable hierarchy. */
407 HOWTO (R_MMIX_GNU_VTINHERIT
, /* type */
409 0, /* size (0 = byte, 1 = short, 2 = long) */
411 FALSE
, /* pc_relative */
413 complain_overflow_dont
, /* complain_on_overflow */
414 NULL
, /* special_function */
415 "R_MMIX_GNU_VTINHERIT", /* name */
416 FALSE
, /* partial_inplace */
419 TRUE
), /* pcrel_offset */
421 /* GNU extension to record C++ vtable member usage. */
422 HOWTO (R_MMIX_GNU_VTENTRY
, /* type */
424 0, /* size (0 = byte, 1 = short, 2 = long) */
426 FALSE
, /* pc_relative */
428 complain_overflow_dont
, /* complain_on_overflow */
429 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
430 "R_MMIX_GNU_VTENTRY", /* name */
431 FALSE
, /* partial_inplace */
434 FALSE
), /* pcrel_offset */
436 /* The GETA relocation is supposed to get any address that could
437 possibly be reached by the GETA instruction. It can silently expand
438 to get a 64-bit operand, but will complain if any of the two least
439 significant bits are set. The howto members reflect a simple GETA. */
440 HOWTO (R_MMIX_GETA
, /* type */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
444 TRUE
, /* pc_relative */
446 complain_overflow_signed
, /* complain_on_overflow */
447 mmix_elf_reloc
, /* special_function */
448 "R_MMIX_GETA", /* name */
449 FALSE
, /* partial_inplace */
450 ~0x0100ffff, /* src_mask */
451 0x0100ffff, /* dst_mask */
452 TRUE
), /* pcrel_offset */
454 HOWTO (R_MMIX_GETA_1
, /* type */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
458 TRUE
, /* pc_relative */
460 complain_overflow_signed
, /* complain_on_overflow */
461 mmix_elf_reloc
, /* special_function */
462 "R_MMIX_GETA_1", /* name */
463 FALSE
, /* partial_inplace */
464 ~0x0100ffff, /* src_mask */
465 0x0100ffff, /* dst_mask */
466 TRUE
), /* pcrel_offset */
468 HOWTO (R_MMIX_GETA_2
, /* type */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
472 TRUE
, /* pc_relative */
474 complain_overflow_signed
, /* complain_on_overflow */
475 mmix_elf_reloc
, /* special_function */
476 "R_MMIX_GETA_2", /* name */
477 FALSE
, /* partial_inplace */
478 ~0x0100ffff, /* src_mask */
479 0x0100ffff, /* dst_mask */
480 TRUE
), /* pcrel_offset */
482 HOWTO (R_MMIX_GETA_3
, /* type */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
486 TRUE
, /* pc_relative */
488 complain_overflow_signed
, /* complain_on_overflow */
489 mmix_elf_reloc
, /* special_function */
490 "R_MMIX_GETA_3", /* name */
491 FALSE
, /* partial_inplace */
492 ~0x0100ffff, /* src_mask */
493 0x0100ffff, /* dst_mask */
494 TRUE
), /* pcrel_offset */
496 /* The conditional branches are supposed to reach any (code) address.
497 It can silently expand to a 64-bit operand, but will emit an error if
498 any of the two least significant bits are set. The howto members
499 reflect a simple branch. */
500 HOWTO (R_MMIX_CBRANCH
, /* type */
502 2, /* size (0 = byte, 1 = short, 2 = long) */
504 TRUE
, /* pc_relative */
506 complain_overflow_signed
, /* complain_on_overflow */
507 mmix_elf_reloc
, /* special_function */
508 "R_MMIX_CBRANCH", /* name */
509 FALSE
, /* partial_inplace */
510 ~0x0100ffff, /* src_mask */
511 0x0100ffff, /* dst_mask */
512 TRUE
), /* pcrel_offset */
514 HOWTO (R_MMIX_CBRANCH_J
, /* type */
516 2, /* size (0 = byte, 1 = short, 2 = long) */
518 TRUE
, /* pc_relative */
520 complain_overflow_signed
, /* complain_on_overflow */
521 mmix_elf_reloc
, /* special_function */
522 "R_MMIX_CBRANCH_J", /* name */
523 FALSE
, /* partial_inplace */
524 ~0x0100ffff, /* src_mask */
525 0x0100ffff, /* dst_mask */
526 TRUE
), /* pcrel_offset */
528 HOWTO (R_MMIX_CBRANCH_1
, /* type */
530 2, /* size (0 = byte, 1 = short, 2 = long) */
532 TRUE
, /* pc_relative */
534 complain_overflow_signed
, /* complain_on_overflow */
535 mmix_elf_reloc
, /* special_function */
536 "R_MMIX_CBRANCH_1", /* name */
537 FALSE
, /* partial_inplace */
538 ~0x0100ffff, /* src_mask */
539 0x0100ffff, /* dst_mask */
540 TRUE
), /* pcrel_offset */
542 HOWTO (R_MMIX_CBRANCH_2
, /* type */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
546 TRUE
, /* pc_relative */
548 complain_overflow_signed
, /* complain_on_overflow */
549 mmix_elf_reloc
, /* special_function */
550 "R_MMIX_CBRANCH_2", /* name */
551 FALSE
, /* partial_inplace */
552 ~0x0100ffff, /* src_mask */
553 0x0100ffff, /* dst_mask */
554 TRUE
), /* pcrel_offset */
556 HOWTO (R_MMIX_CBRANCH_3
, /* type */
558 2, /* size (0 = byte, 1 = short, 2 = long) */
560 TRUE
, /* pc_relative */
562 complain_overflow_signed
, /* complain_on_overflow */
563 mmix_elf_reloc
, /* special_function */
564 "R_MMIX_CBRANCH_3", /* name */
565 FALSE
, /* partial_inplace */
566 ~0x0100ffff, /* src_mask */
567 0x0100ffff, /* dst_mask */
568 TRUE
), /* pcrel_offset */
570 /* The PUSHJ instruction can reach any (code) address, as long as it's
571 the beginning of a function (no usable restriction). It can silently
572 expand to a 64-bit operand, but will emit an error if any of the two
573 least significant bits are set. It can also expand into a call to a
574 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
576 HOWTO (R_MMIX_PUSHJ
, /* type */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
580 TRUE
, /* pc_relative */
582 complain_overflow_signed
, /* complain_on_overflow */
583 mmix_elf_reloc
, /* special_function */
584 "R_MMIX_PUSHJ", /* name */
585 FALSE
, /* partial_inplace */
586 ~0x0100ffff, /* src_mask */
587 0x0100ffff, /* dst_mask */
588 TRUE
), /* pcrel_offset */
590 HOWTO (R_MMIX_PUSHJ_1
, /* type */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
594 TRUE
, /* pc_relative */
596 complain_overflow_signed
, /* complain_on_overflow */
597 mmix_elf_reloc
, /* special_function */
598 "R_MMIX_PUSHJ_1", /* name */
599 FALSE
, /* partial_inplace */
600 ~0x0100ffff, /* src_mask */
601 0x0100ffff, /* dst_mask */
602 TRUE
), /* pcrel_offset */
604 HOWTO (R_MMIX_PUSHJ_2
, /* type */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
608 TRUE
, /* pc_relative */
610 complain_overflow_signed
, /* complain_on_overflow */
611 mmix_elf_reloc
, /* special_function */
612 "R_MMIX_PUSHJ_2", /* name */
613 FALSE
, /* partial_inplace */
614 ~0x0100ffff, /* src_mask */
615 0x0100ffff, /* dst_mask */
616 TRUE
), /* pcrel_offset */
618 HOWTO (R_MMIX_PUSHJ_3
, /* type */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
622 TRUE
, /* pc_relative */
624 complain_overflow_signed
, /* complain_on_overflow */
625 mmix_elf_reloc
, /* special_function */
626 "R_MMIX_PUSHJ_3", /* name */
627 FALSE
, /* partial_inplace */
628 ~0x0100ffff, /* src_mask */
629 0x0100ffff, /* dst_mask */
630 TRUE
), /* pcrel_offset */
632 /* A JMP is supposed to reach any (code) address. By itself, it can
633 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
634 limit is soon reached if you link the program in wildly different
635 memory segments. The howto members reflect a trivial JMP. */
636 HOWTO (R_MMIX_JMP
, /* type */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
640 TRUE
, /* pc_relative */
642 complain_overflow_signed
, /* complain_on_overflow */
643 mmix_elf_reloc
, /* special_function */
644 "R_MMIX_JMP", /* name */
645 FALSE
, /* partial_inplace */
646 ~0x1ffffff, /* src_mask */
647 0x1ffffff, /* dst_mask */
648 TRUE
), /* pcrel_offset */
650 HOWTO (R_MMIX_JMP_1
, /* type */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
654 TRUE
, /* pc_relative */
656 complain_overflow_signed
, /* complain_on_overflow */
657 mmix_elf_reloc
, /* special_function */
658 "R_MMIX_JMP_1", /* name */
659 FALSE
, /* partial_inplace */
660 ~0x1ffffff, /* src_mask */
661 0x1ffffff, /* dst_mask */
662 TRUE
), /* pcrel_offset */
664 HOWTO (R_MMIX_JMP_2
, /* type */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
668 TRUE
, /* pc_relative */
670 complain_overflow_signed
, /* complain_on_overflow */
671 mmix_elf_reloc
, /* special_function */
672 "R_MMIX_JMP_2", /* name */
673 FALSE
, /* partial_inplace */
674 ~0x1ffffff, /* src_mask */
675 0x1ffffff, /* dst_mask */
676 TRUE
), /* pcrel_offset */
678 HOWTO (R_MMIX_JMP_3
, /* type */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
682 TRUE
, /* pc_relative */
684 complain_overflow_signed
, /* complain_on_overflow */
685 mmix_elf_reloc
, /* special_function */
686 "R_MMIX_JMP_3", /* name */
687 FALSE
, /* partial_inplace */
688 ~0x1ffffff, /* src_mask */
689 0x1ffffff, /* dst_mask */
690 TRUE
), /* pcrel_offset */
692 /* When we don't emit link-time-relaxable code from the assembler, or
693 when relaxation has done all it can do, these relocs are used. For
694 GETA/PUSHJ/branches. */
695 HOWTO (R_MMIX_ADDR19
, /* type */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
699 TRUE
, /* pc_relative */
701 complain_overflow_signed
, /* complain_on_overflow */
702 mmix_elf_reloc
, /* special_function */
703 "R_MMIX_ADDR19", /* name */
704 FALSE
, /* partial_inplace */
705 ~0x0100ffff, /* src_mask */
706 0x0100ffff, /* dst_mask */
707 TRUE
), /* pcrel_offset */
710 HOWTO (R_MMIX_ADDR27
, /* type */
712 2, /* size (0 = byte, 1 = short, 2 = long) */
714 TRUE
, /* pc_relative */
716 complain_overflow_signed
, /* complain_on_overflow */
717 mmix_elf_reloc
, /* special_function */
718 "R_MMIX_ADDR27", /* name */
719 FALSE
, /* partial_inplace */
720 ~0x1ffffff, /* src_mask */
721 0x1ffffff, /* dst_mask */
722 TRUE
), /* pcrel_offset */
724 /* A general register or the value 0..255. If a value, then the
725 instruction (offset -3) needs adjusting. */
726 HOWTO (R_MMIX_REG_OR_BYTE
, /* type */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
730 FALSE
, /* pc_relative */
732 complain_overflow_bitfield
, /* complain_on_overflow */
733 mmix_elf_reloc
, /* special_function */
734 "R_MMIX_REG_OR_BYTE", /* name */
735 FALSE
, /* partial_inplace */
738 FALSE
), /* pcrel_offset */
740 /* A general register. */
741 HOWTO (R_MMIX_REG
, /* type */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
745 FALSE
, /* pc_relative */
747 complain_overflow_bitfield
, /* complain_on_overflow */
748 mmix_elf_reloc
, /* special_function */
749 "R_MMIX_REG", /* name */
750 FALSE
, /* partial_inplace */
753 FALSE
), /* pcrel_offset */
755 /* A register plus an index, corresponding to the relocation expression.
756 The sizes must correspond to the valid range of the expression, while
757 the bitmasks correspond to what we store in the image. */
758 HOWTO (R_MMIX_BASE_PLUS_OFFSET
, /* type */
760 4, /* size (0 = byte, 1 = short, 2 = long) */
762 FALSE
, /* pc_relative */
764 complain_overflow_bitfield
, /* complain_on_overflow */
765 mmix_elf_reloc
, /* special_function */
766 "R_MMIX_BASE_PLUS_OFFSET", /* name */
767 FALSE
, /* partial_inplace */
769 0xffff, /* dst_mask */
770 FALSE
), /* pcrel_offset */
772 /* A "magic" relocation for a LOCAL expression, asserting that the
773 expression is less than the number of global registers. No actual
774 modification of the contents is done. Implementing this as a
775 relocation was less intrusive than e.g. putting such expressions in a
776 section to discard *after* relocation. */
777 HOWTO (R_MMIX_LOCAL
, /* type */
779 0, /* size (0 = byte, 1 = short, 2 = long) */
781 FALSE
, /* pc_relative */
783 complain_overflow_dont
, /* complain_on_overflow */
784 mmix_elf_reloc
, /* special_function */
785 "R_MMIX_LOCAL", /* name */
786 FALSE
, /* partial_inplace */
789 FALSE
), /* pcrel_offset */
791 HOWTO (R_MMIX_PUSHJ_STUBBABLE
, /* type */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
795 TRUE
, /* pc_relative */
797 complain_overflow_signed
, /* complain_on_overflow */
798 mmix_elf_reloc
, /* special_function */
799 "R_MMIX_PUSHJ_STUBBABLE", /* name */
800 FALSE
, /* partial_inplace */
801 ~0x0100ffff, /* src_mask */
802 0x0100ffff, /* dst_mask */
803 TRUE
) /* pcrel_offset */
807 /* Map BFD reloc types to MMIX ELF reloc types. */
809 struct mmix_reloc_map
811 bfd_reloc_code_real_type bfd_reloc_val
;
812 enum elf_mmix_reloc_type elf_reloc_val
;
816 static const struct mmix_reloc_map mmix_reloc_map
[] =
818 {BFD_RELOC_NONE
, R_MMIX_NONE
},
819 {BFD_RELOC_8
, R_MMIX_8
},
820 {BFD_RELOC_16
, R_MMIX_16
},
821 {BFD_RELOC_24
, R_MMIX_24
},
822 {BFD_RELOC_32
, R_MMIX_32
},
823 {BFD_RELOC_64
, R_MMIX_64
},
824 {BFD_RELOC_8_PCREL
, R_MMIX_PC_8
},
825 {BFD_RELOC_16_PCREL
, R_MMIX_PC_16
},
826 {BFD_RELOC_24_PCREL
, R_MMIX_PC_24
},
827 {BFD_RELOC_32_PCREL
, R_MMIX_PC_32
},
828 {BFD_RELOC_64_PCREL
, R_MMIX_PC_64
},
829 {BFD_RELOC_VTABLE_INHERIT
, R_MMIX_GNU_VTINHERIT
},
830 {BFD_RELOC_VTABLE_ENTRY
, R_MMIX_GNU_VTENTRY
},
831 {BFD_RELOC_MMIX_GETA
, R_MMIX_GETA
},
832 {BFD_RELOC_MMIX_CBRANCH
, R_MMIX_CBRANCH
},
833 {BFD_RELOC_MMIX_PUSHJ
, R_MMIX_PUSHJ
},
834 {BFD_RELOC_MMIX_JMP
, R_MMIX_JMP
},
835 {BFD_RELOC_MMIX_ADDR19
, R_MMIX_ADDR19
},
836 {BFD_RELOC_MMIX_ADDR27
, R_MMIX_ADDR27
},
837 {BFD_RELOC_MMIX_REG_OR_BYTE
, R_MMIX_REG_OR_BYTE
},
838 {BFD_RELOC_MMIX_REG
, R_MMIX_REG
},
839 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET
, R_MMIX_BASE_PLUS_OFFSET
},
840 {BFD_RELOC_MMIX_LOCAL
, R_MMIX_LOCAL
},
841 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE
, R_MMIX_PUSHJ_STUBBABLE
}
844 static reloc_howto_type
*
845 bfd_elf64_bfd_reloc_type_lookup (abfd
, code
)
846 bfd
*abfd ATTRIBUTE_UNUSED
;
847 bfd_reloc_code_real_type code
;
852 i
< sizeof (mmix_reloc_map
) / sizeof (mmix_reloc_map
[0]);
855 if (mmix_reloc_map
[i
].bfd_reloc_val
== code
)
856 return &elf_mmix_howto_table
[mmix_reloc_map
[i
].elf_reloc_val
];
863 mmix_elf_new_section_hook (abfd
, sec
)
867 struct _mmix_elf_section_data
*sdata
;
868 bfd_size_type amt
= sizeof (*sdata
);
870 sdata
= (struct _mmix_elf_section_data
*) bfd_zalloc (abfd
, amt
);
873 sec
->used_by_bfd
= (PTR
) sdata
;
875 return _bfd_elf_new_section_hook (abfd
, sec
);
879 /* This function performs the actual bitfiddling and sanity check for a
880 final relocation. Each relocation gets its *worst*-case expansion
881 in size when it arrives here; any reduction in size should have been
882 caught in linker relaxation earlier. When we get here, the relocation
883 looks like the smallest instruction with SWYM:s (nop:s) appended to the
884 max size. We fill in those nop:s.
886 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
890 INCML $N,(foo >> 16) & 0xffff
891 INCMH $N,(foo >> 32) & 0xffff
892 INCH $N,(foo >> 48) & 0xffff
894 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
895 condbranches needing relaxation might be rare enough to not be
906 R_MMIX_PUSHJ: (FIXME: Relaxation...)
915 R_MMIX_JMP: (FIXME: Relaxation...)
924 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
926 static bfd_reloc_status_type
927 mmix_elf_perform_relocation (isec
, howto
, datap
, addr
, value
)
929 reloc_howto_type
*howto
;
934 bfd
*abfd
= isec
->owner
;
935 bfd_reloc_status_type flag
= bfd_reloc_ok
;
936 bfd_reloc_status_type r
;
940 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
941 We handle the differences here and the common sequence later. */
946 reg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
948 /* We change to an absolute value. */
954 int in1
= bfd_get_16 (abfd
, (bfd_byte
*) datap
) << 16;
956 /* Invert the condition and prediction bit, and set the offset
957 to five instructions ahead.
959 We *can* do better if we want to. If the branch is found to be
960 within limits, we could leave the branch as is; there'll just
961 be a bunch of NOP:s after it. But we shouldn't see this
962 sequence often enough that it's worth doing it. */
965 (((in1
^ ((PRED_INV_BIT
| COND_INV_BIT
) << 24)) & ~0xffff)
969 /* Put a "GO $255,$255,0" after the common sequence. */
971 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24) | 0xffff00,
972 (bfd_byte
*) datap
+ 20);
974 /* Common sequence starts at offset 4. */
977 /* We change to an absolute value. */
982 case R_MMIX_PUSHJ_STUBBABLE
:
983 /* If the address fits, we're fine. */
985 /* Note rightshift 0; see R_MMIX_JMP case below. */
986 && (r
= bfd_check_overflow (complain_overflow_signed
,
989 bfd_arch_bits_per_address (abfd
),
990 value
)) == bfd_reloc_ok
)
991 goto pcrel_mmix_reloc_fits
;
994 bfd_size_type raw_size
996 - mmix_elf_section_data (isec
)->pjs
.n_pushj_relocs
997 * MAX_PUSHJ_STUB_SIZE
);
999 /* We have the bytes at the PUSHJ insn and need to get the
1000 position for the stub. There's supposed to be room allocated
1002 bfd_byte
*stubcontents
1004 - (addr
- (isec
->output_section
->vma
+ isec
->output_offset
))
1006 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1009 /* The address doesn't fit, so redirect the PUSHJ to the
1010 location of the stub. */
1011 r
= mmix_elf_perform_relocation (isec
,
1012 &elf_mmix_howto_table
1016 isec
->output_section
->vma
1017 + isec
->output_offset
1019 + (mmix_elf_section_data (isec
)
1022 if (r
!= bfd_reloc_ok
)
1026 = (isec
->output_section
->vma
1027 + isec
->output_offset
1029 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1031 /* We generate a simple JMP if that suffices, else the whole 5
1033 if (bfd_check_overflow (complain_overflow_signed
,
1034 elf_mmix_howto_table
[R_MMIX_ADDR27
].bitsize
,
1036 bfd_arch_bits_per_address (abfd
),
1037 addr
+ value
- stubaddr
) == bfd_reloc_ok
)
1039 bfd_put_32 (abfd
, JMP_INSN_BYTE
<< 24, stubcontents
);
1040 r
= mmix_elf_perform_relocation (isec
,
1041 &elf_mmix_howto_table
1045 value
+ addr
- stubaddr
);
1046 mmix_elf_section_data (isec
)->pjs
.stub_offset
+= 4;
1049 + mmix_elf_section_data (isec
)->pjs
.stub_offset
1050 > isec
->_cooked_size
)
1057 /* Put a "GO $255,0" after the common sequence. */
1059 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1060 | 0xff00, (bfd_byte
*) stubcontents
+ 16);
1062 /* Prepare for the general code to set the first part of the
1065 datap
= stubcontents
;
1066 mmix_elf_section_data (isec
)->pjs
.stub_offset
1067 += MAX_PUSHJ_STUB_SIZE
;
1074 int inreg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
1076 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1078 ((PUSHGO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1081 (bfd_byte
*) datap
+ 16);
1083 /* We change to an absolute value. */
1089 /* This one is a little special. If we get here on a non-relaxing
1090 link, and the destination is actually in range, we don't need to
1092 If so, we fall through to the bit-fiddling relocs.
1094 FIXME: bfd_check_overflow seems broken; the relocation is
1095 rightshifted before testing, so supply a zero rightshift. */
1097 if (! ((value
& 3) == 0
1098 && (r
= bfd_check_overflow (complain_overflow_signed
,
1101 bfd_arch_bits_per_address (abfd
),
1102 value
)) == bfd_reloc_ok
))
1104 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1105 modified below, and put a "GO $255,$255,0" after the
1106 address-loading sequence. */
1108 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1110 (bfd_byte
*) datap
+ 16);
1112 /* We change to an absolute value. */
1119 pcrel_mmix_reloc_fits
:
1120 /* These must be in range, or else we emit an error. */
1121 if ((value
& 3) == 0
1122 /* Note rightshift 0; see above. */
1123 && (r
= bfd_check_overflow (complain_overflow_signed
,
1126 bfd_arch_bits_per_address (abfd
),
1127 value
)) == bfd_reloc_ok
)
1130 = bfd_get_32 (abfd
, (bfd_byte
*) datap
);
1133 if ((bfd_signed_vma
) value
< 0)
1136 value
+= (1 << (howto
->bitsize
- 1));
1144 (in1
& howto
->src_mask
)
1146 | (value
& howto
->dst_mask
),
1147 (bfd_byte
*) datap
);
1149 return bfd_reloc_ok
;
1152 return bfd_reloc_overflow
;
1154 case R_MMIX_BASE_PLUS_OFFSET
:
1156 struct bpo_reloc_section_info
*bpodata
1157 = mmix_elf_section_data (isec
)->bpo
.reloc
;
1158 asection
*bpo_greg_section
1159 = bpodata
->bpo_greg_section
;
1160 struct bpo_greg_section_info
*gregdata
1161 = mmix_elf_section_data (bpo_greg_section
)->bpo
.greg
;
1163 = gregdata
->bpo_reloc_indexes
[bpodata
->bpo_index
++];
1165 /* A consistency check: The value we now have in "relocation" must
1166 be the same as the value we stored for that relocation. It
1167 doesn't cost much, so can be left in at all times. */
1168 if (value
!= gregdata
->reloc_request
[bpo_index
].value
)
1170 (*_bfd_error_handler
)
1171 (_("%s: Internal inconsistency error for value for\n\
1172 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1173 bfd_get_filename (isec
->owner
),
1174 (unsigned long) (value
>> 32), (unsigned long) value
,
1175 (unsigned long) (gregdata
->reloc_request
[bpo_index
].value
1177 (unsigned long) gregdata
->reloc_request
[bpo_index
].value
);
1178 bfd_set_error (bfd_error_bad_value
);
1179 return bfd_reloc_overflow
;
1182 /* Then store the register number and offset for that register
1183 into datap and datap + 1 respectively. */
1185 gregdata
->reloc_request
[bpo_index
].regindex
1186 + bpo_greg_section
->output_section
->vma
/ 8,
1189 gregdata
->reloc_request
[bpo_index
].offset
,
1190 ((unsigned char *) datap
) + 1);
1191 return bfd_reloc_ok
;
1194 case R_MMIX_REG_OR_BYTE
:
1197 return bfd_reloc_overflow
;
1198 bfd_put_8 (abfd
, value
, datap
);
1199 return bfd_reloc_ok
;
1202 BAD_CASE (howto
->type
);
1205 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1208 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1209 everything that looks strange. */
1211 flag
= bfd_reloc_overflow
;
1214 (SETL_INSN_BYTE
<< 24) | (value
& 0xffff) | (reg
<< 16),
1215 (bfd_byte
*) datap
+ offs
);
1217 (INCML_INSN_BYTE
<< 24) | ((value
>> 16) & 0xffff) | (reg
<< 16),
1218 (bfd_byte
*) datap
+ offs
+ 4);
1220 (INCMH_INSN_BYTE
<< 24) | ((value
>> 32) & 0xffff) | (reg
<< 16),
1221 (bfd_byte
*) datap
+ offs
+ 8);
1223 (INCH_INSN_BYTE
<< 24) | ((value
>> 48) & 0xffff) | (reg
<< 16),
1224 (bfd_byte
*) datap
+ offs
+ 12);
1229 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1232 mmix_info_to_howto_rela (abfd
, cache_ptr
, dst
)
1233 bfd
*abfd ATTRIBUTE_UNUSED
;
1235 Elf_Internal_Rela
*dst
;
1237 unsigned int r_type
;
1239 r_type
= ELF64_R_TYPE (dst
->r_info
);
1240 BFD_ASSERT (r_type
< (unsigned int) R_MMIX_max
);
1241 cache_ptr
->howto
= &elf_mmix_howto_table
[r_type
];
1244 /* Any MMIX-specific relocation gets here at assembly time or when linking
1245 to other formats (such as mmo); this is the relocation function from
1246 the reloc_table. We don't get here for final pure ELF linking. */
1248 static bfd_reloc_status_type
1249 mmix_elf_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1250 output_bfd
, error_message
)
1252 arelent
*reloc_entry
;
1255 asection
*input_section
;
1257 char **error_message ATTRIBUTE_UNUSED
;
1260 bfd_reloc_status_type r
;
1261 asection
*reloc_target_output_section
;
1262 bfd_reloc_status_type flag
= bfd_reloc_ok
;
1263 bfd_vma output_base
= 0;
1266 r
= bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1267 input_section
, output_bfd
, error_message
);
1269 /* If that was all that was needed (i.e. this isn't a final link, only
1270 some segment adjustments), we're done. */
1271 if (r
!= bfd_reloc_continue
)
1274 if (bfd_is_und_section (symbol
->section
)
1275 && (symbol
->flags
& BSF_WEAK
) == 0
1276 && output_bfd
== (bfd
*) NULL
)
1277 return bfd_reloc_undefined
;
1279 /* Is the address of the relocation really within the section? */
1280 if (reloc_entry
->address
> input_section
->_cooked_size
)
1281 return bfd_reloc_outofrange
;
1283 /* Work out which section the relocation is targeted at and the
1284 initial relocation command value. */
1286 /* Get symbol value. (Common symbols are special.) */
1287 if (bfd_is_com_section (symbol
->section
))
1290 relocation
= symbol
->value
;
1292 reloc_target_output_section
= bfd_get_output_section (symbol
);
1294 /* Here the variable relocation holds the final address of the symbol we
1295 are relocating against, plus any addend. */
1299 output_base
= reloc_target_output_section
->vma
;
1301 relocation
+= output_base
+ symbol
->section
->output_offset
;
1303 /* Get position of relocation. */
1304 addr
= (reloc_entry
->address
+ input_section
->output_section
->vma
1305 + input_section
->output_offset
);
1306 if (output_bfd
!= (bfd
*) NULL
)
1308 /* Add in supplied addend. */
1309 relocation
+= reloc_entry
->addend
;
1311 /* This is a partial relocation, and we want to apply the
1312 relocation to the reloc entry rather than the raw data.
1313 Modify the reloc inplace to reflect what we now know. */
1314 reloc_entry
->addend
= relocation
;
1315 reloc_entry
->address
+= input_section
->output_offset
;
1319 return mmix_final_link_relocate (reloc_entry
->howto
, input_section
,
1320 data
, reloc_entry
->address
,
1321 reloc_entry
->addend
, relocation
,
1322 bfd_asymbol_name (symbol
),
1323 reloc_target_output_section
);
1326 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1327 for guidance if you're thinking of copying this. */
1330 mmix_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1331 contents
, relocs
, local_syms
, local_sections
)
1332 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1333 struct bfd_link_info
*info
;
1335 asection
*input_section
;
1337 Elf_Internal_Rela
*relocs
;
1338 Elf_Internal_Sym
*local_syms
;
1339 asection
**local_sections
;
1341 Elf_Internal_Shdr
*symtab_hdr
;
1342 struct elf_link_hash_entry
**sym_hashes
;
1343 Elf_Internal_Rela
*rel
;
1344 Elf_Internal_Rela
*relend
;
1345 bfd_size_type raw_size
1346 = (input_section
->_raw_size
1347 - mmix_elf_section_data (input_section
)->pjs
.n_pushj_relocs
1348 * MAX_PUSHJ_STUB_SIZE
);
1351 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1352 sym_hashes
= elf_sym_hashes (input_bfd
);
1353 relend
= relocs
+ input_section
->reloc_count
;
1355 for (rel
= relocs
; rel
< relend
; rel
++)
1357 reloc_howto_type
*howto
;
1358 unsigned long r_symndx
;
1359 Elf_Internal_Sym
*sym
;
1361 struct elf_link_hash_entry
*h
;
1363 bfd_reloc_status_type r
;
1364 const char *name
= NULL
;
1366 bfd_boolean undefined_signalled
= FALSE
;
1368 r_type
= ELF64_R_TYPE (rel
->r_info
);
1370 if (r_type
== R_MMIX_GNU_VTINHERIT
1371 || r_type
== R_MMIX_GNU_VTENTRY
)
1374 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1376 if (info
->relocatable
)
1378 /* This is a relocatable link. For most relocs we don't have to
1379 change anything, unless the reloc is against a section
1380 symbol, in which case we have to adjust according to where
1381 the section symbol winds up in the output section. */
1382 if (r_symndx
< symtab_hdr
->sh_info
)
1384 sym
= local_syms
+ r_symndx
;
1386 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1388 sec
= local_sections
[r_symndx
];
1389 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1393 /* For PUSHJ stub relocs however, we may need to change the
1394 reloc and the section contents, if the reloc doesn't reach
1395 beyond the end of the output section and previous stubs.
1396 Then we change the section contents to be a PUSHJ to the end
1397 of the input section plus stubs (we can do that without using
1398 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1399 at the stub location. */
1400 if (r_type
== R_MMIX_PUSHJ_STUBBABLE
)
1402 /* We've already checked whether we need a stub; use that
1404 if (mmix_elf_section_data (input_section
)->pjs
.stub_size
[pjsno
]
1407 Elf_Internal_Rela relcpy
;
1409 if (mmix_elf_section_data (input_section
)
1410 ->pjs
.stub_size
[pjsno
] != MAX_PUSHJ_STUB_SIZE
)
1413 /* There's already a PUSHJ insn there, so just fill in
1414 the offset bits to the stub. */
1415 if (mmix_final_link_relocate (elf_mmix_howto_table
1422 ->output_section
->vma
1423 + input_section
->output_offset
1425 + mmix_elf_section_data (input_section
)
1427 NULL
, NULL
) != bfd_reloc_ok
)
1430 /* Put a JMP insn at the stub; it goes with the
1431 R_MMIX_JMP reloc. */
1432 bfd_put_32 (output_bfd
, JMP_INSN_BYTE
<< 24,
1435 + mmix_elf_section_data (input_section
)
1438 /* Change the reloc to be at the stub, and to a full
1439 R_MMIX_JMP reloc. */
1440 rel
->r_info
= ELF64_R_INFO (r_symndx
, R_MMIX_JMP
);
1443 + mmix_elf_section_data (input_section
)
1446 mmix_elf_section_data (input_section
)->pjs
.stub_offset
1447 += MAX_PUSHJ_STUB_SIZE
;
1449 /* Shift this reloc to the end of the relocs to maintain
1450 the r_offset sorted reloc order. */
1452 memmove (rel
, rel
+ 1, (char *) relend
- (char *) rel
);
1453 relend
[-1] = relcpy
;
1455 /* Back up one reloc, or else we'd skip the next reloc
1465 /* This is a final link. */
1466 howto
= elf_mmix_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
1471 if (r_symndx
< symtab_hdr
->sh_info
)
1473 sym
= local_syms
+ r_symndx
;
1474 sec
= local_sections
[r_symndx
];
1475 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
1477 name
= bfd_elf_string_from_elf_section
1478 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
);
1479 name
= (name
== NULL
) ? bfd_section_name (input_bfd
, sec
) : name
;
1483 bfd_boolean unresolved_reloc
;
1485 RELOC_FOR_GLOBAL_SYMBOL (h
, sym_hashes
, r_symndx
, symtab_hdr
,
1486 relocation
, sec
, unresolved_reloc
,
1487 info
, undefined_signalled
);
1490 r
= mmix_final_link_relocate (howto
, input_section
,
1491 contents
, rel
->r_offset
,
1492 rel
->r_addend
, relocation
, name
, sec
);
1494 if (r
!= bfd_reloc_ok
)
1496 bfd_boolean check_ok
= TRUE
;
1497 const char * msg
= (const char *) NULL
;
1501 case bfd_reloc_overflow
:
1502 check_ok
= info
->callbacks
->reloc_overflow
1503 (info
, name
, howto
->name
, (bfd_vma
) 0,
1504 input_bfd
, input_section
, rel
->r_offset
);
1507 case bfd_reloc_undefined
:
1508 /* We may have sent this message above. */
1509 if (! undefined_signalled
)
1510 check_ok
= info
->callbacks
->undefined_symbol
1511 (info
, name
, input_bfd
, input_section
, rel
->r_offset
,
1513 undefined_signalled
= TRUE
;
1516 case bfd_reloc_outofrange
:
1517 msg
= _("internal error: out of range error");
1520 case bfd_reloc_notsupported
:
1521 msg
= _("internal error: unsupported relocation error");
1524 case bfd_reloc_dangerous
:
1525 msg
= _("internal error: dangerous relocation");
1529 msg
= _("internal error: unknown error");
1534 check_ok
= info
->callbacks
->warning
1535 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
1545 /* Perform a single relocation. By default we use the standard BFD
1546 routines. A few relocs we have to do ourselves. */
1548 static bfd_reloc_status_type
1549 mmix_final_link_relocate (howto
, input_section
, contents
,
1550 r_offset
, r_addend
, relocation
, symname
, symsec
)
1551 reloc_howto_type
*howto
;
1552 asection
*input_section
;
1555 bfd_signed_vma r_addend
;
1557 const char *symname
;
1560 bfd_reloc_status_type r
= bfd_reloc_ok
;
1562 = (input_section
->output_section
->vma
1563 + input_section
->output_offset
1566 = (bfd_signed_vma
) relocation
+ r_addend
;
1568 switch (howto
->type
)
1570 /* All these are PC-relative. */
1571 case R_MMIX_PUSHJ_STUBBABLE
:
1573 case R_MMIX_CBRANCH
:
1578 contents
+= r_offset
;
1580 srel
-= (input_section
->output_section
->vma
1581 + input_section
->output_offset
1584 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1588 case R_MMIX_BASE_PLUS_OFFSET
:
1590 return bfd_reloc_undefined
;
1592 /* Check that we're not relocating against a register symbol. */
1593 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1594 MMIX_REG_CONTENTS_SECTION_NAME
) == 0
1595 || strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1596 MMIX_REG_SECTION_NAME
) == 0)
1598 /* Note: This is separated out into two messages in order
1599 to ease the translation into other languages. */
1600 if (symname
== NULL
|| *symname
== 0)
1601 (*_bfd_error_handler
)
1602 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1603 bfd_get_filename (input_section
->owner
),
1604 bfd_get_section_name (symsec
->owner
, symsec
));
1606 (*_bfd_error_handler
)
1607 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1608 bfd_get_filename (input_section
->owner
), symname
,
1609 bfd_get_section_name (symsec
->owner
, symsec
));
1610 return bfd_reloc_overflow
;
1614 case R_MMIX_REG_OR_BYTE
:
1616 /* For now, we handle these alike. They must refer to an register
1617 symbol, which is either relative to the register section and in
1618 the range 0..255, or is in the register contents section with vma
1621 /* FIXME: A better way to check for reg contents section?
1622 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1624 return bfd_reloc_undefined
;
1626 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1627 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1629 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1631 /* The bfd_reloc_outofrange return value, though intuitively
1632 a better value, will not get us an error. */
1633 return bfd_reloc_overflow
;
1637 else if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1638 MMIX_REG_SECTION_NAME
) == 0)
1640 if (srel
< 0 || srel
> 255)
1641 /* The bfd_reloc_outofrange return value, though intuitively a
1642 better value, will not get us an error. */
1643 return bfd_reloc_overflow
;
1647 /* Note: This is separated out into two messages in order
1648 to ease the translation into other languages. */
1649 if (symname
== NULL
|| *symname
== 0)
1650 (*_bfd_error_handler
)
1651 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1652 bfd_get_filename (input_section
->owner
),
1653 bfd_get_section_name (symsec
->owner
, symsec
));
1655 (*_bfd_error_handler
)
1656 (_("%s: register relocation against non-register symbol: %s in %s"),
1657 bfd_get_filename (input_section
->owner
), symname
,
1658 bfd_get_section_name (symsec
->owner
, symsec
));
1660 /* The bfd_reloc_outofrange return value, though intuitively a
1661 better value, will not get us an error. */
1662 return bfd_reloc_overflow
;
1665 contents
+= r_offset
;
1666 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1671 /* This isn't a real relocation, it's just an assertion that the
1672 final relocation value corresponds to a local register. We
1673 ignore the actual relocation; nothing is changed. */
1676 = bfd_get_section_by_name (input_section
->output_section
->owner
,
1677 MMIX_REG_CONTENTS_SECTION_NAME
);
1678 bfd_vma first_global
;
1680 /* Check that this is an absolute value, or a reference to the
1681 register contents section or the register (symbol) section.
1682 Absolute numbers can get here as undefined section. Undefined
1683 symbols are signalled elsewhere, so there's no conflict in us
1684 accidentally handling it. */
1685 if (!bfd_is_abs_section (symsec
)
1686 && !bfd_is_und_section (symsec
)
1687 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1688 MMIX_REG_CONTENTS_SECTION_NAME
) != 0
1689 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1690 MMIX_REG_SECTION_NAME
) != 0)
1692 (*_bfd_error_handler
)
1693 (_("%s: directive LOCAL valid only with a register or absolute value"),
1694 bfd_get_filename (input_section
->owner
));
1696 return bfd_reloc_overflow
;
1699 /* If we don't have a register contents section, then $255 is the
1700 first global register. */
1705 first_global
= bfd_get_section_vma (abfd
, regsec
) / 8;
1706 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1707 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1709 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1710 /* The bfd_reloc_outofrange return value, though
1711 intuitively a better value, will not get us an error. */
1712 return bfd_reloc_overflow
;
1717 if ((bfd_vma
) srel
>= first_global
)
1719 /* FIXME: Better error message. */
1720 (*_bfd_error_handler
)
1721 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1722 bfd_get_filename (input_section
->owner
), (long) srel
, (long) first_global
);
1724 return bfd_reloc_overflow
;
1731 r
= _bfd_final_link_relocate (howto
, input_section
->owner
, input_section
,
1733 relocation
, r_addend
);
1739 /* Return the section that should be marked against GC for a given
1743 mmix_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
)
1745 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1746 Elf_Internal_Rela
*rel
;
1747 struct elf_link_hash_entry
*h
;
1748 Elf_Internal_Sym
*sym
;
1752 switch (ELF64_R_TYPE (rel
->r_info
))
1754 case R_MMIX_GNU_VTINHERIT
:
1755 case R_MMIX_GNU_VTENTRY
:
1759 switch (h
->root
.type
)
1761 case bfd_link_hash_defined
:
1762 case bfd_link_hash_defweak
:
1763 return h
->root
.u
.def
.section
;
1765 case bfd_link_hash_common
:
1766 return h
->root
.u
.c
.p
->section
;
1774 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
1779 /* Update relocation info for a GC-excluded section. We could supposedly
1780 perform the allocation after GC, but there's no suitable hook between
1781 GC (or section merge) and the point when all input sections must be
1782 present. Better to waste some memory and (perhaps) a little time. */
1785 mmix_elf_gc_sweep_hook (abfd
, info
, sec
, relocs
)
1786 bfd
*abfd ATTRIBUTE_UNUSED
;
1787 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1788 asection
*sec ATTRIBUTE_UNUSED
;
1789 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
1791 struct bpo_reloc_section_info
*bpodata
1792 = mmix_elf_section_data (sec
)->bpo
.reloc
;
1793 asection
*allocated_gregs_section
;
1795 /* If no bpodata here, we have nothing to do. */
1796 if (bpodata
== NULL
)
1799 allocated_gregs_section
= bpodata
->bpo_greg_section
;
1801 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
->n_bpo_relocs
1802 -= bpodata
->n_bpo_relocs_this_section
;
1807 /* Sort register relocs to come before expanding relocs. */
1810 mmix_elf_sort_relocs (p1
, p2
)
1814 const Elf_Internal_Rela
*r1
= (const Elf_Internal_Rela
*) p1
;
1815 const Elf_Internal_Rela
*r2
= (const Elf_Internal_Rela
*) p2
;
1816 int r1_is_reg
, r2_is_reg
;
1818 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1820 if ((r1
->r_offset
& ~(bfd_vma
) 3) > (r2
->r_offset
& ~(bfd_vma
) 3))
1822 else if ((r1
->r_offset
& ~(bfd_vma
) 3) < (r2
->r_offset
& ~(bfd_vma
) 3))
1826 = (ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG_OR_BYTE
1827 || ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG
);
1829 = (ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG_OR_BYTE
1830 || ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG
);
1831 if (r1_is_reg
!= r2_is_reg
)
1832 return r2_is_reg
- r1_is_reg
;
1834 /* Neither or both are register relocs. Then sort on full offset. */
1835 if (r1
->r_offset
> r2
->r_offset
)
1837 else if (r1
->r_offset
< r2
->r_offset
)
1842 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1845 mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
)
1847 struct bfd_link_info
*info
;
1849 const Elf_Internal_Rela
*relocs
;
1851 bfd
*bpo_greg_owner
= NULL
;
1852 asection
*allocated_gregs_section
= NULL
;
1853 struct bpo_greg_section_info
*gregdata
= NULL
;
1854 struct bpo_reloc_section_info
*bpodata
= NULL
;
1855 const Elf_Internal_Rela
*rel
;
1856 const Elf_Internal_Rela
*rel_end
;
1858 /* We currently have to abuse this COFF-specific member, since there's
1859 no target-machine-dedicated member. There's no alternative outside
1860 the bfd_link_info struct; we can't specialize a hash-table since
1861 they're different between ELF and mmo. */
1862 bpo_greg_owner
= (bfd
*) info
->base_file
;
1864 rel_end
= relocs
+ sec
->reloc_count
;
1865 for (rel
= relocs
; rel
< rel_end
; rel
++)
1867 switch (ELF64_R_TYPE (rel
->r_info
))
1869 /* This relocation causes a GREG allocation. We need to count
1870 them, and we need to create a section for them, so we need an
1871 object to fake as the owner of that section. We can't use
1872 the ELF dynobj for this, since the ELF bits assume lots of
1873 DSO-related stuff if that member is non-NULL. */
1874 case R_MMIX_BASE_PLUS_OFFSET
:
1875 /* We don't do anything with this reloc for a relocatable link. */
1876 if (info
->relocatable
)
1879 if (bpo_greg_owner
== NULL
)
1881 bpo_greg_owner
= abfd
;
1882 info
->base_file
= (PTR
) bpo_greg_owner
;
1885 if (allocated_gregs_section
== NULL
)
1886 allocated_gregs_section
1887 = bfd_get_section_by_name (bpo_greg_owner
,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
1890 if (allocated_gregs_section
== NULL
)
1892 allocated_gregs_section
1893 = bfd_make_section (bpo_greg_owner
,
1894 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
1895 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1896 treated like any other section, and we'd get errors for
1897 address overlap with the text section. Let's set none of
1898 those flags, as that is what currently happens for usual
1899 GREG allocations, and that works. */
1900 if (allocated_gregs_section
== NULL
1901 || !bfd_set_section_flags (bpo_greg_owner
,
1902 allocated_gregs_section
,
1905 | SEC_LINKER_CREATED
))
1906 || !bfd_set_section_alignment (bpo_greg_owner
,
1907 allocated_gregs_section
,
1911 gregdata
= (struct bpo_greg_section_info
*)
1912 bfd_zalloc (bpo_greg_owner
, sizeof (struct bpo_greg_section_info
));
1913 if (gregdata
== NULL
)
1915 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
1918 else if (gregdata
== NULL
)
1920 = mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
;
1922 /* Get ourselves some auxiliary info for the BPO-relocs. */
1923 if (bpodata
== NULL
)
1925 /* No use doing a separate iteration pass to find the upper
1926 limit - just use the number of relocs. */
1927 bpodata
= (struct bpo_reloc_section_info
*)
1928 bfd_alloc (bpo_greg_owner
,
1929 sizeof (struct bpo_reloc_section_info
)
1930 * (sec
->reloc_count
+ 1));
1931 if (bpodata
== NULL
)
1933 mmix_elf_section_data (sec
)->bpo
.reloc
= bpodata
;
1934 bpodata
->first_base_plus_offset_reloc
1935 = bpodata
->bpo_index
1936 = gregdata
->n_max_bpo_relocs
;
1937 bpodata
->bpo_greg_section
1938 = allocated_gregs_section
;
1939 bpodata
->n_bpo_relocs_this_section
= 0;
1942 bpodata
->n_bpo_relocs_this_section
++;
1943 gregdata
->n_max_bpo_relocs
++;
1945 /* We don't get another chance to set this before GC; we've not
1946 set up any hook that runs before GC. */
1947 gregdata
->n_bpo_relocs
1948 = gregdata
->n_max_bpo_relocs
;
1951 case R_MMIX_PUSHJ_STUBBABLE
:
1952 mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
++;
1957 /* Allocate per-reloc stub storage and initialize it to the max stub
1959 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
!= 0)
1963 mmix_elf_section_data (sec
)->pjs
.stub_size
1964 = bfd_alloc (abfd
, mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
1965 * sizeof (mmix_elf_section_data (sec
)
1966 ->pjs
.stub_size
[0]));
1967 if (mmix_elf_section_data (sec
)->pjs
.stub_size
== NULL
)
1970 for (i
= 0; i
< mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
; i
++)
1971 mmix_elf_section_data (sec
)->pjs
.stub_size
[i
] = MAX_PUSHJ_STUB_SIZE
;
1977 /* Look through the relocs for a section during the first phase. */
1980 mmix_elf_check_relocs (abfd
, info
, sec
, relocs
)
1982 struct bfd_link_info
*info
;
1984 const Elf_Internal_Rela
*relocs
;
1986 Elf_Internal_Shdr
*symtab_hdr
;
1987 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
1988 const Elf_Internal_Rela
*rel
;
1989 const Elf_Internal_Rela
*rel_end
;
1991 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1992 sym_hashes
= elf_sym_hashes (abfd
);
1993 sym_hashes_end
= sym_hashes
+ symtab_hdr
->sh_size
/sizeof(Elf64_External_Sym
);
1994 if (!elf_bad_symtab (abfd
))
1995 sym_hashes_end
-= symtab_hdr
->sh_info
;
1997 /* First we sort the relocs so that any register relocs come before
1998 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1999 qsort ((PTR
) relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
2000 mmix_elf_sort_relocs
);
2002 /* Do the common part. */
2003 if (!mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
))
2006 if (info
->relocatable
)
2009 rel_end
= relocs
+ sec
->reloc_count
;
2010 for (rel
= relocs
; rel
< rel_end
; rel
++)
2012 struct elf_link_hash_entry
*h
;
2013 unsigned long r_symndx
;
2015 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2016 if (r_symndx
< symtab_hdr
->sh_info
)
2019 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2021 switch (ELF64_R_TYPE (rel
->r_info
))
2023 /* This relocation describes the C++ object vtable hierarchy.
2024 Reconstruct it for later use during GC. */
2025 case R_MMIX_GNU_VTINHERIT
:
2026 if (!_bfd_elf64_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
2030 /* This relocation describes which C++ vtable entries are actually
2031 used. Record for later use during GC. */
2032 case R_MMIX_GNU_VTENTRY
:
2033 if (!_bfd_elf64_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
2042 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2043 Copied from elf_link_add_object_symbols. */
2046 _bfd_mmix_check_all_relocs (abfd
, info
)
2048 struct bfd_link_info
*info
;
2052 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2054 Elf_Internal_Rela
*internal_relocs
;
2057 if ((o
->flags
& SEC_RELOC
) == 0
2058 || o
->reloc_count
== 0
2059 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2060 && (o
->flags
& SEC_DEBUGGING
) != 0)
2061 || bfd_is_abs_section (o
->output_section
))
2065 = _bfd_elf_link_read_relocs (abfd
, o
, (PTR
) NULL
,
2066 (Elf_Internal_Rela
*) NULL
,
2068 if (internal_relocs
== NULL
)
2071 ok
= mmix_elf_check_common_relocs (abfd
, info
, o
, internal_relocs
);
2073 if (! info
->keep_memory
)
2074 free (internal_relocs
);
2083 /* Change symbols relative to the reg contents section to instead be to
2084 the register section, and scale them down to correspond to the register
2088 mmix_elf_link_output_symbol_hook (info
, name
, sym
, input_sec
, h
)
2089 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2090 const char *name ATTRIBUTE_UNUSED
;
2091 Elf_Internal_Sym
*sym
;
2092 asection
*input_sec
;
2093 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
;
2095 if (input_sec
!= NULL
2096 && input_sec
->name
!= NULL
2097 && ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
2098 && strcmp (input_sec
->name
, MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
2101 sym
->st_shndx
= SHN_REGISTER
;
2107 /* We fake a register section that holds values that are register numbers.
2108 Having a SHN_REGISTER and register section translates better to other
2109 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2110 This section faking is based on a construct in elf32-mips.c. */
2111 static asection mmix_elf_reg_section
;
2112 static asymbol mmix_elf_reg_section_symbol
;
2113 static asymbol
*mmix_elf_reg_section_symbol_ptr
;
2115 /* Handle the special section numbers that a symbol may use. */
2118 mmix_elf_symbol_processing (abfd
, asym
)
2119 bfd
*abfd ATTRIBUTE_UNUSED
;
2122 elf_symbol_type
*elfsym
;
2124 elfsym
= (elf_symbol_type
*) asym
;
2125 switch (elfsym
->internal_elf_sym
.st_shndx
)
2128 if (mmix_elf_reg_section
.name
== NULL
)
2130 /* Initialize the register section. */
2131 mmix_elf_reg_section
.name
= MMIX_REG_SECTION_NAME
;
2132 mmix_elf_reg_section
.flags
= SEC_NO_FLAGS
;
2133 mmix_elf_reg_section
.output_section
= &mmix_elf_reg_section
;
2134 mmix_elf_reg_section
.symbol
= &mmix_elf_reg_section_symbol
;
2135 mmix_elf_reg_section
.symbol_ptr_ptr
= &mmix_elf_reg_section_symbol_ptr
;
2136 mmix_elf_reg_section_symbol
.name
= MMIX_REG_SECTION_NAME
;
2137 mmix_elf_reg_section_symbol
.flags
= BSF_SECTION_SYM
;
2138 mmix_elf_reg_section_symbol
.section
= &mmix_elf_reg_section
;
2139 mmix_elf_reg_section_symbol_ptr
= &mmix_elf_reg_section_symbol
;
2141 asym
->section
= &mmix_elf_reg_section
;
2149 /* Given a BFD section, try to locate the corresponding ELF section
2153 mmix_elf_section_from_bfd_section (abfd
, sec
, retval
)
2154 bfd
* abfd ATTRIBUTE_UNUSED
;
2158 if (strcmp (bfd_get_section_name (abfd
, sec
), MMIX_REG_SECTION_NAME
) == 0)
2159 *retval
= SHN_REGISTER
;
2166 /* Hook called by the linker routine which adds symbols from an object
2167 file. We must handle the special SHN_REGISTER section number here.
2169 We also check that we only have *one* each of the section-start
2170 symbols, since otherwise having two with the same value would cause
2171 them to be "merged", but with the contents serialized. */
2174 mmix_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
2176 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2177 const Elf_Internal_Sym
*sym
;
2178 const char **namep ATTRIBUTE_UNUSED
;
2179 flagword
*flagsp ATTRIBUTE_UNUSED
;
2181 bfd_vma
*valp ATTRIBUTE_UNUSED
;
2183 if (sym
->st_shndx
== SHN_REGISTER
)
2184 *secp
= bfd_make_section_old_way (abfd
, MMIX_REG_SECTION_NAME
);
2185 else if ((*namep
)[0] == '_' && (*namep
)[1] == '_' && (*namep
)[2] == '.'
2186 && strncmp (*namep
, MMIX_LOC_SECTION_START_SYMBOL_PREFIX
,
2187 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX
)) == 0)
2189 /* See if we have another one. */
2190 struct bfd_link_hash_entry
*h
= bfd_link_hash_lookup (info
->hash
,
2196 if (h
!= NULL
&& h
->type
!= bfd_link_hash_undefined
)
2198 /* How do we get the asymbol (or really: the filename) from h?
2199 h->u.def.section->owner is NULL. */
2200 ((*_bfd_error_handler
)
2201 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2202 bfd_get_filename (abfd
), *namep
,
2203 *namep
+ strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX
)));
2204 bfd_set_error (bfd_error_bad_value
);
2212 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2215 mmix_elf_is_local_label_name (abfd
, name
)
2222 /* Also include the default local-label definition. */
2223 if (_bfd_elf_is_local_label_name (abfd
, name
))
2229 /* If there's no ":", or more than one, it's not a local symbol. */
2230 colpos
= strchr (name
, ':');
2231 if (colpos
== NULL
|| strchr (colpos
+ 1, ':') != NULL
)
2234 /* Check that there are remaining characters and that they are digits. */
2238 digits
= strspn (colpos
+ 1, "0123456789");
2239 return digits
!= 0 && colpos
[1 + digits
] == 0;
2242 /* We get rid of the register section here. */
2245 mmix_elf_final_link (abfd
, info
)
2247 struct bfd_link_info
*info
;
2249 /* We never output a register section, though we create one for
2250 temporary measures. Check that nobody entered contents into it. */
2251 asection
*reg_section
;
2254 reg_section
= bfd_get_section_by_name (abfd
, MMIX_REG_SECTION_NAME
);
2256 if (reg_section
!= NULL
)
2258 /* FIXME: Pass error state gracefully. */
2259 if (bfd_get_section_flags (abfd
, reg_section
) & SEC_HAS_CONTENTS
)
2260 _bfd_abort (__FILE__
, __LINE__
, _("Register section has contents\n"));
2262 /* Really remove the section. */
2263 for (secpp
= &abfd
->sections
;
2264 *secpp
!= reg_section
;
2265 secpp
= &(*secpp
)->next
)
2267 bfd_section_list_remove (abfd
, secpp
);
2268 --abfd
->section_count
;
2271 if (! bfd_elf64_bfd_final_link (abfd
, info
))
2274 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2275 the regular linker machinery. We do it here, like other targets with
2276 special sections. */
2277 if (info
->base_file
!= NULL
)
2279 asection
*greg_section
2280 = bfd_get_section_by_name ((bfd
*) info
->base_file
,
2281 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2282 if (!bfd_set_section_contents (abfd
,
2283 greg_section
->output_section
,
2284 greg_section
->contents
,
2285 (file_ptr
) greg_section
->output_offset
,
2286 greg_section
->_cooked_size
))
2292 /* We need to include the maximum size of PUSHJ-stubs in the initial
2293 section size. This is expected to shrink during linker relaxation.
2295 You might think that we should set *only* _cooked_size, but that won't
2296 work: section contents allocation will be using _raw_size in mixed
2297 format linking and not enough storage will be allocated. FIXME: That's
2298 a major bug, including the name bfd_get_section_size_before_reloc; it
2299 should be bfd_get_section_size_before_relax. The relaxation functions
2300 set _cooked size. Relaxation happens before relocation. All functions
2301 *after relaxation* should be using _cooked size. */
2304 mmix_set_relaxable_size (abfd
, sec
, ptr
)
2305 bfd
*abfd ATTRIBUTE_UNUSED
;
2309 struct bfd_link_info
*info
= ptr
;
2311 /* Make sure we only do this for section where we know we want this,
2312 otherwise we might end up resetting the size of COMMONs. */
2313 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0)
2318 + mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2319 * MAX_PUSHJ_STUB_SIZE
);
2320 sec
->_raw_size
= sec
->_cooked_size
;
2322 /* For use in relocatable link, we start with a max stubs size. See
2323 mmix_elf_relax_section. */
2324 if (info
->relocatable
&& sec
->output_section
)
2325 mmix_elf_section_data (sec
->output_section
)->pjs
.stubs_size_sum
2326 += (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2327 * MAX_PUSHJ_STUB_SIZE
);
2330 /* Initialize stuff for the linker-generated GREGs to match
2331 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2334 _bfd_mmix_before_linker_allocation (abfd
, info
)
2335 bfd
*abfd ATTRIBUTE_UNUSED
;
2336 struct bfd_link_info
*info
;
2338 asection
*bpo_gregs_section
;
2339 bfd
*bpo_greg_owner
;
2340 struct bpo_greg_section_info
*gregdata
;
2344 size_t *bpo_reloc_indexes
;
2347 /* Set the initial size of sections. */
2348 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2349 bfd_map_over_sections (ibfd
, mmix_set_relaxable_size
, info
);
2351 /* The bpo_greg_owner bfd is supposed to have been set by
2352 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2353 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2354 bpo_greg_owner
= (bfd
*) info
->base_file
;
2355 if (bpo_greg_owner
== NULL
)
2359 = bfd_get_section_by_name (bpo_greg_owner
,
2360 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2362 if (bpo_gregs_section
== NULL
)
2365 /* We use the target-data handle in the ELF section data. */
2366 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2367 if (gregdata
== NULL
)
2370 n_gregs
= gregdata
->n_bpo_relocs
;
2371 gregdata
->n_allocated_bpo_gregs
= n_gregs
;
2373 /* When this reaches zero during relaxation, all entries have been
2374 filled in and the size of the linker gregs can be calculated. */
2375 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
= n_gregs
;
2377 /* Set the zeroth-order estimate for the GREGs size. */
2378 gregs_size
= n_gregs
* 8;
2380 if (!bfd_set_section_size (bpo_greg_owner
, bpo_gregs_section
, gregs_size
))
2383 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2384 time. Note that we must use the max number ever noted for the array,
2385 since the index numbers were created before GC. */
2386 gregdata
->reloc_request
2387 = bfd_zalloc (bpo_greg_owner
,
2388 sizeof (struct bpo_reloc_request
)
2389 * gregdata
->n_max_bpo_relocs
);
2391 gregdata
->bpo_reloc_indexes
2393 = bfd_alloc (bpo_greg_owner
,
2394 gregdata
->n_max_bpo_relocs
2396 if (bpo_reloc_indexes
== NULL
)
2399 /* The default order is an identity mapping. */
2400 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2402 bpo_reloc_indexes
[i
] = i
;
2403 gregdata
->reloc_request
[i
].bpo_reloc_no
= i
;
2409 /* Fill in contents in the linker allocated gregs. Everything is
2410 calculated at this point; we just move the contents into place here. */
2413 _bfd_mmix_after_linker_allocation (abfd
, link_info
)
2414 bfd
*abfd ATTRIBUTE_UNUSED
;
2415 struct bfd_link_info
*link_info
;
2417 asection
*bpo_gregs_section
;
2418 bfd
*bpo_greg_owner
;
2419 struct bpo_greg_section_info
*gregdata
;
2425 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2426 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2427 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2428 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2429 if (bpo_greg_owner
== NULL
)
2433 = bfd_get_section_by_name (bpo_greg_owner
,
2434 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2436 /* This can't happen without DSO handling. When DSOs are handled
2437 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2439 if (bpo_gregs_section
== NULL
)
2442 /* We use the target-data handle in the ELF section data. */
2444 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2445 if (gregdata
== NULL
)
2448 n_gregs
= gregdata
->n_allocated_bpo_gregs
;
2450 /* We need to have a _raw_size contents even though there's only
2451 _cooked_size worth of data, since the generic relocation machinery
2452 will allocate and copy that much temporarily. */
2453 bpo_gregs_section
->contents
2454 = contents
= bfd_alloc (bpo_greg_owner
, bpo_gregs_section
->_raw_size
);
2455 if (contents
== NULL
)
2458 /* Sanity check: If these numbers mismatch, some relocation has not been
2459 accounted for and the rest of gregdata is probably inconsistent.
2460 It's a bug, but it's more helpful to identify it than segfaulting
2462 if (gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2463 != gregdata
->n_bpo_relocs
)
2465 (*_bfd_error_handler
)
2466 (_("Internal inconsistency: remaining %u != max %u.\n\
2467 Please report this bug."),
2468 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2469 gregdata
->n_bpo_relocs
);
2473 for (lastreg
= 255, i
= 0, j
= 0; j
< n_gregs
; i
++)
2474 if (gregdata
->reloc_request
[i
].regindex
!= lastreg
)
2476 bfd_put_64 (bpo_greg_owner
, gregdata
->reloc_request
[i
].value
,
2478 lastreg
= gregdata
->reloc_request
[i
].regindex
;
2485 /* Sort valid relocs to come before non-valid relocs, then on increasing
2489 bpo_reloc_request_sort_fn (p1
, p2
)
2493 const struct bpo_reloc_request
*r1
= (const struct bpo_reloc_request
*) p1
;
2494 const struct bpo_reloc_request
*r2
= (const struct bpo_reloc_request
*) p2
;
2496 /* Primary function is validity; non-valid relocs sorted after valid
2498 if (r1
->valid
!= r2
->valid
)
2499 return r2
->valid
- r1
->valid
;
2501 /* Then sort on value. Don't simplify and return just the difference of
2502 the values: the upper bits of the 64-bit value would be truncated on
2503 a host with 32-bit ints. */
2504 if (r1
->value
!= r2
->value
)
2505 return r1
->value
> r2
->value
? 1 : -1;
2507 /* As a last re-sort, use the relocation number, so we get a stable
2508 sort. The *addresses* aren't stable since items are swapped during
2509 sorting. It depends on the qsort implementation if this actually
2511 return r1
->bpo_reloc_no
> r2
->bpo_reloc_no
2512 ? 1 : (r1
->bpo_reloc_no
< r2
->bpo_reloc_no
? -1 : 0);
2515 /* For debug use only. Dumps the global register allocations resulting
2516 from base-plus-offset relocs. */
2519 mmix_dump_bpo_gregs (link_info
, pf
)
2520 struct bfd_link_info
*link_info
;
2521 bfd_error_handler_type pf
;
2523 bfd
*bpo_greg_owner
;
2524 asection
*bpo_gregs_section
;
2525 struct bpo_greg_section_info
*gregdata
;
2528 if (link_info
== NULL
|| link_info
->base_file
== NULL
)
2531 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2534 = bfd_get_section_by_name (bpo_greg_owner
,
2535 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2537 if (bpo_gregs_section
== NULL
)
2540 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2541 if (gregdata
== NULL
)
2545 pf
= _bfd_error_handler
;
2547 /* These format strings are not translated. They are for debug purposes
2548 only and never displayed to an end user. Should they escape, we
2549 surely want them in original. */
2550 (*pf
) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2551 n_allocated_bpo_gregs: %u\n", gregdata
->n_bpo_relocs
,
2552 gregdata
->n_max_bpo_relocs
,
2553 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2554 gregdata
->n_allocated_bpo_gregs
);
2556 if (gregdata
->reloc_request
)
2557 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2558 (*pf
) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2560 (gregdata
->bpo_reloc_indexes
!= NULL
2561 ? gregdata
->bpo_reloc_indexes
[i
] : (size_t) -1),
2562 gregdata
->reloc_request
[i
].bpo_reloc_no
,
2563 gregdata
->reloc_request
[i
].valid
,
2565 (unsigned long) (gregdata
->reloc_request
[i
].value
>> 32),
2566 (unsigned long) gregdata
->reloc_request
[i
].value
,
2567 gregdata
->reloc_request
[i
].regindex
,
2568 gregdata
->reloc_request
[i
].offset
);
2571 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2572 when the last such reloc is done, an index-array is sorted according to
2573 the values and iterated over to produce register numbers (indexed by 0
2574 from the first allocated register number) and offsets for use in real
2577 PUSHJ stub accounting is also done here.
2579 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2582 mmix_elf_relax_section (abfd
, sec
, link_info
, again
)
2585 struct bfd_link_info
*link_info
;
2588 Elf_Internal_Shdr
*symtab_hdr
;
2589 Elf_Internal_Rela
*internal_relocs
;
2590 Elf_Internal_Rela
*irel
, *irelend
;
2591 asection
*bpo_gregs_section
= NULL
;
2592 struct bpo_greg_section_info
*gregdata
;
2593 struct bpo_reloc_section_info
*bpodata
2594 = mmix_elf_section_data (sec
)->bpo
.reloc
;
2595 /* The initialization is to quiet compiler warnings. The value is to
2596 spot a missing actual initialization. */
2597 size_t bpono
= (size_t) -1;
2599 bfd
*bpo_greg_owner
;
2600 Elf_Internal_Sym
*isymbuf
= NULL
;
2601 bfd_size_type raw_size
2603 - mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2604 * MAX_PUSHJ_STUB_SIZE
);
2606 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
= 0;
2608 /* Assume nothing changes. */
2611 /* If this is the first time we have been called for this section,
2612 initialize the cooked size. */
2613 if (sec
->_cooked_size
== 0 && sec
->_raw_size
!= 0)
2616 /* We don't have to do anything if this section does not have relocs, or
2617 if this is not a code section. */
2618 if ((sec
->flags
& SEC_RELOC
) == 0
2619 || sec
->reloc_count
== 0
2620 || (sec
->flags
& SEC_CODE
) == 0
2621 || (sec
->flags
& SEC_LINKER_CREATED
) != 0
2622 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2623 then nothing to do. */
2625 && mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0))
2628 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2630 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2632 if (bpodata
!= NULL
)
2634 bpo_gregs_section
= bpodata
->bpo_greg_section
;
2635 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2636 bpono
= bpodata
->first_base_plus_offset_reloc
;
2641 /* Get a copy of the native relocations. */
2643 = _bfd_elf_link_read_relocs (abfd
, sec
, (PTR
) NULL
,
2644 (Elf_Internal_Rela
*) NULL
,
2645 link_info
->keep_memory
);
2646 if (internal_relocs
== NULL
)
2649 /* Walk through them looking for relaxing opportunities. */
2650 irelend
= internal_relocs
+ sec
->reloc_count
;
2651 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2654 struct elf_link_hash_entry
*h
= NULL
;
2656 /* We only process two relocs. */
2657 if (ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_BASE_PLUS_OFFSET
2658 && ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_PUSHJ_STUBBABLE
)
2661 /* We process relocs in a distinctly different way when this is a
2662 relocatable link (for one, we don't look at symbols), so we avoid
2663 mixing its code with that for the "normal" relaxation. */
2664 if (link_info
->relocatable
)
2666 /* The only transformation in a relocatable link is to generate
2667 a full stub at the location of the stub calculated for the
2668 input section, if the relocated stub location, the end of the
2669 output section plus earlier stubs, cannot be reached. Thus
2670 relocatable linking can only lead to worse code, but it still
2672 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_PUSHJ_STUBBABLE
)
2674 /* If we can reach the end of the output-section and beyond
2675 any current stubs, then we don't need a stub for this
2676 reloc. The relaxed order of output stub allocation may
2677 not exactly match the straightforward order, so we always
2678 assume presence of output stubs, which will allow
2679 relaxation only on relocations indifferent to the
2680 presence of output stub allocations for other relocations
2681 and thus the order of output stub allocation. */
2682 if (bfd_check_overflow (complain_overflow_signed
,
2685 bfd_arch_bits_per_address (abfd
),
2686 /* Output-stub location. */
2687 sec
->output_section
->_cooked_size
2688 + (mmix_elf_section_data (sec
2690 ->pjs
.stubs_size_sum
)
2691 /* Location of this PUSHJ reloc. */
2692 - (sec
->output_offset
+ irel
->r_offset
)
2693 /* Don't count *this* stub twice. */
2694 - (mmix_elf_section_data (sec
)
2695 ->pjs
.stub_size
[pjsno
]
2696 + MAX_PUSHJ_STUB_SIZE
))
2698 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2700 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2701 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2709 /* Get the value of the symbol referred to by the reloc. */
2710 if (ELF64_R_SYM (irel
->r_info
) < symtab_hdr
->sh_info
)
2712 /* A local symbol. */
2713 Elf_Internal_Sym
*isym
;
2716 /* Read this BFD's local symbols if we haven't already. */
2717 if (isymbuf
== NULL
)
2719 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2720 if (isymbuf
== NULL
)
2721 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
2722 symtab_hdr
->sh_info
, 0,
2728 isym
= isymbuf
+ ELF64_R_SYM (irel
->r_info
);
2729 if (isym
->st_shndx
== SHN_UNDEF
)
2730 sym_sec
= bfd_und_section_ptr
;
2731 else if (isym
->st_shndx
== SHN_ABS
)
2732 sym_sec
= bfd_abs_section_ptr
;
2733 else if (isym
->st_shndx
== SHN_COMMON
)
2734 sym_sec
= bfd_com_section_ptr
;
2736 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
2737 symval
= (isym
->st_value
2738 + sym_sec
->output_section
->vma
2739 + sym_sec
->output_offset
);
2745 /* An external symbol. */
2746 indx
= ELF64_R_SYM (irel
->r_info
) - symtab_hdr
->sh_info
;
2747 h
= elf_sym_hashes (abfd
)[indx
];
2748 BFD_ASSERT (h
!= NULL
);
2749 if (h
->root
.type
!= bfd_link_hash_defined
2750 && h
->root
.type
!= bfd_link_hash_defweak
)
2752 /* This appears to be a reference to an undefined symbol. Just
2753 ignore it--it will be caught by the regular reloc processing.
2754 We need to keep BPO reloc accounting consistent, though
2755 else we'll abort instead of emitting an error message. */
2756 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_BASE_PLUS_OFFSET
2757 && gregdata
!= NULL
)
2759 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2765 symval
= (h
->root
.u
.def
.value
2766 + h
->root
.u
.def
.section
->output_section
->vma
2767 + h
->root
.u
.def
.section
->output_offset
);
2770 if (ELF64_R_TYPE (irel
->r_info
) == (int) R_MMIX_PUSHJ_STUBBABLE
)
2772 bfd_vma value
= symval
+ irel
->r_addend
;
2774 = (sec
->output_section
->vma
2775 + sec
->output_offset
2778 = (sec
->output_section
->vma
2779 + sec
->output_offset
2781 + mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
);
2783 if ((value
& 3) == 0
2784 && bfd_check_overflow (complain_overflow_signed
,
2787 bfd_arch_bits_per_address (abfd
),
2790 ? mmix_elf_section_data (sec
)
2791 ->pjs
.stub_size
[pjsno
]
2794 /* If the reloc fits, no stub is needed. */
2795 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2797 /* Maybe we can get away with just a JMP insn? */
2798 if ((value
& 3) == 0
2799 && bfd_check_overflow (complain_overflow_signed
,
2802 bfd_arch_bits_per_address (abfd
),
2805 ? mmix_elf_section_data (sec
)
2806 ->pjs
.stub_size
[pjsno
] - 4
2809 /* Yep, account for a stub consisting of a single JMP insn. */
2810 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 4;
2812 /* Nope, go for the full insn stub. It doesn't seem useful to
2813 emit the intermediate sizes; those will only be useful for
2814 a >64M program assuming contiguous code. */
2815 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
]
2816 = MAX_PUSHJ_STUB_SIZE
;
2818 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2819 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2824 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2826 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
]].value
2827 = symval
+ irel
->r_addend
;
2828 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
++]].valid
= TRUE
;
2829 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2832 /* Check if that was the last BPO-reloc. If so, sort the values and
2833 calculate how many registers we need to cover them. Set the size of
2834 the linker gregs, and if the number of registers changed, indicate
2835 that we need to relax some more because we have more work to do. */
2836 if (gregdata
!= NULL
2837 && gregdata
->n_remaining_bpo_relocs_this_relaxation_round
== 0)
2843 /* First, reset the remaining relocs for the next round. */
2844 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2845 = gregdata
->n_bpo_relocs
;
2847 qsort ((PTR
) gregdata
->reloc_request
,
2848 gregdata
->n_max_bpo_relocs
,
2849 sizeof (struct bpo_reloc_request
),
2850 bpo_reloc_request_sort_fn
);
2852 /* Recalculate indexes. When we find a change (however unlikely
2853 after the initial iteration), we know we need to relax again,
2854 since items in the GREG-array are sorted by increasing value and
2855 stored in the relaxation phase. */
2856 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2857 if (gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2860 gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2865 /* Allocate register numbers (indexing from 0). Stop at the first
2867 for (i
= 0, regindex
= 0, prev_base
= gregdata
->reloc_request
[0].value
;
2868 i
< gregdata
->n_bpo_relocs
;
2871 if (gregdata
->reloc_request
[i
].value
> prev_base
+ 255)
2874 prev_base
= gregdata
->reloc_request
[i
].value
;
2876 gregdata
->reloc_request
[i
].regindex
= regindex
;
2877 gregdata
->reloc_request
[i
].offset
2878 = gregdata
->reloc_request
[i
].value
- prev_base
;
2881 /* If it's not the same as the last time, we need to relax again,
2882 because the size of the section has changed. I'm not sure we
2883 actually need to do any adjustments since the shrinking happens
2884 at the start of this section, but better safe than sorry. */
2885 if (gregdata
->n_allocated_bpo_gregs
!= regindex
+ 1)
2887 gregdata
->n_allocated_bpo_gregs
= regindex
+ 1;
2891 bpo_gregs_section
->_cooked_size
= (regindex
+ 1) * 8;
2894 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2896 if (! link_info
->keep_memory
)
2900 /* Cache the symbols for elf_link_input_bfd. */
2901 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
2905 if (internal_relocs
!= NULL
2906 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2907 free (internal_relocs
);
2909 if (sec
->_cooked_size
2910 < raw_size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2913 if (sec
->_cooked_size
2914 > raw_size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2917 = raw_size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
;
2924 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2926 if (internal_relocs
!= NULL
2927 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2928 free (internal_relocs
);
2932 /* Because we set _raw_size to include the max size of pushj stubs,
2933 i.e. larger than the actual section input size (see
2934 mmix_set_relaxable_raw_size), we have to take care of that when reading
2938 mmix_elf_get_section_contents (abfd
, section
, location
, offset
, count
)
2943 bfd_size_type count
;
2945 bfd_size_type raw_size
2946 = (section
->_raw_size
2947 - mmix_elf_section_data (section
)->pjs
.n_pushj_relocs
2948 * MAX_PUSHJ_STUB_SIZE
);
2950 if (offset
+ count
> section
->_raw_size
)
2953 bfd_set_error (bfd_error_invalid_operation
);
2957 /* Check bounds against the faked raw_size. */
2958 if (offset
+ count
> raw_size
)
2960 /* Clear the part in the faked area. */
2961 memset (location
+ raw_size
- offset
, 0, count
- (raw_size
- offset
));
2963 /* If there's no initial part within the "real" contents, we're
2965 if ((bfd_size_type
) offset
>= raw_size
)
2968 /* Else adjust the count and fall through to call the generic
2970 count
= raw_size
- offset
;
2974 _bfd_generic_get_section_contents (abfd
, section
, location
, offset
,
2979 #define ELF_ARCH bfd_arch_mmix
2980 #define ELF_MACHINE_CODE EM_MMIX
2982 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2983 However, that's too much for something somewhere in the linker part of
2984 BFD; perhaps the start-address has to be a non-zero multiple of this
2985 number, or larger than this number. The symptom is that the linker
2986 complains: "warning: allocated section `.text' not in segment". We
2987 settle for 64k; the page-size used in examples is 8k.
2988 #define ELF_MAXPAGESIZE 0x10000
2990 Unfortunately, this causes excessive padding in the supposedly small
2991 for-education programs that are the expected usage (where people would
2992 inspect output). We stick to 256 bytes just to have *some* default
2994 #define ELF_MAXPAGESIZE 0x100
2996 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2997 #define TARGET_BIG_NAME "elf64-mmix"
2999 #define elf_info_to_howto_rel NULL
3000 #define elf_info_to_howto mmix_info_to_howto_rela
3001 #define elf_backend_relocate_section mmix_elf_relocate_section
3002 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
3003 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
3005 #define elf_backend_link_output_symbol_hook \
3006 mmix_elf_link_output_symbol_hook
3007 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
3009 #define elf_backend_check_relocs mmix_elf_check_relocs
3010 #define elf_backend_symbol_processing mmix_elf_symbol_processing
3012 #define bfd_elf64_bfd_is_local_label_name \
3013 mmix_elf_is_local_label_name
3015 #define elf_backend_may_use_rel_p 0
3016 #define elf_backend_may_use_rela_p 1
3017 #define elf_backend_default_use_rela_p 1
3019 #define elf_backend_can_gc_sections 1
3020 #define elf_backend_section_from_bfd_section \
3021 mmix_elf_section_from_bfd_section
3023 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3024 #define bfd_elf64_bfd_final_link mmix_elf_final_link
3025 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
3026 #define bfd_elf64_get_section_contents mmix_elf_get_section_contents
3028 #include "elf64-target.h"