1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
30 #include "safe-ctype.h"
32 #include "dwarf2dbg.h"
33 #include "opcode/i386.h"
35 #ifndef REGISTER_WARNINGS
36 #define REGISTER_WARNINGS 1
39 #ifndef INFER_ADDR_PREFIX
40 #define INFER_ADDR_PREFIX 1
43 #ifndef SCALE1_WHEN_NO_INDEX
44 /* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48 #define SCALE1_WHEN_NO_INDEX 1
52 #define RELOC_ENUM enum bfd_reloc_code_real
54 #define RELOC_ENUM int
58 #define DEFAULT_ARCH "i386"
63 #define INLINE __inline__
69 static INLINE
unsigned int mode_from_disp_size
PARAMS ((unsigned int));
70 static INLINE
int fits_in_signed_byte
PARAMS ((offsetT
));
71 static INLINE
int fits_in_unsigned_byte
PARAMS ((offsetT
));
72 static INLINE
int fits_in_unsigned_word
PARAMS ((offsetT
));
73 static INLINE
int fits_in_signed_word
PARAMS ((offsetT
));
74 static INLINE
int fits_in_unsigned_long
PARAMS ((offsetT
));
75 static INLINE
int fits_in_signed_long
PARAMS ((offsetT
));
76 static int smallest_imm_type
PARAMS ((offsetT
));
77 static offsetT offset_in_range
PARAMS ((offsetT
, int));
78 static int add_prefix
PARAMS ((unsigned int));
79 static void set_code_flag
PARAMS ((int));
80 static void set_16bit_gcc_code_flag
PARAMS ((int));
81 static void set_intel_syntax
PARAMS ((int));
82 static void set_cpu_arch
PARAMS ((int));
83 static char *output_invalid
PARAMS ((int c
));
84 static int i386_operand
PARAMS ((char *operand_string
));
85 static int i386_intel_operand
PARAMS ((char *operand_string
, int got_a_float
));
86 static const reg_entry
*parse_register
PARAMS ((char *reg_string
,
88 static char *parse_insn
PARAMS ((char *, char *));
89 static char *parse_operands
PARAMS ((char *, const char *));
90 static void swap_operands
PARAMS ((void));
91 static void optimize_imm
PARAMS ((void));
92 static void optimize_disp
PARAMS ((void));
93 static int match_template
PARAMS ((void));
94 static int check_string
PARAMS ((void));
95 static int process_suffix
PARAMS ((void));
96 static int check_byte_reg
PARAMS ((void));
97 static int check_long_reg
PARAMS ((void));
98 static int check_qword_reg
PARAMS ((void));
99 static int check_word_reg
PARAMS ((void));
100 static int finalize_imm
PARAMS ((void));
101 static int process_operands
PARAMS ((void));
102 static const seg_entry
*build_modrm_byte
PARAMS ((void));
103 static void output_insn
PARAMS ((void));
104 static void output_branch
PARAMS ((void));
105 static void output_jump
PARAMS ((void));
106 static void output_interseg_jump
PARAMS ((void));
107 static void output_imm
PARAMS ((fragS
*insn_start_frag
,
108 offsetT insn_start_off
));
109 static void output_disp
PARAMS ((fragS
*insn_start_frag
,
110 offsetT insn_start_off
));
112 static void s_bss
PARAMS ((int));
115 static const char *default_arch
= DEFAULT_ARCH
;
117 /* 'md_assemble ()' gathers together information and puts it into a
124 const reg_entry
*regs
;
129 /* TM holds the template for the insn were currently assembling. */
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
136 /* OPERANDS gives the number of given operands. */
137 unsigned int operands
;
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
142 unsigned int reg_operands
, disp_operands
, mem_operands
, imm_operands
;
144 /* TYPES [i] is the type (see above #defines) which tells us how to
145 use OP[i] for the corresponding operand. */
146 unsigned int types
[MAX_OPERANDS
];
148 /* Displacement expression, immediate expression, or register for each
150 union i386_op op
[MAX_OPERANDS
];
152 /* Flags for operands. */
153 unsigned int flags
[MAX_OPERANDS
];
154 #define Operand_PCrel 1
156 /* Relocation type for operand */
157 RELOC_ENUM reloc
[MAX_OPERANDS
];
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry
*base_reg
;
162 const reg_entry
*index_reg
;
163 unsigned int log2_scale_factor
;
165 /* SEG gives the seg_entries of this insn. They are zero unless
166 explicit segment overrides are given. */
167 const seg_entry
*seg
[2];
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes
;
172 unsigned char prefix
[MAX_PREFIXES
];
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
182 typedef struct _i386_insn i386_insn
;
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
187 const char extra_symbol_chars
[] = "*%-(@[";
189 const char extra_symbol_chars
[] = "*%-([";
192 #if (defined (TE_I386AIX) \
193 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
194 && !defined (TE_LINUX) \
195 && !defined (TE_FreeBSD) \
196 && !defined (TE_NetBSD)))
197 /* This array holds the chars that always start a comment. If the
198 pre-processor is disabled, these aren't very useful. */
199 const char comment_chars
[] = "#/";
200 #define PREFIX_SEPARATOR '\\'
202 /* This array holds the chars that only start a comment at the beginning of
203 a line. If the line seems to have the form '# 123 filename'
204 .line and .file directives will appear in the pre-processed output.
205 Note that input_file.c hand checks for '#' at the beginning of the
206 first line of the input file. This is because the compiler outputs
207 #NO_APP at the beginning of its output.
208 Also note that comments started like this one will always work if
209 '/' isn't otherwise defined. */
210 const char line_comment_chars
[] = "";
213 /* Putting '/' here makes it impossible to use the divide operator.
214 However, we need it for compatibility with SVR4 systems. */
215 const char comment_chars
[] = "#";
216 #define PREFIX_SEPARATOR '/'
218 const char line_comment_chars
[] = "/";
221 const char line_separator_chars
[] = ";";
223 /* Chars that can be used to separate mant from exp in floating point
225 const char EXP_CHARS
[] = "eE";
227 /* Chars that mean this number is a floating point constant
230 const char FLT_CHARS
[] = "fFdDxX";
232 /* Tables for lexical analysis. */
233 static char mnemonic_chars
[256];
234 static char register_chars
[256];
235 static char operand_chars
[256];
236 static char identifier_chars
[256];
237 static char digit_chars
[256];
239 /* Lexical macros. */
240 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
241 #define is_operand_char(x) (operand_chars[(unsigned char) x])
242 #define is_register_char(x) (register_chars[(unsigned char) x])
243 #define is_space_char(x) ((x) == ' ')
244 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
245 #define is_digit_char(x) (digit_chars[(unsigned char) x])
247 /* All non-digit non-letter charcters that may occur in an operand. */
248 static char operand_special_chars
[] = "%$-+(,)*._~/<>|&^!:[@]";
250 /* md_assemble() always leaves the strings it's passed unaltered. To
251 effect this we maintain a stack of saved characters that we've smashed
252 with '\0's (indicating end of strings for various sub-fields of the
253 assembler instruction). */
254 static char save_stack
[32];
255 static char *save_stack_p
;
256 #define END_STRING_AND_SAVE(s) \
257 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
258 #define RESTORE_END_STRING(s) \
259 do { *(s) = *--save_stack_p; } while (0)
261 /* The instruction we're assembling. */
264 /* Possible templates for current insn. */
265 static const templates
*current_templates
;
267 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
268 static expressionS disp_expressions
[2], im_expressions
[2];
270 /* Current operand we are working on. */
271 static int this_operand
;
273 /* We support four different modes. FLAG_CODE variable is used to distinguish
280 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
282 static enum flag_code flag_code
;
283 static int use_rela_relocations
= 0;
285 /* The names used to print error messages. */
286 static const char *flag_code_names
[] =
293 /* 1 for intel syntax,
295 static int intel_syntax
= 0;
297 /* 1 if register prefix % not required. */
298 static int allow_naked_reg
= 0;
300 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
301 leave, push, and pop instructions so that gcc has the same stack
302 frame as in 32 bit mode. */
303 static char stackop_size
= '\0';
305 /* Non-zero to quieten some warnings. */
306 static int quiet_warnings
= 0;
309 static const char *cpu_arch_name
= NULL
;
311 /* CPU feature flags. */
312 static unsigned int cpu_arch_flags
= CpuUnknownFlags
| CpuNo64
;
314 /* If set, conditional jumps are not automatically promoted to handle
315 larger than a byte offset. */
316 static unsigned int no_cond_jump_promotion
= 0;
318 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
321 /* Interface to relax_segment.
322 There are 3 major relax states for 386 jump insns because the
323 different types of jumps add different sizes to frags when we're
324 figuring out what sort of jump to choose to reach a given label. */
327 #define UNCOND_JUMP 0
329 #define COND_JUMP86 2
334 #define SMALL16 (SMALL | CODE16)
336 #define BIG16 (BIG | CODE16)
340 #define INLINE __inline__
346 #define ENCODE_RELAX_STATE(type, size) \
347 ((relax_substateT) (((type) << 2) | (size)))
348 #define TYPE_FROM_RELAX_STATE(s) \
350 #define DISP_SIZE_FROM_RELAX_STATE(s) \
351 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
353 /* This table is used by relax_frag to promote short jumps to long
354 ones where necessary. SMALL (short) jumps may be promoted to BIG
355 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
356 don't allow a short jump in a 32 bit code segment to be promoted to
357 a 16 bit offset jump because it's slower (requires data size
358 prefix), and doesn't work, unless the destination is in the bottom
359 64k of the code segment (The top 16 bits of eip are zeroed). */
361 const relax_typeS md_relax_table
[] =
364 1) most positive reach of this state,
365 2) most negative reach of this state,
366 3) how many bytes this mode will have in the variable part of the frag
367 4) which index into the table to try if we can't fit into this one. */
369 /* UNCOND_JUMP states. */
370 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
)},
371 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
)},
372 /* dword jmp adds 4 bytes to frag:
373 0 extra opcode bytes, 4 displacement bytes. */
375 /* word jmp adds 2 byte2 to frag:
376 0 extra opcode bytes, 2 displacement bytes. */
379 /* COND_JUMP states. */
380 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG
)},
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG16
)},
382 /* dword conditionals adds 5 bytes to frag:
383 1 extra opcode byte, 4 displacement bytes. */
385 /* word conditionals add 3 bytes to frag:
386 1 extra opcode byte, 2 displacement bytes. */
389 /* COND_JUMP86 states. */
390 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG
)},
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
)},
392 /* dword conditionals adds 5 bytes to frag:
393 1 extra opcode byte, 4 displacement bytes. */
395 /* word conditionals add 4 bytes to frag:
396 1 displacement byte and a 3 byte long branch insn. */
400 static const arch_entry cpu_arch
[] = {
402 {"i186", Cpu086
|Cpu186
},
403 {"i286", Cpu086
|Cpu186
|Cpu286
},
404 {"i386", Cpu086
|Cpu186
|Cpu286
|Cpu386
},
405 {"i486", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
},
406 {"i586", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|CpuMMX
},
407 {"i686", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuMMX
|CpuSSE
},
408 {"pentium", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|CpuMMX
},
409 {"pentiumpro",Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuMMX
|CpuSSE
},
410 {"pentium4", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuP4
|CpuMMX
|CpuSSE
|CpuSSE2
},
411 {"k6", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|CpuK6
|CpuMMX
|Cpu3dnow
},
412 {"athlon", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuK6
|CpuAthlon
|CpuMMX
|Cpu3dnow
},
413 {"sledgehammer",Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuK6
|CpuAthlon
|CpuSledgehammer
|CpuMMX
|Cpu3dnow
|CpuSSE
|CpuSSE2
},
417 const pseudo_typeS md_pseudo_table
[] =
419 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
420 {"align", s_align_bytes
, 0},
422 {"align", s_align_ptwo
, 0},
424 {"arch", set_cpu_arch
, 0},
428 {"ffloat", float_cons
, 'f'},
429 {"dfloat", float_cons
, 'd'},
430 {"tfloat", float_cons
, 'x'},
432 {"noopt", s_ignore
, 0},
433 {"optim", s_ignore
, 0},
434 {"code16gcc", set_16bit_gcc_code_flag
, CODE_16BIT
},
435 {"code16", set_code_flag
, CODE_16BIT
},
436 {"code32", set_code_flag
, CODE_32BIT
},
437 {"code64", set_code_flag
, CODE_64BIT
},
438 {"intel_syntax", set_intel_syntax
, 1},
439 {"att_syntax", set_intel_syntax
, 0},
440 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file
, 0},
441 {"loc", dwarf2_directive_loc
, 0},
445 /* For interface with expression (). */
446 extern char *input_line_pointer
;
448 /* Hash table for instruction mnemonic lookup. */
449 static struct hash_control
*op_hash
;
451 /* Hash table for register lookup. */
452 static struct hash_control
*reg_hash
;
455 i386_align_code (fragP
, count
)
459 /* Various efficient no-op patterns for aligning code labels.
460 Note: Don't try to assemble the instructions in the comments.
461 0L and 0w are not legal. */
462 static const char f32_1
[] =
464 static const char f32_2
[] =
465 {0x89,0xf6}; /* movl %esi,%esi */
466 static const char f32_3
[] =
467 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
468 static const char f32_4
[] =
469 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
470 static const char f32_5
[] =
472 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
473 static const char f32_6
[] =
474 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
475 static const char f32_7
[] =
476 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
477 static const char f32_8
[] =
479 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
480 static const char f32_9
[] =
481 {0x89,0xf6, /* movl %esi,%esi */
482 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
483 static const char f32_10
[] =
484 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
485 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
486 static const char f32_11
[] =
487 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
488 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
489 static const char f32_12
[] =
490 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
491 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
492 static const char f32_13
[] =
493 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
494 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
495 static const char f32_14
[] =
496 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
497 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
498 static const char f32_15
[] =
499 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
500 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
501 static const char f16_3
[] =
502 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
503 static const char f16_4
[] =
504 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
505 static const char f16_5
[] =
507 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
508 static const char f16_6
[] =
509 {0x89,0xf6, /* mov %si,%si */
510 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
511 static const char f16_7
[] =
512 {0x8d,0x74,0x00, /* lea 0(%si),%si */
513 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
514 static const char f16_8
[] =
515 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
516 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
517 static const char *const f32_patt
[] = {
518 f32_1
, f32_2
, f32_3
, f32_4
, f32_5
, f32_6
, f32_7
, f32_8
,
519 f32_9
, f32_10
, f32_11
, f32_12
, f32_13
, f32_14
, f32_15
521 static const char *const f16_patt
[] = {
522 f32_1
, f32_2
, f16_3
, f16_4
, f16_5
, f16_6
, f16_7
, f16_8
,
523 f32_15
, f32_15
, f32_15
, f32_15
, f32_15
, f32_15
, f32_15
526 if (count
<= 0 || count
> 15)
529 /* The recommended way to pad 64bit code is to use NOPs preceded by
530 maximally four 0x66 prefixes. Balance the size of nops. */
531 if (flag_code
== CODE_64BIT
)
534 int nnops
= (count
+ 3) / 4;
535 int len
= count
/ nnops
;
536 int remains
= count
- nnops
* len
;
539 for (i
= 0; i
< remains
; i
++)
541 memset (fragP
->fr_literal
+ fragP
->fr_fix
+ pos
, 0x66, len
);
542 fragP
->fr_literal
[fragP
->fr_fix
+ pos
+ len
] = 0x90;
545 for (; i
< nnops
; i
++)
547 memset (fragP
->fr_literal
+ fragP
->fr_fix
+ pos
, 0x66, len
- 1);
548 fragP
->fr_literal
[fragP
->fr_fix
+ pos
+ len
- 1] = 0x90;
553 if (flag_code
== CODE_16BIT
)
555 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
556 f16_patt
[count
- 1], count
);
558 /* Adjust jump offset. */
559 fragP
->fr_literal
[fragP
->fr_fix
+ 1] = count
- 2;
562 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
563 f32_patt
[count
- 1], count
);
564 fragP
->fr_var
= count
;
567 static INLINE
unsigned int
568 mode_from_disp_size (t
)
571 return (t
& Disp8
) ? 1 : (t
& (Disp16
| Disp32
| Disp32S
)) ? 2 : 0;
575 fits_in_signed_byte (num
)
578 return (num
>= -128) && (num
<= 127);
582 fits_in_unsigned_byte (num
)
585 return (num
& 0xff) == num
;
589 fits_in_unsigned_word (num
)
592 return (num
& 0xffff) == num
;
596 fits_in_signed_word (num
)
599 return (-32768 <= num
) && (num
<= 32767);
602 fits_in_signed_long (num
)
603 offsetT num ATTRIBUTE_UNUSED
;
608 return (!(((offsetT
) -1 << 31) & num
)
609 || (((offsetT
) -1 << 31) & num
) == ((offsetT
) -1 << 31));
611 } /* fits_in_signed_long() */
613 fits_in_unsigned_long (num
)
614 offsetT num ATTRIBUTE_UNUSED
;
619 return (num
& (((offsetT
) 2 << 31) - 1)) == num
;
621 } /* fits_in_unsigned_long() */
624 smallest_imm_type (num
)
627 if (cpu_arch_flags
!= (Cpu086
| Cpu186
| Cpu286
| Cpu386
| Cpu486
| CpuNo64
))
629 /* This code is disabled on the 486 because all the Imm1 forms
630 in the opcode table are slower on the i486. They're the
631 versions with the implicitly specified single-position
632 displacement, which has another syntax if you really want to
635 return Imm1
| Imm8
| Imm8S
| Imm16
| Imm32
| Imm32S
| Imm64
;
637 return (fits_in_signed_byte (num
)
638 ? (Imm8S
| Imm8
| Imm16
| Imm32
| Imm32S
| Imm64
)
639 : fits_in_unsigned_byte (num
)
640 ? (Imm8
| Imm16
| Imm32
| Imm32S
| Imm64
)
641 : (fits_in_signed_word (num
) || fits_in_unsigned_word (num
))
642 ? (Imm16
| Imm32
| Imm32S
| Imm64
)
643 : fits_in_signed_long (num
)
644 ? (Imm32
| Imm32S
| Imm64
)
645 : fits_in_unsigned_long (num
)
651 offset_in_range (val
, size
)
659 case 1: mask
= ((addressT
) 1 << 8) - 1; break;
660 case 2: mask
= ((addressT
) 1 << 16) - 1; break;
661 case 4: mask
= ((addressT
) 2 << 31) - 1; break;
663 case 8: mask
= ((addressT
) 2 << 63) - 1; break;
668 /* If BFD64, sign extend val. */
669 if (!use_rela_relocations
)
670 if ((val
& ~(((addressT
) 2 << 31) - 1)) == 0)
671 val
= (val
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
673 if ((val
& ~mask
) != 0 && (val
& ~mask
) != ~mask
)
675 char buf1
[40], buf2
[40];
677 sprint_value (buf1
, val
);
678 sprint_value (buf2
, val
& mask
);
679 as_warn (_("%s shortened to %s"), buf1
, buf2
);
684 /* Returns 0 if attempting to add a prefix where one from the same
685 class already exists, 1 if non rep/repne added, 2 if rep/repne
694 if (prefix
>= REX_OPCODE
&& prefix
< REX_OPCODE
+ 16
695 && flag_code
== CODE_64BIT
)
703 case CS_PREFIX_OPCODE
:
704 case DS_PREFIX_OPCODE
:
705 case ES_PREFIX_OPCODE
:
706 case FS_PREFIX_OPCODE
:
707 case GS_PREFIX_OPCODE
:
708 case SS_PREFIX_OPCODE
:
712 case REPNE_PREFIX_OPCODE
:
713 case REPE_PREFIX_OPCODE
:
716 case LOCK_PREFIX_OPCODE
:
724 case ADDR_PREFIX_OPCODE
:
728 case DATA_PREFIX_OPCODE
:
733 if (i
.prefix
[q
] != 0)
735 as_bad (_("same type of prefix used twice"));
740 i
.prefix
[q
] = prefix
;
745 set_code_flag (value
)
749 cpu_arch_flags
&= ~(Cpu64
| CpuNo64
);
750 cpu_arch_flags
|= (flag_code
== CODE_64BIT
? Cpu64
: CpuNo64
);
751 if (value
== CODE_64BIT
&& !(cpu_arch_flags
& CpuSledgehammer
))
753 as_bad (_("64bit mode not supported on this CPU."));
755 if (value
== CODE_32BIT
&& !(cpu_arch_flags
& Cpu386
))
757 as_bad (_("32bit mode not supported on this CPU."));
763 set_16bit_gcc_code_flag (new_code_flag
)
766 flag_code
= new_code_flag
;
767 cpu_arch_flags
&= ~(Cpu64
| CpuNo64
);
768 cpu_arch_flags
|= (flag_code
== CODE_64BIT
? Cpu64
: CpuNo64
);
773 set_intel_syntax (syntax_flag
)
776 /* Find out if register prefixing is specified. */
777 int ask_naked_reg
= 0;
780 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
782 char *string
= input_line_pointer
;
783 int e
= get_symbol_end ();
785 if (strcmp (string
, "prefix") == 0)
787 else if (strcmp (string
, "noprefix") == 0)
790 as_bad (_("bad argument to syntax directive."));
791 *input_line_pointer
= e
;
793 demand_empty_rest_of_line ();
795 intel_syntax
= syntax_flag
;
797 if (ask_naked_reg
== 0)
800 allow_naked_reg
= (intel_syntax
801 && (bfd_get_symbol_leading_char (stdoutput
) != '\0'));
803 /* Conservative default. */
808 allow_naked_reg
= (ask_naked_reg
< 0);
813 int dummy ATTRIBUTE_UNUSED
;
817 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
819 char *string
= input_line_pointer
;
820 int e
= get_symbol_end ();
823 for (i
= 0; cpu_arch
[i
].name
; i
++)
825 if (strcmp (string
, cpu_arch
[i
].name
) == 0)
827 cpu_arch_name
= cpu_arch
[i
].name
;
828 cpu_arch_flags
= (cpu_arch
[i
].flags
829 | (flag_code
== CODE_64BIT
? Cpu64
: CpuNo64
));
833 if (!cpu_arch
[i
].name
)
834 as_bad (_("no such architecture: `%s'"), string
);
836 *input_line_pointer
= e
;
839 as_bad (_("missing cpu architecture"));
841 no_cond_jump_promotion
= 0;
842 if (*input_line_pointer
== ','
843 && !is_end_of_line
[(unsigned char) input_line_pointer
[1]])
845 char *string
= ++input_line_pointer
;
846 int e
= get_symbol_end ();
848 if (strcmp (string
, "nojumps") == 0)
849 no_cond_jump_promotion
= 1;
850 else if (strcmp (string
, "jumps") == 0)
853 as_bad (_("no such architecture modifier: `%s'"), string
);
855 *input_line_pointer
= e
;
858 demand_empty_rest_of_line ();
865 if (!strcmp (default_arch
, "x86_64"))
866 return bfd_mach_x86_64
;
867 else if (!strcmp (default_arch
, "i386"))
868 return bfd_mach_i386_i386
;
870 as_fatal (_("Unknown architecture"));
877 const char *hash_err
;
879 /* Initialize op_hash hash table. */
880 op_hash
= hash_new ();
883 const template *optab
;
884 templates
*core_optab
;
886 /* Setup for loop. */
888 core_optab
= (templates
*) xmalloc (sizeof (templates
));
889 core_optab
->start
= optab
;
894 if (optab
->name
== NULL
895 || strcmp (optab
->name
, (optab
- 1)->name
) != 0)
897 /* different name --> ship out current template list;
898 add to hash table; & begin anew. */
899 core_optab
->end
= optab
;
900 hash_err
= hash_insert (op_hash
,
905 as_fatal (_("Internal Error: Can't hash %s: %s"),
909 if (optab
->name
== NULL
)
911 core_optab
= (templates
*) xmalloc (sizeof (templates
));
912 core_optab
->start
= optab
;
917 /* Initialize reg_hash hash table. */
918 reg_hash
= hash_new ();
920 const reg_entry
*regtab
;
922 for (regtab
= i386_regtab
;
923 regtab
< i386_regtab
+ sizeof (i386_regtab
) / sizeof (i386_regtab
[0]);
926 hash_err
= hash_insert (reg_hash
, regtab
->reg_name
, (PTR
) regtab
);
928 as_fatal (_("Internal Error: Can't hash %s: %s"),
934 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
939 for (c
= 0; c
< 256; c
++)
944 mnemonic_chars
[c
] = c
;
945 register_chars
[c
] = c
;
946 operand_chars
[c
] = c
;
948 else if (ISLOWER (c
))
950 mnemonic_chars
[c
] = c
;
951 register_chars
[c
] = c
;
952 operand_chars
[c
] = c
;
954 else if (ISUPPER (c
))
956 mnemonic_chars
[c
] = TOLOWER (c
);
957 register_chars
[c
] = mnemonic_chars
[c
];
958 operand_chars
[c
] = c
;
961 if (ISALPHA (c
) || ISDIGIT (c
))
962 identifier_chars
[c
] = c
;
965 identifier_chars
[c
] = c
;
966 operand_chars
[c
] = c
;
971 identifier_chars
['@'] = '@';
973 digit_chars
['-'] = '-';
974 identifier_chars
['_'] = '_';
975 identifier_chars
['.'] = '.';
977 for (p
= operand_special_chars
; *p
!= '\0'; p
++)
978 operand_chars
[(unsigned char) *p
] = *p
;
981 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
982 if (OUTPUT_FLAVOR
== bfd_target_elf_flavour
)
984 record_alignment (text_section
, 2);
985 record_alignment (data_section
, 2);
986 record_alignment (bss_section
, 2);
992 i386_print_statistics (file
)
995 hash_print_statistics (file
, "i386 opcode", op_hash
);
996 hash_print_statistics (file
, "i386 register", reg_hash
);
1001 /* Debugging routines for md_assemble. */
1002 static void pi
PARAMS ((char *, i386_insn
*));
1003 static void pte
PARAMS ((template *));
1004 static void pt
PARAMS ((unsigned int));
1005 static void pe
PARAMS ((expressionS
*));
1006 static void ps
PARAMS ((symbolS
*));
1015 fprintf (stdout
, "%s: template ", line
);
1017 fprintf (stdout
, " address: base %s index %s scale %x\n",
1018 x
->base_reg
? x
->base_reg
->reg_name
: "none",
1019 x
->index_reg
? x
->index_reg
->reg_name
: "none",
1020 x
->log2_scale_factor
);
1021 fprintf (stdout
, " modrm: mode %x reg %x reg/mem %x\n",
1022 x
->rm
.mode
, x
->rm
.reg
, x
->rm
.regmem
);
1023 fprintf (stdout
, " sib: base %x index %x scale %x\n",
1024 x
->sib
.base
, x
->sib
.index
, x
->sib
.scale
);
1025 fprintf (stdout
, " rex: 64bit %x extX %x extY %x extZ %x\n",
1026 (x
->rex
& REX_MODE64
) != 0,
1027 (x
->rex
& REX_EXTX
) != 0,
1028 (x
->rex
& REX_EXTY
) != 0,
1029 (x
->rex
& REX_EXTZ
) != 0);
1030 for (i
= 0; i
< x
->operands
; i
++)
1032 fprintf (stdout
, " #%d: ", i
+ 1);
1034 fprintf (stdout
, "\n");
1036 & (Reg
| SReg2
| SReg3
| Control
| Debug
| Test
| RegMMX
| RegXMM
))
1037 fprintf (stdout
, "%s\n", x
->op
[i
].regs
->reg_name
);
1038 if (x
->types
[i
] & Imm
)
1040 if (x
->types
[i
] & Disp
)
1041 pe (x
->op
[i
].disps
);
1050 fprintf (stdout
, " %d operands ", t
->operands
);
1051 fprintf (stdout
, "opcode %x ", t
->base_opcode
);
1052 if (t
->extension_opcode
!= None
)
1053 fprintf (stdout
, "ext %x ", t
->extension_opcode
);
1054 if (t
->opcode_modifier
& D
)
1055 fprintf (stdout
, "D");
1056 if (t
->opcode_modifier
& W
)
1057 fprintf (stdout
, "W");
1058 fprintf (stdout
, "\n");
1059 for (i
= 0; i
< t
->operands
; i
++)
1061 fprintf (stdout
, " #%d type ", i
+ 1);
1062 pt (t
->operand_types
[i
]);
1063 fprintf (stdout
, "\n");
1071 fprintf (stdout
, " operation %d\n", e
->X_op
);
1072 fprintf (stdout
, " add_number %ld (%lx)\n",
1073 (long) e
->X_add_number
, (long) e
->X_add_number
);
1074 if (e
->X_add_symbol
)
1076 fprintf (stdout
, " add_symbol ");
1077 ps (e
->X_add_symbol
);
1078 fprintf (stdout
, "\n");
1082 fprintf (stdout
, " op_symbol ");
1083 ps (e
->X_op_symbol
);
1084 fprintf (stdout
, "\n");
1092 fprintf (stdout
, "%s type %s%s",
1094 S_IS_EXTERNAL (s
) ? "EXTERNAL " : "",
1095 segment_name (S_GET_SEGMENT (s
)));
1104 static const type_names
[] =
1117 { BaseIndex
, "BaseIndex" },
1121 { Disp32S
, "d32s" },
1123 { InOutPortReg
, "InOutPortReg" },
1124 { ShiftCount
, "ShiftCount" },
1125 { Control
, "control reg" },
1126 { Test
, "test reg" },
1127 { Debug
, "debug reg" },
1128 { FloatReg
, "FReg" },
1129 { FloatAcc
, "FAcc" },
1133 { JumpAbsolute
, "Jump Absolute" },
1144 const struct type_name
*ty
;
1146 for (ty
= type_names
; ty
->mask
; ty
++)
1148 fprintf (stdout
, "%s, ", ty
->tname
);
1152 #endif /* DEBUG386 */
1154 #ifdef BFD_ASSEMBLER
1155 static bfd_reloc_code_real_type reloc
1156 PARAMS ((int, int, int, bfd_reloc_code_real_type
));
1158 static bfd_reloc_code_real_type
1159 reloc (size
, pcrel
, sign
, other
)
1163 bfd_reloc_code_real_type other
;
1165 if (other
!= NO_RELOC
)
1171 as_bad (_("There are no unsigned pc-relative relocations"));
1174 case 1: return BFD_RELOC_8_PCREL
;
1175 case 2: return BFD_RELOC_16_PCREL
;
1176 case 4: return BFD_RELOC_32_PCREL
;
1178 as_bad (_("can not do %d byte pc-relative relocation"), size
);
1185 case 4: return BFD_RELOC_X86_64_32S
;
1190 case 1: return BFD_RELOC_8
;
1191 case 2: return BFD_RELOC_16
;
1192 case 4: return BFD_RELOC_32
;
1193 case 8: return BFD_RELOC_64
;
1195 as_bad (_("can not do %s %d byte relocation"),
1196 sign
? "signed" : "unsigned", size
);
1200 return BFD_RELOC_NONE
;
1203 /* Here we decide which fixups can be adjusted to make them relative to
1204 the beginning of the section instead of the symbol. Basically we need
1205 to make sure that the dynamic relocations are done correctly, so in
1206 some cases we force the original symbol to be used. */
1209 tc_i386_fix_adjustable (fixP
)
1210 fixS
*fixP ATTRIBUTE_UNUSED
;
1212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
)
1216 /* Don't adjust pc-relative references to merge sections in 64-bit
1218 if (use_rela_relocations
1219 && (S_GET_SEGMENT (fixP
->fx_addsy
)->flags
& SEC_MERGE
) != 0
1223 /* adjust_reloc_syms doesn't know about the GOT. */
1224 if (fixP
->fx_r_type
== BFD_RELOC_386_GOTOFF
1225 || fixP
->fx_r_type
== BFD_RELOC_386_PLT32
1226 || fixP
->fx_r_type
== BFD_RELOC_386_GOT32
1227 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GD
1228 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDM
1229 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDO_32
1230 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE_32
1231 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE
1232 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTIE
1233 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE_32
1234 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE
1235 || fixP
->fx_r_type
== BFD_RELOC_X86_64_PLT32
1236 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOT32
1237 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPCREL
1238 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSGD
1239 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSLD
1240 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF32
1241 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTTPOFF
1242 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF32
1243 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
1244 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
1250 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1251 #define BFD_RELOC_8 0
1252 #define BFD_RELOC_16 0
1253 #define BFD_RELOC_32 0
1254 #define BFD_RELOC_8_PCREL 0
1255 #define BFD_RELOC_16_PCREL 0
1256 #define BFD_RELOC_32_PCREL 0
1257 #define BFD_RELOC_386_PLT32 0
1258 #define BFD_RELOC_386_GOT32 0
1259 #define BFD_RELOC_386_GOTOFF 0
1260 #define BFD_RELOC_386_TLS_GD 0
1261 #define BFD_RELOC_386_TLS_LDM 0
1262 #define BFD_RELOC_386_TLS_LDO_32 0
1263 #define BFD_RELOC_386_TLS_IE_32 0
1264 #define BFD_RELOC_386_TLS_IE 0
1265 #define BFD_RELOC_386_TLS_GOTIE 0
1266 #define BFD_RELOC_386_TLS_LE_32 0
1267 #define BFD_RELOC_386_TLS_LE 0
1268 #define BFD_RELOC_X86_64_PLT32 0
1269 #define BFD_RELOC_X86_64_GOT32 0
1270 #define BFD_RELOC_X86_64_GOTPCREL 0
1271 #define BFD_RELOC_X86_64_TLSGD 0
1272 #define BFD_RELOC_X86_64_TLSLD 0
1273 #define BFD_RELOC_X86_64_DTPOFF32 0
1274 #define BFD_RELOC_X86_64_GOTTPOFF 0
1275 #define BFD_RELOC_X86_64_TPOFF32 0
1278 static int intel_float_operand
PARAMS ((const char *mnemonic
));
1281 intel_float_operand (mnemonic
)
1282 const char *mnemonic
;
1284 if (mnemonic
[0] == 'f' && mnemonic
[1] == 'i')
1287 if (mnemonic
[0] == 'f')
1293 /* This is the guts of the machine-dependent assembler. LINE points to a
1294 machine dependent instruction. This function is supposed to emit
1295 the frags/bytes it assembles to. */
1302 char mnemonic
[MAX_MNEM_SIZE
];
1304 /* Initialize globals. */
1305 memset (&i
, '\0', sizeof (i
));
1306 for (j
= 0; j
< MAX_OPERANDS
; j
++)
1307 i
.reloc
[j
] = NO_RELOC
;
1308 memset (disp_expressions
, '\0', sizeof (disp_expressions
));
1309 memset (im_expressions
, '\0', sizeof (im_expressions
));
1310 save_stack_p
= save_stack
;
1312 /* First parse an instruction mnemonic & call i386_operand for the operands.
1313 We assume that the scrubber has arranged it so that line[0] is the valid
1314 start of a (possibly prefixed) mnemonic. */
1316 line
= parse_insn (line
, mnemonic
);
1320 line
= parse_operands (line
, mnemonic
);
1324 /* Now we've parsed the mnemonic into a set of templates, and have the
1325 operands at hand. */
1327 /* All intel opcodes have reversed operands except for "bound" and
1328 "enter". We also don't reverse intersegment "jmp" and "call"
1329 instructions with 2 immediate operands so that the immediate segment
1330 precedes the offset, as it does when in AT&T mode. "enter" and the
1331 intersegment "jmp" and "call" instructions are the only ones that
1332 have two immediate operands. */
1333 if (intel_syntax
&& i
.operands
> 1
1334 && (strcmp (mnemonic
, "bound") != 0)
1335 && !((i
.types
[0] & Imm
) && (i
.types
[1] & Imm
)))
1341 if (i
.disp_operands
)
1344 /* Next, we find a template that matches the given insn,
1345 making sure the overlap of the given operands types is consistent
1346 with the template operand types. */
1348 if (!match_template ())
1353 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1355 && (i
.tm
.base_opcode
& 0xfffffde0) == 0xdce0)
1356 i
.tm
.base_opcode
^= FloatR
;
1358 /* Zap movzx and movsx suffix. The suffix may have been set from
1359 "word ptr" or "byte ptr" on the source operand, but we'll use
1360 the suffix later to choose the destination register. */
1361 if ((i
.tm
.base_opcode
& ~9) == 0x0fb6)
1365 if (i
.tm
.opcode_modifier
& FWait
)
1366 if (!add_prefix (FWAIT_OPCODE
))
1369 /* Check string instruction segment overrides. */
1370 if ((i
.tm
.opcode_modifier
& IsString
) != 0 && i
.mem_operands
!= 0)
1372 if (!check_string ())
1376 if (!process_suffix ())
1379 /* Make still unresolved immediate matches conform to size of immediate
1380 given in i.suffix. */
1381 if (!finalize_imm ())
1384 if (i
.types
[0] & Imm1
)
1385 i
.imm_operands
= 0; /* kludge for shift insns. */
1386 if (i
.types
[0] & ImplicitRegister
)
1388 if (i
.types
[1] & ImplicitRegister
)
1390 if (i
.types
[2] & ImplicitRegister
)
1393 if (i
.tm
.opcode_modifier
& ImmExt
)
1395 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1396 opcode suffix which is coded in the same place as an 8-bit
1397 immediate field would be. Here we fake an 8-bit immediate
1398 operand from the opcode suffix stored in tm.extension_opcode. */
1402 assert (i
.imm_operands
== 0 && i
.operands
<= 2 && 2 < MAX_OPERANDS
);
1404 exp
= &im_expressions
[i
.imm_operands
++];
1405 i
.op
[i
.operands
].imms
= exp
;
1406 i
.types
[i
.operands
++] = Imm8
;
1407 exp
->X_op
= O_constant
;
1408 exp
->X_add_number
= i
.tm
.extension_opcode
;
1409 i
.tm
.extension_opcode
= None
;
1412 /* For insns with operands there are more diddles to do to the opcode. */
1415 if (!process_operands ())
1418 else if (!quiet_warnings
&& (i
.tm
.opcode_modifier
& Ugh
) != 0)
1420 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1421 as_warn (_("translating to `%sp'"), i
.tm
.name
);
1424 /* Handle conversion of 'int $3' --> special int3 insn. */
1425 if (i
.tm
.base_opcode
== INT_OPCODE
&& i
.op
[0].imms
->X_add_number
== 3)
1427 i
.tm
.base_opcode
= INT3_OPCODE
;
1431 if ((i
.tm
.opcode_modifier
& (Jump
| JumpByte
| JumpDword
))
1432 && i
.op
[0].disps
->X_op
== O_constant
)
1434 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1435 the absolute address given by the constant. Since ix86 jumps and
1436 calls are pc relative, we need to generate a reloc. */
1437 i
.op
[0].disps
->X_add_symbol
= &abs_symbol
;
1438 i
.op
[0].disps
->X_op
= O_symbol
;
1441 if ((i
.tm
.opcode_modifier
& Rex64
) != 0)
1442 i
.rex
|= REX_MODE64
;
1444 /* For 8 bit registers we need an empty rex prefix. Also if the
1445 instruction already has a prefix, we need to convert old
1446 registers to new ones. */
1448 if (((i
.types
[0] & Reg8
) != 0
1449 && (i
.op
[0].regs
->reg_flags
& RegRex64
) != 0)
1450 || ((i
.types
[1] & Reg8
) != 0
1451 && (i
.op
[1].regs
->reg_flags
& RegRex64
) != 0)
1452 || (((i
.types
[0] & Reg8
) != 0 || (i
.types
[1] & Reg8
) != 0)
1457 i
.rex
|= REX_OPCODE
;
1458 for (x
= 0; x
< 2; x
++)
1460 /* Look for 8 bit operand that uses old registers. */
1461 if ((i
.types
[x
] & Reg8
) != 0
1462 && (i
.op
[x
].regs
->reg_flags
& RegRex64
) == 0)
1464 /* In case it is "hi" register, give up. */
1465 if (i
.op
[x
].regs
->reg_num
> 3)
1466 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1467 i
.op
[x
].regs
->reg_name
);
1469 /* Otherwise it is equivalent to the extended register.
1470 Since the encoding doesn't change this is merely
1471 cosmetic cleanup for debug output. */
1473 i
.op
[x
].regs
= i
.op
[x
].regs
+ 8;
1479 add_prefix (REX_OPCODE
| i
.rex
);
1481 /* We are ready to output the insn. */
1486 parse_insn (line
, mnemonic
)
1491 char *token_start
= l
;
1494 /* Non-zero if we found a prefix only acceptable with string insns. */
1495 const char *expecting_string_instruction
= NULL
;
1500 while ((*mnem_p
= mnemonic_chars
[(unsigned char) *l
]) != 0)
1503 if (mnem_p
>= mnemonic
+ MAX_MNEM_SIZE
)
1505 as_bad (_("no such instruction: `%s'"), token_start
);
1510 if (!is_space_char (*l
)
1511 && *l
!= END_OF_INSN
1512 && *l
!= PREFIX_SEPARATOR
1515 as_bad (_("invalid character %s in mnemonic"),
1516 output_invalid (*l
));
1519 if (token_start
== l
)
1521 if (*l
== PREFIX_SEPARATOR
)
1522 as_bad (_("expecting prefix; got nothing"));
1524 as_bad (_("expecting mnemonic; got nothing"));
1528 /* Look up instruction (or prefix) via hash table. */
1529 current_templates
= hash_find (op_hash
, mnemonic
);
1531 if (*l
!= END_OF_INSN
1532 && (!is_space_char (*l
) || l
[1] != END_OF_INSN
)
1533 && current_templates
1534 && (current_templates
->start
->opcode_modifier
& IsPrefix
))
1536 /* If we are in 16-bit mode, do not allow addr16 or data16.
1537 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1538 if ((current_templates
->start
->opcode_modifier
& (Size16
| Size32
))
1539 && flag_code
!= CODE_64BIT
1540 && (((current_templates
->start
->opcode_modifier
& Size32
) != 0)
1541 ^ (flag_code
== CODE_16BIT
)))
1543 as_bad (_("redundant %s prefix"),
1544 current_templates
->start
->name
);
1547 /* Add prefix, checking for repeated prefixes. */
1548 switch (add_prefix (current_templates
->start
->base_opcode
))
1553 expecting_string_instruction
= current_templates
->start
->name
;
1556 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1563 if (!current_templates
)
1565 /* See if we can get a match by trimming off a suffix. */
1568 case WORD_MNEM_SUFFIX
:
1569 case BYTE_MNEM_SUFFIX
:
1570 case QWORD_MNEM_SUFFIX
:
1571 i
.suffix
= mnem_p
[-1];
1573 current_templates
= hash_find (op_hash
, mnemonic
);
1575 case SHORT_MNEM_SUFFIX
:
1576 case LONG_MNEM_SUFFIX
:
1579 i
.suffix
= mnem_p
[-1];
1581 current_templates
= hash_find (op_hash
, mnemonic
);
1589 if (intel_float_operand (mnemonic
))
1590 i
.suffix
= SHORT_MNEM_SUFFIX
;
1592 i
.suffix
= LONG_MNEM_SUFFIX
;
1594 current_templates
= hash_find (op_hash
, mnemonic
);
1598 if (!current_templates
)
1600 as_bad (_("no such instruction: `%s'"), token_start
);
1605 if (current_templates
->start
->opcode_modifier
& (Jump
| JumpByte
))
1607 /* Check for a branch hint. We allow ",pt" and ",pn" for
1608 predict taken and predict not taken respectively.
1609 I'm not sure that branch hints actually do anything on loop
1610 and jcxz insns (JumpByte) for current Pentium4 chips. They
1611 may work in the future and it doesn't hurt to accept them
1613 if (l
[0] == ',' && l
[1] == 'p')
1617 if (!add_prefix (DS_PREFIX_OPCODE
))
1621 else if (l
[2] == 'n')
1623 if (!add_prefix (CS_PREFIX_OPCODE
))
1629 /* Any other comma loses. */
1632 as_bad (_("invalid character %s in mnemonic"),
1633 output_invalid (*l
));
1637 /* Check if instruction is supported on specified architecture. */
1638 if ((current_templates
->start
->cpu_flags
& ~(Cpu64
| CpuNo64
))
1639 & ~(cpu_arch_flags
& ~(Cpu64
| CpuNo64
)))
1641 as_warn (_("`%s' is not supported on `%s'"),
1642 current_templates
->start
->name
, cpu_arch_name
);
1644 else if ((Cpu386
& ~cpu_arch_flags
) && (flag_code
!= CODE_16BIT
))
1646 as_warn (_("use .code16 to ensure correct addressing mode"));
1649 /* Check for rep/repne without a string instruction. */
1650 if (expecting_string_instruction
1651 && !(current_templates
->start
->opcode_modifier
& IsString
))
1653 as_bad (_("expecting string instruction after `%s'"),
1654 expecting_string_instruction
);
1662 parse_operands (l
, mnemonic
)
1664 const char *mnemonic
;
1668 /* 1 if operand is pending after ','. */
1669 unsigned int expecting_operand
= 0;
1671 /* Non-zero if operand parens not balanced. */
1672 unsigned int paren_not_balanced
;
1674 while (*l
!= END_OF_INSN
)
1676 /* Skip optional white space before operand. */
1677 if (is_space_char (*l
))
1679 if (!is_operand_char (*l
) && *l
!= END_OF_INSN
)
1681 as_bad (_("invalid character %s before operand %d"),
1682 output_invalid (*l
),
1686 token_start
= l
; /* after white space */
1687 paren_not_balanced
= 0;
1688 while (paren_not_balanced
|| *l
!= ',')
1690 if (*l
== END_OF_INSN
)
1692 if (paren_not_balanced
)
1695 as_bad (_("unbalanced parenthesis in operand %d."),
1698 as_bad (_("unbalanced brackets in operand %d."),
1703 break; /* we are done */
1705 else if (!is_operand_char (*l
) && !is_space_char (*l
))
1707 as_bad (_("invalid character %s in operand %d"),
1708 output_invalid (*l
),
1715 ++paren_not_balanced
;
1717 --paren_not_balanced
;
1722 ++paren_not_balanced
;
1724 --paren_not_balanced
;
1728 if (l
!= token_start
)
1729 { /* Yes, we've read in another operand. */
1730 unsigned int operand_ok
;
1731 this_operand
= i
.operands
++;
1732 if (i
.operands
> MAX_OPERANDS
)
1734 as_bad (_("spurious operands; (%d operands/instruction max)"),
1738 /* Now parse operand adding info to 'i' as we go along. */
1739 END_STRING_AND_SAVE (l
);
1743 i386_intel_operand (token_start
,
1744 intel_float_operand (mnemonic
));
1746 operand_ok
= i386_operand (token_start
);
1748 RESTORE_END_STRING (l
);
1754 if (expecting_operand
)
1756 expecting_operand_after_comma
:
1757 as_bad (_("expecting operand after ','; got nothing"));
1762 as_bad (_("expecting operand before ','; got nothing"));
1767 /* Now *l must be either ',' or END_OF_INSN. */
1770 if (*++l
== END_OF_INSN
)
1772 /* Just skip it, if it's \n complain. */
1773 goto expecting_operand_after_comma
;
1775 expecting_operand
= 1;
1784 union i386_op temp_op
;
1785 unsigned int temp_type
;
1786 RELOC_ENUM temp_reloc
;
1790 if (i
.operands
== 2)
1795 else if (i
.operands
== 3)
1800 temp_type
= i
.types
[xchg2
];
1801 i
.types
[xchg2
] = i
.types
[xchg1
];
1802 i
.types
[xchg1
] = temp_type
;
1803 temp_op
= i
.op
[xchg2
];
1804 i
.op
[xchg2
] = i
.op
[xchg1
];
1805 i
.op
[xchg1
] = temp_op
;
1806 temp_reloc
= i
.reloc
[xchg2
];
1807 i
.reloc
[xchg2
] = i
.reloc
[xchg1
];
1808 i
.reloc
[xchg1
] = temp_reloc
;
1810 if (i
.mem_operands
== 2)
1812 const seg_entry
*temp_seg
;
1813 temp_seg
= i
.seg
[0];
1814 i
.seg
[0] = i
.seg
[1];
1815 i
.seg
[1] = temp_seg
;
1819 /* Try to ensure constant immediates are represented in the smallest
1824 char guess_suffix
= 0;
1828 guess_suffix
= i
.suffix
;
1829 else if (i
.reg_operands
)
1831 /* Figure out a suffix from the last register operand specified.
1832 We can't do this properly yet, ie. excluding InOutPortReg,
1833 but the following works for instructions with immediates.
1834 In any case, we can't set i.suffix yet. */
1835 for (op
= i
.operands
; --op
>= 0;)
1836 if (i
.types
[op
] & Reg
)
1838 if (i
.types
[op
] & Reg8
)
1839 guess_suffix
= BYTE_MNEM_SUFFIX
;
1840 else if (i
.types
[op
] & Reg16
)
1841 guess_suffix
= WORD_MNEM_SUFFIX
;
1842 else if (i
.types
[op
] & Reg32
)
1843 guess_suffix
= LONG_MNEM_SUFFIX
;
1844 else if (i
.types
[op
] & Reg64
)
1845 guess_suffix
= QWORD_MNEM_SUFFIX
;
1849 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
1850 guess_suffix
= WORD_MNEM_SUFFIX
;
1852 for (op
= i
.operands
; --op
>= 0;)
1853 if (i
.types
[op
] & Imm
)
1855 switch (i
.op
[op
].imms
->X_op
)
1858 /* If a suffix is given, this operand may be shortened. */
1859 switch (guess_suffix
)
1861 case LONG_MNEM_SUFFIX
:
1862 i
.types
[op
] |= Imm32
| Imm64
;
1864 case WORD_MNEM_SUFFIX
:
1865 i
.types
[op
] |= Imm16
| Imm32S
| Imm32
| Imm64
;
1867 case BYTE_MNEM_SUFFIX
:
1868 i
.types
[op
] |= Imm16
| Imm8
| Imm8S
| Imm32S
| Imm32
| Imm64
;
1872 /* If this operand is at most 16 bits, convert it
1873 to a signed 16 bit number before trying to see
1874 whether it will fit in an even smaller size.
1875 This allows a 16-bit operand such as $0xffe0 to
1876 be recognised as within Imm8S range. */
1877 if ((i
.types
[op
] & Imm16
)
1878 && (i
.op
[op
].imms
->X_add_number
& ~(offsetT
) 0xffff) == 0)
1880 i
.op
[op
].imms
->X_add_number
=
1881 (((i
.op
[op
].imms
->X_add_number
& 0xffff) ^ 0x8000) - 0x8000);
1883 if ((i
.types
[op
] & Imm32
)
1884 && ((i
.op
[op
].imms
->X_add_number
& ~(((offsetT
) 2 << 31) - 1))
1887 i
.op
[op
].imms
->X_add_number
= ((i
.op
[op
].imms
->X_add_number
1888 ^ ((offsetT
) 1 << 31))
1889 - ((offsetT
) 1 << 31));
1891 i
.types
[op
] |= smallest_imm_type (i
.op
[op
].imms
->X_add_number
);
1893 /* We must avoid matching of Imm32 templates when 64bit
1894 only immediate is available. */
1895 if (guess_suffix
== QWORD_MNEM_SUFFIX
)
1896 i
.types
[op
] &= ~Imm32
;
1903 /* Symbols and expressions. */
1905 /* Convert symbolic operand to proper sizes for matching. */
1906 switch (guess_suffix
)
1908 case QWORD_MNEM_SUFFIX
:
1909 i
.types
[op
] = Imm64
| Imm32S
;
1911 case LONG_MNEM_SUFFIX
:
1912 i
.types
[op
] = Imm32
| Imm64
;
1914 case WORD_MNEM_SUFFIX
:
1915 i
.types
[op
] = Imm16
| Imm32
| Imm64
;
1918 case BYTE_MNEM_SUFFIX
:
1919 i
.types
[op
] = Imm8
| Imm8S
| Imm16
| Imm32S
| Imm32
;
1928 /* Try to use the smallest displacement type too. */
1934 for (op
= i
.operands
; --op
>= 0;)
1935 if ((i
.types
[op
] & Disp
) && i
.op
[op
].disps
->X_op
== O_constant
)
1937 offsetT disp
= i
.op
[op
].disps
->X_add_number
;
1939 if (i
.types
[op
] & Disp16
)
1941 /* We know this operand is at most 16 bits, so
1942 convert to a signed 16 bit number before trying
1943 to see whether it will fit in an even smaller
1946 disp
= (((disp
& 0xffff) ^ 0x8000) - 0x8000);
1948 else if (i
.types
[op
] & Disp32
)
1950 /* We know this operand is at most 32 bits, so convert to a
1951 signed 32 bit number before trying to see whether it will
1952 fit in an even smaller size. */
1953 disp
&= (((offsetT
) 2 << 31) - 1);
1954 disp
= (disp
^ ((offsetT
) 1 << 31)) - ((addressT
) 1 << 31);
1956 if (flag_code
== CODE_64BIT
)
1958 if (fits_in_signed_long (disp
))
1959 i
.types
[op
] |= Disp32S
;
1960 if (fits_in_unsigned_long (disp
))
1961 i
.types
[op
] |= Disp32
;
1963 if ((i
.types
[op
] & (Disp32
| Disp32S
| Disp16
))
1964 && fits_in_signed_byte (disp
))
1965 i
.types
[op
] |= Disp8
;
1972 /* Points to template once we've found it. */
1974 unsigned int overlap0
, overlap1
, overlap2
;
1975 unsigned int found_reverse_match
;
1978 #define MATCH(overlap, given, template) \
1979 ((overlap & ~JumpAbsolute) \
1980 && (((given) & (BaseIndex | JumpAbsolute)) \
1981 == ((overlap) & (BaseIndex | JumpAbsolute))))
1983 /* If given types r0 and r1 are registers they must be of the same type
1984 unless the expected operand type register overlap is null.
1985 Note that Acc in a template matches every size of reg. */
1986 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1987 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
1988 || ((g0) & Reg) == ((g1) & Reg) \
1989 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1994 found_reverse_match
= 0;
1995 suffix_check
= (i
.suffix
== BYTE_MNEM_SUFFIX
1997 : (i
.suffix
== WORD_MNEM_SUFFIX
1999 : (i
.suffix
== SHORT_MNEM_SUFFIX
2001 : (i
.suffix
== LONG_MNEM_SUFFIX
2003 : (i
.suffix
== QWORD_MNEM_SUFFIX
2005 : (i
.suffix
== LONG_DOUBLE_MNEM_SUFFIX
2006 ? No_xSuf
: 0))))));
2008 for (t
= current_templates
->start
;
2009 t
< current_templates
->end
;
2012 /* Must have right number of operands. */
2013 if (i
.operands
!= t
->operands
)
2016 /* Check the suffix, except for some instructions in intel mode. */
2017 if ((t
->opcode_modifier
& suffix_check
)
2019 && (t
->opcode_modifier
& IgnoreSize
))
2021 && t
->base_opcode
== 0xd9
2022 && (t
->extension_opcode
== 5 /* 0xd9,5 "fldcw" */
2023 || t
->extension_opcode
== 7))) /* 0xd9,7 "f{n}stcw" */
2026 /* Do not verify operands when there are none. */
2027 else if (!t
->operands
)
2029 if (t
->cpu_flags
& ~cpu_arch_flags
)
2031 /* We've found a match; break out of loop. */
2035 overlap0
= i
.types
[0] & t
->operand_types
[0];
2036 switch (t
->operands
)
2039 if (!MATCH (overlap0
, i
.types
[0], t
->operand_types
[0]))
2044 overlap1
= i
.types
[1] & t
->operand_types
[1];
2045 if (!MATCH (overlap0
, i
.types
[0], t
->operand_types
[0])
2046 || !MATCH (overlap1
, i
.types
[1], t
->operand_types
[1])
2047 || !CONSISTENT_REGISTER_MATCH (overlap0
, i
.types
[0],
2048 t
->operand_types
[0],
2049 overlap1
, i
.types
[1],
2050 t
->operand_types
[1]))
2052 /* Check if other direction is valid ... */
2053 if ((t
->opcode_modifier
& (D
| FloatD
)) == 0)
2056 /* Try reversing direction of operands. */
2057 overlap0
= i
.types
[0] & t
->operand_types
[1];
2058 overlap1
= i
.types
[1] & t
->operand_types
[0];
2059 if (!MATCH (overlap0
, i
.types
[0], t
->operand_types
[1])
2060 || !MATCH (overlap1
, i
.types
[1], t
->operand_types
[0])
2061 || !CONSISTENT_REGISTER_MATCH (overlap0
, i
.types
[0],
2062 t
->operand_types
[1],
2063 overlap1
, i
.types
[1],
2064 t
->operand_types
[0]))
2066 /* Does not match either direction. */
2069 /* found_reverse_match holds which of D or FloatDR
2071 found_reverse_match
= t
->opcode_modifier
& (D
| FloatDR
);
2073 /* Found a forward 2 operand match here. */
2074 else if (t
->operands
== 3)
2076 /* Here we make use of the fact that there are no
2077 reverse match 3 operand instructions, and all 3
2078 operand instructions only need to be checked for
2079 register consistency between operands 2 and 3. */
2080 overlap2
= i
.types
[2] & t
->operand_types
[2];
2081 if (!MATCH (overlap2
, i
.types
[2], t
->operand_types
[2])
2082 || !CONSISTENT_REGISTER_MATCH (overlap1
, i
.types
[1],
2083 t
->operand_types
[1],
2084 overlap2
, i
.types
[2],
2085 t
->operand_types
[2]))
2089 /* Found either forward/reverse 2 or 3 operand match here:
2090 slip through to break. */
2092 if (t
->cpu_flags
& ~cpu_arch_flags
)
2094 found_reverse_match
= 0;
2097 /* We've found a match; break out of loop. */
2101 if (t
== current_templates
->end
)
2103 /* We found no match. */
2104 as_bad (_("suffix or operands invalid for `%s'"),
2105 current_templates
->start
->name
);
2109 if (!quiet_warnings
)
2112 && ((i
.types
[0] & JumpAbsolute
)
2113 != (t
->operand_types
[0] & JumpAbsolute
)))
2115 as_warn (_("indirect %s without `*'"), t
->name
);
2118 if ((t
->opcode_modifier
& (IsPrefix
| IgnoreSize
))
2119 == (IsPrefix
| IgnoreSize
))
2121 /* Warn them that a data or address size prefix doesn't
2122 affect assembly of the next line of code. */
2123 as_warn (_("stand-alone `%s' prefix"), t
->name
);
2127 /* Copy the template we found. */
2129 if (found_reverse_match
)
2131 /* If we found a reverse match we must alter the opcode
2132 direction bit. found_reverse_match holds bits to change
2133 (different for int & float insns). */
2135 i
.tm
.base_opcode
^= found_reverse_match
;
2137 i
.tm
.operand_types
[0] = t
->operand_types
[1];
2138 i
.tm
.operand_types
[1] = t
->operand_types
[0];
2147 int mem_op
= (i
.types
[0] & AnyMem
) ? 0 : 1;
2148 if ((i
.tm
.operand_types
[mem_op
] & EsSeg
) != 0)
2150 if (i
.seg
[0] != NULL
&& i
.seg
[0] != &es
)
2152 as_bad (_("`%s' operand %d must use `%%es' segment"),
2157 /* There's only ever one segment override allowed per instruction.
2158 This instruction possibly has a legal segment override on the
2159 second operand, so copy the segment to where non-string
2160 instructions store it, allowing common code. */
2161 i
.seg
[0] = i
.seg
[1];
2163 else if ((i
.tm
.operand_types
[mem_op
+ 1] & EsSeg
) != 0)
2165 if (i
.seg
[1] != NULL
&& i
.seg
[1] != &es
)
2167 as_bad (_("`%s' operand %d must use `%%es' segment"),
2179 /* If matched instruction specifies an explicit instruction mnemonic
2181 if (i
.tm
.opcode_modifier
& (Size16
| Size32
| Size64
))
2183 if (i
.tm
.opcode_modifier
& Size16
)
2184 i
.suffix
= WORD_MNEM_SUFFIX
;
2185 else if (i
.tm
.opcode_modifier
& Size64
)
2186 i
.suffix
= QWORD_MNEM_SUFFIX
;
2188 i
.suffix
= LONG_MNEM_SUFFIX
;
2190 else if (i
.reg_operands
)
2192 /* If there's no instruction mnemonic suffix we try to invent one
2193 based on register operands. */
2196 /* We take i.suffix from the last register operand specified,
2197 Destination register type is more significant than source
2200 for (op
= i
.operands
; --op
>= 0;)
2201 if ((i
.types
[op
] & Reg
)
2202 && !(i
.tm
.operand_types
[op
] & InOutPortReg
))
2204 i
.suffix
= ((i
.types
[op
] & Reg8
) ? BYTE_MNEM_SUFFIX
:
2205 (i
.types
[op
] & Reg16
) ? WORD_MNEM_SUFFIX
:
2206 (i
.types
[op
] & Reg64
) ? QWORD_MNEM_SUFFIX
:
2211 else if (i
.suffix
== BYTE_MNEM_SUFFIX
)
2213 if (!check_byte_reg ())
2216 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
2218 if (!check_long_reg ())
2221 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
2223 if (!check_qword_reg ())
2226 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
2228 if (!check_word_reg ())
2231 else if (intel_syntax
&& (i
.tm
.opcode_modifier
& IgnoreSize
))
2232 /* Do nothing if the instruction is going to ignore the prefix. */
2237 else if ((i
.tm
.opcode_modifier
& DefaultSize
) && !i
.suffix
)
2239 i
.suffix
= stackop_size
;
2242 /* Change the opcode based on the operand size given by i.suffix;
2243 We need not change things for byte insns. */
2245 if (!i
.suffix
&& (i
.tm
.opcode_modifier
& W
))
2247 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2251 if (i
.suffix
&& i
.suffix
!= BYTE_MNEM_SUFFIX
)
2253 /* It's not a byte, select word/dword operation. */
2254 if (i
.tm
.opcode_modifier
& W
)
2256 if (i
.tm
.opcode_modifier
& ShortForm
)
2257 i
.tm
.base_opcode
|= 8;
2259 i
.tm
.base_opcode
|= 1;
2262 /* Now select between word & dword operations via the operand
2263 size prefix, except for instructions that will ignore this
2265 if (i
.suffix
!= QWORD_MNEM_SUFFIX
2266 && !(i
.tm
.opcode_modifier
& IgnoreSize
)
2267 && ((i
.suffix
== LONG_MNEM_SUFFIX
) == (flag_code
== CODE_16BIT
)
2268 || (flag_code
== CODE_64BIT
2269 && (i
.tm
.opcode_modifier
& JumpByte
))))
2271 unsigned int prefix
= DATA_PREFIX_OPCODE
;
2272 if (i
.tm
.opcode_modifier
& JumpByte
) /* jcxz, loop */
2273 prefix
= ADDR_PREFIX_OPCODE
;
2275 if (!add_prefix (prefix
))
2279 /* Set mode64 for an operand. */
2280 if (i
.suffix
== QWORD_MNEM_SUFFIX
2281 && flag_code
== CODE_64BIT
2282 && (i
.tm
.opcode_modifier
& NoRex64
) == 0)
2283 i
.rex
|= REX_MODE64
;
2285 /* Size floating point instruction. */
2286 if (i
.suffix
== LONG_MNEM_SUFFIX
)
2288 if (i
.tm
.opcode_modifier
& FloatMF
)
2289 i
.tm
.base_opcode
^= 4;
2300 for (op
= i
.operands
; --op
>= 0;)
2302 /* If this is an eight bit register, it's OK. If it's the 16 or
2303 32 bit version of an eight bit register, we will just use the
2304 low portion, and that's OK too. */
2305 if (i
.types
[op
] & Reg8
)
2308 /* movzx and movsx should not generate this warning. */
2310 && (i
.tm
.base_opcode
== 0xfb7
2311 || i
.tm
.base_opcode
== 0xfb6
2312 || i
.tm
.base_opcode
== 0x63
2313 || i
.tm
.base_opcode
== 0xfbe
2314 || i
.tm
.base_opcode
== 0xfbf))
2317 if ((i
.types
[op
] & WordReg
) && i
.op
[op
].regs
->reg_num
< 4
2319 /* Check that the template allows eight bit regs. This
2320 kills insns such as `orb $1,%edx', which maybe should be
2322 && (i
.tm
.operand_types
[op
] & (Reg8
| InOutPortReg
))
2326 /* Prohibit these changes in the 64bit mode, since the
2327 lowering is more complicated. */
2328 if (flag_code
== CODE_64BIT
2329 && (i
.tm
.operand_types
[op
] & InOutPortReg
) == 0)
2331 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2332 i
.op
[op
].regs
->reg_name
,
2336 #if REGISTER_WARNINGS
2338 && (i
.tm
.operand_types
[op
] & InOutPortReg
) == 0)
2339 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2340 (i
.op
[op
].regs
+ (i
.types
[op
] & Reg16
2341 ? REGNAM_AL
- REGNAM_AX
2342 : REGNAM_AL
- REGNAM_EAX
))->reg_name
,
2343 i
.op
[op
].regs
->reg_name
,
2348 /* Any other register is bad. */
2349 if (i
.types
[op
] & (Reg
| RegMMX
| RegXMM
2351 | Control
| Debug
| Test
2352 | FloatReg
| FloatAcc
))
2354 as_bad (_("`%%%s' not allowed with `%s%c'"),
2355 i
.op
[op
].regs
->reg_name
,
2369 for (op
= i
.operands
; --op
>= 0;)
2370 /* Reject eight bit registers, except where the template requires
2371 them. (eg. movzb) */
2372 if ((i
.types
[op
] & Reg8
) != 0
2373 && (i
.tm
.operand_types
[op
] & (Reg16
| Reg32
| Acc
)) != 0)
2375 as_bad (_("`%%%s' not allowed with `%s%c'"),
2376 i
.op
[op
].regs
->reg_name
,
2381 /* Warn if the e prefix on a general reg is missing. */
2382 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
2383 && (i
.types
[op
] & Reg16
) != 0
2384 && (i
.tm
.operand_types
[op
] & (Reg32
| Acc
)) != 0)
2386 /* Prohibit these changes in the 64bit mode, since the
2387 lowering is more complicated. */
2388 if (flag_code
== CODE_64BIT
)
2390 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2391 i
.op
[op
].regs
->reg_name
,
2395 #if REGISTER_WARNINGS
2397 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2398 (i
.op
[op
].regs
+ REGNAM_EAX
- REGNAM_AX
)->reg_name
,
2399 i
.op
[op
].regs
->reg_name
,
2403 /* Warn if the r prefix on a general reg is missing. */
2404 else if ((i
.types
[op
] & Reg64
) != 0
2405 && (i
.tm
.operand_types
[op
] & (Reg32
| Acc
)) != 0)
2407 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2408 i
.op
[op
].regs
->reg_name
,
2420 for (op
= i
.operands
; --op
>= 0; )
2421 /* Reject eight bit registers, except where the template requires
2422 them. (eg. movzb) */
2423 if ((i
.types
[op
] & Reg8
) != 0
2424 && (i
.tm
.operand_types
[op
] & (Reg16
| Reg32
| Acc
)) != 0)
2426 as_bad (_("`%%%s' not allowed with `%s%c'"),
2427 i
.op
[op
].regs
->reg_name
,
2432 /* Warn if the e prefix on a general reg is missing. */
2433 else if (((i
.types
[op
] & Reg16
) != 0
2434 || (i
.types
[op
] & Reg32
) != 0)
2435 && (i
.tm
.operand_types
[op
] & (Reg32
| Acc
)) != 0)
2437 /* Prohibit these changes in the 64bit mode, since the
2438 lowering is more complicated. */
2439 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2440 i
.op
[op
].regs
->reg_name
,
2451 for (op
= i
.operands
; --op
>= 0;)
2452 /* Reject eight bit registers, except where the template requires
2453 them. (eg. movzb) */
2454 if ((i
.types
[op
] & Reg8
) != 0
2455 && (i
.tm
.operand_types
[op
] & (Reg16
| Reg32
| Acc
)) != 0)
2457 as_bad (_("`%%%s' not allowed with `%s%c'"),
2458 i
.op
[op
].regs
->reg_name
,
2463 /* Warn if the e prefix on a general reg is present. */
2464 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
2465 && (i
.types
[op
] & Reg32
) != 0
2466 && (i
.tm
.operand_types
[op
] & (Reg16
| Acc
)) != 0)
2468 /* Prohibit these changes in the 64bit mode, since the
2469 lowering is more complicated. */
2470 if (flag_code
== CODE_64BIT
)
2472 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2473 i
.op
[op
].regs
->reg_name
,
2478 #if REGISTER_WARNINGS
2479 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2480 (i
.op
[op
].regs
+ REGNAM_AX
- REGNAM_EAX
)->reg_name
,
2481 i
.op
[op
].regs
->reg_name
,
2491 unsigned int overlap0
, overlap1
, overlap2
;
2493 overlap0
= i
.types
[0] & i
.tm
.operand_types
[0];
2494 if ((overlap0
& (Imm8
| Imm8S
| Imm16
| Imm32
| Imm32S
))
2495 && overlap0
!= Imm8
&& overlap0
!= Imm8S
2496 && overlap0
!= Imm16
&& overlap0
!= Imm32S
2497 && overlap0
!= Imm32
&& overlap0
!= Imm64
)
2501 overlap0
&= (i
.suffix
== BYTE_MNEM_SUFFIX
2503 : (i
.suffix
== WORD_MNEM_SUFFIX
2505 : (i
.suffix
== QWORD_MNEM_SUFFIX
2509 else if (overlap0
== (Imm16
| Imm32S
| Imm32
)
2510 || overlap0
== (Imm16
| Imm32
)
2511 || overlap0
== (Imm16
| Imm32S
))
2513 overlap0
= ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0)
2516 if (overlap0
!= Imm8
&& overlap0
!= Imm8S
2517 && overlap0
!= Imm16
&& overlap0
!= Imm32S
2518 && overlap0
!= Imm32
&& overlap0
!= Imm64
)
2520 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2524 i
.types
[0] = overlap0
;
2526 overlap1
= i
.types
[1] & i
.tm
.operand_types
[1];
2527 if ((overlap1
& (Imm8
| Imm8S
| Imm16
| Imm32S
| Imm32
))
2528 && overlap1
!= Imm8
&& overlap1
!= Imm8S
2529 && overlap1
!= Imm16
&& overlap1
!= Imm32S
2530 && overlap1
!= Imm32
&& overlap1
!= Imm64
)
2534 overlap1
&= (i
.suffix
== BYTE_MNEM_SUFFIX
2536 : (i
.suffix
== WORD_MNEM_SUFFIX
2538 : (i
.suffix
== QWORD_MNEM_SUFFIX
2542 else if (overlap1
== (Imm16
| Imm32
| Imm32S
)
2543 || overlap1
== (Imm16
| Imm32
)
2544 || overlap1
== (Imm16
| Imm32S
))
2546 overlap1
= ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0)
2549 if (overlap1
!= Imm8
&& overlap1
!= Imm8S
2550 && overlap1
!= Imm16
&& overlap1
!= Imm32S
2551 && overlap1
!= Imm32
&& overlap1
!= Imm64
)
2553 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1
, i
.suffix
);
2557 i
.types
[1] = overlap1
;
2559 overlap2
= i
.types
[2] & i
.tm
.operand_types
[2];
2560 assert ((overlap2
& Imm
) == 0);
2561 i
.types
[2] = overlap2
;
2569 /* Default segment register this instruction will use for memory
2570 accesses. 0 means unknown. This is only for optimizing out
2571 unnecessary segment overrides. */
2572 const seg_entry
*default_seg
= 0;
2574 /* The imul $imm, %reg instruction is converted into
2575 imul $imm, %reg, %reg, and the clr %reg instruction
2576 is converted into xor %reg, %reg. */
2577 if (i
.tm
.opcode_modifier
& regKludge
)
2579 unsigned int first_reg_op
= (i
.types
[0] & Reg
) ? 0 : 1;
2580 /* Pretend we saw the extra register operand. */
2581 assert (i
.op
[first_reg_op
+ 1].regs
== 0);
2582 i
.op
[first_reg_op
+ 1].regs
= i
.op
[first_reg_op
].regs
;
2583 i
.types
[first_reg_op
+ 1] = i
.types
[first_reg_op
];
2587 if (i
.tm
.opcode_modifier
& ShortForm
)
2589 /* The register or float register operand is in operand 0 or 1. */
2590 unsigned int op
= (i
.types
[0] & (Reg
| FloatReg
)) ? 0 : 1;
2591 /* Register goes in low 3 bits of opcode. */
2592 i
.tm
.base_opcode
|= i
.op
[op
].regs
->reg_num
;
2593 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
2595 if (!quiet_warnings
&& (i
.tm
.opcode_modifier
& Ugh
) != 0)
2597 /* Warn about some common errors, but press on regardless.
2598 The first case can be generated by gcc (<= 2.8.1). */
2599 if (i
.operands
== 2)
2601 /* Reversed arguments on faddp, fsubp, etc. */
2602 as_warn (_("translating to `%s %%%s,%%%s'"), i
.tm
.name
,
2603 i
.op
[1].regs
->reg_name
,
2604 i
.op
[0].regs
->reg_name
);
2608 /* Extraneous `l' suffix on fp insn. */
2609 as_warn (_("translating to `%s %%%s'"), i
.tm
.name
,
2610 i
.op
[0].regs
->reg_name
);
2614 else if (i
.tm
.opcode_modifier
& Modrm
)
2616 /* The opcode is completed (modulo i.tm.extension_opcode which
2617 must be put into the modrm byte). Now, we make the modrm and
2618 index base bytes based on all the info we've collected. */
2620 default_seg
= build_modrm_byte ();
2622 else if (i
.tm
.opcode_modifier
& (Seg2ShortForm
| Seg3ShortForm
))
2624 if (i
.tm
.base_opcode
== POP_SEG_SHORT
2625 && i
.op
[0].regs
->reg_num
== 1)
2627 as_bad (_("you can't `pop %%cs'"));
2630 i
.tm
.base_opcode
|= (i
.op
[0].regs
->reg_num
<< 3);
2631 if ((i
.op
[0].regs
->reg_flags
& RegRex
) != 0)
2634 else if ((i
.tm
.base_opcode
& ~(D
| W
)) == MOV_AX_DISP32
)
2638 else if ((i
.tm
.opcode_modifier
& IsString
) != 0)
2640 /* For the string instructions that allow a segment override
2641 on one of their operands, the default segment is ds. */
2645 if (i
.tm
.base_opcode
== 0x8d /* lea */ && i
.seg
[0] && !quiet_warnings
)
2646 as_warn (_("segment override on `lea' is ineffectual"));
2648 /* If a segment was explicitly specified, and the specified segment
2649 is not the default, use an opcode prefix to select it. If we
2650 never figured out what the default segment is, then default_seg
2651 will be zero at this point, and the specified segment prefix will
2653 if ((i
.seg
[0]) && (i
.seg
[0] != default_seg
))
2655 if (!add_prefix (i
.seg
[0]->seg_prefix
))
2661 static const seg_entry
*
2664 const seg_entry
*default_seg
= 0;
2666 /* i.reg_operands MUST be the number of real register operands;
2667 implicit registers do not count. */
2668 if (i
.reg_operands
== 2)
2670 unsigned int source
, dest
;
2671 source
= ((i
.types
[0]
2672 & (Reg
| RegMMX
| RegXMM
2674 | Control
| Debug
| Test
))
2679 /* One of the register operands will be encoded in the i.tm.reg
2680 field, the other in the combined i.tm.mode and i.tm.regmem
2681 fields. If no form of this instruction supports a memory
2682 destination operand, then we assume the source operand may
2683 sometimes be a memory operand and so we need to store the
2684 destination in the i.rm.reg field. */
2685 if ((i
.tm
.operand_types
[dest
] & AnyMem
) == 0)
2687 i
.rm
.reg
= i
.op
[dest
].regs
->reg_num
;
2688 i
.rm
.regmem
= i
.op
[source
].regs
->reg_num
;
2689 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
2691 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
2696 i
.rm
.reg
= i
.op
[source
].regs
->reg_num
;
2697 i
.rm
.regmem
= i
.op
[dest
].regs
->reg_num
;
2698 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
2700 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
2705 { /* If it's not 2 reg operands... */
2708 unsigned int fake_zero_displacement
= 0;
2709 unsigned int op
= ((i
.types
[0] & AnyMem
)
2711 : (i
.types
[1] & AnyMem
) ? 1 : 2);
2715 if (i
.base_reg
== 0)
2718 if (!i
.disp_operands
)
2719 fake_zero_displacement
= 1;
2720 if (i
.index_reg
== 0)
2722 /* Operand is just <disp> */
2723 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0)
2724 && (flag_code
!= CODE_64BIT
))
2726 i
.rm
.regmem
= NO_BASE_REGISTER_16
;
2727 i
.types
[op
] &= ~Disp
;
2728 i
.types
[op
] |= Disp16
;
2730 else if (flag_code
!= CODE_64BIT
2731 || (i
.prefix
[ADDR_PREFIX
] != 0))
2733 i
.rm
.regmem
= NO_BASE_REGISTER
;
2734 i
.types
[op
] &= ~Disp
;
2735 i
.types
[op
] |= Disp32
;
2739 /* 64bit mode overwrites the 32bit absolute
2740 addressing by RIP relative addressing and
2741 absolute addressing is encoded by one of the
2742 redundant SIB forms. */
2743 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
2744 i
.sib
.base
= NO_BASE_REGISTER
;
2745 i
.sib
.index
= NO_INDEX_REGISTER
;
2746 i
.types
[op
] &= ~Disp
;
2747 i
.types
[op
] |= Disp32S
;
2750 else /* !i.base_reg && i.index_reg */
2752 i
.sib
.index
= i
.index_reg
->reg_num
;
2753 i
.sib
.base
= NO_BASE_REGISTER
;
2754 i
.sib
.scale
= i
.log2_scale_factor
;
2755 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
2756 i
.types
[op
] &= ~Disp
;
2757 if (flag_code
!= CODE_64BIT
)
2758 i
.types
[op
] |= Disp32
; /* Must be 32 bit */
2760 i
.types
[op
] |= Disp32S
;
2761 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
2765 /* RIP addressing for 64bit mode. */
2766 else if (i
.base_reg
->reg_type
== BaseIndex
)
2768 i
.rm
.regmem
= NO_BASE_REGISTER
;
2769 i
.types
[op
] &= ~Disp
;
2770 i
.types
[op
] |= Disp32S
;
2771 i
.flags
[op
] = Operand_PCrel
;
2773 else if (i
.base_reg
->reg_type
& Reg16
)
2775 switch (i
.base_reg
->reg_num
)
2778 if (i
.index_reg
== 0)
2780 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2781 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6;
2785 if (i
.index_reg
== 0)
2788 if ((i
.types
[op
] & Disp
) == 0)
2790 /* fake (%bp) into 0(%bp) */
2791 i
.types
[op
] |= Disp8
;
2792 fake_zero_displacement
= 1;
2795 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2796 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6 + 2;
2798 default: /* (%si) -> 4 or (%di) -> 5 */
2799 i
.rm
.regmem
= i
.base_reg
->reg_num
- 6 + 4;
2801 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
2803 else /* i.base_reg and 32/64 bit mode */
2805 if (flag_code
== CODE_64BIT
2806 && (i
.types
[op
] & Disp
))
2808 if (i
.types
[op
] & Disp8
)
2809 i
.types
[op
] = Disp8
| Disp32S
;
2811 i
.types
[op
] = Disp32S
;
2813 i
.rm
.regmem
= i
.base_reg
->reg_num
;
2814 if ((i
.base_reg
->reg_flags
& RegRex
) != 0)
2816 i
.sib
.base
= i
.base_reg
->reg_num
;
2817 /* x86-64 ignores REX prefix bit here to avoid decoder
2819 if ((i
.base_reg
->reg_num
& 7) == EBP_REG_NUM
)
2822 if (i
.disp_operands
== 0)
2824 fake_zero_displacement
= 1;
2825 i
.types
[op
] |= Disp8
;
2828 else if (i
.base_reg
->reg_num
== ESP_REG_NUM
)
2832 i
.sib
.scale
= i
.log2_scale_factor
;
2833 if (i
.index_reg
== 0)
2835 /* <disp>(%esp) becomes two byte modrm with no index
2836 register. We've already stored the code for esp
2837 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2838 Any base register besides %esp will not use the
2839 extra modrm byte. */
2840 i
.sib
.index
= NO_INDEX_REGISTER
;
2841 #if !SCALE1_WHEN_NO_INDEX
2842 /* Another case where we force the second modrm byte. */
2843 if (i
.log2_scale_factor
)
2844 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
2849 i
.sib
.index
= i
.index_reg
->reg_num
;
2850 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
2851 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
2854 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
2857 if (fake_zero_displacement
)
2859 /* Fakes a zero displacement assuming that i.types[op]
2860 holds the correct displacement size. */
2863 assert (i
.op
[op
].disps
== 0);
2864 exp
= &disp_expressions
[i
.disp_operands
++];
2865 i
.op
[op
].disps
= exp
;
2866 exp
->X_op
= O_constant
;
2867 exp
->X_add_number
= 0;
2868 exp
->X_add_symbol
= (symbolS
*) 0;
2869 exp
->X_op_symbol
= (symbolS
*) 0;
2873 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2874 (if any) based on i.tm.extension_opcode. Again, we must be
2875 careful to make sure that segment/control/debug/test/MMX
2876 registers are coded into the i.rm.reg field. */
2881 & (Reg
| RegMMX
| RegXMM
2883 | Control
| Debug
| Test
))
2886 & (Reg
| RegMMX
| RegXMM
2888 | Control
| Debug
| Test
))
2891 /* If there is an extension opcode to put here, the register
2892 number must be put into the regmem field. */
2893 if (i
.tm
.extension_opcode
!= None
)
2895 i
.rm
.regmem
= i
.op
[op
].regs
->reg_num
;
2896 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
2901 i
.rm
.reg
= i
.op
[op
].regs
->reg_num
;
2902 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
2906 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2907 must set it to 3 to indicate this is a register operand
2908 in the regmem field. */
2909 if (!i
.mem_operands
)
2913 /* Fill in i.rm.reg field with extension opcode (if any). */
2914 if (i
.tm
.extension_opcode
!= None
)
2915 i
.rm
.reg
= i
.tm
.extension_opcode
;
2926 relax_substateT subtype
;
2931 if (flag_code
== CODE_16BIT
)
2935 if (i
.prefix
[DATA_PREFIX
] != 0)
2941 /* Pentium4 branch hints. */
2942 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
2943 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
2948 if (i
.prefix
[REX_PREFIX
] != 0)
2954 if (i
.prefixes
!= 0 && !intel_syntax
)
2955 as_warn (_("skipping prefixes on this instruction"));
2957 /* It's always a symbol; End frag & setup for relax.
2958 Make sure there is enough room in this frag for the largest
2959 instruction we may generate in md_convert_frag. This is 2
2960 bytes for the opcode and room for the prefix and largest
2962 frag_grow (prefix
+ 2 + 4);
2963 /* Prefix and 1 opcode byte go in fr_fix. */
2964 p
= frag_more (prefix
+ 1);
2965 if (i
.prefix
[DATA_PREFIX
] != 0)
2966 *p
++ = DATA_PREFIX_OPCODE
;
2967 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
2968 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
)
2969 *p
++ = i
.prefix
[SEG_PREFIX
];
2970 if (i
.prefix
[REX_PREFIX
] != 0)
2971 *p
++ = i
.prefix
[REX_PREFIX
];
2972 *p
= i
.tm
.base_opcode
;
2974 if ((unsigned char) *p
== JUMP_PC_RELATIVE
)
2975 subtype
= ENCODE_RELAX_STATE (UNCOND_JUMP
, SMALL
);
2976 else if ((cpu_arch_flags
& Cpu386
) != 0)
2977 subtype
= ENCODE_RELAX_STATE (COND_JUMP
, SMALL
);
2979 subtype
= ENCODE_RELAX_STATE (COND_JUMP86
, SMALL
);
2982 sym
= i
.op
[0].disps
->X_add_symbol
;
2983 off
= i
.op
[0].disps
->X_add_number
;
2985 if (i
.op
[0].disps
->X_op
!= O_constant
2986 && i
.op
[0].disps
->X_op
!= O_symbol
)
2988 /* Handle complex expressions. */
2989 sym
= make_expr_symbol (i
.op
[0].disps
);
2993 /* 1 possible extra opcode + 4 byte displacement go in var part.
2994 Pass reloc in fr_var. */
2995 frag_var (rs_machine_dependent
, 5, i
.reloc
[0], subtype
, sym
, off
, p
);
3005 if (i
.tm
.opcode_modifier
& JumpByte
)
3007 /* This is a loop or jecxz type instruction. */
3009 if (i
.prefix
[ADDR_PREFIX
] != 0)
3011 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE
);
3014 /* Pentium4 branch hints. */
3015 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
3016 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
3018 FRAG_APPEND_1_CHAR (i
.prefix
[SEG_PREFIX
]);
3027 if (flag_code
== CODE_16BIT
)
3030 if (i
.prefix
[DATA_PREFIX
] != 0)
3032 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE
);
3042 if (i
.prefix
[REX_PREFIX
] != 0)
3044 FRAG_APPEND_1_CHAR (i
.prefix
[REX_PREFIX
]);
3048 if (i
.prefixes
!= 0 && !intel_syntax
)
3049 as_warn (_("skipping prefixes on this instruction"));
3051 p
= frag_more (1 + size
);
3052 *p
++ = i
.tm
.base_opcode
;
3054 fixP
= fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3055 i
.op
[0].disps
, 1, reloc (size
, 1, 1, i
.reloc
[0]));
3057 /* All jumps handled here are signed, but don't use a signed limit
3058 check for 32 and 16 bit jumps as we want to allow wrap around at
3059 4G and 64k respectively. */
3061 fixP
->fx_signed
= 1;
3065 output_interseg_jump ()
3073 if (flag_code
== CODE_16BIT
)
3077 if (i
.prefix
[DATA_PREFIX
] != 0)
3083 if (i
.prefix
[REX_PREFIX
] != 0)
3093 if (i
.prefixes
!= 0 && !intel_syntax
)
3094 as_warn (_("skipping prefixes on this instruction"));
3096 /* 1 opcode; 2 segment; offset */
3097 p
= frag_more (prefix
+ 1 + 2 + size
);
3099 if (i
.prefix
[DATA_PREFIX
] != 0)
3100 *p
++ = DATA_PREFIX_OPCODE
;
3102 if (i
.prefix
[REX_PREFIX
] != 0)
3103 *p
++ = i
.prefix
[REX_PREFIX
];
3105 *p
++ = i
.tm
.base_opcode
;
3106 if (i
.op
[1].imms
->X_op
== O_constant
)
3108 offsetT n
= i
.op
[1].imms
->X_add_number
;
3111 && !fits_in_unsigned_word (n
)
3112 && !fits_in_signed_word (n
))
3114 as_bad (_("16-bit jump out of range"));
3117 md_number_to_chars (p
, n
, size
);
3120 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3121 i
.op
[1].imms
, 0, reloc (size
, 0, 0, i
.reloc
[1]));
3122 if (i
.op
[0].imms
->X_op
!= O_constant
)
3123 as_bad (_("can't handle non absolute segment in `%s'"),
3125 md_number_to_chars (p
+ size
, (valueT
) i
.op
[0].imms
->X_add_number
, 2);
3132 fragS
*insn_start_frag
;
3133 offsetT insn_start_off
;
3135 /* Tie dwarf2 debug info to the address at the start of the insn.
3136 We can't do this after the insn has been output as the current
3137 frag may have been closed off. eg. by frag_var. */
3138 dwarf2_emit_insn (0);
3140 insn_start_frag
= frag_now
;
3141 insn_start_off
= frag_now_fix ();
3144 if (i
.tm
.opcode_modifier
& Jump
)
3146 else if (i
.tm
.opcode_modifier
& (JumpByte
| JumpDword
))
3148 else if (i
.tm
.opcode_modifier
& JumpInterSegment
)
3149 output_interseg_jump ();
3152 /* Output normal instructions here. */
3156 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3157 byte for the SSE instructions to specify a prefix they require. */
3158 if (i
.tm
.base_opcode
& 0xff0000)
3159 add_prefix ((i
.tm
.base_opcode
>> 16) & 0xff);
3161 /* The prefix bytes. */
3163 q
< i
.prefix
+ sizeof (i
.prefix
) / sizeof (i
.prefix
[0]);
3169 md_number_to_chars (p
, (valueT
) *q
, 1);
3173 /* Now the opcode; be careful about word order here! */
3174 if (fits_in_unsigned_byte (i
.tm
.base_opcode
))
3176 FRAG_APPEND_1_CHAR (i
.tm
.base_opcode
);
3181 /* Put out high byte first: can't use md_number_to_chars! */
3182 *p
++ = (i
.tm
.base_opcode
>> 8) & 0xff;
3183 *p
= i
.tm
.base_opcode
& 0xff;
3186 /* Now the modrm byte and sib byte (if present). */
3187 if (i
.tm
.opcode_modifier
& Modrm
)
3190 md_number_to_chars (p
,
3191 (valueT
) (i
.rm
.regmem
<< 0
3195 /* If i.rm.regmem == ESP (4)
3196 && i.rm.mode != (Register mode)
3198 ==> need second modrm byte. */
3199 if (i
.rm
.regmem
== ESCAPE_TO_TWO_BYTE_ADDRESSING
3201 && !(i
.base_reg
&& (i
.base_reg
->reg_type
& Reg16
) != 0))
3204 md_number_to_chars (p
,
3205 (valueT
) (i
.sib
.base
<< 0
3207 | i
.sib
.scale
<< 6),
3212 if (i
.disp_operands
)
3213 output_disp (insn_start_frag
, insn_start_off
);
3216 output_imm (insn_start_frag
, insn_start_off
);
3224 #endif /* DEBUG386 */
3228 output_disp (insn_start_frag
, insn_start_off
)
3229 fragS
*insn_start_frag
;
3230 offsetT insn_start_off
;
3235 for (n
= 0; n
< i
.operands
; n
++)
3237 if (i
.types
[n
] & Disp
)
3239 if (i
.op
[n
].disps
->X_op
== O_constant
)
3245 if (i
.types
[n
] & (Disp8
| Disp16
| Disp64
))
3248 if (i
.types
[n
] & Disp8
)
3250 if (i
.types
[n
] & Disp64
)
3253 val
= offset_in_range (i
.op
[n
].disps
->X_add_number
,
3255 p
= frag_more (size
);
3256 md_number_to_chars (p
, val
, size
);
3260 RELOC_ENUM reloc_type
;
3263 int pcrel
= (i
.flags
[n
] & Operand_PCrel
) != 0;
3265 /* The PC relative address is computed relative
3266 to the instruction boundary, so in case immediate
3267 fields follows, we need to adjust the value. */
3268 if (pcrel
&& i
.imm_operands
)
3273 for (n1
= 0; n1
< i
.operands
; n1
++)
3274 if (i
.types
[n1
] & Imm
)
3276 if (i
.types
[n1
] & (Imm8
| Imm8S
| Imm16
| Imm64
))
3279 if (i
.types
[n1
] & (Imm8
| Imm8S
))
3281 if (i
.types
[n1
] & Imm64
)
3286 /* We should find the immediate. */
3287 if (n1
== i
.operands
)
3289 i
.op
[n
].disps
->X_add_number
-= imm_size
;
3292 if (i
.types
[n
] & Disp32S
)
3295 if (i
.types
[n
] & (Disp16
| Disp64
))
3298 if (i
.types
[n
] & Disp64
)
3302 p
= frag_more (size
);
3303 reloc_type
= reloc (size
, pcrel
, sign
, i
.reloc
[n
]);
3304 #ifdef BFD_ASSEMBLER
3305 if (reloc_type
== BFD_RELOC_32
3307 && GOT_symbol
== i
.op
[n
].disps
->X_add_symbol
3308 && (i
.op
[n
].disps
->X_op
== O_symbol
3309 || (i
.op
[n
].disps
->X_op
== O_add
3310 && ((symbol_get_value_expression
3311 (i
.op
[n
].disps
->X_op_symbol
)->X_op
)
3316 if (insn_start_frag
== frag_now
)
3317 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
3322 add
= insn_start_frag
->fr_fix
- insn_start_off
;
3323 for (fr
= insn_start_frag
->fr_next
;
3324 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
3326 add
+= p
- frag_now
->fr_literal
;
3329 /* We don't support dynamic linking on x86-64 yet. */
3330 if (flag_code
== CODE_64BIT
)
3332 reloc_type
= BFD_RELOC_386_GOTPC
;
3333 i
.op
[n
].disps
->X_add_number
+= add
;
3336 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3337 i
.op
[n
].disps
, pcrel
, reloc_type
);
3344 output_imm (insn_start_frag
, insn_start_off
)
3345 fragS
*insn_start_frag
;
3346 offsetT insn_start_off
;
3351 for (n
= 0; n
< i
.operands
; n
++)
3353 if (i
.types
[n
] & Imm
)
3355 if (i
.op
[n
].imms
->X_op
== O_constant
)
3361 if (i
.types
[n
] & (Imm8
| Imm8S
| Imm16
| Imm64
))
3364 if (i
.types
[n
] & (Imm8
| Imm8S
))
3366 else if (i
.types
[n
] & Imm64
)
3369 val
= offset_in_range (i
.op
[n
].imms
->X_add_number
,
3371 p
= frag_more (size
);
3372 md_number_to_chars (p
, val
, size
);
3376 /* Not absolute_section.
3377 Need a 32-bit fixup (don't support 8bit
3378 non-absolute imms). Try to support other
3380 RELOC_ENUM reloc_type
;
3384 if ((i
.types
[n
] & (Imm32S
))
3385 && i
.suffix
== QWORD_MNEM_SUFFIX
)
3387 if (i
.types
[n
] & (Imm8
| Imm8S
| Imm16
| Imm64
))
3390 if (i
.types
[n
] & (Imm8
| Imm8S
))
3392 if (i
.types
[n
] & Imm64
)
3396 p
= frag_more (size
);
3397 reloc_type
= reloc (size
, 0, sign
, i
.reloc
[n
]);
3398 #ifdef BFD_ASSEMBLER
3399 /* This is tough to explain. We end up with this one if we
3400 * have operands that look like
3401 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3402 * obtain the absolute address of the GOT, and it is strongly
3403 * preferable from a performance point of view to avoid using
3404 * a runtime relocation for this. The actual sequence of
3405 * instructions often look something like:
3410 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3412 * The call and pop essentially return the absolute address
3413 * of the label .L66 and store it in %ebx. The linker itself
3414 * will ultimately change the first operand of the addl so
3415 * that %ebx points to the GOT, but to keep things simple, the
3416 * .o file must have this operand set so that it generates not
3417 * the absolute address of .L66, but the absolute address of
3418 * itself. This allows the linker itself simply treat a GOTPC
3419 * relocation as asking for a pcrel offset to the GOT to be
3420 * added in, and the addend of the relocation is stored in the
3421 * operand field for the instruction itself.
3423 * Our job here is to fix the operand so that it would add
3424 * the correct offset so that %ebx would point to itself. The
3425 * thing that is tricky is that .-.L66 will point to the
3426 * beginning of the instruction, so we need to further modify
3427 * the operand so that it will point to itself. There are
3428 * other cases where you have something like:
3430 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3432 * and here no correction would be required. Internally in
3433 * the assembler we treat operands of this form as not being
3434 * pcrel since the '.' is explicitly mentioned, and I wonder
3435 * whether it would simplify matters to do it this way. Who
3436 * knows. In earlier versions of the PIC patches, the
3437 * pcrel_adjust field was used to store the correction, but
3438 * since the expression is not pcrel, I felt it would be
3439 * confusing to do it this way. */
3441 if (reloc_type
== BFD_RELOC_32
3443 && GOT_symbol
== i
.op
[n
].imms
->X_add_symbol
3444 && (i
.op
[n
].imms
->X_op
== O_symbol
3445 || (i
.op
[n
].imms
->X_op
== O_add
3446 && ((symbol_get_value_expression
3447 (i
.op
[n
].imms
->X_op_symbol
)->X_op
)
3452 if (insn_start_frag
== frag_now
)
3453 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
3458 add
= insn_start_frag
->fr_fix
- insn_start_off
;
3459 for (fr
= insn_start_frag
->fr_next
;
3460 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
3462 add
+= p
- frag_now
->fr_literal
;
3465 /* We don't support dynamic linking on x86-64 yet. */
3466 if (flag_code
== CODE_64BIT
)
3468 reloc_type
= BFD_RELOC_386_GOTPC
;
3469 i
.op
[n
].imms
->X_add_number
+= add
;
3472 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3473 i
.op
[n
].imms
, 0, reloc_type
);
3480 static char *lex_got
PARAMS ((RELOC_ENUM
*, int *));
3482 /* Parse operands of the form
3483 <symbol>@GOTOFF+<nnn>
3484 and similar .plt or .got references.
3486 If we find one, set up the correct relocation in RELOC and copy the
3487 input string, minus the `@GOTOFF' into a malloc'd buffer for
3488 parsing by the calling routine. Return this buffer, and if ADJUST
3489 is non-null set it to the length of the string we removed from the
3490 input line. Otherwise return NULL. */
3492 lex_got (reloc
, adjust
)
3496 static const char * const mode_name
[NUM_FLAG_CODE
] = { "32", "16", "64" };
3497 static const struct {
3499 const RELOC_ENUM rel
[NUM_FLAG_CODE
];
3501 { "PLT", { BFD_RELOC_386_PLT32
, 0, BFD_RELOC_X86_64_PLT32
} },
3502 { "GOTOFF", { BFD_RELOC_386_GOTOFF
, 0, 0 } },
3503 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL
} },
3504 { "TLSGD", { BFD_RELOC_386_TLS_GD
, 0, BFD_RELOC_X86_64_TLSGD
} },
3505 { "TLSLDM", { BFD_RELOC_386_TLS_LDM
, 0, 0 } },
3506 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD
} },
3507 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32
, 0, BFD_RELOC_X86_64_GOTTPOFF
} },
3508 { "TPOFF", { BFD_RELOC_386_TLS_LE_32
, 0, BFD_RELOC_X86_64_TPOFF32
} },
3509 { "NTPOFF", { BFD_RELOC_386_TLS_LE
, 0, 0 } },
3510 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32
, 0, BFD_RELOC_X86_64_DTPOFF32
} },
3511 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE
, 0, 0 } },
3512 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE
, 0, 0 } },
3513 { "GOT", { BFD_RELOC_386_GOT32
, 0, BFD_RELOC_X86_64_GOT32
} }
3518 for (cp
= input_line_pointer
; *cp
!= '@'; cp
++)
3519 if (is_end_of_line
[(unsigned char) *cp
])
3522 for (j
= 0; j
< sizeof (gotrel
) / sizeof (gotrel
[0]); j
++)
3526 len
= strlen (gotrel
[j
].str
);
3527 if (strncasecmp (cp
+ 1, gotrel
[j
].str
, len
) == 0)
3529 if (gotrel
[j
].rel
[(unsigned int) flag_code
] != 0)
3532 char *tmpbuf
, *past_reloc
;
3534 *reloc
= gotrel
[j
].rel
[(unsigned int) flag_code
];
3538 if (GOT_symbol
== NULL
)
3539 GOT_symbol
= symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME
);
3541 /* Replace the relocation token with ' ', so that
3542 errors like foo@GOTOFF1 will be detected. */
3544 /* The length of the first part of our input line. */
3545 first
= cp
- input_line_pointer
;
3547 /* The second part goes from after the reloc token until
3548 (and including) an end_of_line char. Don't use strlen
3549 here as the end_of_line char may not be a NUL. */
3550 past_reloc
= cp
+ 1 + len
;
3551 for (cp
= past_reloc
; !is_end_of_line
[(unsigned char) *cp
++]; )
3553 second
= cp
- past_reloc
;
3555 /* Allocate and copy string. The trailing NUL shouldn't
3556 be necessary, but be safe. */
3557 tmpbuf
= xmalloc (first
+ second
+ 2);
3558 memcpy (tmpbuf
, input_line_pointer
, first
);
3559 tmpbuf
[first
] = ' ';
3560 memcpy (tmpbuf
+ first
+ 1, past_reloc
, second
);
3561 tmpbuf
[first
+ second
+ 1] = '\0';
3565 as_bad (_("@%s reloc is not supported in %s bit mode"),
3566 gotrel
[j
].str
, mode_name
[(unsigned int) flag_code
]);
3571 /* Might be a symbol version string. Don't as_bad here. */
3575 /* x86_cons_fix_new is called via the expression parsing code when a
3576 reloc is needed. We use this hook to get the correct .got reloc. */
3577 static RELOC_ENUM got_reloc
= NO_RELOC
;
3580 x86_cons_fix_new (frag
, off
, len
, exp
)
3586 RELOC_ENUM r
= reloc (len
, 0, 0, got_reloc
);
3587 got_reloc
= NO_RELOC
;
3588 fix_new_exp (frag
, off
, len
, exp
, 0, r
);
3592 x86_cons (exp
, size
)
3598 /* Handle @GOTOFF and the like in an expression. */
3600 char *gotfree_input_line
;
3603 save
= input_line_pointer
;
3604 gotfree_input_line
= lex_got (&got_reloc
, &adjust
);
3605 if (gotfree_input_line
)
3606 input_line_pointer
= gotfree_input_line
;
3610 if (gotfree_input_line
)
3612 /* expression () has merrily parsed up to the end of line,
3613 or a comma - in the wrong buffer. Transfer how far
3614 input_line_pointer has moved to the right buffer. */
3615 input_line_pointer
= (save
3616 + (input_line_pointer
- gotfree_input_line
)
3618 free (gotfree_input_line
);
3626 static int i386_immediate
PARAMS ((char *));
3629 i386_immediate (imm_start
)
3632 char *save_input_line_pointer
;
3634 char *gotfree_input_line
;
3639 if (i
.imm_operands
== MAX_IMMEDIATE_OPERANDS
)
3641 as_bad (_("only 1 or 2 immediate operands are allowed"));
3645 exp
= &im_expressions
[i
.imm_operands
++];
3646 i
.op
[this_operand
].imms
= exp
;
3648 if (is_space_char (*imm_start
))
3651 save_input_line_pointer
= input_line_pointer
;
3652 input_line_pointer
= imm_start
;
3655 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
);
3656 if (gotfree_input_line
)
3657 input_line_pointer
= gotfree_input_line
;
3660 exp_seg
= expression (exp
);
3663 if (*input_line_pointer
)
3664 as_bad (_("junk `%s' after expression"), input_line_pointer
);
3666 input_line_pointer
= save_input_line_pointer
;
3668 if (gotfree_input_line
)
3669 free (gotfree_input_line
);
3672 if (exp
->X_op
== O_absent
|| exp
->X_op
== O_big
)
3674 /* Missing or bad expr becomes absolute 0. */
3675 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3677 exp
->X_op
= O_constant
;
3678 exp
->X_add_number
= 0;
3679 exp
->X_add_symbol
= (symbolS
*) 0;
3680 exp
->X_op_symbol
= (symbolS
*) 0;
3682 else if (exp
->X_op
== O_constant
)
3684 /* Size it properly later. */
3685 i
.types
[this_operand
] |= Imm64
;
3686 /* If BFD64, sign extend val. */
3687 if (!use_rela_relocations
)
3688 if ((exp
->X_add_number
& ~(((addressT
) 2 << 31) - 1)) == 0)
3689 exp
->X_add_number
= (exp
->X_add_number
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
3691 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3693 #ifdef BFD_ASSEMBLER
3694 && OUTPUT_FLAVOR
== bfd_target_aout_flavour
3696 && exp_seg
!= absolute_section
3697 && exp_seg
!= text_section
3698 && exp_seg
!= data_section
3699 && exp_seg
!= bss_section
3700 && exp_seg
!= undefined_section
3701 #ifdef BFD_ASSEMBLER
3702 && !bfd_is_com_section (exp_seg
)
3706 #ifdef BFD_ASSEMBLER
3707 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
3709 as_bad (_("unimplemented segment type %d in operand"), exp_seg
);
3716 /* This is an address. The size of the address will be
3717 determined later, depending on destination register,
3718 suffix, or the default for the section. */
3719 i
.types
[this_operand
] |= Imm8
| Imm16
| Imm32
| Imm32S
| Imm64
;
3725 static char *i386_scale
PARAMS ((char *));
3732 char *save
= input_line_pointer
;
3734 input_line_pointer
= scale
;
3735 val
= get_absolute_expression ();
3741 i
.log2_scale_factor
= 0;
3744 i
.log2_scale_factor
= 1;
3747 i
.log2_scale_factor
= 2;
3750 i
.log2_scale_factor
= 3;
3753 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3755 input_line_pointer
= save
;
3758 if (i
.log2_scale_factor
!= 0 && i
.index_reg
== 0)
3760 as_warn (_("scale factor of %d without an index register"),
3761 1 << i
.log2_scale_factor
);
3762 #if SCALE1_WHEN_NO_INDEX
3763 i
.log2_scale_factor
= 0;
3766 scale
= input_line_pointer
;
3767 input_line_pointer
= save
;
3771 static int i386_displacement
PARAMS ((char *, char *));
3774 i386_displacement (disp_start
, disp_end
)
3780 char *save_input_line_pointer
;
3782 char *gotfree_input_line
;
3784 int bigdisp
= Disp32
;
3786 if (flag_code
== CODE_64BIT
)
3788 if (i
.prefix
[ADDR_PREFIX
] == 0)
3791 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
3793 i
.types
[this_operand
] |= bigdisp
;
3795 exp
= &disp_expressions
[i
.disp_operands
];
3796 i
.op
[this_operand
].disps
= exp
;
3798 save_input_line_pointer
= input_line_pointer
;
3799 input_line_pointer
= disp_start
;
3800 END_STRING_AND_SAVE (disp_end
);
3802 #ifndef GCC_ASM_O_HACK
3803 #define GCC_ASM_O_HACK 0
3806 END_STRING_AND_SAVE (disp_end
+ 1);
3807 if ((i
.types
[this_operand
] & BaseIndex
) != 0
3808 && displacement_string_end
[-1] == '+')
3810 /* This hack is to avoid a warning when using the "o"
3811 constraint within gcc asm statements.
3814 #define _set_tssldt_desc(n,addr,limit,type) \
3815 __asm__ __volatile__ ( \
3817 "movw %w1,2+%0\n\t" \
3819 "movb %b1,4+%0\n\t" \
3820 "movb %4,5+%0\n\t" \
3821 "movb $0,6+%0\n\t" \
3822 "movb %h1,7+%0\n\t" \
3824 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3826 This works great except that the output assembler ends
3827 up looking a bit weird if it turns out that there is
3828 no offset. You end up producing code that looks like:
3841 So here we provide the missing zero. */
3843 *displacement_string_end
= '0';
3847 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
);
3848 if (gotfree_input_line
)
3849 input_line_pointer
= gotfree_input_line
;
3852 exp_seg
= expression (exp
);
3855 if (*input_line_pointer
)
3856 as_bad (_("junk `%s' after expression"), input_line_pointer
);
3858 RESTORE_END_STRING (disp_end
+ 1);
3860 RESTORE_END_STRING (disp_end
);
3861 input_line_pointer
= save_input_line_pointer
;
3863 if (gotfree_input_line
)
3864 free (gotfree_input_line
);
3867 #ifdef BFD_ASSEMBLER
3868 /* We do this to make sure that the section symbol is in
3869 the symbol table. We will ultimately change the relocation
3870 to be relative to the beginning of the section. */
3871 if (i
.reloc
[this_operand
] == BFD_RELOC_386_GOTOFF
3872 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
)
3874 if (exp
->X_op
!= O_symbol
)
3876 as_bad (_("bad expression used with @%s"),
3877 (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
3883 if (S_IS_LOCAL (exp
->X_add_symbol
)
3884 && S_GET_SEGMENT (exp
->X_add_symbol
) != undefined_section
)
3885 section_symbol (S_GET_SEGMENT (exp
->X_add_symbol
));
3886 exp
->X_op
= O_subtract
;
3887 exp
->X_op_symbol
= GOT_symbol
;
3888 if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
)
3889 i
.reloc
[this_operand
] = BFD_RELOC_32_PCREL
;
3891 i
.reloc
[this_operand
] = BFD_RELOC_32
;
3895 if (exp
->X_op
== O_absent
|| exp
->X_op
== O_big
)
3897 /* Missing or bad expr becomes absolute 0. */
3898 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3900 exp
->X_op
= O_constant
;
3901 exp
->X_add_number
= 0;
3902 exp
->X_add_symbol
= (symbolS
*) 0;
3903 exp
->X_op_symbol
= (symbolS
*) 0;
3906 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3907 if (exp
->X_op
!= O_constant
3908 #ifdef BFD_ASSEMBLER
3909 && OUTPUT_FLAVOR
== bfd_target_aout_flavour
3911 && exp_seg
!= absolute_section
3912 && exp_seg
!= text_section
3913 && exp_seg
!= data_section
3914 && exp_seg
!= bss_section
3915 && exp_seg
!= undefined_section
3916 #ifdef BFD_ASSEMBLER
3917 && !bfd_is_com_section (exp_seg
)
3921 #ifdef BFD_ASSEMBLER
3922 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
3924 as_bad (_("unimplemented segment type %d in operand"), exp_seg
);
3929 else if (flag_code
== CODE_64BIT
)
3930 i
.types
[this_operand
] |= Disp32S
| Disp32
;
3934 static int i386_index_check
PARAMS ((const char *));
3936 /* Make sure the memory operand we've been dealt is valid.
3937 Return 1 on success, 0 on a failure. */
3940 i386_index_check (operand_string
)
3941 const char *operand_string
;
3944 #if INFER_ADDR_PREFIX
3950 if (flag_code
== CODE_64BIT
)
3952 if (i
.prefix
[ADDR_PREFIX
] == 0)
3956 && ((i
.base_reg
->reg_type
& Reg64
) == 0)
3957 && (i
.base_reg
->reg_type
!= BaseIndex
3960 && ((i
.index_reg
->reg_type
& (Reg64
| BaseIndex
))
3961 != (Reg64
| BaseIndex
))))
3968 && (i
.base_reg
->reg_type
& (Reg32
| RegRex
)) != Reg32
)
3970 && ((i
.index_reg
->reg_type
& (Reg32
| BaseIndex
| RegRex
))
3971 != (Reg32
| BaseIndex
))))
3977 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
3981 && ((i
.base_reg
->reg_type
& (Reg16
| BaseIndex
| RegRex
))
3982 != (Reg16
| BaseIndex
)))
3984 && (((i
.index_reg
->reg_type
& (Reg16
| BaseIndex
))
3985 != (Reg16
| BaseIndex
))
3987 && i
.base_reg
->reg_num
< 6
3988 && i
.index_reg
->reg_num
>= 6
3989 && i
.log2_scale_factor
== 0))))
3996 && (i
.base_reg
->reg_type
& (Reg32
| RegRex
)) != Reg32
)
3998 && ((i
.index_reg
->reg_type
& (Reg32
| BaseIndex
| RegRex
))
3999 != (Reg32
| BaseIndex
))))
4005 #if INFER_ADDR_PREFIX
4006 if (flag_code
!= CODE_64BIT
4007 && i
.prefix
[ADDR_PREFIX
] == 0 && stackop_size
!= '\0')
4009 i
.prefix
[ADDR_PREFIX
] = ADDR_PREFIX_OPCODE
;
4011 /* Change the size of any displacement too. At most one of
4012 Disp16 or Disp32 is set.
4013 FIXME. There doesn't seem to be any real need for separate
4014 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4015 Removing them would probably clean up the code quite a lot. */
4016 if (i
.types
[this_operand
] & (Disp16
| Disp32
))
4017 i
.types
[this_operand
] ^= (Disp16
| Disp32
);
4022 as_bad (_("`%s' is not a valid base/index expression"),
4026 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4028 flag_code_names
[flag_code
]);
4034 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4038 i386_operand (operand_string
)
4039 char *operand_string
;
4043 char *op_string
= operand_string
;
4045 if (is_space_char (*op_string
))
4048 /* We check for an absolute prefix (differentiating,
4049 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4050 if (*op_string
== ABSOLUTE_PREFIX
)
4053 if (is_space_char (*op_string
))
4055 i
.types
[this_operand
] |= JumpAbsolute
;
4058 /* Check if operand is a register. */
4059 if ((*op_string
== REGISTER_PREFIX
|| allow_naked_reg
)
4060 && (r
= parse_register (op_string
, &end_op
)) != NULL
)
4062 /* Check for a segment override by searching for ':' after a
4063 segment register. */
4065 if (is_space_char (*op_string
))
4067 if (*op_string
== ':' && (r
->reg_type
& (SReg2
| SReg3
)))
4072 i
.seg
[i
.mem_operands
] = &es
;
4075 i
.seg
[i
.mem_operands
] = &cs
;
4078 i
.seg
[i
.mem_operands
] = &ss
;
4081 i
.seg
[i
.mem_operands
] = &ds
;
4084 i
.seg
[i
.mem_operands
] = &fs
;
4087 i
.seg
[i
.mem_operands
] = &gs
;
4091 /* Skip the ':' and whitespace. */
4093 if (is_space_char (*op_string
))
4096 if (!is_digit_char (*op_string
)
4097 && !is_identifier_char (*op_string
)
4098 && *op_string
!= '('
4099 && *op_string
!= ABSOLUTE_PREFIX
)
4101 as_bad (_("bad memory operand `%s'"), op_string
);
4104 /* Handle case of %es:*foo. */
4105 if (*op_string
== ABSOLUTE_PREFIX
)
4108 if (is_space_char (*op_string
))
4110 i
.types
[this_operand
] |= JumpAbsolute
;
4112 goto do_memory_reference
;
4116 as_bad (_("junk `%s' after register"), op_string
);
4119 i
.types
[this_operand
] |= r
->reg_type
& ~BaseIndex
;
4120 i
.op
[this_operand
].regs
= r
;
4123 else if (*op_string
== REGISTER_PREFIX
)
4125 as_bad (_("bad register name `%s'"), op_string
);
4128 else if (*op_string
== IMMEDIATE_PREFIX
)
4131 if (i
.types
[this_operand
] & JumpAbsolute
)
4133 as_bad (_("immediate operand illegal with absolute jump"));
4136 if (!i386_immediate (op_string
))
4139 else if (is_digit_char (*op_string
)
4140 || is_identifier_char (*op_string
)
4141 || *op_string
== '(')
4143 /* This is a memory reference of some sort. */
4146 /* Start and end of displacement string expression (if found). */
4147 char *displacement_string_start
;
4148 char *displacement_string_end
;
4150 do_memory_reference
:
4151 if ((i
.mem_operands
== 1
4152 && (current_templates
->start
->opcode_modifier
& IsString
) == 0)
4153 || i
.mem_operands
== 2)
4155 as_bad (_("too many memory references for `%s'"),
4156 current_templates
->start
->name
);
4160 /* Check for base index form. We detect the base index form by
4161 looking for an ')' at the end of the operand, searching
4162 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4164 base_string
= op_string
+ strlen (op_string
);
4167 if (is_space_char (*base_string
))
4170 /* If we only have a displacement, set-up for it to be parsed later. */
4171 displacement_string_start
= op_string
;
4172 displacement_string_end
= base_string
+ 1;
4174 if (*base_string
== ')')
4177 unsigned int parens_balanced
= 1;
4178 /* We've already checked that the number of left & right ()'s are
4179 equal, so this loop will not be infinite. */
4183 if (*base_string
== ')')
4185 if (*base_string
== '(')
4188 while (parens_balanced
);
4190 temp_string
= base_string
;
4192 /* Skip past '(' and whitespace. */
4194 if (is_space_char (*base_string
))
4197 if (*base_string
== ','
4198 || ((*base_string
== REGISTER_PREFIX
|| allow_naked_reg
)
4199 && (i
.base_reg
= parse_register (base_string
, &end_op
)) != NULL
))
4201 displacement_string_end
= temp_string
;
4203 i
.types
[this_operand
] |= BaseIndex
;
4207 base_string
= end_op
;
4208 if (is_space_char (*base_string
))
4212 /* There may be an index reg or scale factor here. */
4213 if (*base_string
== ',')
4216 if (is_space_char (*base_string
))
4219 if ((*base_string
== REGISTER_PREFIX
|| allow_naked_reg
)
4220 && (i
.index_reg
= parse_register (base_string
, &end_op
)) != NULL
)
4222 base_string
= end_op
;
4223 if (is_space_char (*base_string
))
4225 if (*base_string
== ',')
4228 if (is_space_char (*base_string
))
4231 else if (*base_string
!= ')')
4233 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4238 else if (*base_string
== REGISTER_PREFIX
)
4240 as_bad (_("bad register name `%s'"), base_string
);
4244 /* Check for scale factor. */
4245 if (*base_string
!= ')')
4247 char *end_scale
= i386_scale (base_string
);
4252 base_string
= end_scale
;
4253 if (is_space_char (*base_string
))
4255 if (*base_string
!= ')')
4257 as_bad (_("expecting `)' after scale factor in `%s'"),
4262 else if (!i
.index_reg
)
4264 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4269 else if (*base_string
!= ')')
4271 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4276 else if (*base_string
== REGISTER_PREFIX
)
4278 as_bad (_("bad register name `%s'"), base_string
);
4283 /* If there's an expression beginning the operand, parse it,
4284 assuming displacement_string_start and
4285 displacement_string_end are meaningful. */
4286 if (displacement_string_start
!= displacement_string_end
)
4288 if (!i386_displacement (displacement_string_start
,
4289 displacement_string_end
))
4293 /* Special case for (%dx) while doing input/output op. */
4295 && i
.base_reg
->reg_type
== (Reg16
| InOutPortReg
)
4297 && i
.log2_scale_factor
== 0
4298 && i
.seg
[i
.mem_operands
] == 0
4299 && (i
.types
[this_operand
] & Disp
) == 0)
4301 i
.types
[this_operand
] = InOutPortReg
;
4305 if (i386_index_check (operand_string
) == 0)
4311 /* It's not a memory operand; argh! */
4312 as_bad (_("invalid char %s beginning operand %d `%s'"),
4313 output_invalid (*op_string
),
4318 return 1; /* Normal return. */
4321 /* md_estimate_size_before_relax()
4323 Called just before relax() for rs_machine_dependent frags. The x86
4324 assembler uses these frags to handle variable size jump
4327 Any symbol that is now undefined will not become defined.
4328 Return the correct fr_subtype in the frag.
4329 Return the initial "guess for variable size of frag" to caller.
4330 The guess is actually the growth beyond the fixed part. Whatever
4331 we do to grow the fixed or variable part contributes to our
4335 md_estimate_size_before_relax (fragP
, segment
)
4339 /* We've already got fragP->fr_subtype right; all we have to do is
4340 check for un-relaxable symbols. On an ELF system, we can't relax
4341 an externally visible symbol, because it may be overridden by a
4343 if (S_GET_SEGMENT (fragP
->fr_symbol
) != segment
4344 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4345 || (OUTPUT_FLAVOR
== bfd_target_elf_flavour
4346 && (S_IS_EXTERNAL (fragP
->fr_symbol
)
4347 || S_IS_WEAK (fragP
->fr_symbol
)))
4351 /* Symbol is undefined in this segment, or we need to keep a
4352 reloc so that weak symbols can be overridden. */
4353 int size
= (fragP
->fr_subtype
& CODE16
) ? 2 : 4;
4354 RELOC_ENUM reloc_type
;
4355 unsigned char *opcode
;
4358 if (fragP
->fr_var
!= NO_RELOC
)
4359 reloc_type
= fragP
->fr_var
;
4361 reloc_type
= BFD_RELOC_16_PCREL
;
4363 reloc_type
= BFD_RELOC_32_PCREL
;
4365 old_fr_fix
= fragP
->fr_fix
;
4366 opcode
= (unsigned char *) fragP
->fr_opcode
;
4368 switch (TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
))
4371 /* Make jmp (0xeb) a (d)word displacement jump. */
4373 fragP
->fr_fix
+= size
;
4374 fix_new (fragP
, old_fr_fix
, size
,
4376 fragP
->fr_offset
, 1,
4382 && (!no_cond_jump_promotion
|| fragP
->fr_var
!= NO_RELOC
))
4384 /* Negate the condition, and branch past an
4385 unconditional jump. */
4388 /* Insert an unconditional jump. */
4390 /* We added two extra opcode bytes, and have a two byte
4392 fragP
->fr_fix
+= 2 + 2;
4393 fix_new (fragP
, old_fr_fix
+ 2, 2,
4395 fragP
->fr_offset
, 1,
4402 if (no_cond_jump_promotion
&& fragP
->fr_var
== NO_RELOC
)
4407 fixP
= fix_new (fragP
, old_fr_fix
, 1,
4409 fragP
->fr_offset
, 1,
4411 fixP
->fx_signed
= 1;
4415 /* This changes the byte-displacement jump 0x7N
4416 to the (d)word-displacement jump 0x0f,0x8N. */
4417 opcode
[1] = opcode
[0] + 0x10;
4418 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
4419 /* We've added an opcode byte. */
4420 fragP
->fr_fix
+= 1 + size
;
4421 fix_new (fragP
, old_fr_fix
+ 1, size
,
4423 fragP
->fr_offset
, 1,
4428 BAD_CASE (fragP
->fr_subtype
);
4432 return fragP
->fr_fix
- old_fr_fix
;
4435 /* Guess size depending on current relax state. Initially the relax
4436 state will correspond to a short jump and we return 1, because
4437 the variable part of the frag (the branch offset) is one byte
4438 long. However, we can relax a section more than once and in that
4439 case we must either set fr_subtype back to the unrelaxed state,
4440 or return the value for the appropriate branch. */
4441 return md_relax_table
[fragP
->fr_subtype
].rlx_length
;
4444 /* Called after relax() is finished.
4446 In: Address of frag.
4447 fr_type == rs_machine_dependent.
4448 fr_subtype is what the address relaxed to.
4450 Out: Any fixSs and constants are set up.
4451 Caller will turn frag into a ".space 0". */
4453 #ifndef BFD_ASSEMBLER
4455 md_convert_frag (headers
, sec
, fragP
)
4456 object_headers
*headers ATTRIBUTE_UNUSED
;
4457 segT sec ATTRIBUTE_UNUSED
;
4461 md_convert_frag (abfd
, sec
, fragP
)
4462 bfd
*abfd ATTRIBUTE_UNUSED
;
4463 segT sec ATTRIBUTE_UNUSED
;
4467 unsigned char *opcode
;
4468 unsigned char *where_to_put_displacement
= NULL
;
4469 offsetT target_address
;
4470 offsetT opcode_address
;
4471 unsigned int extension
= 0;
4472 offsetT displacement_from_opcode_start
;
4474 opcode
= (unsigned char *) fragP
->fr_opcode
;
4476 /* Address we want to reach in file space. */
4477 target_address
= S_GET_VALUE (fragP
->fr_symbol
) + fragP
->fr_offset
;
4479 /* Address opcode resides at in file space. */
4480 opcode_address
= fragP
->fr_address
+ fragP
->fr_fix
;
4482 /* Displacement from opcode start to fill into instruction. */
4483 displacement_from_opcode_start
= target_address
- opcode_address
;
4485 if ((fragP
->fr_subtype
& BIG
) == 0)
4487 /* Don't have to change opcode. */
4488 extension
= 1; /* 1 opcode + 1 displacement */
4489 where_to_put_displacement
= &opcode
[1];
4493 if (no_cond_jump_promotion
4494 && TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
) != UNCOND_JUMP
)
4495 as_warn_where (fragP
->fr_file
, fragP
->fr_line
, _("long jump required"));
4497 switch (fragP
->fr_subtype
)
4499 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
):
4500 extension
= 4; /* 1 opcode + 4 displacement */
4502 where_to_put_displacement
= &opcode
[1];
4505 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
):
4506 extension
= 2; /* 1 opcode + 2 displacement */
4508 where_to_put_displacement
= &opcode
[1];
4511 case ENCODE_RELAX_STATE (COND_JUMP
, BIG
):
4512 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG
):
4513 extension
= 5; /* 2 opcode + 4 displacement */
4514 opcode
[1] = opcode
[0] + 0x10;
4515 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
4516 where_to_put_displacement
= &opcode
[2];
4519 case ENCODE_RELAX_STATE (COND_JUMP
, BIG16
):
4520 extension
= 3; /* 2 opcode + 2 displacement */
4521 opcode
[1] = opcode
[0] + 0x10;
4522 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
4523 where_to_put_displacement
= &opcode
[2];
4526 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
):
4531 where_to_put_displacement
= &opcode
[3];
4535 BAD_CASE (fragP
->fr_subtype
);
4540 /* Now put displacement after opcode. */
4541 md_number_to_chars ((char *) where_to_put_displacement
,
4542 (valueT
) (displacement_from_opcode_start
- extension
),
4543 DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
));
4544 fragP
->fr_fix
+= extension
;
4547 /* Size of byte displacement jmp. */
4548 int md_short_jump_size
= 2;
4550 /* Size of dword displacement jmp. */
4551 int md_long_jump_size
= 5;
4553 /* Size of relocation record. */
4554 const int md_reloc_size
= 8;
4557 md_create_short_jump (ptr
, from_addr
, to_addr
, frag
, to_symbol
)
4559 addressT from_addr
, to_addr
;
4560 fragS
*frag ATTRIBUTE_UNUSED
;
4561 symbolS
*to_symbol ATTRIBUTE_UNUSED
;
4565 offset
= to_addr
- (from_addr
+ 2);
4566 /* Opcode for byte-disp jump. */
4567 md_number_to_chars (ptr
, (valueT
) 0xeb, 1);
4568 md_number_to_chars (ptr
+ 1, (valueT
) offset
, 1);
4572 md_create_long_jump (ptr
, from_addr
, to_addr
, frag
, to_symbol
)
4574 addressT from_addr
, to_addr
;
4575 fragS
*frag ATTRIBUTE_UNUSED
;
4576 symbolS
*to_symbol ATTRIBUTE_UNUSED
;
4580 offset
= to_addr
- (from_addr
+ 5);
4581 md_number_to_chars (ptr
, (valueT
) 0xe9, 1);
4582 md_number_to_chars (ptr
+ 1, (valueT
) offset
, 4);
4585 /* Apply a fixup (fixS) to segment data, once it has been determined
4586 by our caller that we have all the info we need to fix it up.
4588 On the 386, immediates, displacements, and data pointers are all in
4589 the same (little-endian) format, so we don't need to care about which
4593 md_apply_fix3 (fixP
, valP
, seg
)
4594 /* The fix we're to put in. */
4596 /* Pointer to the value of the bits. */
4598 /* Segment fix is from. */
4599 segT seg ATTRIBUTE_UNUSED
;
4601 char *p
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
4602 valueT value
= *valP
;
4604 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4607 switch (fixP
->fx_r_type
)
4613 fixP
->fx_r_type
= BFD_RELOC_32_PCREL
;
4616 fixP
->fx_r_type
= BFD_RELOC_16_PCREL
;
4619 fixP
->fx_r_type
= BFD_RELOC_8_PCREL
;
4624 if (fixP
->fx_addsy
!= NULL
4625 && (fixP
->fx_r_type
== BFD_RELOC_32_PCREL
4626 || fixP
->fx_r_type
== BFD_RELOC_16_PCREL
4627 || fixP
->fx_r_type
== BFD_RELOC_8_PCREL
)
4628 && !use_rela_relocations
)
4630 /* This is a hack. There should be a better way to handle this.
4631 This covers for the fact that bfd_install_relocation will
4632 subtract the current location (for partial_inplace, PC relative
4633 relocations); see more below. */
4635 if (OUTPUT_FLAVOR
== bfd_target_elf_flavour
4637 || OUTPUT_FLAVOR
== bfd_target_coff_flavour
4640 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
4642 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4643 if (OUTPUT_FLAVOR
== bfd_target_elf_flavour
)
4645 segT sym_seg
= S_GET_SEGMENT (fixP
->fx_addsy
);
4648 || (symbol_section_p (fixP
->fx_addsy
)
4649 && sym_seg
!= absolute_section
))
4650 && !S_FORCE_RELOC (fixP
->fx_addsy
))
4652 /* Yes, we add the values in twice. This is because
4653 bfd_install_relocation subtracts them out again. I think
4654 bfd_install_relocation is broken, but I don't dare change
4656 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
4660 #if defined (OBJ_COFF) && defined (TE_PE)
4661 /* For some reason, the PE format does not store a section
4662 address offset for a PC relative symbol. */
4663 if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
4664 value
+= md_pcrel_from (fixP
);
4668 /* Fix a few things - the dynamic linker expects certain values here,
4669 and we must not dissappoint it. */
4670 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4671 if (OUTPUT_FLAVOR
== bfd_target_elf_flavour
4673 switch (fixP
->fx_r_type
)
4675 case BFD_RELOC_386_PLT32
:
4676 case BFD_RELOC_X86_64_PLT32
:
4677 /* Make the jump instruction point to the address of the operand. At
4678 runtime we merely add the offset to the actual PLT entry. */
4682 case BFD_RELOC_386_GOT32
:
4683 case BFD_RELOC_386_TLS_GD
:
4684 case BFD_RELOC_386_TLS_LDM
:
4685 case BFD_RELOC_386_TLS_IE_32
:
4686 case BFD_RELOC_386_TLS_IE
:
4687 case BFD_RELOC_386_TLS_GOTIE
:
4688 case BFD_RELOC_X86_64_GOT32
:
4689 case BFD_RELOC_X86_64_TLSGD
:
4690 case BFD_RELOC_X86_64_TLSLD
:
4691 case BFD_RELOC_X86_64_GOTTPOFF
:
4692 value
= 0; /* Fully resolved at runtime. No addend. */
4695 case BFD_RELOC_VTABLE_INHERIT
:
4696 case BFD_RELOC_VTABLE_ENTRY
:
4703 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4705 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4707 /* Are we finished with this relocation now? */
4708 if (fixP
->fx_addsy
== NULL
)
4710 #ifdef BFD_ASSEMBLER
4711 else if (use_rela_relocations
)
4713 fixP
->fx_no_overflow
= 1;
4714 /* Remember value for tc_gen_reloc. */
4715 fixP
->fx_addnumber
= value
;
4719 md_number_to_chars (p
, value
, fixP
->fx_size
);
4722 #define MAX_LITTLENUMS 6
4724 /* Turn the string pointed to by litP into a floating point constant
4725 of type TYPE, and emit the appropriate bytes. The number of
4726 LITTLENUMS emitted is stored in *SIZEP. An error message is
4727 returned, or NULL on OK. */
4730 md_atof (type
, litP
, sizeP
)
4736 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4737 LITTLENUM_TYPE
*wordP
;
4759 return _("Bad call to md_atof ()");
4761 t
= atof_ieee (input_line_pointer
, type
, words
);
4763 input_line_pointer
= t
;
4765 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
4766 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4767 the bigendian 386. */
4768 for (wordP
= words
+ prec
- 1; prec
--;)
4770 md_number_to_chars (litP
, (valueT
) (*wordP
--), sizeof (LITTLENUM_TYPE
));
4771 litP
+= sizeof (LITTLENUM_TYPE
);
4776 char output_invalid_buf
[8];
4783 sprintf (output_invalid_buf
, "'%c'", c
);
4785 sprintf (output_invalid_buf
, "(0x%x)", (unsigned) c
);
4786 return output_invalid_buf
;
4789 /* REG_STRING starts *before* REGISTER_PREFIX. */
4791 static const reg_entry
*
4792 parse_register (reg_string
, end_op
)
4796 char *s
= reg_string
;
4798 char reg_name_given
[MAX_REG_NAME_SIZE
+ 1];
4801 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4802 if (*s
== REGISTER_PREFIX
)
4805 if (is_space_char (*s
))
4809 while ((*p
++ = register_chars
[(unsigned char) *s
]) != '\0')
4811 if (p
>= reg_name_given
+ MAX_REG_NAME_SIZE
)
4812 return (const reg_entry
*) NULL
;
4816 /* For naked regs, make sure that we are not dealing with an identifier.
4817 This prevents confusing an identifier like `eax_var' with register
4819 if (allow_naked_reg
&& identifier_chars
[(unsigned char) *s
])
4820 return (const reg_entry
*) NULL
;
4824 r
= (const reg_entry
*) hash_find (reg_hash
, reg_name_given
);
4826 /* Handle floating point regs, allowing spaces in the (i) part. */
4827 if (r
== i386_regtab
/* %st is first entry of table */)
4829 if (is_space_char (*s
))
4834 if (is_space_char (*s
))
4836 if (*s
>= '0' && *s
<= '7')
4838 r
= &i386_float_regtab
[*s
- '0'];
4840 if (is_space_char (*s
))
4848 /* We have "%st(" then garbage. */
4849 return (const reg_entry
*) NULL
;
4854 && (r
->reg_flags
& (RegRex64
| RegRex
)) != 0
4855 && flag_code
!= CODE_64BIT
)
4857 return (const reg_entry
*) NULL
;
4863 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4864 const char *md_shortopts
= "kVQ:sq";
4866 const char *md_shortopts
= "q";
4869 struct option md_longopts
[] = {
4870 #define OPTION_32 (OPTION_MD_BASE + 0)
4871 {"32", no_argument
, NULL
, OPTION_32
},
4872 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4873 #define OPTION_64 (OPTION_MD_BASE + 1)
4874 {"64", no_argument
, NULL
, OPTION_64
},
4876 {NULL
, no_argument
, NULL
, 0}
4878 size_t md_longopts_size
= sizeof (md_longopts
);
4881 md_parse_option (c
, arg
)
4883 char *arg ATTRIBUTE_UNUSED
;
4891 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4892 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4893 should be emitted or not. FIXME: Not implemented. */
4897 /* -V: SVR4 argument to print version ID. */
4899 print_version_id ();
4902 /* -k: Ignore for FreeBSD compatibility. */
4907 /* -s: On i386 Solaris, this tells the native assembler to use
4908 .stab instead of .stab.excl. We always use .stab anyhow. */
4913 const char **list
, **l
;
4915 list
= bfd_target_list ();
4916 for (l
= list
; *l
!= NULL
; l
++)
4917 if (strcmp (*l
, "elf64-x86-64") == 0)
4919 default_arch
= "x86_64";
4923 as_fatal (_("No compiled in support for x86_64"));
4930 default_arch
= "i386";
4940 md_show_usage (stream
)
4943 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4944 fprintf (stream
, _("\
4946 -V print assembler version number\n\
4948 -q quieten some warnings\n\
4951 fprintf (stream
, _("\
4952 -q quieten some warnings\n"));
4956 #ifdef BFD_ASSEMBLER
4957 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4958 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4960 /* Pick the target format to use. */
4963 i386_target_format ()
4965 if (!strcmp (default_arch
, "x86_64"))
4966 set_code_flag (CODE_64BIT
);
4967 else if (!strcmp (default_arch
, "i386"))
4968 set_code_flag (CODE_32BIT
);
4970 as_fatal (_("Unknown architecture"));
4971 switch (OUTPUT_FLAVOR
)
4973 #ifdef OBJ_MAYBE_AOUT
4974 case bfd_target_aout_flavour
:
4975 return AOUT_TARGET_FORMAT
;
4977 #ifdef OBJ_MAYBE_COFF
4978 case bfd_target_coff_flavour
:
4981 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4982 case bfd_target_elf_flavour
:
4984 if (flag_code
== CODE_64BIT
)
4985 use_rela_relocations
= 1;
4986 return flag_code
== CODE_64BIT
? "elf64-x86-64" : ELF_TARGET_FORMAT
;
4995 #endif /* OBJ_MAYBE_ more than one */
4997 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4998 void i386_elf_emit_arch_note ()
5000 if (OUTPUT_FLAVOR
== bfd_target_elf_flavour
5001 && cpu_arch_name
!= NULL
)
5004 asection
*seg
= now_seg
;
5005 subsegT subseg
= now_subseg
;
5006 Elf_Internal_Note i_note
;
5007 Elf_External_Note e_note
;
5008 asection
*note_secp
;
5011 /* Create the .note section. */
5012 note_secp
= subseg_new (".note", 0);
5013 bfd_set_section_flags (stdoutput
,
5015 SEC_HAS_CONTENTS
| SEC_READONLY
);
5017 /* Process the arch string. */
5018 len
= strlen (cpu_arch_name
);
5020 i_note
.namesz
= len
+ 1;
5022 i_note
.type
= NT_ARCH
;
5023 p
= frag_more (sizeof (e_note
.namesz
));
5024 md_number_to_chars (p
, (valueT
) i_note
.namesz
, sizeof (e_note
.namesz
));
5025 p
= frag_more (sizeof (e_note
.descsz
));
5026 md_number_to_chars (p
, (valueT
) i_note
.descsz
, sizeof (e_note
.descsz
));
5027 p
= frag_more (sizeof (e_note
.type
));
5028 md_number_to_chars (p
, (valueT
) i_note
.type
, sizeof (e_note
.type
));
5029 p
= frag_more (len
+ 1);
5030 strcpy (p
, cpu_arch_name
);
5032 frag_align (2, 0, 0);
5034 subseg_set (seg
, subseg
);
5038 #endif /* BFD_ASSEMBLER */
5041 md_undefined_symbol (name
)
5044 if (name
[0] == GLOBAL_OFFSET_TABLE_NAME
[0]
5045 && name
[1] == GLOBAL_OFFSET_TABLE_NAME
[1]
5046 && name
[2] == GLOBAL_OFFSET_TABLE_NAME
[2]
5047 && strcmp (name
, GLOBAL_OFFSET_TABLE_NAME
) == 0)
5051 if (symbol_find (name
))
5052 as_bad (_("GOT already in symbol table"));
5053 GOT_symbol
= symbol_new (name
, undefined_section
,
5054 (valueT
) 0, &zero_address_frag
);
5061 /* Round up a section size to the appropriate boundary. */
5064 md_section_align (segment
, size
)
5065 segT segment ATTRIBUTE_UNUSED
;
5068 #ifdef BFD_ASSEMBLER
5069 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5070 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
5072 /* For a.out, force the section size to be aligned. If we don't do
5073 this, BFD will align it for us, but it will not write out the
5074 final bytes of the section. This may be a bug in BFD, but it is
5075 easier to fix it here since that is how the other a.out targets
5079 align
= bfd_get_section_alignment (stdoutput
, segment
);
5080 size
= ((size
+ (1 << align
) - 1) & ((valueT
) -1 << align
));
5088 /* On the i386, PC-relative offsets are relative to the start of the
5089 next instruction. That is, the address of the offset, plus its
5090 size, since the offset is always the last part of the insn. */
5093 md_pcrel_from (fixP
)
5096 return fixP
->fx_size
+ fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
5103 int ignore ATTRIBUTE_UNUSED
;
5107 temp
= get_absolute_expression ();
5108 subseg_set (bss_section
, (subsegT
) temp
);
5109 demand_empty_rest_of_line ();
5114 #ifdef BFD_ASSEMBLER
5117 i386_validate_fix (fixp
)
5120 if (fixp
->fx_subsy
&& fixp
->fx_subsy
== GOT_symbol
)
5122 /* GOTOFF relocation are nonsense in 64bit mode. */
5123 if (fixp
->fx_r_type
== BFD_RELOC_32_PCREL
)
5125 if (flag_code
!= CODE_64BIT
)
5127 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTPCREL
;
5131 if (flag_code
== CODE_64BIT
)
5133 fixp
->fx_r_type
= BFD_RELOC_386_GOTOFF
;
5140 i386_force_relocation (fixp
)
5143 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
5144 || fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
5147 return S_FORCE_RELOC (fixp
->fx_addsy
);
5151 tc_gen_reloc (section
, fixp
)
5152 asection
*section ATTRIBUTE_UNUSED
;
5156 bfd_reloc_code_real_type code
;
5158 switch (fixp
->fx_r_type
)
5160 case BFD_RELOC_X86_64_PLT32
:
5161 case BFD_RELOC_X86_64_GOT32
:
5162 case BFD_RELOC_X86_64_GOTPCREL
:
5163 case BFD_RELOC_386_PLT32
:
5164 case BFD_RELOC_386_GOT32
:
5165 case BFD_RELOC_386_GOTOFF
:
5166 case BFD_RELOC_386_GOTPC
:
5167 case BFD_RELOC_386_TLS_GD
:
5168 case BFD_RELOC_386_TLS_LDM
:
5169 case BFD_RELOC_386_TLS_LDO_32
:
5170 case BFD_RELOC_386_TLS_IE_32
:
5171 case BFD_RELOC_386_TLS_IE
:
5172 case BFD_RELOC_386_TLS_GOTIE
:
5173 case BFD_RELOC_386_TLS_LE_32
:
5174 case BFD_RELOC_386_TLS_LE
:
5175 case BFD_RELOC_X86_64_32S
:
5176 case BFD_RELOC_X86_64_TLSGD
:
5177 case BFD_RELOC_X86_64_TLSLD
:
5178 case BFD_RELOC_X86_64_DTPOFF32
:
5179 case BFD_RELOC_X86_64_GOTTPOFF
:
5180 case BFD_RELOC_X86_64_TPOFF32
:
5182 case BFD_RELOC_VTABLE_ENTRY
:
5183 case BFD_RELOC_VTABLE_INHERIT
:
5184 code
= fixp
->fx_r_type
;
5189 switch (fixp
->fx_size
)
5192 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
5193 _("can not do %d byte pc-relative relocation"),
5195 code
= BFD_RELOC_32_PCREL
;
5197 case 1: code
= BFD_RELOC_8_PCREL
; break;
5198 case 2: code
= BFD_RELOC_16_PCREL
; break;
5199 case 4: code
= BFD_RELOC_32_PCREL
; break;
5204 switch (fixp
->fx_size
)
5207 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
5208 _("can not do %d byte relocation"),
5210 code
= BFD_RELOC_32
;
5212 case 1: code
= BFD_RELOC_8
; break;
5213 case 2: code
= BFD_RELOC_16
; break;
5214 case 4: code
= BFD_RELOC_32
; break;
5216 case 8: code
= BFD_RELOC_64
; break;
5223 if (code
== BFD_RELOC_32
5225 && fixp
->fx_addsy
== GOT_symbol
)
5227 /* We don't support GOTPC on 64bit targets. */
5228 if (flag_code
== CODE_64BIT
)
5230 code
= BFD_RELOC_386_GOTPC
;
5233 rel
= (arelent
*) xmalloc (sizeof (arelent
));
5234 rel
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
5235 *rel
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
5237 rel
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
5238 if (!use_rela_relocations
)
5240 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5241 vtable entry to be used in the relocation's section offset. */
5242 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
5243 rel
->address
= fixp
->fx_offset
;
5247 /* Use the rela in 64bit mode. */
5250 if (!fixp
->fx_pcrel
)
5251 rel
->addend
= fixp
->fx_offset
;
5255 case BFD_RELOC_X86_64_PLT32
:
5256 case BFD_RELOC_X86_64_GOT32
:
5257 case BFD_RELOC_X86_64_GOTPCREL
:
5258 case BFD_RELOC_X86_64_TLSGD
:
5259 case BFD_RELOC_X86_64_TLSLD
:
5260 case BFD_RELOC_X86_64_GOTTPOFF
:
5261 rel
->addend
= fixp
->fx_offset
- fixp
->fx_size
;
5264 rel
->addend
= (section
->vma
5266 + fixp
->fx_addnumber
5267 + md_pcrel_from (fixp
));
5272 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
5273 if (rel
->howto
== NULL
)
5275 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
5276 _("cannot represent relocation type %s"),
5277 bfd_get_reloc_code_name (code
));
5278 /* Set howto to a garbage value so that we can keep going. */
5279 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, BFD_RELOC_32
);
5280 assert (rel
->howto
!= NULL
);
5286 #else /* !BFD_ASSEMBLER */
5288 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5290 tc_aout_fix_to_chars (where
, fixP
, segment_address_in_file
)
5293 relax_addressT segment_address_in_file
;
5295 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5296 Out: GNU LD relocation length code: 0, 1, or 2. */
5298 static const unsigned char nbytes_r_length
[] = { 42, 0, 1, 42, 2 };
5301 know (fixP
->fx_addsy
!= NULL
);
5303 md_number_to_chars (where
,
5304 (valueT
) (fixP
->fx_frag
->fr_address
5305 + fixP
->fx_where
- segment_address_in_file
),
5308 r_symbolnum
= (S_IS_DEFINED (fixP
->fx_addsy
)
5309 ? S_GET_TYPE (fixP
->fx_addsy
)
5310 : fixP
->fx_addsy
->sy_number
);
5312 where
[6] = (r_symbolnum
>> 16) & 0x0ff;
5313 where
[5] = (r_symbolnum
>> 8) & 0x0ff;
5314 where
[4] = r_symbolnum
& 0x0ff;
5315 where
[7] = ((((!S_IS_DEFINED (fixP
->fx_addsy
)) << 3) & 0x08)
5316 | ((nbytes_r_length
[fixP
->fx_size
] << 1) & 0x06)
5317 | (((fixP
->fx_pcrel
<< 0) & 0x01) & 0x0f));
5320 #endif /* OBJ_AOUT or OBJ_BOUT. */
5322 #if defined (I386COFF)
5325 tc_coff_fix2rtype (fixP
)
5328 if (fixP
->fx_r_type
== R_IMAGEBASE
)
5331 return (fixP
->fx_pcrel
?
5332 (fixP
->fx_size
== 1 ? R_PCRBYTE
:
5333 fixP
->fx_size
== 2 ? R_PCRWORD
:
5335 (fixP
->fx_size
== 1 ? R_RELBYTE
:
5336 fixP
->fx_size
== 2 ? R_RELWORD
:
5341 tc_coff_sizemachdep (frag
)
5345 return (frag
->fr_next
->fr_address
- frag
->fr_address
);
5350 #endif /* I386COFF */
5352 #endif /* !BFD_ASSEMBLER */
5354 /* Parse operands using Intel syntax. This implements a recursive descent
5355 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5358 FIXME: We do not recognize the full operand grammar defined in the MASM
5359 documentation. In particular, all the structure/union and
5360 high-level macro operands are missing.
5362 Uppercase words are terminals, lower case words are non-terminals.
5363 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5364 bars '|' denote choices. Most grammar productions are implemented in
5365 functions called 'intel_<production>'.
5367 Initial production is 'expr'.
5373 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5375 constant digits [[ radixOverride ]]
5377 dataType BYTE | WORD | DWORD | QWORD | XWORD
5410 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5411 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5413 hexdigit a | b | c | d | e | f
5414 | A | B | C | D | E | F
5424 register specialRegister
5428 segmentRegister CS | DS | ES | FS | GS | SS
5430 specialRegister CR0 | CR2 | CR3
5431 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5432 | TR3 | TR4 | TR5 | TR6 | TR7
5434 We simplify the grammar in obvious places (e.g., register parsing is
5435 done by calling parse_register) and eliminate immediate left recursion
5436 to implement a recursive-descent parser.
5476 /* Parsing structure for the intel syntax parser. Used to implement the
5477 semantic actions for the operand grammar. */
5478 struct intel_parser_s
5480 char *op_string
; /* The string being parsed. */
5481 int got_a_float
; /* Whether the operand is a float. */
5482 int op_modifier
; /* Operand modifier. */
5483 int is_mem
; /* 1 if operand is memory reference. */
5484 const reg_entry
*reg
; /* Last register reference found. */
5485 char *disp
; /* Displacement string being built. */
5488 static struct intel_parser_s intel_parser
;
5490 /* Token structure for parsing intel syntax. */
5493 int code
; /* Token code. */
5494 const reg_entry
*reg
; /* Register entry for register tokens. */
5495 char *str
; /* String representation. */
5498 static struct intel_token cur_token
, prev_token
;
5500 /* Token codes for the intel parser. Since T_SHORT is already used
5501 by COFF, undefine it first to prevent a warning. */
5516 /* Prototypes for intel parser functions. */
5517 static int intel_match_token
PARAMS ((int code
));
5518 static void intel_get_token
PARAMS ((void));
5519 static void intel_putback_token
PARAMS ((void));
5520 static int intel_expr
PARAMS ((void));
5521 static int intel_e05
PARAMS ((void));
5522 static int intel_e05_1
PARAMS ((void));
5523 static int intel_e06
PARAMS ((void));
5524 static int intel_e06_1
PARAMS ((void));
5525 static int intel_e09
PARAMS ((void));
5526 static int intel_e09_1
PARAMS ((void));
5527 static int intel_e10
PARAMS ((void));
5528 static int intel_e10_1
PARAMS ((void));
5529 static int intel_e11
PARAMS ((void));
5532 i386_intel_operand (operand_string
, got_a_float
)
5533 char *operand_string
;
5539 /* Initialize token holders. */
5540 cur_token
.code
= prev_token
.code
= T_NIL
;
5541 cur_token
.reg
= prev_token
.reg
= NULL
;
5542 cur_token
.str
= prev_token
.str
= NULL
;
5544 /* Initialize parser structure. */
5545 p
= intel_parser
.op_string
= (char *) malloc (strlen (operand_string
) + 1);
5548 strcpy (intel_parser
.op_string
, operand_string
);
5549 intel_parser
.got_a_float
= got_a_float
;
5550 intel_parser
.op_modifier
= -1;
5551 intel_parser
.is_mem
= 0;
5552 intel_parser
.reg
= NULL
;
5553 intel_parser
.disp
= (char *) malloc (strlen (operand_string
) + 1);
5554 if (intel_parser
.disp
== NULL
)
5556 intel_parser
.disp
[0] = '\0';
5558 /* Read the first token and start the parser. */
5560 ret
= intel_expr ();
5564 /* If we found a memory reference, hand it over to i386_displacement
5565 to fill in the rest of the operand fields. */
5566 if (intel_parser
.is_mem
)
5568 if ((i
.mem_operands
== 1
5569 && (current_templates
->start
->opcode_modifier
& IsString
) == 0)
5570 || i
.mem_operands
== 2)
5572 as_bad (_("too many memory references for '%s'"),
5573 current_templates
->start
->name
);
5578 char *s
= intel_parser
.disp
;
5581 /* Add the displacement expression. */
5583 ret
= i386_displacement (s
, s
+ strlen (s
))
5584 && i386_index_check (s
);
5588 /* Constant and OFFSET expressions are handled by i386_immediate. */
5589 else if (intel_parser
.op_modifier
== OFFSET_FLAT
5590 || intel_parser
.reg
== NULL
)
5591 ret
= i386_immediate (intel_parser
.disp
);
5595 free (intel_parser
.disp
);
5605 /* expr SHORT e05 */
5606 if (cur_token
.code
== T_SHORT
)
5608 intel_parser
.op_modifier
= SHORT
;
5609 intel_match_token (T_SHORT
);
5611 return (intel_e05 ());
5616 return intel_e05 ();
5626 return (intel_e06 () && intel_e05_1 ());
5632 /* e05' addOp e06 e05' */
5633 if (cur_token
.code
== '+' || cur_token
.code
== '-')
5635 strcat (intel_parser
.disp
, cur_token
.str
);
5636 intel_match_token (cur_token
.code
);
5638 return (intel_e06 () && intel_e05_1 ());
5653 return (intel_e09 () && intel_e06_1 ());
5659 /* e06' mulOp e09 e06' */
5660 if (cur_token
.code
== '*' || cur_token
.code
== '/')
5662 strcat (intel_parser
.disp
, cur_token
.str
);
5663 intel_match_token (cur_token
.code
);
5665 return (intel_e09 () && intel_e06_1 ());
5673 /* e09 OFFSET e10 e09'
5682 /* e09 OFFSET e10 e09' */
5683 if (cur_token
.code
== T_OFFSET
)
5685 intel_parser
.is_mem
= 0;
5686 intel_parser
.op_modifier
= OFFSET_FLAT
;
5687 intel_match_token (T_OFFSET
);
5689 return (intel_e10 () && intel_e09_1 ());
5694 return (intel_e10 () && intel_e09_1 ());
5700 /* e09' PTR e10 e09' */
5701 if (cur_token
.code
== T_PTR
)
5703 if (prev_token
.code
== T_BYTE
)
5704 i
.suffix
= BYTE_MNEM_SUFFIX
;
5706 else if (prev_token
.code
== T_WORD
)
5708 if (intel_parser
.got_a_float
== 2) /* "fi..." */
5709 i
.suffix
= SHORT_MNEM_SUFFIX
;
5711 i
.suffix
= WORD_MNEM_SUFFIX
;
5714 else if (prev_token
.code
== T_DWORD
)
5716 if (intel_parser
.got_a_float
== 1) /* "f..." */
5717 i
.suffix
= SHORT_MNEM_SUFFIX
;
5719 i
.suffix
= LONG_MNEM_SUFFIX
;
5722 else if (prev_token
.code
== T_QWORD
)
5724 if (intel_parser
.got_a_float
== 1) /* "f..." */
5725 i
.suffix
= LONG_MNEM_SUFFIX
;
5727 i
.suffix
= QWORD_MNEM_SUFFIX
;
5730 else if (prev_token
.code
== T_XWORD
)
5731 i
.suffix
= LONG_DOUBLE_MNEM_SUFFIX
;
5735 as_bad (_("Unknown operand modifier `%s'\n"), prev_token
.str
);
5739 intel_match_token (T_PTR
);
5741 return (intel_e10 () && intel_e09_1 ());
5744 /* e09 : e10 e09' */
5745 else if (cur_token
.code
== ':')
5747 /* Mark as a memory operand only if it's not already known to be an
5748 offset expression. */
5749 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
5750 intel_parser
.is_mem
= 1;
5752 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5767 return (intel_e11 () && intel_e10_1 ());
5773 /* e10' [ expr ] e10' */
5774 if (cur_token
.code
== '[')
5776 intel_match_token ('[');
5778 /* Mark as a memory operand only if it's not already known to be an
5779 offset expression. If it's an offset expression, we need to keep
5781 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
5782 intel_parser
.is_mem
= 1;
5784 strcat (intel_parser
.disp
, "[");
5786 /* Add a '+' to the displacement string if necessary. */
5787 if (*intel_parser
.disp
!= '\0'
5788 && *(intel_parser
.disp
+ strlen (intel_parser
.disp
) - 1) != '+')
5789 strcat (intel_parser
.disp
, "+");
5791 if (intel_expr () && intel_match_token (']'))
5793 /* Preserve brackets when the operand is an offset expression. */
5794 if (intel_parser
.op_modifier
== OFFSET_FLAT
)
5795 strcat (intel_parser
.disp
, "]");
5797 return intel_e10_1 ();
5824 if (cur_token
.code
== '(')
5826 intel_match_token ('(');
5827 strcat (intel_parser
.disp
, "(");
5829 if (intel_expr () && intel_match_token (')'))
5831 strcat (intel_parser
.disp
, ")");
5839 else if (cur_token
.code
== '[')
5841 intel_match_token ('[');
5843 /* Mark as a memory operand only if it's not already known to be an
5844 offset expression. If it's an offset expression, we need to keep
5846 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
5847 intel_parser
.is_mem
= 1;
5849 strcat (intel_parser
.disp
, "[");
5851 /* Operands for jump/call inside brackets denote absolute addresses. */
5852 if (current_templates
->start
->opcode_modifier
& Jump
5853 || current_templates
->start
->opcode_modifier
& JumpDword
5854 || current_templates
->start
->opcode_modifier
& JumpByte
5855 || current_templates
->start
->opcode_modifier
& JumpInterSegment
)
5856 i
.types
[this_operand
] |= JumpAbsolute
;
5858 /* Add a '+' to the displacement string if necessary. */
5859 if (*intel_parser
.disp
!= '\0'
5860 && *(intel_parser
.disp
+ strlen (intel_parser
.disp
) - 1) != '+')
5861 strcat (intel_parser
.disp
, "+");
5863 if (intel_expr () && intel_match_token (']'))
5865 /* Preserve brackets when the operand is an offset expression. */
5866 if (intel_parser
.op_modifier
== OFFSET_FLAT
)
5867 strcat (intel_parser
.disp
, "]");
5880 else if (cur_token
.code
== T_BYTE
5881 || cur_token
.code
== T_WORD
5882 || cur_token
.code
== T_DWORD
5883 || cur_token
.code
== T_QWORD
5884 || cur_token
.code
== T_XWORD
)
5886 intel_match_token (cur_token
.code
);
5893 else if (cur_token
.code
== '$' || cur_token
.code
== '.')
5895 strcat (intel_parser
.disp
, cur_token
.str
);
5896 intel_match_token (cur_token
.code
);
5898 /* Mark as a memory operand only if it's not already known to be an
5899 offset expression. */
5900 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
5901 intel_parser
.is_mem
= 1;
5907 else if (cur_token
.code
== T_REG
)
5909 const reg_entry
*reg
= intel_parser
.reg
= cur_token
.reg
;
5911 intel_match_token (T_REG
);
5913 /* Check for segment change. */
5914 if (cur_token
.code
== ':')
5916 if (reg
->reg_type
& (SReg2
| SReg3
))
5918 switch (reg
->reg_num
)
5921 i
.seg
[i
.mem_operands
] = &es
;
5924 i
.seg
[i
.mem_operands
] = &cs
;
5927 i
.seg
[i
.mem_operands
] = &ss
;
5930 i
.seg
[i
.mem_operands
] = &ds
;
5933 i
.seg
[i
.mem_operands
] = &fs
;
5936 i
.seg
[i
.mem_operands
] = &gs
;
5942 as_bad (_("`%s' is not a valid segment register"), reg
->reg_name
);
5947 /* Not a segment register. Check for register scaling. */
5948 else if (cur_token
.code
== '*')
5950 if (!intel_parser
.is_mem
)
5952 as_bad (_("Register scaling only allowed in memory operands."));
5956 /* What follows must be a valid scale. */
5957 if (intel_match_token ('*')
5958 && strchr ("01248", *cur_token
.str
))
5961 i
.types
[this_operand
] |= BaseIndex
;
5963 /* Set the scale after setting the register (otherwise,
5964 i386_scale will complain) */
5965 i386_scale (cur_token
.str
);
5966 intel_match_token (T_CONST
);
5970 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5976 /* No scaling. If this is a memory operand, the register is either a
5977 base register (first occurrence) or an index register (second
5979 else if (intel_parser
.is_mem
&& !(reg
->reg_type
& (SReg2
| SReg3
)))
5981 if (i
.base_reg
&& i
.index_reg
)
5983 as_bad (_("Too many register references in memory operand.\n"));
5987 if (i
.base_reg
== NULL
)
5992 i
.types
[this_operand
] |= BaseIndex
;
5995 /* Offset modifier. Add the register to the displacement string to be
5996 parsed as an immediate expression after we're done. */
5997 else if (intel_parser
.op_modifier
== OFFSET_FLAT
)
5998 strcat (intel_parser
.disp
, reg
->reg_name
);
6000 /* It's neither base nor index nor offset. */
6003 i
.types
[this_operand
] |= reg
->reg_type
& ~BaseIndex
;
6004 i
.op
[this_operand
].regs
= reg
;
6008 /* Since registers are not part of the displacement string (except
6009 when we're parsing offset operands), we may need to remove any
6010 preceding '+' from the displacement string. */
6011 if (*intel_parser
.disp
!= '\0'
6012 && intel_parser
.op_modifier
!= OFFSET_FLAT
)
6014 char *s
= intel_parser
.disp
;
6015 s
+= strlen (s
) - 1;
6024 else if (cur_token
.code
== T_ID
)
6026 /* Add the identifier to the displacement string. */
6027 strcat (intel_parser
.disp
, cur_token
.str
);
6028 intel_match_token (T_ID
);
6030 /* The identifier represents a memory reference only if it's not
6031 preceded by an offset modifier. */
6032 if (intel_parser
.op_modifier
!= OFFSET_FLAT
)
6033 intel_parser
.is_mem
= 1;
6039 else if (cur_token
.code
== T_CONST
6040 || cur_token
.code
== '-'
6041 || cur_token
.code
== '+')
6045 /* Allow constants that start with `+' or `-'. */
6046 if (cur_token
.code
== '-' || cur_token
.code
== '+')
6048 strcat (intel_parser
.disp
, cur_token
.str
);
6049 intel_match_token (cur_token
.code
);
6050 if (cur_token
.code
!= T_CONST
)
6052 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6058 save_str
= (char *) malloc (strlen (cur_token
.str
) + 1);
6059 if (save_str
== NULL
)
6061 strcpy (save_str
, cur_token
.str
);
6063 /* Get the next token to check for register scaling. */
6064 intel_match_token (cur_token
.code
);
6066 /* Check if this constant is a scaling factor for an index register. */
6067 if (cur_token
.code
== '*')
6069 if (intel_match_token ('*') && cur_token
.code
== T_REG
)
6071 if (!intel_parser
.is_mem
)
6073 as_bad (_("Register scaling only allowed in memory operands."));
6077 /* The constant is followed by `* reg', so it must be
6079 if (strchr ("01248", *save_str
))
6081 i
.index_reg
= cur_token
.reg
;
6082 i
.types
[this_operand
] |= BaseIndex
;
6084 /* Set the scale after setting the register (otherwise,
6085 i386_scale will complain) */
6086 i386_scale (save_str
);
6087 intel_match_token (T_REG
);
6089 /* Since registers are not part of the displacement
6090 string, we may need to remove any preceding '+' from
6091 the displacement string. */
6092 if (*intel_parser
.disp
!= '\0')
6094 char *s
= intel_parser
.disp
;
6095 s
+= strlen (s
) - 1;
6108 /* The constant was not used for register scaling. Since we have
6109 already consumed the token following `*' we now need to put it
6110 back in the stream. */
6112 intel_putback_token ();
6115 /* Add the constant to the displacement string. */
6116 strcat (intel_parser
.disp
, save_str
);
6122 as_bad (_("Unrecognized token '%s'"), cur_token
.str
);
6126 /* Match the given token against cur_token. If they match, read the next
6127 token from the operand string. */
6129 intel_match_token (code
)
6132 if (cur_token
.code
== code
)
6139 as_bad (_("Unexpected token `%s'\n"), cur_token
.str
);
6144 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6149 const reg_entry
*reg
;
6150 struct intel_token new_token
;
6152 new_token
.code
= T_NIL
;
6153 new_token
.reg
= NULL
;
6154 new_token
.str
= NULL
;
6156 /* Free the memory allocated to the previous token and move
6157 cur_token to prev_token. */
6159 free (prev_token
.str
);
6161 prev_token
= cur_token
;
6163 /* Skip whitespace. */
6164 while (is_space_char (*intel_parser
.op_string
))
6165 intel_parser
.op_string
++;
6167 /* Return an empty token if we find nothing else on the line. */
6168 if (*intel_parser
.op_string
== '\0')
6170 cur_token
= new_token
;
6174 /* The new token cannot be larger than the remainder of the operand
6176 new_token
.str
= (char *) malloc (strlen (intel_parser
.op_string
) + 1);
6177 if (new_token
.str
== NULL
)
6179 new_token
.str
[0] = '\0';
6181 if (strchr ("0123456789", *intel_parser
.op_string
))
6183 char *p
= new_token
.str
;
6184 char *q
= intel_parser
.op_string
;
6185 new_token
.code
= T_CONST
;
6187 /* Allow any kind of identifier char to encompass floating point and
6188 hexadecimal numbers. */
6189 while (is_identifier_char (*q
))
6193 /* Recognize special symbol names [0-9][bf]. */
6194 if (strlen (intel_parser
.op_string
) == 2
6195 && (intel_parser
.op_string
[1] == 'b'
6196 || intel_parser
.op_string
[1] == 'f'))
6197 new_token
.code
= T_ID
;
6200 else if (strchr ("+-/*:[]()", *intel_parser
.op_string
))
6202 new_token
.code
= *intel_parser
.op_string
;
6203 new_token
.str
[0] = *intel_parser
.op_string
;
6204 new_token
.str
[1] = '\0';
6207 else if ((*intel_parser
.op_string
== REGISTER_PREFIX
|| allow_naked_reg
)
6208 && ((reg
= parse_register (intel_parser
.op_string
, &end_op
)) != NULL
))
6210 new_token
.code
= T_REG
;
6211 new_token
.reg
= reg
;
6213 if (*intel_parser
.op_string
== REGISTER_PREFIX
)
6215 new_token
.str
[0] = REGISTER_PREFIX
;
6216 new_token
.str
[1] = '\0';
6219 strcat (new_token
.str
, reg
->reg_name
);
6222 else if (is_identifier_char (*intel_parser
.op_string
))
6224 char *p
= new_token
.str
;
6225 char *q
= intel_parser
.op_string
;
6227 /* A '.' or '$' followed by an identifier char is an identifier.
6228 Otherwise, it's operator '.' followed by an expression. */
6229 if ((*q
== '.' || *q
== '$') && !is_identifier_char (*(q
+ 1)))
6231 new_token
.code
= *q
;
6232 new_token
.str
[0] = *q
;
6233 new_token
.str
[1] = '\0';
6237 while (is_identifier_char (*q
) || *q
== '@')
6241 if (strcasecmp (new_token
.str
, "BYTE") == 0)
6242 new_token
.code
= T_BYTE
;
6244 else if (strcasecmp (new_token
.str
, "WORD") == 0)
6245 new_token
.code
= T_WORD
;
6247 else if (strcasecmp (new_token
.str
, "DWORD") == 0)
6248 new_token
.code
= T_DWORD
;
6250 else if (strcasecmp (new_token
.str
, "QWORD") == 0)
6251 new_token
.code
= T_QWORD
;
6253 else if (strcasecmp (new_token
.str
, "XWORD") == 0)
6254 new_token
.code
= T_XWORD
;
6256 else if (strcasecmp (new_token
.str
, "PTR") == 0)
6257 new_token
.code
= T_PTR
;
6259 else if (strcasecmp (new_token
.str
, "SHORT") == 0)
6260 new_token
.code
= T_SHORT
;
6262 else if (strcasecmp (new_token
.str
, "OFFSET") == 0)
6264 new_token
.code
= T_OFFSET
;
6266 /* ??? This is not mentioned in the MASM grammar but gcc
6267 makes use of it with -mintel-syntax. OFFSET may be
6268 followed by FLAT: */
6269 if (strncasecmp (q
, " FLAT:", 6) == 0)
6270 strcat (new_token
.str
, " FLAT:");
6273 /* ??? This is not mentioned in the MASM grammar. */
6274 else if (strcasecmp (new_token
.str
, "FLAT") == 0)
6275 new_token
.code
= T_OFFSET
;
6278 new_token
.code
= T_ID
;
6283 as_bad (_("Unrecognized token `%s'\n"), intel_parser
.op_string
);
6285 intel_parser
.op_string
+= strlen (new_token
.str
);
6286 cur_token
= new_token
;
6289 /* Put cur_token back into the token stream and make cur_token point to
6292 intel_putback_token ()
6294 intel_parser
.op_string
-= strlen (cur_token
.str
);
6295 free (cur_token
.str
);
6296 cur_token
= prev_token
;
6298 /* Forget prev_token. */
6299 prev_token
.code
= T_NIL
;
6300 prev_token
.reg
= NULL
;
6301 prev_token
.str
= NULL
;